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SOLIDS: APPLICATIONS TO X-RAY MICROANALYSIS AND SOLID STATE 

ELECTRONICS* 
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ABSTRACT 

Gaussian models for the depth distributio n of excitati on in 
a so lid bombarded by an electron beam have been success ­
fully applied to the interpretation of data obtained in elec­
tron probe x-ray microanalysis (spatial resolution and ab­
sorption effects) and to the study of voltage dependence of 
cathodoluminescence and the voltage dependence of electron 
beam indu ced currents at Schottky barriers . In these applica­
tions, it was assumed that the distribution of excitation with 
depth can be scaled in depth according to the range-energy 
equation: R = cE3. The physical ba sis for this range-energy 
equation is the Bethe equation for electron energy loss, which 
yields the Beth e range when integrated over the electron's 
path in the target. The "Bethe" range was previously shown 
by Hoff and Everhart to be of the form R = CE~ over the 
range of energies useful in most experiments with electron 
beam excitation. 

Keywords and phrases: Gaussian models, range-energy 
equations, Bethe range, principle of sca ling, x-ray absorption 
correction factor, x-ray absorption coefficients, resolution of 
electron probe x-ray microanalysis, cathodoluminescence, 
electron beam induced current. 
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INTRODUCTION 

The spatia l distribution of electron beam excitation in a 
solid targ et has been an important parameter for the inter­
pretation of results from a wide variety of experiments in­
volving electron bombardment; these include scanning elec­
tron microscopy, x-ray microanalysis, cathodoluminescence, 
electron beam induced currents, electron beam recording, 
and electron beam lithography . Some of the methods that 
have been used to obtain information on this vital quantity 
are: I) tracer methods using characteristic x-rays, 2) lumines­
cence of gases or of solids, 3) electron beam induced currents 
across thin buried SiO2 layers, 4) exposure of electron resists, 
5) transport model calculations and 6) Monte Carlo ca lcula­
tions. For purposes of calculation, several ana lytic approxi­
mations have been used for the spatia l distribution of excita­
tion. The most useful analytic functions for the depth dis­
tribution of excitation have been a shifted Gaussian (Wittry 
and Kyser, 1967), a cubic polynomial (Everhart and Hoff, 
1971), a shifted Gaussian with an exponential function sub­
tracted (Kyser, 1972) and a non -shifted Gaussian multiplying 
a term resembling a complementary expone ntial function 
(Packwood and Brown, 1980, 1981 ). 

The basic idea of using a Gaussian function to describe the 
distribution of excitation with depth has its or igin in some of 
the work published in 1953 by Castaing and Descamps. Cas­
taing and Descamps (I 953) chose to express the results of 
their tracer experiments on the depth distribution of excita­
tion ¢(1;22) on a log-linear plot. The close resemblance of this 
plot to a parabolic function suggested that a shifted Gaussian 
would provide a good approximation to the distribution of 
excitation with depth. The agreement of theoretical ca lcula­
tions based on this approximation and the principle of sca l­
ing with experimental resu lts for severa l types of experiment 
has shown that the Gaussian model is quite useful in practical 
ap pli cations. In this paper, several cases in which the Gaus­
sian model has been useful will be reviewed . 

GAUSSIAN MODELS 

The Gaussian model for distrib ution of excitation with 
depth can be expressed in its simplest form as follows: 
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17q Quantum ef ficien cy for bulk radiative re­
co mbination 

Atomic we ight 
Constants in Gaussian approximations 
Constant in Bethe's law 
Consta nt in Kyser's approximation for ¢(QZ) 
Constant in range energy equation 

Diffusion constant for holes (cm 2/se c) 
Thickness of dead layer (µm) 
Energy of an electron (keV) 
Energy of primary e lectrons (keV) 
Critical excitation energy (keV) 

- Charge on the electron 
Efficiency of electron beam induced current 
Absorption correction factor 
Excess carrier generation rate (cm- 2 sec-') 
Mean ioni zat ion energy of atoms in a so lid 
(keV) 
Primary beam current (A) 
Specimen current density (A cm- 2

) 

