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Abstract 

Calcium oxalate stone disease is the most 
common human urinary stone disease in the Wes
tern Hemisphere. To understand different aspects 
of the disease, calcium oxalate urolithiasis in 
the rat is used as a model. Spontaneous calcium 
oxalate urolithiasis is very rare in rats . Thus 
the disease is experimentally induced and the 
rats are generally made hyperoxaluric either by 
admtnistration of excess oxalate, exposure to 
the toxin ethylene glycol, or various nutritional 
manipulations . All the experimental models show 
renal injury associated with crystal deposition. 
Calcium oxalate crystals are in most cases intra
lumfnal in renal tubules and often attached to 
the basal lamina of the denuded epithelium. Rat 
renal papillary tips and fornices appear to be 
the preferential sites for the deposition of 
large calcium oxalate calculi. Where urinary 
supersaturation of calcium oxalate has been stu
dted the crystal forming rat urines are shown to 
have higher urinary supersaturation of calcium 
oxalate than their controls. Oxalate metabolism 
in the rat is nearly identical to that in humans. 
Thus, in a number of respects, experimental cal
cium oxalate urolithiasis in the rat is s imilar 
to calcium oxalate stone disease in man. 
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Introduction 

Urolithiasis, the precipitation of salts in 
urine, is a process common to many animals inclu
ding man. The precipitation results in the for
mation of crystals which move freely and are 
harmlessly excreted by the animal, or are re
tained in the urinary tract resulting in stone 
disease . Thus crystalluria, nephrolithiasis, and 
lower urinary tract stone disease are special 
manifestations of urolithiasis. Every individual 
passes crystals of calcium phosphate and or cal
cium oxalate in the urine making crystalluria 
the most common form of urolithiasis in man. 
Urinary stone disease, on the other hand, 
afflicts approximately l of 1000 individuals in 
the United States. Importantly, seventy to 
eighty per cent of these stones contain calcium 
oxalate. In contrast to man, spontaneous uroli
thiasis is quite rare in rats, especially the 
calcium oxalate type. Nonetheless, because the 
rat is the most easily available and commonly 
used laboratory animal, a number of experimental 
models have been developed for the study of cal
cium oxalate urolithiasis. In this brief review 
various aspects of calcium oxalate urolithiasis 
in the rat, with reference to humans and other 
mammals, will be discussed. 

Oxalate Metabolism 

In mammals urinary oxalate is derived from 
exogenous and endogenous sources [51]. In man 
from 5 to 15 percent of urinary oxalate comes 
from dietary sources [51 ,82,84,106] of which 
three to five percent is derived from dietary 
glyco lat e [46,84]. Absorption of oxal ate through 
the intestine is dependent on the availability 
of soluble oxalate because soluble forms are 
more readily absorbed. Their absorption is in
versely related to the amount of availab l e cal
cium to convert soluble to insoluble calcium 
oxalate. Other factors influencing oxalate 
absorption in humans are magnesium, iron, trace 
metals [51,106] bile salts, and fatty acids in 
the intestinal luminal fluids. Oxalate is 
chiefly absorbed by a passive, non-energy depen
dent, non-carrier mediated simpl e diffusion 
process [4]. Some recent studies have shown 
carrier mediated as well as active uptake of 
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oxalate in certain experimental systems. Pinto 
and Paternain [89] demonstrated the presence of 
an oxalate binding protein in the cytosol fra c
tions of the brush border cells of human and 
rabbtt intestinal mucosa. They hypothesized that 
at low concentrations of oxalate, active binding 
took place, whereas at higher concentrations 
simple diffusion occurred. Dijkuizen et. al. [21] 
demonstrated an energy dependent uptake of oxa
late by membrane vesicles isolated from the bac
terium Pseudomonas oxalaticus. 

Approximately 15% of dietary oxalate in rats 
is absorbed from the intestine , accounting for 
about one third of the urinary oxalate [52]. 
Passive diffusion appears to be the main mecha
nism: intestinal uptake of oxalic acid in creases 
linearly with increasing concentration [4,9,78]. 
Caspary [9], using everted sacs from variou s 
parts of the gut of female Wistar rats, showed 
the highest uptake rates by colonic intestinal 
tissues and lowest by duodenal tissue. In con
trast, Madorsky and Finlayson [78], using isola
ted, intact, washed segments of the gut of Harlan 
male rats, showed the highest 14c oxalate absorp
tion by jejunal segments and lowest by colonic 
segments. Madorsky and Finlayson [78] also showed 
that the initial rate of 14c oxalate absorption 
by intestinal segments was higher than absorption 
after 5 minutes suggest ing that oxalate might 
inhibit its own absorption or that the rapid in
take of oxalate in the first five minutes was an 
anomalous behaviour and an experimenta l artifact. 

Oxalate absorption in the rat intestine is 
a lso influ enced by the amount of calcium in lumi
nal fluids. On a low calcium diet, a 30% to 50% 
rise in urinar y excretion of oxalate has been 
observed [51 ,52]. An inhibitory effect of calcium 
on absorptio n of oxalic acid has al so been shown 
by using everted sacs of various segments of rat 
int esti ne [9]. The influence of cal cium i s ex
plained by the decrease in avai l abl e absorbable 
intraluminal oxalate due to formation of insol
uble calcium oxalat e. 

Intestinal absorption of oxalate in rats may 
also be influenced by the presence of bile and 
fatty acids [9,104]. Unabsorbed fatty acids bind 
intraluminal calcium which decreas es the amount 
of cal cium available for binding oxalate [82]. 
Also, bile salts may increase coloni c absorption 
of oxalate by a non-s pecific alteration of muco
sal permeability [9,2 3]. 

