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Electron Beam Interactions With Solids (Pp. 153-163)
SEM, Inc., AMF O’Hare (Chicago), IL 60666, U.S.A.

MONTE CARLO ELECTRON TRAJECTORY CALCULATIONS OF ELECTRON
INTERACTIONS IN SAMPLES WITH SPECIAL GEOMETRIES

Dale E. Newbury* and Robert L. Myklebust

National Bureau of Standards
Washington, DC 20234

ABSTRACT

Implementing a Monte Carlo simulation for application to
electron sample interactions requires use of accurate treat-
ments of elastic and inelastic scattering. In formulating a
Monte Carlo simulation, carefu! testing must be carried out
to ensure that the calculation yields sensible and useful
results. A suitable testing procedure includes calculation of
(1) electron backscatter coefficients as a function of atomic
number, including any necessary adjustment of scattering
parameters; (2) backscatter coefficients as a function of spe-
cimen tilt; (3) backscatter and transmission coefficients for
thin foils; (4) backscattered electron energy distributions; (5)
electron spatial distributions; and (6) x-rays, including x-ray
depth distributions, and relative and absolute yields.

Adapting a Monte Carlo simulation to a particular prob-
lem involving special sample geometry requires careful con-
sideration of the interaction of the electron with the target.
When the electron trajectory crosses a boundary, the seg-
ments of the trajectory in each phase must be calculated in a
logical, stepwise fashion, allowing for modification of the
step lengths due to variable scattering power in phases of dif-
ferent composition. The particular example of a planar
boundary between phases of different composition is con-
sidered.

Keywords: (1) electron probe microanalysis; (2) electron
scattering; (3) electron-specimen interactions; (4) Monte
Carlo electron trajectory simulation; (5) scanning electron
microscopy; (6) x-ray microanalysis.
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INTRODUCTION

Monte Carlo electron trajectory simulation techniques
have proven to be of great utility in the study of electron-
sample interactions in scanning electron microscopy, elec-
tron probe x-ray microanalysis, electron beam lithography,
and analytical electron microscopy (Heinrich et al., 1976;
Shimizu and Murata, 1971; Kyser, 1981; Newbury and
Myklebust, 1981). The Monte Carlo technique involves a
step-wise simulation of the electron trajectory in the target.
Scattering angles and mean free paths are calculated from
appropriate equations for elastic and inelastic scattering. A
number of distinct variations on the implementation of the
Monte Carlo technique for solid specimens have been des-
cribed, including discrete “single” elastic scattering, “multi-
ple” elastic scattering, continuous energy loss for inelastic
scattering, and discrete inelastic scattering. The basic princi-
ples of the Monte Carlo technique and the various approach-
es to combining the scattering models have been recently
reviewed (Kyser, 1981). It is possible for interested readers to
construct a Monte Carlo simulation for application to their
problems based on the descriptions available in the literature.
Two topics which should be addressed for the successful
development of a useful Monte Carlo simulation and which
are not generally discussed in the literature are (1) procedures
for testing the Monte Carlo simulation to ensure that the cal-
culation is producing reliable results and (2) adapting the
simulation to the particular geometry of a target of interest.
In this paper we shall describe the procedures which we
employ in developing and testing Monte Carlo electron tra-
jectory simulations for conventional bulk targets as well as
targets with special geometries.

PROCEDURES FOR TESTING MONTE CARLO
SIMULATIONS

A. Adjustable parameters

Several of the Monte Carlo procedures which have been
described in the literature make use of an adjustable para-
meter which is necessary to bring the calculation into agree-
ment with selected experimental data such as backscattering
coefficients. In the multiple scattering model of Curgenven
and Duncumb (1971), this adjustable parameter took the
form of an atomic-number-dependent maximum impact
parameter which determined the distribution of scattering




angles. In the single scattering model of Kyser and Murata
(1974), a multiplicative factor (1+(Z/c)), where Z is the
atomic number and ¢ is a constant, was used to modify the
mean free path for elastic scattering. The justification for in-
cluding such modifications to the scattering models is based
on the known shortcomings of the simple analytic functions
used to describe the scattering models, particularly the
screened Rutherford scattering model for elastic scattering.
Reimer and Krefting (1976) have shown that the Mott cross
section for elastic scattering differs considerably from the
Rutherford cross section, particularly for high atomic num-
ber targets and low beam energies. Unfortunately, the Mott
cross section cannot be expressed in a simple analytic form,
and thus it remains a computational advantage to make use
of the Rutherford cross section with a modification para-
meter which can be expressed in the form of a simple equa-
tion.

