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MONTE CARLO SIMULATION OF ELECTRON SCATTERING 
IN RESIST FILM/SUBSTRATE TARGETS 

KENJI MURATA 
Electronics Department, College of Engineering 

University of Osaka Prefecture, 4-804 Mozu-umemachi 
Sakai, Osaka 591, Japan 

Phone: 0722-52-1161 Ext. 2286 

ABSTRACT 

First the fundamentals of resist modelling required to im­
plement an analysis of developed resist patterns were studied, 
which represents the relationship between the energy deposit­
ed by incident electrons and the solubi lity characteristics of a 
positive or negative resist. Next, two models of sing le elastic 
scatter ing and fast secondary (knock-on) electron production 
were stud ied for Monte Carlo simu lation of electron scatter­
ing in resist film/substrate targ ets, and the stat ist ical errors 
of Monte Carlo results were evaluated. Finally, problems in 
electron beam lithography were investigated with the simula­
tion. The exposure intensity distribution was studied with the 
two models. A comparison between Monte Carlo calcula­
tions and experiments show s that a better agreement is ob­
tained with the knock-on model. An analysis of developed 
negative resist patterns has been performed by using Monte 
Car lo results for energy dissipation . A compariso n with ex­
perimental results revealed that developed resist patterns 
deform while being stuck to the Si surface by a strong adhe­
sion . Also the time evolution of developed profiles of 
PMMA (polymethyl methacrylate) resist films was in­
vestigated based on the Monte Carlo results for energy 
dissipation. A quantitative comparison between theory and 
expe rim ent suggests that some modification is necessary for 
the emp irical constants in the so lubility rate due to the elec­
tron beam irradiation effect. The spatia l resolution was ex­
amined for an isolated PMMA film. Reso lutions of 320A. 
and 530 A were found with the single scatteri ng and the 
knock-on models, respectively. The result with the knock-on 
model is simi lar to an experiment value of 600 A obtained 
previously. It seems that the knock-on model may be useful 
for a theoretical study of the ultimate resolution in electron 
beam lithography. 

Keywords: Monte Carlo simulation, electron scattering, 
fast secon dary electrons, electron beam lithography, electron 
resists (polymethyl methacrylate, polyglycidyl methacrylate), 
resist modeling , exposure intensity distribution, proximity ef­
fect, backscattered electrons, statistical errors. 
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1. INTRODUCTION 

Recent developments of semiconductor devices such as 
large sca le integrated circuits owe much to very accurate 
fabrication technologies. One of these important technolo­
gies is electron beam lithography (EBL), which usually 
makes use of a finely focused electron beam in the same man­
ner as in the scanning electron microscope. Spatial resolution 
of a few tens of nanometers with EBL has been achieved with 
a specific sa mple geometry consisting of thin PMMA (poly­
methyl methacrylate) resist films on thin substrates (Broers 
1981). Fine pattern fabrication technologies will give a great 
impact on scientific or technological development in various 
fields if their advantages are put to good practical use . How­
ever, there is generally an obstacle in performing a high reso­
lution due to electron scattering. This phenomenon is a very 
important factor, especially for the normal case of a resist 
film on a substrate such as that used in the semiconductor 
device fabrication. When incident beams depict a pattern on 
the resist film, electron scattering occurs in three different 
ways: (I) the forward scattering within the resist, (2) the 
backward scattering from the substrate, and (3) the back­
ward scattering within the resist. These phenomena deterio­
rate the definition of depicted patterns by influencing other 
patterns nearby the electron incident position . This effect is 
called the proximity effect. 

The present paper treats this kind of electron scattering 
problem in resist films with Monte Carlo simulation . Pat ­
tern fineness also depend s on successive chemical develop­
ment processes. Prior to going into details about simulation 
models, some fundamentals of resist modelling will be des­
cribed. Two models are described about the Monte Carlo 
simulation: the single scattering model and the hybrid model 
(or the knock-on model) including fast secondary electron 
production which has been recently developed. Finally, ap­
plications of these simulations to EBL will be discussed, em­
phasizing electron-beam interactions with solids. As for an 
overall review on exposure and development models in EBL, 
the reader can refer to a recent review paper by Hawryluk 
(1981). 

2. FUNDAMENTALS OF RESIST MODELLING 

When energet ic electrons are incident on electron resist 
films which are usually organic po lymers with high molecular 
weight, these electron s collide with atoms or molecules com-
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LIST OF SYMBOLS 

Radiation yield (events / lOOeY). 

The number average molecular weight before 
electron irradiation. 
The number average molecular weight after 
electron irradiation . 
Absorbed energy density (eY / cm 3). 

Density (G / cm 3) . 

Avogadro's number 6.02 x 1023 atoms/mole . 

Solubility rate (A / sec). 
Constant in the solub ility rate equation . 
Constant in the solub ility rate equation. 
Constant in the solubility rate equation. 
A short time to dis so lve a resist cell with finite 
size. 
Resist cell size . 
Direction of etching in the ray tracing model. 

The maximum value of the solubility rate S(X, 
Y) at position (X, Y). 

Remaining film thickness d normalized by ini­
tial thickness do of a negative resist film . 
Electron dose (C / cm 2). 

Resist contrast. 
Energy dissipation as a function of depth z 
(eV /cm) . 

Averaged absorbed energy density in a vertical 
parallel piped (eV / cm 3). 

Differential elastic scattering cross-section of 
an atom i. 

Electronic charge. 
Atomic number of an element i. 

Electron momentum . 
Electron velocity . 
Scattering angle . 
The screening parameter for an atom i. 

Planck 's constant. 
Bohr radius. 

The total cross-section of an atom i. 

The probability that an electron is scattered 
into a small solid angle d!1. 
Azimuthal angle. 
Uniform random number. 
Integrated function of P(w) d!1. 
The number of i atoms per unit volume. 
Concentration of an element i. 
The probability that an electron interacts with 
an atom i when collision occurred. 
The mean free path for elastic scattering. 

The probability that an electron travels the 
step length .:ls between elastic scattering 
events. 
Energy loss per increment of path length 
(eV /c m) . 
Electron energy. 
The mean ionization potential (eV) . 
Constant in the Bethe equation taking 2 or 
I .166, depending on a non -relativistic or a 
relativistic electron, respectively. 
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LIST OF SYMBOLS 

En Electron energy at then-th step in Monte Car­
lo simulation. 

.:lsn Step length of the n-th step in Monte Carlo 
simulation. 

t c Cut-off energy normalized by the initial ener­
gy E for energy transfer. 

t Energy transfer normalized by the initial 
energy Eo. 

m Electron mass. 
[dE / ds] Single = Energy loss due to secondary electron pro­

duction. 

[dE / ds]Bethe 
da l dt 
[da / dE]M 

T 

p in 

T 

= Continuous energy loss ra te. 

