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CROSS SECTIONS FOR INELASTIC SCATTERING OF ELECTRONS BY ATOMS 
SELECTED TOPICS RELATED TO ELECTRON MICROSCOPY* 

Mitio Inokuti 
Argonne National Laboratory, Argonne, Illinois 60439 

and 

Steven T. Manson 
Department of Physics and Astronomy 

Georgia State University, Atlanta, Georgia 30303 

ABSTRACT 

We begin with a resume of the Bethe theory, which pro
vides a general framework for discussing the inelastic scatter
ing of fast electrons and leads to powerful criteria for judging 
the reliability of cross-section data. The central notion of the 
theory is the generalized oscillator strength as a function of 
both the energy transfer and the momentum transfer, and is 
the only non-trivial factor in the inelastic-scattering cross sec
tion. Although the Bethe theory was initially conceived for 
free atoms, its basic ideas apply to solids, with suitable gen
eralizations; in this respect, the notion of the dielectric 
response function is the most fundamental. Topic s selected 
for discussion include the generalized oscillator strengths for 
the K-shell and L-shell ionization for all atoms with Z ~ 30, 
evaluated by use of the Hartree-Slater potential. As a func
tion of the energy transfer, the generalized oscillator strength 
most often shows a non-monotonic structure near the K-shell 
and L-shell thresholds, which has been interpreted as mani
festations of electron-wave propagation through atomic 
fields. For molecules and solids, there are additional struc
tures due to the scattering of ejected electrons by the fields of 
other atoms. 

*Work performed under the auspices of the U.S. Depart
ment of Energy and of the U.S. Army Research Office. 

Keywords: Bethe theory, inner shells, generalized oscillator 
strength, momentum transfer, cross section, inelastic scatter
ing, non-hydrogenic, systematics, Bethe surface, extended 
x-ray absorption fine structures (EXAFS), hydrogenic ap
proximation. 
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1. INTRODUCTION 

Throughout the present article, we consider incident elec
trons at kinetic energies of interest to microscopy, i.e., be
tween a few tens of keV and several MeV . As to targets, we 
consider first neutral atoms having lower atomic number s 
(say, Z < 30), and later molecules and solids composed of 
those atoms. For the majority of the inelastic collisions of 
electrons with atoms thus delimited, the Bethe theory (Bethe 
1930, 1932, 1933) is well justified, and provides a good 
framework for general understanding and for numerical 
evaluation of cross sections (Inokuti, 1971; lnokuti et al., 
1978). 

A necessary (though not sufficient) condition for the first 
Born approximation, used in the Bethe theory, is that the 
mean orbital speed of the atomic electron pertinent to the in
elastic collision be small compared to the incident electron 
speed. For ionization (or excitation) of an inner shell by rela
tivistic electrons, the condition means that the effective
charge number I seen by an atomic electron in that shell be 
substantially smaller than 137; 1 is somewhat smaller than 
the atomic number Z, and the condition is fulfilled for mod
erate Z, (say Z < 30). For the lowest incident energies of 
electrons we consider, the condition is satisfied only for 
lower Z. 

The condition discussed above literally applies to quantita
tive discussion of cross sections. Even when the condition is 
not quite fulfilled, however, often results of the first Born 
approximation are useful; they may be good as qualitative 
guides and may be reliable to modest accuracy (perhaps with
in a factor of two). This is especially the case for inelastic col
lisions resulting in an optically allowed transition and in 
small scattering angles; then, the impact parameter is large 
and thus the incident electron travels well outside the target 
atom. This recognition is readily verifiable in a variety of em
pirical data, and is in effect expressible in a more rigorous 
theoretical form (Lassettre et al., 1969). 

Figure 1 exemplifies differential cross sections plotted 
against the scattering angle 0. The figure shows the cross sec
tions for collisions of 25-keV electrons with neon, most of 
the data being taken from Geiger (1964). Notice that all cross 
sections are peaked at small ang les and that the p lot is doub ly 
logarithmic. The elastic-collision cross section is virtua lly flat 
at small 0, because the interactions between the electron and 
the atom effective ly have a short range in this case. The 
potential for these interactions decreases with distance r as r-• 
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LIST OF SYMBOLS 

The Bohr radius, lJ2 / me 2 = 0. 529 I 8 
x 10-• cm 
Impact parameter 
Electron binding energy 
The light speed in vacuum 
The constant in Eq. (I I) 

The dimensionless constant in Eq. 
( 13) 
The normalization constant for a 
continuum ff state, Eq . (30) 
Differential cross section for energy
transfer values between E and E + 
dE 
The Rutherford cross section 
The density of the generalized oscil
laior strength per unit range of ener
gy transfer E, for momentum trans
fer l!K 
Stopping power 
Solid-angle element 
The charge on an electron 
Energy transfer from an incident 
electron to a target, viz., excitation 
energy of the target 
Mean energy transfer per inelastic 
collision 
The rationalized Planck constant 
Imaginary part 
The binding energy of the nfsubshell 

The spherical Bessel function of 
order >-and argument Kr 
Wave vector transferred from an in
cident electron to a target ( ll(S is 
momentum transfer) 
The maximum value of the magni
tude of K 

The minimum value of the magni
tude of K 

The wave number of an electron 
The orbital angular-momentum 
quantum number in an initial bound 
state 
The orbital angular-momentum 
quantum number in a final continu
um state 
The magnetic quantum number 
The electron rest mass 
Dipole matrix element squared for 
energy transfer E, i.e., a constant in 
Eq. (I I) 
Dipole matrix element squared for 
total inelastic scattering, i.e., a di
mensionless constant in Eq. (13) 
Principal quantum number 
The number density of atoms 
Momentum of an electron before 
collision 
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Momentum of an electron after col
lision 
Radial wavefunction for a bound nf 
state 
Radial wavefunction for a continu
um ff state 

The recoil energy defined by Eq. (6) 
Radial distance 
Position vector of the j-th atomic 
electron 
The Rydberg energy , me• / 2l12 = 
13.606 eV 
The radial integral defined by Eq. 
(20) 
Kinetic energy of an incident elec
tron 
The total effective potential defined 
by Eq. (29) 
Speed of an electron 
The potential of the atomic field of 
force seen by an electron 
The potential in the hydrogenic ap
proximation 
The constant in V Hyd(r), Eq. (27) 
The variable defined by Eq. (12) 
Electron-exchange term in Eq. ( 15) 
Spherical harmonic function 

Atomic number 
The constant in V Hyct<r), Eq. (27) 

Effective-charge number 

Speed of an electron measured in the 
speed of light in vacuum (v / c) 
Dirac delta function 
Kinetic energy of an ejected electron 
Eigenenergy of the nf state 

The complex dielectric res pon se 
function, which depends on momen 
tum transfer l1 IS and energy transfer 
E 
Effective-charge number (effective 
atomic number that characterizes an 
atomic field seen by an inner-shell 
electron) 
The atomic matrix element defined 
by Eq. (5) 
Scattering angle 
Polar angle 

Aperture angle 
Cross section for energy-transfer 
values between E and E + dE 
Total inelastic-scattering cross sec
tion 
The total photoionization cross sec
tion of the K shell of molecular 
nitrogen, shown in Fig. I 7 
Azimuthal angle 
The ground state of an atom 
An excited state of an atom, at ex
citation energy E 
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or more rapidly. The inelastic-collision cross sectio ns depend 
on 0 more stro ngly and behave as 0-2 over a moderate range 
of 0, show ing that the interactions are of long range (due to 
the instantaneous dipole moment associated with the atomic 
transition). The potential for these interactions decre ases 
with distance r as slowly as r-2

• At larger 0, the 0-dependence 
of the inelastic-collision cross section is stronger; the onset of 
the stro nger dependence is different for different atomic 
shells invo lved . It is the Bethe theory that enables one to see 
precisely all these features of the cross sections and to 
und erstand how they come about. 
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Fig. I. Differential cross sections for collisions of 25-keV 
--- electrons with a neon atom. 