The basic data which we can use to test and adjust the
Monte Carlo calculation is the electron backscatter coeffi-
cient, 5, defined as

M= Ngg/ M

where n is the total number of electrons incident upon the
sample and n is the number of electrons which backscatter
as a result of single and multiple scattering. Backscattering
coefficients as a function of atomic number have been care-
fully determined by Bishop (1966) and Heinrich (1966). By
calculating n as a function of atomic number, Z, with various
values for the constant ¢ in the multiplication factor above, a
value of ¢ =300 was determined by Kyser and Murata (1974).
A comparison of backscatter coefficients calculated with the
Rutherford cross section with and without the atomic num-
ber dependent modification to the step length is shown in
Table I. A full plot of the calculated and measured backscat-
ter coefficients is shown in Figure 1. The correspondence of
the calculated backscatter coefficients to experimental values
is excellent after adjustment of the step length with the multi-
plicative factor, whereas without the adjustment the cal-
culated backscatter coefficients were higher by 5 to 10 per-
cent depending on the atomic number.

B. Backscatter coefficient as a function of tilt and thickness

Having made such a modification to the mean free path, or
equivalently to the elastic scattering cross section, in order to
achieve agreement with a major interaction characteristic
such as the backscattering coefficient, the simulation should
be further tested against other measurable characteristics of
the interaction. With no further modification to the adjust-
able parameter(s), satisfactory agreement should be ob-
tained. Suitable data to examine include: (1) the backscatter
coefficient as a function of the angle of tilt. An example of
the calculated backscatter coefficient as a function of tilt
compared to experimental results is shown in Figure 2. (2)
Transmission and backscatter coefficients of thin foils.
Strictly speaking, backscattering results from a single scat-
tering event through an angle greater than 90 relative to the
incident direction so that the electron propagates back
through the surface which it initially entered. However, the
backscattering coefficient defined above includes all elec-
trons which exit the sample, including both the electrons
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LIST OF SYMBOLS

A,B,C = direction cosines

A, = atomic weight

E;s = backscattered electron energy

E, = critical ionization energy

E = incident beam energy

k = the k-value or ratio of x-ray intensity measured
on the sample to the standard

N, = Avogadro’s number

Ny = number of backscattered electrons

n, = number of transmitted electrons

n = number of incident electrons

Q = cross section for the process of interest

S = step length of the calculation with various sub-
scripts

X,Y,Z = coordinates for Monte Carlo calculations: with
various subscripts

Z = atomic number

n = backscattering coefficient

0 = tilt angle

0 = density

0 = standard deviation

oy = relative standard deviation

b(pz) x-ray generation depth distribution function

w = fluorescence yield

which backscatter in a single event and those which escape
the specimen after undergoing multiple scattering. One way
in which the effects of single event backscattering and multi-
ple event backscattering can be separated experimentally is to
make use of thin foils in which electron penetration through
the foil limits the opportunity for multiple scattering. Single
event backscattering will predominate if the foil thickness is
of the order of one mean free path as calculated from the
total elastic scattering cross section. Thus, by calculating the
backscattering coefficient and the transmission coefficient as
a function of thickness, the accuracy with which single scat-
tering is modeled can be studied as well as the transition to
multiple scattering. An example of such a calculation is
shown in Figure 3 for the experimental data of Cosslett and
Thomas (1964). Reimer and Krefting (1976) have provided
valuable experimental data for thin foils of various elements
and thicknesses over a range of beam energies. These calcu-
lations on foils of progressively greater thickness also serve to
test the capability of the Monte Carlo procedure to estimate
the range of the electrons within the solid. The quality of the
experimental data on the range is generally poorer than that
on backscatter coefficients, due to the slow rate of change of
the measured signals near the limit of the range.

