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ABSTRACT

Acquisition, Processing, And Analysis of Video, Audio And Meteorological Data In

Multi–Sensor Electronic Beehive Monitoring.

by

Sarbajit Mukherjee, Doctor of Philosophy

Utah State University, 2020

Major Professor: Vladimir A. Kulyukin, Ph.D.
Department: Computer Science

The decline in the honey bee (Apis mellifera) population in recent years has prompted

the need to gather more fruitful information to understand the many aspects of the behavior

and ecology of bees. Electronic Beehive Monitoring is a method of gathering critical infor-

mation regarding a colony’s health and behavior. In this dissertation, we have presented an

electronic beehive monitoring system called BeePi that requires no structural modifications

to a standard beehive (Langstroth or Dadant beehive), thereby preserving the sacredness

of the bee space without disturbing the natural beehive cycles.

In our research, we have conducted various tests and have proposed diagnostic models

to address different electronic beehive monitoring aspects. We have developed a bee motion

count algorithm that analyzes the video recordings of forager traffic over the landing pad

without additional costly intrusive hardware and returns the number of bees that have

moved in each video. The algorithm is also able to distinguish between incoming, outgoing,

and lateral bee movements. The above processing is done under 2.5 minutes insitu on the

Beepi consisting of a low-cost raspberry pi computer. We introduced a dataset of 32 videos

(744*32=23808 frames) along with manual counts for the number of bees that moved in

successive frames.



iv

We also discussed the design of a convolutional neural network architecture that pro-

cesses raw audio waveforms and compares the performance of different deep learning models

toward classifying audio samples recorded by microphones on beehives.

Next, we studied the effect of 21 different meteorological variables on the foraging

activity. By fitting a linear regression model, we found that 71% of the observed variation

in the forager activity can be explained by the variation in evapotranspiration, visibility,

temperature, pressure, and humidity.

The algorithms proposed in this dissertation have been developed using open-source

software tools capable of running on low-power devices such as a raspberry pi or Arduino

and have been tested on a structure built with off-the-shelf hardware components. To

ensure that interested research and citizen science communities can reproduce our findings

and algorithms, we have made our datasets of bee images, videos, audios and source codes

public.

(269 pages)
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PUBLIC ABSTRACT

Acquisition, Processing, And Analysis of Video, Audio And Meteorological Data In

Multi–Sensor Electronic Beehive Monitoring.

Sarbajit Mukherjee

In recent years, a widespread decline has been seen in honey bee population and this

is widely attributed to colony collapse disorder. Hence, it is of utmost importance that a

system is designed to gather relevant information. This will allow for a deeper understand-

ing of the possible reasons behind the above phenomenon to aid in the design of suitable

countermeasures.

Electronic Beehive Monitoring is one such way of gathering critical information regard-

ing a colony’s health and behavior without invasive beehive inspections. In this dissertation,

we have presented an electronic beehive monitoring system called BeePi that can be placed

on top of a super and requires no structural modifications to a standard beehive (Langstroth

or Dadant beehive), thereby preserving the sacredness of the bee space without disturbing

the natural beehive cycles. The system is capable of capturing videos of forager traffic

through a camera placed over the landing pad. Audio of bee buzzing is also recorded

through microphones attached outside just above the landing pad. The above sensors are

connected to a low-cost raspberry pi computer, and the data is saved on the raspberry pi

itself or an external hard drive.

In this dissertation, we have developed an algorithm that analyzes those video record-

ings and returns the number of bees that have moved in each video. The algorithm is also

able to distinguish between incoming, outgoing, and lateral bee movements. We believe this

would help commercial and amateur beekeepers or even citizen scientists to observe the bee

traffic near their respective hives to identify the state of the corresponding bee colonies.
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This information helps those mentioned above because it is believed that honeybee traffic

carries information on colony behavior and phenology.

Next, we analyzed the audio recordings and presented a system that can classify those

recordings into bee buzzing, cricket chirping, and ambient noise. We later saw how a long–

term analysis of the intensity of bee buzzing could help us understand the hive’s development

through an entire beekeeping season.

We also investigated the effect of local weather conditions using 21 different meteoro-

logical variables on the forager traffic. We collected the meteorological data from a weather

station located on the campus of Utah State University. Through our study, we were able

to show that without the use of additional costly intrusive hardware to count the bees, we

can use our bee motion counting algorithm to calculate the bee motions and then use the

counts to investigate the relationship between foraging activity and local weather.

To ensure that our findings and algorithms can be reproduced, we have made our

datasets and source codes public for interested research and citizen science communities.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently, global food production faces significant challenges in terms of food security

and quality. Bees and other pollinators play a significant role in the food production cycle

and in providing balance to the environment, since they are essential for diet diversity,

biodiversity, and the maintenance of natural resources [4,5]. A study performed by the Food

and Agriculture Organization of the United Nations (FAO) in [6] stated that with the help

of bees and other pollinators, global food production has increased by 24%. Furthermore,

bees are often regarded as the most important among insect pollinators due to their ability

to transport and store pollen efficiently [7]. Honeybees (Apis mellifera) especially contribute

to approximately 14% of pollination services for agricultural production [8]. Without bees

and other pollinators, a variety of crops (such as almonds, coffee, apples etc.) that depend

upon the pollination services would face a severe shortage. To raise awareness regarding the

vital role bees play in human welfare and keeping the planet healthy, the United Nations

has named May 20 as World Bee Day. Hence it is of utmost importance to devise solutions

that aim to preserve the honey bees’ healthy existence.

A honey bee colony’s health is influenced by different external factors such as pollution,

pesticides, an increase of pathologies, etc. To a beekeeper, the wellbeing of a honeybee

colony depends on the robustness of forager traffic. Therefore, visual estimates of forager

traffic are often used by professional and amateur beekeepers to evaluate a honeybee colony’s

health. When the forager traffic activity is higher than usual, it might indicate onsets of

swarm or other hive threatening events such as colony robbing; on the other hand, lower

levels of forager traffic might indicate to a beekeeper that there could be mite infestations,

failing queens, or chemical poisonings [9]. Hence continuous monitoring of honeybee colonies
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has been the subject of interest to beekeepers, researchers and apiologists for a long time [10],

since early detection of the health status of the beehives could be a crucial element in

ensuring the survival of the colonies. Although experienced beekeepers can easily infer the

health of honeybee colonies from forager traffic patterns, it might not always be possible for

them to be physically present to manually inspect every hive, especially when commercial

beekeepers have to manage several hundreds of beehives. The reason could be fatigue,

or even logistics as some beekeepers have to drive long distances to their apiaries due to

ever–increasing urban and suburban sprawl.

A consensus is emerging among beekeepers and researchers regarding the usefulness of

electronic beehive monitoring (EBM) to collect valuable information on honeybee colony be-

havior and phenology without invasive beehive inspections, thereby reducing labor costs [11].

In general, special attention has been given to monitoring the effects of weather variables

such as temperature, humidity and solar radiation along with sounds from a beehive, vi-

brations, beehive weight and gas contents [12].

Recently, there have been continuous and rapid advancements in consumer electronic

sensors that have made it feasible to transform hives along with entire apiaries into networks

of sensors that could monitor in situ the health of bee colonies [13]. The reduction in the

cost and size of different sensors has made it possible to be deployed and collect useful data

from hives located in the countryside. Therefore, practical EBM applications have started to

be adopted by beekeepers which provides them with useful information from remote hives

without having to manually inspect the above. However, we need to keep in mind that

monitoring and data acquisition of a biological process such as the natural cycle of the bees

is quite complicated because the behavior of a natural system such a beehive in response

to human intervention, is not predictable. Additionally, the bees tend to neutralize any

foreign objects (such as sensors) that might appear as a threat to them. Hence, one of the

primary goals of this dissertation is to design an EBM system, called BeePi, that requires no

structural modifications to a standard beehive (such as the Langstroth beehive [14] or the

Dadant beehive [15]), thereby preserving the sacredness of the bee space without disturbing
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the natural beehive cycles.

A fundamental objective in the BeePi system design was reproducibility; i.e., the goal

was to create a suite of replicable hardware and software tools that researchers and citizen

scientists can easily use to build their EBM systems at minimum cost and time commit-

ments. Even the algorithms proposed in this dissertation have been developed using open-

source software tools capable of running on low power devices such as a raspberry pi or

arduino, and have been tested on a structure built with off-the-shelf hardware components.

1.2 Deployment of BeePi Monitors

BeePi monitors have so far had seven field deployments and three different iterations

of hardware and software improvements [1, 2, 16–22]. The first deployment was on private

property in Logan, UT in early fall (September) 2014. A BeePi monitor was placed inside

an empty hive and ran exclusively on solar power for two weeks. The second deployment

was in Garland, UT (December 2014–January 2015), when a BeePi monitor was placed in a

hive with overwintering honeybees (refer to Figure 1.1a) and successfully operated on solar

power for nine out of the fourteen days of deployment to capture ≈3 GB of data (images,

audio recordings and temperature readings). The third deployment was in North Logan,

UT (April 2016–November 2016) where four BeePi monitors were placed into four beehives

at two small apiaries and captured ≈20 GB of data running exclusively on batteries by

harvesting solar energy (refer to Figure 1.1b).
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(a) January 2015. (b) August 2016.

Figure 1.1: BeePi monitors with solar panels.

(a) Solar BeePi hardware components:
1) battery; 2) raspberry pi; 3) rasp-
berry pi camera; 4) car charger; 5)
breadboard; 6) solar charge controller;
7) solar panel wires

(b) Camera (1) under plastic cover
attached to wooden plank (2); plank
is attached with metallic brackets (3)
to box with BeePi hardware; camera
looks down on landing pad (4)

(c) Hive lid (1) with protection
box (2) on hive; solar panel (3)
on ground

Figure 1.2: Deployment of BeePi monitor with solar panel.
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The hardware components of the solar-powered BeePi monitors is shown in Figure 1.2a.

The setup included a raspberry pi 3 Model B with 1GB RAM, a T-Cobbler board, a full

sized breadboard for sensor integration, a waterproof DS18B20 digital temperature sensor,

a raspberry pi camera and a USB microphone hub where three Neewer 3.5 mm mini lapel

microphones were plugged in. The microphones have a frequency range of 1520 KHz,

an omnidirectional polarity, and a signal-to-noise ratio greater than 63 dB. The wired

microphones were connected to the raspberry pi and placed into small holes drilled in on

the side of the hive walls to collect audio samples from inside the hive. To prevent the

propolisation of microphones, the above holes were covered using mesh nets. Renogy 50

watts 12 Volts monocrystalline solar panels were used for harvesting solar energy into UPG

12V 12Ah F2 sealed lead acid AGM deep-cycle rechargeable batteries via Renogy 10 Amp

PWM solar charge controllers. It took us approximately 25 minutes to wire and assemble

a BeePi monitor before deployment.

The raspberry pi camera was attached to a wooden plank to improve the camera’s

stability during high winds. The camera was positioned in a way such that it looked down

straight on the landing pad. Furthermore, the wooden plank is attached with screws and

metallic brackets to the box holding the BeePi hardware components, as shown in Fig-

ure 1.2b. The box was then placed over the topmost super, as we can see in Figure 1.2c.

The camera was further protected from the elements by a wooden hive lid as seen in Fig-

ure 1.2c. The lid also protected other hardware components in the box against the elements

from above and the four sides. In the third deployment of the BeePi [18], the data collection

software was written in Python 2.7.9. Three separate data collection threads were written

in python that started on system startup. The first thread collected temperature data every

5 minutes and saved them to a text file. The second thread recorded 30 seconds of audios

in wave format every 5 minutes. The third thread captured pictures of the landing pad

every 5 minutes and saved them in png format. The data from all three threads were saved

on a 32 GB micro sd card inserted into the raspberry pi. In Chapter 3, we propose an

algorithm based on 1D Haar Wavelet Transformation and apply it to the above data to
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compute omnidirectional bee counts from static images of beehive landing pads.

In the fourth deployment, four BeePi units were placed into four beehives with Italian

honey bee colonies at two small apiaries in Logan and North Logan, UT (April 2017–

September 2017). We were able to collect ≈220 GB of audio, video, and temperature

data. In the fifth deployment, four BeePi monitors were placed in four new beehives freshly

initiated with Carniolan honeybee colonies at a small apiary in Logan, UT, during the

beekeeping season of 2018 in April. In 2018 during the fifth deployment, we decided to keep

the monitors deployed through the winter to stress test the equipment in the harsh weather

conditions of northern Utah. One of the hives survived the harsh winter and we were able

to record ≈400 GB of data. For the fourth and fifth deployment, we updated our data

collection software by making three changes. First, we replaced the data collection thread

that captured static images of landing pad with a separate thread that ran every 15 minutes

and recorded videos (duration 30 seconds with 25 fps) of the the landing pad. Secondly, we

updated the audio data recording thread, which was previously written in Python, with a

bash script. This helped us get reliable audio data without little to none software issues,

which was often the case during the third deployment. Finally, we made a small hardware

change to the BeePi setup, wherein the microphones were placed 10 cm above the landing

pad with microphones on each side as seen in Figure 1.3 rather than being embedded into

the hive walls. The above change in the microphones’ position helped us get good quality

audio data compared to the previous iterations where the embedded microphones were often

propolized by the bees which resulted in the bad quality of audio data. Another important

update was regarding the power provided to the BeePi monitors. There were two versions

of BeePi in the fifth deployment: regular and battery. The BeePi operated either on the

grid or on a rechargeable battery. We used two types of rechargeable batteries for power

storage: the UPG 12 V 12 Ah F2 lead acid AGM deep cycle battery and the Anker Astro

E7 26,800 mAh battery.

In Chapter 6, we will use the above audio data from the fourth and fifth deployment

and discuss the design and compare different deep learning models towards classifying the



7

(a) Bee hive in an apiary (b) Closeup image of microphones

Figure 1.3: Bee hive with microphones attached approximately 10cm above the landing
pad. The microphones are not affected by rain or snow.

audio samples into bee buzzing, cricket chirping and ambient noises. To aid in our investi-

gation, we introduced two different datasets of labeled audio samples. In the first dataset

BUZZ1 [23] with 10,260 audio samples, the training and testing samples were separated from

the validation samples by beehive and location. In the more challenging second dataset,

BUZZ2 [23] with 12,914 audio samples, the training and testing samples were separated

from the validation samples by beehive, location, time and bee race. We also introduced

three image datasets (BEE1 [24], BEE2 1S [25], BEE2 2S [26]) using the video data from

the fourth and fifth deployment.

The sixth deployment started in May 2019 with four freshly installed bee packages

and the one surviving hive from the fifth deployment in 2018. The monitors were left

running through the winter of 2019 and only one of the five hives survived the winter. In

Chapter 4 and Chapter 5, we will use the above video data and propose a bee movement

localization technique combined with a digital particle image velocimetry (dpiv) [27, 28]

based algorithm to count bee motions between successive frames. We will show how we can

use dpiv to analytically classify and count different bee motions into incoming, outgoing or

lateral and then use those individual counts as measurements of directional traffic levels.

To aid in our investigation, we created an evaluation dataset of 32 videos selected from

different times during the beekeeping season of 2017, 2018 and 2019 with varying levels of

bee traffic across different backgrounds. To generate the ground truth data, each of the
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frames in the 32 videos (744*32=23808 frames) were individually evaluated beforehand and

the number of bees that moved in successive frames was counted from them.

The seventh field deployment started in May 2020 when we installed four new bee

packages in the same apiary in Logan, UT. The deployment is ongoing, with ≈450 GB

of data collected so far. For the current deployment, we updated and improved our data

collection software. We updated the video and temperature data collection threads, which

were written in Python 2.7.9, with individual bash scripts. The reason for the update was

primarily driven by the fact that previously the data collection threads were dependent

on each other, which meant that a failure in one thread often resulted in the whole BeePi

monitor to break down without recording any data. Hence hardware issues were quite

common in the previous iterations. In the current deployment, three separate bash scripts

were written to record audio, video and temperature data and save them on an external

harddrive. A cronjob was written to monitor the scripts and to restart them individually

every 15 minutes. This meant that if one sensor failed, the other sensors kept on recording

seamlessly. By using the above updated data collection method, we believe that we are able

to eliminate the random data loss due to hardware failures. Our claim is backed up by the

recorded data from this current beekeeping season of 2020, where we have not experienced

any data loss from whole BeePi monitors due to the hardware failure of a single sensor.

The final setup of the BeePi monitor is shown in Figure 1.4.
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(a) A BeePi monitor box on top of a Langstroth
beehive that consists of 3 supers; the camera is
protected against the elements with a specially
constructed wooden box.

(b) A BeePi monitor consists of a rasp-
berry pi 3 model B v1.2 computer, a
pi T-Cobbler, a breadboard, a water-
proof DS18B20 temperature sensor, a
pi v2 8-megapixel camera board, a
v2.1 ChronoDot clock, and a Neewer
3.5 mm mini lapel microphone placed
above the landing pad.

Figure 1.4: Setup of the latest BeePi deployment running on the grid.

1.3 Outline of Contributions

In this dissertation we explore different techniques using computer vision, machine

learning, deep learning and audio processing in the design of an electronic beehive moni-

toring (EBM) system, called BeePi. BeePi has been designed to be a multisensor electronic

beehive monitor, all of whose components fit in a standard Langstroth box commonly used

by thousands of beekeepers worldwide. In this dissertation, four main hypothesis will be

addressed:

1. We can estimate bee traffic patterns and count the number of bees moving in and out

of the hives by analyzing bee traffic videos recorded by a BeePi monitor in-situ on a

low power device, such as a raspberry pi, efficiently within a time period.
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2. Convolutional Neural Networks can operate in situ in electronic beehive monitors that

use low voltage devices such as Raspberry Pi to classify audio samples recorded by

microphones deployed approximately 10 cm above Langstroth beehives’ landing pads.

3. It is possible to infer about hive development by analyzing audio and video recordings.

4. Hive activity is correlated to local weather conditions and observed variation in forager

traffic can be explained by variation in the weather variables.

The first hypothesis states that it is possible to get a count of the forager traffic that

have moved in and out of the hives by analyzing the 30 seconds of video recording. We

support our claim by proposing a bee movement localization technique in Chapter 4 and

then combined it with a dpiv based algorithm in Chapter 5, to count bee motions between

successive frames. We also demonstrate in Chapter 5, that the combined algorithm runs on

a raspberry pi 3 and generates the counts on an average in ≈2.15 minutes.

We support our claim in the second hypothesis in Chapter 6, by proposing the design of

a convolutional neural network (CNN) to classify raw audio signals and then demonstrating

that the CNN trained to classify raw audio can successfully operate in situ on a low voltage

raspberry pi computer.

The third hypothesis is built upon the first and second hypothesis where in we used

the bee motion counts and the buzzing intensity of the classified bee audio from an entire

bee keeping season in order to support our claim. In Chapter 5, we compare the time

series data for the bee motion counts during the entire beekeeping season of 2018 from

May to November for two of our hives R 4 5 and R 4 7 and report on some interesting

observations regarding the health of the hives. Similarly in Chapter 7, we analyze the

power/intensity of the bee buzzing over the entire beekeeping season of 2018 from May to

November and investigate how two of our hives(R 4 5 and R 4 7) had progressed through

the 2018 beekeeping season.

The final hypothesis is addressed in Chapter 8, wherein we study the effects of 21 differ-

ent meteorological variables on the foraging activity during the period of May–November of

our beekeeping season in 2018 and during May–July 2019. Through our study we are able to
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show that without the use of additional costly intrusive hardware to count the bees, we can

use our bee motion counting algorithm to count the bee motions and then use the counts

to investigate the relationship or correlation between foraging activity and local weather.
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CHAPTER 2

RELATED WORKS

Although there has been more than a century devoted to academic research on inves-

tigating bee behavior, still many aspects of the behavior and ecology of bees remain less

understood [29, 30] due to difficulties in collecting quantitative data of such small and fast

moving insects. To address the above difficulties, different studies have been performed by

using experimental hives and equipping bees with different kinds of tags.

2.1 Beehive Monitoring

The first known application of beehive monitoring was published in 1914 [31], where the

author published data regarding the internal temperature of a beehive which was collected

manually every hour for several days in 1907. Following that in 1926, there was a study

using thermocouples to measure the temperature inside a beehive [32]. One of the first

electronic system designed to monitor bees was Apidictor [33], which consisted of a low-

pass filter to detect the changes in the frequencies of bee buzzing that took place inside the

hive up to two to three weeks before swarming. In [34], several hives were equipped with

accelerometers to observe the increasing amplitudes during days prior to swarming.

In another study, the authors in [35], placed hives on electronic balances connected

to a 12-bit resolution datalogger to record and analyze the evolution of the weight of the

beehives for over sixteen months. The system was powered by solar panel and the weight

was recorded hourly. Following the development of sensors and microelectronics in recent

times, different types of monitoring tool have been designed from observing data in the

hive [36] to building systems able to analyze those data [37]. In [10,38], some of the beehive

monitoring systems have been reviewed and summarized.

On the other hand, advancements in the performance and size of microcontrollers

have helped in the development of low-cost electronic beehive monitoring systems based on
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Arduino R© , Raspberry Pi R© etc. In one such designed system [39] based on Arduino, the

authors recorded temperature and relative humidity data and saved them on to a microSD

memory card. In order to analyze those data, a beekeeper had to go to the location of the

hive and manually download the content from the microSD card of each hive onto his/her

hand held device.

Some commercial systems have also been designed to monitor beehives, for example

Arnia [40] and HiveMind [41], which provide access to data from individual hives through

Internet-enabled devices.

In a more recent study [42], the authors have presented a method based on supervised

machine learning, that uses the data from sensors placed in the hive (internal temperature

and hive weight), as well as weather data (temperature, dew point, wind direction, wind

speed, rainfall, and daylight) and data regarding apiary inspections in order to forecast the

health of a honeybee colony.

2.2 Counting Bees

The importance of counting forager traffic close to the hive entrance have prompted

multiple research and commercial attempts since it is an indicator of the colony’s health,

honey flow and pollination. Hence accurate estimates of forager traffic levels is important

to apiarists, fruit growers and also researchers.

One of the first electrical bee counters was proposed in [43], and later on that design

was subsequently adopted and improved upon in [44], where the bees were counted by

analyzing electrical impulses generated by bees tripping a balance arm. Similar electrical

bee counters were also later presented in [45, 46]. In [47], the authors proposed the design

of a box like extension that was attached to the hive entrance. The box was equipped with

special tube like structure that were coated with paraffin, through which each bee passed.

There was also a mesh bag attached to the end of the tubes in order to collect the crawling

bees and weigh them.

In earlier electrical bee counters it was not possible to distinguish between incoming

and outgoing forager traffic. Hence in subsequent research a bi-directional bee counter was



14

presented in [48]. Later on the design was adopted by Lowland Electronics in Belgium

to manufacture bee counters, in where the bees were counted when they passed through

special portals equipped with infrared (IR) sensors. In a later research in [49], the authors

presented their SmartHive R© system equipped with IR bee counters. They argued that their

IR based counters were more robust and accurate in comparison to capacitance and video

based systems. But the IR counters required regular maintenance and hence they also

developed a self diagnostic program that checked the proper functioning of the IR sensors.

In another study [50], the authors attached a tag to dorsum of the bees thoraxes and

then presented an imaging system located at the entrance to the hive to count the number

of times each tagged bee entered and exited the hive. Following that, there have also been

studies where some researchers used radio frequency identification (RFID) to tag each bee

in order to solve the bee counting problem. In one such study [51], the authors used the

RFID tags to get the bee count and study the effect of pesticides on honeybee colonies by

exposing workers from a colony of approximately 2000 bees to contaminated sugar syrup at

a feeder. RFID based tagging was also used in [52], where the authors presented a technique

where a RFID based system was used to find the frequency and length of the nuptial flights

of honeybee queens.

There have also been studies that use computer vision based approach to analyze the

behavior of forager traffic and their flight activities outside the hive. In [53], the authors

proposed a model that was able to track 99% of single flying bees and 70% of merged bees

from 2D videos recorded at close proximity to the hive entrance. Their model is based

on bees blobs segmentation and suffers from a number of limitations such natural color

variation in videos and assumption of bees flying at a constant velocity. An improvement

to the above model was subsequently presented in [54,55].

In [56], the authors used digital video cameras to study the social interactions among

bees. They were able to track up to 16 bees that walked freely on a flat surface and was able

to correctly extract more than 95% of those bees’ locations. Their system worked offline

on pre-recorded videos and thus was able to monitor the behavior of the bees only within a
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very limited area. Hence it was not suitable for long term monitoring concerning the health

of the bees.

In [57], the authors presented a real–time imaging system for tracking honey bees

leaving and entering the beehives from images acquired at the hive entrance. Honeybees

were first detected and segmented using background subtraction method and then they

were tracked using integrated Kalman Filter and Hungarian algorithm tracking method for

counting the honey bees that entered and exited the beehive. To achieve faster performance

they used an embedded GPU system and NVIDIA Jetson TX2 as the main computing

device. They used a 4G LTE router for remote connectivity via the internet and also to

transfer data. They reported their proposed approach was able to generate counts that had

an accuracy of 93.9% when compared to ground truth data generated by manual counting.

The evaluation was performed on 11 videos and since the data and also the process behind

labeling each video was not made public, we were not able to replicate their results.

2.2.1 Use of Dpiv To Analyze Insect Motions

In [58] dpiv was used to measure the turbulence levels in a low turbulence wind tunnel.

In that same study, by extending their findings, the authors suggested that dpiv can also

be tuned to measure the aerodynamic performance of a small-scale flying device. When

an insect, animal or a bird flies through the air, the traces of air particles that move as

a result can be studied and used to analyze insect and animal flight patterns. The recent

advancements in dpiv [27, 28, 59] has enabled researchers to start investigating the above

flight patterns to understand how certain animals or insects fly and the use the relevant

information to design micro-air vehicles. In [60], the authors used a high speed camera and

applied dpiv to measure the vortex wake and kinematics of a swift’s flight through a wind

tunnel. In [61], the author’s demonstrated the difference between the wakes of birds and

small bat species by using dpiv to analyze the recorded wake images. It was shown that

each wing of the bat generated it’s own vortex loop along with a sign difference between

the circulation on the outer wing and the arm wing during upstroke. Spedding et al. in

[62] used dpiv to analyze the flight of thrush nightingales. They used dpiv to measure the
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balance of forces during the upstroke and the downstroke of the bird’s flight. Through their

research they showed that it is possible to track the momentum in the wake of a flying

animal. There has also been past research such as in [63] and [64], where the authors have

used dpiv to study and analyze the flight patterns and the wake structure of nectar-feeding

bats and dog-faced fruit bats respectively. The use of dpiv to investigate insect flight was

first demonstrated in [65] in which the authors measured fluid velocities of a fruit fly and

then examined the contribution of the leading–edge vortex in the overall force production

during flight. The authors in [66] were the first to use dpiv to analyze the flow field around

the wings of a tobacco hawkmoth while it flew through a wind tunnel. The authors also

experimentally showed the flow separation near the leading edge of the wing during the

insect’s downstroke. In a different research [67], it was shown that dpiv could also be used

to examine and map the air flows generated by dancing honeybees.

There have been past research projects that involved electronic beehive monitoring.

One such study was reported by Rodriguez et al. in [68]. They proposed a system that

would detect and track multiple insects and animals, with a special interest for monitoring

the traffic of honeybees and mice. They designed their system based on deep neural network

that associated detected body parts to whole insects and animals. The network initially

predicts a set of 2D confidence maps of detected body parts along with a set of vectors

that hold the associations among the detected body parts. Next they use greedy inference

to select the most likely predictions for each part and then compiles the predictions into

larger insects or animals. To detect the bee traffic that leave and enter the hive, the authors

use trajectory tracking. The above gives reliable results under smaller traffic levels. The

authors reported that the dataset used in the above study consisted of 100 fully annotated

frames with 6–14 honeybees per frame. Since the dataset was not made public, we were not

able to independently replicate the results. Furthermore in the above research, a standard

Langstroth or Dadant hive, which is commonly used by beekeepers, was not used. Rather

a smaller laboratory grade hive was used in the experiments. The proposed system also

requires some modifications to the beehive in that a transparent acrylic plastic cover had
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to be used in order to ensure that the bees remained in the focal plane of the camera.

In another research Babic et al. [69] proposed a system that would detect pollen bearing

honeybees from videos recorded at the entrance of a hive. The proposed system included a

specially designed wooden box mounted above the hive entrance, and also had a raspberry

pi camera attached inside it. The wooden box was specially designed in a way to restrict

bees from flying when in the field of view of the camera. To achieve the above, the authors

put a glass plate on the bottom of a box just 2cm above the landing pad and in effect force

the bees to crawl a distance of ≈11 cm while entering or leaving the hive. The authors

reported the training dataset to be composed of 50 images of pollen bearing honeybees and

50 images of honeybees without pollen. The testing data set on the other hand consisted

of 354 images of honeybees. Since the dataset was not made public, we were not able to

independently replicate the reported results.

We found in [70], the review of various electronic, remote-sensing, and computer-based

techniques for observing and monitoring insect movements in the field and the laboratory.

In particular, they have reported in their review, the use of electronic bee counters to record

bees entering and leaving the hive. Following that we have seen in [71] a practical use of bee

counters in modeling the flight activity of honey bees at hive entrance. We also see the use

of bee counters in a much recent study in [72], where the authors correlate foraging activity

to weather conditions. Although the reported results were promising but in each of those

cases, the use of a bee counter needed additional hardware and attachment to a standard

hive. The reason is that to detect bee movements at the hive entrance 32 bi-directional

channels of 10 mm × 6.5 mm × 6.5 mm (length × width × height) each and separated by

12.7 mm is required for the setup. The detection of bee inside each channel is achieved via

an infrared diode that excites two photoreceptors. Following that, the break order of the

receptors indicates whether a bee is entering (in) or leaving (out) of the hive. Thus we can

see hardware modifications are needed to be done on the standard hive in order to be able

to use the bee counters.
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2.3 Analyzing Hive Audio

In [73], a distributed audio monitoring platform was presented where the system con-

sisted of nodes and wireless sensor units with one node per apiary and one sensor unit

per hive. The sensor unit consisted of an omnidirectional microphone and a temperature

sensor. They monitored 10 hives continuously by taking 8 s audio samples every hour with

a sampling rate of 6250 Hz. They reported on their observations of the daily patterns found

in beehive sound volume and sound intensity at medium and low frequencies.

In [74], the authors studied honeybee swarms by designing five custom build observation

hives sealed with glass cover along with cameras and microphones to detect movement and

audio of bees within the hive. Swarming is the process by which a new honeybee colony

is formed when the queen bee leaves the colony with a large group of worker bees. The

video and audio data from the hives were monitored daily by human observers. The authors

reported that in three different colonies where bees had swarmed, the production of piping

signals gradually increased starting one hour before swarm exodus and ultimately peaking

during swarm departure. Similar patterns were also seen in the bee movement in all the

three colonies.

In [75], a monitoring system was designed by the authors to analyze bee buzzing dur-

ing swarming. They recorded sound through three omnidirectional microphones and also

monitored the temperature and relative humidity inside the hive by means of a datalogger.

The system was connected to a computer in a nearby barn via underground cables. They

observed the hives for 270 hours and reported that when swarming happened, there was

a gradual increase in the buzzing frequency from 110 Hz to 300 Hz. The audio from the

beehive was recorded at 2 Khz and was analyzed using Matlab R©. In general they proposed

a method to predict swarming period based on labeling the sounds.

In [34], the authors attached accelerometers on the hive walls to predict swarming

activity by analyzing the vibrations. They logged data from the accelerometers for a period

of 8 months and reported the finding of a multi-dimensional time vector from the data

which had a signature specific to swarming activity.
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In a similar approach as above in [76], the authors placed accelerometers on the outside

walls of the hives in an attempt to capture and analyze the acoustic vibrations that bees

use to communicate. They studied one such pulse named ‘stop signal’ for a period of 9

months. They concluded that monitoring changes in the ‘stop signal’ could provide us

valuable information regarding the health of the colony. They also reported that analyzing

the frequencies associated with the vibration could be helpful in detecting swarming several

day in advance.

The authors in [3] presented a system capable of detecting stress in a honeybee colony

by comparing the acoustic fingerprint of the beehive with that of a healthy hive. They

extracted Peak Frequency, Spectral Centroid, Bandwidth and Root Variance Frequency as

the four features and performed feature engineering by using Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA) .

In [16], the authors presented an audio processing algorithm that was capable of dig-

itizing bee buzzing into sequences of A440 piano notes. Their goal was to view the note

sequences as a time series data and the correlate them to other timestamped data for pattern

recognition.

2.3.1 Use of CNN To Classify Audio Samples

Through representation learning it is possible to automate the acquisition of patterns

from raw signals for detection and classification [77]. Standard machine learning techniques

are limited in their abilities to learn from raw data since they require considerable feature

engineering to convert raw signals into feature vectors which could then be used for clas-

sification. The technique of deep learning is often more suitable in acquiring multi-layer

representations from raw data because real life data often contain non-linear represen-

tations which low-order functions have a hard time modeling. There have been several

defining studies where deep learning methods have been successfully applied to image clas-

sification [78–80], speech recognition and audio processing [81, 82], music classification and

analysis [83–85], environmental sound classification [86], and bioinformatics [87,88].

In the field of audio processing, convolutional neural networks (CNNs) have been
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trained to classify audio signals either by training on raw audio waveforms or by extracting

feature vectors from them. For examples in [86], the author discussed the design of a CNN to

classify short audio samples of environmental sounds. The CNN consisted two convolution

layers with maxpooling and two fully connected layers and was trained on the segmented

spectrograms generated from the audio data. They reported that on three public datasets

of environmental and urban recordings, their designed CNN architecture outperformed the

results obtained by using random forests with mel frequency cepstral coefficients (MFCCs)

and zero crossing rates as the features. Their proposed method also performed par with

some state-of-the-art audio classification approach as well.

On the other hand, the authors in [89], developed a new CNN model capable of learning

from the raw audio waveform directly. They trained their model by transferring knowledge

from computer vision that classified events from unlabeled videos. The representation

learned by their propose CNN model was evaluated and it obtained state-of-the-art accuracy

on three standard acoustic datasets. In [90], the authors showed that it is possible to predict

the next sample in an audio sequence by training a generative network. The proposed

architecture of their model contained 60 layers and it sampled raw audio at a rate of 16 kHz

to 48 kHz. In [91], the authors developed a chord recognition system by designing a CNN to

classify 5-s tiles of pitch spectra. Their model produced state-of-the-art performance across

a variety of benchmarks.

