
Scanning Electron Microscopy Scanning Electron Microscopy 

Volume 1982 
Number 1 1982 Article 15 

1982 

Monte Carlo Calculations on Electron Backscattering in Monte Carlo Calculations on Electron Backscattering in 

Amorphous or Polycrystalline Targets Amorphous or Polycrystalline Targets 

G. Soum 
Laboratoire associé à l'Université Paul Sabatier 

H. Ahmed 
Laboratoire associé à l'Université Paul Sabatier 

F. Arnal 
Laboratoire associé à l'Université Paul Sabatier 

B. Jouffrey 
Laboratoire associé à l'Université Paul Sabatier 

P. Verdier 
Laboratoire associé à l'Université Paul Sabatier 

Follow this and additional works at: https://digitalcommons.usu.edu/electron 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Soum, G.; Ahmed, H.; Arnal, F.; Jouffrey, B.; and Verdier, P. (1982) "Monte Carlo Calculations on Electron 
Backscattering in Amorphous or Polycrystalline Targets," Scanning Electron Microscopy: Vol. 1982 : No. 1 
, Article 15. 
Available at: https://digitalcommons.usu.edu/electron/vol1982/iss1/15 

This Article is brought to you for free and open access by 
the Western Dairy Center at DigitalCommons@USU. It 
has been accepted for inclusion in Scanning Electron 
Microscopy by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/electron
https://digitalcommons.usu.edu/electron/vol1982
https://digitalcommons.usu.edu/electron/vol1982/iss1
https://digitalcommons.usu.edu/electron/vol1982/iss1/15
https://digitalcommons.usu.edu/electron?utm_source=digitalcommons.usu.edu%2Felectron%2Fvol1982%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.usu.edu%2Felectron%2Fvol1982%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/electron/vol1982/iss1/15?utm_source=digitalcommons.usu.edu%2Felectron%2Fvol1982%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Electron Beam Interaction s With Solids (Pp. 173-181) 
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MONTE CARLO CALCULATIONS ON ELECTRON BACKSCATT~RING 
IN AMORPHOUS OR POLYCRYSTALLINE TARGETS 

G. Soum, H. Ahmed, F. Amal, B. Jouffrey & P. Verdier 
Laboratoire d'Optique Electronique du C.N.R.S. 
Laborato1re associe a l'Un iversite Paul Sabatier 
B.P. 4347 - 31055 Toulouse Cedex - France 

Phone numb er: (61) 52 65 96 

ABSTRACT 

We propose an application of the Monte Carlo method in 
the field of backscattering. The results obtained for incident 
electron energies ranging from 0.3 to 3 MeV and for targets 
of Al, Cu, Ag and Au are compared with experimental values 
from severa l sources. 

An electron travelling through matter undergoes successive 
collisions between which it is assumed to travel in a straight 
line. In our case, we consider the elementary process of inter­
action electron-nucleus; we have used analytical models for 
the scattering cross-sections. In order to follow the electron 
through the specimen, we divide the real trajectory into 
elements of length much smaller than the mean free path . 
Pseudo-random number process permits us to determine 
whether or not an interaction occurs, also the type of inter­
action. For the energy losses, we introduced a relation de­
rived from Landau's theory. We then followed the electron 
until it is emerged from the material or halted . 

The backscattering coefficients obtained for thin and thick 
targets as a function of the incident electron energy are in 
good agreement with the experimental data. We have intro­
duced the depth distribution function of the backscattered 
electrons, which allows us to test the predictions of various 
theoretical model s proposed by other authors. 

Keywords: Monte Carlo method, scattering cross section, 
multiple scattering range, energy loss selection, backscatter­
ing coefficient, angular distribution, energy distribution. 
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1. INTRODUCTION 

The backscattering of high energy electrons from solids 
has become a subject of ever-increasing interest in recent 
years, especia lly because of its applications in microanalysis 
and scanning electron microscopy . We are interested in the 
backscattering of electrons by polycrystalline targets of 
aluminium, copper, silver and gold, for normal incidence 
and for energies ranging from 0.3 to 3 MeV. 