The horizontal axis represents the common loga
rithm of the scattering angle 0. The vertical axis 
represents the logarithm of the cross section per unit 
solid angle d a / d w measured in the squared Bohr 
radius ao2 = 0.280 x 10- •• cm 2 • The curve labeled 
"Elastic" shows the elastic-scattering cross section. 
The curve labeled "E = 16.9 eV" represents the cross 
section for the excitation to the 2p53s state. The 
curve labeled "E = 20 eV" represents the cross sec
tion for the excitation to 2p54s and all higher states 
combined. All the above are based on data given by 
Geiger (1964). The curve labeled "K-Shell Ionization" 
is based on the theoretical generalized oscillator 
strength calculated by the present authors. The bro
ken straight lines are drawn to show the 0-2-depen
dence of the cross sections, valid at a range of inter
mediate 0 values. 
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As a prelude to discussion on cross sections, we may note 
here certain contrasts between the valence shell and the inner 
shells. The valence shell has a linear dimension of the stan
dard atomic size, i.e., of the order of the Bohr radius ao = 
n2 / me 2 = 0.52918 x 10-s cm, and ha s binding energies of 
the order of the Rydberg energy R = me• /211 2 = 13.606 eV. 
The electronic structure of the valence she ll is seriously influ
enced by subtle effects of many-electron correlations or of 
the atomic environment (i.e., chemical bonds and condensed
phase formation). Conseq uentl y, experimental spectra of the 
valence she ll are rich in general, and often contain keys for 
unraveling those subtle effects; theoretical calcu lation of the 
cross section for valence-shell excitation or ionization is com
plicated in general and is often difficult in practice . By con
trast, an inner shell has a much sma ller linear dimension (of 
the order of a0 / 1) and a much greater binding energy ( of the 
order of 12R). Many-electron correlations or atomic-environ
ment effects influence the electronic structure of an inner 
shell only modestly. Thus, experimental spectra of the inner 
shell. are governed roughly by the atomic number Z, and 
therefore often serve as a means of elemental chemical anal
ysis. The simple picture of the inner-shell spectra is often 
taken for granted , but is in fact subject to a provision. The 
simple picture is right so long as an ejected electron is much 
more energetic compared to the potential of its interaction s 
with the ion core left behind and with the atomic environ
ment. Otherwise, the ejected electron is slow enough to "see" 
details of the potential, and gives rise to various observable 
consequences in the inner-shell spectra. Much of the discu s
sion in Section 3 will concern this topic. 

The present article is in effect a continuation of an earlier 
article (lnokuti, 1978) also written for the electron micro s
copist. For the reader of that article, the following will serve 
as an update with an emphasis on newer findings on inner
she ll ionization. 

2. ELEMENTS OF THE BETHE THEORY 

2. I Basics 

Suppose that an electron of speed v collides with an atom 
and excites it to a higher state, either discrete or continuum, 
at excitation energy E measured from the ground state. The 
kinetic energy of the electron then will be reduced by E, 
which may be called the energy loss (from the incident elec
tron) or the energy transfer (to the target atom). The direc
tion of the electron motion may be deflected by angle 0, 
wh ich is called the scattering angle. 

The first point of Bethe is that the momentum transfer 
11~ = !? - !? ' , where!? is the momentum before the collision 

and p' is the same after the co llision , is the key variable for 

analyzing any co llision of fast particles. The magnitude 11~ is 
readily calculable from 0, E, and v by use of elementary 
kinematics. For electron energies not negligible compared to 
mc 2 = 511 keV, one must use relativistic kinematic s. 

The notion of the momentum transfer 11~ may be most 
easily understandable when one relates it to the notion of the 
impact parameter b used in classical mechanics. Indeed, the 
two notions are complementary in the sense that the relation 

Kb= 1 (I) 
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holds for the majority of collisions. In other words, collisions 
at large b are called soft or glancing, and result in small K; 
collisions at small b are called hard or knock-on, and result 
in large K. Nevertheless, there is a fundamental distinction; 
the momentum transfer is unambiguously defined in all 
cases, while the impact parameter is not a quantum-mecha
nical observable. [See Section 4.4 of lnokuti 1971 and Bohr 
1948.] 

For fixed v and E, the momentum transfer n~ may take a 
range of values depending on 0. The smallest value of nK 
occurs when 0 = 0, and is given by 

nK min = E / v. (2) 

To derive this, one relates the change 6p in the electron 
momentum p with the change 6 T in the kinetic energy T as 
6p = (dp / dT)6T, sets 6p = nKmin and 6T = E, and 

notes dT / dp = v. The derivation, as well as the result [Eq . 
(2)], is correct in both relativistic and non-relativistic kine 
matics. Notice that nKm in for any inelastic collision is never 

vanishing, although it becomes smaller and smaller with in
creasing v or with decreasing E. The largest value of nK for 
fixed v occurs when 0 = 71", and is about twice the incident 
momentum, i.e., 

(3) 

where (3 = v / c and m is the electron rest mass. Thus, nK max 

is in general large and increa ses without bounds as v - c. 
The second point of Bethe concerns the differential cross 

sect ion for energy transfer values between E and E + dE 

da E = 4ao' (p '/ p)(Kaot• I JJE(K) l ' 27rsin0d0, (4) 

where JJE (K) is an atomic matrix element 

z 

JJE(K) = (E I j:J exp(i~•r) I 0) (5) 

taken between the excited state ( E I and the ground sta te 
I 0), r_i being the position of the jth atomic electron. The 

quantity ! JJ E(K) I' is called a form factor for inela stic scatter
ing, and ma y be taken as an even function of sca lar K, so 
long as the target atoms or molecules are randomly oriented. 
Equations (4) and (5), as well as several equations to follow, 
are written specifically for non-relativi stic speeds v, for the 
sake of compact expression. Notice that d a E ha s the dimen
sion area' energy, - , and I 1J E(K) I' has the dimension ener
gy-'. 

We may rewrite Eq. (4) to express d a E in terms of the 

momentum tran sfe r nK or other related variables. For in
stance, one may introduce a variable with the energy dimen
sion, i.e., 

Q (nK)2 / 2m (6) 

and write 

4 

Here it is appropriate to recall the Rutherford formula, 
which applies to collisions of two free charged particles. 
Specifically for a collision of an electron with a free and sta
tionary electron, the Rutherford cross section reads 

(8) 

and Q represents in this hypothetical instance the kinetic 
energy of the recoiled electron. Thus the meaning of the form 
factor ! JJ E(K) I' becomes clear; it represents the ratio of the 

atomic cross section d a E to the Rutherford cross section . It 

is the only nontrivial factor in d a E in the sense that its evalu

ation by means of Eq . (5) presumes knowledge of atomic 
structure. To summarize, we owe to Bethe (then twenty -fo ur 
years old) the crucial recognition that d a E factorizes into the 

Rutherford cross section (which depends on the incident
particle variables only) and the form factor (which depend s 
on target properties but not explicitly on the incident speed v 
or any other incident particle variable). For more detailed 
commentary,see lnokuti (1971) and lnokuti (1978). 