Excess ca rrier diffusion length (µm) 
Exponent in Kyser' s Eq. for the generated in­
tensity of characteristic line s 
Avogadro's number 
Exponent in range energy equation 
Electron concentration in sem iconductor 
Hole concentration in semiconductor (cm -' ) 
Excess hole concentration in semiconductor 
(cm -' ) 
Constant in Brown's approximation to c/>(QZ) 
Range (µm) 
Bethe range 

Gruen range 
Reduced surface recombination velocity 
Surface recombination velocity (cm sec-') 
Depth in Schottky barrier specimen (cm) 
Thickne ss of transition region for Schottky 
barrier (cm) 
Thickness of metal region for Schottky bar­
rier (cm) 
Depth in semiconductor below transition 
region (cm) 
Beam vo ltage (kV) 

Average energy of backscattered electrons 
(kV) 
Reduced electron range 
Atomic number 
Depth of max. in Gau ss ian approximation 
(cm) 

Depth in specimen (cm) 

Standard deviation of Gaussian di st ribution 
of excitation with depth 
Constant used by Packwood & Brown in 
c/>(QZ) 
Constant used by Packwood & Brown in 
c/>(QZ) 
Constant used by Packwood & Brown m 
c/>(QZ) 
Average energy to produce a hol e-electro n 
pair (eV) 
Backscattering coefficient for electrons 
Cathodoluminescence efficiency 
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7r 

X-ray take off angle 
Scattering angle 
X-ray linear absorption coefficient 
X-ray mass absorption coefficient (cm ' gm - ') 
3 . 14159 ... 
Density (gm cm -' ) 
Rutherford scattering cross section (cm 2) 

Lifetime of excess holes in n-type semicon­
ductor 
Distribution of excitation with depth 
Argument of the absorption correction 
factor. 

where z = depth from the surface, Q = the target density 
and tiz determines the half-width of the Gaussian. This was 
used by Wittry and Kyser (1967). A modification of this 
function was suggested by Kyser (1972) to take account of 
the asymmetry of the distribution about the peak value . He 
suggested a function of the form: 

2 

[ ( 
QZ- QZo ) ] 

c/>(QZ) = A,exp -
QtlZ 

(2) 

In practical app licat ion s of the functions given in Eq. I or 
Eq. 2, the constants are usually obtained by fitting experi­
mentally determined c/>(QZ) curves or curves determined by 
Monte Carlo ca lculations (Bishop, 1965, 1967) or transport 
model calculations (Brown et al., 1969). Packwood and 
Brown ( 1980, 1981) chose to use a Gaussian function with a 
maximum at the surface with a multiplying term that would 
result in a slightly asymmetric Gaussian- lik e function, name­
ly: 

c/>(QZ) = yoexp(-aQZ) 2 [(! - qexp( -{3QZ)] (3) 

Packwood and Brown have given expressions for the various 
constants (y 0 , a, q, (3) in Eq. 3 in terms of the atomic number 
Z, the incident beam vo ltage Eo, the critical excitation poten­
tial Ec and the average energy for electron excitation I. Be­
cause of this more-detailed description of c/>(Qz), Packwood 
and Brown's function may provide a more accurate descrip­
tion of excitation in various targets with different primary 
beam energies and critical excitation voltages. 

THE PRINCIPLE OF SCALING 

In the interpretation of results of experi ment s using elec­
tron beam excitation it is usua lly necessar y to know how the 
function c/>(QZ) or its Laplace transform varies with voltage. 
For example the Laplace transform of c/>(QZ) divided by in­
tegral of c/>(QZ) from zero to infinity is the absorption correc­
tion factor in quantitative electron probe microanalysis . Ear­
lier work on the absorption correction factor indicated that it 
was possible to use a sca ling factor related to the variation in 
the depth of the electron excitation based on a range-energy 
equation of the form : 
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R = CE8 (4) 

where C is a constant, Eo is the primary beam voltage (or 
energy) and n was an experimentally determined parameter. 