In principle, the solution of the Boltzman transport equa­
tion allows us to determine the trajectory of electrons in mat­
ter; the first important works are those of Bethe et al. (1938). 
The correct analytical solution of this equation is difficult to 
obtain, although several different methods have been pro­
posed (Brown et al. 1969). All past treatments do not give an 
analytical solution of this equation (Bennett and Roth, 1972; 
Brown and Ogilvie, 1966; Fathers and Rez, 1979; Lanteri et 
al. 1980). 

Some years ago, the numerical procedures known as 
Monte Car lo methods were developed (Berger, 1963; Bishop, 
1967; Henoc, 1976; Martinez and Balladore, 1979). The 
problem is solved statistically. Monte Carlo methods are 
more suit ab le than those using Bolt zman's equation; they 
also have many advantages over the various theories of mul­
tiple scattering. Furthermore, we need not introduce the 
small angle approximatio n in order to perform the calcula­
tion; as the electron passes through an element, we consider 
the broadening of the electron beam and we take the energy 
loss and the inelastic sca ttering into account. 

We explain our application of the Monte Carlo method to 
the phenomenon of backscattering and we use a theoretical 
model for the cross section and energy losses. For the ele­
ments studied, we give the value and magnitude of the phy­
sical variables investigated : backscattering coefficient, 
angular energy and depth distributions of backscattered elec­
trons. For each case, we compare the results given by our cal­
culation with the experimental results given by different 
authors or by different theoretical published models. 

2. METHOD OF CALCULATION 

2.1 Generalities 

We simulate the trajector y of each electron by generation 
of uniform pseudo-random numbers X, which must be un­
correlated and distributed uniformly between zero and one. 
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LIST OF SYMBOLS 

Pseudo-random number 
Specimen thickness 
Differential scattering cross section per unit 
solid angle 
Total scattering cross section 
Subscripts respectively elastic, inelastic 
Atomic number 
Ratio of electron velocity to light velocity 
Electron mass 
Electron charge 
Planck's constant 

Wave vector 
Screening angle 

Avogadro's number 

Half-aperture angle 
Path-length element 
Mean free path 
Density of target material 
Atomic mass 
Kinetic energy of the electron beam 

Energy loss 
Mean energy loss 

Most probable energy loss 

Total electron range 
Backscattering coefficient 

For each number X and after the electron has travelled a path 
length in the element equal to 6s, we associated an angular 
deviation 8 such that 

X = 271" i: F(x) sin x d x 

The angular di stribution F(x) during each step 6 s mu st be 
known ; we find in the literature two different method s for 
executing Monte Carlo calculations : 

• If the path length element 6s is so short that we can con­
sider that only one event will take place, then F(x) is directly 
connected with the differential cross section; this is the 
single-scattering model (Matsukawa et al. 1973; Murata , 
1974; Reimer et al. 1970, Saum et al. I 979, 1981 a) ; 

• If, on the contrary, several event s take place during the 
path length element 6s, we choose a multiple scattering law 
for F(x) (Bishop, 1967; Shimizu and Murata, 1971). 

In both cases, we must compute the step path length be­
tween successive events and any energy loss suffered by the 
electron. We have chosen the single scattering model. We use 
the direct sample method for the distribution of path length 
and we take Landau's theory for the energy loss-law rather 
than that of Bethe. This law has been investigated experi­
mentally in the energy range studied here (Perez et al. 1977). 
2.2 Angular deviation 

2.2.1 Principle As we are considering elementary pro­
cesses, the differential cross section for an event gives the an­
gular distribution after that event directly . The distribution 
function has to satisfy the normalization condition and 
thus , we have: ' 
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1 
F( x ) = - Q( x ) 

(J 

. r 71" 
with u = J

O 
Q( x ) 271" sin x dx. 