Finally, the generalized oscillator strength df(K,E) I dE per 
unit range of E is defined by 

df(K,E) / dE = (E / Q) ! JJE(K) I'- (9) 

Equivalently, we may write 

df(K,E) / dE = (E / R)(Ka of' ! JJE(K) I'- (10) 

The equivalence of Eq. (10) with Eq. (9) is apparent as soon as 
one recall s that Rao'= (me 4 /2 n 2 )(n 2 / me 2 ) ' = n 2 / 2m. 
The term "genera lized oscillator strength" is another inova
tion of Bethe . As K - 0, it redu ces to the optical (dipole) 
oscillator stre ngth, which governs the light abso rption and 
practically all optical properties of the atom under considera
tion. For the basics of photoabsorption by atoms, see Fano 
and Coo per ( 1968), Man son (I 976), Manson (1977), Manson 
(1978), Manson and Dill (1978), and Starace (1982) . 

2.2 The Bethe Surface 

The main object of study is the form factor I JJ E(K) I' or 

the generalized oscillator-strength density df (K,E) / dE as a 
function of both nK and E . To make this point clear, lnokuti 
(1971) used the term "Bethe surface ." 

We have already discu ssed the connection with the photo
absorption, which corresponds to the limit (K - 0) we men
tioned at the end of the last Subsection 2.1. 

At larger E va lues, df(K,E) / dE substantially differs from 
zero only when Q of Eq. (6) nearly equals E and far exceeds 
an atomic-shell binding energy. Then, df(K,E) / dE shows a 
marked peak at those values of Kand E which correspond to 
free-electron collision thus satisfying the relation Q = E. In
okuti (1971) called the peak the Bethe ridge, and emphasized 
its univer sal occurrence. 

Figure 2 shows the Bethe surface for atomic hydrogen 
(lnokuti 1971). Figure 3 shows two examples that have been 
determined by experiment (Lahman-Bennani et al., 1979, 
1980). 
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Fig. 2. The Bethe surface for atomic hydrogen . 
--- The horizontal axes for E / R and In (Ka0 )2 define 

the base plane. The vertical axis represents df(K),E) / 
d(E/R). The fourteen plates are placed E/R = 3/4, 
8/ 9, 1, 5/ 4, 3/2, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The 
broken curve on the base plane shows the location 
(E/ R) = (Kao)2 of the Bethe ridge, which is the main 
feature for E/R i,> I; collisions represented by a 
point near the Bethe ridge occur as though the inci
dent particle were to strike a free electron, the elec
tron binding being of secondary importance. The 
optical region (Kao)2 ~ 1 is conspicuous only for 
small E/ R. Figure 2a shows the gradual spreading of 
the Bethe ridge with decreasing E/ R, and eventually 
its merger with the optical plateau at the region of 
small (Kao)2 and E/R. Figure 2b shows in front a cut 
at In[ (Kao)2 I = - 4, i.e., a curve that closely ap
proximates the photoabsorption cross section. This 
figure is taken from Inokuti (1971). 
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Fig. 3. The Bethe surfaces of carbon dioxide (Fig. 3a) and 
ammonia (Fig. 3b), after Lahmam-Bennani et al. 
(1979), 1980), reproduced with permission by the 
authors and the publishers. 

The base plane is defined by E/ R (the energy trans
fer measured in the Rydberg energy, 13.6 eV) and by 
In[ (Kao)2 I (in the notation of the present article). 
The dashed curve indicates the Bethe ridge for 
valence electrons. Notice the K-shell ionization con
tributions near the threshold energies of carbon, 
nitrogen , and oxygen atoms . 

The study of the Bethe surfac e is a rich subject with many 
applications and impli catio ns to diverse phenomena. Just to 
name several examples, we may start with sum rules, which 
usually mean theorems on the integrals involving df(K,E) / 
dE with respect to E (including sum s over discrete spectra), at 
fixed K. These sum rules (Section 3 .3 of lnokuti 1971) are 
often usefu l as control on data. There are also theorems on 
the int egra ls invo lving df(K,E) / dE with respect to K, at fixed 
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E. (See Section IIE of Jnokuti et al., 1978, and Matsu zawa et 
al., 1979). If the Bethe surface is drawn on the plane with 
Cartesian axes representing E and In K, then the volume 
under the surface delimited by appropriate kinematic limits 
represents the stopping power of the target atom for any fast 
charged particle (Bethe I 930, and Section 4.3 of lnokuti 
1971). The shape of the Bethe ridge is a renection of electron 
binding in atoms, or more precisely, the electron momentum 
distribution, and is connected with the Compton profile, i.e., 
the spectral distribution of high-energy photons scattered by 
atomic electrons (Bonham and Wellenstein 1973, Wong et 
al., 1975, Barias et al., 1977, and Lahman-Bennani et al. 
(1979, 1980)). Finally, the so-called (e,2e) measurements, 
i.e., coincidence measurements of scattered electrons and 
ejected electrons resulting from collisions corresponding to 
the Bethe ridge, represent an area of many recent studies 
(McCarthy and Weigold 1976). 

2.3 Integrated Cross Sections and Their Systematics 

The third point of Bethe concerns the cross section in
tegrated over all scattering angles. Starting with Eqs. (4)
(7) and using general propertie s of the form factor or of the 
generalized oscillator strength, one can show that 

(11) 

where 

X = ln[/:/2/ (1 - 132)] - {32, (12) 

and ME2 and CE are atomic properties derivable from 

df(K,E) / dE. What is most important here is that the depen
dence of a E on the electron speed v = {3 c is analytically given 
and is universal for all targets. 

As a conse quence, the total inelastic-collision cross section 
a 101 , i.e., the sum of all inelastic-collision cross sections, is 

given by a formula of the same general st ructure, i.e., 

where M
10

/ and C
101 

are atomic properties that often allow 

acc urat e evaluation. (See Section 4.3 of lnokuti 1971 and 
lnokuti et al., 1967). An application of this result is now 
demonstrated in Fig. 4 and Fig . 5 (adapted from lnokuti et al., 
1981). Figure 4 show s a

101 
for 50-keV electron for all atoms 

with Z ~ 38. Notice the periodic variation with Z, due to the 
well-known structure of atoms . 