The physical basis for this range-energy equation is the 
Bethe retardation law: 

dE ZQ I aE 
- = (27rN e4

) ( -- )- fn --
dx A A E I 

(5) 

where e is the charge on the electron, NA is Avogadro's num­
ber, Z and A are the atomic number and atomic weight, a is a 
constant, and I is the mean ionization energy for electrons. 
The Bethe range may be defined by assuming a 'continuous 
slowing down" approximation, namely: 

r(Eo) ctr 
Kl r-

0 fn r 
(6) 

where the constant K = 9.4 • 10- 12 I' A / Z gm / cm 3 if I is in 
eY and r = aE / 1. The result obtained by Everhart and Hoff 
is shown in Figure I. For a = 1.16, aE / 1 would be 214.8, 
107.4, and 34.2 for Al, Cu and Au respectively and Eo = 30 
keY . It can be seen that for a range of 3 to 30 keY the Bethe 
range is consistent with Eq. 4 with n "" I. 7, a value frequent ­
ly used and close to the value of 1.68 obtained by Andersen 
(I 966) usin g x-ray measurements of Si02 layers on Si. 

The principle of scaling is as follows: I) it is assumed that 
¢ (QZ) remains of the same shape; 2) all values of ¢ (QZ) are 
shifted along the z axis in proportion to the range as given by 
Eq. 4. The amplitude of ¢(QZ) is adjusted to correspond to 
the power dissipated in the specimen, namely Yi(! - Y/ V / Y) 
where V and i are the voltage and current in the electron 
beam, Y/ is the backscatter coefficient and V is the average 
energy of the backscattered electrons. (Note, however, in 
some cases the backscatter correction is separated from the 
voltage dependence of ¢(QZ).) The fact that this principle of 
sca ling is an approximation can be readily seen by compari­
son of Eq. 5 with the Rutherford scattering cross section: 

Ze ' 2 sin0d0 
a ex(-) 

R E sin 4 (0 / 2) 
(7) 

where 0 is the sca ttering angle. The voltage dependences of 
Eq. 5 and Eq. 7 are not the same, i.e., as the electron energy 
decreases, the scattering in a given distance of travel will in­
crease more rapidly than the energy loss increases. Thus we 
expect the maximum of the ¢(QZ) curves to shift more toward 
the surface than would be predicted by simple scaling. This 
shift can be seen clearly in Figure I of Everhart and Hoffs 
paper (Everhart and Hoff, 1971). However, for a voltage 
range of a factor of 10, the shift is small and in most experi­
ments the experimental errors are sufficiently large that this 
effect need not be considered. 

APPLICATIONS TO X-RAY MICROANALYSIS 

One of the earliest applications of a Gaussian approxima­
tion to X-ray microanalysis was the estimation of the volume 
excited by an infinitely small electron probe. Wittry (1958) 
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10 

10 

Fig. I. Universal curve of normalized Bohr-Bethe range 
--- plotted vs. normalized electron energy. Normaliza­

tion of both ordinate and abscissa depend on materi­
al atomic number, atomic weight, and constants 
only. Normalized range-energy relationships of the 
form R8 = krn accurate to a few percent are given 

for S < r < SO, 10 < r < 100, and SO < r < 500. 
(This curve was calculated using a nonrelativistic for­
mula.) (From Everhart and Hoff, 1971.) 

assumed that the three-dimensional distribution was spheric­
ally symmetric about a point in the specimen corresponding 
to the maximum in the Gaussian approximation to ¢(QZ). 
Then, the depth distribution was used to deduce the three­
dimensional excitation distribution. This was used to calcu­
late the percent of excitation lying within a given spherical 
volume as shown in Figure 2. The three-dimensional spread 
of the excitation was also used to determine the optimum 
probe radius and voltage for best resolution and to determine 
the resolution that can be achieved when these quantities are 
optimized. In this case, the curves were scaled using an ex­
ponent n = I. 7 based on integration of Webster's form of 
Williams' retardation law . 
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Another important area for application of the Gaussian 
model has be en in under standin g the absorption correction 
factor in electron probe microanaly sis. This is given by: 