C. Backscatter as a function of energy

Another experimental observation of the behavior of the
backscattering coefficient which is useful to test is the re-
sponse to changes in the beam energy. It is a somewhat sur-
prising experimental observation that the backscatter coeffi-
cient does not show a strong trend with beam energy over the
range 10-50 keV. An example of the calculated behavior of
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the backscattering coefficient as a function of energy is given
in Table 2 along with selected experimental data of Heinrich
(1966). A slight trend to lower calculated backscatter coeffi-
cients with increasing energy is observed. This trend is oppo-
site to the slight increase in backscattering with increasing
energy which is observed experimentally.

It is appropriate at this point to consider the statistical un-
certainty associated with a Monte Carlo calculation. Given
that the random number generators employed in the calcula-
tion are carefully contrived to contain no systematic devia-
tions from randomness, then the effect of repeating a cal-
culation for a given set of beam and specimen parameters is
to yield a result with a standard deviation which is given by
0= ni'/2 where i refers to the particular signal which is being
calculated and n; is the number of events of that type which
occur. Thus although 10000 electron trajectories may be cal-
culated for an aluminum target, the backscattering coeffi-
cient at normal incidence is approximately 0.15, which gives
a total of 1500 backscattering events. The standard deviation
for the calculation of the backscatter coefficient is 1500!/2
and not 10000172, whereas for a parameter such as the x-ray
yield the full number of trajectories contributes to the cal-
culation. To achieve a statistical uncertainty of o, = one
percent relative in the backscatter coefficient in the case of
aluminum would require n (]/’ai) / n or 66666 trajec-
tories. On the other hand, a calculated parameter to which all
of the incident electrons contribute, such as inner shell ion-
ization in the surface layer, will have the benefit of all of the
incident electrons in determining the statistics of the calcula-
tion. The necessity of calculating even larger numbers of tra-
jectories becomes apparent if a fractional parameter such as
the backscatter coefficient is further divided into energy and/
or angular distributions.

Table 1. Backscatter coefficient as a function of
atomic number

Beam energy 20 keV (20000 trajectories)

Rutherford
Rutherford cross section Heinrich
Element cross section o /(1+(Z/300)) (1966) data
Si .1810 .002 .1680 164
Ni 3150 .004 3072 .301
Au .5367 .005 5161 516

Table 2. Backscatter coefficient versus beam energy

Target: gold (20000 trajectories, relative o, = 1 percent)

Calculated Measured (Heinrich, 1966)
Energy
(keV)
10 .5268 .483
20 .S161 .506
30 .4933 S12
40 .4904 510




D. Angular distributions

Despite the difficulties noted above, calculation of the
angular and energy distributions is of value in testing a
Monte Carlo simulation. An example of a distribution parti-
tioned in both energy and scattering angle is shown in Figure
4. In this calculation, the angular distribution of the so-called
“low loss electrons”, that is, those beam electrons which have
lost less than a specified percentage of the incident energy, in
this case less than 2.5 percent, has been calculated. The
Monte Carlo results (solid line) compare favorably with the
experimental results of Wells (1975). In this particular situa-
tion, the Monte Carlo calculation can be modified slightly in
view of the character of the result to speed up the calculation.
Since we are only interested in electrons with energies in the
range 19.5-20 keV, the calculation of a given trajectory can
be terminated when the energy decreases below 19.5 keV,
thus greatly reducing the calculation time.

E. Energy distributions

To this point all of the test calculations have served prin-
cipally to examine the simulation of elastic scattering. Inelastic
scattering or energy loss is only indirectly tested since energy
loss serves to define the maximum length of the electron tra-
jectory. Energy loss thus acts to prevent all beam electrons
from eventually undergoing sufficient multiple scattering to