Differential inelastic cross-section (cm 2/ eV). 
Differential inelastic cross-section of Moller. 

Kinetic energy normalized by the rest mass 
energy. 
The total cross-section for inelastic scattering. 
The mean free path for inelastic scattering. 

The mean free path for elastic and inelastic 
scattering. 

The total cross-section for elastic and inelas­
tic scattering. 
The probability that an electron suffers an 
elastic scattering when a collision occurred. 
The probability that an electron suffer s an in­
elastic scattering when a collision occurred . 
The probability that electrons travel a distance 
s in the m-th layer without being scattered 
after one scattering event. 
The total cross-section in the m-th layer. 

The maximum depth in the m-th layer. 

The number of i atoms per unit volume in the 
m-th layer. 

The total elastic cross-section of an i atom in 
m-th layer. 
The mean free path for elastic scattering in the 
m-th layer. 
The mean free path for elastic scattering in the 
PMMA layer. 
The mean free path for elastic scattering in the 
Si layer. 
The number of backscattered electrons . 
The backscattering coefficient. 
The number of incident electrons. 
The backscattering ratio at N trials of the 
event. 
The critical absorbed energy density . 
Exposure intensity distribution as a function 
of radial distance r. 
The total absorbed energy in a resist film. 
Ratio of the energy deposited by backscat­
tered electrons to that by forward scattered 
electrons. 
Spreading width by forward scattered elec­
trons. 
Spreading width by backward scattered elec­
trons. 

Development time. 
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posing the polymer, and excite or ionize them through inela s­
tic sca ttering events, resultin g in chemical changes in the 
polymeric state. This change occurs in two different ways, 
i.e., molecular chain scission which causes the degradation of 
molecular weight and cross-linking which causes gel forma­
tion in the polymer. Generally these processes occur in the 
same resist. Types of positive or negative resist behaviour are 
determined by which process is dominant. In this section a 
brief description of modelling for both resists is given, sepa­
rating these types . 

2.1 Modelling for positive resist 

(A) Degradation of molecular weight and solubility rate 
changes. The change of mean molecular weight due to elec­
tron beam exposure can be evaluated (Ku and Scala 1969, 
Herzog et al. 1972), without going into detailed processes of 
ionization and excitation of molecules or atoms, by intro­
ducing a radiation yield G which is defined as the number of 
bonding or scission events caused by an energy absorptio n of 
100 eV from incident electrons. Assume the mol ecu lar weight 
distributions before and after electro n irradi at ion are shown 
in Fig. I, which have the number average molecular weights 

Mn and Mr, respectively. If the absorbed energy density is 

D at an arbitrary locat ion in the resist, then the number of 
scission events is GD / 100 in the unit volume. This must be 
equa l to the difference between the initial number of mole-

cules (e I M 11)N A and the final number of molecules (e / M r) 

NA' where e is the mas s den sity of the resist and NA is Avo­

gadro' s number. This relation is written in the following 
form: 

- I 
M r= (--=- + K) - 1 

M n 

where K = GD / !00 eNA. 

The above equation mean s that in order to obtain the same 

value of the degradation ratio M rl Mn, the amount of dose 

D can be decrea sed, if the value of Mn is increased . If we can 

find the fractional molecular weight M f• then the empirical 

formula for the solubility rate can be establi shed with a cer­
tain so lvent. Thi s is expressed by the following equation 
(Greeneich 1974, 1975). 

S = R
0 

+ B , Mr - A 2 

The constants Ro, Band A are determined experimenta lly. A 
typical value of A is approximately I to 4, depending on the 
developer. The larger the value of A, the weaker the devel­
oper. 

(B) Etching model. Developed resist profiles of electron 
exposed regions depend on development time as well as a so l­
vent, developmen t temperature, etc. The kind of profile has 
an important meaning in a microfabrication process such as 
the lift-off technique . 
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Fig. 1. The molecular weight distributions for positive elec­
--- tron resist before and after electron irradiation. 

With the solubility rate of a resist as mentioned before, it is 
possible to simu late the time evolution of developed profiles 
if the spatial distribution of the absorbed energy density is 
found in a resist film. The following three models have been 
proposed for this purpose (Jewett et al. 1977). 

(i) Cell model 
(ii) String model 
(iii) Ray tracing model 
The cell model is applied to two dimensional profiles such 

as the case of a long line exposure. A resist film is divided 
into small cells. A time to dissolve cells exposed to the solvent 
is calculated successively as follows by using Eq. 2. 

c.t 

c.t 

c.d ! S when one face is exposed to a developer 

c.d I 2 S when two adjace nt faces are exposed 

where d is the cell size. The total time to reach the cell (i,j) is 
obtained by summing up sequential developme nt times. This 
method is easy to organize with a computer program for cal­
culation. Recently a new calculation has been proposed for a 
three dimensional analysis (Jones et al. 1981). 

The stri ng model forms a string combined with representa­
tive points in the resist. These points advance step by step 
during a short period c.t at the solubility rate which is cal­
culated from the absorbed energy density. The direction of 
motion is determined by a bisector of the angle made by the 
two adjacent strings. 

The ray tracing model is based on an ana logy to Snell's law 
for light ray refraction. The ray traces the direction of a vec­
tor nR = Sma/S (X,Y) where Smax is the maximum value of 
the so lubility rate, S(X, Y) . The line connected with the end 
of the ray gives an etched profile. 

The latter two models, which can be easily extended to the 
three dimensional calculation, are expected to give a better 
accuracy than the first one, but the computer programming 
will be somew hat harder. If we simulate the etched profiles 
of a resist pattern with a weak developer by using the resist 
etching model above, we find that a weak developer has a 
high contrast. That means it responds sensitively to a change 
of the fractional molecular weight of the resist or the ab­
sorbed energy density. Namely, a front surface of etch pro-
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file does not move further when it meets an appropriate slope 
in the energy absorption distribution. Then the etched profile 
is along the equi-energy density contour. This is called the 
critical absorbed energy density model or the threshold 
model (Herzog et al. 1972, Greeneich and Van Duzer 1974). 