L; <l>(ez) [exp( - xez) ]d ez 
f(x) = -------- (8) 

l 00 r/>(ez)de z 
- 0 

where x = (µ./ e) cosec 0 and µ.IQ is the mas s absorption co­
efficient. For the purpose of comparing various experimental 
determination s of f(x) Andersen and Wittry ( 1968) devised a 
specia l sca le for f(x) that would yield straight line s when plot­
ting f(x) vs x time s the mean depth of x-ray production if ¢(ez) 
is a Gaussian. This is show n in Figure 3. Th e mean depth of 
x-ray production was based on the Bethe x-ray range modified 

by a factor of Z - v, (the Bethe ran ge is obtained from Eq. 6 re­
placing E = 0 by E = Ee, the critical excita tion potential). The 

fact that th e data points lie close to a stra ight line verify th e 
Gaussian natur e of ¢(ez) for a variety of experimental condi­
tions. 

The split of the data for f(x) < .5 is undoubtedl y due to 
the excess x-ray generation predicted by the simple Gaussian 
model for z < zo and th e large values of x- As an example, 
Figure 4 show s a case where the simple Gaussian mod e l 
would fail to give good results for large x. In cases like this 
better results can be obtained with the lower cu rve in Figure 
3. 

One of the imp ortant aspects of the Gaussian model is 
that, combined with sca ling, it can provide information con­
cerning the vo ltage dependence of the x-ray abso rption cor­
rection factor. Figure 5 show s a comparison of the observed 
vo ltage dependence of CKa x-rays from di amond as a func­
tion of the accelerating vo ltage. In this case, th e co nv entiona l 
correction procedures gave very poor ag reem ent with experi­
mental results while the absorption cor rection of Figure 3 
(lower curve) gave better results. Kyser (1972) used a modi­
fied Gaussian (Eq. 2) to eva luate f(x) for FeL a 1,2 in Fe and 

showed that it provided goo d agreement with the low er f(x) 
curve as shown in Figure 6. 

Because of the ability to predict absorption correction fac­
tors vs voltage, it ha s been possible to determine absorption 
coefficients from experimental data on the voltage depen­
dence of x-ray line inten sitie s. This has proved to be a power­
ful tool particularly for sof t x-ray lines for which convention­

al procedures ha ve poor accuracy because of the extremely 
thin film s that would be required. Kyser (1972) has evaluated 
mass absorption coefficients for La 1 2 Iines from Ti, Cr, Mn, 

Fe, Co, Ni, Cu and Zn using data o~ the x-ray intensitie s vs. 
voltage. Typical data are shown in Figure 7. The mass ab­
sor ption coefficients are obtained from the maximum inten­
sity in the following equation:* 

(9) 

The peak intensity depends on µ./ Q, n and m so that if n is 
taken to be 1.68, it is necessary to evaluate m in order to 

*Kyser used n for the exponent in the intensity generation 
term and m for the exponent in the range energy equa tion. 
Becau se most authors use n in the range energy relation we 
have changed the notation from that used by Kyser. 
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determine x- The constant m is evaluated by correcting the 
observed intensities for absorption to get the generated inten­
sities, for example as shown in Figure 8. For the soft x-rays 
investigated, Ti L a through ZnLa, and also for CK a it was 

found that m == 1.2 for E 0 P Ee, andµ./ Q ranged from 1,590 

to 5,550 cm'/gm. 

On the basis of Kyser's (1972) work, Kyser and MacQueen 
(I 972) proposed a new absorption correction function for 
so ft x-rays based on a "truncated" Gaussian distribution. 
In recent years, Brown and his collaborator s (Brown and 
Parobek, 1978, Brown and Robinson, 1979, Brown et al., 
1969, and Packwood and Brown, 1980) have been evaluating 
correction factors for electron probe microanaly sis using a 

so mewhat different form of Gaussian expression for ¢(ez). 
Their model for ¢(ez ) given in Eq. 3 has been used for relat­
ing intensities to mas s concentrations directly in the absence 
of fluore sce nce corrections (Brown and Parobek , 1978 , 
Brown and Robin so n , 1979). This work is described in 
greater detail in another paper in this publication (p. 137). 