2.4 Effect of Weather On Foraging Activity

There have been different studies, where it has been reported that various weather

conditions play a role in the foraging activity across different bee species. The authors

in [92] have reported the effect of rainfall on honey bee foraging activity. They observed a

higher level of foraging activity prior to heavier rainfall. They suggested that honey bees are

able to sense the likelihood of upcoming rainfall. In their experiments they used 3 honeybee

colonies each having 6000 worker bees and 1 laying queen. They attached an RFID tag to

newly emerged workers (n=300) of each experimental colony and monitored them for 34

days. RFID detectors and tag systems can be rather expensive, and utmost care must be
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taken so that the tags or the glues does not affect the bee behavior or their survivorship.

Our BeePi monitors on the other hand does not require the tagging of individual bees and

the sensors that we use are non-obtrusive. The dpiv based algorithm described in Chapter 5

is able to count the bee motions which is on par with human counts, thus eliminating the

need for RFID based tagging of bees in our electronic beehive monitoring system.

A novel study by the authors in [93] found out the relationship between weather vari-

ables, such as temperature and solar radiation to the foraging activity of bee colonies. They

gathered foraging data by using a photoelectric beecounter (‘Apicard’) placed at the hive

entrance, for 30-min periods (data was recorded every 15s and was pooled) over 23 con-

secutive days from a single colony of bees and then analyzed those data with respect to

ambient weather conditions. They reported that a positive correlation was found between

the foraging activity and both temperature and solar radiation. It was also reported that

the positive correlation between the bee activity and solar radiation was only till a certain

threshold, after which the bee activity went down as the solar radiation increased.

There has also been research such as in [94], which showed the effects of temperature on

the pollination activity of two separate bee species in an apple orchard in Girona (northeast

Spain). It was a controlled study, that was performed during the years 1993, 1994 and

1995 in an apple orchard by monitoring 20 honey bee hives. They installed a weather

station during 1995 and studied the effects of ambient temperature, relative humidity, solar

radiation, and wind speed by recording data every 10 min. The weather station was located

2m above the ground and 800m away from the orchard on a flat terrain. They studied how

weather conditions affect pollination and along with that they investigated the design of

pollination strategies to optimize fruit yield when the weather conditions were suboptimal.

Since the above investigation was performed in a controlled environment, it is challenging

to replicate the findings under natural conditions.

Following that, various research, such as in [95] and [72] have been conducted on study-

ing the correlations between foraging behavior of honeybees and climatic conditions such as

temperature, humidity and wind velocity. In [95], the investigation was performed during
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the 2002 growing season at Kneevi Vinogradi location, Baranja County (northeast Croatia).

They performed the study on honey bees visiting sunflower inflorescences at 100, 200 and

300 meters, by recording and counting the individual bees present four times a day (9am,

11am, 1pm and 5pm). They studied the effect of temperature, humidity, precipitation and

wind speed and reported the correlation between weather and foraging activity by using

Spearman correlation coefficient. They reported a positive correlation between tempera-

ture and foraging activity and negative correlation between foraging activity and humidity,

precipitation and wind speed. However the authors did not report the number of hives that

were used for the experiments nor the data was made public.

In [72], the authors performed their analysis on data from two different bee hive colonies

during the foraging seasons of July–September 2013 and June–September 2014. They pre-

sented their analysis based on 42 days of data in 2013 and 74 days of data in 2014, with data

recorded with a time resolution of 1samples/min. They used a multichannel electro-optical

beecounter to measure the bee egress rate and placed a weather station near the hives to

record the meteorological data related to rain, solar radiation, temperature, humidity, wind

speed and wind direction. A multichannel electro-optical beecounter requires hardware

modifications if used on a standard hive and thus can effect the natural surroundings for

the bees. They presented the effect of different meteorological variables on foraging activ-

ity and their correlation was in line with the results from previous studies in the literature.

They also explored the utility of predictive modeling by fitting a generalized linear model to

their data using meteorological data as the predictors and then used it to predict bee egress

rate. They reported promising results and also suggested the use of other meteorological

variables and even bee audio to further understand their combined effect on foraging activ-

ity. We were not able to replicate or use their models as their data was not made public.

Although a clear understanding of the different factors that might effect foraging activity

is difficult, the above studies suggest that local weather conditions do play a significant

role. Since weather conditions differ from place to place, we believe there is indeed scope

for further analyzing the effect of different meteorological variables on bee foraging effort.



23

CHAPTER 3

OMNIDIRECTIONAL BEE COUNTING FROM LANDING PAD IMAGES

3.1 Goal

In this chapter we will be discussing a method to compute bee counts from static

images of beehive landing pads. The camera in our BeePi system points vertically on the

landing pad over which the bees enter or leave their respective hives. From a static image,

the proposed method will first locate the landing pad and then determine and remove any

skew from the landing pad images. We have proposed two algorithms to detect bees from

the localized landing pad images. One of the algorithm is based on 1D Haar Wavelet

Transformation and the other is based on the technique of contour analysis. The flowchart

of proposed method in this chapter is show in Figure 3.1. The proposed method does

not distinguish between incoming and outgoing bee traffic. In other words, the proposed

method gives us omnidirectional bee counts from static landing pad images. Due to the

hardware limitations of the camera, the method also does not distinguish between different

types of bees like, worker, drone or queen bee. By the end of this chapter we will be able to

see that computer vision can act an important tool in determining the health of a bee hive

by helping us determine bee counts in static images; thereby acting as a strong contender

to be included in EBM software systems.

3.2 Landing Pad Localization

The process of localizing a landing pad consists of three steps, adjusting the brightness

of the image, determining the skewness in the images by locating the bounding areas of

the landing pad and finally calculating the skew angle and adjusting the landing pad image

accordingly.
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Figure 3.1: Flowchart of Proposed Model

(a) Image Taken In The Morning (b) Image Taken During Middle of The Day

Figure 3.2: Landing pad images from two separate beehives recorded by the BeePi camera
module at different times of the day

3.2.1 Adjustment of Image Brightness

The beehives are located outdoors in areas where during certain times of the day the

sun shines directly on. As a result of that, the brightness in the images taken by the BeePi

camera during those times is significantly higher. As an example we see two images taken

by the BeePi camera during different times of the day in Figure 3.2. Image in Figure 3.2a

was taken in the morning before noon and image in Figure 3.2b was taken when the sun

was shining directly on the landing pad.

To adjust the brightness of the image, Img as in Figure 3.2b, the first step is to convert

it to a grayscale image and calculate the average brightness. Next if the average brightness

is less than a predefined threshold, then Img is converted from RGB to YCrCb color space,

where Y is the luminance component and Cr and Cb are the blue difference and red difference

chroma components, respectively. The Y, Cr and Cb channels are separated out and intensity
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(a) Image Before Brightness Adjustment (b) Image After Brightness is Adjusted

Figure 3.3: Images before and after adjustment of brightness

histograms are computed for each channel. Next, all the histograms are equalized so that the

intensity spread is uniform across the three channels. Finally the three adjusted channels

are combined and the combined image is converted back to RGB color space. Figure 3.3

shows the images before and after the brightness adjustment. In Figure 3.3b we see that

the brightness of the image is more uniform and the bees on the landing pad are more

distinct and visible compared to the bees on the landing pad in Figure 3.3a.

3.2.2 Locating The Bounding Areas of The Landing Pad

We will design our bee counting algorithms such that it counts the number of bees

present on the landing pad at any given time. But rather than processing the entire image

as in Figure 3.3b and trying to count the bees, it would be better if we could locate the

bounding region of the landing pad for faster analysis. But in Figure 3.2a we can see that

there might be cases where the landing pad is crooked in the images taken by the BeePi

camera. In other words, the landing pad in the image is skewed. To determine the skew

angle of the landing pad, we first need to determine the portion of the image which tightly

bounds the landing pad. The skew in the image may be caused by camera movement during

wind gusts or even during physical hive inspections by a beekeeper. In Figure 3.2a, if we

observe closely then we can see the presence of grass around the landing pad region. Grass

has significantly more edges or corners than the area of the beehive around and above

the landing pad. By capturing this texture difference we will be able to separate out the
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(a) Original Image (b) Icorner With Detected Corners

Figure 3.4: Images before and after the application of Harris Corner Detection

grassy region from the landing pad. The morphological operation that helps us to capture

that texture difference is corner detection. Harris Corner detection [?cite?] is one such

technique to detect corners in an image. Figure 3.4 shows the result after applying Harris

Corner detection. The result of Harris Corner detection is image Icorner (Figure 3.4b), which

has roughly the raw corners in the image in Figure 3.4a. We can see that the corner points

are not distinct. So in the next following steps, we will work towards generating distinct

corner points from Icorner.

Towards that end, we create a clone of Icorner and perform the morphological operation

of erosion on it. Erosion helps in eroding or shrinking the regions of detected corner regions.

Thus erosion helps in making the gaps between the detected corner regions larger and

eliminating small details on the boundary areas of each region. The final result of erosion is

an image, Ierosion, where the foreground pixels have shrunk in size, and holes within those

areas have become larger thereby emphasizing on individual corner points.

Next Ierosion is compared with Icorner by performing a pixel wise AND operation to

retain only the unmodified pixels between Ierosion and Icorner. This results in an image

(Ifinal) with distinct corner points as shown in Figure 3.5a. Figure 3.5b shows the original

image with the final distinct corner points plotted on. For the above example, we can see

that our method of detecting the corner points has been successfully able to detect all the

grassy region above the landing pad. Next we will use the above information about the

positions of the corner points to determine the skewness of the landing pad.
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(a) Ifinal With Distinct Corners (b) Original Image With Corner Points

Figure 3.5: Images with distinct corner points

Using the corner point coordinates, we create two separate hash maps, one for the

rows and one for the columns. Each hash map corresponding to a row i, will hold the

number of the columns in that row, where the corners were detected. Similarly each hash

map corresponding to a column j, will hold the number of the rows in that column, where

the corners were detected. Mathematically, let there be P rows and Q columns in Ifinal.

Let (i, j) be the coordinate in the image Ifinal which is detected as a corner point. We

represent the presence or absence of a corner point at the location (i, j) by (ri, cj), where

(ri, cj) = (1, 1) if it is a corner point and (0,0) otherwise. Both values (ri and cj) need to be

1 in order to be classified as a corner point. So the hashmap (Mr(i)) corresponding to row ri

will hold the count of the y–coordinate elements in the set (ri, c0), (ri, c1), (ri, c2), . . . , (ri, cQ)

where ri = 1, i.e. Mr(i)→ Σciy, where 0 ≤ y ≤ Q and ciy represents the y–coordinate (cy)

corresponding to (ri, cy) and ri = 1. In the above equation, ciy = 1, if (i, y) is a corner point

or else ciy = 0. In a similar way, the hashmap (Mc(j)) corresponding to column cj will hold

the count of the x–coordinate elements in the set (r0, cj), (r1, cj), (r2, cj), . . . , (rP , cj) where

cj = 1, i.e. Mc(j) → Σrxj , where 0 ≤ x ≤ P and rxj represents the x–coordinate (rx)

corresponding to (rx, cj) and cj = 1. In the above equation, rxj = 1, if (x, j) is a corner

point or else rxj = 0.

Either of the hash maps could could be used to start our analysis. In our study

we decided to use the hash map, Mr to construct histogram Hr which is the horizontal

projection of the corner counts across each row. For Hr, the bins represent the row numbers
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(a) Horizontal Histogram (b) Scatter Plot with Fitted Line

Figure 3.6: Scatter plot of horizontal histogram projections with the best fitted line

from the image Ifinal and the bin value is the count of the corners for that row, i.e, the

value at bin i is Mr(i). The histogram is shown in Figure 3.6a. We will use the histogram

to detect and identify positions of significant changes in the counts of the corner points.

If we observe Figure 3.5a, we can see that the number of detected corner points are

gradually reduced after a certain section as we move down the image row by row or hori-

zontally from the top. We can see the replication of the above scenario in the histogram in

Figure 3.6a. As we move from left to right, the count of the number of corners is reduced.

We should keep in mind that in an Image, the origin is at the top left corner. If we compare

Figure 3.4a and Figure 3.5a, we can safely say that the area of the landing pad has fewer

corners detected than the grassy area above the landing pad. Thus the decline in the corner

counts would help us identify the upper coordinate positions of the landing pad.

To have a better understanding and visualization of the spread of corner points in the

histograms in Figure 3.6a, we convert the histograms to 2D scatter plots and work towards

finding the best fit line through those points. But before proceeding, we remove the outliers

in the scatter plots by considering the L1 distance between corresponding points. This

outlier removal is necessary as it might skew the best fit line. We found that the best fit

line is a 4th degree polynomial that is able to represent the distribution of the corner points

in the scatter plot as shown in Figure 3.6b.
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Equation (3.1) shows the 4th degree polynomial line which represents the horizontal

projections the best as seen in Figure 3.6b; the 3rd and 4th degree coefficients are very small

and have been discarded.

r(x) = 0.0025x2 + 0.017x+ 24.7 (3.1)

The above curve in equation (3.1) is best fit line for the projection of the corner counts

for each row. Thus we will use it to identify the location of the upper and lower bounds

of the landing pad in the image. Towards that end we create a sliding window W i
row of 10

points along the points on r(x). At each step W i
row is shifted by 5 points along the axis

of the curve. Let M i
row be the median of the sliding window W i

row at step i and similarly

M i−1
row is the median of the sliding window W i−1

row at step (i− 1) respectively. Let the change

between the corresponding medians of two sliding windows at step (i− 1) and i be defined

as, ∆i
row = M i

row−M i−1
row . If we observe the curve in Figure 3.6b we can see when ∆i

row < 0,

it means that the slope of the curve is decreasing and so in order words it means that

the number of corner points detected is reducing. We can see from Figure 3.5b, that the

corner points start reducing as we approach the landing pad from the top. Thus the sliding

window,W i
row at step i for which ∆i

row < 0 indicates the location for the upper bound of

the landing pad. To get a more accurate approximate positioning of the upper ordinate of

the landing pad, we calculate the first quartile Q1W i
row

of the 10 points in W i
row. Thus row

number Q1W i
row

is the upper starting point of the landing pad.

Based on the positioning of the BeePi camera, the width of the landing pad is calculated

as 50 pixels wide. This width changes as we move further into the beekeeping season while

adding more supers to the beehive. Thus given the width and the starting row number of

the landing pad, end row number of the landing pad is calculated as Q1W i
row

+ 50. Next

we take these two points and crop the respective portion from Figure 3.7a. We can see in

Figure 3.7b that the above cropping resulted in a new image IcroppedRow the landing pad

has correctly been identified.

Although in Figure 3.7b, we have been able to detect the upper and lower bounds of
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(a) Original Image (b) IcroppedRow

Figure 3.7: Result after row based cropping of the landing pad

(a) Corner points drawn on IcroppedRow (b) Corner points detected

Figure 3.8: Corner detection in IcroppedRow

the landing pad but there is still some portion of the grassy area that needs to be removed

on the either side, before we can find the skew angle of the landing pad. We will follow the

similar steps of detecting the corner points and creating a hash map Hc(j) of the column

projections. The detected corner points are shown in Figure 3.8b. Next we use Hc(j) and

generate the histogram as shown is Figure 3.9a. We will start by finding the best fit line that

represents the scatter plot of the corner counts in different columns. Equation (3.2) shows

the best fitted 4th degree polynomial line for vertical projections as seen in Figure 3.9b; the

3rd and 4th degree coefficients are very small and are discarded.

c(x) = −0.0001x2 + 0.004x+ 6.4 (3.2)

From the best fit line in Figure 3.9b, we can see that there is a decline in the slope

of the curve followed by a rise. Now if we look at Figure 3.8b and observer the variation

of corner points from left to right of the image, we can see that a decline in the number

of corner points indicates that, within that particular region is the vertical starting point

of the landing pad. On the other hand, we can see a steady rise in the corner points near

the right end of Figure 3.8b, which tells us that the vertical ending point of the landing
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(a) Vertical Histogram (b) Scatter Plot with Fitted Line

Figure 3.9: Scatter plot of vertical histogram projections of column based corner points
with the best fitted line

pad is in that region. Thus looking back at the best fit line in Figure 3.9b tells us that the

region where the curve slope decreases is the starting region of the landing pad and where

the slope steadily increases indicate the ending region of the landing pad.

Towards that end we create a sliding window W i
col of 10 points along the points on

c(x). At each step W i
col is shifted by 5 points along the axis of the curve. Let M i

col be

the median of the sliding window W i
col at step i and similarly M i−1

col is the median of the

sliding window W i−1
col at step (i−1) respectively. Let the change between the corresponding

medians of two sliding windows at step (i − 1) and i be defined as, ∆i
col = M i

col −M
i−1
col .

If we observe the curve in Figure 3.9b we can see when ∆i
col < 0, it means that the slope

of the curve is decreasing and so in order words it means that the number of corner points

detected is gradually reducing. We can see from Figure 3.8b, that the corner points start

reducing as we approach the landing pad from the left. Thus the sliding window,W i
col at

step i for which ∆i
col < 0 indicates the location for the vertical starting point region of

the landing pad. To get a more accurate approximate positioning of the starting ordinate

of the landing pad, we calculate the first quartile Q1W i
col

of the 10 points in W i
col. Thus

column number Q1W i
col

is the vertical starting point of the landing pad. Similarly when

∆j
col > 0, it means that the slope of the curve is increasing which means that the number

of corner points detected is gradually increasing too. We can see from Figure 3.8b, that the
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(a) IcroppedRow (b) IcroppedColumn

Figure 3.10: Result after column based cropping of the landing pad

Figure 3.11: Result after detecting corners in Figure 3.10b

corner points start increasing as we approach the end of the landing pad on the right. Thus

the sliding window,W j
col at step j for which ∆j

col > 0 indicates the location for the vertical

ending point region of the landing pad. To get a more accurate approximate positioning of

the end ordinate of the landing pad, we calculate the first quartile Q1
W j

col
of the 10 points

in W j
col. Thus column number Q1

W j
col

is the vertical end point of the landing pad. Using

the two points we crop the respective portion out of Figure 3.10a. This results in the new

image IcroppedColumn as shown in Figure 3.10b.

We can see in Figure 3.10b, that there could be still some portions in the image which

could still have some grassy areas. This happens when the landing pad in the image is

skewed. We will use the grassy region on the top to determine the skew angle. But before

that we need to remove the additional grassy region that might occur on either side of

the landing pad after our first iteration. So in the next few steps we will be performing

another round of corner detection on Figure 3.10b and localizing the ending points of the

landing pad using the best fit line. Figure 3.11 shows the result of the corner detection on

Figure 3.10b. We then take those corner points and generate the scatter plot to find the

line that best represent the spread of corner points. Figure 3.12 shows the line obtained by

fitting a fourth degree polynomial line. We can discard the initial points on the line till we

get the first non zero value. We can see that towards the end of the line, the corner counts

increase and thus as a result the slope of the line increases gradually.

Now if we look at Figure 3.11 we can see that the increase of corner counts near the

end indicates the presence of the grassy region. So we will use this information to localize

the right end of the landing pad. We will look for the region where there is a continuous
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Figure 3.12: Best fit line for the column projections of corner points from Figure 3.11

increase in the slope of the line. Towards that end we create a sliding window W i
col of 10

points along the points on the best fit line in Figure 3.12. At each step W i
col is shifted by

5 points along the axis of the curve. Let M i
col be the median of the sliding window W i

col

at step i and similarly M i−1
col is the median of the sliding window W i−1

col at step (i − 1)

respectively. Let the change between the corresponding medians of two sliding windows at

step (i− 1) and i be defined as, ∆i
col = M i

col−M
i−1
col . If we observe the curve in Figure 3.12

we can see when ∆i
col > 0, it means that the slope of the curve is increasing and so in order

words it means that the number of corner points detected is gradually increasing. We can

see from Figure 3.11, that the corner points start increasing as we approach the grass on

the right side of the landing pad. Specifically, we would like to find the region on the curve

where the increase in slope is above a certain threshold θ. If we look at Figure 3.11, we can

see that although the corner counts have started to increase from the middle portion of the

image, but it is only at the right end when the corner counts increases sharply and that

indicates the vertical end of the landing pad. Thus our use of a threshold value, helps us to

capture that specific region where the curve starts increasing rapidly. Let there be N points

on the curve, then Wcol = dN5 e is the number of windows or steps over the curve. Let after

step or window j, the slope of the curve starts to increase, so we have Icol = {Ikcol}, where

Ikcol = {k|Mk −Mk−1 > 0} and j ≤ k ≤ W . From the set of points in Icol, we want to find

the point p such that p = min{i|i ∈ Ikcol ∧∆i
col > θ}. So points in the sliding window W p

col

gives us the location of the vertical end of the landing pad on the right side. To get a more
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(a) IcroppedColumn (b) IcroppedFinal

Figure 3.13: Result after second iteration of column based cropping of the landing pad

(a) Corners detected in left half of cropped image
in Figure 3.13b

(b) Corners detected in right half of
cropped image in Figure 3.13b

Figure 3.14: Corners detected in Figure 3.13b

accurate approximate positioning of the starting ordinate of the landing pad, we calculate

the first quartile Q1W p
col

of the 10 points in W p
col. Thus column number Q1W p

col
is the vertical

end point of the landing pad on the right side. Next we crop the respective portion out of

Figure 3.13a. This results in the new image IcroppedF inal as shown in Figure 3.13b.

3.2.3 Finding the skew angle

After we have been able to find the bounding coordinates of the landing pad in Fig-

ure 3.13b, the final step is to find the skew angle and rotate the image accordingly. We

start by following the similar procedure of finding the corners in Figure 3.13b. After we

generate the corners we divide the image into two halves and count the number of corners

detected in each half. The larger the count, the more grassy region in that particular half.

In our example, the right half had the larger corner counts as shown in Figure 3.14b.

From the corners detected, we create a hash map for corner counts in each row. Each

hash map corresponding to a row i, holds the number of the columns in that row, where the

corners were detected. Mathematically, let there be P rows and Q columns in Figure 3.14b.

Let (i, j) be the coordinate in the image which is detected as a corner point. We represent the

presence or absence of a corner point at the location (i, j) by (ri, cj), where (ri, cj) = (1, 1)

if it is a corner point and (0,0) otherwise. Both values (ri and cj) need to be 1 in order

to be classified as a corner point. So the hashmap (Mr(i)) corresponding to row ri will

hold the count of the y–coordinate elements in the set (ri, c0), (ri, c1), (ri, c2), . . . , (ri, cQ)
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.

Figure 3.15: Skew angle detection in Figure 3.13b

.

Figure 3.16: Pad image in Figure 3.13b rotated counterclockwise to eliminate skew

where ri = 1, i.e. Mr(i)→ Σciy, where 0 ≤ y ≤ Q and ciy represents the y–coordinate (cy)

corresponding to (ri, cy) and ri = 1. In the above equation, ciy = 1, if (i, y) is a corner point

or else ciy = 0. Next we find row pright where pright = min{i|i ∈Mr(i) ∧Mr(i) = 0}. Thus

row p from the top, gives use the location where the landing pad starts in Figure 3.14b.

Similarly for the left half of the corners detected in Figure 3.14a, we find row pleft where

pleft = min{i|i ∈ Mr(i) ∧Mr(i) = 0}. Thus we have the 3 required points to find the

skew angle of the landing pad in Figure 3.13b. The three points are (pleft, 0), (pright, 0) and

(pright, Q− 1).

A line is drawn between the points (pleft, 0) and (pright, Q− 1). This virtual line is de-

picted by a yellow dash line in Figure 3.15. If the corner counts increase from left to right of

the image then the skew angle is ∠(pleft, 0), (pright, Q−1), (pright, 0). If the counts decrease

from left to right of the image, the skew angle is ∠(pleft, Q − 1), (pright, 0), (pright, Q − 1).

Figure 3.16 shows the rotated image after adjusting for the skew angle.

3.3 Counting Bees On The Detected Landing Pad

In this section we will present an algorithm to count the bees present on the cropped

landing pad as seen in Figure 3.16.

3.3.1 Using Haar Wavelet Transform To Count The Bees

We used 1D Haar Wavelet Transform [??] to design the first algorithm to count bees

on the landing pad. In 1D HWT, a signal is represented as a vector in Rn where n = 2k
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and k ∈ N . As formulated in [??], let W
(k)
a be a 2k × 2k matrix for computing k scales of

the 1D HWT. We can compute the above matrix using the n canonical base vectors of Rn.

Let x = (x0, ..., x2k−1) be a signal in Rn, then the kth-scale 1D HWT of x is defined as in

Equation (3.3).

W (k)
a · xT = y (3.3)

Equation (3.4) shows the corresponding values in column vector y.

yT = (a
(0)
0 , c

(0)
0 , c

(1)
0 , c

(1)
1 , ..., c

(k−1)
2k−1−1) (3.4)

In the above Equation 3.4, a
(0)
0 = µ(y) and cji is the coefficient of the ith Haar wavelet at

scale j. Haar Wavelet Transformation is primarily used to detect significant changes and

detect spikes in signal values. We will be working with four types of spikes to detect and

classify signal changes: up-down triangle, up-down trapezoid, down-up triangle, and down-

up trapezoid. Figure 3.17 shows up-down triangle and trapezoid spikes and Figure 3.18

shows down-up triangle and down-up trapezoid spikes.

Figure 3.17: Up-down spikes

In Figures 3.17 and 3.18, the lower graph represents the possible values of probable values
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Figure 3.18: Down-up spikes

of Haar Wavelets at scale k. A spike S is represented by 9-tuples of real numbers as shown

in Equation (3.5).

S = (us, ue, α, fs, fe, γ, ds, de, β) (3.5)

The first two elements of the 9-tuple, us and ue, represent the starting and the end

points of the spike’s climb when the wavelet coefficients of the 1D HWT increase, as shown

in Figure 3.17 and 3.18. The third element of the tuple, α represents the sharpness of the

spike’s climb. If cu
(k)
s and cu

(k)
e are the kth scale wavelet coefficient ordinates at us and ue,

then the angle or the sharpness of the spike’s climb is measured as α = tan−1(ue − us +

1, cu
(k)
e − cu(k)s ).

The flat part in the trapezoidal spike in Figure 3.17 and 3.18 is represented by the

fourth, fifth, and sixth elements of the 9-tuple in Equation (3.5). fs and fe, represent the

starting and the end points of the flat segment, where the wavelet coefficients of the 1D
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HWT either remains the same or shows minor fluctuations. If cf
(k)
s and cd

(k)
e are the kth

scale wavelet coefficients corresponding to fs and fe, respectively, the spike’s flatness is

estimated as γ = tan−1(fe − fs + 1, cf
(k)
e − cf (k)s ). From the Figures 3.17 and 3.18 we can

see that the absolute value of γ tends to be close to 0.

Finally the segment of the spike where the descend happens as seen in Figure 3.17

and 3.18 is represented by the seventh, eighth, and ninth elements of the 9-tuple in Equa-

tion (3.5). ds and de, represent the starting and the end points of the spike’s descend when

the wavelet coefficients of the 1D HWT decreases due to reduction in the samples from

the analyzed signal. The last element of the tuple, β represents the sharpness or angle of

the spike’s descend. If cd
(k)
s and cd

(k)
e are the kth scale wavelet coefficient ordinates at ds

and de, respectively, then the sharpness or the angle of the spike’s decline is measured as

β = tan−1(de − ds + 1, cd
(k)
e − cd(k)s ).

An image can be interpreted as a signal. Thus given an image, the spikes can be

computed for either each row or column depending upon the application domain. In our

application, we will be computing the spikes along each row r. For each row r, the column

indices for the actual pixels covered by each spike at scale j is represented using Equa-

tion (3.6).

p(j, s, e) = {i|2j · s ≤ i ≤ 2j · (e+ 1)− 1} (3.6)

In the above equation, s and e are the starting and ending wavelet coefficients at scale j.

For up-down spikes as in Figure 3.17, s = us and e = de, whereas, for down-up spikes as in

Figure 3.18, s = ds and e = ue. Let n be the number of rows in the image and the total

number of up-down spikes in row r be Ur. Then set of pixel columns covered by up-down

spikes in row r is represented in Equation (3.7), where the scale is j and sz and ez are the

beginning and end positions of spike z in row r respectively.

Zr
U,j =

⋃
z∈Ur

p(j, sz, ez), where 0 ≤ r ≤ n− 1 (3.7)

Similarly, if Dr be the number of down-up spikes in row r. Then the set of pixel columns
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covered by down-up spikes in row r is represented in Equation (3.8), where the scale is j and

sz and ez are the beginning and end positions of a down-up spike z in row r respectively.

Zr
D,j =

⋃
z∈Dr

p(j, sz, ez) (3.8)

As you can infer from Equation (3.7) and (3.8), certain column pixels would be counted

more than once. Thus the number of unique pixels covered by the up-down and down-up

spikes in row r is represented as follows in Equation (3.9).

Zr
j = (Zr

U,j − Zr
D,j) ∪ (Zr

D,j − Zr
U,j) ∪ (Zr

D,j ∩ Zr
U,j) (3.9)

Thus in an image I with n rows, the total number of pixels covered by the up-down and

down-up spikes is formulated as follows in Equation (3.10).

Xj(I) =
n−1∑
r=0

|Zr
j | (3.10)

Let us use an example to see the workflow of the HWT in detecting and counting bees.

We start by analyzing a small 16x16 portion cropped out from a landing pad image with a

single bee as seen in Figure 3.19.

Figure 3.19: Bee Image

Next, in order to separate the bee pixels from the non-bee pixels in Figure 3.19, we apply

HWT. We would refer a pixel in the image to be a bee pixel if it is covered by the up-down

or down-up spike in each row as seen in Figure 3.20. The image on the left has only 1 up-

down triangle spike detected and image on the right has 1 down-up triangle spike detected

on row 8 after application of a single scale 1D HWT.
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Figure 3.20: Up-down triangle spike in row 8 (left); down-up triangle spike in row 8 (right);
up-segments are red; down-segments are blue

We refer back to Equation (3.5) to represent the spikes in Figure 3.20. Towards that

end, the up-down spike Sud in the left image is represented as follows in Equation (3.11).

Sud = (3, 4, π/4,−1,−1, 0, 5, 5, π/3) (3.11)

In the above equation, the starting and ending points of the curve are the first two elements

in Sud, i.e. us = 3 and ends at ue = 4. The third element is the angle of the climb for

the spike, α ≈ π/4. The fourth, fifth, and sixth elements represent the flat part of the

spike. But since the up-down spike is a triangle spike there will be no flat segment, thus

fs = fe = −1 and γ = 0. Finally the seventh, eighth, and ninth elements of Sud represent

the segment where the spike descends. Thus the starting and end points of the decline

segment are the seventh and eighth element respectively with the angle of descend being

the ninth element of Sud. Hence ds = 5 and de = 5 and the angle β ≈ π/3.

Similarly, the the down-up spike Sdu in the image on the right in Figure 3.20 is repre-

sented as follows in Equation (3.12).

Sdu = (3, 4, π/4,−1,−1, 0, 1, 2, π/3) (3.12)

Sdu is a down-up spike, thus the starting point of the climb will be after the ending point

of the decline segment. In the above equation, the starting and ending points of the curve

are the first two elements in Sdu, i.e. us = 3 and ends at ue = 4. The third element is the

angle of the climb for the spike, α ≈ π/4. The fourth, fifth, and sixth elements represent

the flat part of the spike. But since the up-down spike is a triangle spike there will be no

flat segment, thus fs = fe = −1 and γ = 0. Finally the seventh, eighth, and ninth elements
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of Sdu represent the segment where the spike descends. Thus the starting and end points

of the decline segment are the seventh and eighth element respectively with the angle of

descend being the ninth element of Sdu. Hence ds = 1 and de = 2 and the angle β ≈ π/3.

Next, in order to find the set of pixel columns in row 8 covered by the up-down Sud

and down-up Sdu spike we refer to Equations (3.6), (3.7), and (3.8). The result is shown in

Equation (3.13) and (3.14)

Z8
U,1 = {p(1, 3, 5)} = {i|6 ≤ i ≤ 11} (3.13)

Z8
D,1 = {p(1, 1, 4)} = {i|2 ≤ i ≤ 9} (3.14)

The number of unique column pixels covered by the up-down and down-up spike in

row 8 is given in Equation (3.15) following the formulation in Equation (3.9).

Z8
1 = (Z8

U,1 − Z8
D,1) ∪ (Z8

D,1 − Z8
U,1) ∪ (Z8

D,1 ∩ Z8
U,1) (3.15)

Thus the unique pixels that represent the bee can be found out by solving for Equa-

tion (3.15). Z8
1 = {10, 11} ∪ {2, 3, 4, 5} ∪ {6, 7, 8, 9} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Since

the scale of the 1D HWT used in this example is j = 1, thus the total number of bee

pixels in Figure 3.19 covered by the spikes can be calculated following the formulation in

Equation (3.10). The result is shown in Equation (3.16).

X1(I) =

15∑
r=0

|Zr
1 | = 44 (3.16)

A normalizer N is then used to count the actual number of bees present in the entire

image. This normalizer is the average number of pixels occupied by individual bees. The

value of N is found experimentally and it depends upon the distance of the camera from

the landing pad. The combined process of counting bees on the landing pad is presented

in Algorithm 3.1. The algorithm takes as input an image I, normalizer N , scale of 1D
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HWT j, thresholds for the angles of climb α, descend β and flat area γ of the spike. In our

experiments α = β = 60◦ and γ = 5◦.

Algorithm 3.1 Localize Landing Pad And Count Bees

Input:
Image (I),
Normalization Factor (N),
Scale of 1D HWT (j),
Climb Angle (α),
Descend Angle (β),
Angle of Flat Segment (γ)

Output:
Count of Bees on the Landing Pad (count)

Begin
L = Localize landing pad using method discussed in Section 3.2
GL = Perform Gaussian Blur on L with a 7x7 kernel
PL = Apply Pyramid Mean Shift Filter on GL
RL = Apply Max RGB Filtering on PL
BL = Blue pixels in RL are set to white. This is done to eliminate the effect of
shadows being turned blue after applying max RGB filtering in the previous step
GrayL = Convert BL to grayscale
Xj(GrayL) = Apply 1D HWT with scale j to GrayL and then count all pixels
covered by up-down and down-up spikes in all rows
count = bXj(GrayL)/Nc

End

The output from various steps of the Algorithm 3.1 is shown below.

Figure 3.21: Landing Pad L localized from Image I using methods discussed in Section 3.2

Figure 3.22: Image PL after applying Gaussian Blur on Figure 3.21 and then shifting the
mean by applying pyramid mean shift filter
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Figure 3.23: Image RL after applying max RGB filtering on Figure 3.22

Figure 3.24: Image BL after bleaching the pixels in Figure 3.23

Figure 3.25: Final grayscaled image GrayL

3.4 Evaluation on Sample Images

We compared the accuracy of the algorithm by selecting 793 images with bees on the

landing pad. We tried to select images which had some amount of skewness. Three human

observers went through our selected set and counted the number of bees present on the

landing pad in each image. The above counts served as a ground truth for our evaluation.