Another consequence of Eq. (I I) is the famous Bethe for
mula for the stopping power dT / dx, i.e . , the mean energy 
loss per unit path length of a charged particle penetrating 
through a medium . It may be evaluated as 

dT / dx = N j E aE dE (14) 

for a medium having the number density of atoms N, where 
the integration runs over the whole range of energetically 
possible E values belonging to continuous and discrete spec
tra. The integral is called the stopping cross section a,t, and 

has the dimension area 2 energy. The Bethe formula for an 
electron may be written as 

6 

where X is the variable defined by Eq. (12). The term Y 
represents electron-exchange effects; it is a function of {3 and 
amounts to about ten percent of the other terms in the square 
brackets. For precise treatment, see Bethe (1932, 1933) and 
Section 4 .3 of Inokuti (1971). More importantly, Eq. (15) 
contains a single nontrivial property of the medium atom, 
i.e., the mean excitation energy I, which is defined in terms 
of the dipole oscillator-strength den sity as 

In I = J InE[df(0,E) / dE]dE / J [df(0,E) / dE]dE (16) 

The integral in the denominator is equal to the atomic num
ber Z according to the well-k nown su m rule . The mean ex
citation energies for various materials are an object of exten
sive studies, as seen in Inokuti and Turner (1978) and in Ino 
kuti et al. (1981). The ratio 1/Z is a function of Z, exh ibit s 
minima and maxima renecting the atomic she ll structure for 
lower Z, and tends to a limiting value of about 10 eV for high 
z. 

As an application of Eqs. (13) and (15), one may consider 
the mean energy tran sfer per inelastic collision, viz., 

E av = a s/ a tot· (17) 

This quantity is of great inter est to the electron microscopist 
for co nsideration of the radiation damage of specimens and 
other related matters. Figure 5 shows the mean energy trans
fer E av per inelastic collision, for 50-keY electrons (chained 

dash) and for protons at the same speed (solid line), as func
tions of Z . As Inokuti (1978) pointed out, elec tron 
microscopists often use theoretical values of a 101 and E av 

based on the Thomas-Fermi model of atoms . This model 
treats all atomic electrons as a free-electron gas, disregards 
the atomic shell structu re, and therefore naturally predicts 
a tot and E av as smooth functions of Z. 

2.4 Condensed Phases 

Bethe treated free atoms as target. Extension to free mole
cules is formally stra ightforward. In the definition of the 
matrix element lJE(K) [Eq . (5)] molecular eigenfunctions 

must be used, and the rotational and vibrational degrees of 
freedom must be accounted for. Despite the complications, 
the theory remains basically unchanged . For fuller discus
sion, Section 3.5 of Jnokuti (1971). 

Extension to condensed phases began with the work of 
Fermi (1940), who pointed out what we call the den sity effect 
on energy losses. For a relativistic particle traveling through 
condensed matter, the relevant impact parameter may be
come so large that there are many medium atoms between the 
particle and a particular atom that becomes excited. To see 
this, recall Eqs. (1) and (2); the maximum impact of para
meter is I / K min = nc / E, and becomes 2 x 137 ao = 145 A 
for E = R. The medium atoms are instantaneously polarized 
by the electric field of the particle and tend to screen the par
ticle interactions with the atom that eventually receives 
energy. Fermi used a macroscopic description according to 
electrodynamics, as summarized by Landau and Lifshitz 
(1960) . 
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atomic number Z. 

The solid line shows the result of calculations that 
incorporate relativistic kinematics for the incident 
electron. For comparison, the dotted line shows the 
results of calculations that disregard relativistic kine
matics. The figure is taken from lnokuti et al. (1981). 
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Fig. 5. The mean energy transfer E AV per inelastic collision 

(measured in eV), plotted against atomic number Z. 
The general features of the curve Z-dependence are 

the same for all charged particles incident with suffi
ciently high speed. The solid line is for a proton at 
91.8 MeV (viz., {3 = 0.4127). The chained dash line is 
for an electron at 50-keV (viz., the same {3). The stop
ping power for an electron is smaller than that for a 
proton of the same speed when one accounts for the 
exchange of the primary electron with a secondary 
electron in close collisions. The dotted line shows a 
limiting E AV for any extremely relativistic charged 
particle. The figure is based on the data given by ln
okuti et al. (1981). 
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More detailed treatments were developed in the 1950's by 
many workers including Fano ( 1956), Ferrell (1957), and 
Nozieres and Pines (1959). Special attention was paid to plas
mon excitations in metals, which then began to be studied 
through electron energy-loss measurements . Recent work on 
plasmon excitation is reviewed by Raether (1980). The fol
lowing paper by Powell (I 983) in the present Conference 
describes general features of electron inelastic scattering in 
solids and relevani cross sections. 

Here we make only a few remarks. The three major points 
of Bethe (i.e., the role of the momentum transfer, the factor
ization of the cross section into the Rutherford factor and the 
form factor, and the analytic structure of the integrated cross 
section) all remain true for condensed phases . The form
factor idea is generalized, and it is customary to use the com
plex dielectric response function E( If,E) for describing the 
effects of electromagnetic perturbation associated with 
angular frequency E/11 and propagation vector K. The func
tion may be interpreted also as the Fourier transform of the 
electron density fluctuation in the medium . For charged
particle interactions, the quantity E Im [ - I / E (If ,E)] plays 
the role of the generalized oscillator strength df(K,E) / dE. 

The use of the complex function E(If ,E) entails studie s on 
the analytic properties, especially on the integral relat ions 
between the real and imaginary parts, called Kramers-Kronig 
dispersion relations . Thorough exploitation of the these rela
tions has been carried out for several instances, e.g., metallic 
aluminum (Shiles et al., 1980), but only for data at K = 0. 

3. SELECTED TOPICS 

3.1 Generalized Oscillator Strengths for Inner Shells of 
Atoms: Methods of Calculations 

Earlier calculations on the generalized oscillator strengths 
of inner shells and related quantities were based on the 
hydrogeni c approximation (Walske 1952, Walske 1956, and 
Khandelwal and Merzbacher 1966, to name just three exam
ples). In this scheme , one uses for one-electron eigenfunc
tions for both the initial state and the final state hydrog enic 
function s, but accounts for the screening by other electrons 
by means of a suitable effective nuclear charge by an adjust
ment of the energy scale to fit the experimental ioniza tion 
threshold. Then, the generalized oscillator st rength s may be 
readily evaluated analytically. Yet, the procedure is intrinsic
ally unrealistic for values of the energy transfer E compara
ble with the ionization threshold; this deficiency is serious 
because much of the strength lies precisely at those E values 
for small and moderate K values. 

Manson ( 1972a, 1972b) initiated more realistic calcula
tions , within the one-electron orbital picture. In this picture , 
one approximates the ground state I 0) of the whole atom by 
a suitably antisymmetrized product of one-electron orbitals 
of the form r· 1P

0
y(r) Yem(0,¢), where (r, 0, ct>) are the 

spherical coordinates of an atomic electron , P nr (r) is the 

radial function with the principal quantum number n and the 
orbital angular-momentum quantum number e, Yem( 0, ¢ ) is 

the spherical harmonic , and mis the magnetic quantum num
ber. At the same time, one approximates the excited state IE) 
in the continuum by r· 1 P ,r· (r) Y r· m< 0, ct>), where P ,r- (r) is 
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the radial function representing an electron ejected with 
kinetic energy E and angular momentum f'. For the ioniza
tion of the nf shell having the binding energy I nl' , E is related 

to the energy transfer E by 

(18) 

For the transition of an electron from the nf subshell to the 
ionized state, one may write the atomic matrix element 
squared as 

· e' " e) (2f'+l)l:x(2A+l) I ( 0 00 I' 

[ R (E,f' ,n,f,A,K) )2, (19) 

where { ~ ~ i ) is the Wigner 3j symbol, the sum over the 

index " runs from - I f- f' I to f+ f' in steps of 2, and R (E, 
f' ,n,f,A,K) is the radial matrix element defined by 

R( E,f', n,f,A,K) = J; P,r ,(r)h(Kr)Pn r (r)dr, (20) 

h (Kr) being the sp herical Bessel function of the Ath order. 