APPLICATIONS TO SOLID STATE ELECTRONICS 

For interpretation of results of experiments involving elec­
tron bombardment of semiconductors, it is important to 
know the distribution of excitation with depth . This can be 
utilized to obtain information on devices, such as the depth 
of p-n junctions , the thickness of metal layers , the electron 
beam current densities required to obtain stimulated emis­
sio n, absorption of light emitted, etc. A knowledge of the 
voltage dependence of the excess carrier distribution can also 
be used to determine the diffu sion length of excess ca rrier s 
when the diffusion length is very small using the voltage 
dependence of cat hodolumin escence or electron beam in­
duced current (EBIC). 

Using a Gaussian approximation to the energy dissipation 
function it is possible to so lve the one-dimensional diffusion 
equation: 

d ' .6.p 
0- ­

p dz' 

.6.p 
+ C</>(QZ) = 0 

TJ) 

- Al 

27 •• 
Volume c~m-:.) 

216 Hl 

Fig. 2. Percent of excitation that is produced in a given vol­
ume based on a three-dimensional Gaussian distribu­
tion (from Wittry, 1958). 
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DATA INCLUDED IN ERROR RANGES SHOWN 
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Fig. 3. Experimental data on the absorption correction 
--- function, f(x) (from Andersen and Wittry, 1968). 
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subject to the boundary condition: 

d~p 
DP- I = s~p(O) 

dz 
z=O 

( 11) where 

Ka Al 10-29 

Ka Al CC u) 29 

Ka Cu (Zn) 29 

La Au (8 i) 29 

Ka Ti 40' 

Ma Au 10 

Na Nd 40 

1,000,000 

kV 

12 

Here ~p(z) is the excess carrier density, D P the diffusion con­

stant, TP the lifetime, L the diffu sio n length = (DPT/ 12, sis 

the surface recomb ination velocity and C is a consta nt relat­
ing the excess carrier generation function (carriers / cm'sec) to 
</J(QZ). Sim ilar equations wo uld app ly for electrons in p-type 
material. The constant C can be obta ined by requiring that 

Yo V 1s 
Go = 6.25 • 10" -- (1 - r, -- ) -- (13) 

V0 1 - r, 
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where V O is the bea~ voltage in kV, J 
5 

is the specimen current 

density in A/cm', V the average energy of the back sca ttered 
electrons in kV, r, is the fraction of incident electrons back-
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Fig. S. Voltage dependence of x-ray intensities of carbon 
--- from diamond (from Andersen and Wittry, 1968). 
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Fig. 8. Generated intensity vs. voltage for CK" from diamond 
after an absorption correction was made to the data 
of Fig. S using the absorption correction of Fig. 3 
(from Kyser, 1972). (By permission of University of 
Tokyo Press) . 

scat tered and E is the ener~ in electron volts required to 
create a hole-electron pair ( V / Vo = 0.66 and r, = 0.33 for 
GaAs at 29 kV). An analytic solution is pos sible for equa­
tions 10 and 11 and the result is plotted in Figure 9. 

The problem of predicting the voltage dependence of 
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Fig. 9. Distribution in depth of carrier generation rate and 
--- carrier density for a 29 kV electron beam on GaAs. 

The left scale applies to the dotted line (Gaussian 
function) and to the open circles (transport model 
calculations). The right scale applies to the full lines 
for three values of reduced surface recombination 
velocity S. Parameter values used are a v, = 0.66 
µm - 1

, z0 = 0.65µm, L = 0.76 µm, Dp=3cm 2 sec - 1
, J 

= 2 A/ cm 2
, and t = 5.35 eV (from Kyser and Wit­

try, 1967). © 1967 IEEE. 