Towards that end, we also evaluated another bee counting algorithm proposed in [18] on

the same sample of images. We will refer to this algorithm as Algorithm Omni. Table 3.1

summarizes the bee count results from the two algorithms.

Algo/Error 3 5 7 10 15

Algorithm 3.1 39.97 53.72 63.56 73.77 82.10

Algorithm Omni [18] 63.18 73.77 80.10 84.99 90.29

Table 3.1: Evaluation of two bee counting algorithms: column names are error margin
values; other values are percentages

In Table 3.1, the columns represent the allowable error margin between the ground truth

bee counts and the bee counts from the two algorithms. For example, let us consider the case

when the value of Error Threshold is 3. The value in the second column corresponding

to Algorithm 3.1, which is 39.97, suggests that the bee counts while using Algorithm 1

where within an absolute margin of 3 with the ground truth data for 39.97% of the sample

images. Similarly the values in the last column which are 82.10 and 90.29 respectively,
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suggests that when the Error Threshold is 15, the number of times the bee count results

from Algorithm 3.1 were within an absolute difference of 15 from the ground truth data was

for 82.10% of the sample images, whereas bee count results from Algorithm 2 were within

the threshold for 90.29% of the sample images. The under performance of the Algorithm 3.1

can be attributed to the fact that in certain images the landing pad Localization was not

perfect and there were grassy regions left above or around the landing pad. That resulted

in 1D HWT generating spikes on the grassy regions and that resulted in false positives.

Algorithm 2 on the other hand adds an additional step to remove any excess grassy areas

above the landing pad. Figure 3.26 shows an example of one such image where the landing

pad localization did not work perfectly and there were grassy regions left. False positives

also occurred when shadows, blades of grass or leaves blown by wind were counted as bees.

In cases where the landing pad was localized correctly, both the algorithms gave similar bee

counts.

Figure 3.26: Inaccurately localized landing pad

3.5 Discussion

Static images of landing pads, may not always be a sufficient tool to study the foraging

activity of a hive. In order to understand the behavior, the images need to be taken at a

very small interval. Analyzing flight patterns of foraging traffic would help us understand

how many bees move in and out of the hives at a given time. Improvement in the hardware

of raspberry pis allows us to take videos through the raspberry pi camera. Hence in the fol-

lowing chapter we will analyze the videos of forager traffic and work towards understanding

how foraging traffic activity can provide information regarding the health of a hive.
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CHAPTER 4

TRACKING DIRECTIONAL BEE MOTIONS

4.1 Goal

In this chapter we will be discussing a method to detect bee motions from extracted

frames of a video. The goal of the method proposed in this chapter, is to analyze each

frame and then find the coordinates of the positions in the frame where bee movement are

detected. Next we take those positions and project them on a separate frame (size is the

same as the original frame) with a white background. This helps us to take a frame with

bees and convert them into a frame with white background having only the positions of

interest marked, i.e. where there are bee movements. To follow along in this chapter, lets

take for example 12 consecutive frames from a video. Figure 4.1 shows the twelve frames.

Let us assume that the frame rate of the video is 7 frames per second. Figure 4.1a is

the first frame and Figure 4.1l is the last frame of the video. For the above sample frames

the end objective of our proposed method are the images with the white background shown

in Figure 4.2. For example, Figure 4.2b is the result of applying our method to Figure 4.1b.

In the resultant image we can see that only the bees which show movements have been

marked. Similarly Figure 4.2j is the result of applying our method to Figure 4.1i. In the

following sections in this chapter we will see the various methodologies used in designing

our proposed approach.

4.2 Background Difference

Background difference method is suitable for motion detection in scenarios where the

camera and the background is fixed. This model suits our BeePi system since our cameras

are fixed. It’s advantages include being simple and having more accurate description of the

target positioning. It does have some shortcomings where the background information may
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(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6 (g) Image 7 (h) Image 8

(i) Image 9 (j) Image 10 (k) Image 11 (l) Image 12

Figure 4.1: 12 Sampled Consecutive Frames from a Video
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(a) Image 2 (b) Marked Image 2 (c) Image 3 (d) Marked Image 3

(e) Image 5 (f) Marked Image 5 (g) Image 8 (h) Marked Image 8

(i) Image 9 (j) Marked Image 9 (k) Image 11 (l) Marked Image 11

Figure 4.2: Sample original frames and the corresponding images with bees movements
marked on a white background
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be influenced by variable illumination, shadows and noise.

4.3 Creation of a Dynamic Background Image

The first step of the algorithm is to create a dynamic background average image to

compare against each frame of the video. The cameras in our BeePi system record video at

25 frames per second. We found during our experiments, that examining frames between

half a second interval before and after the current frame in context gives us meaningful

results in examining bee movements. Thus in order to create a dynamic background image

for each frame, we calculate a running average of the 12 preceding and 12 successive frames

(i.e. 0.5 seconds of video before and after the current frame). Algorithm 4.1 describes the

method to find the background image.

Algorithm 4.1 Compute Initial Dynamic Background Image (ComputeBackground)

Input:
Total Number of Frames in The Video (n),
Index of Current Frame (pos),
Average Window Size (avgWinSize),
Sum of All Images in the Current Window (avgSum),
Number of Images Before Current Frame (ImagesbeforeCurrent),
Number of Images After Current Frame (ImagesafterCurrent)

Output:
Average Background Image (Avg)

Begin
ImagesCountinBackground = avgWinSize - [max(0, ImagesbeforeCurrent - pos)

+ max(0, ImagesafterCurrent - (n - 1 - pos ))]
Avg = avgSum / ImagesCountinBackground

End

The longer an object is in a particular place on screen in the source video, the more

distinct it will tend to be in the resulting average image. The average background image

displays the portions of the image frame that remain approximately the same over the 1

sec of the video. The intuition behind generating an average background image comes from

the fact that static bees on the landing pad and static background should not be considered
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while investigating bee motions.

In our example with frames in Figure 4.1, let us assume the fps of the video is 7,

which means there are 7 frames in 1 second of the video. Thus in order to create a average

background image for a particular frame, we have to consider its 3 preceding and 3 successive

frames. So we create a sliding window of 7 frames (3 preceding + current frame + 3

successive), and we call the middle frame as the frame in context. At the beginning when

the first frame is in consideration, there are no preceding 3 frames. In that scenario, we

assign 3 null values to the beginning of the sliding window array and so on. Below is the

detailed list of frames that were averaged to find the background image for the frame in

context in this current example. Background1 represents average background when Frame 1

(Figure 4.1a) is in context. All corresponding frames in context are marked in bold. Empty

below refers to a single null value, whereas Image1 is an image matrix.

1. Background1 =⇒ Empty, Empty, Empty, Image1, Image2, Image3, Image4

2. Background2 =⇒ Empty, Empty, Image1, Image2, Image3, Image4, Image5

3. Background3 =⇒ Empty, Image1, Image2, Image3, Image4, Image5, Image6

4. Background4 =⇒ Image1, Image2, Image3, Image4, Image5, Image6, Image7

5. Background5 =⇒ Image2, Image3, Image4, Image5, Image6, Image7, Image8

6. Background6 =⇒ Image3, Image4, Image5, Image6, Image7, Image8, Image9

7. Background7 =⇒ Image4, Image5, Image6, Image7, Image8, Image9, Image10

8. Background8 =⇒ Image5, Image6, Image7, Image8, Image9, Image10, Image11

9. Background9 =⇒ Image6, Image7, Image8, Image9, Image10, Image11, Image12

10. Background10 =⇒ Image7, Image8, Image9, Image10, Image11, Image12, Empty

11. Background11 =⇒ Image8, Image9, Image10, Image11, Image12, Empty, Empty

12. Background12 =⇒ Image9, Image10, Image11, Image12, Empty, Empty, Empty
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(a) Background 1 (b) Background 2 (c) Background 3 (d) Background 4

(e) Background 5 (f) Background 6 (g) Background 7 (h) Background 8

(i) Background 9 (j) Background 10 (k) Background 11 (l) Background 12

Figure 4.3: Background Images

We can see Background1 has 7 values in its list, with 3 of them being Empty and

4 of them being image frames. Since Image1 is the middle frame, we call Image1 as the

frame in context. When we calculate the first average image Background1, we take into

consideration only 4 valid images as the count. In this case, input variable avgSum in

Algorithm 4.1 refers to the pixel wise sum of Image1, Image2, Image3 and Image4. We

can refer to the calculation of ImagesCountinBackground in Algorithm 4.1. In the case of

Background1 (pos = 0), ImagesCountinBackground = 7 - (max(0, 3-0) + max(0, 3-(12-1-0)))

= 4. Similarly in the case of Background11 (pos = 10), ImagesCountinBackground = 7 -

(max(0, 3-10) + max(0, 3-(12-1-10))) = 5. Figure 4.3 shows the corresponding background

images.
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(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

(e) Background 1

Figure 4.4: 4 Frames Used to Generate Background1. Red dots in Figure 4.4e are marked
only for presentation or visual reference of the reader. Image 1 is the frame in context i.e.
the middle frame of the 1 second window

4.3.1 Visual Description of Background Generation

In this part we will compare the background images in Figure 4.3 with the correspond-

ing frames in context. Specifically we will try to find out visually if our approach generated

the correct average background image. We will start with Background1 (Figure 4.3a), which

was generated using Frames1 (Figure 4.1a), Frames2 (Figure 4.1b), Frames3 (Figure 4.1c)

and Frames4 (Figure 4.1d).

In Figures 4.4a, 4.4b, 4.4c and 4.4d we see that the bees which have moved in the 4

consecutive frames have been marked. Since the background average image is generated

using the above 4 frames, we see that the Figure 4.4e was correctly able to pick up the bee

movements which have been marked by red dots. The other static bees in the frames have

remained in the same position in the background image too.

Another example, in Figures 4.5a, 4.5b, 4.5c, 4.5d, 4.5e, 4.5f and 4.5g we see that the

bees which have moved in the 7 consecutive frames have been marked. Since the background

average image is generated using the above 7 frames, we see that Figure 4.5h was correctly

able to pick up the bee movements which have been marked by red dots for our reference.
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(a) Image 6 (b) Image 7 (c) Image 8 (d) Image 9

(e) Image 10 (f) Image 11 (g) Image 12

(h) Background 9

Figure 4.5: 7 Frames Used to Generate Background9. Red dots and green markings in
Figure 4.5h are used only for presentation or visual reference of the reader. Image 9 is the
current frame in context i.e. the middle frame of the 1 second window
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The other static bees in the frames have remained in position in the background image too.

From the two examples we can see that if we subtract the background image from the frame

in context, we would be able to find the positions in the frame where there are possibilities

of bee movements being detected.

4.4 Subtracting Background Image From The Video Frame in Context

The following step involves subtracting the average background image from the video

frame in context. By doing so, we will be able to find the positions in the frame that have

moved or have shown some sort of motion over the 1 second of the video. The intuition

behind this approach is that the resultant image after subtraction would give us the positions

in the frame in context, which is the farthest away (in terms of distance) from the average

background image. The positions in the frame which are closest to the background image

are the portions of the frame which have remained static over that 1 second of the video

(the frame in context, is the middle frame of the 1 second window). Thus the locations

where the distance was maximum will help us to identify the bee movements. The camera

in our BeePi system points vertically on the landing pad over which the bees enter or leave

their respective hives. Thus we can safely say that any recorded movement would most

likely correspond to a bee motion.

In our example with 12 Frames in Figure 4.1, we have seen in Section 4.3 that there

are 12 average background images generated. In Figure 4.6, we see some of the resultant

images after subtracting the average background images. The first column is the current

frame in context, i.e. the middle frame of the 1 second period of the video, the second

column represents the corresponding average background image. The images in the third

column are generated by subtracting the background image from the frame in context in

the first column.

We can see in Figure 4.7, that the images generated after subtracting the background

image from the current does not only contain the bees which have moved in the current

frame, it also contains traces of bees which have moved or shown movement over the 1

second of frames (7 frames) used to generate the background image. Failure to remove
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(a) Image 1 (b) Background 1 (c) Difference Image 1

(d) Image 4 (e) Background 4 (f) Difference Image 4

(g) Image 7 (h) Background 7 (i) Difference Image 7

(j) Image 9 (k) Background 9 (l) Difference Image 9

Figure 4.6: Frames with corresponding average background to be compared against and
the image generated after subtraction. The images in the third column are generated by
subtracting the image in the second column from the image in the first column. We are
trying to find out the portion in the current frame in context that have moved over a 1
second of the video. The current frame occurs in the middle of the examining period of 1
second of the video.
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(a) Difference Image 1 (S1) (b) Difference Image 4 (S4) (c) Difference Image 9 (S9)

Figure 4.7: Difference Image

those additional spots from the resultant images would create problems of duplicate counts.

So in the following steps we will focus on trying to remove those additional bee traces from

those images. The end goal would be to find only those spots in the difference image which

represent bees that have moved in the frame in context.

4.5 Smoothing Out Difference Image

This step involves smoothing the resultant image generated by subtracting the current

frame from its corresponding average background image. It helps to turn detected move-

ment regions into local maxima in the difference image. Smoothing helps in the better

measurement of a variable which is varying slowly and is corrupted by random noise. In

our case, the difference image may be subjected to occasional spikes or random noise as we

see in Figure 4.7. Such random noises may be generated by shadows of flying bees or blurry

images due to camera movement during wind gusts etc. Thus it can sometimes be useful

to replace each data point by some kind of local average of surrounding data points. Since

nearby points measure very nearly the same underlying value, averaging can reduce the level

of noise without (much) biasing the value obtained. To that we can say that smoothing

reduces noise, giving us (perhaps) a more accurate intensity surface.

We smooth the detected movement regions by applying a mask convolution over the

difference image. For every detected maxima point in the difference image, we take into

consideration its 4 neighboring points. For example if the maxima point is at (i,j), then

the 4 neighboring pixels for consideration would be (i-1, j), (i+1, j), (i, j-1), (i, j+1) re-
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spectively. We decided to smooth the image using 4 neighboring points for simplicity and

faster processing. Next we blur each resultant image frame by averaging each pixel by its

4 nearest pixels. Doing so each bee becomes a local maxima in the difference image. The

approach is explained in Algorithm 4.2. The central pixel is weighed more than the others,

and the others are weighted unequally for different degrees of smoothing. This would help

in eliminating the false detections which may occur due to random noises.

Algorithm 4.2 Smooth Image (SmoothImage)

Input:
Difference Image (image). Shape is (r,c),
Smoothing Steps (n)
Smoothing Factor (factor)

Output:
Smoothed Image (image)

Begin
r = Number of rows in image
c = Number of columns in image
Initialize a zero or empty matrix eIm with same dimension of image
Populate matrix eImT with values from rows 1 to (r − 1) of eIm. Shape is (r-1,c)
Populate matrix eImB with values from rows 0 to (r − 2) of eIm. Shape is (r-1,c)
Populate matrix eImR with values from columns 1 to (c− 1) of eIm. Shape is (r,c-1)
Populate matrix eImL with values from columns 0 to (c− 2) of eIm. Shape is (r,c-1)

Populate matrix imT with values from rows 1 to (r − 1) of image. Shape is (r-1,c)
Populate matrix imB with values from rows 0 to (r − 2) of image. Shape is (r-1,c)
Populate matrix imR with values from columns 1 to (c− 1) of image. Shape is (r,c-1)
Populate matrix imL with values from columns 0 to (c− 2) of image. Shape is (r,c-1)

while i < n
Begin

Step 1: multiply every value in image by 4 and use those values to update eIm
Step 2: add corresponding entries in eImT with imB to update eImT inplace
Step 3: add corresponding entries in eImB with imT to update eImB inplace
Step 4: add corresponding entries in eImR with imL to update eImR inplace
Step 5: add corresponding entries in eImL with imR to update eImL inplace
Step 6: multiply every value in eIm by 1

factor and use those values to update image

i = i + 1
End

End
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In Figure 4.8, we can see an example of how smoothing helps in removal of occasional

spikes or random noises. We started with the matrix :
( 5 1 1
1 1 2
1 1 7

)
, which had random noises

in the first and third rows. After 1 iteration (refer to Figure 4.8k), we see that the image

matrix still has some spikes. But as we increase the number of smoothing steps, we see that

spikes in the image matrix are reduced (Figure 4.8l, Figure 4.8m). Thus after 4 rounds of

smoothing (refer to Figure 4.8n), the image matrix is transformed to a more uniform spread

of values:
( 0.870 0.996 0.738
0.972 1.343 1.223
0.667 1.136 1.161

)
, with the center pixel being weighted more than the others in

the final smoothed matrix.

The Algorithm 4.2 can be expressed as a formula as shown in Equation 4.1. Each

pixel (i, j) in image is replaced in place by Equation 4.1. In cases of boundary pixels when

image(i−1, j), image(i+1, j), image(i, j−1) and image(i, j+1) does not exist, then they

are replaced by 0.

image(i, j) =[image(i− 1, j)+

image(i, j − 1) + 4 ∗ image(i, j) + image(i, j + 1)+

image(i+ 1, j)]/factor

(4.1)

Let us take a look at our example in Figure 4.8 and evaluate the smoothed image

matrix in Figure 4.8k using the Equation 4.1. Let the smoothing factor factor be 8. The

middle pixel (1, 1) is evaluated as follows:

image(1, 1) = [image(0, 1) + image(1, 0) + 4 ∗ image(1, 1) + image(1, 2) + image(2, 1)]/8

image(1, 1) = [1 + 1 + 4 ∗ 1 + 2 + 1]/8 = 1.125

Similarly for the border pixel (0, 0), image(0, 0) is evaluated as follows:
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image =

 5 1 1
1 1 2
1 1 7


a. Sample image matrix

eIm =

 20 4 4
4 4 8
4 4 28


b. Step 1

eImT =

[
9 5 9
5 5 30

]

c. Step 2

eIm =

 20 4 4
9 5 9
5 5 30


d. Updated eIm matrix

eImB =

[
21 5 6
10 6 16

]

e. Step 3

eIm =

 21 5 6
10 6 16
5 5 30


f. Updated eIm matrix

eImR =

 10 7
7 17
6 31


g. Step 4

eIm =

 21 10 7
10 7 17
5 6 31


h. Updated eIm matrix

eImL =

 22 11
11 9
6 13


i. Step 5

eIm =

 22 11 7
11 9 17
6 13 31


j. Updated eIm matrix

image =

 2.750 1.375 0.875
1.375 1.125 2.125
0.750 1.624 3.875


k. Step 6: image after 1 iteration

image =

 1.718 1.281 0.875
1.265 1.375 1.796
0.750 1.531 2.406


l. Smoothed image after 2 iterations

image =

 1.177 1.136 0.822
1.113 1.421 1.480
0.724 1.332 1.619


m. Smoothed image after 3 iterations

image =

 0.870 0.996 0.738
0.972 1.343 1.223
0.667 1.136 1.161


n. Smoothed image after 4 iterations

Figure 4.8: An example to demonstrate the step by step procedure of Algorithm 4.2. Each
step in the caption represents the result from the corresponding step of the algorithm.
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image(0, 0) = [image(−1, 0)+ image(0,−1)+4∗ image(0, 0)+ image(0, 1)+ image(1, 0)]/8

image(0, 0) = [0 + 0 + 4 ∗ 5 + 1 + 1]/8 = 2.75

In the second step of smoothing in Figure 4.8l, Pixel image(2, 2) is evaluated as:

image(2, 2) = [image(1, 2) + image(2, 1) + 4 ∗ image(2, 2) + image(2, 3) + image(3, 2)]/8

image(2, 2) = [2.125 + 1.624 + 4 ∗ 3.875 + 0 + 0]/8 = 2.406

From the above examples we can see that in our smoothing algorithm the central pixel

is always weighed more than the neighboring pixels. The result of the smoothing step is

shown in Figure 4.9. A visual comparison of the images in the second and third column in

Figure 4.9 shows how smoothing has helped to turn multiple maxima values in a region to

local maxima points. Along with that, if we observe closely the images in the first and third

column, we will be able to see that the positions of those local maxima are closely associated

to the positions of corresponding bee movements in the images in the first column. The

higher the above association the more distinct is the corresponding local maxima region,

thus resulting in brighter spots in the smoothed image.

4.6 Finding Maxima Points In The Smoothed Image

The result of the smoothing step in the above subsection is a frame with positions/points

which are local maximas. But we saw in Figure 4.7 and Figure 4.9, not all maxima points

that are detected correspond to bee movements. If we refer to the smoothed images in

Figure 4.9, specifically we would like to remove those points which correspond to the lighter

spots on the smoothed images. Therefore, we need to consider a threshold below which all

the points will be removed. We can define this threshold to be the minimum acceptable
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(a) Image 1 (b) Difference Image 1 (c) Smooth Image 1

(d) Image 4 (e) Difference Image 4 (f) Smooth Image 4

(g) Image 7 (h) Difference Image 7 (i) Smooth Image 7

(j) Image 9 (k) Difference Image 9 (l) Smooth Image 9

Figure 4.9: The images in the first column are the original frames. The second column
is the result of subtracting the average background image from the corresponding frame in
the first column. The images in the third column are generated as a result of smoothing
the difference image in the second column.
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color variation between the frame in context and the corresponding background. The above

threshold will not be a one size fits all kind of value. In our experiments we have seen, the

threshold value is different depending upon a video and the background in where the bee

hive is located. The procedure to select a threshold value based upon a video is explained

in Section 4.10. The method to find the coordinates of those maxima points is explained

in Algorithm 4.3. While there might be several maxima points above the threshold, but

not all represent the bees. Also the algorithm takes into consideration that a single bee

can generate multiple maxima points close to each other (head, body, wings etc). Thus

the above algorithm takes all those disjointed clusters of maxima points and works towards

reducing them to a single local maxima point.

In the example in Figure 4.10, we see that the initial coordinates of the maxima points

are (0,0), (0,2), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3). At each step,

the algorithm compares an element against its 4 neighboring elements. For example in

‘Step2’ of the algorithm, each element of row ‘i’ in the matrix is compared against the

elements in row ‘i+1’. Similarly in ‘Step5’ of the algorithm, each element of column ‘i’

in the matrix is compared against the elements in column ‘i-1’. Boolean matrix ‘max’ is

populated by comparing the corresponding entry in image against the threshold. Next

computing the element-wise truth value at each step of the algorithm, gives us the position

of the elements which are greater than the threshold and also a local maxima among its

neighboring elements. In the above example in Figure 4.10n, we see that the number of

local maxima points in the final ‘max’ matrix is lower than the number of original maxima

points in the initial ‘max’ matrix in Figure 4.10b. For (2,1), we see that the corresponding

value 136 is higher than its surrounding elements. Another important point of observation

is that, (3,3) has been selected to be a local maxima; but the value at (3,3) which is 125.50

is lower than the value at (2,2) which is 126.89. The reason behind the selection is apparent

when we observe the surrounding elements of (3,3) and (2,2). The surrounding element of

(2,2) has the element 136, which is higher than 126.89. Thus (2,2) was not selected as a

local maxima point.
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Algorithm 4.3 Find Coordinates of Maxima Points (FindMaxima)

Input:
Smoothed Image (image). Shape is (r,c),
Threshold (threshold)

Output:
Coordinates of Local Maxima Points (x, y)

Begin
r = Number of rows in image
c = Number of columns in image
Step 1: Initialize a boolean matrix max. Each entry in max is True,
when the corresponding entry in image is greater than threshold else it is False

Populate matrix maxT with values from rows 1 to (r − 1) of max. Shape is (r-1,c)
Populate matrix maxB with values from rows 0 to (r − 2) of max. Shape is (r-1,c)
Populate matrix maxR with values from columns 1 to (c− 1) of max. Shape is (r,c-1)
Populate matrix maxL with values from columns 0 to (c− 2) of max. Shape is (r,c-1)

Populate matrix imageT with values from rows 1 to (r − 1) of image. Shape is (r-1,c)
Populate matrix imageB with values from rows 0 to (r − 2) of image. Shape is (r-1,c)
Populate matrix imageR with values from columns 1 to (c− 1) of image. Shape is (r,c-1)
Populate matrix imageL with values from columns 0 to (c− 2) of image. Shape is (r,c-1)

Step 2: Initialize a temporary boolean matrix temp1. Entry in temp1 is True,
if corresponding entry in imageB > imageT , else False.
Compute the truth value of temp1 and maxB element-wise and update maxB inplace.

Step 3: Initialize a temporary boolean matrix temp2. Entry in temp2 is True,
if corresponding entry in imageT > imageB, else False.
Compute the truth value of temp2 and maxT element-wise and update maxT inplace.

Step 4: Initialize a temporary boolean matrix temp3. Entry in temp3 is True,
if corresponding entry in imageL > imageR, else False.
Compute the truth value of temp3 and maxL element-wise and update maxL inplace.

Step 5: Initialize a temporary boolean matrix temp4. Entry in temp4 is True,
if corresponding entry in imageR > imageL, else False.
Compute the truth value of temp4 and maxR element-wise and update maxR inplace.

Step 6: (x, y) are positions where the corresponding entry in max is True
End
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134.00 71.75 143 64.34
93.64 102.96 107.66 100.70
99.10 136 126.89 124.69
83.48 103.32 120.09 125.50


a. Sample image matrix

max =


T F T F
F T T T
F T T T
F T T T


b. Step 1 (threshold = 100) T F T F

F F F F
T T T F



c. temp1 = imageB >
imageT

maxB =

 T F T F
F F F F
F T T F



d. After Step 2

max =


T F T F
F F F F
F T T F
F T T T


e. Updated max

 F T F T
T T T T
F F F T



f. temp2 = imageT >
imageB

maxT =

 F F F F
F T T F
F F F T



g. After Step 3

max =


T F T F
F F F F
F T T F
F F F T


h. Updated max


T F T
F F T
F T T
F F F


i. temp3 = imageL >

imageR

maxL =


T F T
F F F
F T T
F F F


j. After Step 4

max =


T F T F
F F F F
F T T F
F F F T


k. Updated max


F T F
T T F
T F F
T T T


l. temp4 = imageR >

imageL

maxR =


F T F
F F F
T F F
F F T


m. After Step 5

max =


T F T F
F F F F
F T F F
F F F T


n. Updated max

Figure 4.10: An example to demonstrate the step by step procedure of Algorithm 4.3.
Each step in the caption represents the result from the corresponding step of the algorithm.
The final result of Step 6 would be the coordinates of the ‘True’ or ‘T’ positions in max,
i.e. (0,0), (0,2), (2,1), (3,3)
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max(i, j) =



True or T, if image(i, j) > image(i− 1, j) AND

image(i, j) > image(i, j − 1) AND

image(i, j) > image(i+ 1, j) AND

image(i, j) > image(i, j + 1)

False or F, if image(i, j) < image(i− 1, j) OR

image(i, j) < image(i, j − 1) OR

image(i, j) < image(i+ 1, j) OR

image(i, j) < image(i, j + 1)

(4.2)

Algorithm 4.3 can be formally represented using the Equation 4.2. Let us look at

our example in Figure 4.10 and evaluate the final matrix max in Figure 4.10n using the

Equation 4.2. For position (i, j) = (0, 0) in image, image(0, 0) = 134 is greater than

image(i − 1, j) = 0 and image(i, j − 1) = 0 and image(i + 1, j) = 93.64 and image(i, j +

1) = 71.75. Thus position (0,0) in the final max matrix is True. Similarly for position

(i, j) = (2, 2) in image, image(2, 2) = 126.89 is greater than image(i − 1, j) = 107.66

and image(i, j + 1) = 124.69 and image(i + 1, j) = 120.09 but image(2, 2) is less than

image(i, j − 1) = 136. Thus position (2,2) in the final max matrix is False. Thus we see

from the Algorithm 4.3 and Equation 4.2, that in the final max matrix, position (i, j) is

labelled as True only if the pixel value at position (i, j) is greater than the pixel value at

it’s 4 neighboring pixels (i − 1, j), (i, j − 1), (i + 1, j) and (i, j + 1). If the pixel value at

position (i, j) is lesser than any of it’s 4 neighbors, then the corresponding location in the

final max matrix is labeled as False.

Hence, we are able to say that the Algorithm 4.3 has been able to reduce the number

of maxima points detected by reducing a cluster of points to a single local maxima point

by doing a local neighborhood comparison.

4.7 Removal of Very Close Maxima Points

The BeePi monitors record video every 15 minutes with a frame rate of 25 fps. To
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facilitate a faster processing of those videos, we extract frames from them with a resolution

of 80x60. By our manual inspection of those frames, we have come to the conclusion that the

size of majority of the bees captured in those frame is between 8–12 pixels. Thus in order to

reduce a single bee with multiple maxima points, to only one local maxima point, we need

to extend our Algorithm 4.3 to further process its final result and remove very close points.

The spacing distance is determined as explained in Section 4.10. Algorithm 4.4 describes

the method to remove maxima points that are within the minimum spacing distance from

the nearest position of another maxima value.

Algorithm 4.4 Remove Close Maxima Points (RemoveClose)

Input:
Coordinates of Maxima Points from Algorithm 4.3 (points),
Min Allowable Spacing Between Consecutive Maxima Points (spacing),
Smoothed Image (image)

Output:
Coordinates of Local Maxima Points (x, y)

Begin
imageP ixels = pixel values in image corresponding to the points
indexPos = index positions of lowest to highest pixel values in imageP ixels
n = length of points
Initialize a set, discard /* will hold the discarded coordinates from points */
while (i < n) and indexPos[i] not in discard

Begin
j = i+1
while (j < n) and indexPos[j] not in discard

Begin
dX, dY = points[indexPos[j]]− points[indexPos[i]]
sumSqr = (dX ∗ dX) + (dY ∗ dY )
spacingSqr = (spacing * spacing)
add indexPos[j] to discard if sumSqr < spacingSqr
j = j + 1

End
i = i + 1

End
/* discard now contains the index positions of the points that will be removed */
(x, y) = points[k], where 0 <= k < n and k not in discard

End



66

To understand the workings of Algorithm 4.4, let’s continue from the results in the

example of Figure 4.10. The maxima positions were at (0,0), (0,2), (2,1), (3,3).


0 1 2 3

positions (0, 0) (0, 2) (2, 1) (3, 3)

pixelvalues 134 143 136 125.50


Now let us set the spacing between two maxima points to be 4. The algorithm first

creates a lookup array, indexPos, which holds the index positions of the sorted pixel values

for the above coordinate points. So indexPos will hold the following values, [3,0,2,1]. This

means the pixel value at (3,3) is the lowest and pixel value at (0,2) is the highest. We can

verify this from Figure 4.10a, where pixel value at (3,3) is 125.50 and at (0,2) is 143. The

algorithm works as follows; for each value in indexPos, we compare its coordinate with the

coordinates of the points that succeeds the current index position. For example, when the

index position is at 0, we will compare against the coordinates at positions 1,2 and 3. Again

when the index position is at 2, we will only compare against the coordinate at position 3.

The comparison between two points is found using the squared distance formula as

follows: d = (x1 − x2)2 + (y1 − y2)2. Next we check if d is less than the squared spacing,

i.e. d < 4 ∗ 4. If the condition holds then we add the point at the next index position

to a discard set. Let us follow along with our example to make things clear. The first

value in indexPos is 3. The corresponding coordinate for position 3 is (3,3). We will be

comparing it to the next value in indexPos which is 0; and its corresponding coordinate

is (0,0). The squared distance between (3,3) and (0,0) is d = 18. Next we will compare

(3,3) against the next value in indexPos which is 2; and its corresponding coordinate is

(2,1). The squared distance between (3,3) and (2,1) is d = 5. Now since d < 16, we will be

moving indexPos = 2 to the discard set. Next we will compare (3,3) against the next value

in indexPos which is 1; and its corresponding coordinate is (0,2). The squared distance

between (3,3) and (0,2) is d = 10. Now since d < 16, we will be moving indexPos = 1 to

the discard set. So the discard set holds {2,1} after the first iteration. In this way we loop

through the length of the indexPos, skipping the indices which are already in the discard
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134.00 71.75 143 64.34
93.64 102.96 107.66 100.70
99.10 136 126.89 124.69
83.48 103.32 120.09 125.50


a. Sample image matrix

max =


T F F F
F F F F
F F F F
F F F T


b. Final Result

Figure 4.11: The final results of the example after removing maxima points close to each
other. ‘True’ or ‘T’ positions, i.e. (0,0), (3,3) are the final maxima points

set. Thus at the end of the all the iterations the discard set holds {2,1}. So the final

result will only have the coordinates at index positions 0 and 3 which are (0,0) and (3,3)

respectively. Thus we have been able to remove the maxima points that were very close to

each other. The final result for the example is given in Figure 4.11. Therefore combining

Algorithm 4.3 and Algorithm 4.4, we are able to reduce multiple maxima points for a bee

into a single point.

One important thing to note here is that, the final coordinate position does not nec-

essarily mean the highest pixel value was selected. As in the example we saw the highest

pixel value was 143 which was at location (0,2). But it was not selected as it was within

the maxima spacing and close to (0,0). Thus it is very important to note that the positions

of the detected maximas matter and not the corresponding pixel values in the image.

4.8 Combining All The Above Algorithms

In this section, we will be combining all the algorithms discussed in the above sections

and see how a video is processed frame by frame and an individual bee in a frame is

represented using a single point.

Algorithm 4.5 describes how we are able to combine our discussions in the previous

sections into one entire algorithm. We start by creating an array of initial background

image files imFilesbackgnd. At the beginning of the algorithm, when the first frame is

in consideration, there is no preceding 12 frames. In that scenario, we assign 12 blank

images to replicate the above. Next we start iterating through the frames of the video and

computing the corresponding average background image at each step. Next we subtract the
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Algorithm 4.5 Final Algorithm To Find The Maxima Points Across All Frames

Input:
Image Files (imFiles),
Number of Image Files (n),
Averaging Window Size (avgWinSize),
Threshold (thresh),
Smoothing Steps (smooth),
Smoothing Factor (factor),
Min Allowable Spacing Between Consecutive Maxima Points (spacing)

Output:
Array of Maxima Points For All Frames (maximaArray)

Begin
ImagesafterCurrent = davgWinSize/2e
ImagesbeforeCurrent = (avgWinSize -1) - ImagesafterCurrent

imFilesbackgnd = [Empty] * ImagesbeforeCurrent + imFiles[: ImagesafterCurrent]
avgSum = Sum of all Images in imFilesbackgnd
while (i < n)

Begin
avgImg = ComputeBackground(n, i, avgWinSize, avgSum,

ImagesbeforeCurrent, ImagesafterCurrent)
subImage = Subtract(imFiles[i], avgImg)
smoothImage = SmoothImage(subImage, smooth, factor)
absImageSqrd = Multiply(smoothImage, smoothImage)
sumImSqrd = Sum(absImageSqrd, axis = 2)
maximaPoints = FindMaxima(sumImSqrd, threshold ∗ threshold)
mxPtCloseRm = RemoveClose(maximaPoints, spacing, sumImSqrd)
Append mxPtCloseRm To maximaArray
imLater = i+ ImagesafterCurrent + 1
if imLater < n

Begin
nextImage = imFiles[imLater]
avgSum = avgSum + nextImage

End
else

Begin
nextImage = [Empty]

End
if imFilesbackgnd[0] is not Empty

Begin
avgSum = avgSum - imFilesbackgnd[0]

End
imFilesbackgnd = imFilesbackgnd[1 :] + nextImage
i = i + 1

End
End
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background image from the current frame and then we apply smoothing to the resultant

image. At this point the image smoothImage represents the color difference between the

current frame and the background image in the R, G and B channels. We apply sum of

squared technique to find the maximum absolute variation or difference between the current

frame and the background image. For that purpose we multiply the image with itself and

we have absImageSqrd. The image absImageSqrd has 3 channels. So we convert the image

to a single channel by creating a new image sumImSqrd, which is basically the sum of the

three channels at each index. For example: sumImSqrd[i, j] = absImageSqrd[:, :, 0][i, j] +

absImageSqrd[:, :, 1][i, j] + absImageSqrd[:, :, 2][i, j]. Then we take sumImSqrd and find

out the coordinates of the points where the pixel value is greater than threshold∗threshold.

