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Electron Beam Interactions With Solids (Pp. 209-215) 
SEM, Inc., AMF O'Hare (Chicago), IL 60666, U.S.A. 

INELASTIC AND ELASTIC MULTIPLE SCATTERING OF FAST ELECTRONS 
DESCRIBED BY THE TRANSPORT EQUATION 

Karl E. Hoffmann and Hans Schmoranzer 
Fachbereich Physik, Universitat Kaiserslautern 

D 6750 Kaiserslautern, Germany 

ABSTRACT 

A method for solving the transport equation for the pro
pagation of electrons in the primary energy range of interest 
in electron beam technology has been developed which is 
based on discretizing the related integral equation. The in
tegra l equation is solved by a collocation procedure yielding 
a system of linear equations. 

The elementary scattering processes were described for 
elastic scattering by quantum mechanical differential cross 
sections and for inelastic scattering by Gryzinski type semi
empirical excitation function s for core and outer electrons 
separate ly. 

From the electron flux density calculated, angular and 
energy distributions of transmitted and backscattered elec
tron s were derived for various elements (Al, Cu, Ag, Au) and 
film thickne sses. The results agree with experimental data , 
including finer detail s as e.g. the dependence of the elastic 
backscattering peak on scatter ing angle and atomic number. 

Keywords: Transport equation, elastic electron scattering, 
inelastic electron scattering, electron multiple scattering, 
electron matter interaction, electron energy deposition, elec
tron backscattering, energy distribution of backscattered 
electrons. 
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INTRODUCTION 

The scattering of ke V -electrons in films of solid matter is 
of great practical importance in electron microscopy, elec
tron probe microanalysis, and electron beam lithography. 
Many efforts have been made to obtain a useful theoretical 
description of the electron transport problem using different 
approaches: Analytical models (Thilmmel 1974, Dudek 1980, 
Niedrig 1982) involve strong simplifications of the transport 
problem or are restricted to describe partial aspects only of 
the problem. Simulation of electron trajectories by Monte
Carlo calculations has been successfully applied (Berger 
1963, Krefting and Reimer 1973, Shimizu et al. 1976, lchi
mura et al. 1980) to describe the major effects. Small effects, 
however, i.e. the effects of rare events, are practically ex
cluded from being reproduced by the statistics. 

Solving the transport equation directly by numerical meth
ods (Brown et al. 1969, Strickland et al. 1976, Fathers and 
Rez 1979, Schmoranzer and Hoffmann 1980, Lanteri et al. 
1981) has proved to be an advantageous alternative. The pro
cedure commonly used is to reduce the number of co-ordi
nates to the ones pertinent to the distributions in question 
and to discretize a system of first-order differential equa
tions. 

ln this work a numerical procedure was developed 
(Schmoranzer and Hoffmann 1980, Hoffmann and Schmo
ranzer 1981, Hoffmann and Schmoranzer 1982) which solves 
the transport equation via an integral equation which, ac
cording to experiences from neutron transport calculations 
(I. Kuscer, private communication; J. Wick, private com
munication), can be expected to have some numerical advan
tages over the differential equation. The method will be des
cribed and selected results of various calculations will be 
presented : e.g. the angular and energy distribution of trans
mitted and backscattered electrons for Al, Cu, Ag, and Au. 

MATHEMATICAL PROCEDURE 

We start out from the transport equation written in general 
form, an integro-differential equation: 

av,(r,v,t) 
---- + V. 'vi/,(r,v,t) + V a(r,v) i/,(r,v,t) 

at 

q(r,v,t) + l dv' a(,~'-v,r) v' i/,(r,v' ,t) (I) 

where 
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x,y,z 

LIST OF SYMBOLS 

Probability density of finding an 

electron at r, v, t 
Electron position 
Spatial co-ordinates 

Electron velocity 
Velocity components 

Time 

a(r, v), a(z,v) Macroscopic total scattering cross 
section 

q Electron source density 

a (V' -V,[), 
+' + 
V • V 

a (v', v , --- , z) = Macroscopic scattering cross section 
V' V 

+ 
j 
e 
z 
Q 

R,R ' 
z 
daRMB 

da scR 

E 
Eo 
w 

1J B 

I 
1JT 

N(8) 

it,( r, v, t) 