2.2 Modelling for negative resist 

Different from positive resist, a negative resist remains in­
soluble in the exposed region due to gel formation caused by 
cross-links among neighbouring molecules, depending on ex­
posure dose. The insoluble fraction of the resist is related to 
the gel fraction, which determines the remaining film thick­
ness p = di do, normalized by initial thickness (Atoda and 
Kawakatsu 1976). Usually the relation between the dose Q 
and the remaining thickness p is given by the so-called con­
trast curve. A typical example of experimental data is shown 
in Fig. 2 for a 6000 A PGMA (polyglycidyl methacrylate) 
resist film at 10 ke V. The cure time is 30 min. The developer 
is a solution of 7 MIBK (methyl isobutyl ketone) and 1 EtOH 
(ethanol). The development temperature is 22-23°C. The 
rinse was done with MIBK for 30 sec. No post baking is 
done . A straight line portion of the curve can be given by the 
following equation : 

P = 'Yr log10 (Q / Qrr) 3 

where 'Y, is the resist contrast {-y, = I. 12 in the figure), and Qm 
the minimum dose at which thickne ss remaining is observed. 
Heidenreich et al. (1975) and Lin (1975) have performed a 
developed profile analysis of negative resist based on these 
contrast curves. They assumed a Gaussian distribution for a 
line exposure dose. Although they gave an expression to take 
account of the lateral spreading of an electron beam, the 
effect is neglected in the actual calculation. Nakata et al. 
(198 I) tried to analyze a pattern of lines and spaces by using 
the spatial distribution of the absorbed energy density which 
is obtained by Monte Carlo calculation. The calculation pro­
cedure is described briefly . The depth distribution of the 
absorbed energy density is not uniform as seen from Fig. 3, 
which was obtained by Monte Carlo calculation for the same 
conditions as that in Fig. 2. For simplification a uniform 
depth distribution is assumed as shown by a dotted line in 

Fig. 3. Then, we can replace the do se Q (C/ cm 2) on the abcis­
sa by the absorbed energy density D(eV / cm 3) which is ob­
tained by the product of [dE/dz]A'✓ (eV / C•cm) and Q 
(C/ cm 2). The theory that the gel fraction is associated with 
the absorbed energy density has been developed based on the 
radiation yield G (Charlesby 1954, Atoda and Kawakatsu 
1976). In the figure a dotted line shows the theoretical curve 
calculated by the Charlesby theory, assuming both the 
Schultz-Jim function for the molecular weight distribution of 
polymer and the inhibitor activity i, using the average ab­
sorbed energy in Fig. 3. 

As shown in Fig. 4, the resist film is divided into many ver­
tical parallel-pipeds. In each pipe the absorbed energy den­
sity is averaged over depths, and then from the contrast curve 
the gel fraction, i.e., the normalized remained film th ickness 

is found, corresponding to the averaged energy density 5. 
This process throughout all pipeds makes up the developed 
patterns. 
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3. MONTE CARLO SIMULATION OF ELECTRON 
SCATTERING IN ELECTRON RESISTS 

The first Monte Carlo simulation of electron sca ttering 
was reported by Green (1963) in the fields of electron probe 
microanaly sis (EPMA) and scanning electron microscopy 
(SEM). Thi s simulation utili zed experimental data for the 
angular distribution of electron scattering. With this simuia­
tion it was suggested that the Monte Carlo technique is useful 
for prediction and explanation of electron scattering pheno­
mena in EPMA and SEM targets. In 1965 the Multiple Scat­
tering Monte Carlo model was successfully applied to the 
calculation of X-ray production by Bishop (I 966), Shimizu et 
al. (1966) and Shinoda et al. (1968) based on Lewis' multiple 
scattering theory, which was used for high energy electrons 
(Berger 1963). In 1968 Reimer published the single scattering 
model ba sed on the Rutherford cross section for elastic scat­
tering and the Bethe law for energy loss. Subsequent work on 
the single scattering model has been reported by Reimer et al. 
(1970), Curgenven and Duncumb (1971), McDonald et al. 
(1971), Murata et al. (1971). The models used are somewhat 
different from each other. After this, many investigations on 
electron scattering in EPMA and SEM targets were published 
with these models. Based on these past studies the Monte 
Carlo simulation with the single scattering model was applied 
to fundamentals of electron beam lithography. The reports 
by Shimizu and Everhart (1972) and Shimizu et al. (1975) 
were concerned with energy dissipation in bulk PMMA tar­
gets. The reports by Saitou (1973), Hawryluk et al. (1974) 
and Kyser and Murata (1974) handled energy dissipation in 
thin films on substrates. These reports have promoted ap­
plications of the calculations to the practice of electron beam 
lithography as mentioned in the latter section. The multipl e 
scattering model is not useful for a lithography application 
because the mean free path for sca ttering is too long com­
pared to resist film thickness. The hybrid model with single 
and multiple scattering regions might be useful for the pre­
sent application, which was proposed by Newbury et al. 
(1980) . Adesida et al. (1979) and Adesida and Everhart 
(1980) applied the direct Monte Carlo simulation which was 
developed by Shimizu et al. (1976). This new model is power­
ful to accurately predict the energy distribution of transmit­
ted electrons through a thin film. 

Recently Monte Carlo calculations have been performed 
including the effect of fast secondary electron production 
with a hybrid model for the discrete and continuous energy 
loss process (Murata et al. 1981). Two typical models of the 
single scattering model and the hybrid model are described 
here: 

3.1 Single Scattering model 

Incident electrons which penetrate a specimen undergo 
their direction of motion and energy losses through elastic 
and inelastic scattering events with atoms, respectively . Some 
electrons are backscattered through large angle-single scat­
tering or small angle-multip le scattering and escape from the 
specimen. Some penetrate deep depths and lose all energy 
within the specimen. This complicated electron trajectory 
can be simplified by separating the effects of elastic and in­
elastic scattering events. Namely, the angular deflection is 
determined by the elastic scattering and the energy loss be-
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tween scatterings is calculated by the continuous slowing­
down approximation of the Bethe law. If the cross-section 
can be found for elastic scattering, the scattering mean free 
path A can be calculated between elastic collisions in a similar 
way to the theory for classical particles in a gas chamber, 
where the crystalline structure of the specimen can be neg­
lected in the first approximation, that is, atoms are assumed 
to be distributed uniformly. The result is shown in Fig. 5. 
Three elements required in the simulation are given in the fol­
lowing : 

(A) The distribution of scattering angles 
We can simply use the following scree ned Rutherford 

equation for elastic scatte ring cross section : 

4 
d!1 

1.0 --~---d 0 =0.6 _µm ,•' ,. 
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Fig. ~ The normalized remaining film thickness as a func­
tion of dose for negative electron resist PGMA. 

Electrons 

l l l 
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Fig. 4. The determination of the remaining film thickness 
with the averaged absorbed energy density within 
vertical parallelpipeds the cross-section of which is 

typically a (500 A )2 square. 
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where pis the electron momentum, v the velocity, e the elec­
tronic charge, Z; the atomic number of an element i and /3; 
the screening parameter. 

We can take account of the angular deflection due to elec-

tron-electron inelastic scattering simply by replacing z; with 

Z; (Z; + I) assuming the Rutherford equation for the elec­

tron-electron coulomb scattering as well (Kulchitsky and 
Latyshev 1942). The following value of /3; is useful, which 

was obtained by Nigam et al. (1959) through use of the 
Thomas-Fermi type potential for electrostatic screening of 
the nucleus by the orbital electrons: 

where >-; 
stant. 