This gives us a set of points which are local maximas in their surroundings. But sometimes

two local maxima points are very close to each other. This might be the case where the

head and the tail of a single bee have both been detected as maxima points. To counter

this scenario, we apply a rule for the points to have a minimum distance/spacing between

them. In the next step we keep only those points, the distance between whom satisfies our

spacing rule. And finally we add those points, mxPtCloseRm to maximaArray.

After that we select the next image in imFiles add it to imFilesbackgnd and update

average background sum, avgSum with it. Along with that we remove the first image in

imFilesbackgnd and subtract the corresponding value from avgSum, if the first image to be

removed is not an Empty value . At the end when there is no image left in imFiles, then

we add [Empty] to imFilesbackgnd and in that case, avgSum is not updated.

The final result of the Algorithm 4.5 is maximaArray. It holds the coordinates of the

corresponding maxima points for each frame in the video that we have processed.

4.9 Putting The Maxima Points Against White Background

The maximaArray from Algorithm 4.5 holds the location of the bees detected in

each frame by our algorithm. Thus we now know the positions in a frame which are

important for us. So rather than looking at an entire frame, we need to focus our attention

to only those detected maxima points. We do this by generating an image image W with
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a white background, i.e. all the pixel values in that image are 255. Image W has the

same dimension of 80x60, similar to each extracted frame. Now for each frame, we update

W by drawing a small circle at the position of a detected maxima point for that frame.

The Algorithm 4.6 explains our method. Figure 4.12 and Figure 4.13, shows the results

of our proposed algorithm against white background and the original image background

respectively.

Algorithm 4.6 Putting Maxima Points On a White Background

Input:
Image Files (imFiles),
Array Holding Maxima Points For Each Frame (maximaArray)

Output:
Frames With Maxima Points Marked On White Background

Begin
n = Number of imFiles
while (i < n)

Begin
image = imFiles[i]
width = number of columns in image
radius = width/50
Convert image to grayscale
Modify all the pixel values in image to 255.
for points in maximaArray[i]

Begin
Draw circles on image at points with radius=radius

and thickness=(radius/5)
Save image

End
End

End
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(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6 (g) Image 7 (h) Image 8

(i) Image 9 (j) Image 10 (k) Image 11 (l) Image 12

Figure 4.12: Maxima points for the 12 frames in Figure 4.1 on a white background



72

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6 (g) Image 7 (h) Image 8

(i) Image 9 (j) Image 10 (k) Image 11 (l) Image 12

Figure 4.13: Maxima points for the 12 frames in Figure 4.1 on the actual background
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4.10 Threshold For Smoothed Image And Spacing Between Maxima Points

In this section, we will first discuss regarding the choice of threshold value from an

entire video. The intuition behind this threshold selection comes from the fact that it is

useful to be able to separate out the regions of the image corresponding to objects in which

we are interested, from the regions of the image that correspond to background. As you can

see in the smoothed images of Figure 4.9, there are certain portions in the images, which

if not separated out may have a negative impact in detecting bee movement. Our beehives

are located in areas where the background in the recorded videos differ from each other.

Thus it is necessary to automate the threshold selection based upon the recorded videos.

Towards that end, we first create a global background image IB from the video. This global

background image will have the portions of the video which have remained the same across

the video time length. This may include the background landscape in the video, or portions

where the sun shines directly for the video time length. The above background image is

generated by adding all the frames of the video along the 3 channels and then dividing the

result by the number of frames in the video. Next we calculate the color variation between

each frame of the video against the global background average image IB across all three

channels. Algorithm 4.7 explains the process of calculating the mean variability of color in

a video and subsequently the standard deviation of the mean color variability. A higher

value of meanStd would suggest the presence of a lot of bee movements in the video or bee

movements against plants or vegetation in the background or could be even bee movements

in direct sunlight which could create a lot of shadows. In all the above cases, the color

variation would be higher. Similarly when the bee traffic level is low, the color variations

would be small and thus meanStd would be comparatively smaller.

Based upon our observations from different videos collected during various stages of

a bee keeping season with varying levels of traffic, we assert that the minimum value of

meanStd will be close to 5 and the maximum value of meanStd will be close to 210. Next,

based upon the value of meanStd we design a strategy that would decide the threshold

and spacing distance for each video. We can recall that the goal of choosing a threshold
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Algorithm 4.7 Algorithm To Find The Mean Color Variability

Input:
Image Frames of a Video (imFiles),
Number of Image Frames (n),
Global Background Image (IB),
Smoothing Steps (smooth),
Smoothing Factor (factor)

Output:
Mean Standard Deviation of color variability (meanStd)

Begin
r = Number of rows in imFiles[1]
c = Number of columns in imFiles[1]
Initialize an empty array colorV ar. Shape is (r,c)
while (i < n)

Begin
subImage = Subtract(imFiles[i], IB)
smoothImage = SmoothImage(subImage, smooth, factor)
absImageSqrd = Multiply(smoothImage, smoothImage)
sumImSqrd = Sum(absImageSqrd, axis = 2). Shape is (r,c)
The coordinates (m,n) where sumImSqrd is greater colorV ar are noted.
Pixel values at colorV ar(m,n) is replaced by sumImSqrd(m,n) for only
those positions where sumImSqrd > colorV ar.

End
colorV ar holds the positions along with the values of the maximum color.
variations that has occurred across all the frames in the video in comparison to IB.
meanV ar = mean of all the pixel values in colorV ar
meanStd = Standard Deviation of the meanV ar

End



75

Table 4.1: Suggested Spacing Distance

Normalized Threshold (thresholdNorm) Spacing

9 ≤ thresholdNorm < 22 5

22 ≤ thresholdNorm ≤ 65 3

is to find the minimum acceptable color variation between the frame in context and the

corresponding average background image. This color variation would be small for videos

with low bee traffic and higher in videos with high bee traffic. Thus we need to choose the

upper and lower limits of the threshold in a way that we would be able to eliminate noise in

the smoothed image for lower traffic videos and also retain useful information in smoothed

images for videos with higher traffic. We assert the lower and upper bounds for the threshold

selection to be 9 and 65 respectively. Based upon our experiments we believe that the above

is a generous range which would work across different backgrounds and surroundings. Next

we take the meanStd values for each video and normalize them between 9 and 65. Without

the normalization we would miss a lot of bee movements for higher bee traffic videos, and

also incorporate a lot of noisy values for detecting bee movements in low bee traffic videos.

The process of normalizing the meanStd values in shown in Equation (4.3):

thresholdNorm =
meanStd− 5

210− 5
× (65− 9) + 9 (4.3)

A higher value of thresholdNorm will be accompanied by a smaller spacing value

between detected maxima points. The reason behind the smaller choosing a smaller value

of spacing is due to the fact that a higher value of thresholdNorm signifies a higher level of

bee traffic. Thus there is possibilities of multiple bees close to one another and so we choose

a smaller value of spacing to take all the bees into consideration as possible. Similarly in

case of a lower value of thresholdNorm, we would choose a higher value for spacing. Since a

lower value of thresholdNorm would signify a lower bee traffic level, thus choosing a larger

spacing value, would help us process each frame in the video faster.

Table 4.1 gives us some suggestive values for spacing that could be used if thresholdNorm
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(a) Background Image of a video with Low Traffic

(b) Image colorV ar for images used to generate Figure 4.14a

(c) Background Image of a video with High Traffic

(d) Image colorV ar for images used to generate Figure 4.14c

Figure 4.14: Sample global background image along with colorV ar, which holds the values
and locations of the highest color variations across all frames in a video
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(a) Background Image (b) colorV ar for Figure 4.1

Figure 4.15: Global background image for the images in Figure 4.1 along with colorV ar,
which holds the values and locations of the highest color variations across all frames.
The meanStd for the image in Figure 4.15b is 13.592617488995614 and the correspond
thresholdNorm is 11.34725160675 using Equation (4.3)

falls within the defined range. The values shown in Table 4.1 were found out during our

experiments with videos with different levels of bee traffic across different times in the bee

keeping season between May to September. For our example with sample images as in

Figure 4.1, the global background image and the color variability is shown in Figure 4.15.

From Figure 4.15 we can see the regions where the majority of the bee movement

was detected matches our observations regarding the bee movements from the images in

Figure 4.1. But the bee traffic level was low, which is also evident from the meanStd value

which is 13.592617488995614. Thus in this case the thresholdNorm is 11.34725160675

and a minimum spacing distance (the minimum distance between two detected maxima

points in the smoothed image) is 5. The result of the application of thresholding is seen in

Figure 4.16.
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(a) Image 1 (b) Difference Image 1 (c) Image 1 After Threshold

(d) Image 4 (e) Difference Image 4 (f) Image 4 After Threshold

(g) Image 7 (h) Difference Image 7 (i) Image 7 After Threshold

(j) Image 9 (k) Difference Image 9 (l) Image 9 After Threshold

Figure 4.16: The images in the first column are the original frames. The second column
is the result of subtracting the average background image from the corresponding frame
in the first column. The images in the third column are generated as a result of applying
threshold to the result of smoothing the difference image in the second column.
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CHAPTER 5

ANALYSIS OF BEEHIVE VIDEO SAMPLES

5.1 Goal

Video bee traffic analysis can be used to assess a honeybee colony’s health by automat-

ing the bee traffic level assessment. A healthy hive will have little discrepancies in the

forager traffic level across multiple days. But consistent fluctuations in the bee traffic levels

can indicate that a hive is under-performing and may require special interventions by the

beekeeper. Thus accurate measurement of forager traffic level is important in automated

bee hive monitoring systems that are able to detect any deviations of bee traffic from norm.

We captured videos of forager traffic leaving and entering the hive by placing a camera

just above the landing pad of a Langstroth bee hive as seen in Figure 5.1. In our contin-

uing research ( [1, 2]), we have studied and watched a number of honeybee traffic videos

that involved 3 different bee races: carniolan, italian and buckfast. Our study suggests

that honey bee traffic movement can be classified into three types: incoming, outgoing and

lateral. Incoming traffic consists of bees entering into the hive through the landing pad

or through holes drilled in the supers. Outgoing traffic consists of bees leaving the hive

from the landing pad or through holes drilled in the supers. We refer to a bee movement

as a lateral movement, when the bees fly parallel to the field of view of the camera just

above or near the landing pad. In this chapter, we will be presenting an algorithm based on

digital particle image velocity (dpiv) [27], [28] to count honey bee motions and also detect

their flight directions from frames extracted from videos recorded by our BeePi electronic

beehive monitoring system. In the previous Chapter 4 we have seen how we could take

frame with bees and convert them into a frame with white background having only the

positions of interest marked, i.e. positions where there are bee movements. In this chapter

we will be using those above frames with white background and use our algorithm to count
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bee motions between successive frames. Thus we will see how we can use dpiv to analyti-

cally classify and count different bee motions into incoming, outgoing or lateral and then

use those individual counts as measurements of directional traffic levels. Towards that end

we also introduced a dataset of 32 recorded video samples from different times in the bee

keeping season and from different hives to aid us and validate our investigation [96].

Figure 5.1: A closer look at the camera looking down on the landing pad

5.2 Related Research

In [58] dpiv was used to measure the turbulence levels in a low turbulence wind tunnel.

In that same study, by extending their findings, the authors suggested that dpiv can also

be tuned to measure the aerodynamic performance of a small-scale flying device. When

an insect, animal or a bird flies through the air, the traces of air particles that move as

a result can be studied and used to analyze insect and animal flight patterns. The recent

advancements in dpiv [27, 28, 59] has enabled researchers to start investigating the above

flight patterns to understand how certain animals or insects fly and the use the relevant

information to design micro-air vehicles. In [60], the authors used a high speed camera and

applied dpiv to measure the vortex wake and kinematics of a swift’s flight through a wind

tunnel. In [61], the author’s demonstrated the difference between the wakes of birds and
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small bat species by using dpiv to analyze the recorded wake images. It was shown that

each wing of the bat generated it’s own vortex loop along with a sign difference between

the circulation on the outer wing and the arm wing during upstroke. Spedding et al. in

[62] used dpiv to analyze the flight of thrush nightingales. They used dpiv to measure the

balance of forces during the upstroke and the downstroke of the bird’s flight. Through their

research they showed that it is possible to track the momentum in the wake of a flying

animal. There has also been past research such as in [63] and [64], where the authors have

used dpiv to study and analyze the flight patterns and the wake structure of nectar-feeding

bats and dog-faced fruit bats respectively. The use of dpiv to investigate insect flight was

first demonstrated in [65] in which the authors measured fluid velocities of a fruit fly and

then examined the contribution of the leading–edge vortex in the overall force production

during flight. The authors in [66] were the first to use dpiv to analyze the flow field around

the wings of a tobacco hawkmoth while it flew through a wind tunnel. The authors also

experimentally showed the flow separation near the leading edge of the wing during the

insect’s downstroke. In a different research [67], it was shown that dpiv could also be used

to examine and map the air flows generated by dancing honeybees.

There have been past research projects that applied computer vision to monitor various

aspects of honeybee traffic. One such study was reported by Rodriguez et al. in [68]. They

proposed a system that would detect and track multiple insects and animals, with a special

interest for monitoring the traffic of honeybees and mice. They designed their system based

on deep neural network that associated detected body parts to whole insects and animals.

The network initially predicts a set of 2D confidence maps of detected body parts along

with a set of vectors that hold the associations among the detected body parts. Next they

use greedy inference to select the most likely predictions for each part and then compiles

the predictions into larger insects or animals. To detect the bee traffic that leave and enter

the hive, the authors use trajectory tracking. The above gives reliable results under smaller

traffic levels. The authors reported that the dataset used in the above study consisted of

100 fully annotated frames with 6–14 honeybees per frame. Since the dataset was not made
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public, we were not able to independently replicate the results. Furthermore in the above

research, a standard Langstroth or Dadant hive, which is commonly used by beekeepers,

was not used. Rather a smaller laboratory grade hive was used in the experiments. The

proposed system also requires some modifications to the beehive in that a transparent acrylic

plastic cover had to be used in order to ensure that the bees remained in the focal plane of

the camera.

In another research Babic et al. [69] proposed a system that would detect pollen bearing

honeybees from videos recorded at the entrance of a hive. The proposed system included a

specially designed wooden box mounted above the hive entrance, and also had a raspberry

pi camera attached inside it. The wooden box was specially designed in a way to restrict

bees from flying when in the field of view of the camera. To achieve the above, the authors

put a glass plate on the bottom of a box just 2cm above the landing pad and in effect force

the bees to crawl a distance of ≈11 cm while entering or leaving the hive. The authors

reported the training dataset to be composed of 50 images of pollen bearing honeybees and

50 images of honeybees without pollen. The testing data set on the other hand consisted

of 354 images of honeybees. Since the dataset was not made public, we were not able to

independently replicate the reported results.

We found in [70], the review of various electronic, remote-sensing, and computer-based

techniques for observing and monitoring insect movements in the field and the laboratory.

In particular, they have reported in their review, the use of electronic bee counters to record

bees entering and leaving the hive. Following that we have seen in [71] a practical use of bee

counters in modeling the flight activity of honey bees at hive entrance. We also see the use

of bee counters in a much recent study in [72], where the authors correlate foraging activity

to weather conditions. Although the reported results were promising but in each of those

cases, the use of a bee counter needed additional hardware and attachment to a standard

hive. The reason is that to detect bee movements at the hive entrance 32 bi-directional

channels of 10 mm × 6.5 mm × 6.5 mm (length × width × height) each and separated by

12.7 mm are required for the setup. The detection of bee inside each channel is achieved
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via an infrared diode that excites two photoreceptors. Following that, the break order of

the receptors indicates whether a bee is entering (in) or leaving (out) of the hive. Thus we

can see hardware modifications are needed to be done on the standard hive in order to be

able to use the bee counters.

The dpiv based algorithm that we present in this chapter, improves upon our previ-

ous research [1] where we proposed a two tier method for bee motion counting based on

motion detection and motion region classification using a neural network. The improved

bee motion counting method proposed in this chapter is an improvement to our continuing

research [2] on using dpiv in counting bee motions. This current method also encapsulates

the improvement stated in [2] over [1], such as measuring directional honey bee traffic, not

requiring to train a neural network to classify bees and finally providing an insect indepen-

dent motion detection method. This current method improves the bee motion counts by

first localizing the bees that have moved between successive frames and then separating the

corresponding positions on a different frame with a white background (refer to Chapter 4)

and then applying dpiv to the frames with only the bees that have moved, marked on a

white background. The various stages of the proposed algorithm are given in Figure 5.2.
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Figure 5.2: Directional dpiv-based bee motion counting algorithm

5.3 Video Data

The video data used for experiments in this chapter have been collected from bee hive

monitors from two different bee keeping seasons across the same apiary. Figure 5.1 shows

the relative position of the camera above the landing pad on the beehive. Each BeePi

monitor recorded 30 seconds of video samples with an interval of 15 minutes. For this

chapter, we chose 32 videos across different times during the bee keeping season of 2018

and 2019. The videos were chosen in way such that they had varying levels of bee traffic

across different backgrounds. Next, we extracted 744 frames from each video. Hence our

dataset contained a total of 23808 (744*32) frames. The data is publicly available at [96].

The bee count in the first frame for every video was 0. After that each of those frames

were individually studied and the number of bees that moved between successive frames in

a video were counted. A bee was considered to have made a motion and was accounted for

if it its position changed between successive frames. We also counted bees that were not in

a previous frame but appeared in the following frame (when the bee flew into the camera’s

field of view). The above count for the number of bees that moved between successive
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frames acted as our validation data. In this chapter we will refer to the above counts as bee

motion counts or count of the bees interchangeably.

5.4 Digital Particle Image Velocimetry (dpiv)

We will be working with two consecutive image frames from a video, Ft and Ft+1 in

order to explain the workings of dpiv. Frame Ft represents a frame at time t and Ft+1

represents a frame at time t+ 1. We select a D×D window, IA1 from Ft which is centered

at position (i, j). The D ×D window is often referred to as interrogation area in the dpiv

literature. We also select another D′ ×D′ window, IA2 from Ft+1 such that D ≤ D′. The

position of the interrogation window IA2 in frame Ft+1 is a function of the position of IA1

in frame Ft, since we move IA2 relative to IA1 in order to find the maximum correlation

peak. As we move IA2 around the D′×D′, we calculate for each possible position of IA1 in

Ft, a corresponding position of IA2 is computed in Ft+1. This is done in order to compare

the two windows and find the corresponding positions of the particles. The comparison is

performed mathematically by calculating a 2D matrix correlation between IA1 and IA2

using the correlation formula in Equation 5.1.

C(r, s) =
D−1∑
i=0

D−1∑
j=0

IA1(i, j)IA2(i+ r, j + s),

where r, s ∈ [−bD+D′−1
2 c, . . . , bD+D′−1

2 c]
(5.1)

In Equation 5.1, IA1(i, j) is the pixel intensity at location (i, j) in image frame Ft and

IA2(i+ r, j + s) is the pixel intensities at location (i+ r, j + s) in frame Ft+1. If the size of

IA1 is M ×N and the size of IA2 is P ×Q, then the size of the final correlation matrix C

is (M + P − 1)× (N +Q− 1). The correlation matrix C records the correlation coefficient

for each possible alignment of IA1 with IA2 as we iterate through different values of r and

s. Let C(rh, sh) be the highest value in correlation matrix C. If (ic, jc) is the center of the

interrogation window IA1, then the positions of (ic, jc) and (rh, sh) define a displacement

vector ~vic,jc,rh,sh from location (ic, jc) in frame Ft to (ic + rh, jc + sh) in frame Ft+1. This

vector is a representation of where the particles in frame Ft have moved to in the next



86

frame Ft+1. All such displacement vectors between successive frames form a vector field

that can be used to estimate possible flow patterns of the particles. Figure 5.3 is a pictorial

representation of how the cross correlation coefficients are computed between successive

frames. One thing to keep in mind is that Equation 5.1 leads to a time complexity of O(n2)

and hence it is a slow process. A faster way to compute the cross correlation between two

successive frames is to use Fast Fourier Transform (FFT), as shown in Equation 5.2. The

important criteria for solving Equation 5.2 is that the two interrogation windows IA1 and

IA2 must be of the same size i.e. D = D′.

C(r, s) = <[FFT−1(FFT ∗(IA1) · FFT (IA2))] (5.2)

Figure 5.3: 2D Cross Correlation Algorithm. The upper image with particles on the left
is Ft. The lower image on the left is Ft+1. The region with the light orange borders in the
upper image is IA1. The region with the pink borders in the lower image is IA2. The 3D
plot on the right plots all 2D correlation values. The highest peak helps to estimate the
general flow direction.

For many real world images, the displacement vectors generated have background noise

or other real-life imperfections. These vectors must be eliminated from the vector field in
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order to avoid large errors. This can be caused by small interrogation window size or due to

the quality of the images. We have information about the signal to noise ratio of the vectors

from the cross-correlation function, and so we can classify a vector as an outlier if it’s signal

to noise ratio exceeds a certain threshold. The final step is to replace the missing/outlier

vector by computing the average of it’s immediate neighbors. The position of the highest

correlation peak can also be fine tuned as function of the second and third highest peaks in

the correlation plane to achieve subpixel accuracy.

Figure 5.4e shows the directional vectors computed by the dpiv based algorithm from

two consecutive image frames of size (80 × 60) from a 30-s video captured by a deployed

BeePi monitor. The above vectors were generated by using an interrogation window of size

(27 × 27) and an overlap of 40%. In Figure 5.4a, two moving bees are marked using two

green circles. The bees were marked by comparing the immediate predecessor image frame

(not shown here) to Figure 5.4a. In Figure 5.4b we can see that the same two bees have

moved again and along with that another bee on the right end has moved too. Hence those

three bees have been marked with green circles for our reference. Figures 5.4c and 5.4d are

generated by applying the method presented in Chapter 4. We can recall from Chapter 4

that Figures 5.4c and 5.4d are not generated by comparing only the immediate successor

and predecessor frames, rather each of the above two frames are generated by comparing

the image frames which are 1/2 second before and after the corresponding frame. In other

words, Figure 5.4d was generated by analyzing the 12 frames before and 12 frames after

Figure 5.4d. In Figure 5.4c we can see that 5 bee movements have been detected whereas

in Figure 5.4d, 3 bee movements have been detected. This tells us that between the time

period of two image frames, 3 bees have moved. This is also reflected in Figure 5.4e, where

we can see 3 vectors have been detected; one vector for each bee movement. We can also

see that the three vectors are of different lengths. If we observe Figures 5.4a and 5.4b, we

can see that the bee at the top of the image has moved the most and the bees in the middle

showed small movements between successive frames. The bee at the top had moved more

or less parallel to the landing pad, whereas the bees in the middle moved upward. We can
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(a) Image 1 (b) Image 2

(c) Localized bees in Image 1 (d) Localized bees in Image 2

(e) Vectors generated by comparing Im-
ages (c,d)

Figure 5.4: Image a and Image b are two consecutive Images selected from a 30-s video.
We have marked the bees that have moved with green circles. Image c and Image d are
generated using the algorithm described in Chapter 4. They individually represent the bees
that have moved by comparing 1/2 sec of video before and after Image a and Image b
respectively. The vector field in (e) is generated from the images in (c,d) using dpiv.
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see the above directional characteristics are reflected in the vectors in Figure 5.4e as well.

Once the dpiv vectors are computed for a pair of consecutive image frames, the angles

of individual vectors are used in the calculation of directional bee traffic levels. Specifically,

each vector is classified as lateral, incoming, or outgoing according to the corresponding

angle value as shown in Figure 5.5. A vector ~v is classified as outgoing if it’s corresponding

angle is in the range [11◦, 170◦], as incoming if it’s angle is in the range [−11◦,−170◦], and

as lateral if it’s angle is in the ranges [−10◦, 10◦], [171◦, 180◦], or [−171◦,−180◦].

Figure 5.5: Degree ranges used to classify dpiv vectors as lateral, incoming, and outgoing.

Let Ft and Ft+1 be two consecutive image frames from a video V at time t and t + 1

respectively. Let us also refer to If (Ft, Ft+1), Of (Ft, Ft+1), and Lf (Ft, Ft+1) as the counts

of incoming, outgoing, and lateral vectors when dpiv is applied to frames Ft and Ft+1.

For each pair of consecutive image frames Ft and Ft+1, we compute three non-negative

integers: If (Ft, Ft+1), Of (Ft, Ft+1), and Lf (Ft, Ft+1). If a video V is a sequence of n frames

(F1, F2, . . . , Fn), then we can use If , Of , and Lf to define the functions Iv(V ), Ov(V ), and

Lv(V ) that return the total counts of the incoming, outgoing, and lateral vector counts for

video V , as shown in Equation (5.3).
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Iv(V ) =
n−1∑
i=1

If (Fi, Fi+1)

Ov(V ) =
n−1∑
i=1

Of (Fi, Fi+1)

Lv(V ) =

n−1∑
i=1

Lf (Fi, Fi+1)

(5.3)

For example, let V = (F1, F2, F3) such that If (F1, F2) = 10, Of (F1, F2) = 4, Lf (F1, F2) =

3 and If (F2, F3) = 2, Of (F2, F3) = 7, Lf (F2, F3) = 5. Then, Iv(V ) = If (F1, F2) +

If (F2, F3) = 10 + 2 = 12, Ov(V ) = Of (F1, F2) + Of (F2, F3) = 4 + 7 = 11, and Lv(V ) =

Lf (F1, F2) + Lf (F2, F3) = 3 + 5 = 8. For each pair of consecutive image frames Ft and

Ft+1, the omnidirectional motion vector count is defined as the sum of the values of If ,

and Of , and Lf , as shown in Equation (5.4). Then, for each video V , the omnidirectional

vector count Tv(V ) for the video is the sum of the three directional counts, as also shown

in Equation (5.4).

Tf (Ft, Ft+1) = If (Ft, Ft+1) +Of (Ft, Ft+1) + Lf (Ft, Ft+1)

Tv(V ) = Iv(V ) +Ov(V ) + Lv(V )

(5.4)

5.5 Experiments

5.5.1 Interrogation Window and Overlap

In Chapter 4, we learned about the selection of an appropriate threshold value from a

video in order to be able to separate out the regions of the image corresponding to objects in

which we are interested, from the regions of the image that correspond to background. To

achieve the above, we first created a global background image and then calculated the color

variation between each frame of the video against the global background average image

in order to find the mean variability of color in a video. A higher value of meanStd (i.e.
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standard deviation of the mean color variability) suggested the presence of a lot of bee

movements in the video or bee movements against plants or vegetation in the background

or even bee movements in direct sunlight which could create a lot of shadows. In all the

above cases, the color variation would be higher. Similarly when the bee traffic level is low,

the color variations would be small and thus meanStd would be comparatively smaller. We

observed and investigated various video recordings from the Beepi monitors over the course

of the bee keeping season of 2018 and 2019 and came to the conclusion that minimum

value of meanStd is close to 5 and the maximum value of meanStd is close to 210. Next,

we normalized the meanStd values for each video to be between 9 and 65 and generated

thresholdNorm. Following that we learned in Chapter 4, how thresholdNorm can be used

to determine the spacing value between detected maxima points. In this section we will see

how thresholdNorm is used to determine the interrogation window size and the overlap

between two interrogation windows, which are the necessary parameters to perform dpiv.

Before we design a strategy to determine an optimal interrogation window size and

amount of overlap, it is important to know that their values greatly depend upon the type

of experiments we perform. The information that we have regarding our experiments are

that the videos have either high traffic, low traffic and medium traffic. We explain the

process of designing a bee motion counting algorithm DPIV A in Appendix A.

The video data used for experiments in this chapter have been collected from bee hive

monitors from two different bee keeping seasons across the same apiary. Each BeePi monitor

recorded 30 seconds of video samples with an interval of 15 minutes. For this chapter, we

chose 32 videos across different times during the bee keeping season of 2018 and 2019 [96].

The videos were chosen in way such that they had varying levels of bee traffic across different

backgrounds. We first used 20 videos for our analysis in order to determine a strategy to

choose the interrogation window size and the overlap based upon thresholdNorm. Then

we tested our designed strategy on the remaining 12 videos. In total our training dataset

contained a total of 20 videos, i.e. 14880 (744*20) frames and the testing set had 12 videos,

i.e. 8928 (744*12) frames. To generate the ground truth data, each of those frames were
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Normalized Threshold (thresholdNorm) Interrogation Window Overlap
0 ≤ thresholdNorm < 11 13 1

11 ≤ thresholdNorm < 11.4 13 3
11.4 ≤ thresholdNorm < 11.8 13 5
11.8 ≤ thresholdNorm < 12 15 1
12 ≤ thresholdNorm < 12.2 15 3

12.2 ≤ thresholdNorm < 12.4 15 5
12.4 ≤ thresholdNorm < 12.6 17 1
12.6 ≤ thresholdNorm < 12.8 17 3
12.8 ≤ thresholdNorm < 13 17 5
13 ≤ thresholdNorm < 13.2 19 1

13.2 ≤ thresholdNorm < 13.4 19 3
13.4 ≤ thresholdNorm < 13.6 21 1
13.6 ≤ thresholdNorm < 14.4 21 3
14.4 ≤ thresholdNorm < 15 21 5
15 ≤ thresholdNorm < 15.4 23 1
15.4 ≤ thresholdNorm < 16 23 3

Table 5.1: Suggested values for interrogation window and overlap

individually evaluated before hand and the number of bees that moved in successive frames

were counted from them.

We saw in Appendix A that there are different strategies possible to select the interro-

gation window size and overlap and we saw that fixing the interrogation window size was

not an ideal choice. Hence, here we present two tables, Tables 5.1 and 5.3 that show the

suggested values with varying interrogation window size and overlap. Table 5.1 represents

videos with smaller thresholdNorm value. In other words we can say Table 5.1 represents

the suggested values for videos with low to mid-low bee traffic. Since the bee traffic level

is low, the overlap between two interrogation windows is chosen to be small as we can see

in Table 5.1. We chose the overlap to be approximately 10%, 20% and 30% respectively

between two interrogation windows. We started with an interrogation window that was

almost 1
5 th of the height of each image frame and then increased the size by 2 pixels after

each iteration of 10%, 20% and 30% overlap for an interrogation window.

In Table 5.3 we can see that the overlap between two interrogation windows were chosen

to be approximately 1%, 10%, 20%, 30%, 35%, 45%, 50%, 60% and 70% respectively. The

reason behind the choice of the above overlap percentages is due to the fact that we wanted
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to capture all of the information from videos that had mid to high bee traffic levels. We

started with an interrogation window that was almost 2
5 th of the height of each image frame.

We found through our experiments that interrogation windows of size 25 and 27 worked

well for videos with mid to high traffic levels. We also saw that for really high traffic videos

interrogation window of size 27× 27 and an overlap of 70% pixels were able to gather most

of the information regarding bee movement. Table 5.2 shows the remaining important dpiv

parameters that were used for the experiments. We used the above strategy to design the

bee motion counting algorithm DPIV B.

Parameter Value

Img. Size 80× 60

Inter. Win. Correlation FFT

Signal to Noise Ratio peak1/peak2 with a threshold of 0.05

Spurious Vector Replacement local mean with kernel size of 2 and max. iter. limit of 15

Table 5.2: Additional dpiv parameters used for the experiments.

We used some of the images that we tested with in Chapter 4 for visualizing the

workings of the combined algorithm, the one proposed in Chapter 4 and then adding the

dpiv based analysis to it. For the convenience of the reader, we have marked in green circles

the bees that have moved between successive frames. In Figure 5.6, we can see that between

Figures 5.6a and 5.6b, two bees have moved, one downward and one sideways (or lateral).

We can see that the above bee movements between successive image frames in Figures 5.6a

and 5.6b have been correctly depicted by the vectors in Figure 5.6e.
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Normalized Threshold (thresholdNorm) Interrogation Window Overlap
16 ≤ thresholdNorm < 16.4 25 1
16.4 ≤ thresholdNorm < 17 25 3
17 ≤ thresholdNorm < 17.4 25 5

17.4 ≤ thresholdNorm < 17.8 25 7
17.8 ≤ thresholdNorm < 18.2 25 9
18.2 ≤ thresholdNorm < 18.6 25 11
18.6 ≤ thresholdNorm < 19 25 13
19 ≤ thresholdNorm < 19.4 25 15
19.4 ≤ thresholdNorm < 20 25 17
20 ≤ thresholdNorm < 20.5 27 1
20.5 ≤ thresholdNorm < 21 27 3
21 ≤ thresholdNorm < 21.5 27 5
21.5 ≤ thresholdNorm < 22 27 7
22 ≤ thresholdNorm < 24 27 9
24 ≤ thresholdNorm < 30 27 11
30 ≤ thresholdNorm < 36 27 13
36 ≤ thresholdNorm < 42 27 15
42 ≤ thresholdNorm < 48 27 17
ThresholdNorm ≥ 48 27 19

Table 5.3: Suggested values for interrogation window and overlap

(a) Image 1 (i1) (b) Image 2 (i2) (c) Localized bees i1 (d) Localized bees i2

(e) Vectors

Figure 5.6: Image a and Image b are two consecutive Images selected from a 30-s video.
We have marked the bees that have moved with green circles in Image b. Image c and
Image d are generated using the algorithm described in Chapter 4. The vector field in (e)
is generated from the images in (c,d) using dpiv.
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(a) Image 3 (i3) (b) Image 4 (i4) (c) Localized bees i3 (d) Localized bees i4

(e) Vectors

Figure 5.7: Image a and Image b are two consecutive Images selected from a 30-s video.
We have marked the bees that have moved with green circles in Image b. Image c and
Image d are generated using the algorithm described in Chapter 4. The vector field in (e)
is generated from the images in (c,d) using dpiv.