+ + + 
j(r,v,t) 

q(r,v,t) 

a - 1(r,v) 

a(V' -V,f) 

Differential electron flux density 
Spatial polar angle 
Unit vector in z-direction 
Electron source term in the integral 
equation 
Integration variables 
Atomic number 
Differential elastic scattering cross 
section after Riley et al. 1975 
Screened Rutherford cross section 

Electron energy 
Primary electron energy 

Relative electron energy normalized 
to E0 

Backscattering coeffient 

Mean ionization energy 
Transmission coefficient 

Electron current normalized to solid 
angle and primary current 

probability density of finding an electron at a 

point r with velocity v at time t 

vi/,(r,v,t) = differential flux density 

source density 

mean free path for total scattering 

macroscopic scattering cross section (scat
tering probability per unit path length) 

The solution describes the differential flux density from 
which all quantities for characterizing the propagation of 
electrons in matter can be derived (by integration). 

In establishing equation I the following assumptions have 
been included: 

I. The scattering centers are randomly distributed and at 
rest. 

2. No interactions between propagating electrons. 
3. The electron during its passage through the scattering 

medium interacts with one scattering center only at one time. 
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4. The electron trajectory is a straight line between the col
lisions, i.e., a zigzag line over-all. 

Now, instead of discretizing the integro-differential equa
tion which yields a system of difference equations, we aim at 
transforming equation I into an integral equation first before 
applying numerical procedures. 

The following simplifications can be made which are com
patible with many practical applications: 

I. The problem is stationary with respect to time. 

2. a (v' -v,r) possesses rotational invariance, i.e. 

+ ' + 
V • V 

a(v ' -v,r) = a(v ' ,v, --- , r) 
V' V 

3. Plane symmetry: If the z-axis is chosen perpendicular to 
and the x,y-plane parallel to the surface of the target layer , 
then 

a) the quantities a(r,v), a(v ' -v,r) and q(r,v) 
dep end on one of the spatial co-ordin ates only, i.e. , 
z, 

b) the angular dependence of q ( r , v) is on cos 0 = 
+ 
V 
- • z only, 
V 

c) any boundary conditions must depend on z and 
cos 0 only. 

In other words, the macroscopic cross sections depend on 

the magnitudes of the electron velocity vectors before (v ' ) 

and after ( v) the individual scattering process and on the 

cosine of the angle between v' and v, i.e. the polar scatter
ing angle, whereas they do not depend on the azimuthal scat
tering angle. The target is semi-infinite and flat. The source, 
too, is infinite and constant in the x,y co-ordinates . In realis
tic cases, the source is often point-like with respect to the x,y 
co-ordinates, so that the above assumption is equivalent with 
integrating the electron flux density over the x,y co-ordi
nates. Of course the information on the x,y-dependence of 
the electron flux density is lost therewith. It should be noted 
that this is also the case in all other methods mentioned 
above which solve the transport equation numerically. 

The number of variables has been reduced thus from seven 
(x,y,z,vx, vy,v,,t) to three (z, cos 0, v). The reduced transport 

equation is then transformed into a Fredholm type integral 
equation of the second kind. 

i/,(z,v,cos0) = 

I 
= -Q(z,v,cos0) + 

V 

oo R 
l dR [ exp [ - l dR ' 

V 0 0 

a(z-R'cos0,v)] * 

y, . V 
* l dv' v' a(v' ,v,---,z-Rcos0) i/,(z- Rcos0,v', 

v' V 

cos0') l 

where 

(2) 
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oo R 
Q(z,v,cos0) = l dR !exp [ - l dR'a(z - R 'cos0,v) ]* 

0 0 

*q (z - Rcos0, v, cos0)l 

A collocation method (see e.g. Baker 1977) using triangu
lar basis functions was specially developed for numerical 
solution of the above integral equatio n. The collocation 
method is particularly suited for computer application be
cause of its simple mathematical structure. One obtains a sys
tem of linear equations, of which the solution, i.e. the coeffi
cients of the triangular basis functions, yield an approxima
tion of the electron flux density. The system of linear equa
tions, which usually consists of more than 104 equations, is 
solved by iteration using group relaxation. 