In Eq . (19), the radial matrix element is the only quantity 
that depends on the dynamics of atomic electron, all the 
other factors being geometric, i.e., dependent only upon 
angular-momentum quantum number s. 

The most crucial part of the calculation is the determina
tion of the radial functions P's. The function P nr (r) for a 

bound state with a discrete eigenenergy E111, < 0 sat isfie s the 

radial Schrodinger equation 

112 d2 P nr n2f(f+ I) 
- -- + [ Enr - Y(r) - -- - ] P nr = 0, (21) 
2m dr 2 2mr 2 

behaves as r r+ 1 for small r, and vanishes rapidly for larger so 
that it may be normalized as 

(22) 

In Eq. (21), V(r) is the potential of the field of force seen by 
the electron, and the field is due to all the other atomic elec
trons and the nucleus. For a neutral atom of atomic number 
Z, the general limiting behavior is 

V(r) = -Ze 2 / r for r = 0, (23) 

and 

V(r) = -e 2 /r for r - ex,. (24) 

In many calculations including Manson's (1972a, 1972b), 
V(r) is determined through a version of self-consistent field 
theories, called the Hartree-Slater method. 

The function P ,r (r) for a final, continuum state with 

energy E > 0 satisfies the same equation 

8 

112 d2 P .r n2f(f+ 1) 
--- + [ E-V (r) - --- ] P ,r = O, (25) 
2m dr 2 2m r2 

behaves as r 1'+ 1 for small r, and is to be normalized as 

Notice that the same potential V(r) is used in Eq. (25) as in 
Eq. (21); the use of the same V(r) not only simplifies the cal
culation, but also guarantees its internal self-consistency. 

The contrast of the modern calculation with the hydro
genie approximation is seen in the choice of the potential 
Y(r) . The hydrogenic approximation amounts to using 

(27) 

where Zeff and VO are two adjustable parameters. This poten

tial V Hyct (r) satisfies neither of the two limiting forms, Eqs. 

(23) and (24). Therefore, the hydrogenic approximation gives 
no realistic behavior of radial wavefunctions for r = 0 or for 
r- oo, nor trustworthy results for properties depending upon 
the behavior of the wavefunctions at large or small r. An 
example of such properties is the generalized oscillator 
strength near a threshold energy ( E = 0), which crucially 
depends upon the radial wavefunctions at larger r, as we shall 
fully document in Subsection 3.2. 

Many properties of the realistic potential V(r) have been 
extensively studied (Rau and Fano 1968); their consequences 
to radial wavefunctions P's have been elucidated in great 
detail (Fano et al. 1976, Manson 1976, Manson I 977, Man
son 1978, Manson and Dill 1978), especia lly in connection 
with the optical oscillator strength spec tra, i.e., df(K,E) / dE 
at the limit K - 0. Calculations by Manson (1972a , 1972b) 
and their extensions (Manson and Inokuti, 1980) are based 
on extensive experience with work on the optical osci llator 
strength. Manson and Inokuti (1980) have calculated th e 
spectra of the generalized oscillator strengths for the ioni za
tion of the K-shell and the L-shell of all atoms for Z ~ 30, 

but have not published the results comprehensively. In the 
following section (Section 3.2), some of the resu lts will be 
discussed. 

Leap man et al. ( 1980) and Rez and Leapman (I 981) also 
reported similar calculations on the K-, L-, and M-shell gen
eralized oscillator strengths and related quantities for a selec
tion of atoms, based on virtually the same method as that of 
Manson and Inokuti (1980). McGuire (1977, 1979) carried 
out similar work as well. But his method contains an addi
tional mathematical approximation; he divides the full r-range 
(0 < r < ex,) into several interval s, in each of which the 
potential V(r) is approximated by a Coulomb potential 
- Zie 2 / r with a suitable effective charge number Zi. This 

allows one to write down the solution in that interval as a 
linear combination of regular and irregular Coulomb func
tions and then to determine the coefficients of the linear 
combination by requirement of smooth connection of the 
radial wavefunctions. This procedure may very well be more 
efficient than the straightforward numerical solution of Eqs. 
( 17) and (21 ), done by Leap man et al. (I 980) and by Manson 
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and Inokuti (1980), but has a definite possibility of generat
ing spurious results. 

Finally, calculations more accurate than the Hartree-Slater 
potential field method are indeed possible, for example, by 
the use of the Hartree-Fock method, the random-phase ap
proximation, or the method of configuration mixing . Yet, as 
far as the properties of a deep inner-shell are concerned, 
more accura te calculations are unlikely to alter drastically the 
results of the Hartree-Slater calc ulation s. The reason for this 
expectation comes from the well-known notion of the per
turbation theory; the possible corrections to the Hartree
Slater calcu lation s must arise from the perturbative contribu
tions from virtual excited states, but these states are located 
at very high excitation energies when one deals with a deep 
inner-shell state. 

3.2 Generalized Oscillator Strengths for Inner Shells of 
Atoms: Results 

The most suitable way to show the data of the generalized 
oscillator strength is the plot first given by Miller and Platz
man (1957). By use of Eqs. (4), (7), (9), and (10), one can 
readily see that it is suitab le to plot df(K,E) / dE at fixed E as 
a function of ln[(Kao) 2]. Equivalently, one may plot 
o-• l11E(K) 2 as a function of In Q. Then, the area under the 

curve represents the integrated cross section over a range of 
the momentum transfer nK (or over a range of the scattering 
angle). To show this point precisely, we may rewrite Eq. (7) 
as 

R df(K,E) 
da E = ----

mv2 E dE 
d [In (Kao) 2] . (28) 

For fixed incident electron speed v and fixed energy loss E, 
the momentum transfer is uniquely calculab le through kine
matics. Therefore, the Miller-Platzman plot is a graphical 
representation of the angular distribution of inelastically 
scattered electrons at fixed v and E . Yet, it takes some time 
and experience for anyone to become fully familiar with the 
relation between 0 and (Kao )2. As an aid to this end, we pre
sent here Fig. 6, which shows the relation for energy-transfer 
values corresponding to the K-shell threshold (E = 1.57 keV) 
and to the 2s-subshell threshold (E = 127 eV) of aluminum . 
The figure illustrates several points. First, (Kao)2 varies over 
a wide range with varying 0. Second, the range of the varia
tion in (Kao )2 becomes greater and greater with increasing in
cident speed v. Third, (Kao) 2 depends weakly on 0 for suf
ficiently small 0, but becomes roughly proportional to 02 at 
large 0; the transition between the two kinds of dependence 
occurs at smaller and sma ller 0 with increasing v. 