(a) Image 5 (i5) (b) Image 6 (i6) (c) Localized bees i5 (d) Localized bees i6

(e) Vectors

Figure 5.8: Image a and Image b are two consecutive Images selected from a 30-s video.
We have marked the bees that have moved with green circles in Image b. Image c and
Image d are generated using the algorithm described in Chapter 4. The vector field in (e)
is generated from the images in (c,d) using dpiv.
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In Figures 5.7a and 5.7b, we can see that three bees have moved, two upwards and one

downwards. But in Figure 5.7e, we can see that an additional vector or bee movement has

been detected. This is an example where the localization as described in Chapter 4 might

not have pointed towards the exact body part of a bee, wherein one figure, one of the wings

of the bee has been localized and marked and in the next figure the thorax of the bee has

been localized. But dpiv sees the above scenario as two different pixel locations, and hence

we see that additional vector.

In Figures 5.8a and 5.8b, we can see that two bees have moved upwards between

successive frames. In Figure 5.8e we see the same result, where only 2 vectors are shown

as a result of applying dpiv. If we observe Figure 5.8d, we can see that 5 different bee

movements had been localized. We need to keep in mind that these bee movements are

those bees that have moved over 1/2 second before and after the frame (Figure 5.8b) in

context and are not necessarily the bees that have moved between successive frames. Hence,

even though in Figure 5.8d, 5 bee movements have been detected, but dpiv reduces those

5 bee movements to only 2 by comparing the successive frames in Figures 5.8c and 5.8d

respectively. Thus we can see by applying dpiv to the results of the localization algorithm

presented in Chapter 4, we are able to get the actual count of the bee movements between

successive image frames in a video.

5.5.2 Omnidirectional Bee Motions

In this section, we will compare the performance of the combined dpiv-based bee motion

estimation algorithm with our previous research in [1], where we used a two-tier method to

count omnidirectional bee motions using motion detection and motion region classification.

As we stated in the previous section, we had in total 32 videos to analyze and compare the

performance. For each video, full bee motions were counted frame by frame. The number of

bee motions in the first frame of each video (Frame 1) was taken to be 0. In each subsequent

frame, the number of bee motions were counted depending upon their positional change in

comparison to the previous frame. In addition to counting bee motions between consecutive

frames Ft and Ft+1, we also counted the bees that appeared in the current frame Ft+1 but
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were not present in the immediate predecessor frame Ft (for example, when a bee flew into

the camera’s field of view when frame Ft+1 was captured). For each video V , we calculate

the omnidirectional vector count Tv(V ) by the adding the three directional counts, as also

shown in Equation (5.4).

We compared the performance of the proposed dpiv based method (DPIV B) against

the four best configurations of the two-tier method for omnidirectional bee counting pre-

sented in [1]: MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS3, and MOG2/ConvNetGS4.

The first element in each configuration (e.g., MOG2 [97]) is a motion detection algorithm;

the second element (e.g., VGG16 [80]) is a classifier that classifies each motion region de-

tected by the algorithm specified in the first element. The performance was evaluated

against the actual bee motion counts which were counted frame by frame from the 32

videos. In this section we used the omnidirectional vector count Tv(V ) for our analysis.
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Video Human Count DPIV B GS3 GS4 ResNet32 VGG16

Vid1 5693 4923 16569 15109 13362 16647

Vid2 343 319 57 43 25 47

Vid3 2887 2106 597 316 145 1245

Vid4 73 56 57 127 25 47

Vid5 75 64 28 27 19 26

Vid6 239 285 97 81 45 95

Vid7 74 92 126 116 102 94

Vid8 361 712 175 274 90 329

Vid9 478 1393 314 319 130 229

Vid10 357 221 500 362 420 166

Vid11 373 512 525 708 403 333

Vid12 348 778 368 422 301 235

Vid13 176 221 157 181 158 148

Vid14 208 290 82 84 60 80

Vid15 456 416 463 466 391 492

Vid16 270 261 862 860 848 867

Vid17 154 296 180 185 183 195

Vid18 294 298 1518 1490 1485 1532

Vid19 17 22 61 59 59 62

Vid20 60 97 133 138 133 138

Vid21 432 685 1299 1279 1226 1279

Vid22 101 610 3501 3673 3052 3614

Vid23 247 279 1030 1011 1049 1021

Vid24 168 250 744 735 716 825

Vid25 90 106 0 1 0 0

Vid26 74 29 13 16 14 7

Vid27 1943 2481 2053 2193 1827 2085

Vid28 6580 8635 26611 28165 26279 27366

Vid29 186 165 492 155 52 102

Vid30 289 498 586 551 639 493

Vid31 643 815 2767 2828 2724 2271

Vid32 1401 1738 577 643 792 430

Table 5.4: Performance of DPIV B on the 32 evaluation videos, the size of each video
frame was (80 × 60): the second column gives the human bee motion counts for each
video; the third column represents the results of bee motion counts (Tv(V )) by using the
dpiv based method presented in this chapter; the remaining columns VGG16, ResNet32,
GS3 and GS4 give the bee motion counts returned by the configurations MOG2/VGG16,
MOG2/ResNet32, MOG2/ConvNetGS3, and MOG2/ConvNetGS4, respectively; the first 4
videos were the same videos used for evaluation in our previous research [1] and [2]. For
visual representation of the absolute error for each video refer to Figure A.1.
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In Table 5.4, we can see the performance of the dpiv based bee motion counts method

(DPIV B) presented in this chapter. Our goal in this section of the investigation is to see

if dpiv can better approximate bee motion counts as compared to the omnidirectional bee

counting approach proposed in [1]. From Table 5.4 we can see for the 32 evaluation videos,

the dpiv based approach was able return bee motion counts which was on par and in some

cases even better than the omnidirectional bee counting approach in terms of its closeness

to the actual bee counts. We can see in certain cases where the actual bee motion counts

were high (for example in Vid1 and Vid28), the dpiv based method was able to be generate

bee counts which were much closer to the actual counts as compared to the omnidirectional

approach. Similarly, if we look at other cases (for example, Vid31, Vid23, Vid16 etc), we

can see that the omnidirectional approach has over estimated the bee counts when there

was medium bee traffic. The above cases could be an issue if we were to build a bee hive

monitoring system based upon bee motion counts, since the over estimating might lead to

faulty analysis where the monitoring system would be modeled to account for more bee

motions and in effect could lead to discrepancies.

The dpiv based method on the other hand gave results which were very close to the

actual counts. We can see in certain cases (for example, Vid4, Vid5, Vid19, Vid25 etc) where

the actual bee motion counts were low, our dpiv based method was able to generate lower

bee counts as well. On the other hand in case of high bee traffic (for example, Vid28, Vid1,

Vid3 etc), we can see that the dpiv based approach resulted in higher bee motion counts

and also closer to the actual counts. Except for Vid8 and Vid9 where the dpiv method

overestimated the counts, we can see dpiv based approach was able to better approximate

the actual bee motion counts as compared to the omnidirectional bee counting approach

proposed in [1]. We think the overestimation could be a result of the color variation present

in the videos, which in turn led to a higher threshold value and thus the algorithm chose a

much larger overlap percentage between the interrogation windows that were used for the

two videos. The above findings and the results presented in Table 5.4 tells us that the dpiv

based bee motion counting approach combined with bee motion localization (which was
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presented in Chapter 4) is more accurate and a valid alternative to the costly convolutional

neural network techniques used in the omnidirectional bee counting methods in [1].

5.5.3 Results On Raspberry Pi

One of the primary objectives of this research is to design an automated beehive mon-

itoring system that would be able to make informed decisions regarding the health of a bee

hive. Hence it is essential to be able to do that sort of analysis in a timely manner on the

BeePi monitors itself. One of the building blocks for the above analysis is to get a near

accurate estimate of bee motion counts from the video recordings in a timely manner. By

timely manner we mean that the bee motion counts should be obtained within 15 mins from

recording a video, because each BeePi monitor records a 30-s video every 15 mins from 8:00

to 21:00 every day. Thus it is important to have the bee motion counts from a recorded

video before the next one starts recording. In this way we will be able to have almost ‘real’

time bee motion counts and thus would be able to detect any discrepancies in the bee traffic

levels faster.

By evaluating 32 videos of varying traffic from different times of the beekeeping season,

we saw that our proposed dpiv based bee motion counts were closer to the actual bee motion

counts as seen in Table 5.4. But from [2], we know dpiv is computationally expensive

on the raspberry pi hardware even when cross correlation is implemented with FFT (see

Equation (5.2)). We saw in [2], that when dpiv was performed on video frames of size

640 × 480 (the interrogation window size was 90, and the overlap was 60%), it took on

average ≈2.5 h for the algorithm to process a single 30-s video. In that above study, we

then introduced multi-threading and were able to reduce the average video processing time

from 2.5 h to 1 h 12 min on a single raspberry pi 3 model B v1.2 with four cores. In order

to reduce the processing time even further, in [2] we introduced parallelism to our system

by distributing the video processing over 6 raspberry pis. This helped us reduce the time to

≈19.49 min per 30-sec video. We later argued that it was still possible to finish analyzing

videos from an entire day before the next day’s video recording started at 8am by using

6 raspberry pis. But this meant that the 6 raspberry pis would be processing only videos
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during majority of its uptime and hence we will not be able to analyze data from any other

sensors apart from the camera. Thus it was essential for us to come up with a solution in

this current study that would reduce the video processing time to less than 15 minutes on

a single raspberry pi.

Towards that end, the first step we took was to reduce the size of the video frames

from (640× 480) to (80× 60). We saw in Table 5.4 that this reduction in frame size did not

affect the performance of our dpiv based method and the results were close to the actual

bee motion counts. This reduction in video frame size acted as a principle factor in lowering

the execution time of the current dpiv based method. Using the above adjustment we were

able to achieve an improved processing time with an average of 2.15 minutes per video when

we tested on our 32 evaluation videos.
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Video Human Count dpiv Count TIME (seconds) TIME (minutes)
Vid1 5693 4923 243.606929063797 4.06011548439662
Vid2 343 319 114.346977233887 1.90578295389812
Vid3 2887 2106 115.406357288361 1.92343928813935
Vid4 73 56 190.043186903 3.16738644838333
Vid5 75 64 93.5045878887177 1.5584097981453
Vid6 239 285 85.085688829422 1.4180948138237
Vid7 74 92 88.9132161140442 1.48188693523407
Vid8 361 712 84.1732139587402 1.40288689931234
Vid9 478 1393 88.4134678840637 1.47355779806773
Vid10 357 221 90.2447443008423 1.50407907168071
Vid11 373 512 88.8227555751801 1.48037925958634
Vid12 348 778 88.4346191883087 1.47391031980515
Vid13 176 221 113.800625562668 1.89667709271113
Vid14 208 290 95.7730674743652 1.59621779123942
Vid15 456 416 118.601377487183 1.97668962478638
Vid16 270 261 126.284482717514 2.10474137862523
Vid17 154 296 121.399843931198 2.02333073218663
Vid18 294 298 113.230691432953 1.88717819054922
Vid19 17 22 180.32129240036 3.00535487333933
Vid20 60 97 238.475056171417 3.97458426952362
Vid21 432 685 229.064736604691 3.81774561007818
Vid22 101 610 85.9913864135742 1.43318977355957
Vid23 247 279 85.4251458644867 1.42375243107478
Vid24 168 250 112.930651903152 1.8821775317192
Vid25 90 106 89.5929608345032 1.49321601390839
Vid26 74 29 93.2399213314056 1.55399868885676
Vid27 1943 2481 111.709685564041 1.86182809273402
Vid28 6580 8635 192.920397996902 3.21533996661503
Vid29 186 165 120.029965639114 2.00049942731857
Vid30 289 498 84.8380711078644 1.41396785179774
Vid31 643 815 87.9198305606842 1.46533050934474
Vid32 1401 1738 352.485249757767 5.87475416262945

Table 5.5: Processing times for the combined methods of bee motion localization along
with dpiv on each of the 32 evaluation videos; the size of each video frame was (80× 60)

Table 5.5 shows the time taken to process each video on the BeePi monitor using

raspberry pi 3 model B v1.2. From Table 5.5 we can see that the 32 videos individually

had different processing times but the highest time was taken by Vid32 (5.87475416262945

minutes) which was still less than our desired 15 minutes. We found the processing times

to be dependent on the interrogation window size and the overlap used. For examples,

Vid32 had a smaller window size and a larger overlap (13, 40%) and thus the processing

time was higher. On the other hand Vid1 had a larger window and overlap (25, 70%)

between two interrogation windows and thus the processing time was higher. Thus we can

most certainly say that the proposed dpiv based bee motion counts method along with bee



103

motion localization would be able to process the videos in ‘real’ time with a much better

accuracy, before the next video starts recording on our BeePi monitors.

5.5.4 Directional Bee Traffic Analysis

In our previous investigation [1] we had proposed a two tier method of bee motion

counting which is only able to count omnidirectional bee traffic and hence cannot be used

to perform any analysis on directional (upward, downward and lateral) bee traffic. In our

following research [2], we were able to use dpiv to estimate the levels of incoming, outgoing,

or lateral bee traffic rather than actual counts. But in this chapter, we have seen how our

combined approach of bee movement localization and then applying dpiv can be used to get

actual counts for directional bee motions. Thus in this section, we will investigate whether

the newly proposed approach can be used to analyze the incoming and outgoing traffic in

healthy bee hives.

In a healthy bee hive, the levels of incoming and outgoing bee traffic should match

closely because all forager traffic should come back to the hive at the end of the day. If

we consider the counts of incoming and outgoing traffic as time series data, then local

mismatches are bound to happen, because some foragers who leave the hive at the same

time may not return to the hive at the exact same time as they might have pursued flight

to different foraging sources. However in a healthy hive the two curves should show similar

matching tendency over the time period of our investigation. If a larger number of forager

traffic traffic leaves the hive and does not come back then that could indicate a swarming

event. And if the number of incoming forager traffic greatly increases as compared to the

outgoing traffic then that can indicate a hive robbing event. Hence, continuous discrepancies

between the incoming and outgoing forager traffic can be treated as a deviation from normal

behavior and may prompt the beekeeper for manual inspection.

We have used the foraging data from the bee keeping season of 2018 for our analysis

in this section. The BeePi system records video data every 15 minutes from 8:00 am to

9:00 pm. Thus we have 4 recordings every hour and in total we have 52 recordings for each

day of the investigating time period. We will be focusing on two separate hives (R 4 5 and
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R 4 7) to analyze the directional traffic. Both the hives are in the same apiary in Logan,

UT, but are at least 30 feet apart. Although we had 4 hives in that apiary, we chose the

above two because the BeePi sensors in hives R 4 5 and R 4 7 had the least number of

hardware failures over the 2018 beekeeping season. This was also to make sure that we had

good quality data for our analysis. R 4 5 was in sunlight mostly during the morning hours

till noon. R 4 7 remained in shade most of the day and received sunlight during the early

evening to sunset hours. Both the hives were located in an apiary where there are lots of

trees and small bushes.

Next, we computed the values of Iv and Ov (Equation (5.3)) for each video to study how

closely the counts of outgoing and incoming bee traffic match. In order to match the trend in

the incoming and outgoing counts, we calculated the Pearson product-moment correlation

coefficients between them using ‘numpy’ package in Python3.5. A higher correlation value

would indicate that both the time series have identical trends, i.e. when one increases

the other one increases as well. We also used Dynamic Time Warping (DTW) [98, 99] to

calculate the similarity between the two time series of incoming and outgoing bee motion

counts. DTW is a numerical similarity measure of how two time series can be optimally

aligned (i.e., warped) in a way such that the accumulated alignment cost is minimized. It

is based on dynamic programming and it finds all possible alignment paths and selects a

path with a minimum cost. We randomly chose 2 days from each month from the beginning

to the middle of the bee keeping season of 2018 (May–August) from the hives R 4 5 and

R 4 7, and showed how the time series plots of incoming and outgoing bee motion counts

matched up. We chose the above months since during that time period we saw both hives

grew stronger, which had also prompted us to add more supers to our Langstroth bee

hives. Thus in total we investigated 832 (4*13*8*2) videos from both the hives. Figure 5.9

shows the time series plots for incoming and outgoing bee motion counts for hive R 4 5 and

Figure 5.10 shows the time series plots for incoming and outgoing bee motion counts for

hive R 4 7. From both the graphs we can see that the incoming time series curve matches

closely to the outgoing time series plots. We can also see that when there is a spike (small or
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large) in the outgoing curves, it is also reflected in the incoming curves and vice versa. The

above similarity is also reflected in the DTW and correlation coefficient values in Tables 5.6

and 5.7 respectively. A low value of DTW suggests both the time series are closely aligned.

From our past research [2], we have seen a DTW value of less than 10 is usually good and

we can see that all the DTW values are below 10 in Table 5.6. On the other hand a high

correlation value suggests that as one variable increases in its values, the other variable also

increases in its values via an exact linear rule. We can see that all the correlation values are

very high and close to +1 in Table 5.7. This tells us that there is a strong positive correlation

between the incoming and outgoing traffic during the above days we investigated.

May 28 May 30 June 03 June 17 July 17 July 27 Aug 05 Aug 15
R 4 5 5.42 4.41 7.5 6.52 7.38 8.5 3.01 5.89
R 4 7 4.17 3.53 5.72 2.89 7.6 8.25 6.45 4.59

Table 5.6: DTW similarity scores between outgoing and incoming traffic curves for the
time series plots in Figures 5.9 and 5.10. A lower DTW value is desirable.

May 28 May 30 June 03 June 17 July 17 July 27 Aug 05 Aug 15
R 4 5 0.9835 0.9899 0.9774 0.9821 0.9805 0.9717 0.9963 0.9812
R 4 7 0.9902 0.9954 0.9887 0.9971 0.9835 0.9762 0.9866 0.9918

Table 5.7: Correlation coefficient between outgoing and incoming traffic curves for the
time series plots in Figures 5.9 and 5.10. A higher correlation coefficient value is desirable.
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(a) May 28, 2020 (b) May 30, 2020

(c) June 03, 2020 (d) June 17, 2020

(e) July 17, 2020 (f) July 27, 2020

(g) Aug 05, 2020 (h) Aug 15, 2020

Figure 5.9: The time series plots for incoming and outgoing bee traffic for Hive R 4 5
during the certain days in May, June, July and August 2018.
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(a) May 28, 2020 (b) May 30, 2020

(c) June 03, 2020 (d) June 17, 2020

(e) July 17, 2020 (f) July 27, 2020

(g) Aug 05, 2020 (h) Aug 15, 2020

Figure 5.10: The time series plots for incoming and outgoing bee traffic for Hive R 4 7
during the certain days in May, June, July and August 2018.
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We also investigated the time series plots for the incoming and outgoing bee traffic

for the months of June–August during the days video recording data was available. We

evaluated the curves by calculating the average DTW score per day and the correlation

coefficient.

June July August
R 4 5 4.89 7.34 4.66
R 4 7 2.99 3.38 3.33

Table 5.8: Average DTW similarity scores between outgoing and incoming traffic curves
for the time series plots in Figures 5.11 and 5.12 for the months of June, July and August.

June July August
R 4 5 0.9843 0.9727 0.9761
R 4 7 0.9932 0.9953 0.9884

Table 5.9: Correlation coefficient between outgoing and incoming traffic curves for the
time series plots in Figures 5.11 and 5.12 for the months of June, July and August.

(a) June 2020 (b) July 2020

(c) August 2020

Figure 5.11: The time series plots for incoming and outgoing bee traffic for hive R 4 5
during the months of June, July and August 2018. The flat lines on the curve is during the
time frame when there were hardware failures.
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(a) June 2020 (b) July 2020

(c) August 2020

Figure 5.12: The time series plots for incoming and outgoing bee traffic for hive R 4 7
during the months of June, July and August 2018. The flat lines on the curve is during the
time frame when there were hardware failures.

In Table 5.8, we can see that the average DTW score between the incoming and outgoing

bee motion counts for the months of June, July and August for hives R 4 5 and R 4 5 were

all below 10. We can also see the high correlation values in Table 5.9 for the above months for

both the hives. Both of the above events of low DTW scores and high correlation coefficients

tell us that the incoming and outgoing curves match closely with each other. We can see

the match being reflected in the graphs in Figures 5.11 and 5.12 as well. If we observe

Table 5.8, we see that the DTW score corresponding to hive R 4 5 was comparatively

higher than the one for R 4 7. If we compare the corresponding graphs on Figure 5.11b

and 5.12b, we can see that certain spikes in the incoming traffic have not been replicated by

a similar spike in outgoing traffic. This could be the case where in certain video recordings,

we observed that the bees were flying out too fast from the beehive for dpiv to be able to

detect any bee movement in the videos captured by the raspberry pi camera. Hence we

can assume the above event must have caused the mismatch between the incoming and the

outgoing bee motion counts. Overall we can see that the dpiv based bee motion counts
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method presented in this chapter can be used to measure not only omnidirectional but also

directional honeybee traffic.

5.6 Seasonal Bee Motion Counts

In this section, we will plot the total bee motion counts (Tv(V )) for the entire beekeeping

season of 2018 from May to November for hives R 4 5 and R 4 7, and then try to compare

and investigate them in order to draw a conclusion regarding hive development. To perform

the above comparison, we first prepared the data accordingly. Rather than using bee motion

counts for every hour of a day, we calculated the mean of the bee motion counts for the

entire day. So rather than having 15 bee motion count values for the day (6am to 9pm), we

just have 1 value for the entire day. After preparing the data, we plotted the average daily

bee motion counts for hives R 4 5 and R 4 7 from May to November. Figure 5.13 shows the

plot for the average daily bee motion counts over the entire beekeeping season of 2018 for

both hives R 4 5 and R 4 7. If we observe the Figure 5.13 we can see that the hives R 4 5

was performing on par with hive R 4 7 during certain parts of the 2018 beekeeping season,

specifically at the beginning and during the middle (mid July–mid August) time period.

Figure 5.13: Bee motion counts for the entire season of 2018. Red boxes signify time
period where there were hardware failures and no data was recorded.
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But if we look closely we see that both the hives showed a downward trend based

upon the bee motion counts. This could very well serve as an early detection alarm to

understand the development of hives. In a large-scale apiary with many hives equipped

with BeePi sensors, those hives that show a downward trend in performance during the

middle of the season could be manually inspected and necessary steps for hive treatment

could be performed. In Figure 5.13, three time periods have been marked with red boxes.

During those time periods our BeePi monitors experienced hardware failures for either or

both of the hives and thus no data was available for comparison. The magenta boxes are

marked for time periods which are important to our analysis. In the first magenta box,

we see that there is a sudden increase in bee traffic for hive R 4 7. We think this event is

significant since up until that time period the two hives showed similar bee traffic. This

event could signify colony robbing activity or it could also signify stress encountered by

hive R 4 7 due to some other events. The final magenta box is during the timeline of end

October–end November, which are months in the back end of the beekeeping season. The

temperature falls below freezing occasionally during this time of the year. This also suggests

that there will be less bee movements and then less bee motions would be detected. We can

see that effect for both the hives R 4 5 and R 4 7. But the amount of change or variability

in the graph for R 4 5 suggests that there were still some bee movements during that time,

which could suggest that the hive was preparing for the winter. On the other hand, the

graph for R 4 7 showed very little variability which also means there were a lot fewer bee

movements. It is hard to explain such events, but we think it could mean the hive R 4 7

was struggling. It is also evident from our beekeeping journal, from which we know that

hive R 4 7 was not able to survive the harsh winter weather in Logan, UT.

5.7 Difference Between Incoming And Outgoing Bee Motion Counts

In this section, we will plot the absolute difference between the incoming and outgoing

bee motion counts (Dv(V ) = |Iv(V )−Ov(V )|) for the entire beekeeping season of 2018 from

May to November for hives R 4 5 and R 4 7, and investigate them to draw a conclusion

regarding hive development and health of the hive. In healthy beehives, ideally the levels
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of incoming bee traffic should approximately match levels of outgoing bee traffic, because

all foragers that leave the hive should eventually come back. There might be occasional

mismatches on certain days because not all foragers return back to the hive at the same

time due to flying to different foraging sources. But the overall matching tendency should

be visually apparent if the incoming and outgoing motion counts are treated as time series.

But consistent deviations in the difference between the incoming and outgoing bee counts

may indicate that the hive may not be healthy and may be in stress.

Figure 5.14: Absolute difference between the incoming and outgoing bee motion counts
for the entire season of 2018. The red box signifies the time period of interest.

In Figure 5.14, we can see the difference between incoming and outgoing bee motion

counts during different times of the season. During majority of the season we can see

that there is similar difference between the corresponding counts for both the hives R 4 5

and R 4 7, which tells us that both the hives showed similar development. We see that

the difference Dv(V ) is higher during the middle of the season when there is lot of bee

movements and as the season progresses the difference goes down. One reason for the high

difference between the middle of the season could be attributed to the bee motion count

algorithm missing some bees motions in high traffic videos. From the Figure 5.14 we can
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see that the max difference is close to 1000 bees which means that during the middle of the

season when there is high bee traffic, the incoming counts differs from the outgoing counts

by approximately 1000 bees. Since the bee traffic level is really high during the the above

timeline, we believe that a mean difference of 1000 bees per day is an acceptable amount.

In the later part of the season during the timeline of September–end November indi-

cated by the red box Figure 5.14, we can see that the difference Dv(V ) varies a lot for hive

R 4 7 whereas there is a constant difference in counts for hive R 4 5. The variable difference

along with the sudden increases in the difference tell us that hive R 4 7 was struggling and

was in stress towards the end of the season. The difference could be attributed to either lots

of bees leaving the hive and not coming back or even due to loss of bees. This matches with

our observations in our beekeeping journal where we recorded a lot more bee loss during

this timeline for hive R 4 7 as compared to hive R 4 5. Collectively the above observations

suggest that while hive R 4 5 might have been preparing for the upcoming winter, hive

R 4 7 was struggling during the later end of the bee keeping season. The above is also

evident from our beekeeping journal, from which we know that hive R 4 7 was not able to

survive the harsh winter weather in Logan, UT. The above analysis tells us that a carefully

designed metric that could track this continuous discrepancies over time would help a bee-

keeper identify abnormal behaviour such as bees abandoning their hives, swarming or hive

dying due to parasitic infestation or other hive threatening events.

5.8 Discussions

Our experiments in this chapter indicate that the combined dpiv based bee motion

count algorithm along with bee movement localization performed better than the two-tier

bee motion counting algorithm proposed in our previous research [1] in terms of omnidi-

rectional bee motions based upon the results on 32 evaluation videos [96]. This current

research also improved upon our previous study [2], where in we were able to get actual

counts of bee motions rather than a general estimate. For the 32 evaluation videos we saw

that the current combined dpiv method was able to generate results which were closer to

the actual bee counts, which had been manually counted frame by frame from each video.
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Thus through our results we have shown that dpiv can not only be used to quantify particle

velocities but can also be used for analyzing the flow structure. We have also seen that

our improved dpiv based proposed method is able to run on a single raspberry pi computer

and is able to process each video on an average in 2.15 minutes. This is a significant im-

provement from our findings in our last research [2] where we needed 6 raspberry pis to

process each video in 19 minutes. Thus using our new approach we are able to process

each recorded video almost in ‘real’ time before the BeePi monitor records the next video

in 15 minutes. This frees up a lot of time for the BeePi monitor to process and analyze

data from other sensors as well. As the hardware in raspberry pis improves, we believe

that the processing time of 2.15 minutes would go down even further. The above results

are significant for citizen scientists in that the hardware base of the BeePi monitor can be

easily replicated and the newly proposed dpiv based algorithm can operate just as fast on a

single raspberry pi computer, thus requiring no significant capital and maintenance costs.
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CHAPTER 6

ANALYSIS OF BEEHIVE AUDIO SAMPLES

6.1 Goal

Audio beehive monitoring helps us in the understanding of how bee buzzing could po-

tentially determine the condition of the beehives and the environment around them. It can

also be viewed as an emerging branch of ecoacoustics [100] that investigates the relationship

between naturally occurring anthropogenic sounds and the corresponding environment. In

this chapter we will discuss the design and compare different deep learning models towards

classifying audio samples recorded by microphones on beehives. The methods presented in

this chapter do not depend on the position of the microphones. The microphones can also

be placed inside the hives provided proper precaution against microphone propolization is

taken. We introduce two different datasets of audio samples to aid us in our investigation.

In the first dataset BUZZ1 [23], the training and testing samples were separated from the

validation samples by beehive and location. In the second dataset, BUZZ2 [23], the training

and testing samples were separated from the validation samples by beehive, location, time

and bee race.

6.2 Audio Data

The audio data used for experiments in this chapter have been collected from bee hive

monitors from two different bee keeping season across two different apiaries. Figure 6.1

shows the relative position of the microphones above the landing pad on the beehive. Each

monitor recorded 30 seconds of audio samples with an interval of 15 minutes. Each audio

of 30 seconds was further segmented into 2-second samples with a 1 second overlap. Thus

a 30 seconds audio resulted in 28 2-second audio samples. For our discussion we will work

with audio data collected across two different bee keeping seasons. The first set of audio
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(a) Bee hive in an apiary (b) Closeup image of microphones

Figure 6.1: Bee hive with microphones attached approximately 10cm above the landing
pad. The microphones are not affected by rain or snow.

data was collected from 2 bee hives in an apiary (A1) deployed during May–July 2017 in

Logan, UT. The beehives (1.1 and 1.2) in the first apiary (A1) in Logan, UT were close

to a large parking lot. Thus some audio samples had sounds of car horns and engines.

One of the beehive (1.1) was close to a garage with a power generator. Thus in the audio

sample recorded from that beehive (1.1), the generator’s sound was prominent sometimes.

The second set of audio data was collected from beehives (1.3 and 1.4) with Carniolan bees

deployed in the same apiary (A1) in Logan during the bee keeping season of 2018, during

the months of May–July. Some recorded samples from beehives 1.1, 1.2, 1.3 and 1.4 also

contained sounds of fire engine and ambulance sirens.

The second apiary (A2) was placed in a rural environment which was located in North

Logan, UT. The two apiaries (A1 and A2) were approximately 3 miles apart. We collected

data from two bee hives (2.1 and 2.2) in apiary A2. Beehive 2.1 was close to a lawn which

was regularly mowed and watered by the property owner. Thus audio samples from beehive

2.1 had sounds of lawn mower, sprinklers, human conversation and children playing on the

lawn. On the other hand bee hive 2.2 was located on the other end of the apiary where

ambient noises were less audible.

Based on the audio samples collected, we labeled them into 3 different categories: bee

buzz (B), cricket chirp (C) and ambient noises (N). The ambient noises category mostly

contained sounds of thunder, wind, rain, vehicles, human conversation, sprinklers, relative
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silence, i.e., absence of any sounds discernible to a human ear and also static noises from

microphones. Audio samples in where we were not able to clearly listen to either bee buzz

or cricket chirping were also included in the ambient noises (N) category. The class B is

essential to determine different acoustic patterns in honey bee colonies, which could be

used to identify various stressors affecting the bee colony. Class C, which represents cricket

chirping is present during 11pm and 6am. Category N helps to identify and remove noisy

samples which could hamper our analysis if included with the bee buzzing samples.

Our first dataset BUZZ1 [23], contained 10,260 audio samples. Out of which 9110

samples were used for training and testing. These samples were collected from beehives

1.1 and 2.1. The samples were divided as follows: 3000 samples of class B, 3000 samples

of class C and 3000 samples of class N. The remaining 1150 audio samples in BUZZ1 were

used as a validation dataset. These samples were obtained from beehives 1.2 and 2.2 during

May–June, 2017. Thus the audio samples used for training and testing differed from the

validation dataset by beehive and location. Although the training and testing data have a

mixture of audio samples from beehives 1.1 and 2.1, it is worth noting that audio samples

from different beehives differ from each other as their surroundings are different even if they

are located in the same apiary.

Towards that end we created another dataset BUZZ2 [23] with 12,914 samples. In

BUZZ2, audio samples in the training and testing dataset were completely separated with

respect to the beehive and the location. The training set contained 7582 samples from

beehive 1.1. It contained 2402 B audio samples, 3000 C audio samples, and 2180 N audio

samples. On the other hand, the testing set contained 2332 audio samples from beehive 2.1.

It contained 898 B audio samples, 500 C audio samples, and 934 N audio samples. To select

the deep learning model that gives the best classification result, we set aside a validation

dataset created from audio samples from beehives 1.3 and 1.4 deployed in apiary 1 during

during the months of May–July 2018. The validation dataset included 1000 B audio samples,

1000 C audio samples, and 1000 N audio samples. As stated earlier, the beehives 1.3 and

1.4 contained fresh installation of Carniolan honey bees for the 2018 bee keeping season.
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Thus in BUZZ2, the audio samples in the training and testing dataset were separated from

each other by beehive and location; while the validation dataset differed from the training

and testing dataset by beehive, time of collection (2017 vs 2018) and bee race, i.e. Italian

honey bees vs Carniolan honey bees.

6.3 Deep Learning

Representation learning is a branch of AI that investigates automatic acquisition of rep-

resentations for detection and classification from raw signals [77]. Standard ML techniques

are limited in their ability to acquire representations from raw data, because they require

considerable feature engineering to develop robust feature extractors that convert raw sig-

nals into feature vectors used in classification methods. Unlike conventional ML techniques,

DL methods are designed to acquire multi-layer representations from raw data automati-

cally. Starting from raw input, each layer is a transformation function that transforms its

input to the one acceptable for the next layer. Many features of these layers are learned au-

tomatically by a general purpose procedure known as backpropagation [101]. Compositions

of these transformations emulate complex classification functions. DL methods have been

successfully applied to image classification [78–80], speech recognition and audio process-

ing [81,82], music classification and analysis [83–85],environmental sound classification [86]

and bioinformatics [87,88].

Convolutional Neural Networks (ConvNets) are a type of deep feedforward neural net-

works that have been shown in practice to better train and generalize than artificial neural

networks (ANNs) on large quantities of digital data [102]. In ConvNets, filters of various

sizes are convolved with a raw input signal to obtain a stack of filtered signals. This stack

is referred to as the convolution layer. The size of the convolution layer is equal to the

number of the convolution filters. The convolved signals are normalized. A standard choice

for normalization is the rectified linear units (ReLUs) that convert all negative values to

0’s [103,104]. This layer is called the normalization layer. The size of each signal from the

convolution layer or the normalization layer can be reduced in a maxpooling layer, where

a window and a stride value are used to shift the window in stride steps across the input
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signal retaining the maximum of the values from each window. The fourth type of layer in a

ConvNet is the fully connected layer (FC), where the stack of processed signals is construed

as a 1D vector where each value is connected via a synapse (a weighted connection that

transmits a value from one unit to another) to each node in the next layer. FC layers can

be stacked on top of each other before the top layer in the stack is connected to the nodes of

the output layer. In addition to standard layers, ConvNets can have custom layers that are

essentially arbitrary transformation functions that process the input from the previous layer

before it is fed into the next layer. Standard and custom layers can be stacked arbitrar-

ily deep in various permutations. The architectural features of a ConvNet that cannot be

dynamically changed through backpropagation are called hyperparameters and include the

number and size of filters in convolution layers, the window size and stride in maxpooling

layers, and the number of neurons in FC layers. These permutations and hyperparameters

distinguish one ConvNet architecture from another.