The amount of computer time needed compares favorably 
with Monte-Carlo-methods (e.g. 15 min on a TR 440, Gib
son-Mix 1.23 µ,s) for the flux density of a given layer. 

CROSS SECTIONS FOR ELEMENTARY 
SCATTERING EVENTS 

The computer code has been written in such a way that dif
ferentia l cross sections for elastic and inelastic scattering can 
be used in closed form as well as in tabulated form including 
interpolation specifications. 

For the elastic scattering tabulated cross sections (Riley et 
al. I 975) were employed which have been calculated in cen
tral static potential approximation by partial wave expansion 
of the Dirac equation by means of Hartree-Fock wave-func
tions for Zs 35 and relativistic wave -functions for Z <!: 36. 
Comparison of these cross sections with the familiar screened 
Rutherford type cross section (Fig. I) shows that there is little 
difference only for small atomic numbers (e.g. Z = 13) and 
scattering angles greater than 30°. For smaller scattering 
angles the discrepancy is in principle larger but not signifi
cant for transport considerations because of the small solid 
ang le involved . 

For larger atomic numbers the more accurate theoretical 
cross sections daRMB deviate more from the screened Ruther
ford ones da scR, particularly also for large scattering angles . 
A similar behavior in the backscattering region has also been 
found for theoretical Mott cross sections (Doggett and Spen
cer 1956, Reimer et al. 1971) and has been experimentally 
investigated previously by our group (Schmoranzer and 
Grabe 1976, Grabe 1979). For large atomic numbers where 
elastic scattering is dominating, the angular distributions 
calculated on the basis of pure elastic electron-atom scatter
ing have turned out to describe well the experimental results 
(Schmoranzer and Hoffmann 1980), particularly in the back
ward direction (in forward direction inelastic effects appear 
to be less negligible) . 

In a more general approach, inelastic effects have been in
cluded, too. The most widely used continuous slowing -down 
approximation inherent to the Bethe stopping power is 
known to yield discrepancies in the energy distribution of 
electrons transmitted through thin films (Shimizu et al. I 975, 
Adesida et al. I 980). It is important not to exclude the ran
dom nature of the inelastic scatteri ng events in order not to 
lose important details, as e.g. the backscattering at primary 
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Fig. 1. Compar ison of differential elastic sca ttering cross 
sections after Riley et al. (1975) daRMB with screened 
Rutherford ones dascR" 

energy which will be demonstrated later (see Fig. 6-Fig. 8). 
As to the inelastic scattering, Gryzinski's (Gryzinski 1965) ex
citation function has been chosen to describe the different 
kinds of energy losses. Distinction is made between core ion
ization and outer electron excitation, where the latter has to 
include inelastic solid state effects as e.g. interband transi
tions and plasmon excitation (Shimizu and Everhart 1978). 

For inner shell ionization Gryzinski's formula has already 
been successfully applied in several Monte-Carlo calculations 
of other authors (Krefting and Reimer 1973, Shimizu et al. 
1976, Ganachaud and Cailler 1979, Ichimura et al. 1980). For 
the outer electrons the set of parameters entering Gryzinski's 
formula was determined similarly to a procedure proposed 
earlier (Shimizu and Everhart 1978). Assuming the Bethe law 
as an over-all empirical fact, the sum of the Gryzinski type 
stoppi ng powers for core and outer electron excitation must 
yield the Bethe stopp ing power (see Fig. 2). The number of 
outer electrons cannot be easily determined, particularl y not 
for compound material (lchimura et al. 1980). For a more 
universal application, it appeared suitable to choose a con
venient energy parameter first and then to match the number 
parameter so that the required over-all agreement of core 
plus outer electron stopping powers with the Bethe law was 
obtained. Indeed the parameters of the outer electron stop
ping power and excitation function are physically less mean
ingful than in the core electron case, but the advantage lies in 
the general applicability of the fitting procedure. 

Finally, the angular deflection of electrons upon the inelas 
tic scattering event was accounted for approximately by 
multiplying the elastic scattering cross section of small 
atomic number Z by (Z + 1)/ Z (see e.g. Brown et al. 1969 
and further references therein) . 