I hl\i 
{3 = - (1.12 - )2 5 

I 4 27rj) 

Z/13 / 0.885a 0, a0: Bohr radius, h: Planck's con-

5 

~IN 
"O "O 

0.6}-lm PGMA Film on Si 
Plane source 
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0 0.2 0.4 0.6 
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Fig. 3. The depth variation of absorbed energy in a 6000 A 
thin negative resist at 10 keV obtained by Monte 
Carlo calculation. The average absorbed energy den­

sity was determined to be (dE / dz) AV = 3.24 x 1026 

eV /C,cm from this result. 

Eo 
Electron 

En•l = [ En- l~IE n \n ] 

-------------------•'< 
n+1 

y n 

Fig. 5. Simplified electron trajectory for the single scattering 
model. 
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The total cross sec tion of one atom can be calculated by in­
tegrating Eq. 4 as follows: 

7r e4 z2 
I 

6 

When one scattering event has occurred, the electron is scat­
tered into a small solid angle ctn with the probaility P(w) as 
given by 

P(w) ctn 
da ~1 I ctn 

(---) ctn 
cl 

a; 

7 

By integrating this equation to an arbitrary value of w, the 
probabilistic determination is made through use of a gen­
erated uniform random number R (hereafter R means a 
pseudo-uniform random number between O and 1 generated 
with a computer algorithm). Namely, a value of cosw can be 
decided by substituting R into F(w) as follows: 

2/3;F(w) 
cos w = 1 - ----­

! + /3; - F(w) 
8 

The analytical expression of Eq. 8 makes it easy to calculate 
the scattering angle. 

The angle ct> is assumed to be uniformly distributed around 
the axis of the electron travelling direction, and is determined 
by another uniform random number R, i.e., ct> = 21rR. 
When an electron travels the distance equal to the mean free 
path, one elastic collision always occurs. Then, which atom 
the electron collided with has to be determined. The sum of 
the total cross-section in a unit volume of a mixed clement 
spec imen can be calculated as follows: 

C; Q NA 
E ni•at = E ---- at 

A; 
9 

where C; is the weight percent of an i-th element, e the den­

sity, A; the atomic weight and NA Avogadro's number. 

Therefore, the probability for an i-th element scattering is 
given below: 

n; a~
1 

E n;a ~
1 

C;QNA 
E---ae1 

A- I 
I 

10 

where random number s are alloted according to the prob­
ability P;: 

0<RsP1, P 1 < RsP, + P2, 

P, + P 2< RsP 1 +P 2+P 3 , ••• II 

The collision atom is decided by which unequal equation a 
generated uniform random number falls between. 
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(B) Step length 

The mean free path Ael for elastic sca ttering is the follow­
ing: 

(Acl = (En;at) I 

I 
12 

If we adopt the mean free path as a step length, the proce­
dure above mentioned for angular scattering can be utilized . 

Variable step lengths can be used, which are distributed 
around Ael as follows: 

I .:lS 
P (.:lS) = - exp ( - -) 13 

Ael Ael 

In this case another uniform random number R or R ' is used 
to determine .:ls in a similar way to the determination of the 
scattering angle w. 

(C) Energy loss 

The continuous energy loss law of Bethe is used 

dE 

dS 

7.85xl0 4 

E 
15 

where Ji is the mean ioni za tion potential, and Ji = 9. 76Z; 

+ 58.5Z; - o 19 has been often used (Berger and Seltzer 1964). 

The value of -y is 2 or 1.166 depending on a non-relati vistic or 
a relativistic electron, respectively. The energy at the next 
step is simply calculated by the following: 

16 

A shortcoming of the Bethe law at low energies is overcome 
by the following equation of Rao Sahib and Wittry (1974): 

dE 

dS 

7.85x10 4 

1.26'\IE 
17 

where E s 6.338 Ji. Similarly the equation developed by 

Love et al. ( 1977) can be used. 
According to Spencer and Fano (1954), the Bethe law 

which ha s been derived for an infinite target has to be modi­
fied as shown in Eq. 18 when the boundary condition is taken 
into consideration that electrons are incident on the surface 
of a semi-infinite target: 

dS 71"2 

(KM) - 1 (I - - M - 2 ) 18 
dE 6 

K 
1re• eN A 

AE 
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Fig. 6. A comparison in the reciprocal stopping 
--- power for PMMA at 10, 20 and 30 keV between the 

theorie s of Spencer-Fano and Bethe. 

M == I + fn i 4E(Eo - E) / J 2 I - fn (Eo / E) 

This theory is based on the physical mechanism that discrete 
processes with a long mean free path for inelastic scattering 
have to be subtracted from all existing processes for electrons 
right after incidence on the target. The theory has no rela­
tivistic correction. Brown et al. (1969) first applied this cor­
rection to microanalysis with the EPMA, by using the fol­
lowing artifice for a relativistic correction: 

ds / dE == [non-relativistic expression of Eq. 15 I rela-
tivistic expression of Eq. 15) x Eq. 18. 19 

This theory has been also utilized in a study of secondary 
electron emission by Shimizu (1974). Results of numerical 
calcu lation s with Eq. 19 are shown in Fig. 6 for a target of 
PMMA at energies of 10, 20 and 30 keV. 

3.2 Hybrid model for the discrete and continuous energy 
loss processes 

The Bethe law (Eq. 15) is obtained by averaging various dis­
crete energy losses which include the production of fast secon­
dary electrons. From the Bethe range an electron with an 
energy of, say, 2 keV, can travel a distance of 1400 A, neglect­
ing a direction change due to inelastic collisions . These secon­
daries may cause spreading of energy absorption in addition to 
that with the old model as described in a previous section . 
An attempt in lithography app lications has been published 
by Murata et al. (1981) based on the hybrid model for the 
discrete and continuous energy loss processes, which had 
been proposed originally by Schneider and Cormack (I 959) 
and had been developed to a more theoretical treatment by 
Berger (1963, 1971) and Seltzer (1974). 

(A) Energy loss. The energy los s process is shown schema­
tically in Fig. 7. The dashed line shows the previous Bethe 
equation. From this continuous energy loss some discrete 
processes are picked up . Then the remaining energy loss 
resulting from a collection of small energy losses will form 
st ill a continuous component. This will be described for a 
non-relativi stic electron by the following equation: 
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Fig. 7. Schematic illustration of an energy loss process in the 

hybrid model. Fast secondary electrons are generated 
at catastrophic collisions. 

dE dE 

[ ctS] Bethe - [ ctS] single 
20 

where 

21 

where a cut-off value, Ee, normalized by the initial energy E 

for energy transfer is introduced, and E is the energy transfer 
normalized by the initial energy E . Co llisions with energy 
transfer E larger than Ee is picked up among var iou s energy 
loss processes. Knock-on electrons are generated through thi s 
process. The differential inelastic cross section [d a / dE] is 
an important quantity to determine the probabi lity of fast 
secondary electron production . As there is no accurate 
theory for this cross-sect ion, the following Moller equation 
for free electrons has been used, which gave the low est cross 
section among the theories available at the moment: 

2T+ I I -·-J 
(T+1)2 t( I -E) 

22 

B == 21re4 / mv 2 

where T is the kinetic energy normalized by the rest mass 
energy of the electron. For small values of T the equation 
reduces to the following: 

da B I 1 1 

[~]M == E {~ + (l-t) 2 - t( I -E )} 
23 
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Finally it follows that an electron loses energy continuously 
according to [ dE / ds] Ee and it suffers a catastrophic energy 

change occasionally according to the knock-on cross section 
[d a Id E] M. The knock -on event is not continued for secon-

dary electrons. 
The cross section for inelastic scattering is calculated by 

Because the Moller model is based on the free electron 
theory, there is no discrimination among electrons of any 
atom or any element. 