The deviation angle 8 of the electron from the in itial direc ­
tion is obtained by generating a random number X, accord­
ing to Equation 1. Because of the spherical symmetry of the 
isolated atoms, the azimuth <P of the trajector y becom es a 
simple second number <I> = 27rX. 

Knowing the deviation (8,<P) resulting from the int erac­
tion, we determine the direction cosines of the trajector y. It 
is then possible to expres s the electron angular characteristics 
at the beginning of each step in terms of the parameter s of 
the preceding step . 

2.2.2 Elastic scattering In high ener gy electron micro­
scopy, the first Born appro ximation is found ju stified; thi s is 
expre ssed by th e relation a ' ~ I with a' = Z I 137 {3. Wh en 
we consider Wentzel 's potential, which has only one expo­
nential term, in the fir st Born appro ximation , we obtain (Ar ­
na! et al. I 977) : 

Z2 m2 e4 

- -- - -- c 2 ______ _ 

4(nk) 4 (1 - {32) 
9 2 

(sin 2 ~ + _o_ ) 2 
2 4 

2 

C = exp (b / a) is a characteristic parameter of the iar get 
atoms. The coefficients a and b are written respe ctively : 

a = (32.4 + 0.213 Z)Z - 'I, 

b = exp 12( I - 0.0157 Z) l 

Thu s, th e elastic mean free path is given by : 

- = --------- c 2 --
(nk) 4 (1 - (32) 8~ 

3 

After integration and inversion of Eq . 2, we det ermine th e 
scattering angle 8 for an elastic collision : 

co s 8 ------- 4 
8 

2 1 - X + (- 0
- )

2 

2 

2.2.3 Inelastic scattering In ord er to simulat e th e pro cess 
of the inela stic scattering, we mu st separ a te the valence elec­
tron s from those which are lightl y bound to the nucleu s. We 
have studied the domain of plural and multiple scatterin g 
(Saum et a l. 1979). We can neglect plasmon scattering which 
is highl y concentrated within small an gles. In Morse' s ap­
proximation and for Went zel's potential, we obtain (Amal et 
al. 1977): 

(nk) 4 (1 - {32) 

( x 2 + 8 ~) (2 - C) + 2 e~ 
c --------- 5 

(82 + 9 2) (82+ 92 + 8 2)2 
E E 0 

where 8 E = -y~ / {-y2 - l)mc 2 is the minimum scattering 
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angle, corresponding to the minimum transfer of momen­
tum. For t.E, we use Berger and Seltzer's (1964) formula: 

t.E = 9.76 Z + 58 .5 Z - o.,9 6 

Thus, in the case of an inelastic collision, Eq. 1 tends to: 

02 
X + 2 Ln---- - C---l 

0
2 + e~ e~ + 0

2 

7 

Numerical solution of this equation by successive approxi­
mations gives us the inelastic scattering angle. 

2.2.4 Multiple scattering range In order to save comput­
ing time , the angular deflect ion is determined from the ex­
pression for the partial scattering cross section, which is 
given for elastic sca tt er ing out side an angle a by : 

7r z2m2e4 
a/ a)= f: Q e(x) ctn= ----- C2 

J ~ (nk) 4 (1 - {32) 

a 8 2 

(sin 2 - + - 0
-) 

2 4 

8a 

We have used the calcu lation of Lenz (1954) in Morse's ap­
proximation. The partial inela stic scattering cross sect ion 
outside an angle a is given by the following expression: 

41r Zm 2 e• C2 

a ;(a) = r 7r Q;( x) ctn = ------
J a (nk) 4 (I (32 ) 82 

0 

12_ Ln(l + 
C 

8 2 
0 ) 

0!2 + 8 ~ 

----- ! 8b 
0!2 + 82 

1 + ( E) 
e~ 

In Fig. 1, we compare our experimental results (Amal et al. 
1977) and those of Martinez (1978) with the values of a( a ) = 
ae(a ) + a ;(a) given by the above relation . Good agreement 

of the proposed model with the measurement s is found, and 
Eq. 8 ha s therefore been chosen for the Monte Carlo calcula­
tion. 
The scattering outside an angle a with a ► 8 E avoids the dif-

ficulties encountered in calculating the inelastic cross section 
caused by the determination of 8 E" For elastic scatte ring out­
side an angle a, we then obtain: 

!?Na ------c2 ---- 9 
A (nk) 4 (I - {32) 
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Fig. 1. Variation of scattering cross section outside a. 

