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Electron Beam Interactions With Solids (Pp. 109-113) 
SEM, Inc., AMF O'Hare (Chicago), IL 60666, U.S.A. 

BACKSCATTERING OF ELECTRONS FROM COMPLEX STRUCTURES 

M. Kisza, Z. Maternia, Z. Radzimski 

Institute of Electron Technology 
Technical University, Wrod'aw 

Poland 

Phone No. 20-25-94 

ABSTRACT 

The backscattering of electrons from complex targets (for 
example, metal layer on a semi-infinite substrate with a poly
mer resist film above) has been studied both theoretically and 
experimentally. The experimental structures were exposed 
with an electron beam in a "spot mode". The experimental 
observations of developed disc radius vs. exposure time and 
metal layer thickness support the simple theory of scattering 
in such structures. The theory assumes that the backscatter
ing causes enlarging of the exposed area by a constant value. 
This value is derived from the proposed scattering model 
based on the Archard's and Kanaya and Okayama's diffusion 
theories. The radial exposure intensity distribution intro
duced by the electron beam has been approximated by a 
Gaussian function . 
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INTRODUCTION 

Backscattering of electrons from a solid target has been 
previously studied theoretically and experimentally in order 
to understand fundamentals of electron probe microanalysis 
and scanning electron microscopy. It is also very important 
to know to what extent backscattering affects the resolution 
in electron beam lithography. 

The spatial resolution depends on the material structure 
which is exposed by the electron beam (Adesida and Everhart 
(1980), Aizaki (1979), Kato et al. (1978)). In our previous 
work, Kisza et al. (1981), a substrate-polymer film target was 
analyzed and a simple model of electron scattering in this 
structure was proposed. The current work presents scattering 
analysis for a more complex structure, i.e., a substrate-metal 
layer-polymer film target. 

ANALYSIS OF SCATTERING IN 
COMPLEX STRUCTURES 

Two simple models are helpful for interpreting backscat
tering phenomena. One of them derives from the assump
tion, by Everhart (1960), concerning a large-angle single scat
tering event. The Archard (1961) model is based on a small
angle multiple scattering process, i.e., the concept of the 
complete diffusion within a sphere. Such a model is valid for 
materials with large atomic number (Z > 40). 

The latter model has been improved by Kanaya and Oka
yama ( 1972) who assumed the diffusion sphere center to be at 
the depth of the maximum energy dissipation xe, and the 
sphere radius being appropriately R - xe. Their model as
sumes that the backscattered electrons reach the target sur
face if they are scattered within the angle which is character
istic of a given material. This improved "diffusion model" is 
useful for materials of both low and high atomic numbers. 

According to Kanaya and Okayama (1972), the following 
relations determine the parameters of the diffusion sphere R, 
x

0
, x

0
, r 

8
, 8 

0 
(Fig . 1) in the energy range JO to 1000 keV. 

R = 2.76 X 10 - II 
A X E 513 

Q X z 8/ 9 

2.2 X 'Y X ( 1 + 'Y) 
tan 8 0 = 

I + 2'Y - 0.21 X"f 2 

(1) 

(2) 
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R ( I + 2-y - 0.21 X 'Y 2) depends on the metal layer thickness x and the scattering 

Xe 
2x(l+-y) 2 

(3) angle e~. 

R X -y 
rB I.I--

I + 'Y 

R 
X = - - -

D l + 'Y 

)' = 0.187 X Z 213 

where: E = primary electron energy (eV) 

Q = material density (g • cm - 3) 

Z = atomic number 
A = atomic weight 
-y = absorption coefficient 

(4) 

(5) 

(6) 

To analyze electron backscattering in the complex target 
(composed of a substrate-polymer film or substrate-metal 
layer-polymer film) we have decided to base our ana lysis 
upon the subsequent presumptions: 

I. The electron beam is treated as a point source, i.e., the 
beam width is neglected. This presumption has been already 
made in numerous theories. 