RESULTS AND DISCUSSION 

The method was applied to a number of elements for 
which detailed experimental results are available for compa
rison. 
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Transmission coefficient and backscattering coefficient 
can be obtained by integration of the outgoing electron flux 
density over angle and energy. For electrons of 20 keV pri
mary energy and normal incidence the absolutely calculated 
coefficients as a function of film thickness can be compared 
for Al with the measurements (Fig. 3). The agreement is as 
good as in recent Monte-Carlo work (Adesida et al. 1980). 

As mentioned earlier the method yields energy and angular 
distributions of transmitted and backscattered electrons as 
well. For Al e.g. the energy distribution of transmitted elec
trons (Fig. 4) agrees rather well with the measurements. 

The angular distribution of transmitted electrons for Al 
(Fig. 5) shows satisfactory agreement with the early experi
mental data (Cosslett and Thomas 1964). 

For backscattered electrons the calculated energy distribu
tions for Al, Cu, Ag, and Au are shown in Fig. 6. The film 
thicknesses were chosen such as to yield a total backscatter
ing coefficient close to the one of the bulk material according 
to the measurements (Niedrig and Sieber 1971). The distribu
tions for the lighter elements show a broad maximum with 
increasing height, increasing energy of the maximum, and 
decreasing energy width with increasing atomic number. For 
Au the distribution looks monotonic . Thi s behavior is well 
known from experiments (Kulenkampff and Spyra 1954, 
Kanter 1957, Darlington 1975, Matsukawa et al. 1974, Bauer 
1979). It should be noted that a peak of elastically backscat
tered electrons is reproduced by the present calculations, 
whereas it has been missing in most other calculations so far 
because of too coarse an energy grid, the continuous slowing 
down model or the small probability of the event in the case 
of Monte-Carlo calculations. The only theoretical work in 
which to our knowledge the elastic peak has been quoted, 
too, is the one of Brown, Wittry and Kyser (1969). To these 
authors, however, it was not clear whether the tendency of 
their theoretical curves to turn up for energies approaching 
E0 was a real effect or an artefact. Our results are in good 

agreement with recent extensive measurements by Baue r 
(1979) and earlier experiments (Boersch et al. 1967, Sommer
kamp 1970). The ratio of elastic to inelastic scattering in
creases with increasing atomic number. 

Further details can be seen in the following Figs . 7 and 8 
where the energy distributions of backscattered electron s at 
different angles are shown for e.g. Al and Ag . The elastic 
peak increases with angle until about 130° and stays constant 
then . On the other hand the broad inelastic maximum in
creases with angle, shifting towards larger energy losses. The 
minimum occurs for Al at scattering angles 0 ~ 110° and for 
Ag at 0~ 130°. 

The width of the so-called peak of elastically back scattered 
electrons in our calculations intrinsically depend s on the 
mesh size used of the energy grid, i. e. it cannot come out 
smaller than the mesh size, which is also the energy width as
sumed for the source of primary electrons. In the calcula
tions discussed here the mesh size was always 200 eV in the 
energy region of 0 .8 E0 to E0 and wider outside. It should be 
noted that therefore the grid point next to E0 already repre
sents inelastically scattered electron s. The number of elec
tron s which have been subjected to purely elastic scattering 
(single as well as plural) follows from the density d118 / dW 
at grid point E0• 
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As an example for the angular distribution of backscat
tered electrons the results for Al are displayed in Fig. 9 in a 
polar diagram. Th e smaller film thickne ss (note the change 
of scale) corre sponding to 320 nm clearly show s the maxim
um contribution around 130°, whereas the distribution ap
proaches the cosine law a t I 040 nm . 
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Fig. 9. Angular distribution of backscattered electrons for 
Al calculated by transport equation. 

SUMMARY 

In summary the presented method for solving the trans
port equation for the propagation of electrons in the primary 
energy range of interest for electron beam technology is 
based on discretizing the related integral equation by means 
of a collocation procedure and iterative solution of a system 
of linear equations. Together with proper choice of differen
tial cross sections for elastic scattering and with adequate 
representation of the complex energy loss mechanisms the 
method yields a rather satisfactory theoretical description of 
angular and energy distributions of electrons under the boun
dary conditions of plane symmetry and, last but not least, 
comparing to previous Monte-Carlo and transport equation 
calculations, the results correctly reproduce some more de
tailed information. 
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