6.4 Convolutional Neural Network for Audio Spectrogram Classification

In audio processing, ConvNets are used by to classify raw audio or spectral features

extracted from raw audio. For example, Piczak [86] used mel frequency cepstral coefficients

(MFCCs) as one of the feature extraction methods for environmental sound classification.

Aytar et al. [89] used raw audio samples to classify events from unlabeled videos. In [90],

van den Oord et al. showed that generative networks were trained to predict the next

sample in an audio sequence. The proposed network consisted of 60 layers and sampled raw

audio at a rate of 16kHz to 48kHz.

In signal processing, a spectrogram represents an audio spectrum where time is rep-

resented along the x -axis and frequency of corresponding signal points along the y-axis

and the strength or the amplitude of each frequency is represented by variable brightness

or color. A spectrogram displays the changes in the frequencies in a signal over time. A

spectrogram can also be represented as a RGB image as shown in Figure 6.2. The spectro-

gram in Figures 6.2, 6.3 and 6.4 was computed using the specgram function available from

the matplotlib package in Python. Using the above function, the audio data is split into
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Figure 6.2: Audio Spectrogram of 2-second Audio Sample of Bee Buzzing

Figure 6.3: Audio Spectrogram of 2-second Audio Sample of Cricket Chirping

Figure 6.4: Audio Spectrogram of 2-second Audio Sample of Ambient Noise
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NFF=512 length segments and the spectrum of each section is computed. Next the hanning

windowing function is applied to each segment, and the amount of overlap between each

segment is set to 384. The window size was set to 2048 along with a hop size of 512 (i.e.

2048/4 = 512) and the sampling frequency of 2. In order to treat the time and frequency

domain equally and for faster processing, the spectrograms were resized to a 100x100 im-

age. This resulted in each pixel value approximating a frequency value at a particular point

along the time axis.

In this section, we will discuss a ConvNet architecture (SpectConvNet) that we have

designed that takes as input RGB images of audio spectrograms. SpectConvNet is used to

classify RGB images of audio spectrograms into 3 categories: bee buzz (B), cricket chirp

(C) and ambient noises (N). Figures 6.2, 6.3 and 6.4 represents the spectrogram of audio

samples of bee buzz (B), cricket chirp (C) and ambient noises (N) respectively represented

as RGB images.

Figure 6.5: SpectConvNet Architecture. The numbers below each box, except for the
input, denote the dimensions of the resultant feature map following the corresponding op-
eration in the box.
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Figure 6.6: SpectConvNet Control Flow. Layer by layer control flow of SpectConvNet;
the numbers at the corners of each rectangle represent the corresponding dimensions.

The architectural design of the SpectConvNet is shown in Figure 6.5 and the corre-

sponding layer by layer arrangements is shown in Figure 6.6. SpectConvNet is trained using

RGB images of dimensions 100x100 as in Figures 6.2, 6.3 and 6.4. SpectConvNet comprises

of 3 convolutional layers and at each layer rectified linear units (ReLU) [104, 105] is used

as the activation function. In layer 1, the input is convolved using 100 filters (filters shown

in red in Figure 6.6), each of size 3 × 3, with a stride of 1 in both horizontal and vertical

direction. This resulted in a set of feature maps of size 100 × 100 × 100 shown in layer 2.

Maxpooling is then applied to the feature maps with a kernel size of 2 and that results in

a set of feature maps of size 50 × 50 × 100. The resultant feature map is convolved using

200 filters (shown in blue in layer 2), each of size 3× 3, with a stride of 1 in both horizontal

and vertical direction. The output is a feature map of size 50 × 50 × 200 (shown in blue

in Layer 3). In Layer 3 another round of convolution is performed using 200 filters (shown

in green), each of size 3× 3, with a stride of 1. Maxpooling with a kernel size of 2 is then

applied to generate a feature map of size 25× 25× 200, as shown in layer 4. In layer 5, the
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output is passed through a FC layer with 50 units. The FC layer (in layer 5 and also FC-50

in Figure 6.5) uses the ReLU activation function. Next in layer 6, a dropout layer [106]

with a keep probability of 0.5 is added to avoid any overfitting. The addition of a dropout

layer also reduces any complex co-adaptations of neurons [78]. The final FC layer (FC-3 in

Figure 6.5) uses the softmax activation function [104,105].

The softmax function is used to represent a probability distribution over k different

possible outcomes by mapping a k-dimensional vector of arbitrary real values into another

k-dimensional vector whose values are in the range (0, 1) that add up to 1. The softmax

function emphasizes the largest values and de-emphasizes the smallest ones. Formally, if

X = [x1, ..., xk] is a k-dimensional vector, then the softmax function maps each element xi

of X to the real value specified in Equation 6.1. The softmax function is used to transform

a k-dimensional vector X to a k-dimensional vector Z, as shown in Equation 6.2.

S(xi) =
exi∑k
j=1 e

xj
, where 1 ≤ i ≤ k. (6.1)

Z = [S(xi), ..., S(xk)]. (6.2)

In multiclass classification, given a sample vector X and its score vector Z, the prob-

ability of X belonging to class j is given in Equation 6.3, where Zi is the i-th element of

Z.

P (X = j|Z) =
eZj∑k
j=1 e

Zj
. (6.3)

Thus in layer 6, when the result is passed through a 3-way softmax function the Spect-

ConvNet classifies the audio signal as bee buzz (B), cricket chirp (C), or ambient noise (N).

We trained a several iterations of SpectConvNet with different choices of parameter values.
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The detailed description of individual layers of the best performing SpectConvNet model is

shown in Table 6.1.

Layers Operation Specification

Layer 1 Conv-2D

filters = 100,filterSize = 3, strides = 1, activation = relu,

bias = True, biasInit = zeros,weightsInit = uniform scaling,

regularizer = none,weightDecay = 0.001

Layer 2

Maxpool-2D kernelSize = 2, strides = none

Conv-2D

filters = 200, filterSize = 3, strides = 1, activation = relu,

bias = True, biasInit = zeros,weightsInit = uniform scaling,

regularizer = none,weightDecay = 0.001

Layer 3 Conv-2D

filters = 200, filterSize = 3, strides = 1, activation = relu,

bias = True, biasInit = zeros,weightsInit = uniform scaling,

regularizer = none,weightDecay = 0.001

Layer 4 Maxpool-2D kernelSize = 2, strides = none

Layer 5 FC-50 number of units = 50, activation = relu

Layer 6
Dropout keep probability = 0.5

FC-3 number of units = 3, activation = softmax

Table 6.1: Layer Specification Of The Best Performing SpectConvNet Model

6.5 Convolutional Neural Network for Raw Audio Signal Classification

The feature engineering approach was the dominant approach till recently when deep

learning techniques started demonstrating recognition performance better than the carefully

crafted feature detectors. Deep learning shifts the burden of feature design also to the

underlying learning system along with classification learning typical of earlier multiple layer

neural network learning. From this perspective, a deep learning system is a fully trainable

system beginning from raw input, for example image pixels, to the final output of recognized

objects. The biggest advantage of Deep Learning is that we do not need to manually
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extract features from the image. The network learns to extract features while training

using its different convolution kernels. Towards that end we designed a second ConvNet

architecture called RawConvNet which takes as input the waveforms of raw audio signal.

The architecture of RawConvNet is shown in Figure 6.7 and the layer by layer arrangements

of different operations is shown in Figure 6.8. The proposed RawConvNet can be generalized

across any type of audio signal.

Figure 6.7: RawConvNet Architecture. The numbers below each box, except for the input,
are the dimensions of the resultant feature map following the corresponding operation in
the box.
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Figure 6.8: Different layers in RawConvNet trained to classify raw audio samples; the
numbers below each box at the corners of each rectangle represent the corresponding di-
mensions; all filters and feature maps are rectangular in shape with a breadth of one unit.

The architecture of RawConvNet is comprised of two hidden layers both of which have

256 filters. In both the layers ReLu is used as the activation function. The input to the

RawConvNet is a waveform of the raw audio signal. The audio signal is downsampled to

12KHz and is normalized to have a mean of 0 and variance of 1 before it passed on to

the RawConvNet. The weights of the convolution or hidden layers are initialized using

the methods described by Xavier et al. in [107]. The random initialization of the weights

helps to keep the scale of the gradients roughly the same in both the layers. Finally the

waveform of the normalized and downsampled audio signal is flattened to 20,000 × 1 and

passed as an array tensor to the first layer of RawConvNet (refer to Figure 6.8). In Layer

1, the input is convolved with 256 filters (shown in red in Layer 1), with a stride of 4

in the horizontal direction each of size n × 1, where n ∈ {3, 10, 30, 80, 100}. The effect

of different sizes of receptive fields for the first convolution layer is explained in the later

section while discussing the various experiments. The stride is chosen big in the first layer,

to keep the number of trainable parameters less along with keeping the computation cost

low. The corresponding 5000 × 256 feature map is shown in Layer 2 in red. Next a batch
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normalization [108] operation is added to reduce the internal covariate shift.

Batch normalization is applied to the output of each convolution layer to reduce the

computation costs and accelerate the learning process. Batch normalization forces the

activations in feature maps to have a standard deviation of 1 and a mean of 0. The output

of each convolution layer is a tensor of rank 4, i.e., [B,H,W,D], where B is a batch size,

H ×W is a feature map size, and D is the number of channels or dimensions. If (x, y) is

a spatial location in the feature map so that 0 ≤ x < H and 0 ≤ y < W , then the basic

batch normalization procedure computes H × W × D means and H × W × D standard

deviations across B elements. The output of the batch normalization layer is controlled by

two parameters that are learned to best represent the activation of the feature maps.

Following the normalization, maxpooling with kernel size of 4 is applied to the the

resultant tensor and that results in a 1250× 256 feature map. Convolution is then applied

to the feature maps using 256 filters (shown in blue in Layer 2), each of size 3 × 1, with a

stride of 1 in the horizontal direction. The above operation results in a 1250× 256 feature

map (shown in blue in Layer 3). Batch normalization is applied again to the resultant

feature maps and then maxpooling with a kernel size of 4 is performed which results in a

313 × 256 feature map. In Layer 4, we introduce a custom layer that calculates the mean

of the feature maps and returns a single value for each of the 256 dimensions present in

the feature maps. This reduces each feature map tensor to a single real number. It results

in a 256 × 1 tensor as shown in magenta color in layer 4. Finally, in Layer 5 the output

is passed through a 3-way softmax function that classifies it as B (bee buzzing), C (cricket

chirping), or N (noise). The detailed description of individual layers of the RawConvNet

model is shown in Table 6.2.
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Layers Operation Specification

Layer 1 Conv-1D

filters = 256, filterSize = n ∈ {3, 10, 30, 80, 100},

strides = 4, activation = relu, bias = True,

weightsInit = xavier,biasInit = zeros,

regularizer = L2,weightDecay = 0.0001

Layer 2

Batch Normalization gamma = 1.0, epsilon = 1e− 05,decay = 0.9,

stddev = 0.002

Maxpool-1D kernelSize = 4, strides = none

Conv-1D

filters = 256,filterSize = 3, strides = 1, activation = relu,

bias = True, weightsInit = xavier, biasInit = zeros,

regularizer = L2,weightDecay = 0.0001

Layer 3
Batch Normalization gamma = 1.0, epsilon = 1e− 05,decay = 0.9,

stddev = 0.002

Maxpool-1D kernelSize = 4, strides = none

Layer 4 Custom Layer calculates the individual mean of each feature map

Layer 5 FC-3 number of units = 3, activation = softmax

Table 6.2: Description Of Different Layers In RawConvNet

6.6 Experiments

We tested both of our designed ConvNets, i.e. SpectConvNet and RawConvNet on

the two datasets BUZZ1 and BUZZ2, introduced and described in previous sections. We

used Python 2.7 with tflearn [109] to train our ConvNet models on an Intel Core i7-

4770@3.40GHz × 8 processor with 15.5 GiB of RAM and 64-bit Ubuntu 14.04 LTS. We

used the Adam optimizer [110] during the training process. To analyze the performance of

the models, we categorical crossentropy as the cost function. It measures the error proba-

bility in classification tasks where the classes are mutually exclusive. The best learning rate

for SpectConvNet was η = 0.001 and for RawCovNet was η = 0.0001. Along with that each

ConvNet model was trained for 100 epochs with a batch size of 128. Through our various it-
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erations of the experiments we found the batch size of 128 to be the optimal value. Table 6.3

shows the number of trainable parameters used by the best performing SpectConvNet model

and the RawConvNet with various receptive field sizes. Parameters are the weights that

are learnt during the training process of the model. They are basically weight matrices that

contribute to the model’s predictive power, changed and updated during back-propagation

process. The training algorithm we choose, particularly the optimization strategy makes

them change their values.

Model Name
Parameters

(in Millions)

SpectConvNet 6.79285

RawConvNet (n = 3) 0.198144

RawConvNet (n = 10) 0.199936

RawConvNet (n = 30) 0.205056

RawConvNet (n = 80) 0.217856

RawConvNet (n = 100) 0.222976

Table 6.3: Number of Learnable Parameters In The ConvNets.

6.6.1 Results on BUZZ1

We can recall from Section 6.2 that BUZZ1 comprised of 10,260 samples. From those

samples we separated out our train/test dataset and our validation set for model validation.

The train/test dataset consisted of 9,110 labelled audio samples from beehives 1.1 and 2.1.

We used a 70-30 train/test split of the 9,110 audio samples, which resulted in 6,377 audio

samples used for training (70% of 9,110 audio samples) and 2,733 audio samples used for

testing (30% of 9,110 audio samples). The validation dataset consisted of 1,150 audio

samples from 1.2 and 2.2. The results after training SpectConvNet and RawConvNet on

BUZZ1 is shown in Table 6.4.
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Number of Training Samples: 6, 377; Number of Testing Samples: 2, 733

Model Name Training Training Testing Testing Runtime per

Loss Acc Loss Acc Epoch

SpectConvNet 0.00619 99.04% 0.00702 99.13% 690 secs

RawConvNet (n=3) 0.02759 99.24% 0.03046 98.87% 460 secs

RawConvNet (n=10) 0.01369 99.74% 0.01429 99.60% 462 secs

RawConvNet (n=30) 0.00827 99.91% 0.00679 99.71% 465 secs

RawConvNet (n=80) 0.00692 99.85% 0.00432 99.93% 462 secs

RawConvNet (n=100) 0.00456 99.97% 0.00785 99.74% 505 secs

Table 6.4: Performance Summary of ConvNet Architectures. The parameter n denotes
the size of the receptive field in the first layer of RawConvNet.

From Table 6.4 we can see that RawConvNet with a receptive field size of 80 can

classify the raw audio samples of bees, cricket, and noise with an accuracy above 99% along

with a testing loss around 0.004. Table 6.4 indicates that the performance of RawConvNet

increases as the size of the receptive field increases. This increase in accuracy can be

attributed to the fact that as the size of the receptive field was increased in the first layer,

more information about the audio signal was learned by our RawConvNet model which

had a positive impact on the performance. RawConvNets with receptive fields sizes of 10

and above were able to outperform the SpectConvNet both in terms of testing accuracy

(99.93% vs. 99.13%) and testing loss (0.00432 vs. 0.00702). Along with that, if we observe

Table 6.4, we can see that it took less time per epoch to train the RawConvNet models

compared to the SpectConvNet.
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Figure 6.9: Loss Curves of RawConvNet on BUZZ1 Test Dataset. As the size of the
receptive field increases, loss curves become smoother and decrease faster.

Figure 6.10: Accuracy Curves of RawConvNet on BUZZ1 Test Dataset. As the size of
the receptive field increases, accuracy curves become smoother and increase faster.

The graphs in Figures 6.9 and 6.10 show the testing loss and testing accuracy graphs,
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respectively, of RawConvNet with receptive field sizes n ∈ {3, 10, 30, 80, 100} on the BUZZ1

testing dataset. The number of steps on the x-axis is a function of the number of samples in

the testing dataset and the batch size (6,377/128 ≈ 50 steps per epoch). Since we train our

models for 100 epochs, thus we have 5000 steps on the x-axes of the graphs in Figures 6.9

and 6.10.

6.6.2 Use of Custom Layer

In order to evaluate the contribution of the custom layer in the RawConvNet model

(Figure 6.8), three additional deeper models (ConvNet1, ConvNet2, ConvNet3) were de-

signed to classify raw audio samples where the custom layer was replaced with various

combinations of FC and convolution layers. From Table 6.4, we see that the highest test

accuracy was achieved when the receptive field size in the first layer was 80. Thus in

ConvNet1, ConvNet2 and ConvNet3, the receptive field size in the first layer was set to 80.

Figure 6.11: ConvNet1. This ConvNet is similar to RawConvNet, but the custom layer
(layer 4) of RawConvNet is replaced with an FC layer with 256 neurons.
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Figure 6.12: ConvNet2. Layers 1 and 2 are identical to ConvNet1; in layer 3, maxpooling
output is convolved with 256 filters and batch normalization is used.

Figure 6.13: ConvNet3. Layers 1, 2, and 3 are identical to the same layers in ConvNet2;
in layer 4, the output is convolved with 256 filters and batch normalization is performed in
layer 5.

In ConvNet1, shown in Figure 6.11, the first three layers and the fifth layer are identical

to the RawConvNet model (Figure 6.8) whereas the fourth layer is replaced with an FC

layer with 256 neurons. In ConvNet2, shown in Figure 6.12, the first two layers are identical

to the first two layers of the RawConvNet but in the third layer of Figure 6.8, a convolution
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operation is added to the output of the maxpooling operation. The convolution layer is

comprised of 256 filters, with 3 being the size of filter along with a stride of 1. The resultant

size of the feature maps is 313× 1× 256. Next batch normalization operation is applied in

layer 4 and the resultant feature map is passed to an FC layer with 256. A dropout of 0.5

is added in layer 6 and the resulting tensor is passed to a FC-3 softmax layer. In ConvNet

3, shown in Figure 6.13, the first three layers are identical to the three layers of ConvNet2

(Figure 6.12). In layer 4, an additional convolution layer with 256 filters is added. Each

filter size is 3 and the stride is 1. In layer 5, batch normalization is performed on the output

of layer 4 before passing it to layer 6 that consists of an FC layer with 256 neurons. Layer

7 is the same as in ConvNets 1 and 2 comprising of a softmax layer.

Number of Training Samples: 6, 377; Number of Testing Samples: 2, 733

Model Name Training Loss Training Testing Loss Testing Runtime per

Accuracy Accuracy Epoch

RawConvNet 0.00692 99.85% 0.00432 99.93% 462 s

ConvNet 1 0.55387 99.77% 0.57427 97.59% 545 s

ConvNet 2 0.67686 68.07% 0.59022 98.21% 532 s

ConvNet 3 0.68694 66.81% 0.59429 98.02% 610 s

Table 6.5: Contribution of Custom Layer. RawConvNet is compared with ConvNets1,
ConvNets2 and ConvNets3 after 100 epochs of training on BUZZ1 train/test dataset. The
receptive field size n in the first layer is set to 80 for all ConvNets.

Table 6.5 shows the usefulness and contribution of the custom layer in RawConvNet

(Figure 6.8) by comparing the testing loss and accuracy results with ConvNet1 (see Fig-

ure 6.11), ConvNet2 (see Figure 6.12), and ConvNet3 (see Figure 6.13). From the results we

can see that although the testing accuracies of ConvNets1, ConvNets2 and ConvNets3 are

slightly lower than the testing accuracy of RawConvNet, but ConvNets1, ConvNets2 and

ConvNets3 show comparatively much higher losses. Thus we can say that the addition of

custom layer in RawConvNet (Figure 6.8) improved the performance of our proposed model.
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It is important to note the gap between the training and testing accuracies for ConvNets2

(68.07% vs. 98.21%) and ConvNets3 (66.81% vs. 98.02%). This gap can be caused by

underfitting which could be improved by increasing the number of epochs. It might also be

the case for gradients being stuck at local optima position. The following section helps us

understand more clearly the better performance of RawConvNet (Figure 6.8) by analyzing

the gradient distributions for ConvNet1, ConvNet2, ConvNet3 and RawConvNet.

6.6.3 Effect of Custom Layer On Gradient Distribution

We analyzed the contribution of the custom layer in RawConvNet (Figure 6.8) by gen-

erating the gradient weight distributions plots for the final FC layers of RawConvNet, Con-

vNet1 (Figure 6.11), ConvNet2 (Figure 6.12), and ConvNet3 (Figure 6.13). We used Ten-

sorBoard [111] to generate the necessary plots. The plots are given in Figures 6.14, 6.15, 6.16

and 6.17. These plots consist of the time stamped histograms of gradients for ConvNet1,

ConvNet2, ConvNet3 and RawConvNet, respectively. Each figure shows temporal slices of

data over different steps during training with each slice being a gradient weight histogram

in the FC softmax layer of an appropriate ConvNet with the oldest time slice in the back

and the most recent one in the front. In all figures, the y-axis represents the step count

during training and the x-axis represents the histogram bins. The step count on the y-axis

starts from the back and moves to the front with the training process.
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Figure 6.14: Histograms of the gradients for layers 4 and 5 in ConvNet1. The histograms
on the left show the gradient distribution in the FC softmax layer in layer 4; the histograms
on the right show the gradient distribution for the FC softmax layer in layer 5.

Figure 6.15: Histograms of the gradients for layers 5 and 6 in ConvNet2. The histograms
on the left show the distribution of gradients for the FC softmax layer in layer 5; the
histograms on the right show the gradient distribution for the FC softmax layer in layer 6.
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Figure 6.16: Histograms of the gradients for layers 6 and 7 in ConvNet3. The histograms
on the left show the distribution of the gradients for the FC softmax layer in layer 6; the
histograms on the right show the gradient distribution for the FC softmax layer in layer 7.

Figure 6.17: Histograms of the gradients in the FC softmax layer in layer 5 in RawCon-
vNet.

As can be seen in Figures 6.14, 6.15, and 6.16, ConvNets1, ConvNets2 and ConvNets3

did not learn much in their FC layers as the shapes of the curves remain almost identical

between the consecutive histograms, which suggests that the gradients in the FC softmax

layers of these ConvNets were changing rather slowly. In ConvNets, such gradients are used
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to update the weights in a way that minimizes the cost function during backpropagation.

Mathematically, the weight update is modeled by Equation 6.4, where wi is the weight

matrix between the layers i− 1 and i+ 1, and w∗i is the updated weight matrix. The term

∂loss/∂wi is the gradient of the corresponding weight matrix wi.

w∗i = wi − η ·
∂loss

∂wi
, where η is the learning rate (6.4)

From Equation 6.4 and the figures one can observe that since the spread of the weight

gradients is small, it suggests that the networks for the ConvNet models ConvNets1, Con-

vNets2 and ConvNets3 were learning slowly as weight updates w∗i are rather small. Con-

sequently, these networks made fewer correct predictions for the testing data. Specifically,

Table 6.5 shows that the testing losses of ConvNets1, ConvNets2 and ConvNets3 were higher

than the testing losses of RawConvNet although the accuracies of all four ConvNets were

comparatively high. The graph in Figure 6.17 shows that the histogram of the weight gra-

dient in the FC softmax layer of RawConvNet is more distributed over the entire training

timeline. In RawConvNet, the gradients changed over different steps in the learning process

and were much more spread than the gradients of ConvNets1, ConvNets2 and ConvNets3.

Thus we can say that the RawConvNet model was learning continuously during the training

process and in effect made more correct predictions for the testing data.

6.6.4 Results On BUZZ1 Validation Dataset

We can recall from Section 6.2 that BUZZ1 validation dataset comprised of 1150 sam-

ples out of which 300 were from class B, 350 from class N and 500 from class C respectively.

The validation dataset consisted of data from a beehives 1.2 and 2.2 and thus differed

from the training and testing dataset by both beehive and location. We tested our models

ConvNet1, ConvNet2, ConvNet3 and RawConvNet on the above validation dataset.
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True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 300 0 0 300 100%

Noise 30 320 0 350 91.42%

Cricket 1 55 444 500 88.88%

Total Accuracy 92.52%

Table 6.6: Confusion matrix for RawConvNet with receptive field size n=3 on BUZZ1
validation dataset

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 300 0 0 300 100%

Noise 4 346 0 350 98.85%

Cricket 0 101 399 500 79.80%

Total Accuracy 90.86%

Table 6.7: Confusion matrix for RawConvNet with receptive field size n=10 on BUZZ1
validation dataset

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 300 0 0 300 100%

Noise 9 341 0 350 97.42%

Cricket 0 59 441 500 88.20%

Total Accuracy 94.08%

Table 6.8: Confusion matrix for RawConvNet with receptive field size n=30 on BUZZ1
validation dataset



140

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 300 0 0 300 100%

Noise 7 343 0 350 97.71%

Cricket 0 48 452 500 90.04%

Total Accuracy 95.21%

Table 6.9: Confusion matrix for RawConvNet with receptive field size n=80 on BUZZ1
validation dataset

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 300 0 0 300 100%

Noise 7 343 0 350 97.71%

Cricket 0 66 434 500 86.80%

Total Accuracy 93.65%

Table 6.10: Confusion matrix for RawConvNet with receptive field size n=100 on BUZZ1
validation dataset

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 297 3 0 300 99.00%

Noise 250 100 0 350 28.57%

Cricket 29 17 454 500 90.80%

Total Accuracy 74.00%

Table 6.11: Confusion matrix for ConvNet1 on BUZZ1 validation dataset.
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True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 297 3 0 300 99.00%

Noise 183 162 1 350 46.28%

Cricket 28 33 439 500 87.80%

Total Accuracy 78.08%

Table 6.12: Confusion matrix for ConvNet2 on BUZZ1 validation dataset.

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 300 0 0 300 100%

Noise 221 123 2 350 35.14%

Cricket 35 25 440 500 88.00%

Total Accuracy 75.04%

Table 6.13: Confusion matrix for ConvNet3 on BUZZ1 validation dataset.

In order to evaluate our deep learning models, we used the following standard machine

learning models: Logistic regression [112]; k-nearest neighbors (KNN) [113]; support vector

machine with a linear kernel one vs. rest (SVM OVR) classification [114]; and random

forests [115] . All of the above methods falls into the category of supervised learning which

are trained on previously known data labels and classifies new observations into one of the

predefined data labels. We trained all four models on the same feature vectors extracted

from the raw audio files. A detailed description about the feature extraction and feature

engineering is available in [21]. In Table 6.14, the performance of the ConvNets and the four

machine learning models on BUZZZ1 validate set is presented. From the results we can say

that on BUZZ1 validation dataset, where the data was separated from the train/test dataset

by beehive and location, RawConvNet performed the best. Although the accuracy in case of
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the machine learning models were lower than the RawConvNet, but they performed better

than the three deeper ConvNets (ConvNet1, ConvNet2 and ConvNet3).

Model Validation Accuracy

RawConvNet (n = 80) 95.21%

ConvNet 1 74.00%

ConvNet 2 78.08%

ConvNet 3 75.04%

Logistic regression 94.60%

Random forests 93.21%

KNN (n = 5) 85.47%

SVM OVR 83.91%

Table 6.14: Performance summary for ConvNet models on BUZZ1 validation dataset.

6.6.5 Results on BUZZ2

We can recall from Section 6.2 that there are 12,914 audio samples in BUZZ2. The

training and testing dataset in BUZZ2 are completely separated with respect to beehive and

location. This means there is no overlap in the data as was the case in BUZZ1. The training

set consisted of 7582 samples from beehive 1.1 and the testing set contained 2332 audio

samples from beehive 2.1. The ConvNets trained on raw audio waveform; RawConvNet,

ConvNet1, ConvNet2 and ConvNet3 were trained on BUZZ2 training/testing dataset using

the same hyperparameters as discussed in Section 6.6.1. Table 6.15 shows the comparison of

the performance of RawConvNet with ConvNets1, ConvNet2 and ConvNet3 on the BUZZ2

training/testing dataset.
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Number of Training Samples: 7582; Number of Testing Samples: 2332

Model Name Training Loss Training Testing Loss Testing

Accuracy Accuracy

RawConvNet (n=80) 0.00348 99.98% 0.14259 95.67%

ConvNet 1 0.47997 99.99% 0.55976 94.85%

ConvNet 2 0.64610 69.11% 0.57461 95.50%

ConvNet 3 0.65013 69.62% 0.58836 94.64%

Table 6.15: RawConvNet is compared with ConvNets1, ConvNets2 and ConvNets3 after
100 epochs of training on BUZZ2 train/test dataset. The receptive field size n in the first
layer is set to 80 for ConvNet1, ConvNet2 and ConvNet3.

From the Table 6.15 we can see that the Testing accuracy for all the models are ap-

proximately in the similar range. However the testing loss is considerably higher for all 3

of the deeper ConvNets; ConvNet1, ConvNet2 and ConvNet3. Thus we can say that our

proposed RawConvNet with a custom layer and a shallower architecture, performs much

better than the three deeper ConvNets without custom layer.

6.6.6 Results On BUZZ2 Validation Dataset

We can recall from Section 6.2 that BUZZ2 validation dataset comprised of 3000 sam-

ples out of which 1000 were from class B, 1000 from class N and 1000 from class C respectively.

The validation dataset consisted of data from a beehives 1.3 and 1.4 which were deployed

in 2018. Thus the validation data differed from the training and testing dataset by beehive,

time of collection and bee race. We tested our models ConvNet1, ConvNet2, ConvNet3 and

RawConvNet on the above validation dataset.
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True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 969 31 0 1000 96.9%

Noise 6 994 0 1000 99.4%

Cricket 0 67 933 1000 94.8%

Total Accuracy 96.53%

Table 6.16: Confusion matrix for RawConvNet with receptive field size n=80 on BUZZ2
validation dataset

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 865 134 1 1000 86.5%

Noise 244 667 89 1000 66.7%

Cricket 0 43 957 1000 95.7%

Total Accuracy 82.96%

Table 6.17: Confusion matrix for ConvNet1 on BUZZ2 validation dataset.

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 766 178 56 1000 76.6%

Noise 152 776 72 1000 77.6%

Cricket 0 36 964 1000 96.4%

Total Accuracy 83.53%

Table 6.18: Confusion matrix for ConvNet2 on BUZZ2 validation dataset.



145

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 864 135 1 1000 86.4%

Noise 248 674 78 1000 67.4%

Cricket 0 36 964 1000 96.4%

Total Accuracy 83.40%

Table 6.19: Confusion matrix for ConvNet3 on BUZZ2 validation dataset.

We also calculated the performance of SpectConvNet (refer to Figure 6.6 and Table 6.1)

by training it in BUZZ2 train/test dataset and evaluated the model performance on BUZZ2

validation dataset. The corresponding confusion matrix is given in Table 6.20.

True
Predicted

Bee Noise Cricket Total Validation Accuracy

Bee 544 445 1 1000 55.40%

Noise 182 818 0 1000 81.80%

Cricket 0 42 958 1000 95.80%

Total Accuracy 77.33%

Table 6.20: Confusion matrix for SpectConvNet on BUZZ2 validation dataset.

In order to evaluate our deep learning models, we followed the same procedure as in

the previous section and compared the performance of our deep learning models against the

standard machine learning models.
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Model Validation Accuracy

RawConvNet (n = 80) 96.53%

ConvNet 1 (n = 80) 82.96%

ConvNet 2 (n = 80) 83.53%

ConvNet 3 (n = 80) 83.40%

SpectConvNet 77.33%

Logistic regression 68.53%

Random forests 65.80%

KNN (n = 5) 37.42%

SVM OVR 56.60%

Table 6.21: Performance summary of raw audio ConvNets, SpectConvNet and ML models
on BUZZ2 validation dataset.

In Table 6.21, the performance of the ConvNets and the four machine learning models

on BUZZZ2 validation dataset is presented. From the results we can say that on BUZZ2

validation dataset, where the data was separated from the train/test dataset by beehive,

time of collection and race of bees, ConvNets designed to process raw audio waveform

performed the best. But from the validation accuracies reported in Table 6.21, we can

see that our proposed RawConvNet model performed the best in comparison to the other

ConvNets on both BUZZ2 validation dataset. We can also see SpectConvNet showing a

better performance as compared to the machine learning models but the validation accuracy

is far less than the RawConvNet. This suggests that the proposed RawConvNet along with

the three deeper ConvNets generalized better than the standard machine learning models.

This suggests that RawConvNet generalizes the best overall.

6.7 Running The Trained RawConvNet Model On Raspberry Pi

The RawConvNet model with the custom layer was persisted along with the weights

and variables of the different layers on the Linux computer where it was trained and then
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saved on the sdcard of a raspberry pi 3 model B v1.2. Two experiments were performed

on the raspberry pi to estimate how feasible it is to do in situ audio classification with

RawConvNet on the raspberry pi. We used two hundred audio samples to perform our

experiments. Each audio sample was 30 seconds long. We used a fully charged Anker Astro

E7 26800 mAh portable battery to power our BeePi system during the experiments.

The BeePi system records a 30 seconds audio file every 15 minutes. In our first ex-

periment we emulated a similar scenario. We set up a cronjob, running a script in Python

2.7, that would pick a random audio audio sample (out of the 200 test samples) every 15

minutes and split it into overlapping 2 second segments. The RawConvNet was then loaded

into memory to classify those 2 second samples into the 3 classes: B, N and C. The fully

charged battery supported audio classification for 40 hours during which 162 30-second

audio samples were processed. Thus, it took the algorithm, on average, 13.66 seconds to

process one 30-second audio sample.

In the second experiment, the python script was modified to pick 4 random audio

samples every 60 minutes. This experiment was to test whether it is efficient to load

the RawConvNet model every 15 minutes and perform the classification task on a single

30-second audio sample or load the RawConvNet model every 60 minutes and perform

the classification task on 4 30-second audio samples. Thus in other words, we tried to

understand whether batch approach was more efficient and faster. The fully charged battery

supported audio classification for 43 hours during which 172 30-second audio samples were

processed. Thus, it took the algorithm, on average, 37.68 seconds to process 4 30-second

audio samples, which comes down to 9.42 s per one 30-s audio sample. Thus we can see

applying a batch approach to classify recorded audio samples is much more efficient. But

more importantly we see that a convolution neural network trained to classify waveforms

of raw audio signals was able to operate on the raspberry pi and thus can be successfully

added to the to the repertoire of in-situ audio classification algorithms for audio beehive

monitoring.
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CHAPTER 7

ANALYZING BEE BUZZING AND COMPARING IT TO HIVE DEVELOPMENT AND

BEE MOTIONS

7.1 Goal

In this chapter, we will be discussing methods to filter out bee buzzing from audio

recordings and then using the filtered audios to find the intensity of bee buzzing. We will

then use the intensity or the power of bee buzzing and analyze it for the entire beekeeping

season of 2018. In this chapter, we will be using the term power of bee buzzing and

intensity of bee buzzing interchangeably. We will then investigate whether it is possible to

make inferences about hive development by analyzing the buzzing intensities. Towards that

end, we will discuss how bee buzzing can be compared with bee motions by analyzing the

audio and video samples recorded using our BeePi system. We calculated the bee motions

using the digital particle image velocimetry (dpiv) based method described in Chapter 5.