(B) The distribution of scattering angles. For elastic scatter­
ing the same equation as used in the single scattering model is 
adopted for both primary and seco ndar y electrons. In this 
model Z 2 has not to be replaced by Z(Z + I) as a correction 
for inelastic sca ttering because this is accounted for by Eqs. 
25 and 26 for primary and secondary electrons, respectively, 

25 
2 + T - TE 

2(1 - E) 
26 

2+TE 

These equations will be the following when T ~ I, which gives 
a classical binary collision of nonrelativistic electrons: 

sin 0 = .j'i 

sin </> = ..Ji - E 

27 

28 

(C) Step length. In the present model two probabilistic 
eve nt s, i.e., elast ic and inelastic scattering are considered in 
the determination of the mean free path. Therefore, the 
mean free path A 101 is given by the harmonic mean as fol­
lows : 

29 

The variable step length is calculated with a uniform random 
number R: 

30 

(D) Selection of elastic or inelastic scattering. The type of 

collision is determined by the probability of elastic (pe 1) or 

inelastic (pin) collision through use of a uniform random 
number R. 

31 
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Fig. 8. Flow chart of the Monte Carlo calculation with the 
hybrid model. 

Finally, the new model is sum marized in the following: 
For Primary electron 
(j) Energy loss : Moller equation / Modified Bethe equa­

tion 
(ii) Angular deflection: Screened Rutherford eq. (elastic) / 

Moller theory (inelastic) 
For Secondary electron 
(i) Energy loss: Bethe equation 
(ii) Angular deflection: Screened Rutherford eq. (elastic) 
The flow chart of the calculation for the trajectory is brief-

ly shown in Fig. 8. The program is made so as to perform the 
simulation with the new or the old model by putting an input 
data of 0 < Ee < 0.5 or Ee = 0.5, respectively . 

3.3 Simulation of electron scattering in resist films on sub­
strates 

The Monte Carlo simulation can handle any boundary 
condition easily such as the incident angle and the specimen 
geometry. In lithography applications a special specimen 
structure of a coated resist film on a substrate is required for 
the calculation. There are various possibilities of the location 
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3 

Fig. 9. Electron trajectory mod elling for a sam ple of a thin 
resist film on a substrate. 

of the step as shown in Fig. 9. This is show n in the right side 
of the figure. One problem occurs when the step crosses the 
interface of a resist -substrate. The first approximat ion is to 
use the step length which was determined at the initial posi­
tion even when it crosses the interface (Kyser and Murata 
1974). Howe ver, when the initial po sition comes close to the 
interface, the accuracy of this approximation become s 
worse. Or in the case that there is a large difference between 
the mean free paths on both sides, larger errors are induced . 
Recently a new model to improve this deficiency has been 
pub lished by Horiguchi et al. (1981). They introduced the 
differential equation for the probabi lity P m(s) that electrons 

travel a distance z = s in the m-th layer without being scat­
tered after one scatte ring event. 

dP m(S) = - Wm P 
01

(S) dS 32 

where P 1(S=0) = I, P 01 + 1(S=am> = P 01(S=am>, and am 

is the maximum depth in the m-th layer, Wm is the total 

cross sect ion in them-th layer, which is given by 

33 

The solution of Eq. 32 gives the following probability P m(S) 

for the distribution of the variable step length: 

I S 
P m(S) = - exp ( - -), for 0 ::S S ::Sa 

A1 A1 

m 

=--exp[- I: (-----)ak - I 
Am k=2 Ak - I Ak 

I 
--- • SJ, foram _ ,<S~am(m=2,3, ... n) 

Am 

34 

In the usual manner the accumulated function F(s) of Pm (s) 

is used to determine the va riable length s . 
According to the new model the mean free path A depend s 
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Fig. 10. The mean free path calculated with a new treatment 
at the boundar y by Horiguchi et al. (1981) . The 
result is shown for a 4000 A PMMA film on a Si 
substrate at 20 keV . The old model assumes the 
constant mean free path as shown by the dashed 
line. 

on the initia l position of an electron. Let us take an examp le 
of a 4000 A PMMA resist film on a Si sub strate . A can be 
calcu lated as fo llows for an electron at a di stance x from the 
interface: 

A = f x SP 1(s)dS + f )P2(s)dS 
J O Jx 

35 

X 
A

5 
) exp ( - -- ) . , L 

P/\1/\ IA 

This equation reduces to 

A A5;, for X =0 36 

The calculated result is shown in Fig. 10 at 20 keY. Horigu ch i 
et al. ( 1981) have shown that the new model predicts very 
well experimenta l data of the back sca ttering intensity from 
the samp le with the three layer structure of CMS (chloro ­
methylated po lystyrene) resist-Mo (0.3 µm)-S i. In the present 
paper this new model is not included. 

3.4 The acc uracy of the simulation 

Genera lly, it is not easy to deduce the accuracy of :vlonte 
Car lo result s. Stat ist ical erro rs can be calculated by ✓n for 
result s suc h as the number, n, of backscattered electrons. Ac­
cordi ngly, the fluctuation of the back sca ttering coefficient 17 

is given by 

±t.ry=±~ 

where N is the number of incident electrons. According to 
the central limi t th eore m , the confidence interval of the prob­
ability p for occ urren ce of backscattering is given by the fol­
lowing (Miyatake and Nakayama 1963) : 

a2 a2 
✓D 

1'/N +-- - ✓D 1'/N +-- + 
2N 2N 

pr ( ::SP::S 
a2 a2 

+- +-
N N 
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37 

where 7/N is the backscattering ratio at N trials of the event, 

D 38 

The inequality equation gives the confidence intervals of 
95% and 99% for a=2 and 3, respectively. An example is 
shown in Fig. 11 for the backscattering from a thin resist film 
of 500 A on an Si substrate. In the figure the confidence inter­
vals are given for both 95% and 99%. The reliability in­
creases rapidly around a few hundreds of incident electrons. 
This is supported from the fact that the statistical error, 
f:i.17/ ri = (N17)- 112

, decreases from 27% to 8% for a change 
from 100 to 1000 incident electrons. The value of 'Y/ becomes 
stable as the number of incident electrons increases. It will be 
difficult to apply the central limit tht'orem to the general 
case. For example although the energy absorbed in the thin 
resi st per unit volume at a certain position is related to the 
number of electrons pas sing through that volume, the energy 
depo sited is different, depending on electron energy . Some 
weighting factor has to be introduced in applying the theo­
rem to a confidence interval estimate. Detailed discussion s 
are not made further in the present paper. Only the variation 
of the Monte Carlo result s is shown with the number of inci­
dent electron s. 