More than half of the dietary oxalate in man 
or rat is destroyed by bacteria in the large 
intestine and less than half of ingested oxalate 
can be accounted for in the faeces and urine . 
However, faecal excretion of oxalate is consider
ably higher in the rat than in man [51,52]. 
Though most rat fecal oxalate is derived from 
dietary sources, small amounts may originate in 
the liver [51]. Oxalate transported from plasma 
to rat intestinal lumen has been demonstrated. 
Dobson and Finlayson [24] injected 14c labelled 
oxalate into the femoral vein of nephrectomized 
rats and recovered the label in various gut seg
ments. In man about 90% of 14c oxalate injected 
i~travenously is recovered in the urine within 48 
hours and little or no activity is detected in 
the faeces or respired air [25,5 3]. Following 
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intr aper iton eal or subcutaneous injections in 
the rat, 50% to 70% of 14c labelled oxalate was 
recovered in the urine, a significant amount was 
found in the bone [19,52 14 and up to 1% converted 
into CO2 [19,11 8] . When C oxalate was given to 
rat s through a throat probe 25% was recovered in 
urine and 73% in faeces [ 3]; within 30 minutes of 
oral administration, 14c labelled oxalate was 
cleared by the kidney and entered the bladder, 
and 2 hours later present in the bone. 

Eighty five percent of the oxalate found 
in mammalian urine i s endogenously produced 
[51,122]. Oxalate is a non-es sential end product 
of metabolism and is excreted unchanged in the 
urine. Thirt y to fifty percent of urinary oxalate 
is derived from oxidative metabolism of ascorbic 
acid and about 40% comes from glycine. Hydroxy
proline, serine, tryptophan and aromatic amino 
aci ds contribut e smaller amounts. While ascorbate, 
glyoxylate, and glycollate are the immediate 
precursors and can directly convert to oxalate, 
the other precursors are metabolised to oxalate 
via glyuxylate or glycoll ate. Glyoxylat e is 
generally considered to be the major immediate 
precursor. 

In rat too, a conversion of known precur
sor s to oxalate has been demonstrated [17,52, 
118] and glyoxylate and ascorbic acid metabolism 
are shown to be mainly re sponsible for the endo
genous production of urinary oxalate, Citric 
acid also appears to be a s ignificant source of 
urinary oxal ate i n the rat [52]. Various amino 
acids al so contribut e to rat urinary oxalate but 
their importance as precursors most probably 
depends upon their availability. The importance 
of amino acids as a source of urin ary oxalate in 
the rat is indicated by the marked effec t of 
protein inta ke on urinary oxal ate. Oxal ate excre
tion fell by 60% on a low protein diet and in
creased by over 100% with a high protein diet 
[52]. Similar ly when rat diet was supplemented 
with 3% glycin e and 5.2 % hydroxypro line, faeces 
and urine contained unexpectedly high amount s of 
oxalate. 

The li ver plays a major role in oxalate 
metaboli sm: major enzymes involved in oxalate 
biosynthesis such as gly colic acid dehydrogenase 
and glycolic acid oxidase, are restricted to 
liv er both in ra t and man [93]. Intestinal mucosa 
also plays a role in production of oxalate from 
a variety of precursors. Ribaya and Gershoff [91] 
incubated homogenates of rat inte sti nal mucosa 
with various 14c labelled oxalate precursors and 
measured th e amounts of radioactivity recovered 
as l4co 2 and 14c oxalate. Signifi cant amounts of 
sodium l-14 c gl yoxal ate converted to 14c oxalate. 

Great variation exi sts in oxalate concentra
tions of various body tissues. Human kidneys con
tain more oxalate (0.4 mg/100 g wet wt) on a wet 
weight basis than other tissues [54]. Oxalate 
concentration is higher in rat kidneys than in 
human kidneys and oxalate in male ra t kidneys is 
greater than in the female averaging 38.8 mg/ 100 
g wet wt in males, and 31.l mg/100 g wet wt in 
females [92]. A concentration gradi ent exists 
between the renal cortex and papilla in man and 
rat [48,49,123]. Rat renal papilla contains the 
maximum amount of oxalate (16.2 mg/100 g wet wt), 
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Table l. 
Calcium Oxalate Urolithiasis in Rat 

S.No. Strain and Sex Method of Induction 

l. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

l l. 

12. 

Germ free Male, 
Female 
Sprague-Dawley 
Male 
Charles River 
Male 
Holtzman Male 

Sprague-Dawle y 
Male 

Sprague-Dawley 
Male 

Sprague-Dawley 
Male 

Carworth Farms 
Nelson CFN 
Male, Female 
Sprague-Dawley 
Mal e, F ema l e 

Sprague-Dawley 
Male 
Wistar Male 

Wistar Male 
Sprague-Dawley 
Male 

Spontaneous 

Spontaneous 

Daily intraperitoneal injections 
of 1% sodium oxalate 
Sing le intraperitoneal i nj ec-
tions of 2.5 % sodium oxalate 
Sodium Oxalate in diet 

Ammonium Oxalate in diet 

Ammonium Oxalate and ammonium 
chlorid e in diet 
Intraperitoneal or subcutaneous 
implantation of potassium oxa
late containing mini-osmotic 
pumps 
Single intraperitoneal injection 
of sodium oxalate in addition to 
potassium oxalate in mini
osmotic pumps 
4% Diethy lene glyco l mixed in 
food 

Ethylene glycol or ethy l ene gly
col and ammonium chloride in 
water at various concentrations 

1% ethylene glycol in water + 
a magnesium deficient diet 
0.5 % ethylene glycol in water+ 
0.5 µgram Vitamine D once a day 
by ga vage 
Intra peritoneal injection of 2. 5 
g/kg 4-hydroxy-L-proline 

13. Wistar Male 3% glycolic acid in diet 

14. Wistar Male Low phosphate diet (P 0.16 %) 
Weanling 

15. Sprague-Dawley Low phosphate diet (P 0.07 %) 
Male 

16. Charles River 
CD Male 

17. Charles River 
CD, Male 
Female 
Castrated 

Pyridoxine deficient diet+ 
3% glycine 

Pyridoxine deficient diet 
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Response Ref. 

Bladder sto nes in 50% males and 2% 43 
females . 
Stones in bladder. 88 

After 2 wks crystals in renal cortex, 114 
medulla, papilla. 
Within 15 min of injection crystals in 57 
renal cortex; later in all parts of kidney. 
Within a week crystals in renal cortex, 42 
within 4 to 6 wks stones at renal 
papillary tips. 
vJithin a week stones at renal papillary 
tips, in fornices, and pelvis. Incidence 
of sto ne formation increased with time. 
Greater incidence of stone formation than 
with ammonium oxalate alone. 
Crystal lur ia within a week, single and 63 
twinned as well as aggregated crysta l s. 