Table 1. Silver-mean free path (in µm) 

A ea (1); A io (2); ACX (3) 

V (kV) Ae a (rad) 

0.03 0.045 

( 1) 0.0825 0.136 

300 0.039 (2) 3. 149 6.827 

(3) 0.0804 0.134 

(1) 0.254 0.503 

750 0.0544 (2) 14.105 32.203 

(3) 0.249 0 .495 

(1) 0.496 1.04 

0.056 

0.190 

10.60 

0.186 

0.749 

50.20 

0.738 

1.58 

1200 0.059 (2) 31.03 71.11 113.78 

(3) 0.488 1.026 1.558 

cos 8 = ------------------

where A ea represents the elastic mean free path for which an 

electron is scattered with an angle greater than a; similarly, 
we characterize the inelastic scattering outside an angle a by 
the expressions : 

1 I 2 8 0 
- = - !- Ln[(-)2 + 1] - -- -- l 11 
A Z A C 1 + ~2; 820 ia e a ~ 

2Ln(8 / a] 2 + 2Ln[8 2/ ( 8 2 + 8~) J - C 8 2/ (8 2 + e~ 
X=- ------ --------------

2Ln(80 / a) 2 - C 
12 

We note finally that the inelastic scattering can be neglected 
in comparison with elastic scattering for elements having a 
high atomic number and for a> 2.10 - 2 rad. (Table 1). 
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In the case of silver, for a voltage of 0.5 MV, Figure 2 
shows (continuous line) the experimental angular distribu­
tion function of electrons transmitted by target of thickness 
0.82 µm (Saum et al. 1976). The points represent the results of 
Monte Carlo calculations with two scattering models: total 
scattering (relations 4 and 7) or scattering outside an angle 

a = 2. 10 - 2i-ad. (relations 8a and 8 b). We note here that the 
agreement is good whichever way we treat the problem. 
Moreover, we can use partial cross sections in order to reduce 
the computing time by a factor of four. 

2.3 Energy loss 

2.3.1 Energy loss selection While travelling through mat­
ter, the electrons suffer inelastic collisions which reduce their 
incident energy. The superposition of several elementary 
phenomena makes the theoretical solution of this problem 
highly complex. Many expressions have been proposed, after 
much simplification. In Monte Carlo calculations, the choice 
of energy losses by multiple scattering are deduced from Lan­
dau's theory (1944). To find the most probable energy tiEP, 
we express the mean energy loss <lEm as follows: 

<lEm - tiEP = 3.225 ~ 

eZ I 
with~ = 15.349 -- - s 

A (32 
13 

where ~ is expressed in eV, s and Q in µm and g/cm 3 respec­
tively. Then we have : 

dE ~ ~ 
= - (Ln -- - (32 + 3.423) 14 

ds Q Qmin 

with Qmin = 12 / (2')'2(32mc 2), the minimum energy lost by 
the primary electron during a collision . Expression (14) may 
be compared with that of Bethe (1933), which is generally 
used in Monte Carlo calculations. 

An experimental test (Perez, 1975) of the se two theories 
has shown that the mean energy loss given by Bethe (1933) 
differs still further from the experimental values than that 
given by the above relation (14). We introduce this mean 
energy loss when the individual electron step-length tisi is 
such that tis / A = 10. We then calculate new values of the 
cross section until the entire specimen has been traversed . 
The energy correction is made along the real trajectory of the 
electrons. 