\ Wells Low Loss
Simulation

ELoss <500V

I Wells E xperimental

Monte Carlo
Sample 10 S5um Si 0, on Si

\ Beam

\ - 20 keV

Fig. 4. Comparison of angular distribution of low-loss back-
scattered electrons; Monte Carlo electron trajectory
calculations from Myklebust et al. (1976); experi-
mental data from Wells (1975).
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reach the surface and backscatter. A good fit to the back-
scattering process suggests a reasonable treatment of energy
loss. A more direct view of the simulation of energy loss can
be obtained by calculating the energy distribution of back-
scattered and/or transmitted electrons. One difficulty in this
case is the basis for comparison of calculated results with ex-
perimental results. Because of the limited solid angle of col-
lection of electron spectrometers used in the experimental
measurements, the experimental energy spectra are deter-
mined at a specific take-off angle above the specimen surface
and over a small solid angle of perhaps 0.1 steradian. To
limit the Monte Carlo calculation to these conditions reduces
the number of backscattered electrons to about 1 percent of
the total emitted. If this small fraction is further sub-divided
into an energy distribution, the statistics of the calculation
are unacceptable. We thus tend to use a greater angular range
for the energy distribution calculated with the Monte Carlo.
An example of the energy distribution for a copper target is
shown in Figure 5 in comparison with the experimental
energy spectium of Bishop (1966). Despite the limitations
noted, the agreement is reasonably close.

F. Energy deposition

Another experiment which tests the calculation of energy
loss is the determination of energy deposition in certain elec-
tron-resist materials used in electron beam lithography.
These materials, such as polymethylmethacrylate, can be
“developed” by etching with suitable solvents to reveal con-
tours of constant energy deposition. The Monte Carlo cal-
culation can then be used to calculate energy deposition in
this material for comparison, as illustrated by the results of
Shimizu et al. (1975) in Figure 6. This type of calculation not
only tests the energy loss calculation, but also the spatial ex-
tent of the beam, which is difficult to determine experimen-
tally in opaque, solid materials such as metals.

G. Spatial distributions

In the process of implementing a calculation, the spatial
extent of the interaction volume is often of interest. The
interaction volume is often displayed in the form of the
familiar computer drawings of the electron trajectories pre-
pared from a sequence of x,y,z coordinates for each trajec-
tory as illustrated in Figures 7(a) and 7(b). While such draw-
ings are useful in a qualitative sense to obtain an impression
of the size and shape of the interaction volume, they convey
limited quantitative information, and due to the overlap of
successive trajectory plots, especially near the beam impact
point, it is generally not possible to plot more than about 200
trajectories with sufficient resolution to observe individual
trajectories. It is impractical to use plotting to assess the
extent of the interaction volume in calculations with a realis-
tic number of trajecteries, e.g. 10,000 or more. In this case it
is necessary to obtain distribution histograms along the posi-
tive and negative going x- and y- directions, the positive
z-direction (into the specimen), and the radial distribution
function. As an additional useful spatial calculation, we have
included the calculation of an “average position vector”,
which is given by
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Fig. 5. (a) Energy distribution of electrons backscattered
from a gold target as calculated by Monte Carlo sim-
ulation; (b) experimental measurement of energy dis-
tribution at a take-off angle of 45° from Bishop
(1966).
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Fig. 6. Calculation of energy deposition in polymethylme-
thacrylate and comparison with experiment; from
Shimizu et al. (1975).
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Fig. 7. Monte Carlo calculations of electron interaction vol-
ume in (a) copper and (b) gold at 20 keV; beam size
0.1 micrometer.

X, = (Ex)/ N Y, =(Zy)/N
1 1
/,\ = (‘i /,l) / N

where i is the index over all scattering events for all trajec-
tories, and N is the total of all scattering events over all tra-
jectories. The value of the average position vector is its im-
mediate utility in confirming that a particular electron beam/
specimen configuration has been achieved. Thus, if the elec-
tron beam is set normal to the specimen at the origin of coor-
dinates, the symmetry of the beam should yield X, = Y, =
0 while Z, has a positive value at approximately 1/3 of the
electron range. If the specimen is tilted in a particular calcu-
lation, for example about the x-axis, then the symmetry
about the origin of coordinates is maintained for the x-axis so
that X, = 0, but the interaction volume is now asymmetric
along the y-axis so that Y, > 0. The average electron posi-
tion is especially useful when modifications are made to an
existing program. Logic or programming errors which affect
the geometry of the electron scattering become immediately
apparent in the average position vector if symmetric test con-
ditions are calculated.