Crysta lluri a; after 6 wks crystals in 63 
renal tubules; macroscopic crystalline 
deposits (stones) in bladder. 

In two year feeding study bladder stones 117 
in male rats. 

Within 3 days crystals on papillary tips, 77 
few rats with crystals in renal tubule s. 
Acidification increased severity of crystal 
deposition. Males had crysta l s at all 
concentrations of ethylene glycol while 
females only at 1% or more. 
Crystalluria; crysta l deposition in 
renal cortex, medulla and papi lla. 

103 

Crystalluria after 3 wks; after 4 wks 85 
crysta l s in renal tubules, on papillary 
surface; stones in pelvis, ureters, bladder. 
Within 24 hr crysta l s in renal tubules 108 
crystal l uria. 

Within 3 wks crystals in renal cortex, 
medulla, papilla; stones in pelvis, 
ureters, bladder. 
Stones in pelvis in 9 wks and bladder 
in 14 wks 
Microstones in renal pelvis after 
l O months. 
Crystalluria; in 6 wks stones on renal 
papillary tips, in fornices, pelvis, 
ureters, bladder. 

11 

13 

120 

Renal papillary tip encrustation, stones 36 
in pelvis, ureters, bladder. After 3 
months mal es were most affected and females 
l east affected; after 6 months all rats 
had similar deposits. 



S.R. Khan and R.L. Hackett 

followed by medulla (6.12 mg/100 g wet wt), and 
cortex (3.4 mg/100 g wet wt) [123]. 

Composition of Stones 

Of the various aspects of urolithiasis, the 
presence of stone is the one element which most 
commonly symbolises stone disease. All human 
urinary stones consist of two basic components, 
crystals and matrix [29,79]. In urinary stone 
disease of man, up to 97% of the stone is crys
talline, the rest is proteinaceous matrix. The 
crystalline component may be cystine, uric acid, 
mono and dihydrates of calcium oxalate, magnesium 
ammonium phosphate, various types of calcium 
phosphates and urates, and other materials that 
are excreted in urine in concentrations suffi
cient for precipitation. In rats, stones also 
consist of organic matrix and crystals [34]. The 
crystalline component of stones may be citrate, 
mono and dihydrates of calcium oxalate, calcium 
phosphate, magnesium phosphate, magnesium ammo
nium phosphate and other substances experimen
tally induced to precipitate in the urine. 
Studies of rat stone matrix are limited [8,34]. 
Phosphate stones contain 19 amino acids, with 
glutamic acid being the most abundant and argi
nine, methionine, histidine, cysteine and cystine 
occurring in insignificant amounts [10]. In 
addition to amino acids, rat kidney stones con
tain glucose, fatty acids, and cholesterol, but 
lack hexosamine, uronic acid , sulphate, and 
sialic acid [8]. 

Spontaneous Oxalate Urolithiasis in Rat 

Documented cases of spontaneous urinary 
stone formation in rats are rare (Table l). Al
though renal calcium phosphate and/or ammonium 
magnesium phosphate stones have been reported, 
there are no reports of spontaneously formed 
oxalate stones in the rat upper urinary tract. 
Rarely, oxalate stones have been found in the 
bladder. Of 100 male Sprague-Dawley rats in a 
toxicity study, only 2 rats were found to have 
oxalate calculi, and these were associated with 
calcium carbonate and calcium or ammonium phos
phate [88]. Mixed calcium oxalate and citrate 
bladder calculi were found in 50% of male germ 
free rats on a semi-synthetic diet with a compo
sition within the limits of dietary standards [43} 
Genetically related conventional rats on the same 
diet did not form any calculi. The calculus form
ing germ free rats had high urinary calcium, high 
citrate, high pH, and low urinary phosphate. The 
tendency to form calculi disappeared and the 
urinary values became similar to those of noncal
culi forming rats on contamination of germ free 
rats by intestinal flora from the conventional 
rats. 

Experimentally Induced 
Oxalate Urolithiasis in Rats 

To understand different aspects of the oxa
late stone disease in humans, oxalate urolithia
sis has been induced in the rat by various means. 
The main mechanism is production of hyperoxaluria 
by addition of oxalate or an oxalate precursor 

762 

to the diet, or by intraperitoneally injecting 
them into the rat (Table l). Hyperoxaluria has 
also been induced by other dietary manipulations 
including pyridoxine-deficient diets, low phos
phate diets, and high protein diets. 
Oxalate Induced Urolithiasis: 

Repeated intraperitoneal injections of 
sodium oxalate into male Charles River rats on 
regular Purina rat chow and water resulted in a 
deposition of calcium oxalate crystals through
out the kidney [114]. Rats tolerated daily 
repeated injections of about 50 mg/kg with very 
few side effects. In a modification of this 
method male Holtzman rats were injected with 
various amounts of 0.22M sodium oxalate in 0.9 % 
saline and the kinetics of calcium oxalate 
nephrolithiasis were studied [57]. The LOSO was 
R 2.5xlo-4 but no rat succumbed to l.lxlo-4. 
l.lxlQ-4 moles of sodium oxalate resulted in 
non-specific cytologic damage which resolved 
24 hr post-injection. At this dose, urine volume 
increased 50% in the first 24 hours, and 80% 
during the second 24 hours. By the 3rd day post
injection urine volume was normal. Renal tissue 
calcium increased for the first 4 hours. Sub
sequently it subsided as a first order process. 
It was concluded that most of the increased 
calcium was derived from glomerular filtrate and 
precipitated as calcium oxalate crystals which 
were virtually all intratubular. 