2.3.2 Verification In addition to the above experimental 
verification (Perez, 1975), we have studied how we can find 
the electron range in matter by making use of Landau's 
(1944) law. In the case of particle travelling through a solid 
med ium, it is not only useful to know the mean range r L (Eo) 
of this particle of incident energy E 0, but also its penetration 
depth into the medium. The total range is defined as the 
minimum thickness of the specimen which makes the coeffi­
cient of transmission zero. By considering the normalization 
properties of transmission curves (Soum et al. 1981 b ), we 
propose the following relation for the total electron range in 
the matter: 
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2.39 1 +,,'V 
r = -- 10- 8 v2 (----)• 

Q I + 2')'' V 
15 

with: ,,, = 0.978. 10 - 6 

The quantities r, Q and V are expressed in µm, g/c m 3 and volt 
respectively. Figure 3 shows that the above model and the ex­
perimental results for targets of aluminium, silver and gold 
are in good agreement. 

By using Eq. 14 and the scattering laws (10) and (12), in an 
earlier work, we have simulated the electron trajectories in a 
semi-infinite medium . We note that the simulation s predict 
the total range to a good approximation. Thu s, in the do­
main of multiple scattering, we have chosen Landau's (1944) 
law to represent the rate of loss of energy of the incident 
beam. 

It is now easy to compare the total experimental electron 
range r(Eo) and the mean theoretical range r L(Eo), obtained 
by numerical integration or Eq. 14. In Figure 4, we repre sent 
the ratio r L (Eo) / r(Eo) as a function of E 0 in the case of alum­
inium and gold; this value is practically independent of the 
incident energy when E 0 > 300 keV . 

As already noted (Verdier and Amal, 1969a), we must dis­
tinguish the mean range and the total range except for low 
atomic number elements higher than aluminium. 

2.4 Distribution of step lengths 

The laws describing the angular deflection are directly 
related to the differential cross-sections; the lengths of the 
steps between successive events will be intimately connected 
with the mean free paths which are written: 

16 

We cut up the real trajectory of the electron into elements of 
length tis, much smaller than the mean free path . A random 
number X which defines the type of interaction is associated 
with each of these paths. If an interaction does occur, we cal­
culate the new direction of the electron trajectory by generat­
ing a second random number. So we determine the new elec­
tron parameters of position and the depth x, until the elec­
tron leaves the sample. As we are interested in the backscat­
tering phenomena, we allowed the electron to penetrate into 
the specimen to a depth of only 0. 75 r(Eo) to avoid useles s 
calculation. 

The accuracy of the Monte Carlo method depends on the 
random numbers generated by the computer and on the 
numbers N of electrons. We carry out our calculation with 
N = 10,000 incident electrons and with a step length of 
about A,/ 4. 

3. RESULTS 

3.1 The backscattering coefficient 

For a sample of uniform thickness x, the backscattering 
coefficient is usually defined as the ratio of the number of 
backscattered electrons to the number of incident electrons . 
Many theoretical models or semi-empirical expressions have 
been developed by various authors (Archard, 1961; Everhart, 
1960; Frank, 1959; Kanter, 1955; Niedrig, 1977, 1978; Tabata 
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Fig. 6. Variation of the backscattering coefficient as a func-
tion of the atomic number. 

et al. 1971; Verdier and Amal, 1969b) for the backscattering 
coefficient R; but these expressions are satisfactory only at 
low voltage and for a small range of incident energy E

0
• We 

present here the results of our Monte Carlo calculation for 
energies ranging from 0.3 to 3 MeV and we compare these 
results with our experimental measurements and with experi­
mental results of different authors (Tabata et al. 1971). 

Experiment shows that, for a given energy of incident elec­
trons, the backscattering coefficient stops increasing beyond 
a certain thickness x,. A sample with a thickness greater than 
or equal to x, is said to be thick for the energy in question; if 

177 
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Fig. 3. Variation of electron range. 
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Fig. 5. Backscatte ring coefficient as a function of the thick­
ness. 
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Fig. 7. Variation of the backscattering coefficient as a func­
tion of the energy for gold targets of various thick­
ness. 

the thicknes s is less than x,, it is said to be thin . 
Figure 5 shows the var iation of R with the thickness of the 

sample. We have plotted the experimental curves (Verdier 
and Amal, 1969b) corresponding to aluminium (0.3 MeV) 
and to gold (I MeV); the point s were obtained by simulation 
and the agreement is good. 

