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Electron Beam Interactions With Solids (Pp. 145-151)
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ENERGY AND ATOMIC NUMBER DEPENDENCE OF ELECTRON
DEPTH-DOSE AND LATERAL-DOSE FUNCTIONS

Stephen P. Shea
Institute of Energy Conversion
University of Delaware
Newark, Delaware 19711
(302) 453-6251

ABSTRACT

A review of available Depth-Dose functions determined
both experimentally and by Monte-Carlo simulation in a
variety of materials reveals that, although there is general
agreement as to the shape of the function, there is consider-
able disagreement concerning quantitative measures such as
the range of the incident electrons and the position of the
maximum of the Depth-Dose curve relative to the range. This
finding is contrary to the typical assumption that the shape
of the Depth-Dose curve is not dependent on the beam
energy and only slightly dependent on the target material.
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INTRODUCTION

The Depth-Dose function, which describes the dissipation
of electron beam energy with depth into an absorber, is im-
portant for modelling a number of electron beam-related ef-
fects. Electron emission from a target by backscattering or
by secondary emission, x-ray production, Auger electron
yields and cathodoluminescence (CL) efficiency are all
dependent on the Depth-Dose function, as is the generation
of electron beam-induced current (EBIC) in semi-conductor
junction devices. For electron beam lithography, a knowl-
edge of both the Depth-Dose function and the related
Lateral-Dose function is necessary to optimize the exposure
and development of the photoresist.

The Depth-Dose function dE/dx is defined as the energy
loss per unit depth below the surface of the sample. A typical
Depth-Dose profile is shown in Fig. 1. The curve rises to a
maximum at a depth U, and then descends nearly linearly

before tailing off as the depth nears the maximum range. By
extrapolating the linear part of the descending curve to zero,
an alternate definition of the range is obtained. This is re-
ferred to as the Griin range (R) after the work of Griin
[1957] who used this definition in measuring Depth-Dose
functions in air. The Lateral-Dose function is defined simil-
arly as the energy loss per unit distance from the axis of the
electron beam, [Shea et al, 1978]. An experimental Lateral-
Dose function measured in CdS is shown in Figure 2.

The work reported here was done in an effort to find the
most appropriate form of the Depth-Dose function to use in
a model for the EBIC response of a thin film heterojunction
diode. Briefly, the form of the experiment is shown in Figure
3, and follows the design of Wu and Wittry [1978]. The elec-
tron beam strikes the target perpendicular to the plane of the
collecting junction, and the induced current is measured as a
function of the electron beam voltage. Wu and Wittry
modelled the EBIC response of a Schottky barrier device in
this experiment, and obtained experimental results for Si and
for GaAs. Shea [1981] extended the theory to the more gen-
eral case of a heterojunction diode, and applied these results
to experiments on Cu,S/CdS solar cells.

The EBIC response of a heterojunction device is determined
by a number of variables in addition to the Depth-Dose func-
tion. These include the minority carrier diffusion lengths in the
semiconductor layers; the recombination velocity of minority
carriers at the top surface of the device; the recombination




Stephen P.

LIST OF SYMBOLS

A = Atomic weight (gm/mole).

a

B } = Constants

C

E; Eq: Epy = Electron potential energy; Electron
beam accelerating potential; Excita-
tion energy, (eV).

= Electron charge.
= Mean Excitation Energy (Defined by

Eq. 7) (eV).

k = Normalization constant defined by
Eq. 9, (gm/cm?).

Ny = Avogadro’s number.

P(6,E) = Probability density function for an-
gular scattering of an electron of
energy E through an angle O.

R; Ry Ry, Ry, . = Electron range; Bohr-Bethe rangc;
Griin range; Maximum range (cm).

S = Unit vector along the true (zig-zag)
path of the primary electron (cm).

Us = Depth at which the peak of the Depth-
Dose function occurs.

Ve = Electron velocity (cm/sec).

Z = Atomic number.

o} = Density (gm/cm?).

(S} = Scattering angle.

¢ = Dimensionless energy defined as
1.1658 E/I.

m, = Rest mass of electrons (gms).

velocity of carriers through interface states which exist at a
heterojunction because of the slight lattice mismatch between
the two semiconductor layers; the width of the depletion
region; the presence and properties of an interfacial i-layer.
Because of the complex dependence of the EBIC response on a
number of variables, the experiment cannot be used to deter-
mine accurately the value of any given parameter, such as the
minority carrier diffusion length, unless most of the other
variables are known independently. Even if this is the case,
reliable results depend on the accuracy of the model used for
the Depth-Dose function, especially in materials with very
short diffusion lengths.