We have used the sodium oxalate injection 
method to study the pathogenesis of calcium 
oxalate urolithiasis in the rat. Male Sprague
Dawley rats received single injections of 3, 5, 
7, or 9 mg of sodium oxalate per 100 g body 
weight utilizing 0.22M sodium oxalate solution 
in 0.9 % saline. The animals were sacrificed 
from 15 min to 2 wks after injection, and their 
kidneys were examined by light microscopy, and 
scanning and transmission electron microscopy 
[59,60,61 ,67]. Calcium oxalate crystals appeared 
in the proximal tubules within 15 minutes of the 
sodium oxalate injection in as low a dose as 
3 mg/kg body weight. Crystals apparently moved 
with urine flow as they were absent 72 hours 
post-injection. Within a week the kidney was 
morphologically normal. The size, number, and 
location of calcium oxalate crystals depended 
on the amount of sodium oxalate injected and the 
time interval after the injection. The papillary 
tip and cortico-medullary junction were the pre
ferential sites for crystal deposition after 
longer periods of injections of higher doses of 
sodium oxalate [59,61]. Tubular epithelium from 
proximal tubule to the collecting ducts was 
damaged. The damage depended on the amount of 
sodium oxalate injected [59,60,61] and was 
mostly restricted to the tubules containing the 
crystals. The first noticeable change was seen 
in the proximal tubules whose brush border was 
distorted by clubbing of the microvilli and the 
formation of blebs (Fig. la, b). Later, micro
villi were lost from localized areas of the 
brush (Fig. 2a, b). Epithelial cells contained 
increased numbers of lysosomes, some of which 
were autophagic vacuoles (Fig. 3). General 
cellular necrosis was seen in all parts of the 
nephron. Degenerative changes included swelling 
of the mitochondria (Fig. 4), dilatation of 
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Fig. la. SEM of proximal tubular epithelium showing lateral membrane folds (F) of tubular cells and 
microvillous brush border (MB). The brush border is distorted by the formation of large blebs (B) 
projecting into the tubular lumen. Bar= 5 µm. lb. TEM of a section through the brush border and a 
bleb similar to one seen in la. The bleb (8) has a diffuse cytoplasm which is continuous with the 
cytoplasm of the cell. Bar= 1 µm. 

endoplasmic reticulum, cytoplasmic edema, and 
vacuolation. Luminal cell membranes of degenera
ting cells appeared to have burst releasing their 
contents into the tubular lumen (Fig. 4). Focally, 
cells were sheared from the tubular basement 
membrane (Fig. 5) contributing to the cellular 
debris present in all parts of the nephron (Fig. 
6). The papillary tip surface was badly damaged. 
Its covering epithelium was lost exposing the 
underlying basement membrane [61]. Crystals of 
both calcium oxalate monohydrate and dihydrate 
were identified by morphology. Calcium oxalate 
monohydrate crystals were present as aggregates 
of monoclinic prismatic plates while calcium 
oxalate dihydrates appeared as tetragonal bipyra
mids present individually or in aggregates [60, 
67]. Crystals were intraluminal in the nephron 
and almost always associated with flocculent 
eosinophilic material which stained positively 
with periodic acid Schiff reaction, Alcian blue 
and colloidal iron (Fig. 7). Transmission elec
tron microscopy revealed the material associated 
with calcium oxalate crystals (Fig. 8) to be 
cellular debris consisting of membranes, vesicles, 
and cellular organelles in various stages of 
degradation (Fig. 6). Crystals were often found 
attached to epithelial cells, and, in totally 
denuded tubules, were attached to the basement 
membrane [59,61]. 

In a chronic study, 1 ml of 2.5 % sodium 
oxalate solution in 0.9 % saline was injected in 
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rats twice a day for a period ranging 49 days to 
10 months [20]. Calcium oxalate crystals were 
found in all renal tubular segments as well as 
in the interstitium . Regressive changes were 
evident not only in tubular epithelium but also 
in the glomerular epithel i um. Thickening of 
glomerular and tubular epithelial basement mem
branes was described. The first crystals were 
interpreted as deposited in phagolysosomes. 

In a recent study [42] male Sprague-Dawley 
rats were fed diets supplemented with sodium or 
ammonium oxalate and calcium or ammonium chloride. 
Rats were sacrificed at weekly intervals for six 
weeks. The animals fed sodium oxalate had 
initial deposition of calcium oxalate monohy
drate crystals in cortex and cortico-medullary 
junction. After six weeks crystals were prefer
entially deposited at the papillary tips. The 
urine was more alkaline (pH 7.4) than those of 
the controls (pH 6.9) and had crystals of 
triple phosphate. Animals on a diet supplemented 
with ammonium oxalate had a more acidic urine 
(pH 5.6 to 6. 2) and, depending on the amount of 
added oxalate, renal or bladder stones. Renal 
deposits were present either in the papilla or 
the fornices . Supplementation of diet with 
either calcium chloride or ammonium chloride 
resulted in the acidification of the urine, but 
calcium chloride resulted in lowering of urinary 
oxalate probably because of oxalate binding in 
the gut. 
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In the experiments described above oxalate 
was administered either through diet or intraper
itoneal injection. Because the amount of food 
consumed by individual rats may vary, such 
methods can give inconsistent results. Methods 
utilizing single injections have the serious 
defect that they produce sudden, acute, over
loading surges causing high supersaturations of 
urinary salts and transient crystalluria. To 
meet these objections we induced urolithiasis in 
rats by subcutaneously or intraperitoneally im
planting mini-osmotic pumps (Alza Corporation, 
Palo Alto, CA) loaded with a saturated solution of 
potassium oxalate [63,64]. Osmotic pumps deliver 
their contents at a specific rate for a given 
period of time. The urine of experimental animals 
had abundant crystals of calcium oxalate, cal
cium phosphate, triple phosphate mixed with amor
phous calcium phosphate, and an amorphous viscid 
material which was mostly calcium phosphate. No 
crystals were deposited in the kidney. A direct 
correlation was evident between supersaturation 
and crystalluria. However, crystal number did not 
correlate well with the degree of supersaturation. 
In this respect the experimental results resembled 
human crystalluria [119]. Urinary oxalate levels 
of experimental animals were higher than their 
controls and this increase was proportional to 
the increase in urinary supersaturation of cal
cium oxalate. Urinary calcium levels were not 
significanlty altered. One group of animals, 
injected with sodium oxalate in addition to the 
potassium oxalate containing osmotic pump, had 
calcium oxalate stones in their bladder and their 
kidneys had deposits of calcium oxalate crystals. 
In this respect rats behaved like stone formers 
who showed an increase in size and aggregation of 
calcium oxalate crystals on addition of oxalate 
to their diet. Lower inhibitory activity in stone 
formers' urine was thought to be responsible for 
this situation [97]. 