Fig. IO. Calculated cathodoluminescence intensity as a func­
tion of the reduced electron range w ' = R/ QL with 
R = CE0 for various values of the reduced surface 
recombination velocity S = (surface recombination 
velocity) / (diffusion velocity) assuming no "dead" 
layer. Voltage scales for an exponent n of 1.5 and 
I. 7 are shown. The plot applies for a diffusion 
length L of 1 µm and a voltage of 30 keV. The value 
of the diffusion length L can be obtained by trans­
lating experimental curves of l(V) along the hori­
zontal axis (from Wittry and Kyser, 1967). 

cathodoluminescence inten sities is on ly slightly more diffi­
cult. The ba sic assumption usually made is that the surface 
recombination is either non-radiative or the radiation pro­
duc ed is not detecte d . Therefore, one could first solve the 
diffusion equation and then evaluate the carrier loss due to 
surface recombination by determining the flux normal to the 
surface (DdLip/ dz). Alternatively the boundary condition 
Eq. 11 co uld be replaced by a ser ies of appropriately dis­
tributed so ur ces and sink s and the flux du e to these at the 
plane z = 0 co uld be ca lcula ted (Wittr y and Kyser, 1967b) . 
Th e result for the ef ficiency of ca th odo lumin escence 1Jp co m­

pared to the quantum effic iency 11q of the bulk can be ex­

pressed sim ply in term s of the Laplace tran sform of </>(QZ), 
namely: 

1 -
11q 

s 

S+l 

j oo </>( QZ) e - z/ Ldz 
0 

(14) 

T S 
where Sis the reduced surfa ce recombination = _ P __ Using 

L 
th e principle of sca ling , thi s equation ca n be used to predict 
th e voltage dependence of cathodoluminescence. 

However, experimental result s obtained on GaAs show a 
mu ch more rapid decrea se in cathodoluminescence efficiency 
as the voltage is reduced than would be predicted by Eq. 14 
and the principle of scal ing. This may be explained if it is as­
sumed that there is a "dead layer" at the surface due to band 
bending . In the band bending region, the excess minority car­
rier s would drift rapidly to the surface and hence would not 
be ab le to participate in bulk radiative recombination. This 
case can be treated simply by assuming that the surface re­
combination occurs at a depth d (the thickness of the dead 
layer) from the surface. Typical results as a function of re­
duced electron range (R / Q L) are show n in Figures 10 and 11 
for d/ L = 0 and d/ L = 0.05 . By using several families of 

105 

1027 ~----,------,----r---~-----, 1018 

0 
' u : 
"' "' I 

E E 
~ u 

uJ 2 >-,_ .. \ !::: 
~ ~ er: 

z ~ ~ 
0 , O 

!;i '? w 
a: \ _J 

~ 10261-l- ---+-----l---' o.---+ -----1>'----l--- -l 1017 ~ 
uJ I 
~ I 

CX: I 

uJ \ 

~ ~ 
CX: I 
.. I 
U I 

51+- -- -+ ---f--- 1...+--- --w-- -----15 

w 
~ 

I 
0 

I 
I 
I 
I 
I 

0 
I 
I 

2L.-_..J... ___ L_ __ ...J...._,__ _ _j __ ~2 

0 2 3 4 5 

z ()J t,,) 

d /l • 0 

S oo~ ~~L...._..!__L_____L __ ,_____,_..J... __ L_--j 

w 
It 

0 .0 1 

10 

10 

20 ~o 

2 0 

05 0 2 0.1 µ 

5 0 100 '" 
50 100 I '" 

~ 
~ 
uJ 
u 
X 
uJ 

V (n•l.71 

V{n•I.~ ) 

01 02 0 .5 10 2 0 5 0 100 w· 

I 0 

®◊.5 
► ... 
.;; 02 
z 
w ... 
z o, 
w 
> 
... 
Cl 0,05 __, 
w 
It 

002 

0.0 1 
0.1 

Fig. 11. 

0.2 10 20 

w· 

Theoretical cathodoluminescence intensity as a 
function of the reduced electron range w ' for vari­
ous values of the reduced surface recombination 
velocity S for a "dead layer" of thickness d = 0.0SL 
(from Wittry and Kyser, 1967). 
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curves for various d / L, it is possible to fit experimental data 
quite well as shown in Figure 12 for n type GaAs. The fit of 
experimenta l data to theory leads to some ambiguity in deter­
mining S and d/ L but various choices of these parameters 
give nearly the same values of diffusion length L in a given 
specimen. The values of S are typically - 20 or 50, while d / L 
is 0.2 - 0.5 for data shown in Figure 12. Independent 
knowledge of d would provide better values of S. Diffusion 
lengths for specimens I - 4 range from 0.65 µm for no = 3 • 
10' 8 to 3 µm for no = 5. 1 • 1016

• 

A study of the voltage dependence of cathodolumines­
cence in p-type material ha s also been made (Rao Sahib and 
Wittry 1969). However this experiment was complicated by a 
non-linear dependence of luminescence intensity on excess 
carrier density and it was necessary to include this in a 
phenomenological treatment to explain the observed results . 