The Depth-Dose function has been modelled empirically
using several different approaches. Kyser and Wittry [1967],
and Shea et al [1978] used a Gaussian distribution. Wu and
Wittry [1978] used a Gaussian, modified by substracting an
exponential term near the surface, and Everhart and Hoff
[1978] used an orthogonal polynominal series to fit data from
SiO,. There have also been a number of determinations of
Depth-Dose functions using Monte-Carlo simulations.
References for some of this work are given in Table 1.

It is commonly assumed that the shape of the Depth-Dose
curve is not a function of either the incident energy or the
target material; that the Depth-Dose curve is universal when
normalized to the electron range. In terms of Figure 2, the

ratios R;/R and U,/R,,,yx would be assumed constant.
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However, examination of published experimental results and
of the Monte-Carlo simulations reveals that different values
of these ratios have been found for different materials, al-
though for a given material in a specific experiment the ratios
appear to be constant. In addition, although published
values of electron ranges are in qualitative agreement with a
“universal” range-energy relationship proposed by Everhart
and Hoff [1971], there is considerable scatter in the data.
This makes it difficult to predict a value for the electron
range in a given material with any certainty.

Electron Range Rose [1966] discussed the rates of energy
loss by an energetic electron to various processes. Figure 4,
which was derived from Rose’s work using parameters appro-
priate to CdS, is a plot of the rates of energy loss for plasmon
generation, x-rays, polar optical phonons, and impact ioni-
zation. For kilovolt electrons, plasmon generation is the
most rapid energy loss mechanism until the energy of the
electron has been reduced by repeated collisions to the plas-
mon energy, which is in the range of 10 to 20 eV.

In order to calculate the total path length traversed by an
electron incident on a given material, the assumption is
usually made that all of the energy loss is to relatively small-
energy, small-angle events. The large-angle scattering events

are assumed to be perfectly elastic. The maximum range of
the incident beam in the target will then be the distance tra-
velled by a primary that avoids all large-angle events and
moves along a nearly straight line until all of its energy has
been dissipated. This distance is given by
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Fig. 4. Electron Energy Loss Rates to Various Mechanisms
in CdS. [After Rose, 1966].

Table 1. Sources of Range-Energy Data from Experiment and Monte-Carlo Calculations

Reference Material Method Range of Work
keV In(¢,)/Z
(Except as noted)
Akamatsu et al (1981) GaAs Monte-Carlo 10-30 0.11-0.14
M.C.

Ehrenberg and King (1963) Styrene Exp. 20-80 1.63-2.03
CaWO, Exp. 20-80 0.22-0.28
CdWO, Exp. 30-70 0.19-0.22
KI Exp. 20-60 0.10-0.14
RblI Exp. 10-50 0.07-0.11
Csl Exp. 20-80 0.07-0.10

Everhart and Hoff (1971) SiO, Exp. 20 0.52

Griin (1957) Air Exp. 5-54 0.54-0.87

Reimer (1979) C M.C. 60 1.09
Au M.C. 60 0.06

Rosenzweig (1962) Al Exp. 0.61-1.16 MeV 0.65-0.69

Shimizu and

Everhart (1972) PMMA M.C. 29 1.67

Shimizu and

Everhart (1981) PMMA M.C. 20.7 1.58

Shimizu et al (1972) Al M.C. 15-30 0.36-0.41
Cu M.C. 15-30 0.14-0.16
Au M.C. 15-30 0.04-0.05

Spencer (1955) Cu Theory 25 keV-10 MeV 0.16-0.36
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R = V.E,/(dE/dt) (1)
Where V. =(2E,/mg)!/2, is the velocity of a (nonrelativistic)
primary electron with initial energy E . and dE/dt is the time
rate of energy loss to the fastest loss mechanism, in this case,
to plasmons. For kilovolt electrons, dE/dt=10¢ erg/sec
from Figure 4, giving

R = 0.03E! um, @)
(for Eg in kV) as an appropriate expression for the total path
length. The path length is about 1 um for a 10 kV primary,
and about 0.03um for a 1 kV primary. This derivation as-
sumes that dE/dt remains constant as the primary electron
loses energy, which is a rather gross approximation to Figure
4, but is intended to give a rough idea of the expected range-
energy relation.