Urolithiasis induced by 
Ethylene Glycol Administration 

Ethylene glycol is one of the precursors of 
oxalate and has long been known as the cause of 
calcium oxalate crystal deposition in kidneys of 
man and animals when it is accidentally or inten
tionally ingested. Glycoaldehyde, glycollate and 
glyoxylate are on its metabolic pathway to oxalate 
and carbon -dioxide [40,93,118]. Most of the 
ingested ethylene glycol is eliminated unchanged 
in the urine and the bulk of the rest is oxidised 
to carbon-dioxide [40]. The amount of oxalate 
excreted is dependent upon the animal species as 
well as the dose. In albino rats only about 0.5 % 
to 1. 1% of the dose has been shown to be converted 
to oxalate. At a lower dose level of O.l g/kg 
rat body weight given by subcutaneous injections, 
23% of the ethylene glycol was converted to 
carbon-dioxide while 35% was excreted in the 
urine, with none of it converted to oxalate. At 
l g/kg dose level about 1. 1% of the ethylene gly
col converted to urinary oxalate. 

When a 1% solution of ethylene glycol was 
given to male and female rats in drinking water 
small oxalate calculi were produced in male rats 
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but were absent in female rats [107]. In a s1m1-
lar study, male Sprague-Dawley rats given ethyl
ene glycol in the diet were shown to be more 
susceptible to crystal deposition in kidney and 
renal calculus formation than the female [5]. 
Male rats on diets containing over 0.2 % ethyl
ene glycol showed renal calcium oxalate crystal 
deposition and at 0.5 % or more ethylene glycol, 
renal stones were produced. On the other hand in 
female rats renal crystal deposition was limited 
to those on 1% and 4% ethylene glycol and calculi 
were found only at 4% ethylene glycol. The 
earliest lesions showed tubular epithelial necro
sis. Crystals were deposited on the basement 
membrane. The amount of deposited crystal was 
proportional to the concentration of ethylene 
glycol in diet. 

Acidification of urine in conjunction with 
administration of ethylene glycol increases the 
severity and incidence of urolithiasis [77,99] . 
When rats drank water containing both ammonium 
chloride and ethylene glycol, renal crystal 
deposition appeared severe [77]. Kidneys were 
enlarged and stippled with yellowish white flecks 
on their outer surfaces. Acidification caused an 
increase in deposits within renal papilla and on 
papillary tips. In addition it resulted in the 
deposition of calcium oxalate monohydrate rather 
than a mixture of mono- and di hydrate [77]. 

Recently it was shown that when male Wistar 
rats were given 0.5 % ethylene glycol in water in 
addition to 0.5 microgram of vitamin D admini
stered by gavage, 77.3 % of the rats produced 
stones in the renal pelvis, ureter and bladder 
[85]. Typical calcium oxalate monohydrate crys
tals were found in the dilated tubules whose 
epithelium was partially destroyed. There was a 
marked increase in the weight of the kidney. Both 
urinary oxalate and calcium increased and renal 
insuffi cie ncy was moderate. There were no deaths 
during the four week experiment. 
Induction of Oxalate Uroliathiasis by Other 
Oxalate Precursors 

Other oxalate precursors used to induce 
urolithiasis are hydroxyproline [108, 109], 
glycolic acid [11 ,12], and glyoxylic acid [81]. 
Hydroxyproline is directly converted into gly
oxylate. Administration to male Sprague-Dawley 
[108] and male Wistar rats [109] by intraperi
toneal injection of 10 ml/kg rat body weight, 
resulted in the deposition of calcium oxalate 
crystals in the renal tubules. The volume and 
weight of the kidneys doubled in 24 hours [108]. 
Calcium oxalate dihydrate crystals formed in the 
first 2 hours and later transformed to thermo
dynamically stable calcium oxalate monohydrate 
[108]. 

Glyoxylate and glycollate are immediate 
precursors of oxalate and their administration 
results in oxalate urolithiasis. Three percent 
glycolic acid administered in diet to male Wistar 
rats resulted in calcium oxalate crystal deposi
tion in kidneys and formation of uroliths up to 
4 mm in diameter in renal pelvis, ureters and 
bladder [ll ,12]. Crystals were present through
out the renal cortex and medulla. 
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Fig. 2a. TEM of a sec tion 
through proximal tubular 
epithe liu m showing foca l l oss 
of mi crovi ll i. M, intact 
microvilli. Bar= 2.5 µm. 
2b. SEM of the luminal 
surfac e of proximal t ubul ar 
epithe li um showing areas 
with microvi lli (M) surround ed 
by areas of focal l oss of 
microvi lli . Bar= 5 µm. 

Pyridoxine Deficiency 
and Oxalate Urolithiasis 

Pyridoxine (Vitamin B- 6) deficiency causes 
hyperoxaluria and oxal ate urolithiasi s in the cat 
[38] and rat [l], and may also be a sig nifica nt 
etiological f act or in the formation of human 
oxal ate renal calculi [ 27,28 ,39] . Si nce pyr idox
ine in the form of pyridoxal-5'-phosphate act s as 
a coenzyme for a number of transamina ses it was 
specu l ated that transamination of glyoxylate to 
glyc ine was reduced in pyr idoxi ne deficiency 
resulting in an accumulation of glyoxylate and 
it s subseq uent conversion t o oxalate [35, 38]. 
However, no increase was detected in glyoxyl ate 
levels of heart muscles of pyridoxine deficient 
rats [47], and in pyridoxine deficien cy , 
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glycolate has been shown to be a better pre
cursor of oxalate as compared to glyoxylate or 
glycine [ 100,101] . Thus the re asons for pyri
doxine deficienc y causing hyperoxaluria remain 
undetermined . A more recent study has shown 
that pyridoxine deficienc y results in a carrier 
mediated oxalate transport in experimental rat s 
as opposed to simple diffusion in control rats 
[28]. Such a transport mechanism results in 
enhanced intestinal absorption of oxalate lead
ing to hyperoxaluria. 