To obtain the spatial distribution of energy dissipation, the 
Monte Carlo computer program divides resist space into con­
centric donut-shaped volumes for the case of a point source 
electron beam and into parallelpipeds for the case of a line 
source. Therefore, the accuracy of the calculation depends 
on the size of a small volume, the cross-section of which is 
usually taken to be square . The smaller the size, the higher 
the spatial resolution. But then the statistical error increases . 
In the present paper the size of the volume is usually 500 A 
x 500 A. But in case of need some plan ha s to be made that 
a smaller volum e is used at either a position where higher 
resolution is required or at the higher intensity region, and a 
lar ger volume is used at a position where a lower resolution is 
sufficient owing to a gentle variation of the distribution. At 
least the stati stical error can be decrea sed by taking advan­
tage of the symmetr y of co-axial or bi-axial geometries. Fig. 12 
shows a typical result of the energy dissipation distribution in 
a resist film of 500 A thickness on a Si substrate, which was 
calculated with the old model. The result is shown for repre­
sentative points in the resist. Only 44, 36 and IO electrons 
come into the 500 x 500 ( A 2) volume at lateral distances of 
0.05, 1.05 and 2.05µm, respectively, for 8900 incident elec­
trons even though electrons are added due to bi-axial sym­
metry around the incident direction. It is found from the 
figure that in order to obtain a relatively stable result, inci­
dent electrons of a few thousand are required at a high inten­
sity region, but more electrons are required at a low intensity 
region with the same spatial resolution. 

Typical computational times with an IBM 370/168 com­
puter for the case of a 4000 A PMMA film on a Si substrate 
are 12 min and 37 min with the single scattering model and 
the knock-on model, respectively . 
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4. APPLICATION TO THE PRACTICE OF ELECTRON 
BEAM LITHOGRAPHY 

The Monte Carlo simulation has been applied to various 
problems of electron scattering in EBL. Some papers are 
concerned with the fundamentals such as energy dissipation 
in a thick or thin resist film. Some are concerned with the 
cross sectional profile simulation of developed resist pat­
terns. Some others study the proximity effect including its 
dependence on various experimental factors such as resist 
thickness, voltage, substrate, developer, etc. A detailed des­
cription of these investigations is beyond the scope of the 
present paper. Some typical fundamental problems which are 
not clear will be discussed, emphasizing electron beam inter­
actions with solids. 

4.1 Exposure Intensity Distribution 

The spatial distribution of energy dissipation in a resist 
film on a substrate is called the Exposure Intensity Distribu­
tion (EID), which is generated by incidence of a finely fo­
cused electron beam. The distribution has a characteristic 
feature consisting of two parts: a sharp peak around the 
origin and a broad, low intensity background. The distribu­
tion has been investigated by many authors experimentally 
and theoretically because it is required in order to implement 
a proximity effect correction. The Monte Carlo simulation 
can easily generate this distribution as a function of radius. 
Experimentally it is obtaiued by dot exposures with a finely 
focused beam on a positive resist (PMMA) film on a sub­
strate where dose has been changed over a wide range . After 
development of the exposed dots, the diameters of the re­
moved area are measured with a scanning electron micros­
cope . An appropriate value of the critical absorbed energy 
density has to be assumed in order to convert the experi­
mental dose to the absorbed energy density . This kind of ex­
periment has been carried out by Hawryluk et al. (1975), 
Adesida et al. (1979) and Murata et al. (1980). However, it 
will be difficult to measure a very small diameter when the 
dose is small. Therefore, usually the energy dissipation dis­
tribution as a function of lateral distance, which is obtained 
from line scan expo sures, is shown as an EID curve instead of 
the radial distribution. The lateral distribution can be con­
verted into the radial distribution by means of an Abel inver­
sion assuming that the exposure effects are additive (Haw­
ryluk et al. 1975). In Fig. 13 some results are compared be­
tween experiments of Hawryluk et al. (1975) and Monte 

Carlo simulations for a 4000 A thick PMMA film on an Si 
sub strate at 20 keV, assuming a value of I. I x l0 22 eV / cm 3 

for De as reported by Hawryluk et al. (1975) . Two theoretical 
results are shown in the figure with the new and the old 
models. Although the calculated results have a depth varia­
tion, they are compared at a depth of 1000 A below the top 
of the resist surface according to the definition of the experi­
mental line width by Greeneich and Van Duzer (1974). This is 
because the narrowest width observed from the experimental 
developed cross section by Wolf et al. (1971) exists inside, 
not at the surface which is predicted by theories of either 
analytical methods or Monte Carlo calculations. They assum­
ed that possible reasons for the above discrepancy are the 
resist shrinkage at the surface and the electron current dis­
tribution. As pointed out by previous authors (Hawryluk et 
al. 1974, Adesida et al. 1979) the old model, i.e., the single 
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Fig. 11. A variation of the backscattering coefficient 'I with 
the number of incident electrons. The result is 
shown for a 500 A PMMA film on an Si substrate at 
20 keV. The figure includes a var iation of the stan ­
dard deviation (vertical lines with circles at both 
ends) and the confidence intervals of 95% (a= 2) 
and 99% (a= 3). 
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scattering model ha s a clear di screpancy near the incident 
po sition of an electron beam . This discrepancy is improved 
very much with the hybrid model , i .e., the knock-on model. 
A larger spreading near the origin is accounted for by the 
knock-on model which include s the effects of the energy 
st raggling and fast secondary electron production . Another 
discrepancy is found at the tail. This is partly responsible for 
a low statistical accuracy as shown in Fig. 12 . 