7.2 Audio Data For Analysis

In Chapter 6, we discussed the design of a neural network model called RawConvNet

which processed raw audio samples without any feature engineering. Our designed model

achieved an accuracy of 96.53% on a dataset where the training and testing samples were

separated from the validation samples by beehive, location, time, and bee race. For this

chapter, we selected audio data from May–November of our beekeeping season in 2018. The

goal is to find the intensities of bee buzzing from the audio samples. As we have discussed in

Chapter 3, audio recordings from the BeePi contain ambient noises which consists of sounds

of thunder, wind, rain, vehicles, human conversation, sprinklers, relative silence, i.e., absence

of any sounds discernible to a human ear and also static noises from microphones.

Our first step is to separate out the audio samples that represent the bee buzzing
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from each audio recording. To achieve the above, we begin by splitting each 30 second

of audio recording into overlapping 2 second segments. Then we use our described model

RawConvNet, to classify those 2 second samples into the 3 classes: B (bee buzzing), N

(noise) and C (cricket chirping). Next for our analysis, we selected only those 30 second

audio in which a minimum of 20 2-second bee buzzing samples were detected. Using the

above criteria for selection, we were able to select approximately 32000 30-second audio

recordings.

7.2.1 Need For Audio Filtering

The RawConvNet model classifies a 2-second audio sample as bee buzzing even when

there are background noises mixed in the audio signal. These background noises although

not prominent can effect our goal of calculating the buzzing intensities. Examples of back-

ground noises can be bird chirping, very low intensity of human conversation, sudden spike

of audio pulse or a constant noise produced due to hardware issues in audio recording ar-

rangement. Thus the next step is to filter out the relevant frequencies that are associated

with bee buzzing.

7.2.2 Different Frequencies of Bee Buzzing

Honey bees communicate through various sound signals that signify different behav-

ior [116]. These sound signals are created from the vibrations of their wing muscles and

occur within certain frequency ranges [117]. The majority of these audio signals have a

fundamental frequency range between 200-600 Hz, although certain events can sometimes

trigger audio signals at much higher frequency. Studies have also shown that the health

of a honey bee colony can be determined by analysing the acoustic characteristics of the

corresponding hive [3].

Piping Signal

Piping signal is mainly produced by young queen bees. The audio signature of a piping

signal varies depending upon the queen being confined or not. The piping signal emitted by
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a newly emerged virgin queen is refered to as tooting. The audio signature of a tooting signal

possesses a fundamental frequency of 400–500 Hz. When the young queen first emerges the

frequency is closer to 400 Hz but after several days of emergence, the fundamental frequency

increases and becomes closer to 500 Hz [118].

Piping signal produced by queens that are still confined in their cell is called quaking.

This signal is used by the queens to indicate their presence as a response to a tooting queen.

In [116], it is stated that this signal probably acts as a call to the worker bees to protect the

confined queen from the tooting queen. The fundamental frequency of this type of signal is

around 350 Hz [118].

It was believed previously that the worker bees produced a similar piping signal only

when the hive had no queen or when they sensed any hive disturbances. But a new study

in [119], found the piping signal in colonies that contained a queen and were also calm and

undisturbed. They reported that fundamental frequency of the audio signal was between

330–430 Hz, when it was produced by foragers from undisturbed hives. On the other hand

worker piping produced frequencies ranging from 150–500 Hz or higher prior to or during

swarm [120].

Hissing Signal

Hissing signal is used to identify different colony events depending upon the presence

or absence of a preceding piping signal. It mainly occurs when the worker bees sense some

distress or during swarms. It possesses a very broad band of fundamental frequency between

300 and 3600 Hz and is noisy [3]. This type of signal is usually audible to human ears and

is typically accompanied by forager dancing and hive departures [121]. The authors in [121]

also suggests that a coordinated and sequential piping and hissing signal may indicate

presence of potential predators close to the hive. According to [3] a hissing signal that does

not have any preceding piping can be an indication of a swarming event and could occur

several days in advance from the actual hive departure. The authors in [3] summarized the

different honey bee signals in Table 7.1.
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Signal Frequency Signal Producer Significance

Range (Hz) Pattern

Recruit 200− 350 Pulse

Sequence

Forager Existence of a quality food

source

Tooting 300− 500 Pulse

Sequence

Queen Prevents hatching of further

queens

Quacking 300− 350 Pulse

Sequence

Queen Indicates viability of confined,

mature queen

Worker Piping 300− 550+ Single

Pulse

Scout Triggers colony hissing to pre-

pare to swarm

Hissing 300− 3600 Single

Pulse

Colony General warning/defense sig-

nal. Occurs during swarm-

ing, hive attacks, and other

adverse events.

Table 7.1: Honey Bee Signals And Their Significance. Table Adapted From [3]

The audio data used for investigation in this chapter is from the beekeeping season of

2018, from May to November. During the season, we did not record any swarming activity

in our beekeeping journal. Thus, referring to Table 7.1, the frequency range of 200–3000

Hz was chosen to be our primary focus. The reason we chose the upper frequency bound

to be 3000 Hz was to include any hissing sounds if there were any. We did not include the

frequency range 3000–3600 Hz in our analysis because we found that certain background

noises generated as a result of hardware failure of the microphones were getting mixed in

this frequency region. Since we were not able to perform manual inspections of the hives

on a daily basis, we do not know if there were any other significant activities occurring

within the hive. Thus we believe the above range would be able to capture most of the bee

buzzing frequencies that could be present in the audio signals. Another important point

that should be highlighted is that in all of the previous studies involving analysis of bee
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buzzing, the microphones were placed inside the hives, but in our case the microphones were

placed outside the hive just above the bee entrance. Thus we might not be able to capture

all the events as in Table 7.1, but still we went forward with the above frequency range for

completeness so that our analysis holds relevance even if the microphones are placed inside

the hives.

7.3 Filtering Audio Signal

The audio recorded by our BeePi system is composed of several different frequency

components. Thus to separate out the frequency range of 200–3000 Hz from the audio

recording we need to use some sort of filtering that only allows frequency components

within that range to pass through. To achieve the above a bandpass filter was used for

our analysis in this chapter. A band-pass filter passes frequencies within a certain range

and rejects (attenuates) frequencies outside that range. We will work through a simple

example and see how a bandpass filter works. For this example, we will generate a signal

by combining different frequencies. For the first step, we will select the different frequency

components that will be present in our example signal. The sampling frequency (fs) is 500

Hz (500 samples / second). Let the total length of samples (N) in the signal be 400. Next the

different frequency components for the signal are generated as specified in Equation (7.1):

Freq Comps = sin(x ∗ n) ∗ (1− n), where n ∈ [0.9, 0.75, 0.5, 0.25, 0.12, 0.03, 0.025]

and x ∈ [0 . . . N − 1]

(7.1)

The above equation will generate 400 values for every n. Altogether we will have a

7 × 400 array. Next we will be mixing all of the frequency components together, i.e. we

will add each of the 7 arrays column wise. This will generate a 1D array of length 400 and

we will now refer to this new array as our example signal ‘Y’. Compare this example signal

‘Y’ to be similar in structure to the audio recorded by the BeePi monitor. Both the signal

‘Y’ and BeePi audio are made up of different frequencies. Figure 7.1 shows the signal (‘Y’)
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Figure 7.1: Signal Y Generated By Combining Different Frequencies

generated using Equation (7.1).

Next, we will design a bandpass filter that will only allow signals between a frequency

range to go through the filter. Our goal for this example is to have the filter allow only

frequencies in between 5–30 Hz, which means if we pass our signal ‘Y’ through the above

filter, the higher frequency components will be blocked or suppressed and the graph in

Figure 7.1 will look a lot smoother. Thus in the bandpass filter, the lower cutoff frequency

will be 5 Hz and the higher cutoff frequency will be 30 Hz. We create the bandpass filter

using inverse fft and apply the filter to the signal (‘Y’). Algorithm 7.1 describes the steps

involved in creating a bandpass filter.

In Algorithm 7.1, the input of Low cutoff Frequency (Low cutoff) is the frequency

below which all frequency components will be suppressed and not pass through the filter. In

our examples it is 5 Hz. Similarly the other input of High cutoff Frequency (High cutoff) is

the frequency above which all frequency components will not pass the filter. In our example

it is 30 Hz. The green box region in Figures 7.2a and 7.2b shows the frequencies that were

allowed by the bandpass filter.

The result after applying the above bandpass filter to signal ‘Y’ is shown in Figure 7.3a.

We can see that in the filtered signal the high frequencies are gone and in effect the filtered
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Algorithm 7.1 Bandpass Filtering On a Signal Using Inverse FFT

Input:
1-D array of floats, the real time domain signal (time series) to be filtered (X),
Low cutoff Frequency(Hz) (physical frequency in unit of Hz) (Low cutoff),
High cutoff Frequency(Hz) (physical frequency in unit of Hz) (High cutoff),
The sampling frequency of the signal (Hz) (F sample)

Output:
Filtered signal with the desired frequencies (Filtered signal)

Begin
Pts = length of signal X
Freq Spec = Perform fast fourier transform (FFT) on X
Low point,High point = Convert the cut off frequencies into points on Freq Spec
F iltered Spec = Freq Spec[i] if i ≥ Low point and i ≤ High point else 0.0,

where i ∈ 0, . . . , P ts /*Filtering Step*/
Filtered signal = perform inverse fast fourier transform (iFFT) on

Filtered Spec. /*Construct filtered signal*/
End

(a) The Green Box Shows Frequencies That Will
Be Kept By The Filter

(b) Zoomed Version Of Figure 7.2a Shows The
Exact Location Of The Green Box

Figure 7.2: Frequencies Allowed By The Band Pass Filter For Signal ‘Y’ In Equation (7.1)
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(a) Filtered Signal (b) Filtered Signal With The Original Signal

Figure 7.3: Filtered Signal Along With The Original Signal In The Same Graph

signal looks smoother than the original signal ‘Y’. Figures 7.3b shows the filtered signal

with our desired frequencies plotted on top of the actual signal in the same graph.

7.4 Filtering Audio Recordings From BeePi

In this section we will use the Algorithm 7.1 and the concept of bandpass filter and

apply them to the 30-second audio recordings from the BeePi system. In some of the audio

recordings, we found that during the last 2 seconds in the recording, there is a huge spike

of static noise. We do not know the exact reason, but we can speculate that happening due

to some issues in signal sampling in our recording software. So as an overall strategy we

decided to remove the last 2 seconds from every audio file before processing. Thus every

audio file is now 28 seconds long. The sampling rate of each audio recording is 44.1 KHz.

Thus for each 28-seconds audio file, we will be dealing with (28 × 44.1 × 1000) 1234800

samples. Since our goal is to move the entire audio analysis on the RaspberryPi itself, we

decided to resample each 28-seconds audio to 11 KHz for faster processing. Hence, the

total number of samples come down to (28× 11× 1000) 308000. Next, from Table 7.1, we

identify the frequency range of 200–3000 Hz to be of importance in our analysis. We will

use the same type of analysis as we performed on our example signal in the previous section.

Figure 7.4 shows a sample 28-seconds bee audio signal represented in time (Figure 7.4a)

and frequency domain (Figure 7.4b) respectively.
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(a) Audio Signal Plotted In Time Domain (b) Audio Signal Plotted In Frequency Domain

Figure 7.4: A bee audio recorded during 2018 beekeeping season sampled at 11 KHz. The
above sample was recorded on May 28 at 11:30 Am.

(a) Frequencies Kept By The Filter (b) Filtered Signal With The Original Signal

Figure 7.5: The green box in Figure 7.5a shows frequencies that will be kept by the filter
for the bee audio signal in Figure 7.4 and in Figure 7.5b filtered signal is showed along with
the original signal.
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If we observe the frequency domain plot in Figure 7.4b, we can see that majority of

the information spread is between 0–3000 Hz. We see a huge spike at 0 Hz and other

smaller spikes at lower frequencies. We estimate this being mostly due to static noises from

microphone. Table 7.1, tells us that the frequency range of 200–3000 Hz should be our

primary focus to separate out bee buzzing. So next we will apply Algorithm 7.1 to the bee

audio in Figure 7.4 and extract only the frequencies between 200–3000 Hz. The green box

region in Figures 7.5a shows the frequencies that were allowed by the bandpass filter.

The result after applying the above bandpass filter to the original audio signal in

Figure 7.4 is shown in Figure 7.5a. The filtered signal in orange is shown in the same graph

as the original signal in blue for visual comparison in Figure 7.5b. From the figure we can

see that most of the higher frequency values have been removed. The next step is to use the

filtered signal, as in the above example and then calculate the power or intensity present in

each of them.

7.5 Power In An Audio Signal

In this section we will be using the ‘audioop’ module [122] in Python to find the power

of an audio signal. The power can be calculated using the ‘rms’ function in ‘audioop’

module. It evaluates the root-mean-square of each fragment or frame inside the audio. The

audioop module operates on audio fragments which are composed of signed integer samples

8, 16, 24 or 32 bits wide. In our BeePi system, the audio recording is done by setting

alsa capture card on the Raspberry Pi to use ‘S16 LE’ i.e. signed 16 bits Little Endian.

Audioop module requires the sample width of the sound fragment to be provided while

calculating the rms. Sample width of a sound fragment is either 1, 2, 3 or 4 if the audio

fragments consists of signed integer samples 8, 16, 24 or 32 bits respectively. The overall

sample width also depends upon the number of channels present in the audio signal. A

channel is the passage way through which a signal or data is transported. In our case audio

recordings have a single channel. Algorithm 7.2 describes the steps involved calculating the

power of an audio signal using the ‘audioop’ module.
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Algorithm 7.2 Calculate Power Of An Audio Signal

Input:
Audio file in WAVE format (wave audio),
Total number of frames or samples in wave audio (nframes),
The sampling frequency of the signal (Hz) (rate)

Output:
Power of the audio signal (power)

Begin
sample width = 2
number of channels = 1
overall sample width = sample width× number of channels
while (i < nframes)

Begin
frame = read frame or fragment at position i from wave audio
total amp = total amp + audioop.rms(frame, overall sample width)

End
power = total amp / nframes

End

7.6 Analyzing Power Of Audio Samples

Now that we have an understanding of how to filter bee buzzing from audio samples

and then calculate the power from the filtered audio, we would proceed towards analyzing

the power or intensity of the bee buzzing over the entire beekeeping season of 2018 from May

to November. For this analysis we will be focusing on two separate hives (R 4 5 and R 4 7)

and eventually work towards finding out how these two hives have progressed through the

season. Both the hives are in the same apiary in Logan, UT, but are approximately 30

feet apart. Although we had 4 hives in that apiary, but chose the above two because the

BeePi sensors in hives R 4 5 and R 4 7 had the least number of hardware failures over the

2018 beekeeping season. This was also to make sure that we had good quality data for our

analysis. Hives R 4 5 and R 4 7 also had slightly different surrounding as well. R 4 5 was

close to a parking lot and thus had lots of background car noise and human chatter. It

was in sunlight mostly during the morning hours till noon. R 4 7 on the other hand was

close to a garden, where sometimes human chatter was recorded. R 4 7 remained in shade

most of the day and received sunlight during the early evening to sunset hours. Both the
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(a) July 18th 2018, Hive R 4 5 (b) July 25th 2018, R 4 5

Figure 7.6: Power Of Bee Buzzing During July 18th and 25th 2018 For Hive R 4 5

(a) September 25th 2018, Hive R 4 5 (b) September 28th 2018, R 4 5

Figure 7.7: Power Of Bee Buzzing During September 25th and 28th 2018 For Hive R 4 5

hives were located in an apiary where there are lots of trees and bushes. Thus in the audio

recordings we hear a lot of bird calls and chirping. Hence the need for filtering the audio

samples.

Figures 7.6a, 7.6b, 7.7a and 7.7b shows the change in buzzing power as the day pro-

gresses for Hive R 4 5 on 18th July, 25th July, 25th September and 28th September 2018

respectively. We can see from the above figures that the power of bee buzzing differs from

day to day. This could be related to weather or other external factors. We will discuss

about their potential relationship in the next chapter.

Figures 7.8a, 7.8b, 7.9a and 7.9b shows the change in buzzing power as the day pro-

gresses for Hive R 4 7 on 18th July, 25th July, 25th September and 28th September 2018
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(a) July 18th 2018, Hive R 4 7 (b) July 25th 2018, R 4 7

Figure 7.8: Power Of Bee Buzzing During July 18th and 25th 2018 For Hive R 4 7

(a) September 25th 2018, Hive R 4 7 (b) September 28th 2018, R 4 7

Figure 7.9: Power Of Bee Buzzing During September 25th and 28th 2018 For Hive R 4 7
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(a) September 2018, Hive R 4 5 (b) September 2018, R 4 7

Figure 7.10: Power Of Bee Buzzing During September 2018 For Hives R 4 5 and R 4 7

(a) August 2018, Hive R 4 5 (b) August 2018, R 4 7

Figure 7.11: Power Of Bee Buzzing During August 2018 For Hives R 4 5 and R 4 7

respectively.

When we observe Figures 7.7 and 7.9, we see that the level of the power or intensity

of bee buzzing is quite different for both the hives. The buzzing on the same days in late

September has a higher intensity for the hive R 4 5 compared to R 4 7. This tells us that

there was a lot less bee activity on those days in hive R 4 7. Let us see if those two days were

just outliers or if the low activity of the bees continued throughout the month of August

and September in hive R 4 7 as compared to hive R 4 5.

From Figure 7.10a and 7.10b, we can see that the bee activity in hive R 4 5 was
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consistently higher compared to hive R 4 7 over the month of September. Thus the two

days of September 25 and 28 where the buzz intensity was low, was not an outlier. The low

activity of the bees continued throughout the month of September for hive R 4 7. Similarly

if we observe Figure 7.11a and 7.11b we that there was consistently high bee activity in hive

R 4 5 as compared to R 4 7 for the month of August. Both of these instances tell us that

hive R 4 7 was not performing well in comparison to hive R 4 5. Thus if we plot the buzzing

intensity graph for the entire beekeeping season of 2018 from May to November for hive

R 4 5 and R 4 7, we should be able to compare them and draw a conclusion regarding hive

development. To perform the above comparison, we first prepared the data accordingly.

Rather than using buzzing intensities for every hour of a day, we calculated the mean of

the intensities for the entire day. So rather than having 15 intensity values for the day

(6am to 9pm), we just have 1 value for the entire day. After preparing the data, we plotted

the average daily intensities for hive R 4 5 and R 4 7 from May to November. Figure 7.12

shows the plot for the average daily intensities over the entire beekeeping season of 2018 for

both hives R 4 5 and R 4 7. If we observe the Figure 7.12 we can see that the hives R 4 5

was a better performing hive over the 2018 beekeeping season. Our observation and claim

is also verified by the fact that out of all of the hives in the apiary only hive R 4 5 survived

through the 2018 season into the 2019 season.

In Figure 7.13, the areas of interest for various timelines during the beekeeping season

are marked. In box ‘A’, which is marked by a green box, we can see that the buzzing

intensities grew almost similarly for both the hives R 4 5 and R 4 7. This was during the

beginning of the season, which tells us that both the hives were expanding and performing

well. In box ‘B’, which is also marked by green, we can see a very sharp increase followed by

a decrease in the intensities from both the hives. The box is marked as green since during

this timeline (mid June–mid July) both the hives showed almost similar performance.

The next box ‘C’ is drawn for analyzing the timeline end of July–end of August. In

this timeline we can clearly see the difference in buzzing intensities between the two hives.

hence, this tells us that during the timeline the hive R 4 5 was performing a lot better than
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Figure 7.12: Buzzing Intensities Across Different Months In The 2018 Bee Keeping Season
For Hives R 4 5 and R 4 7. The Graph Also Gives Us An Intuition About The Development
Of The Hives.

Figure 7.13: Areas Of Interests And Importance Marked For Figure 7.12. Green Boxes
Signify The Timeline Where The Pattern of Buzzing Intensities Matched For Both The
Curves. Red Boxes Signify The Timeline Where One Hive Was Performing Better Than
The Other.
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R 4 7. In other words the hive R 4 5 was developing steadily during this timeline, for R 4 7

the graph showed a downward trend. For a beekeeper, this particular timeline could be very

significant, in that it can indicate the hive is under performing. This could very well serve

as an early detection alarm to understand the development of hives. In a large-scale apiary

with many hives equipped with BeePi sensors, those hives that show a downward trend in

performance during the middle of the season could be manually inspected and necessary

steps for hive treatment could be performed.

The timeline for the next box ‘D’ in Figure 7.13 is beginning of September–beginning

of October. The box is marked as green since the performance of both the hives decreased

simultaneously showing almost a similar downward trend. There might be various reasons

for this downward trend, but one reason could be attributed to the local weather conditions.

During this time of the year, the temperature starts to cool down as fall arrives in Logan,

UT. The final box ‘E’ is during the timeline of mid October–end November, which are

months in the back end of the beekeeping season. The temperature falls below freezing

occasionally during this time of the year. This also suggests that there will be less bee

movements and in turn we would be seeing lower buzzing intensities. This effect can also

be seen in the graphs in box ‘E’. But the amount of change or variability in the graph for

R 4 5 suggests that there were still some bee movements during that time, which could

suggest that the hive was preparing for the winter. On the other hand, the graph for R 4 7

showed very little variability which also means there were a lot fewer bee movements. It is

hard to explain such events, but we think it could mean the hive R 4 7 was struggling. It

is also evident from our beekeeping journal, from which we know that hive R 4 7 was not

able to survive the harsh winter weather in Logan, UT.

7.7 Comparing Buzz Intensities To Bee Motions

In the above sections we have used the terms bee motions and intensities of bee buzzing

interchangeably. We have assumed that when there is a lot of bee motions captured by the

camera in the BeePi system, likewise it will also be reflected in the power or the intensity of

the bee buzzing in the audios captured by the microphones in the BeePi system. So in this
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section we will investigate the relation between the bee motions and the buzz intensities.

Before starting we need to have an overview of our recording process. The BeePi monitor

records videos of bee traffic every 15 minutes and the audio recording script records audios

every 15 minutes as well. But the video and the audio recording scripts are not set up

to record at the exact same timestamp. There is sometimes a lag in the data collection

between the two scripts.

The reason behind this lag is related to how data was recorded in the previous version

of BeePi monitor in 2018. In the 2018 version of BeePi, a bash script was written to perform

the audio recordings. A cron job was setup which ran the audio recording script every 15

minutes. On the other hand, the video recording script was written in python and was

invoked through a bash script similarly every 15 minutes. Both of the recording scripts

saved the output in an external hard drive connected to the Raspberry Pi. The external

hard drive was programmed to mount automatically once the Raspberry Pi turns on or

restarts. But sometimes the mounting of the external hard drive would fail. Without the

external hard drive both the recording scripts would fail. To solve the issue, we had to

manually mount the external hard drive through the command line and then individually

start both the recording script one at a time. We had to wait for one script to finish before

we could start another. The difference in time could range anywhere from 1 minute to 3

minutes. Thus if the camera records a sudden large spike in number of bee motions, it

might not always be reflected instantly in the audio samples. But if the general trend of

the bee traffic is higher over a time period it should be reflected in the audio recordings as

well. For this analysis we will be using the data from the same two hives as in the previous

sections, R 4 5 and R 4 7. For easier reference, we will be using the same dates of July

18th, July 25th, September 25th and September 28th, 2018.

Figures 7.14a, 7.14b, 7.15a and 7.15b show the comparison between bee motions and

buzz intensities as the day progresses for Hive R 4 5 on 18th July, 25th July, 25th September

and 28th September 2018 respectively. We can see from the figures that for the above days

the graph of bee motions matches closely to the graph of buzz intensities. When there
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(a) July 18th 2018, Hive R 4 5 (b) July 25th 2018, R 4 5

Figure 7.14: Comparison Of Bee Motions And Power Of Bee Buzzing During July 18th

and 25th 2018 For Hive R 4 5.

(a) September 25th 2018, Hive R 4 5 (b) September 28th 2018, R 4 5

Figure 7.15: Comparison Of Bee Motions And Power Of Bee Buzzing During September
25th and 28th 2018 For Hive R 4 5.
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(a) July 18th 2018, Hive R 4 7 (b) July 25th 2018, R 4 7

Figure 7.16: Comparison Of Bee Motions And Power Of Bee Buzzing During July 18th

and 25th 2018 For Hive R 4 7.

is a spike in the graph representing bee motions at certain times of the day, the same

phenomenon is also reflected in the buzz intensity graph. Similarly when the bee motions

start to reduce at the end of the day, we can see the similar reduction in the intensity of

the bee buzz.

Figures 7.16a, 7.16b, 7.17a and 7.17b shows the comparison between bee motions and

buzz intensities as the day progresses for Hive R 4 7 on 18th July, 25th July, 25th September

and 28th September 2018 respectively. For the graphs in Figures 7.16a and 7.16b we see that

the pattern is similar for both bee motions and buzz intensity. When there is a spike in the

bee motion correspondingly there is a spike in the buzz intensity as well. In Figure 7.17b,

we can see that the spike in the buzz intensity has been detected earlier than the spike

present in the graph representing bee motion. Similarly in Figures 7.17a, we see that some

spikes in the audio graphs have not been reflected in the motion graph. One possible reason

for this mismatch could be due to the quality of the recorded video. Since in both the

above case, the mismatch happened during the late afternoon, the videos might have been

illuminated by sunlight. Thus causing the bee motions algorithm to under count. Although

the spikes have been missed, but in both the cases we can see that when the bee motion

count was high, it was reflected by the general upward trend in the buzz intensities as well.

When the motion count reduced, the same trend can be seen in the graph representing buzz
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(a) September 25th 2018, Hive R 4 7 (b) September 28th 2018, R 4 7

Figure 7.17: Comparison Of Bee Motions And Power Of Bee Buzzing During September
25th and 28th 2018 For Hive R 4 7.

intensities as well. Next, we will perform the same analysis over all the days in the months

of August and September, 2018 for hives R 4 7 and R 4 5.

Figure 7.18a and 7.18b shows the comparison between bee buzz intensity and bee

motions over the entire month of September. We can see that both the graphs match

closely. When there is a spike in one graph is well mirrored in the other graph as well.

Figure 7.19a and 7.19b shows the comparison between bee buzz intensity and bee motions

over the entire month of July, 2018. We can see that both the graphs match the trends

present in each other closely. Next we will see how the graphs compare against each other

when plotted for the rest of the months in the beekeeping season of 2018.

From the graphs in Figure 7.20, we can see that the curves of bee motions and buzzing

intensities align closely for each month. Most of the peaks in the bee motion graphs have

been mirrored in the buzzing intensity curves as well. This tells us that the hive R 4 5 was

performing well and the buzzing intensity and the bee motions were closely aligned. Thus it

could be possible to use either the motion counts or the buzzing intensity or a combination

of both as a factor in determining the health of the bee hive.

From the graphs in Figure 7.21, we can see that the curves do not align for some of

the months. In May 2018 for hive R 4 7, reason behind the misalignment in Figure 7.21a,
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(a) September 2018, Hive R 4 5 (b) September 2018, R 4 7

Figure 7.18: Comparison Between Bee Motion And Power Of Bee Buzzing During Septem-
ber 2018 For Hives R 4 5 and R 4 7

(a) July 2018, Hive R 4 5 (b) July 2018, R 4 7

Figure 7.19: Comparison Between Bee Motion And Power Of Bee Buzzing During July
2018 For Hives R 4 5 and R 4 7
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(a) May 2018, Hive R 4 5 (b) June 2018, R 4 5

(c) August 2018, Hive R 4 5 (d) October 2018, R 4 5

(e) November 2018, R 4 5

Figure 7.20: Comparison Between Bee Motion And Power Of Bee Buzzing During The
Months Of May, June, August, October And November 2018 For Hive R 4 5
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(a) May 2018, Hive R 4 7 (b) June 2018, R 4 7

(c) August 2018, Hive R 4 7 (d) October 2018, R 4 7

(e) November 2018, R 4 7

Figure 7.21: Comparison Between Bee Motion And Power Of Bee Buzzing During The
Months Of May, June, August, October And November 2018 For Hive R 4 7
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is due to the presence of excessive noise in the audio recordings. Most of these noises were

static noise at various frequency levels, which were still left behind even after filtering. Thus

in Figure 7.21a even though we can see that the location of the peaks on the curves are

synchronized along the timeline, but the noise remaining in the audio signals pushed the

values of the buzzing intensity higher and that is what is reflected in the curves. For the

Figures 7.21d and 7.21e, we can see that the curves did not align as well. It is hard to

specify a particular reason, but we can speculate the fact that since we already know that

hive R 4 7 could not survive the harsh winters of Logan, UT, maybe the difference in the

curves could be a side effect of such a behavior. More investigation is obviously needed to

understand such an effect but we can compare the Figures 7.20e and 7.21e and understand

the difference in hive development for both the hives. Another possibility is the effect of

weather or external conditions. It is challenging to analyze external factors that affect hive

development but in the next chapter we will see how weather conditions can effect forager

traffic.
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CHAPTER 8

RELATING FORAGING ACTIVITY OF HONEY BEES TO LOCAL WEATHER

CONDITIONS

8.1 Goal

In this chapter, we will be discussing the relationship between hive activity and local

weather conditions in Logan, UT. We selected audio and video data from two of our hives

in an apiary in Logan, UT during the period of May–November of our beekeeping season

in 2018. The audio and video data collected by our BeePi system were then used to find

the correlation between hive activity and different weather variables. The goal for this

chapter is to show that without the use of additional costly intrusive hardware to get

an estimate of bee counts, we can use our bee motion counting algorithm (presented in

Chapter 5) to count the bee motions and then use the counts to investigate the relationship

or correlation between foraging activity and local weather. Towards that end, we used the

above correlation information and fitted a ordinary least squares (OLS) linear regression

model to the data from June–July in 2018 and used the weather data in 2019 to predict the

foraging activity for the months of May, June and July in 2019. We also investigated the

performance of our model by adding bee buzzing intensity as one of the predictors alongside

the weather variables to predict foraging activity, when given novel data that was not used

during the model fitting.

8.2 Relation Between Weather And Foraging Activity

There have been different studies, where it has been reported that various weather

conditions play a role in the foraging activity across different bee species. The authors

in [92] have reported the effect of rainfall on honey bee foraging activity. They observed a

higher level of foraging activity prior to heavier rainfall. They suggested that honey bees are
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able to sense the likelihood of upcoming rainfall. In their experiments they used 3 honeybee

colonies each having 6000 worker bees and 1 laying queen. They attached an RFID tag to

newly emerged workers (n=300) of each experimental colony and monitored them for 34

days. RFID detectors and tag systems can be rather expensive, and utmost care must be

taken so that the tags or the glues does not affect the bee behavior or their survivorship.

Our BeePi monitors on the other hand does not require the tagging of individual bees and

the sensors that we use are non-obtrusive. The dpiv based algorithm described in Chapter 5

is able to count the bee motions which is on par with human counts, thus eliminating the

need for RFID based tagging of bees in our electronic beehive monitoring system.

A novel study by the authors in [93] found out the relationship between weather vari-

ables, such as temperature and solar radiation to the foraging activity of bee colonies. They

gathered foraging data by using a photoelectric beecounter (‘Apicard’) placed at the hive

entrance, for 30-min periods (data was recorded every 15s and was pooled) over 23 con-

secutive days from a single colony of bees and then analyzed those data with respect to

ambient weather conditions. They reported that a positive correlation was found between

the foraging activity and both temperature and solar radiation. It was also reported that

the positive correlation between the bee activity and solar radiation was only till a certain

threshold, after which the bee activity went down as the solar radiation increased.

There has also been research such as in [94], which showed the effects of temperature on

the pollination activity of two separate bee species in an apple orchard in Girona (northeast

Spain). It was a controlled study, that was performed during the years 1993, 1994 and

1995 in an apple orchard by monitoring 20 honey bee hives. They installed a weather

station during 1995 and studied the effects of ambient temperature, relative humidity, solar

radiation, and wind speed by recording data every 10 min. The weather station was located

2m above the ground and 800m away from the orchard on a flat terrain. They studied how

weather conditions affect pollination and along with that they investigated the design of

pollination strategies to optimize fruit yield when the weather conditions were suboptimal.

Since the above investigation was performed in a controlled environment, it is challenging
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to replicate the findings under natural conditions.

Following that, various research, such as in [95] and [72] have been conducted on study-

ing the correlations between foraging behavior of honeybees and climatic conditions such as

temperature, humidity and wind velocity. In [95], the investigation was performed during

the 2002 growing season at Kneevi Vinogradi location, Baranja County (northeast Croatia).

They performed the study on honey bees visiting sunflower inflorescences at 100, 200 and

300 meters, by recording and counting the individual bees present four times a day (9am,

11am, 1pm and 5pm). They studied the effect of temperature, humidity, precipitation and

wind speed and reported the correlation between weather and foraging activity by using

Spearman correlation coefficient. They reported a positive correlation between tempera-

ture and foraging activity and negative correlation between foraging activity and humidity,

precipitation and wind speed. However the authors did not report the number of hives that

were used for the experiments nor the data was made public.

In [72], the authors performed their analysis on data from two different bee hive colonies

during the foraging seasons of July–September 2013 and June–September 2014. They pre-

sented their analysis based on 42 days of data in 2013 and 74 days of data in 2014, with data

recorded with a time resolution of 1samples/min. They used a multichannel electro-optical

beecounter to measure the bee egress rate and placed a weather station near the hives to

record the meteorological data related to rain, solar radiation, temperature, humidity, wind

speed and wind direction. A multichannel electro-optical beecounter requires hardware

modifications if used on a standard hive and thus can effect the natural surroundings for

the bees. They presented the effect of different meteorological variables on foraging activ-

ity and their correlation was in line with the results from previous studies in the literature.

They also explored the utility of predictive modeling by fitting a generalized linear model to

their data using meteorological data as the predictors and then used it to predict bee egress

rate. They reported promising results and also suggested the use of other meteorological

variables and even bee audio to further understand their combined effect on foraging activ-

ity. We were not able to replicate or use their models as their data was not made public.
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Although a clear understanding of the different factors that might effect foraging activity

is difficult, the above studies suggest that local weather conditions do play a significant

role. Since weather conditions differ from place to place, we believe there is indeed scope

for further analyzing the effect of different meteorological variables on bee foraging effort.