Vitamin B-6 deficiency not only elevates 
urinary oxalate but also urinary calcium [80], 
and increases the activity of neuraminidase 
and other lysosomal enzymes [22]. Neuraminidase 
removes sialic acid from the glycosaminoglycans 
(GAGs) and GAGs are important inhibitors of 
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crystallization [94,95]. Urinary citric acid 
levels decrease [35] which may be important be
cause citric acid is a known inhibitor of calcium 
oxalate crystallization [83]. Urinary phosphorous 
and uric acid levels are not known to be affected 
by pyridoxine deficiency. Thus hyperoxaluria and 
hypercalciuria, in association with decreased 
inhibitor activity, may cause oxalate urolithia
sis in pyridoxine deficiency. 

On a pyridoxine deficient diet, male Charles 
River [l] and Wistar [80] rats formed calculi 
generally restricted to the tubules of renal 
medulla and papilla, and to renal papillary tips 
and calyceal fornices although ureteral and blad
der stones were sometimes present [l ,80]. The 
calculi were mainly calcium oxalate monohydrate 
with calcium oxalate dihydrate on the surfaces 
and traces of calcium phosphate [1,123]. Parts of 
the papillary tip stones extended into the ducts 
of Bellini suggesting the stones originated in 
collecting ducts from a lesion similar to 
Randall's type II plaque [65,90, 123]. In addition, 
submucosal crystals present on the lateral 
aspects of rena 1 papil 1 ae resemb 1 ed Randa 11 ' s 
type I plaque [90]. 

Kidney changes, in addition to the deposi
tion of calcium oxalate crystals, included 
increased weight with papillary swelling and tran
sitional epithelial hyperplasia as well as corti
cal tubular dilatations, and epithelial degenera
tion in those rats subjected to long periods of 
pyridoxine deficiency. The crystals were 
associated with a PAS positive substance and in 
male Charles River and Wistar rats were predomi
nantly intraluminal. Crystals deposited in the 
kidneys of male rats of TAC:SD/NfBR strain were 
however, predominantly interstitial [73]. It was 
suggested that the crystals induced by a pyridox
ine deficient diet originate in the renal inter
stitium and later move to a intraluminal position 
[73]. 

Alteration of urinary pH affected the extent 
of calcium oxalate deposition in pyridoxine defi
cient rats. More urinary stones of larger sizes 
were formed at low urinary pH [l]. 

Low Phosphate Diet 

It has long been known that a low phosphate 
diet results in an increase in urinary calcium 
and citrate leading to the formation of citrate 
stones in both weanling and mature rats [105,112, 
113]. While no significant change occurs in 
urinary oxalate levels of rats on low phosphate 
diets [13,52], recent studies have shown that a 
low phosphate diet may result in the formation of 
calcium oxalate urinary stones in rats. A 
moderately low phosphate diet with high calcium/ 
phosphorus ratio (0. 16% P, 0.56 % Ca, 3.52 % Ca/P) 
resulted in calcium oxalate urolithiasis in male 
Wistar weanling rats [13]. Renal papillae con
tained intratubular deposits of calcium oxalate 
in addition to subepithelial plaques of calcium. 
Urolithiasis became severe with time. After 14 
weeks on the diet bladder stones were present 
and renal pelvis had visible stones. The calculi 
were composed mainly of calcium oxalate, with less 
than 10% calcium citrate. Mature male Sprague
Dawley rats produced calcium oxalate dihydrate 
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crystalluria and pelvic stones on a diet contain
ing less than 0.7 % phosphate [120]. No calcium 
deposits were found in renal medulla or papilla. 
The urine showed marked hypercalciuria and became 
highly supersaturated with respect to calcium 
oxalate within one week of stay on the low phos
phate diet. 

Development of Calculi upon Foreign Bodies 

Regional fixation of a growing stone has 
been hypothesized as necessary for the develop
ment of upper urinary tract stone disease [33,90} 
Once a fixed nidus is formed the stone grows by 
encrustation [69]. With this in mind Vermeulen 
and his colleagues [115,116] developed a foreign 
body model for the study of stone disease. They 
implanted various types of foreign bodies in 
urinary bladders of male rats and studied the 
growth of the encrustation [115]. Paraffin 
foreign bodies did not encrust, though they did 
result in the formation of free lying stones in 
the bladder. All other foreign bodies tested 
encrusted and grew. Though the average pH was 
6.8 the stones consisted of magnesium ammonium 
phosphate. It was later found that male Sprague
Dawley rats deposited struvite on foreign bodies 
whereas female Sprague-Dawley rats produced 
apatite [77], and that stones of desired composi
tion could be induced by manipulation of diet or 
administration of a lithogen [6,76,77]. Addition 
of ethylene glycol to the drinking water, or a 
pyridoxine deficient diet resulted in the forma
tion of calcium oxalate stones which morphologi
cally resembled clinical stones and contained 
both cal cium oxalate monohydrate and dihydrate 
crystals. Acidification of urine however, caused 
the formation of pure calcium oxalate monohydrate 
stones and also increased the rate of sto ne 
growth [6,76,77]. As discussed earlier ethylene 
glycol administration generally results in 
crystal deposition in kidney tissue. Renal crys
tal deposition can however be avoided by limiting 
ethylene glycol to approximately 0.75 % in the 
drinking water [87]. 

Although zinc discs were used as a foreign 
body for such studies, studying such stones by 
microscopy is difficult because zinc cannot be 
sectioned. To overcome this, plastic foreign 
bodies were introduced [69]. Oxalate stones on 
plastic foreign bodies induced by ethylene glycol 
were sectioned following decalcification by EDTA 
treatment and examined by light microscopy and 
scanning and transmission electron microscopy. 
The encrustation was joined to the foreign body 
by a thin amorphous organic layer upon which 
crystals of calcium oxalate nucleated. The crys
tals were surrounded by an amorphous limiting 
coat, and the stone contained cellular debris . 
Apparently, the deposition of an organic layer on 
the foreign body was the initiating step in the 
formation of the crust and the stones grew by 
confluent crystal growth and aggregation. The 
matrix was acquired by adsorption of macromole
cules on crystal surfaces and incorporation of 
cellular debris. Crystals of calcium oxalate have 
been shown to adsorb proteinaceous coat from 
solutions in in vitro experiments [62,72] and 
calcium oxalate crystals of urinary stones on 
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Fig. 3. TEM of a section through proximal tubular 
epithelial cell showing autophagic vacuol e with a 
mitochondria (m). Bar= 0.5 µm. 