Adesida et al. (1979) and Adesida and Ever hart (1980) have 
done a similar exper iment for various thicknesse s of an Si sub­
strate. They obtained Dc = 1.5 x 1022 eY /c m 3 which is the 

same as in the present comparison. However , their Monte 
Carlo results with discrete processes included seem to have a 
little higher energy dis sipation for the background intensity . 
Neglecting this difference, good agreement with experiments 
is obtained except for a discrepancy at the sharp peak which 
was found in the study by Hawryluk et a l. (1975) as well. 
Their experimenta l data was examined wit h the Hybrid 
model of the sim ulation . First the critical absorbed energy 
density Dc was determined so that the Monte Carlo results 

of the absorbed energy density distribution fit approximately 
the experimental one for a thick substrate at 20 keY. The 
result is shown in Fig. 14. A large discrepancy is still found in 
the peak region. A value of D c obtained is 4.4 x 1021 eY /c m 3

• 

By using the same value of Dc a comparison was made be­
tween theory and experiment for a 1000 A PMMA film on a 
thin Si substrate (600 A). This is shown in Fig. 15. We can 
see a relatively good agreement. This comparison is very im-
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Fig. 13. The tateral distribution of the absorbed energy den­
sity for a 4000 A PMMA film on an Si substrate at 
20 keV. A comparison is made between the experi­
mental data (Hawrylak et al. 1975) and the 
calculated results with two models. 
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portant to see how accurately the knock-on model can eval­
uate the resolution limit in the case that backscattering can be 
neglected. 

As seen in Fig. 13, the EID curve is Gaussian like. Chang 
(1975) proposed an analytical expression with two Gaussian 
distributions based on his experimental data. This is given 
usually in the following form: 

F (E) I r 2 
17E r 2 

[ - exp ( - -) + - exp ( - -) l 39 
7r(l + 1/E) {3 i f3; {3~ {3~ 

f(r) 

where f3r is the spreading width by the forward scattered 

electrons, {3b is the one by the backscattered electrons, and 

1/E represents the ratio of the energy deposited by the back­

scattered electrons to that by the forward scattered electrons. 
In Eq. 39 the depth variation is neglected. An integration of 
Eq. 39 over the whole area results in F(E) . Consequently , 
F(E) is the total absorbed energy. As this expression is very 
convenient to calculate the energy absorption for an arbitra­
ry pattern exposure which is required for a proximity effect 
correction, the parameters of f3r, {3b and 1/E have been inves­

tigated by many authors . As these parameters depend upon 
many experimental factors such as resist thickness, develop-
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Fig. 14. The lateral distribution of the absorbed energy den­
sity for a 1000 A PMMA film on an Si substrate at 
20 keV are compared between experiment (Adesida 
et al. 1979) and Monte Carlo calculation with the 
knock-on model. A value of 4.4 x 1021 eV / cm 3 is 
assumed for the critical absorbed energy density. 
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er, development conditions, initial accelerating voltage etc., 
it is difficult to establish a consistent theory to obtain them. 
A value for {3b is relatively easy to obtain because it has a 
large enough value to observe experimentally. Althou gh /3r 

is not easy to estimate since its value is very small, it is not im­
portant practically becau se generally the beam size is domin­
ant compared to the size of /3 r except for the case of a thicker 

resist film, say larger than I µm. Thi s will be important in 
the fabrication of a very fine pattern. The va lue of 7/E is an 

important factor to determine the strength of background in­
ten sities in the proximity effect. Although man y studie s are 
co nducted on 1/E as summari zed by Hawryluk (1961), it ha s 

a variety of 0.5-1.1. Although a qualitative dependence of 
1/E on the resist thickness, beam voltage and substrate materi­

als is known, it s quantitati ve understanding is not sufficient 
at the moment. The Monte Carlo result of 17E, which is ob-

tained by the energy absorption, shows a lower value than 
the experimental one . As pointed out by several authors, this 
difference probabl y comes from the solubility characteristics 
of a solvent in the experiment. It has been shown by an in­
direct method of Kyser et al. (1980) that the Monte Carlo 
results combined with the solubility characteristics agree fair­
ly well with the experimental values of 7/E. This problem 
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20 keV. The results are compared between experi­
ment (Adesida et al. 1979) and Monte Carlo calcula­
tion with the knock-on model. 
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requires some more detailed discussions in the future. The 
reduction in the energy dissipation predicted by the theory of 
Spencer and Fano (1954) or the knock-on model may have to 
be included in further studies. 

Analytical methods have been also developed to calculate 
the spatial distribution of dissipa tion energy . A detailed com­
parison between analytic methods and Monte Carlo calcula­
tion s has been reported by Hawryluk et al. (1974, 1975, 
1981). Generally the Monte Carlo method is expected to give 
a more accurate result in the cases of various resist thick­
nesses or / and initial energies and is more flexible to set 
various boundary conditions and specimen geometries . How­
ever, the Monte Carlo method has a great disadva ntage in 
that much computational time is needed to obtain sufficient 
accuracy. 

4.2 Negative resist pattern analysis 

An analysis of negative resist patterns is troublesome be­
cause the resist shrinks and swells after development as clari­
fied by the ana lysis based on the contrast curve by Heiden­
reich et al. (1975) and Lin (1975). Further study has been 
done by Nakata et al. ( I 981) using the Monte Carlo results 
for energy absorption . The experiment was performed under 
the same cond ition as when the contrast curve of Fig . 2 was 
obtained with the negative resist of PGMA exposed by a 10 
keV electron beam of 2500 A beam size with the EBMG-40 
system. The patterns of equal lines and spaces of 1, 2 and 3 
/lm was exposed with 4, 8 and 12 single lines, respectively. 
After the development procedure above mentioned, cross­
sectional profiles of the cleaved samp le were observed with 
the scanning electron microscope . The results are shown in 
Fig. 16 for line and space patterns of 1 and 3 /lm at a dose of 
4.0 x 10- 7 C/cm 2• Only the half part is shown due to sym­
metry . The top figure shows the equi-energy density contours 
calcu lated by the Monte Carlo simulation with the single 
scattering model taking into consideration the Spencer-Fano 
theory. The contours spread laterally near the pattern edge 
due to the proximity effect (in this case the intra-proximity 
effect). The effect appears as a gradual slope of the calculat ­
ed profiles at the edge shown by a dashed curve . Experimen­
tal profiles shown by a solid line are different largely from 
the calculated results, which are unfavorable in the practical 
fabrication processing. This discrepancy suggests the hypo­
thesis that the resist pattern shrinks laterally and swells longi­
tudinally while being stuck at the interface due to a strong 
adhesion to the substrate. The validity of this hypothesis was 
confirmed by comparison with further experiments with 
extra doses at the pattern edge where two more line scans are 
added than others. The results are shown in Fig. 17. As seen 
from the equi-energy density contour, a much larger energy 
is deposited at the edge. This extra dose produces the horn ­
shaped profile. Although the experimental results show a 
simi lar shape to the calculated ones, the position of the 
horned-shape shifts inside the pattern. This effect is probably 
caused by the lateral shrinkage above mentioned. The situa­
tion of developed resists being stuck at the interface is the 
same as Fig. 16. Anothe r intere sting effect is found in com­
parison between I /lm pattern s. Namely, the deformation of 
the experimental profile with the extra dose is smaller than 
that with the uniform dose. It is because the resist with a 
larger gel fraction is hard to deform. 
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Finally, although the problem associated with negative 
resist requires further study such as the cure effect, the ac­
curacy of the pattern simulation, etc ., the present mode lling 
will be helpful for an investigation of the development char­
acteristics of the negative resist such as shrinkage or swelling. 