Several of the following figures -are examples of the Miller
Platzman plot showing the results of calculations by Manson 
and Inokuti (1980) for selected atoms. These figures also 
show the corresponding results of the hydrogenic approxima
tion. Manson and Inokuti have actually calc ulated and plot
ted the genera lized oscillator-strength density df(K,E) / d 
(E/ R) for the ionization from the l s, 2s, and 2p orbits of all 
atoms through Zn (Z = 30). We shall respond to any reason
able request for providing any of the numerical or graphical 
data we have at hand. 
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Fig. 6. The relation between 0 and (Kao)2 • 

--- Suppose that the incident electron has kinetic 
energy T and momentum p, then T + mc2 = [(cp) 2 

+ (mc 2 ) 2 J Y,. Suppose that the scattered electron has 
kinetic energy T ' and momentum p', then T' + mc2 

== [ (cp ' )2 + (mc 2 ) 2 ] v,. The energy loss Eis defined 
by T ' = T - E. The squared momentum transfer is 
given by (Kb) 2 = p2 + p ' 2 - 2pp ' cos0. These rela
tions enable one to calculate (Kao)2 for a given set of 
T, E, and 0. Here we show log,o (Kao)2 as a function 
of log , 00, for fixed T and E. Figure 6a shows the rela
tion for E = 1.57 keV, corresponding to the 
threshold for K-shell ionization of aluminum. Figure 
6b shows the same relation for E = 127 eV, corres
ponding to the threshold for the 2s-subshell ioniza
tion of aluminum. In each case, five curves refer to 
different kinetic energies T of the incident electron: 
10 keV (-- - ), 50 keV (------), 100 keV (----), 
500 keV (- · - ·), and 1 MeV (-- - -- -). For 
the lowest T (10 keV), the curve for each E starts 
highest at small 0 and ends lowest at large 0. For 
higher and higher T, the curve covers wider and 
wider ranges. Comparison of Fig. 6a and Fig. 6b 
readily indicates that, for fixed T and for the same 0 
interval, the range of (Ka 0)2 values is wider for small
er E (i.e., in Fig. 6b). 
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Figures 7-11 concern aluminum. Let us discuss each of 
them in turn. Figure 7 shows results for the ionization of the 
2s-subshell, which has the binding energy 8 = 127 eV ac
cording to Shirley et al. (1977). Each curve represents the 
density df(K,E) I d(E / R) of the generalized oscillator 
strength per unit range of E/ R = (f + 8) / R, where f is the 
kinetic energy of an ejected electron. Figure 7a shows results 
for the lowest f values, i.e., d R = 0, 0.5, 1.0, 1.5, and 2.0. 
In particular, the solid curves represent Hartree-Slater 
results, and the chained curves hydrogenic-approximation 
results. In either case, the curve lying highest at smallest 
(Kao )2 corresponds to d R = 0; the curve lying next highest 
at sma llest (Kao) 2 corresponds to d R = 0.5, and so on. In 
other words, the optical limit df(0,E) / d (E/ R) is mono
tonically decreasing with f, as is always the case for the 
hydrogenic-approximation. 

Nevertheless, Fig. 7a illustrates a sharp difference of the 
Hartree -Slater results from the hydrogenic-approximation 
results. First of all, the magnitude at (Kao )2 - 0 is less than 
half the hydrogenic-approximation va lue at d R = 0. Sec
ond, the same magnitude stays virtually constant for the 
range 0.5 ~ d R ~ 2.0, while the hydrogenic-approximation 
value decreases steadi ly with increasing d R. Finally, in the 
same f range, the Hartree-Slater resu lts show the gradua l 
development of the maximum at a high (Kao )2 value, i.e., the 
emergence of the Bethe ridge. 

In Fig. 7b, one begins to observe the approach to the 
hydrogenic behavior. Here, the so lid curves represent the 
Hartree-Slater results for dR = 3, 4, 5, 6, and 8, in the 
order of decreasing height at low (Kao )2; the chained curves 
represent the hydrogenic-approximation results for the same 
d R values also in the order of de creasi ng height. Through
out the f range of Fig. 7b, the Hartree-Slater results indicate 
the full development of the Bethe ridge . In contrast, the 
hydrogenic-approximation results begin to show the Bethe 
ridge only belatedly with increasing f. 

In Fig. 7c, one sees the virtua l agreement with the hydro
genic-approximat ion . The curves show results for d R = 10, 
15, 20, 25, and 30 in the order of decreasing height; this ap
plies to both the Hartree-Slater results (shown by the solid 
curves) and the hydrogenic-approximation results. 

Figure 8 concerns the ionization of the 2p-subshell, which 
has the binding energy 8 = 8 I ev. Figure Sa shows results for 
the same set of the lowest f va lues, d R = 0, 0.5, 1.0, 1.5, 
and 2.0 . The chained curves are based on the hydrogenic
approximation, and show the monotonic decrease of the 
generalized oscillator strength with increasing L By sharp 
contrast, the Hartree-Slater val ues (shown by the so lid 
curv es) are increasing with increasing f; the lowest so lid curve 
shows the Hartree-Slater value for d R = 0, which is less 
than one-tenth the corresponding hydrogenic-approximation 
value. Figure Sb shows results for d R = 3, 4, 5, 6, and 8. 
Both the Hartree-Slater results (shown by the solid curves) 
and the hydrogenic-approximation results (shown by the 
chained curves) are decreasing with increasing f. Figure Sc 
shows the close approach to the hydrogenic behavior, real
ized for d R = 10, 15, 20, 25, and 30; the highest curve cor
responds to dR = 10, the next highest to d R = 15, and so 
on. 

10 

Fig. 7. The generalized oscillator strength for the ionization 
--- of the 2s-subshell of aluminum. 

The horizontal axis represents In I (Kao )2 I and the 
vertical axis represents the density df(K,E) / d(E/ R) 
of the generalized oscillator strength per unit range 
of E/R = (f + B) / R, where f is the kinetic energy of 
an ejected electron, and Bis the binding energy of the 
shell, or the threshold for the ionization from that 
shell. In this case, B = 127 eV, according to Shirley 
et al. (1977). Figure 7a shows values for d R = 0, 
0.5, 1.0, 1.5, 2.0. Figure 7b shows values for d R = 
3, 4, 5, 6, 8. Figure 7c shows values for d R = 10, 
15, 20, 25, 30. The three sets of d R values are stan
dard and common to many of the figures to follow. 
In all plots (including the figures to follow), the solid 
curves represent Hartree-Slater results, and the 
chained curves hydrogenic-approximation results. In 
Fig. 7a, the curve lying highest at the smallest 
In I (Kao)2 ) values corresponds to f / R = 0, the curve 
lying next highest at the smallest In ( (Kao )2) values to 
d R = 0.5, and so forth. 

The peculiar behavior of the 2p-generalized oscillator 
strengt h at low f and low K, in sharp disagreement from the 
hydrogenic-approximation results, is attributable to the 
phenomenon of the delayed maximum in photoabsorption 
cross sections. 