A more accurate derivation of the range-energy relation
may be obtained by considering the rate of energy loss by the
primary electron per unit path length, dE/ds, where s is a
unit vector in the direction of motion. This is given by Rose
(after some algebra) as

dE 2N, e
—— =B e

ds E

Zo 4E
g L Cue
A E EX
where N, is Avogadro’s number, Z, A and g are the materi-
al’s average atomic number, average atomic weight, and den-
sity, respectively, E is the remenant energy of the primary
electron, and E., is the energy of the fastest energy loss
mechanism. B is equal to 1 for the production of plasmons
and of x-rays, and is less than 1 for optical phonons, the
three loss mechanisms for which the equation is valid. Figure
4 was derived from this equation and the relationship

dE

a

dE
4)
¢ ds

Integration of along the path traversed by the primary
electron gives a measure of the total range. The range cal-
culated in this way will be designated the “Bohr-Bethe” range
(Ry) following the usage of Everhart and Hoff [1971]. It is

given by

R, =

0
SE dE/(dE/ds) cm. (5)

0

Everhart and Hoff performed this integration using the for-
mula

dE Zo 1
D (2N, e*) (T) . in (

1.1658 E,
————— (6)
I

where I is the “mean excitation energy” given empirically by
I =(9.76 + 58.8Z119) Z eV (7

For CdS, 1=343. Using CdS as an example, dE /dt was cal-
culated and plotted on Figure 4 for comparison to the curves
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calculated from Rose’s paper. The Everhart and Hoff ex-
pression falls between the energy losses to plasmons and to
X-rays.

Universal Range-Energy Relation

Everhart and Hoff have performed the integration indi-
cated in Equation 5 after normalizing it in order to remove
any variation due to the target material. By doing this, they
have formulated the range-energy relation in a “universal”
form. Application to any given material requires a knowl-
edge of the average atomic weight, average atomic number,
and the density. Their results are summarized below, fol-
lowed by quantitative comparison of their work to a variety
of experimental results by other authors.

Of the three bracketed terms in Equation 6 the first is cons-
tant, the second is primarily a function of the target density
since Z/A is nearly constant, and the third depends on the
electron energy and on Z. By defining a normalized energy
¢=1.1658E/I, and measuring distance along the path in
units of ps in order to remove the density dependence, Equa-
tion 5 can be written as

R& =

¢ (Eo) e ) )
5 =Kk § ¢d¢/d(In ¢) gm/cm?

0

(8)

where

k = 94102 [2(A/Z) gm/cm? 9)

for A in grams and I in eV. By then letting

R, = R}/Kk (10)

where R, is now dimensionless, a universal curve of normal-
ized range versus normalized energy is obtained as shown in
Figure 5. The approximate range-energy relation given by
Equation 2 has been normalized and plotted on the same
scale for comparison. Expressions of the form R, = C{®are
given which closely approximate the function over three

Eo (kV)in CdS

e T e T
104+
3
Range 107
Ag=Re/k
02k Mo’
10 I Range of & in CdS
Relevant to this work
1 1 i
1 10 102 103

Electron Initial Energy (&)

Fig. 5. Universal Range-Energy Relation of Everhart and
Hoff (1971) Compared to Result Derived from the
Simple Model Due to Rose (1966).
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ranges of the incident energy. (Note that these three relation-
ships are not quite identical to those used by Everhart and
Hoff). The relationship

R, = R, k/gcm (1)

is used to obtain the range in centimeters from the dimen-
sionless range.

COMPARISON WITH EXPERIMENT

Since the Everhart and Hoff calculation for R is the max-

imum range an incident electron will travel if it is not deflect-
ed at all from its initial path, but experiences only a contin-
uous energy loss, one would expect any experimental deter-
mination of the electron range to be less than this calculated
value. A variety of experimental results from the literature,
suitably normalized, are plotted in Figure 6 in comparison
with the Everhart and Hoff curve. Several values calculated
by Monte-Carlo methods are also shown. The sources for
this figure are summarized in Table 1. The straight line in
Figure 6 is a least square fit (LSF) to the experimental points.
As expected, the experimental points lie almost entirely
below the theoretical curve. The discrepancy between the
theory and the experimental points is greater for higher elec-
tron energy. It is important to notice that, although the
qualitative agreement with the theory can be reasonably
characterized as good, and the LSF to the data is likewise
good, an attempt to predict a given datum from the LSF
curve can result in an inaccuracy of as much as 50% in many
cases.