H. X-ray calculations

X-ray calculations can be tested in three main ways: (1)
The depth distribution of x-ray production, designated
¢(pz), has been measured experimentally by several authors
(Castaing and Henoc, 1966; Brown and Robinson, 1979) for
selected systems. Monte Carlo calculations of ¢(pz) curves
provide a test of the elastic and inelastic scattering models as
well as the energy dependence of the ionization cross section
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Fig. 8. Depth distribution of x-ray generation as calculated
by Monte Carlo simulation (Myklebust et al. (1976)
and as measured experimentally (Castaing and

Henoc (1966)). 10000 trajectories were calculated
with the Monte Carlo simulation.

which is assumed. An example of such a calculation is shown
in Figure 8. Because the distribution is expressed in the terms
of a ratio, the ¢(pz) plot is not a good test of the absolute
x-ray yield. Moreover, since the energy dependence of most
expressions for the cross sections for inner shell ionization is
similar, Q = b log (CU)/UES?, where E__ is the critical ioniza-
tion energy, U is the overvoltage E/E . where E is the beam
energy, and b and c¢ are constants, the ¢(pz) curve does not
allow the selection of one cross section in preference to
another (Powell, 1976).

(2) The x-ray intensity ratio (k i(sample)/i(standard))
measured in an electron microprobe from an alloy of known
composition can be calculated and compared to the experi-
mental measurement as shown in Figure 9. Again since ratios
are calculated, this type of comparison is not sensitive to the
exact form of the ionization cross section. Because this type
of measurement involves x-rays emitted from the sample, the
calculation is sensitive to mass absorption effects. Provided
accurate values of the mass absorption coefficients are avail-
able, the comparison of k-values-directly tests the accuracy
of the calculation of the ¢(pz) distribution in the material of
the standard and the unknown.

(3) The calculation of absolute x-ray yields and compari-
son with experiment is not a good test of the Monte Carlo
procedure because there is considerable uncertainty in the
cross section for inner shell ionization in the continuous
overvoltage range from the threshold to approximately five
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Fig. 9. Plot of k-value normalized by concentration versus
k-value as measured experimentally and calculated
with the Monte Carlo simulation (Myklebust et al
(1966)).

which is employed in the electron microprobe. This fact is
demonstrated in Table 3, where calculations for a selection
of cross sections for inner shell ionization are compared with
experimental results (Newbury and Myklebust, 1979; Lifshin
et al., 1977). A substantial range in absolute x-ray yields is
noted. Nevertheless, it is still important to make such cal-
culations to determine if the right order of magnitude of the
x-ray yield is obtained and if the calculated yields change in
the proper way with beam energy.

Summary

In implementing or changing a Monte Carlo simulation, a
logical series of tests should be applied to determine if the
calculation produces useful results. One possible sequence of
tests to follow is:

(1) Backscatter coefficient as a function of atomic number
— adjustments to fitting parameters should be determined at
this stage.

(2) Backscatter coefficient as a function of tilt angle.

(3) Backscatter and transmission coefficients of thin foils.

(4) Energy distribution of backscattered electrons.

(5) Spatial distributions, including the average position
vector.

(6) X-ray calculations, including ¢(pz), k-values, and ab-
solute x-ray calculations.
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Table 3. Calculation of absolute x-ray yield with various — = - - — - —— - - — =5
cross sections for inner shell ionization. Z ZO -7
Target: Chromium [ o _ _ _g
Energy  Green- Fabre Worthington-  Bethe Lifshinetal. —  _ _ _ _ _/ —  _ _ _ _ __ g

Cosslett Tomlin Mott-Massey  experiment A Zi
10 2.7E-S 2.0E-5 1.6E-5 6.3E-5 4.0E-5 - = — = ====—10
15 9.7E-5 8.0E-5 5.6E-5 1.5E-4 1.4E-4 Z . T IS A I I S |

20 1.9E-4 1.7E-4 1.1E-4 2.4E-4 2.7E-4 f_ _ _Z_’] T 1

25 29E-4 2.8E-4 1.7E-4 3.4E-4 4.3E-4
all values in photons/electron/steradian —_—_——_—_— e —— === == 13