2. The electron energy loss while passing through the poly
mer film is negligible in comparison with the electron energy. 
This presumption was a lso made by Nosker (1969). 

3. The backscattered electrons enter the polymer film 
within the ang le 0 0 characteristic of the material layer, and 
do not change their trajectorie s in the polymer film . 

The proposed model scheme is presented in Fig. 2. A 
primary electron with energy E

0 
enters the structure and 

passes (almost without any energy loss) through the polymer 
film and with some energy loss through the metal layer. The 
quantitative va lue can be achieved from equation (!). After 
having passed through the metal, the primary electrons scat
ter in the substrate within the sphere . The sphere radiu s 
depends on the energy of the electron beam entering the sub
strate. Only a fraction of these electrons would be able to 
pass the metal layer a second time and to reach the polymer 
and expose it. This fraction can be considered as the one 
derived from another, smaller sphere. The new sp here radius 
corresponds to the electron energy diminished by the electron 
energy losses on the double path through the metal. This 
energy E 1 used for the construction of the new sp here in the 

subs trate is: 

(7) 

where: E 0 = primary electron energy 
d E ( x + 1) = electron energy loss through the metal 

layer. 

According to the propo sed model, the total area of the poly
mer exposed by a point so urce is a sum of the following ele
ments in (Fig. 2): 

I. a di sc with the radius r ~ produced by the electrons 
which are back sca ttered from the metal layer . The quantity 

llO 

r~ = X • tan 0 ~ (8) 

2. a ring of the inside and outside rad ii r ~, r ~ + r;, res

pectively, which results from electrons backscattered from 
the substrate. Its value depends on the size of the scattering 
sphe re in the substrate . This parameter can be derived from 
equation (2). 

3. a ring cha racterized by the radii r ~ + r ~ and r ~ + r; + d r 
produced by the electrons which are able to pa ss through the 
polymer film. The parameter dP depends on the polymer film 

thickness h and the angle 0~ of the metal layer. 

(9) 

The total radius r O of the exposed area is 

r = r ' + r " + d 0 B B p 

The values of r0 , r~, r ; and d P derived from equations (2), 
(8), (9) and (10) for different Au layer thicknesses and a 0.21 
µm polymer film are given in Table I for both of the diffusion 
models mentioned previously . For the first one, the sphere 
center is assumed to be at the maximum energy dissipation 
depth xe (Kanaya and Okayama theory) . For the second one 
the sphere center is located at the diffusion depth (Archard 
theory). The latter is valid for target materials with Z > 40. 
The values of the radius r 

O 
given in Table I are in good agree

ment with tho se obtained from Monte-Carlo calculations 
(Murata 1974, Kyser and Viswanathan, 1975). 

When the metal layer thickness in the di scu ssed structur e is 
0 or oo, the structure change s to a simpl er one, i.e., sub 
strate-polymer film . The model for thi s structure ha s been 
proposed previously by the author s (Kisza et al., 1981 ) . It ha s 
been checked experimentally for different sub str a te material s 
and different polymer film thickness, and good agreement 
between experiment and theory has been found . 

EXPERIMENTS 

To verify the proposed model, an expo sure with a point 
source electron beam in the "spot mode" ha s been per
formed. The exposed structure consisted of a polymethyl 
methacrylate (PMMA) film and a thin gold layer on an Si sub 
strate. After electron exposure and chemical developing, the 
exposed disc radii were measured with an optical microscope. 
The structures differed as to the polymer and metal layer 
thicknesses. 