In a similar manner to voltage dependence of cathodolu­
minescence, a Gaussian model can be applied to currents in­
duced at Schottky barriers by electron bombardment. In this 
case, however, the signal is analogous to what would corres­
pond to the loss of signal in cathodoluminescence- namely 
the flux of carriers that arrive at a surface (in this case the 
metal-semiconductor interface). The model used, shown in 
Figure 13, divides the specimen into three regions. It is as­
sumed that in the metal layer no carriers are produced, in the 
depletion layer all carriers produced are collected and in the 
bulk region carriers diffuse to the boundary of the depletion 
layer where they then drift rapidly acros s this layer. The cal­
culation is similar to the calculation for cathodolumine s­
cence . However in this case the boundary condition assumed 
is: 

( 15) 

The flux of carrier s at u d is calculated from Ddt.p / dz . The 
electron beam induced current is then the sum of the current 
due to carrier s generated in the depletion layer and the cur ­
rent due to carriers diffusing to the boundary of the deple­
tion layer. Typical theoretical curves are shown in Figure 14 
and typical results for GaA s are shown in Figure 15. For 
comparing theory and experiment, the width of the depletion 
layer was estimated from published values of the surface bar ­
riers for the metal-semiconductor combination s used and the 
carrier concentrations . In Figure 15 the specimen with L = 12 
µm was epitaxially grown with no = 6.8 • 1015

, the specimen 
with L = 0.64 µm was Czochralski grown with n0 = 1.3 • 
10" and the specimen with L = 0.41 µm was Czochralski 
grown with n0 = I. 1 • I 0' 8• Gold metallization was used for 
all 3 specimen s with um = 100 µm and 250 µm. 

The EBIC measurement provides accurate values for the 
metal layer thickness um and for L because the results are 
very sensitive to um at small voltage and to Lat large voltage. 
Moreover, this experiment, in contrast to the cathodolu­
minescence experiment, provides quantitative results that can 
be compared to theory. As a result, it is possible to obtain a 
value for the average energy for creating a hole-electron pair 
by energetic electrons (this energy should not be voltage de­
pendent for electrons with energy ;,:, the energy band gap). In 
this work, it was found that E = 4.68 ± 0.14 eV in GaAs and 
3.75 ± 0.11 eV in Si. 
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Fig. 12. Comparison of the theoretical and experimental 
results for the voltage dependence of cathodolumin­
escence. The correct matching of experimental and 
theoretical curves provides values of the diffusion 
L, the reduced surface recombination velocity S 
and the width of the "dead layer" d (from Wittry 
and Kyser, 1967). 
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Fig. 14. Theoretical variation of electron beam induced cur­
rent collection efficiency e al a Schottky barrier on 
GaAs as a function of beam voltage for various 
values of diffusion length L. The solid curves were 
calculated for a gold metal layer 250 A thick and a 
depletion layer 0.2 µm thick. Dash and dash-dot 
curves were calculated for a metal layer of 500 and 
1500 A thick respectively with a depletion layer 0.2 
µm (from Wu and Wittry, 1978). 

SUMMARY 

The Gaussian model for distribution of excitation with 
depth and the principle of sca ling has been found to be useful 
for many experiments involving electron beam excitation. Up 
to now, relativ ely simple models have provided theorie s ade­
quate for interpreting experimental results in spec ific cases 
where parameters in the Gaussian model were determined 
from experimental data or from transport equations or 
Monte Carlo calculations. A generalization of the para­
meter s in a Gaussian model as described in a paper by Brown 
in thi s publication should provide even more accuracy and 
easier application of Gaussian models to experiments involv­
ing electron beam excitation of solids. 
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