In addition to calculating the range-energy relation, Ever-
hart and Hoff suggest an energy and atomic number depen-
dence of the shape of the Depth-Dose function. For an inci-
dent electron at the surface of the sample, Everhart and Hoff
give the ratio of the probability of angular scattering to frac-
tional energy loss as

P(O6,E) 1 Z

(AE/E) 327 Ing,

- sin™ (©/2) (12)

where O is the scattering angle. They note that: “for a given
scattering angle and energy, the large-angle scattering per unit
fractional energy loss increases more rapidly than linearly
with Z. Thus the path through the material will be more zig-
zagged at highest Z, and the peak of the energy dissipation
will be expected to move toward the surface as Z increases.”
This also implies that the ratio R;/R,;, should decrease
with increasing Z. Furthermore, both R,/Ry.x and
U,/R,,,x Will depend on the energy of the primary electron
through ¢, although this will be a weak dependence for
higher energies because {, enters Equation 12 logarithmical-
ly. These ratios should therefore also increase with increasing
electron energy.

Figures 7 and 8 are, respectively, plots of R and U taken
from the same sources used for Figure 6. Again, the straight
lines are the best fit to the experimental points. Comparison

of these three figures shows that the ratios R;/R,,,, and

U,/ Ry, do tend to increase with increasing beam energy,
although the scatter in the data is greater than that for the
Ry Ay data shown in Figure 6.

A different way of organizing the data is suggested by

Equation 12. If the ratios R,/ Ry, and U/ Ry are plotted
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Fig. 6. Comparison of Experimental and Monte-Carlo Max-
imum Ranges with the Universal Curve.
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against In {,/Z, then the effects of both electron energy and
atomic number will be represented (although there is, of
course, already a weak atomic number dependence in the
value { ). Figures 9 and 10 show the data from Figures 7 and
8 replotted in this way. Average values are plotted over the
range of In {,/Z used in a particular experiment. The trend
in both figures is in the anticipated direction, with R ;/R
and U,/Ry, . 8
decreasing atomic number. However, the scatter is still signi-
ficant, even for the averaged values.

Figures 9 and 10 can be divided into roughly two regions.
For In {,/Z <1, the effect of large angle scattering will be

MAX
enerally increasing with increasing energy or

large relative to energy loss. The direction of the incident
electrons will be more quickly randomized in this region and
the resulting Depth-Dose and Lateral-Dose functions will be
expected to be nearly Gaussian in form. A Gaussian LSF to a
Lateral-Dose function measured in CdS using an EBIC tech-
nique is shown in Figure 2 (Beam Voltage = 2 kV; In{,/Z =

0.13). The fit is reasonable in this case. However, for In{,/
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—
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Fig. 9. Ratio of Griin Range to Maximum Range for various
Materials from Experiment and Monte-Carlo Cal-
culation (See Table 1 for References).
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Fig. 10. Ratio of Depth-Dose Maximum Range for Various
Materials.
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Z > 1, large angle scattering will be less effective in random-
izing the direction of the primaries, and the energy dissipa-
tion functions should not be expected to be Gaussian. Depth-
Dose and Lateral-Dose functions derived from the Monte-
Carlo data of Shimizu and Everhart [1981] for poly-methyl-
methacrylate (PMMA), (Beam Voltage = 20.7 kV; In {,/
Z = 1.58) are, in fact, not adequately represented by Gaus-
sian functions.

CONCLUSIONS

A review of available measured Depth-Dose function was
made, and a quantitative comparison of measured electron
ranges made with the theory of Everhart and Hoff. Although
the general agreement was reasonable, the wide scatter in the
data, and even between Monte-Carlo calculations suggests
that apriori calculations of the electron range may differ sig-
nificantly from experimental determinations. In addition,
consideration of the relative effects of large angle scattering
and energy loss indicates that empirical models for the
Depth-Dose function derived for such materials as GaAs,
CdS and SiO, are not appropriate for low atomic number
materials such as poly-styrene or PMMA.
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