—_——— — - = - - == = — 14
0 o Fig. 11. Illustration of the technique used to calculate the
XL " XR 7 T depth distribution of ¢(oz) histogram.
Matrix Boundory’ A Matrix
- | AP A. Depth distribution of x-ray generation

[ -y
POl / L = 0 In particular, we wish to calculate the x-ray production in
the two materials of different composition represented by the
) 3 e matrix material “M” and the boundary material “B” in Figure
\ \\\\ \ B 10. The general concept of the calculation of the depth dis-
= N 5, tribution function ¢(ez) is illustrated in Figure 11, where a
N\ R portion of the target has been divided into the “boxes” of a
) \ & A histogram. If a scattering step of length S occurs between
\ N \ e S points with z-coordinates Z0 and Z1, we wish to calculate the
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Eig;li().il’lanar boundary slab separating matrix regions.
Possible scattering paths from points initially in the
matrix (solid lines) and in the boundary (broken
lines).

SPECIAL GEOMETRIES

A major strength of the Monte Carlo technique is its adap-
tability to samples with special geometries, e.g., size, shape,
internal structure, etc. Since the coordinates of the position
of the electron are determined with a step length of the order
of the mean free path between scattering points, the electron
position can be continuously compared with the function
which determines the surface of a target. Conceptually any
target which can be described mathematically can be intro-
duced into the Monte Carlo simulation. In reading the litera-
ture of the Monte Carlo technique the impression might be
obtained that this step is straightforward and trivial. Usually
papers describing Monte Carlo simulations do not provide
details on the way in which a special target is introduced into
the simulation. It is this step which is in fact often the most
difficult to implement in a Monte Carlo procedure. As an ex-
ample of the techniques used to actually introduce a special
sample geometry into a calculation, we shall consider in
detail the case of a double planar boundary with a variable
width, w, oriented perpendicular to the surface of the speci-
men, as shown in Figure 10. Since the width parameter can
be varied, this special geometry can simulate either an inter-
phase boundary between two materials of different composi-
tion or it can represent a thin phase at a boundary between
two grains of the same composition.

contributions of the trajectory element to each box of the
histogram. Thus, if AS is the portion of the step length which
falls in each box, the x-ray generation to be added to that box
in the histogram is given by:

IX (x-rays photon/electron) = Q (ionizations/
c/(alom/cmz) b4 N,\ (atoms/mole) x (I/A“)
(moles/g) X Q(g/cm3) x AS (cm) X w (x-rays/
ionization)

IX X Q N(\QwAS/A“ (1)
where w is the fluorescent yield. In some previous Monte
Carlo simulations, it was assumed that in calculations for
solid targets with relatively coarse ¢(gz) histograms, the
x-ray production in a given step could be assigned to the his-
togram box which contained the initial or final point of the
step. While this coarse approximation might be satisfactory
for bulk targets of a single composition and with histogram
element widths which are significantly greater than the path
length of the calculation, it is not satisfactory for the case of
the boundary in Figure 10, where electron trajectories will ac-
tually cross boundaries between materials of different com-
position. Moreover, it is not satisfactory for the case of thin
foils in the analytical electron microscope to use this coarse
approximation, since the mean free path may be approxi-
mately equal to thickness and a significant portion of a step
may actually lie outside the specimen.

A more complete treatment of the geometry of the step
length of the calculation is needed to accurately construct the
depth distribution histogram. Considering the situation in
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Fig. 12 Possible scattering paths which must be considered
in a complete calculation of the depth distribution
histogram.

Figure 11, the calculation can be divided into three sections:
(1) the initial incomplete box; (2) the central complete boxes;
and (3) the final incomplete box. Considering the complete
boxes, for a trajectory step length S which occurs at an ar-
bitrary angle ¢ from the normal,
cos € = (Z1 — Z0)/S and cos € = AZ/ASc

where Z is the width of the histogram boxes. From these
equations

ASc=AZS/|(Z1 — Z0) | )

Thus, the x-ray contributions to the complete boxes in the
histogram are given by the equation (1) with AS = ASc.