The experiments have also been performed for different 
electron beam currents to check the beam diameter influ
ence. The experiments have been conducted in an electron 
beam exposure system (EBES) . To ensure fixed conditions of 
exposure, a ser ies of samp les were assembled in the EBES 
housing. Therefore, the expe riment s were made in the course 
of the same process of pumping, alignment and exposure. 
The beam current was measured with a Faraday cup. The 
primary electron energy·was 20 keV. The beam width was 
estimated (by observation of the scanning ima ge resolution) 
as below I µm for I nA beam current. The resist film s were 
developed in isopropyl alcohol and methyl ethy l ketone (4:3 
by vo lume) . 
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RESULTS AND DISCUSSION 

Two discs which differed in their duration of electron 
exposure but were developed in the same way are shown in 
Fig. 3 as an example. The cross-linking of the exposed center 
of the disc is visible for the longer exposure durations. It is 
evidence of overexposure at this point. The relatively large 
dose in the center is caused by the fact that not only the 
primary electrons but also the back sca ttered electron dis
tribution have their maximum in the disc center. The disc 
radius as a function of the exposure time is shown in Fig. 4 . 
Some typical structures and two different current values were 
chosen . 

The exposed disc radius r O is an exponential function of the 
exposure time t for the Gaussian character of the electron 
density distribution of the primary electron beam and the 
backscattered electro ns (Chang, 1975). 

Plots of r O versus the exposure time are found to be nearly 
constant function s of the exposure time above 20 s. There
fore, the experimental data of the 100 s exposed points hav e 
been chosen to be compared with the theoretical ones. 

Heid enreic h and Thompson (1973) have described nearly 
the same characteristics of the disc radii vs. exposure time. 
The radius r produced by a sma ll incident probe beam and 
the backscattered electrons has been found to be linear with 
log t. According to Heidenreich and Thompson , this requires 
that the backscatter current density at the target surface be of 
the form 

J 8 (r) = A exp( - br) ( 11) 

The result s given in Fig. 4 show a difference between the 
experimenta l data and those obtained from the model pro
po sed in this work. The differences result from the fact that 
the point source was used instead of the real one, because the 
discrepancy increases as the beam width increases . The plots 
should be shifted with respect to each other by the beam 
radius . The mea suring of the beam radius is difficult. The 
diameter within which the current density decreases by a fac
tor of 2 is estimated as < I µm for I nA current on the basis 
of the resolution of the scanning image. However, the differ
ence between the experimental data and the theory is greater 
than that. A structure Si + 0.2 µm Au may be analyzed as an 
example. For the same exposure time of JOO s, the observed 
disc radius is 3.3 µm and 3.9 µm for 0.25 nA and I nA elec
tron beam current, respectively, while according to the ca l
cu lation s based on the Kanaya and Okayama theory it is 1.97 
µm. As an additiona l effect of a non-point source, the "tails" 
of the Gaussian distribution of the primary electron beam 
can be observed . Although the electron current density in the 
points remote from the beam axis is small, a long exposure 
may ca use degradation of the polymer. 

The radial exposure intensity distribution introduced by 
the point source of electrons which was evaluated experi
mentally, has been described by Chang (1975) . The best ap
proximation has been found as a sum of two Gaussian dis
tributions: 

C1 exp [ - (r / B1) 2 ]incidentprimarybeam 

C 2 exp [ - (r I 8 2) 2 ] back sca ttered electrons 
(12) 
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Fig. 1. Diffusion models of electron penetration in targets: 
dashed line - Arch a rd theory, solid line - Kanaya 
and Okayama theory. 

Ea 

3 

Fig. 2. Simplified model of electron scattering in complex 
--- structures. (See text for details.) 