An experimental study (Verdier and Amal , 1969b) of the 
back scattering coefficient for thick samples shows that, for 
all elements, R does not change very much when the incident 
energy increases from 0.3 to 1.2 MeV. In this energy range, 
Figure 6 shows the variation of R for thick samples as a func­
tion of atomic number : the experimental results are com­
pared with Everhart's theory (1960) (RJ and with Archard's 

model (1961) (RA) ; the results of our Monte Carlo calculation 
fall on the experimental curve . 

It is also interesting for a given element, for example gold 
in Figure 7, to follow the increase of the back scatte ring coef­
ficient as a function of the energy E

0
• We note that the points 
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Fig. 8. Depth distribution of the backscattered electrons. 

corresponding to our calculation are in agreement with the 
measurements over a wide range of energy, from 0.3 to 3 
MeV. Our calculat ion correctiy predicts that R decreases as 
the energy E 0 increases and that R varies for thin samples . 

The method of representation of R in Figure 7 is more suit­
able than that of Figure 5 for measuring the thickness x, and 

the energy E 0 below which the sample is thick. From Figure 

3, it is easy to show that x,(Ec) = r(Ec)/2, which confirms 

the suggestion made by certain authors. 
For each backscattered electron, it is of interest to know 

the depth at which it begins to return to the entry surface of 
the samp le. Figure 8 represents the distribution function 
f R(x) of the backscattered electrons for a semi-infinite gold 

target and for an incident electron energy of I MeV. We find 
again that the incident electrons cannot be scattered from 
beyond a certain depth approximate ly equal to r(Ec) / 2, 

which also justifies the notion of thin and thick targets. 

3.2 Angular distribution of backscattered electrons 

The angular distribution of backscattered electrons as a 
function of sample thickness has been stud ied experimentally 
by Frank (1959). The function FR(0,x) defined as the frac­

tion of back scattered electrons per unit solid angle that make 
an angle 0 with the incident electron direction and the ex­
pression f R(0,x) = 271" sin 0 • FR (0,x) is the function of 

angular distribution of backscattered electrons. 
Integration of this function from 7r / 2 to 7r gives the cor­

responding backscattering coefficient. Finally, the angle at 
which this function passes through a maximum is called the 
most probable ang le of backscattering. 

In Figure 9, for example, we represent the normalized 
angular distribution of backscattered electron s in aluminium 
for various thicknesses. We see that the function F R(0,x) be­

comes narrower as we increase the thickness and, for a given 
target element, the shape of the angular distribution does not 
alter beyond a certain thickness of the target equal to one 
half of the total range of electrons. These results also show 
that the most probable angle of backscattering increases for a 
given energy as the thickness of the target increases and then 
takes a limiting value equal to 140° as we rea ch the thick sam­
ple range. 
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trons per unit so lid angle. 

(b) f/0,x) is the function of ailgular distribution. 

In Figure IO and Figure 11, the continuous curves repre­
sent Frank's (1959) results for thick samples of lead and 
aluminium respectively. We include the values of our calcula­
tion for thickness of alumin ium and gold greater than half 
the total range corresponding to an incident electron energy 
of 1 MeV. Our study is in agreement with the experimental 
results of Frank ( 1959) and reveals a certain deviation relative 
to the cos e law; this deviation becomes large for higher 
atomic numbers. 

3.3 Energy distribution of backscattered electrons 

Many authors (Bothe, 1949; Darlington, I 975; Kulen­
kampff and Spyra , 1954; Matsukawa et al. I 974; Sterngla ss, 
I 954; Thiimmel, 1964) have experimentally determined for 
low voltage the energy spectra of the backscattered electrons 
for the case of thick samples and have also studied the varia­
tion of backscattering with the backscattering angle . As an 
example, we give in Figure 12 the results of our ca lculation 
for the energy distribution for an incident electron energy of 
I MeV, backscattered from thick targets of aluminium and 
go ld . We compare these results with the measurements of 
different authors unfortunately at incident electron energy 
lower than ours. 