Detailed interpretation of the delayed maximum in the 2p 
ionization of aluminum was given by Manson (I 972b). Brief
ly, this arises from the f-dependence of the ct-continuum final 
state, which is the dominant contributor to the gene rali zed 
oscillator strength. [See Fig. 3 of Manson (1972b)]. At f/ R 
= 0 and small d R, the centrifu gal potential keeps the 
ct-continuum wave out of sma ll distances at which the initial 
2p wavefunction has appreciable magnitudes, and therefore 
the radial matrix element [Eq . (20)] must become small. At 
higher d R, the ct-continuum wave begins to reach the sma ll 
distances and to attain appreciable overlap with the initial 2p 
state. According to Eq. (25), the total effective potential 

U(r) = V(r) + n2 f(f + l) / 2mr 2 (29) 

with f = 2 determines the d wave . As Fig. 9 shows, U (r) gives 
rise to a shallow, but wide-ranged attractive region. As a 
result, properties of the d-wave change markedly between 
d R = 0 and d R = 2.0 (see Fig. 10). For example, the 
phase o (with respect to the Coulomb wave) increases con
siderably with L [See Fig. 3 of Manson (1969).) The change 
of o here is only about 0. 7 radians, and the situation is differ
ent from a typical resonance, which is associated with a 
change of o by almost 1r and implies the presence of a quasi
bound state. Nevertheless, there is significant f-dependence 
of some d-wave properties, most notably the d-wave ampli
tude, which is defined as follows. According to Eq. (25), the 
continuum wavefunction P ,e (r) behaves near r = 0 as 

(30) 

where C,e is a number, depending on f and e, to be deter

mined so that the normalization relation, Eq. (26), is satis-
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fied . The determination requires knowledge of the unnor
malized wavefunction over the entire r domain . Analysis 
shows that IC ,e I 2 is the major factor that determines the 

t-dependence of the matrix element over a small f interval. It 
should also be noted that IC ,e 12 is virtually the same as the 

notion of the density of states, often used by solid-state 
theorists . 

Figure 11 shows results for the ionization of the K-shell (ls 
shell) of aluminum. For simplicity, we include in Fig. I la re
sults for two values of ejected-electron energy, i.e., d R = 0 
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Fig. 8. The generalized oscillator strength for the ionization 
of the 2p-subshell of aluminum. 

The threshold energy B is 81 eV according to Shir
ley et al. (1977). The standard sets of d R values are 
used for Fig. Sa, Fig. Sb, and Fig. Sc. Most of the 
captions to Fig. 7 apply here. As an exception, in Fig. 
Sa only, the Hartree-Slater results (shown by solid 
curves) are increasing with increasing t; in other 
words, the lowest-lying solid curve corresponds to 
d R = 0, the next lowest curve to d R = 0.5, and so 
forth. 
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Fig. 9. The total effective potential for a d electron (f = 2) 
emerging from the aluminum atom. 

The potential U is defined by Eq. (29) of the text, 
and its value measured in R is here plotted against 
distance r measured in ao. Figure 9a shows the Har
tree-Slater potential over the wide range of r. Note 
the bump around r / ao = 3.3. Even though the top 
of the hump is below zero energy, the potential gives 
rise to the marked difference in the behavior of the 
radial functions for d R = 0 and d R = 2, shown in 
Fig. 10. Figure 9b shows the Hartree-Slater potential 
(plotted as the solid curve) at small r. It also shows 
the potential used in the hydrogenic approximation 
(plotted as the chained curve). Note the logarithmic 
vertical scale. The two potentials are similar in the 
small region r / ao < 0.3 (except at the close vicinity 
of the nucleus not shown here), but differ greatly for 
large r; in particular, the hydrogenic potential stays 
positive throughout, and approach VO/ R = 6.82 
[See Eq. (27).J 

El R = 0.5. The hydrogenic-appro ximation result s (shown in 
the chained curves) are decreasing with e: the upper curve 
refers to d R = 0, and the lower one to El R = 0.5. The 
Hartree-Slater results (shown in the so lid curves) are opposite 
in the order: the lower curve refers to d R = 0, and the up
per one to d R = 0.5. Here again, the non-monotonic be
havior in e is attributable to that of IC"' !2 • 

Before concludi ng this Sub section, we point out the gen
erality of many observations we made above. First of all, the 
non-hydrogenic behavior of the generalized oscillator is seen 
in all atoms we studied, whenever the kinetic energy e of an 
eje cted electron is sma ll or comparable to the atomic poten
tial in the relevant spatia l region . Second, the delayed max
imum is common to many instances of p - d transitions, 
where the final d-wave is governed by the effective potential 
U having a well-a nd-hump structure. Actually, the case of 
ct-waves for aluminum is not the most clearcut. The ct-wave 
potential for chlorine, argon, or potassium shows a much 
more pronounced hump, and the delayed maximum is much 
more prominent (see Fig. 12). Third, the near-threshold 
structure of the kind we saw in the K-shell ionization of 
aluminum is common to most atoms (Manson and lnokuti 
1980, and Holland et al. 1978). To illustrate the common oc
cure nce of the non-hydrogenic behavior, Figs. 13-15 show 
selec ted results. 

We sho uld also note that there are many other ways for 
showing data than the Miller-Platzman plot (which is the 
most fundamental). For inst ance, one co uld show the gen
era lized oscillator strength as a function of e, either at fixed K 
or at fixed 0. We may call the result a spectral plot. Figure 16 
is an example. A spec tral plot of the differential cross sec tion 
da E / dw at a fixed 0 is often called an electron energy loss 
spectrum. Often one sees in the literature an energy loss spec
trum of a slightl y different kind, i.e . , 

A 

.1a E = J ~ (daE / dw) dw, (31) 

A 

plotted as a function of E, for a fixed aperture ang le 0. Ino-
kuti (1978) gave so me general remarks on thi s quantity . 
Leap man et al. (1980) and Re z and Leapman ( 1981) have 
presented ex ten sive results on this quantity of frequent 
refe rence in electron microscopy. 
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Fig. IO. Radial wavefunctions for the 2p state (solid curve) 
and the d-continuum states for aluminum. 

The chained-dot curve (- · - ·) shows the d
continuum wave-function for d R = 0, and the 
chained-dash curve ( - - - -) the same for El R = 
2. The plotted values correspond to 1r - Y, P ,r (r) 

with f = 2 in the notation of the text. The solid 
curve shows the normalized 2p bound-state. Notice 
that the d-continuum wavefunction for d R = 2 
has a much greater overlap with the 2p state than 
for d R = 0. 
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Fig. 12. The total effective potential for a d electron emerg
ing from the chlorine atom. 

The potential U is defined by Eq. (29) of the text, 
and its value measured in R is plotted against dis
tance r measured in ao. The hump around r/ ao = 
2.5 stands out to positive energy, and causes a pro
minent delayed maximum for the 2p - d transi
tion. 
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Fig. 11. The generalized oscillator strength for the ioniza-

tion of the Is-shell (or K-shell) of aluminum. 
The threshold energy Bis 1.57 keV, according to 

Shirley et al. (1977). Most of the captions to Fig. 7 
apply here. An exception is Fig. 1 la. In a deviation 
from the standard set, we show here results for d R 
= 0 and e / R = 0.5 only. The Hartree-Slater results 
are shown by solid curves; the lower one corres-
ponds to e / R = 0 and the upper one to e = 0.5 . 
The hydrogenic-approximation results are shown 
by chained curves; the upper one corresponds to 
el R = 0, and the lower one to d R = 0.5. Another 
exception is Fig. llb, in which the upper curves 
(both solid and chained) correspond to e / R = 3 
and the lower curves to el R = 8. 
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Fig. 13. The generalized oscillator strength for the 2p-sub
shell of chlorine. 

The threshold energy B is 210 eV according to 
Shirley et al. (1977). The standard set of the five 
lowest e values (d R = 0, 0.5, 1, 1.5, 2) is used. 
The Hartree-Slater results (shown as solid curves) 
are much lower than the hydrogenic-approximation 
results (shown as the chained curves), owing to the 
effects of the effective potential for the d-continu
um final states (shown in Fig. 12). Indeed, the 
Hartree-Slater results are lowest for dR = 0, high
est for 0.5, and then decreasing for larger d R, 
while the hydrogenic-approximation results are 
decreasing steadily with increasing e. 
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Fig. 15. The generalized oscillator strength for the 2s-sub
shell of sodium. 