For the initial incomplete box, the relation becomes cos ¢
= (Zi—Z0)/ ASi so that

ASi = (Zi—-Z0) S/(Z1-Z0) (3)

where Zi represents the Z-value of the bottom of the histo-
gram box.

For the final incomplete box,
(Z1—Zf)/ ASE which gives

the relation is cos ¢ =

ASf = (Z1-2f) S/ (Z1 - Z0) (4)

In addition to the general case of Figure 11, three special
cases must be considered, Figure 12: (1) incident beam —
The incident beam penetrates through the surface at Z0=0,
so that equation (3) becomes:

AS1 = ZiS/Z] (5)

(2) Backscattering: In this case part of the step S lies out-
side of the target. It is necessary to calculate the portion of
the step S’ which lies within the target. This portion is found
by taking

S’ = ABS[(Z0-ZS)/C] (6)
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Fig. 13. Detailed analysis of step segments which must be
considered in a complete calculation of the depth
distribution histogram.

where ABS is the absolute value of the function, C is the
direction cosine of the trajectory step S, and ZS is the
z-coordinate of the surface; for a flat specimen ZS=0. S’ is
substituted for S in equations (2)-(4).

(3) Transmission: Again an incomplete step must be cal-
culated. In this case the electron penetrates the bottom of the
foil so that it escapes at Z =Zt. The portion of the step within
the specimen is given by

S’ = ABS [ (Zt-Z20)/C] (7

This partial step length is again used in equations (2)-(4).

B. Boundary Case

Having considered the division of the trajectory step in a
single phase sample to obtain the depth distribution func-
tion, the situation of the planar boundary can now be consi-
dered. The possible cases are illustrated in Figure 10. The
electron may cross one or more boundaries and may exit the
specimen either by backscattering, or alternatively, if the
specimen is in the form of a thin foil, transmission may oc-
cur. In order to calculate the depth distribution function
separately for the matrix and grain boundary phases, the
portions of the step lengths in each phase must be calculated,
correcting for any path length outside the specimen. The
sequence of steps for this type of calculation will be illustrat-
ed for the path shown in Figure 13. This path originates in
the left matrix with average atomic number Zm, penetrates
the boundary where the average atomic number for the
boundary material is Zb, passes through the right matrix,
and transmits through the sample.

Step 1. The initial point (X0, YO0, Z0), the step length S,
and the tentative final point (X1, Y1, Z1) are known initially,
as well as the direction cosines of the segment, A, B, C. The
portion of the step within the left matrix is calculated. Since
this portion of the step terminates on the left edge of the
boundary where X = XL, the length of the path within the
left matrix is given by

SL = (XL — X0)/A (8a)
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The y- and z- coordinates of the boundary intersection are
then

YL =Y0+SL xB (8b)
ZL = 70+ SL. % C (8¢)

This step length SL and the initial (X0, YO, Z0) and final
(XL, YL, ZL) points can now be substituted in equations (1)-
(4) to calculate the contributions to the matrix histogram.

Step 2. Segment in structure. Initially we know that the
electron has crossed the structure entirely. The length of this
segment must then be

SB = (XR — XL)/A (9a)

Because the boundary material can have a different average
atomic number than the matrix, the elastic scattering prob-
ability will be different, and the step length must be adjusted
for this effect. Since the screened Rutherford elastic scatter-
ing cross section is proportional to the 4/3 power of the aver-
age atomic number:

SB’ = SBZM*3/7p*/3 (9b)

The modified step segment within the boundary material
may be longer or shorter than before. The portion of the step
in the right matrix SR is calculated from:

SR =S — SL — SB’ (9¢)

Step 3. If SR is negative, this implies that the step segment
within the boundary material has shortened sufficiently to
pull the endpoint back within the boundary. If this is the
case, then

Xl =XL +SB" X A (9d)
Yl =YL +SB’ x B (9¢)
Z]l =ZL + SB’' x C (9f)

The depth distribution histogram contributions for the
boundary region are now calculated with the step segment
length SB” and endpoints (XL, YL, ZL) and (X1, Y1, Z1) in
equations (1)-(4). The calculation is now complete and the
next scattering act starts at (X1, Y1, Z1) in the boundary
material.