It is important to note that the normalized energy distribu­
tion function f(E / Ec) is not very sensitive to variations of E0• 

Some difference appears at low values of E0, that is to say for 

electrons which have lost a large fraction of their incident 
energy. 

However, the most probable energy EP of backscattered 

electrons is a characteristic of the element; for gold: E P = 
0.95 E0 and for aluminium: EP = 0 .67 E0 in agreement with 

experimenta l results. For the average energy of back scattered 
electrons, we obtain: Em = 0.82 E0 for gold samp les and 

Em = 0.6 E0 for alum inium samp les; the last values are much 

larger than those given by Sterng lass (1954): 

17 
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Fig. 11. Angular distribution of the backscattered electrons 
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Fig. 12. Energy distribution of backscattered electrons ( 0 
+ : Bothe (1949); *: Thiimmel (1964).) 

179 

This difference is due to the fact that the coefficients in this 
expression were obtained using low energy incident electrons; 
this observation is also in agreement with above remark con­
cerning electrons that have lost a large fraction of their inci­
dent energy. 

4. CONCLUSION 

The proposed model of calculation for the stu dy of the 
backscattered electrons from polycrystalline samples has 
allowed us to obtain values of the backscattering coefficients 
in good agreement with the experimental values. These prove 
the validity of the expression for the cross section and the 
energy loss which are used. 

So far as the ana lysis of the back scatte red electron energy 
is concerned, our calculation, which corresponds to high 
energy, allow s us to predict the published results for low in­
cident electron energy . 
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DISCUSSION WITH L. REIMER 

Question 1: You obviously obtained Equation 14 from Lan­
dau theory . What is the difference to the Bethe formula for 
continuous slowing down approximation? 
Answer: Our Monte Carlo calculation needs an expression 
for the stopping power ( - dE/ds). This expresssion is given 
by the Bethe energy losses law or by Landau theory which 
gives the most probable energy loss 

~ 
LlliP = ULog -- - {P + 0.198 ]. 

Qmin 
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Since ~E m - ~E P = 3.225 ~. Landau theory lead s to the ex-

pre ssion (14) of the stopping power. 
In the studied energy ranges, it has been experimentally 

checked that the expression gives a better experimental result 
reduction than the Bethe's one. 

Question 2: For the calculation of displacement cross-sec­
tions from knock-on collisions many authors use Mott scat­
tering cross-sections, i.e. those of McKinley-Feshbach. Have 
you tried to incorporate these differences to Rutherford 
cross-sections in your Monte Carlo program? 
Answer: Our Monte Carlo calculation is based on the use of 
the partial cross-sections which indicate the scattering out­

side an angle a (I0 - 2 - 5.10 - 2 rad) . This allows us to neg­
lect the inelastic scattering of electrons. We have not used the 
Mott or McKinley-Feshbach cross-sections, because we have 
verified that our cross-sections are in a good agreement with 
the experimental results. 

Question 3: Are the coefficients C and a in (2) obtained by 
fitting experim ents of small angle sca ttering or ca n they be 
got by ca lculation? 
Answer: The parameter a is related to the screening radius of 
the Wentzel-Yukawa potential. Lenz's theory is valid in the 
isolated atom model, so we have corrected the calculations 
by introducing another parameter b which permits to take 
into account the effect of neighbouring atoms to the sca tter­
ing center. The potential take s the form: 

Ze r - b 
V =--ex p - (-- ) 

r a 

This is equivalen t to assign to the nucl eus of the atom a 
charge Ze exp b/ a. The parameters a and b hav e been deter ­
mined from the experimental results corresponding to the 
scattering cro ss-sections. 
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