4.3 Time evolution of the developed resist pattern 

It is important to know how a developing pattern changes 
with development time in fabrication processes. This simu­
lation is accomplished by combining the spatial distribution 
of absorbed energy with the solubility rate as mentioned pre­
viously. Theoretical studi es. on the time evolution for prac­
tical application have been published by many author s by cal­
culating the spatial distribution of energy dissipation either 
by an analytic method or Monte Carlo calculation. Among 
them Neureuther et al. (1979) made a quantitative compari­
son between theory and experiment for PMMA resist pat­
terns developed by a solution of MIBK (methyl isobutyl 
ketone): IPA (isopropyl alcohol) = 1: I. Their experiments 
of a single line exposure and an array of small lines and 
spaces was performed by varying the dose slightly at fixed 
development time rather than varying the development time 
at constant dose. They simu lated the profiles by using both 
the spatial energy distribution obtained with the Monte Carlo 
calculation and the solubilit y rate in which the constants were 
experimentally obtained separately. Although they obtained 
a general agreement in profile shape between both results , it 
was found that there are some discrepancies in that the ex­
perimental results show more roundness at the surface edge 
and a side wall slope than predicted by the theory, and that it 
is necessary to use a diff erent constant in the solubility rate 
equation from the constants above mentioned in order to 
match both results . 

Murata et al. (1979) have performed a similar experiment 
to Neureuther et al. (1979) and compared it with theoretical 
calculation. The resist thickness, the incident energy and the 
probe size are 6000 A, 20 keV and 5500 A, respectively. The 
solubility rate constants utilized in the calculation are basic­
ally the same as Neureuther, i.e ., Ro = 0, B = 1.0, A =2 . The 
Monte Ca rlo simu lation was based on the Spencer-Fano 
theory . Profiles were obtained at several different develop­
ment times for exposure pattern s of a single line and multi­
lines. In Figs . 18 and 19 the compa rison is shown for two 
typical exposure patterns of a single line at a dose of 2.4 x 

10- 3 C/cm 2 and of six lines spaced by 0.5 /lm at a dose of 

l.2 x 10- 3 C/cm 2• They confirmed a discrepancy similar to 
that by Neureuther et al. (1979) between both results and 
found that the solubilit y rate constant B had to be increased 
with an increase in dose in order to fit an absolute value of 
development time to experimental one and it approaches the 
value B which was obtained from the experiment of a large 
area exposure . 

Later, Rosenfield and Neureuther (1981) attempted to im­
prove the development simulation model by introducing a 
directional constant in the solubility rate with the string 
model, which is selected to cause a fast development along 
the incident electron direction. They found that this effect is 
more dominant in the single line exposure where there is a 
smaller contribution of non -directional electrons due to 
backscattered electrons, compared to multiline exposures . 
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Fig. 16. (a), (b) the equi-energy density contours and (c), (d) 
developed cross sectional profiles for negative resist 
patterns of line and spaces. The widths of line and 
space are (a), (c) 1 µm and (b), (d) 3 µm. The initial 
beam energy is 10 keV. Solid lines: experiment (Na­
kata et al. 1981). Dashed lines: Monte Carlo calcu­
lation. Profiles are compared at a dose of 4.0 x 10- 7 
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Fig. 17. (a), (b) the equi-energy density contours and (c), (d) 
developed cross sectional profiles for the same pat­
terns as in Fig. 16 except with extra doses at the 
edges. Solid lines: experiment (Nakata et al. 1981). 
Dashed lines: Monte Carlo calculation. 
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Fig. 18. The time evolution of cross sectional profiles for a 
single line exposure at a dose of 2.4 x 10- 3C/ cm 2
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T = 15 sec. B = 0.5 A / sec. 
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Fig. 19. The time evolution of cross sectional profiles for six 
line exposures at a dose of 1.2 x 10 - 3 C/ cm 2• T 
15 sec. B = 0.89 A/sec. 

They suggested that the physical mechanism of the effect is 
related to the generation of volatile products and micropores 
in the resist. If it can be assumed that this generation in­
creased with an increase in dose and the solubility rate 
becomes larger, totally keeping a directional etching, this 
may explain the use of a larger value of B which was found in 
the experimental results of Murata et al. (1979). This prob­
lem has to be investigated further in more details. 

4.4 Resolution limit 

The resolution limit for a line exposure was investigated 
for an isolated thin film of 4000 A PMMA at 20 keV. Time 
evolution calculated with the new and the old models is 
shown in Fig. 20 for a developer of MIBK: IP A= I : I at a 
dose of 50 µC/cm 2 • In the figure clear differences are found 
in development time and the developed widths between both 
results. It takes a longer development time to go through the 
film with the new model because it spreads out the energy 
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dissipation in more wide space. The old model does not show 
a further development with an increase in time near the sur­
face, while the new one does due to energy absorption by 
secondary electrons. Let's evaluate the resolution from the 
developed profile in Fig. 20. According to a previous dis­
cussion, the line width is measured in the plane at 1000 A 
below the resist surface. The widths were measured from the 
first profile that goes through the film. These are 530 A and 
320 A with the new and the old models, respectively. The 
former value gives a favorable value in comparison with the 
width of 600 A obtained experimenta lly by Sedgwick et al. 
(1972) at 25keV with a very thin substrate where the back­
scattering effect is not significant. 

In Fig. 21 the energy distribution, d77/dE, of fast secon­
daries generated per one incident electron is shown to see 
how large energy electrons cause the spatial spreading of the 
energy absorption in Fig. 20. The largest energy is 10 keV 
with the initial energy of 20 ke V. But there are few secondary 
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Fig. 20. Calculated developed profiles for an isolated 
PMMA film of 4000 A at 20 keV. The probe dia­
meter is 100 A. Development is made with a 1 to 1 
solution of MIBK and IPA. The minimum width is 
measured at a depth of 1000 A from the resist sur­
face. 

electrons with such high energies. The intensity increases 
rapidly near a few keV energy with decreasing energy. For ex­
amp le let's take the seco ndary electrons with energies of 1 to 
2 keV. These electrons have an ability to deposit about ten to 
twenty times more energy than a primary electron of 20 keV 
energy according to a simple estimate with the energy loss law 
of I /E and yet are generated at a rate of 573/20000 
= 2.8%. Their Bethe ranges are 440 A to 1400 A. Therefore 
these electrons seem to have a significant influence on the 
ultimate resolution. However, difficulty of the present 
theory is that the accuracy of the Bethe law at low energies 
and the cross section for fast secondary electron production 
are not suffic iently clear at the present. 
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