Fig. 4. TEM of a section through luminal end of a 
degenerating proximal tubular epithelial cell 
showing swoll en mitochondria (m), cellul ar edema, 
vacuolation, and dilation of endoplasmic reticu
lum (unlabelled arrows) . The luminal plasma mem
brane is broken at the apex and is releasing cell
ular contents into the tubular lumen (L). 
Bar= 2.5 µm. 
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Fig. 5. TEM of a section through the thin loop 
of Henle showing shearing of the epithelial cells 
from their basal lamina (b). Bar= 2 µm. 

Fig. 6. TEM of a section through a tubular lumen 
with cel lul ar debris. The debris conta in s various 
degenerating cellular organelles of which mito
chondri a (m) are sti ll recognizable and contain 
floccu l ent densities. Bar= l µm. 

decalcification form crystal ghosts and contain 
organic material within crystal boundaries [66, 
68]. 

Magnesium and Oxal ate Urolithiasis 

That dietary magnesium depletion in rats 
produces hypomagnesemia and hypomagnesuria [41, 
121] , and causes deposition of calcium phosphate 
in renal tubules has l ong been known [18,86,121]. 
Recent studies have shown that magnesium defi
ciency also enhances calcium oxalate renal 
tubular deposition in rats on experimenta l 
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Fig. 7. A section through the renal cortex 
stained with colloidal iron at pH 2.5. The glo
merulus (G) and the crystal associated debris 
(unlabelled arrows) in tubular lumen are stained. 
Bar=30µm 

hyperoxaluric protocol induced either by pyrodox
ine deficiency [37] or by administration of 
ethylene glycol [102,103]. Clinically low urinary 
magnesium/calcium ratios are found in cal cium 
oxalate stone formers [55,74,111] and reduction 
of stone recurrence in renal calcium oxalate 
stone formers occurs on prophyla ctic treatment 
with magnesium hydroxide [55,56]. The mechanism 
by which magnesium exerts its beneficial effect 
on urolithiasis has been studied in vivo and in 
vitro. Hyperoxaluric male Sprague-Hawley rats 
given magnesium oxide, magnesium chloride, sodium 
bicarbonate, or ammonium chloride, were studied 
[6]. At comparable urinary pH, magnesium oxide 
was more efficacious than sodium bicarbonate in 
preventing stone formation, and fewer stones were 
formed on magnesium chloride than on ammonium 
chloride, thus proving the beneficial effect of 
magnesium independent of urinary pH. Magnesium 
may provide protection by increasing the solubil
ity of calcium oxalate [26,45], or magnesium/ 
calcium ratio [55], or by complexing with oxalate 
[83] and making it unavailable for binding with 
calcium. 

Hyperuricosuria and Oxalate Urolithiasis 

Clinical studies have shown a positive cor
relation between hyperuricosuria and hyperuri
cemia, and calcium oxalate stone formation 
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Fig. 8. TEM of a section through tubular lumen 
containing decalcified calcium oxalate crys tal s 
(C) or cellular debris (unlabelled arrows) which in 
this micrograph consists of membranous vesicles. 
Bar = 2 um. 

[14,15,16,44]. Experimental ly, the relation 
between hyperuricosuria and stone format ion has 
been studied in male Wistar rats by inducing 
urinary excretion of uric acid in the presence 
of hyperoxaluria [50]. Hyperoxa luri a was induced 
by adding ethylene glycol to drinking water of 
rats in a daily dose of 0.8 %, and hyperurico
suria was induced by administering 2% oxonic 
acid by a duodenal tube. Oxonic acid is a 
specific blocker of uricase, the enzyme respon
sible for metabolism of uric acid to al lantoin 
in rats. After thirty days, more calcium oxalate 
calculi were seen in renal parenchyma, pelvis, 
and fornices on a combined regimen of oxonic acid 
and ethylene glycol than with ethylene glycol 
alone and no oxalate crystals were seen on 
oxonic acid treatment alone. Calciu m oxalate 
deposition in renal parenchyma was associated 
with tubular epithelial damage and more crystals 
were seen in medulla than in cortex. 

It has been suggested that sodium acid 
urate, uric acid and calcium oxalate share 
sufficient structural similarities to allow 
epitaxis [16,75] and that urate crystals act as 
nucleation agents for heterogeneous crystal li za
tion of calcium oxalate. This mechanism of 
facilitation of calcium oxalate crystallization 
by urate particles, and the relevance of epitaxis 
hypothesis has been questioned [31 ,32]. An 
alternate hypothesi s is that uric acid may 
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promote calcium oxalate stone disease by inter
fering with naturally occurring urinary inhibi
tors of calcium oxalate crysta l growth. It has 
been shown that human urines containing more 
urates have less inhibitors and the addition of 
urate in vitro reduces and removal of urates 
restores inhibitory activity [94,95]. 

Experimental Calcium Oxalate Urolithiasis in Rat 
As A Model for Human 

Calcium Oxalate Stone Disease 

Although calcium oxalate stone formation is 
not a spontaneous phenomenon in most experimental 
animals, near identity in oxalate metabolism in 
man and rat permit several strategies for experi
mental modelling of stones in the rat. The value 
of such manipulation is that dissection of the 
two key processes involved in stone formation, 
that of nucleation as in the study of calcium 
oxalate nephrolithiasis, and growth as in the 
study of encrustation of foreign bodies, is pos
sible. Furthermore, study of these mechanisms of 
stone formation over time gives a more dynamic 
view than is possible in studying the human ston~ 
Virtually all experimental models employed uti
lize hyperoxaluria as the basic perturbation, 
whether by administration of excess oxalate [57], 
exposure to the toxin ethylene glycol [77], or 
manipulation of nutrition as exemplified by pyri
doxine deficiency [l] . Although the point is 
debated as to whether hyperoxaluria or hypercal
ciuria is more important in human stone formation 
[98], physical chemical constra int s are such that 
calcium oxalate crysta l s in urine would more 
readily form 1~i th small oxal ate excess than with 
calcium [30,96,98], making the hyperoxaluric rat 
a valuable model for ca l cium oxalate stone 
disease. 