Table 1. Theoretical values of r ~, r;, d P and r O derived from 

Archard theory and Kanaya and Okayama theory 

Kand 0 

theory 

Archard 

theory 

X 

[nm) 

0 

37 

73 

120 

200 

0 

37 

73 

120 

200 

(h = 0.2lµm). 

r ' e r " e 
[µm) [µm) 

0 2.68 

0.23 0.83 

0.45 0.26 

0.73 0 

0.73 0 

0 2.68 

0.12 1.23 

0.24 0.68 

0.40 0.26 

0.63 0 

dP r o 

[µm) [µm) 

0.34 3.02 

1.24 2.30 

1.24 l.95 

1.24 l.97 

1.24 l.97 

0.34 3.02 

0.66 2.01 

0.66 1.58 

0 .66 1.32 

0.66 1.29 
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Fig. 3. (a) 2 sec and (b) 100 sec. Backscatter discs of PMMA 
-- (h=0.2lµm) on Au layer (x=0.12 µm)-Si sub

strate for different exposure times. 
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Fig. 5. Exposed disc radius versus exposure time for differ
ent PMMA film thicknesses: A= 0.25, B = 0.22, 
C=0.18, and D=0.14 µm. 
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Fig. 4. Exposed disc radius versus exposure time for two 
-- structures and for different beam currents (solid line) 

compared with theoretical results (dashed line). 
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Fig. 6. Exposed disc radius versus Au layer thickness com
pared with the theoretical calculations based on 
Kanaya and Okayama theory ( M and Archard 
theory (x). 
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The results produced by Chang indicate that the zone of the 
exposure introduc ed by the backscattered electrons is ap
proximately 2 - 3 µm in radius for 25 keV primary electrons 
energ y. 

Let us assume that electron backscattering causes enlarg
ing of the exposure area by a constant value, which is derived 
from the proposed scattering model. The difference between 
these data and the experiment is supposed to be caused by the 
electron beam. This difference is described properly by the 
Gaussian function proposed by Chang (1975) when 8 =I.I. 

The theoretical radius r O, enlarged by the effect described 
by equation (12), is shown as a dashed line in Fig. 4. The dis
crepancy between these data and the experiment (continuous 
line) doe s not exceed 130Jo for the discussed structures and 
beam cu rrents. Therefore, the Gaussian distrib ution adopted 
into the proposed model seems to properly describe the ex
perimental results. 

Si - Au - PMMA stru cture s, differing as to the polymer 
film thickness, have been exposed in the same way to check 
the presumption that the back scattere d electrons pass 
through the resist film with no sub stantial traj ectory change, 
but with the characteristic layer material angle 8~. The 
results are shown in Fig. 5. According to this assumption, the 
disc radius should increase by 0 .56 µm whe n the polymer film 
thickness changes from 0. 15 to 0.24 µm . The experiment 
show s 0.44 µm as a result. This discrepancy can be explained 
by the limited precision of the measurements. 

The dependence of disc radius on the Au layer thickness is 
shown in Fig. 6. The disc radius diminishes with increasing 
Au thickness. When the layer reaches 0.2 µm, the radius 
stabi lizes. Such a character istic agrees with the scattering 
theory in solids. The sub strate influ ence is negligible when 
the Au layer is so thick that the electrons are un ab le to ap
proach the sub strate. 

According to the diffusion model, in order to observe an 
effec t, the target thickness has to be greater than the dissipa
tion sphere center depth. The Kanaya and Okayama theory 
states that the depth should be 0.117 µm for gold when the 
accelerating voltage is 20 keV. 

The theoretical plots of disc radius vs. Au layer thickness 
derived from thi s model, complete with the beam diameter 
shift (for 100 s) are shown in Fig. 6. The discrepancy between 
the theoretical (dashed line) and experimental (solid line) 
plots for both extreme cases (i.e., Au layers 0.0 and 0.7 µm) 
is about 10 - 130Jo. However, the model suggests the radius 
stabilization at a smaller Au layer thickness in comparison 
with the experi ment. 

The experimental plot (Fig. 6) is better approximated by 
the calculations based on Archard's diffusion model-the 
radius stabilizes at 0.193 µm of Au for 20 keV. The dimin
ished value of the calculated radius r 

O 
is obtained as a result. 

This model is valid only for materials characterized by the 
atomic number > 40. 

The experimental and theoretical data presented are 
evidence that the proposed simple model is useful in the des
cripti on of scattering process in complex target s. 
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