Step 4. If SR is positive, then the full value of SB from
equation (9a) must be used to calculate the endpoint on the
right boundary:

XR = XR (%e)
YR = YL + SB x B (9h)
ZR=Z7ZL + SB x C (9i)

The depth distribution histogram for the boundary is cal-
culated with the step segment SB and the endpoints (XL, YL,
ZL) and (XR, YR, ZR) in equations (1)-(4).

Step 5. If SR is positive, then some portion of the step has
penetrated the right matrix. This step segment SR has a new
value

SR’ =SB’ — SB + SR (9j)

which reflects the modification to the scattering caused by
traversing the boundary material. The final point in the right
hand matrix is calculated:

X1 =XR +SR" x A (9k)
Yl = YR +SR"XB (C)
Z1 =ZR + SR’ X C (9m)

Z1 is checked to determine if it is within the foil. If it is, then
the depth distribution histogram for the matrix is calculated
with the step segment SR’ and the endpoints (XR, YR, ZR)
and (X1, Y1, Z1). If transmission has occurred, then the por-
tion of SR” within the foil is calculated:

SR” = (Zt — ZR)/C (9n)

The exit coordinates are:

Z, = 7t (90)
X =XR +SR”"x A %p)
Y = YR + SR” x B (9q)

These arguments can be extended to the other paths shown in
Figure 10 to fully characterize all possible cases involving the
boundary.

This procedure has been recently applied to the calculation
of interactions of electrons in real structures containing inter-
phase boundaries:

Table 4. Intensity profile across an « / v interface in U-Nb

Thickness: 110 nm; Energy: 100 keV; Beam diameter: 18 nm
Ratio = Nb (position)/ (pure phase)

Source: Romig et al. (1982)

Position, nm Measured Calculated
Ratio Ratio
- 100 1.0 .98
-90 1.0 .98
- 80 .98 .97
-70 .99 .98
- 60 99 .96
- 50 .98 .96
-40 .95 .96
- 30 .93 .94
—20 91 91
—-20 .84 .83
0 Sl |
10 .20 .19
20 13 .10
30 .091 .070
40 .066 .054
50 .052 .044
60 .041 .037
70 .018 .028
80 .006 .029
90 0.0 .026

100 0.0 .023
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when a beam is scanned across a gold slab 0.1
micrometer wide in a bulk nickel matrix. 10,000
trajectories were calculated at each point in the
profile.

(1) Thin foil: Romig et al (1982) have calculated and mea-
sured intensity profiles across interphase boundaries involv-
ing alpha-uranium and a second phase which contains urani-
um and solute element, niobium or molybdenum, with the
solute element located exclusively in the second phase. An ex-
ample of the profile of the intensity ratio I(Nb)/I(Nb, sec-
ond phase) for a foil 110 nm thick at a beam energy of 100
keV is given in Table 4. Good correspondence is found, espe-
cially in the immediate region of the boundary where the
signals are changing rapidly.

(2) Thick specimen: Newbury, Myklebust, and Kyser (un-
published results) have calculated the response of the total
backscattered electron and characteristic x-ray signals as a
beam is moved across an 0.1 micrometer wide gold slab set in
a nickel matrix (NBS Standard Reference Material 484,
magnification standard). The backscattered electron signal
as a function of position is shown in Figure 14 for the beam
sizes. Experimental profiles are currently being collected for
comparison with these calculated profiles.

The value of the Monte Carlo calculations in both of these
examples is the potential utility in deconvoluting measured
signal profiles for beam scattering effects to yield informa-
tion about the true structure of the sample, which is other-
wise distorted by electron scattering effects.

Summary

Application of the Monte Carlo simulation to even a sim-
ple planar boundary requires careful consideration of the
exact nature of the structure. A stepwise approach is neces-
sary in which each segment of the trajectory is calculated
sequentially to find the proper segments in each material.
Each new structure shape requires special consideration of its
particular geometery. When this is done, the resulting simu-
lation provides a powerful tool for exploring the signals.
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