The study of the interaction between the 
formed calcium oxalate crystals and renal or uro
thelial tissues points in a direction important 
for the understanding of attachment and retention 
of crystals for, without such retention, stone 
disease would not be possible [33] . With few 
exceptions, renal crystal deposition in experi
mental systems are associated with cell injury 
or necrosis [l,59,80,102,103]. Although damaged 
cel l s can be identified at the earliest times 
that crystals are formed, it is unclear whether 
damage occurs prior or subsequent to the crystal 
formation. In either case, crystals are often 
found associated with cell debris and such debris 
is a common component of human stones. Loss of 
epithelial cells exposes the basement membrane 
which may provide for crystal attachment (l,61, 
123]. Such a crystal fixation to basement mem
brane or other structures in the absence of uri
nary obstruction would be essential for retention 
and stone growth. The renal tubular damage has 
also been implicated in human urinary stone 
disease. Matrix substance A and Tamm Horsfall 
mucoprotein both are associated with renal injury 
and both are found in urinary stones and are pre
sent in greater concentrations in urines of stone 
patients than normal individual s [7,58,70,71,110]. 
Urinary enzyme pattern of urinary stone patients 
is suggesti ve of renal tubular damage [2]. 

769 

Morphologically, damage to the renal tubular 
epithelium has been found in papillectomy speci
mens from a stone patient [65]. The presence of 
Randall's plaques [90] in stone patients is also 
suggestive of the involvement of renal injury in 
the stone disease. What role does renal injury 
play in the evolution of stone disease? Whether 
the injury is primary and thus an initiating 
factor, or secondary but capable of promoting 
increased crystallization or secondary with no 
role whatsoever has not been resolved. These are 
some of the questions still to be answered and 
have been discussed in greater details in a 
number of reviews [7,29,31,70,71,110]. 

The reaction of calcium oxalate crystals 
with organic materials appears to be a generally 
critical mechanism in attachment and growth. 
With foreign body models as an example, no crys
tal-foreign body interplay exists until the 
foreign body is covered with an organic film 
[69]. Central too, is the fact that all experi
mentally induced or spontaneously formed calcium 
oxalate crystals, when closely examined, will 
have an organic coating [62]. In the construc
tion of a stone, the organic coating, in conjunc
tion with other organic materials forms a com
plex scaffolding. This material, the matrix, 
may play a significant cementing role in the 
genesis of stone. Indeed, one is hard put to 
visualize a stone without matrix. 

Experimental stone formation in the rat is 
not as yet completely understood. Rat calcium 
oxalate stone matrix has to be examined both 
morphologically and biochemically. The important 
topic of inhibitors has to be explored both in 
the normal and stone forming rats. It may be 
that an analysis of the reasons why rats are 
resistant to calcium oxalate stone is a more 
important point in understanding human stone 
formation than is the experimenta l induction. 
Further exploration of these questions will 
le ad to a more comprehensive understanding of 
human stone disease and will permit a study of 
the elements needed for effective treatment. 
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Discussion with Reviewers 

J.G. Gregory: Your rats, infused with potassium 
oxalate through the osmotic pump form crystals, 
but no renal deposits. Is this a dose related 
phenomenon? 
Authors: We did not investigate this point. All 
of our experiments were done using a saturated 
solution of potassium oxalate. In other experi
mental systems crystal deposition in renal 
tissue is dependent on the amount of lithogen 
used. For example changing the dose of ethylene 
glycol results in various crystal locations and 
by altering dosage one can induce crystal depo
sition either in the upper or in lower urinary 
tract (Text Reference 87). 
J.G . Gregory: Did ele ctron microscopy of the 
animals so treated show any evidence by electron 
microscopy of renal tubular injury? 
Authors: The kidneys of these animal~ were 
studied only by light microscopy which did not 
reveal any overt cellular injury . 
J .G. Gregory: Are you proposing that cal cium 
oxalate crysta l s, formed renally, injure the 
renal tubules, producing a proteinaceous material 
that leads to crystal aggregation and then stone 
formation? If so, this is an hypothesis that 
should be addressable by use of the osmotic pump 
model in which increasing concentrations of 
oxalate are added intravenously. Do you have 
data to supplement this area? Against thi s 
possibility, is the observation of many hyper
oxaluric patients who for months have passed 
massive quantities of crysta l s and crystal aggre
gates without ever forming a rena l calculus an 
observation that makes one certain that crysta l 
production itself is an insufficient stimu lu s for 
stone formation? 
Authors: There are a number of possibilitie s. As 
you suggested, calcium oxalat e crystals formed 
within the renal tubules may injure the tubular 
epithelium and initiate stone formation. Alt er
natively, cellular debris from injured renal 
epithelium, irrespective of the cause of the 
injury, may provide nidi for heterogeneous nuc
le ation of crysta l s. Thus the crysta l s may induce 
renal epithelial injury and may also be initi ated 
by it . Whether one or both mechanisms operate has 
not been clearly established, nor is it known 
whether they act independently or in conjuction. 

The observation th at hyperoxaluric patients 
pass massive quantities of crystals and crysta l 
aggregates without ever forming a renal calculus, 
in itself, neither proves nor disproves the hypo
theses mentioned above. Crysta lluri a is only an 
indication of supersaturated bladder urine . 
Experimental work mentioned in our paper has 
shown that crystals may be present in the urine 
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without ever being seen in the kidneys. In our 
opinion, rena l injury increases the probability 
of renal stone formation. 
R. Tawashi: It i s fascinating that controlling 
delivery rate of oxalate ion using the mini
osmotic pump system has an effect on the site of 
crysta lli zation and the nature of crysta l s 
formed. Do you have evidence or any idea how the 
control deliv ery rate of ca++ might have on 
crystalluria? 
Authors: The point you raised is an interesting 
one. We have not yet stud ied the effect of con
trolled delivery rate of ca++ on crysta lluri a. 
But we are planning some experiments with this 
particular aspect of urolithiasis in mind. 
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