The binding energy B is 71 eV according to Shir
ley et al. (1977). Figure 15a shows results for the 
five lowest E / R values of the standard set. The Har
tree-Slater results (shown as solid curves) are de
creasing with increasing E, while the hydrogenic 
approximation results are decreasing with increas
ing E. Figure 15b shows the results for the five inter
mediate E / R values of the standard set. 
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Fig. 14. The generalized oscillator strength for th e 2s-sub 
shell of chlorine. 
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Fig. 16. The generalized oscillator strength for the 2s-sub
shell of sodium , plotted as a function of ejected 
electron energy at fixed momentum tran sfer. 

Basically the same data shown in Fig. 15 are plot
ted , but in a different way. The horizontal axis here 
represent s d R, i.e. , the ejected-electron energ y 
measured in R, at a fixed value of (Kao)2. In all 
cases, the solid curve shows the Hartree-Slater 
results, and the chained curve the hydrogenic-ap
proximation result s. Figure 16a represents (Ka 0 ) 2 = 
10-•, i.e., the optical limit. Figure 16b represent s 
(Kao)2 = 4, showing an approach to the hydrogen
ic-approximation results and the emergence of the 
Bethe ridge. 
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3.3 Molecular and Solid-State Effects 

In many instances we have seen much evidence for the role 
of atomic fields in governing the motion of an ejected elec
tron, especially when its energy is low. For ·a molecule, the 
field of force seen by an ejected electron is in general non
sphe rical because of the molecular geometry. This is so even 
though the electronic structure of deep inner shells is affected 
only modestly by the molecular binding, as seen by the chem
ical shift s of core binding energies.[See Shirley et al. (1977) 
and Car lson (1975).] 

Molecular effects on the optical oscillator strength, i.e., 
df(K,E) / dE at K - 0, have been recognized both experimen
tally and theoretically, and much of the understanding here 
should be pertinent to the generalized oscillator strength at 
finite momentum transfer. (However, there has been no ex
tensive ca lculation specifically for molecule s.) 

Figure 17 illustrates a dramatic example of molecular ef
fects. This figure shows the photoionization cross section 
(the same as df(K,E) / dE at K - 0, apart from a univer sal 
consta nt) for the K-shell of molecular nitrog en, as calculated 
by Dehmer and Dill (1976). The calculation is based upon a 
single-e lectron picture (like the calculation on atoms we saw 
in Subsections 3.1 and 3.2), and upon a potential that is mani
festly non-spherical. Becau se of the molecular geometry, one 
must distinguish four final -state classes designated by sym-
bols u u 11" 11" as opposed to the single class (the p state) g' LI' g' U' 

for an atom. Whereas three of the classes show a smooth be
havior for lower energies E of ejec ted electrons, the uu sym

metry gives rise to a sharp peak at about d R = 1.2, and 
causes a marked difference from the atom ic case. According 
to Dehmer and Dill (1976), the origin of the peak is a shape 
resonance, i.e. , the appearance of a quasi-bound state in the 
molecular potential field. Roughly speaking, an electron in 
the r; state at that energy is temporarily trapped by the field u 
before escaping out eventually. The shape resonance is a gen
eral occurrence for many molecules. Indeed, a review article 
by Dehmer and Dill (1979) shows many other examples. 
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In solid-state contexts, effects analogous to the shape 
resonance are often called XANES (x-ray absorption near
edge structure), and have been the subject of many recent 
studies. Examples of theoretical studies include Durham et 
al. (1981) and Durham et al. (1982). 

One sees another feature that distinguishes the molecule 
from the atom. That is to say, there are undulations at higher 
energies E ~ IO R in all the four symmetry classes. (However, 
the undulations in the 71" u and 71" g symmetry classes are t?o 
small to be seen in Fig. 17 .) These undulations were recogniz
ed much earlier, and are known as EXAFS (extended x-ray 
absorption fine structures).[See Teo and Joy (1981) for exam
ple.) Briefly, the undulations result from constructive and 
destructive interference of ejected-electron waves with those 
scattered from different atoms. The variation with energy is 

roughly represented by sin(kD), where k = (d R) ½ /ao is the 
wave number of the ejected electron and D is the internuclear 
distance . Because of the origin, it is easy to see that the EX
AFS is in principle univer sal to all mole cules and solids, even 
though th e size of the undulations is often small and the pat
tern is more complicated for cases involving many and dif
ferent atoms. Indeed the notion of the EXAFS is so well
known and prevailing in so lid-state physics that Holland et 
al. (1978) adapted an EXAFS theory to interpret the near
threshold structure of ato mic K-shell spect ra . 

The shape resonance and the EXAFS are two well recog
nized molecular effects. In rea lity , th ere are further effects 
cont ributing to the near-edge structure of inner-shell spectra 
of molecules and so lids. Ind eed, the electron energy loss 
spectrum obta ined experimenta lly by Wight et al. (1972173), 
shown as Fig. 18, indicates peaks additional to the shape
resonance peak. [Not e that the energy loss spectrum in th e 
forward scatteri ng is roughly E·-' df(0,E) I dE, plotted as a 
fun ction of E and is thus distorted from the optical oscil
lator-s tr ength spectrum. See Sec. 3.1 of lnokuti (1971).] 
Some of the additional peaks are attributed to effects beyond 
the sing le-electron picture, e.g., simu ltaneou s excitation of 
anot her electron along with the inner-shell ionization . 

In concl usion, we may reiterate that there has been no cal
culation of the generalized oscillator strength of inner shells 
specifically including molecular or solid-state effects . Yet, 
the developments described above suggest that there is a l
ready enough groundwork for such a calculation, in both 
concepts and techniques and that the time may be ripe for a 
major undertaking. 

Fig. 17. Photoionization cross section of the K-shell of 
molecular nitrogen. 

The figure is reproduced here with permission 
from Dehmer and Dill (1976). The horizontal axis 
represents the kinetic energy of an ejected electron 
measured in Rydbergs, and corresponds to d R in 
the text of the present paper. The vertical axis 
represents the photoionization cross section uTOT 

measured in Mb = 10- 18 cm 2 , which is related to the 
density of the optical oscillator strength by r;TOT = 
47r2 (e 2 / nc) a0

2 df(O,E) / d(E / R) = 8.067 x 
df(O,E) / d (E/ R) x 10- 18 cm 2 • Each of the solid 
curves shows contributions from the indicated class 
of final-state symmetry. The dashed curve shows 
twice the photoionization cross section of the K
shell of atomic nitrogen. 
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Fig. 18. Electron energy-loss spectrum of molecular nitro

gen in the neighborhood of the K-shell threshold 
(409.9 eV). 

The figure is reproduced here with permission 
from Wight et al. (1972/73). The vertical axis 
represents the intensity of electrons scattered into 
the forward direction, the incident energy being 2.5 
ke V. The strongest peak (labeled as A) corresponds 
to the shape resonance discussed by Dehmer and 
Dill (1976). The other peaks (labeled as B, C, D, E, 
F, and G) are attributable to other phenomena that 
are outside the scope of the present article. 
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