8.3 Video And Audio Data

We have used the foraging data from the bee keeping season of during June–July,

October–November of 2018 and data from May–July of 2019 for our analysis in this chapter.

The BeePi system records audio and video data every 15 minutes from 8:00 am to 9:00 pm.

Thus we have 4 recordings every hour and in total we have 52 recordings for each day of the

investigating time period. We will be focusing on two separate hives (R 4 5 and R 4 7) to

understand the effect of weather conditions on foraging activity. Both the hives are in the

same apiary in Logan, UT, but are at least 30 feet apart. Although we had 4 hives in that

apiary, we chose the above two because the BeePi sensors in hives R 4 5 and R 4 7 had

the least number of hardware failures over the 2018 beekeeping season. This was also to

make sure that we had good quality data for our analysis. Hives R 4 5 and R 4 7 also had

slightly different surrounding as well. R 4 5 was close to a parking lot and thus had lots

of background car noise and human chatter. It was in sunlight mostly during the morning

hours till noon. R 4 7 on the other hand was close to a garden, where sometimes human

chatter was recorded. R 4 7 remained in shade most of the day and received sunlight during

the early evening to sunset hours. Both the hives were located in an apiary where there are

lots of trees and small bushes.

8.3.1 Local Weather Data

In this investigation we plan to explore the effect of several other meteorological vari-

ables on bee foraging activity. In order to use different meteorological variables, we relied

on the Utah Climate Center [123] to gather the relevant weather data for the time period of

our investigation. The weather and climate data provided by the Utah Climate Center are

courtesy of the National Oceanic and Atmospheric Administration (NOAA), the Federal
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Aviation Administration (FAA) and other federal, state and local authorities.

No. Variable Name Units Representation

1 relative humidity % rh

2 grass reference evapotranspiration mm eto

3 clear sky solar radiation MJ rso

4 average vapor pressure kPa ea avg

5 precipitation mm precip

6 dew point temperature oC td avg

7 atmospheric CO2 concentration ppm co2 avg

8 photosynthetically active radiation µmol m−2s−1 ppf avg

9 short wave solar radiation MJ/m2 solarmj

10 air temperature oC airt avg

11 incoming longwave radiation W/m2 lwdn avg

12 reflected longwave radiation W/m2 lwup avg

13 atmospheric pressure kPa pressure

14 incoming shortwave radiation W/m2 swdn avg

15 reflected shortwave radiation W/m2 swup avg

16 wind speed m/s winds avg

17 net radiation W/m2 netrad avg

18 canopy temperature replicate 1 oC surfacet1 avg

19 canopy temperature replicate 2 oC surfacet2 avg

20 mean atmospheric visibility km visibilitykm avg

21 atmospheric pressure corrected to sea level kPa pressurekpasealevel

Table 8.1: Weather variables used in our investigation. Although we have 21 meteorological
variables, but later in our analysis we leave out precip (No. 5) from our list of predictor
variables since there was very little precipitation recorded during our observation period.

The Utah Climate Center has various weather stations located across the state of Utah.
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Among all the weather stations, we were interested in getting relevant data from the weather

station located on Utah State University campus in Logan, Utah and it is also the closest

to the location of our hives. The above weather station is approximately 2 miles from the

apiary where the hives are located. It provides continuous weather data every hour and

is an educational resource for students and research purposes. The station measures 43

different variables related to weather and climate conditions [124]. The sensors used in the

weather station have been provided by Campbell Scientific and Apogee Instruments. Out

of the 43 variables that the weather station provides, we were interested in studying 21

of them. The remaining variables were different climate related timestamps, information

about wind direction and information about the station, which would not help us in our

analysis. The final set of 21 variables are shown in Table 8.1. We gathered the weather

data from March 2018–July 2019 for our investigation in order to exactly align with the

time period of the video and audio data recordings used for the analysis in this chapter.

8.4 Predicting Foraging Activity

One of the goals in this chapter is to fit a linear regression model to the 2018 data

during the months of June–July, using the calculated bee motion counts as the response

variable with the meteorological measurements and intensity of bee buzzing providing the

predictor variables. Towards that end, we fitted an OLS linear regression model to the

data from hive R 4 5 during the months of June and July 2018, using weather data as the

predictor variables and bee motion counts as the dependent variable. The reason behind the

above selection is that during the months of June and July there were almost no hardware

failures and also the hive started to become mature during that time. The reason behind

the selection of hive R 4 5 is from our knowledge that the hive survived the harsh winters of

Logan, UT. Initially the training set had ((30+31)×13×4) 3172 data points. The weather

data is timestamped every hour. Thus in order to align the weather data to our bee motion

counts, we had to reduce our bee motion counts to 1 record per hour. To achieve the above,

we calculated the mean bee motion counts for the hour. Hence the final training set had

(62× 13) 793 data points. We then tested the model by using weather data and predicting
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bee motion counts for the months of May–July in 2019 for both hives R 4 5 and R 4 7.

Thus the predictive power of the model is assessed by analyzing the prediction results of

the model and comparing it against actual bee motion counts calculated by our algorithm

which was presented in Chapter 5.

8.5 Correlation Between Forager Activity And Meteorological Variables

The meteorological variables in Table 8.1 are a combination of measured and derived

variables. It means some of them are directly measured using a sensor, whereas others are

additionally calculated or derived from other variables. In this section we will be discussing

how some of the measured meteorological variable in Table 8.1 is related to the foraging

activity of the bees. We define forager activity as the total count of omnidirectional bee

motions. The weather data available from Utah Climate Center is timestamped every hour.

That means the data for the previous hour is available at the beginning of the current hour.

Our BeePi system records data every 15 minutes. Hence the first step in our analysis was to

align the timestamp of the weather data with that of the data from the BeePi sensors. To

do so, we calculated the average bee motion counts for the hour and similarly calculated the

average buzzing intensity for the hour and aligned them with the timestamp of the weather

data. Once the BeePi data was aligned to the weather data we were able to proceed with

our analysis.

The first step in our analysis was to understand how the foraging activity is affected

by individual meteorological variables. We discussed in the previous section the intuition

behind selecting data from hive R 4 5 during the months of June and July 2018 as our

training data. Hence we will use the above data from the months of June and July 2018 to

study the effect of weather conditions on foraging activity for hive R 4 5. We also extended

our analysis to study the effect of weather conditions on hive R 4 7, by using the data from

hive R 4 7 during the months of June and July 2018.

From the months of June and July, we had 793 (61 days * 13 records each day) data

points for hive R 4 5 and similarly 793 data points for hive R 4 7. To help us in our

investigation we first calculated the Spearman’s rank correlation score between bee motion
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counts and individual meteorological variables for each day. Thus the set of 793 data points

was brought down to 61 data points (one correlation value for each day of the analysis).

Next, we constructed box plots to visualize the distribution of the correlation values for

individual variables across the timeline of our analysis. A boxplot is a standardized way of

displaying the distribution of data based on a five number summary (minimum, first quartile

(Q1), median, third quartile (Q3), and maximum) along with the outliers. Figure 8.1, shows

the distribution of the correlation values for each weather variable and buzzing intensity for

hive R 4 5 during the months of June and July 2018.

Figure 8.1: Box plot representation of the distribution of correlation values between for-
aging activity and meteorological variables in Table 8.1 and buzzing intensity for hive R 4 5
during June and July 2018. Each box plot also shows the corresponding median value for
the distribution.

In Figure 8.1, we can visualize the distribution of correlation values across the obser-

vation period for each variable. From the median values of the box plots we can see that

certain variables are correlated better to the bee motion counts, than others. For example

we see that the median correlation value in case of relative humidity (rh) is less than -0.50

and only for a small number of cases the correlation value is positive. This tells us that
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relative humidity is negatively correlated to foraging activity. We see a similar scenario in

case of atmospheric CO2 concentration (c02 avg), where majority of the values are nega-

tive and the median value is below -0.50. This tells us that atmospheric CO2 concentration

is negatively correlated to foraging activity. There are also certain variables like average

vapor pressure (ea avg) and dew point temperature (td avg) which does not clearly show

the relationship with foraging activity. We also have variables like evapotranspiration (eto)

and air temperature (airt avg) where the median for the distribution of correlation values

is above 0.60 in both the cases, thereby showing high positive correlation with foraging

activity. We see almost an identical trend in the distribution of correlation values for the

weather variables for hive R 4 7 during the same time period as seen in Figure 8.2. This

suggests that the weather conditions affected the forager traffic similarly in hives R 4 5 and

R 4 7. The only difference between the Figures 8.1 and 8.2 is involving the distribution

of the correlation values between buzzing intensities and forager traffic. We see in case of

hive R 4 7 (Figure 8.2), the buzzing intensity is better correlated to forager activity, with

the median of the distribution being closer to 0.75. On the other hand, the median of the

distribution in case of hive R 4 5 (Figure 8.1), is closer to 0.50, but has less outliers.
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Figure 8.2: Box plot representation of correlation values between foraging activity and
meteorological variables in Table 8.1 and buzzing intensity for hive R 4 7 during June and
July 2018. Each box plot also shows the corresponding median value for the distribution.

In the following sections we will see the relationship between forager activity and some

of the weather variables on a certain day of June 17th, 2018. The purpose of this is to

visualize and understand how forager activity is affected by the weather variables during

different times in a day. The weather variables chosen for this per day analysis is based upon

the distribution of the corresponding correlation values in Figures 8.1 and 8.2. Variables

with median correlation value close to 0.50 or -0.50 were chosen. Another reason for the

selection of the above date for our analysis is due to the fact that some precipitation

was recorded on that particular day. We saw in Figures 8.1 and 8.2 that precipitation

(precip) was not included in the variable list. This is because there was very little data

for precipitation, since it rained very rarely. Thus in the following sections we would also

perform an analysis on how forager traffic is affected by precipitation on June 17th, 2018.

8.5.1 Forager Activity With Solar Radiation

We calculated the correlation between solar radiation and forager activity on June
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17th, 2018. Figure 8.3a shows how forager activity is affected by solar radiation. From

Figure 8.3a, we can see that as the solar radiation increases between 9–12 am, the forager

activity increases as well. During 12noon to 1 pm, there was a slight reduction in solar

radiation due to cloud cover and we could see the same effect in forager activity. Again

later in the afternoon when the solar radiation started to increase, the forager activity

increased as well. But during evening when the solar radiation went down, the forager

activity went down as well. This shows that for this particular day, the forager traffic is

highly correlated to solar radiation. This is also reflected in the calculation of Spearman’s

rank correlation between the two variables. The correlation between solar radiation and

forager traffic came out to be 0.81. The above value of Spearman’s rank correlation tells

us that the two variables are highly correlated and there is a positive correlation between

them. But not all days had very high correlation between the two variables. One example

is given in Figure 8.3b, where the correlation value was 0.42. We can see that as the solar

radiation increases in the morning, the forager activity increases as well. But just before

noon and during late afternoon around 2pm there was a slight drop in the forager traffic.

Although it is hard to explain this event, we can relate this to the findings in [93], that as

the solar radiation went higher above a threshold, during 11–12 noon, the forager activity

went down. Along with that there could also have been other weather or external conditions

that might have caused that effect.
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(a) June 17th, 2018, Hive R 4 5 (b) July 13th, 2018, R 4 5

Figure 8.3: Effect of solar radiation on forager traffic on June 17th and July 13th, 2018
for Hive R 4 5

Continuing with our analysis, for the months of June and July, we can see in Figure 8.1

that majority of the correlation values were close to 0.50. Although the above trend across

different months tells us that it is more likely that there will be a positive correlation

between solar radiation and forager activity, it also gives us the opportunity to investigate

other weather variables which when combined with solar radiation could be used to predict

future forager activity.

8.5.2 Forager Activity With Air Temperature

For the same day of June 17th we investigated the relation between air temperature

and forager activity for hive R 4 5. Figure 8.4 shows how forager activity is affected by air

temperature on June 17th and July 12th, 2018.
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(a) June 17th, 2018, Hive R 4 5 (b) July 12th, 2018, R 4 5

Figure 8.4: Effect of air temperature on forager traffic on June 17th and July 12th, 2018
for Hive R 4 5

If we observe both Figures 8.4a and 8.4b, we can see the positive correlation between air

temperature and forager activity. As a general trend we can see as the temperature goes high

the forager activity increases as well and vice versa. This is reflected in the Spearman’s

correlation value that we calculated for both the graphs. In Figure 8.4a the correlation

between temperature and forager traffic was 0.93. In Figure 8.4a the correlation between

temperature and forager traffic was 0.56. From the values we can say that although the

graphs of air temperature and bee motions did not exactly follow the same pattern, however

they both had a positive correlation of above 0.50. We see a similar trend of high positive

correlation when the correlation is calculated for the months of June and July as we can see

in Figure 8.1. The median for the distribution of correlation values for airt avg is close to

0.75. This tells us that temperature has a high positive correlation with foraging activity.

8.5.3 Forager Activity With Precipitation

During the months of June and July 2018, rainfall or precipitation was recorded only

on June 17th and July 3rd respectively. There was also some rainfall recorded on May 28th.

Thus for those days we investigated how precipitation affected forager traffic for hives R 4 5

and R 4 7.
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(a) June 17th, 2018, Hive R 4 5 (b) July 3rd, 2018, R 4 5

Figure 8.5: Effect of precipitation on forager traffic on June 17th, July 3rd, 2018 for Hive
R 4 5

(a) June 17th, 2018, Hive R 4 7 (b) May 28th, 2018, R 4 7

Figure 8.6: Effect of precipitation on forager traffic on June 17th and May 28th, 2018 for
Hive R 4 7

In all four graphs in Figures 8.5 and 8.6, we can see that the forager activity goes

down as soon as the rainfall starts. In Figures 8.5a, 8.6a and 8.6b, the rainfall was recorded

during early evening and we see that as the rainfall amount increases, the bee activity

simultaneously decreases as well. This is also reflected in the correlation value where for all

three graphs we get a negative correlation value of more than 0.50. In Figure 8.6b, we see
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rainfall was recorded during the late morning and noon. Due to the effect of the rainfall

we see that the forager activity went down and later went up as the rainfall stopped. In

this case the correlation value was -0.42. These above instances tell us that forager traffic is

negatively correlated to precipitation. But is to be noted that since rainfall only occurred

during a small time frame, the correlation value is on the lower side. This is because the

correlation value is calculated across the entire day and for most of the day there was

no effect of rainfall on the forager traffic. This tells us that although we can see that

precipitation has a negative effect on forager traffic, it will not be a good predictor for the

same, since it’s effect is only for those specific hours when it rains.

8.5.4 Forager Activity With Humidity

We investigated the effect of humidity on forager traffic for both the hives R 4 5 and

R 4 7 on June 17th and July 5th, 2018.

(a) June 17th, 2018, Hive R 4 5 (b) July 5th, 2018, R 4 5

Figure 8.7: Effect of humidity on forager traffic on June 17th and July 3rd, 2018 for R 4 5
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(a) June 17th, 2018, Hive R 4 7 (b) July 5th, 2018, R 4 7

Figure 8.8: Effect of humidity on forager traffic on June 17th and July 5th, 2018 for R 4 7

From Figures 8.7 and 8.8, we can see that humidity has a negative effect on forager

traffic. It is also evident from the Spearman’s correlation value obtained for all four graphs.

In each of the 4 graphs, Figures 8.7a, 8.7b, 8.8a and 8.8b the correlation value was below

-0.65. If we observe the graphs closely we can see that as the humidity goes down during

the day, the bee traffic goes up and when he humidity starts to go up during the later part

of the day, the foraging activity goes down as well. One interesting event we can observe in

each of the four graphs is that, during the timeline when the humidity is the lowest for that

day, the foraging activity is also the highest during the same timeline. We also calculated

the correlation values for the entire months of June and July 2018 and found for majority

of the days in both months, the effect of humidity on foraging activity is high, i.e. the

correlation value was below -0.60. We can see the median value close to -0.60 for humidity

in both Figures 8.1 and 8.2. The above instances suggest that there is a high negative

correlation between humidity and forager traffic activity.

8.5.5 Forager Activity With Carbon Dioxide (CO2) Gas Concentration

We investigated the effect of Carbon Dioxide (CO2) gas concentration on forager traffic

for both the hives R 4 5 and R 4 7 on June 17th and July 12th, 2018. The selection of days

were intentionally different from the days used in the previous sections, just to show the
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effect of weather across various dates.

(a) June 17th, 2018, Hive R 4 5 (b) July 12th, 2018, R 4 5

Figure 8.9: Effect of CO2 on forager traffic on June 17th and July 12th, 2018 for R 4 5

(a) June 17th, 2018, Hive R 4 7 (b) July 12th, 2018, R 4 7

Figure 8.10: Effect of CO2 on forager traffic on June 17th and July 12th, 2018 for R 4 7

From Figures 8.9 and 8.10 we can see the effect of CO2 gas concentration on foraging

activity. In each of the four graphs we can see that as CO2 gas concentration goes down,

the bees start to move more. We can also see that a small change or variation in CO2

gas concentration does not effect the foraging activity that much. But when there is a

big change in CO2 gas concentration level, the foraging activity goes down considerably.
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This can be seen in Figures 8.9a and 8.10a during the later part of the afternoon when the

CO2 level went up significantly which caused the foraging activity to come down as well.

This is also evident from the correlation value, which is less than -0.60 for all the graphs in

Figures 8.9a, 8.9b, 8.10a and 8.10b. We also calculated the correlation value for the entire

months of June and July 2018 and found for majority of the days in both the months,

the effect of CO2 gas concentration on foraging activity is high. We can see the median

of the distribution of correlation values for co2 avg was close to -0.60 in both Figures 8.1

and 8.2. The above instances suggest that there is a negative correlation between CO2 gas

concentration and forager traffic activity.

8.5.6 Forager Activity With Net Radiation

Net radiation, also sometimes referred to as net flux, is the balance between the in-

coming solar radiation that is absorbed by the Earth’s surface and the radiation that is

reflected back [125,126]. In other words, it is the total energy that is available at the Earths

surface and is influential towards the climate. Some places absorb more energy than reflect,

while other places on Earth reflect more energy than absorb. Earth’s average temperature

will rise, if the global net radiation is not close to zero. Thus we can see that net radiation

acts as an important factor in our climate and weather conditions. Hence in this section we

investigate the relation between net radiation and forager traffic for hives R 4 5 and R 4 7.
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(a) June 17th, 2018, Hive R 4 5 (b) July 12th, 2018, R 4 5

Figure 8.11: Effect of net radiation on forager traffic on June 17th and July 12rd, 2018
for R 4 5

(a) June 17th, 2018, Hive R 4 7 (b) July 12th, 2018, R 4 7

Figure 8.12: Effect of net radiation on forager traffic on June 17th and July 12th, 2018 for
R 4 7

By visual inspection of Figures 8.11 and 8.12 we can see that there is a positive corre-

lation between net radiation and forager activity in each of the four time series graphs. In

terms of correlation value, it was above 0.60 for all the four graphs in Figures 8.11a, 8.11b, 8.12a

and 8.12b. But when we observe the distribution of correlation values for the entire months

of June and July in Figures 8.1 and 8.2, we can see that the values are quite spread apart,
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with the median value being close to 0.40. Although this tells us that net radiation has a

positive effect on forager activity, but there is not a strong relation or association between

them.

8.5.7 Forager Activity With Evapotranspiration

Evapotranspiration (ET), is the process by which moisture is transferred from the

Earth into the atmosphere. It is the combined effect of evaporation and transpiration [127].

Evaporation happens when water vapor leaves from the surface of a plant or from the

soil. Transpiration happens when water passes through a plant from it’s roots through

it’s vascular system. The process of ET accounts for majority of the water lost from the

soil during the growing period of a crop. Water continuously moves between land, sky and

ocean; and this cycle is essential for the availability of water on the planet thus also affecting

life on Earth. ET is the key element within that water cycle and it accounts for 15% of

the water vapor in the atmosphere. Hence without ET there would not be any rainfall as

clouds would not form. Thus we believe it is important to investigate the effect of ET on

forager activity for hives R 4 5 and R 4 7.

(a) June 17th, 2018, Hive R 4 5 (b) July 12th, 2018, R 4 5

Figure 8.13: Effect of ET on forager traffic on June 17th and July 12th, 2018 for R 4 5
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(a) June 17th, 2018, Hive R 4 7 (b) July 12th, 2018, R 4 7

Figure 8.14: Effect of ET on forager traffic on June 17th and July 12th, 2018 for R 4 7

In Figures 8.13 and 8.14 we can clearly see that the foraging activity is affected by

the change in ET. With the increase of ET the activity goes up and similarly the foraging

activity goes down when the ET value goes down. This suggests that there is a positive

correlation between foraging activity and evapotranspiration. This is also evident from the

correlation value of above 0.86 for all four graphs in Figures 8.13a, 8.13b, 8.14a and 8.14b.

This trend holds across the entire months of June and July, in where the median correlation

value was above 0.70 as we saw in Figures 8.1 and 8.2. This tells us that there is a high

positive correlation between forager activity and evapotranspiration.

8.5.8 Forager Activity With Wind Speed

In this part, we will investigate how wind speed affects forager activity. Before starting

the intuition would be that when the speed of wind increases, it should result in lesser bee

traffic as it would be harder to fly. Thus keeping that in mind, we should be able to see

some effect of wind on forager activity for hives R 4 5 and R 4 7.
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(a) June 17th, 2018, Hive R 4 5 (b) July 12th, 2018, R 4 5

Figure 8.15: Effect of Wind Speed on forager traffic on June 17th and July 12th, 2018 for
R 4 5

(a) June 17th, 2018, Hive R 4 7 (b) July 12th, 2018, R 4 7

Figure 8.16: Effect of Wind Speed on forager traffic on June 17th and July 12th, 2018 for
R 4 7

If we observe the Figures 8.15 and 8.16, we can observe a small trend in the graphs

where the foraging activity goes down as the speed of wind increases. But the effect is not

as large as the other weather variables and it is evident in the correlation value of around

0.20 which is low in all the cases. When we calculated the correlation value for the entire

months of June and July, we saw in Figures 8.1 and 8.2 that the distribution of correlation
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values have a wide spread from -0.50 to 0.80. This suggests that we cannot clearly say

whether wind speed has a positive or a negative effect on foraging activity. One reason the

above low correlation value can be attributed to is that the weather station is located 2

miles away from the hives and hence the data might not always represent the local weather

conditions near the hive.

8.6 Relation Between Multiple Meteorological Variables

We have analyzed the effect of different weather or meteorological variables on foraging

activity for the hives R 4 5 and R 4 7. We saw a visual representation of how change in

one variable effects another. We particularly kept the day of June 17th the same for each

comparison. On visual observation of Figures 8.3a, 8.4a, 8.5a, 8.7a, 8.9a, 8.11a, 8.13a

and 8.15a we can see that the foraging activity is not just dependent on a single weather

variable, rather every variable had some effect on the bee motions. This tells us that all of

these variables could act as predictors to forecast or predict future bee motions. Next we

will see how individual variables are correlated with each other. Since we have presented a

visual representation for June 17th and July 12th in the previous sections, we calculated the

correlation between individual variables for the same days. The variables we are interested

in are presented in Table 8.1. Figure 8.17 shows the correlation values between multiple

meteorological variables for June 17th, 2018 and Figure 8.18 similarly shows the correlation

values between multiple meteorological variables for July 12th, 2018. The correlation was

calculated using Spearman’s rank correlation. In both the figures we can observe some

interesting events where in some cases the sign of correlation between a variable tuple is

not the same on both the days.
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Figure 8.17: Correlation between different meteorological variables in Table 8.1 on June
17th, 2018

In Figure 8.17 we see solar radiation (solarmj) is negatively correlated to relative humid-

ity (rh) and in Figure 8.18 we see the reverse where solarmj and rh are positively correlated.

We can also see that netrad avg is highly correlated to solarmj and there are other highly

correlated tuples as well. Since we will be using the weather variables to fit a linear regres-

sion model to the data, it is essential to calculate the colinearity between different predictor

variables as it could lead to uncertainty during the calculation of regression coefficients.

The reason is due to the fact that if the predictor variables are mutually covariant then

there will be uncertainty in the weights of the coefficients assigned to each predictor by the

regression model. Thus leading to multicollinearity, which can be a problem in a regression

model because we would not be able to distinguish between the individual effects of the
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independent variables on the dependent variable.

Figure 8.18: Correlation between different meteorological variables in Table 8.1 on July
12th, 2018

In order to measure the effect of colinearity between our possible predictor variables

we use variance inflation factor (VIF). The VIF represents the increase in variance in the

value of the model coefficients as a result of their colinearity, so a value of 2 means the

variance of the estimated coefficient is twice as high as it would be if the predictor variables

were perfectly independent. On the other hand, a value of 1 tells us that the variables

are completely independent. A VIF of more than 5 indicates potentially severe correlation

between a given explanatory variable and other explanatory variables in the model, thus in

those cases it is suggested to generate a derived variable from the correlated ones. The lower

the value of VIF the better the effect of the predictor variables. A value between 1 and 5
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indicates moderate correlation between a given explanatory variable and other explanatory

variables in the model, but this is often not severe enough to require attention. It is usually

a good practice to have a VIF less than 2 [128]. VIF for the variables is calculated over

the entire training dataset assuming all the meteorological variables are used together as

predictors.

VIF Value Variable

22.66 rh

12.89 eto

20.01 rso

57.29 ea avg

61.74 td avg

2.01 co2 avg

508.19 ppf avg

648.94 solarmj

38.29 airt avg

37146.15 lwdn avg

27633.57 lwup avg

112.37 pressure

176296.11 swdn avg

3781048.22 swup avg

2.05 winds avg

2039656.39 netrad avg

90.68 surfacet1 avg

100.42 surfacet2 avg

1.63 visibilitykm avg

111.99 pressurekpasealevel

Table 8.2: VIF for weather variables when they are used together as predictors for building
a regression model using data from June and July 2018. The dependent variable is the bee
motion counts.

In Table 8.2, we can see when all the weather variables are together used as a pre-

dictor, the corresponding VIF values are really large. This tells us that there is high

multicollinearity between several variables. In one such example we can see the VIF corre-

sponding to solarmj and netrad avg is high. This makes sense, as netrad avg is computed

using solarmj. Hence those two variables are highly correlated and that is reflected in the
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VIF values. Hence in our next step we will try to find out which subsets of weather variables

result in corresponding low VIF values and higher model performance.

8.7 Regression Model Design

Our training set contained 793 (61 × 13) samples from the months of June and July

2018 from hive R 4 5. We fitted an ordinary least square linear regression model to the data

using meteorological variables as the predictors to predict foraging activity. For simplicity

we assumed there is linear relationship between the bee counts and the weather variables.

To test the performance of our model, we used the data from the months of May–July

2019 as our validation set and the predicted bee motion counts or the foraging activity is

compared against the actual bee motion counts.

Regression is a powerful analysis that can analyze multiple variables simultaneously

by drawing a random sample from a population and then using it to estimate the prop-

erties of that population. Linear regression is used as a predictive model that assumes a

linear relationship between the dependent variable (which is the variable we are trying to

predict/estimate, in our case it is the bee motion counts) and the independent variable/s

(input variable/s used in the prediction, in our case they are the weather variables). Since

in our case the relationship exists between the dependent variable and multiple indepen-

dent variables, we can call such regression as multiple linear regression. It has the following

structure.

Y = C +M1 ∗X1 +M3 ∗X2 +M3 ∗X3 + . . .+ ε (8.1)

In the above equation (8.1), ‘Y’ is the dependent variable, ‘C’ is the constant or the

Y-intercept. X1, X2, X3 are the independent variables. M1, M2, M3 are the corresponding

coefficients on the independent variables X1, X2, X3. They represent the change in the

dependent variable ‘Y’ due to a change of one unit in the independent variables. Finally ‘ε’

is the random error. The error term accounts for the variation in the dependent variable

that the independent variables cannot explain. Ordinary Least Squares (OLS) is the most
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common estimation method for linear models. Using the ols function from the statsmodels

package in Python3.7, we construct our linear regression models. The process of selecting

the predictors for the model is done starting from a constant model (Y=C) to creating

separate models by adding terms one by one and calculating the corresponding VIF values.

At each iteration we check, if all the VIF values corresponding to the predictor variables are

less than 2 then we keep that set of predictor variables and then use them to fit the OLS

model on the data. We then check the p-value corresponding to each predictor variable for

significance. The p-value for each independent variable tests the null hypothesis that the

variable has no correlation with the dependent variable. If there is no correlation, there

is no association between the changes in the independent variable and the shifts in the

dependent variable. This tells us that each variable can be considered to be statistically

significant. Thus our predictor list goes through two rounds of checking, one where the VIF

is checked before fitting the model, second after the model fit the corresponding p-values

are checked. If a set of predictor variables passes through both the checks, we consider that

set as relevant and save it for further analysis.

From Table 8.1, we can see that there are 21 different weather variables. But since there

was no precipitation recorded during majority of the observation period, we decided to leave

precipitation out from our predictor list. Hence if we consider every possible combinations of

the 20 weather variables we will have 220 = 1048576 different combinations. We could have

used PCA to reduce the dimensions of the data or perform feature importance using Random

Forest and reduce the number of features from 20, but for completeness we performed an

exhaustive analysis involving all the variables. So the next step is to design an algorithm for

selecting only the relevant set of predictor variables out of the 1048576 possible combinations

that satisfies the above VIF and p-value criteria. The steps are explained in Algorithm 8.1.

In order to optimize our processing steps and use less memory, we use the ‘chain’ function

from the ‘itertools’ module in Python. So rather than generating all the 1048576 possible

combinations and saving them to memory, the ‘chain’ functionality helps us to create an

chain object that takes a series of iterables and returns one iterable. It groups all the
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iterables together and produces a single iterable as output. We can then call that object

and get access to the individual set of variables (combo).

Algorithm 8.1 Algorithm to choose a set of weather variables as predictors based on VIF
and p-value.

Input:
A set of weather variables (combo),

Output:
Accept=True, if meets criteria. False, otherwise

Begin
Calculate VIF between the variables in combo
vif bool = True, if any VIF corresponding to the variables is greater than 2.0

False, otherwise
if (not vif bool)

Begin
Fit an OLS model to the data using the variables in combo
Calculate the p-values for the predictor variables
p bool = True, if any p-value is greater than 0.05

False, otherwise
if (not p bool)

Begin
Accept = True, and save combo as a possible predictor set.

End
End

End

We applied our selection criteria using Algorithm 8.1 and were able to reduce 1048576

possible combinations of weather variables to 1872 different sets. Table 8.3 shows the R-

squared (R2) and the AIC values when individual weather variable is used as predictor in

the OLS model. R-squared (R2) value reflects the fit of a model. It values range from 0

to 1, where a higher value generally indicates a better fit. We also calculated the Akaike

InformationCriterion (AIC) [129] score each time. AIC is based on a technique that performs

in-sample fit and estimates the likelihood of a model to predict future values. Generally a

good model will have the minimum AIC among all other models since AIC is low for models

with high log-likelihoods.
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R-squared AIC Variable

0.42 12050.32 rh

0.66 11674.81 eto

0.56 11848.03 rso

0.48 11968.46 ea avg

0.29 12194.89 td avg

0.58 11824.33 co2 avg

0.56 11861.98 ppf avg

0.57 11844.82 solarmj

0.59 11798.34 airt avg

0.6 11782.36 lwdn avg

0.59 11808.35 lwup avg

0.58 11813.62 pressure

0.59 11806.8 swdn avg

0.56 11856.31 swup avg

0.62 11758.35 winds avg

0.52 11916.47 netrad avg

0.61 11777.99 surfacet1 avg

0.63 11741.08 surfacet2 avg

0.59 11802.22 visibilitykm avg

0.58 11813.63 pressurekpasealevel

Table 8.3: R-squared and AIC score when individual weather variable is used as predictor
for building a regression model using data from June and July 2018. The dependent variable
is the bee motion counts.

We can see in Table 8.3 that when individual weather variable is used as a predictor,

the highest R-squared (R2) value is 0.66 in case of eto. The above value of 0.66 means

that 66% of the observed variation in the forager activity can be explained by the variation

in eto. Thus we believe that if we combine other weather variables, we should be able to

explain the observed variation in the forager activity better, which would in effect result

in higher R2 value. Hence in the next step, we sorted the 1872 sets of predictor variables

depending upon the R2 value of the corresponding model.
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Table 8.4 shows the 10 best performing models in terms of R2 value. From the table

we can see that eto is present as a predictor in 9 of the 10 best performing model. Thus we

can see that eto has the highest effect on forager activity which we also saw in Table 8.3.

The above makes sense because eto is a derived variable and is calculated using other

meteorological variables and is a key element in the water cycle on the planet and accounts

for 15% of the water vapor in the atmosphere. Hence we believe that bees have a way to

sense the evapotranspiration present in the atmosphere which in turn has an effect on their

foraging activity. We can see in Table 8.4, that the model with highest R2 value, has eto,

ea avg, airt avg, winds avg, visibilitykm avg, pressurekpasealevel as the independent

or predictor variables. We know from previous studies [71, 72, 95] regarding the effect of

temperature on foraging activity, and we also see airt avg as one of the predictor variables

in the best performing model. Another interesting observation we see is the inclusion of

visibility as one of the predictor variables. This is particularly significant because during

the summer heat, big wildfires are common in the western parts of USA, which results in

low air quality and low visibility in Logan, UT as well. We did not have a way to measure

the air quality index, but it was interesting to see visibilitykm avg playing a part in the

decision making process of the bees regarding leaving or returning to their hives. We also

see ea avg as one of the predictor variables. ea avg or vapor pressure is another way of

measuring the humidity of the air. It measures how much water vapor the air would contain

if saturated. At a given temperature, an increase of water vapour in the air corresponds to

an increase in the humidity of the air. If we refer to Table 8.1, we can see rh or relative

humidity as one of the weather variables being tested. Relative humidity compares the

the absolute humidity (measures how much water vapor the air actually contains) and the

vapor pressure. We can see that rh is present in 5 of the models in Table 8.4. Hence in a

way we can say that humidity has an effect on foraging activity as was reported in [72].
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Predictor List R-squared (R2) AIC

eto ea avg airt avg winds avg

visibilitykm avg pressurekpasealevel

0.7171 11546.36

eto ea avg airt avg pressure winds avg

visibilitykm avg

0.7170 11546.41

eto td avg airt avg winds avg

visibilitykm avg pressurekpasealevel

0.7169 11546.72

eto td avg airt avg pressure winds avg

visibilitykm avg

0.7169 11546.77

rh eto ea avg winds avg visibilitykm avg

pressurekpasealevel

0.7167 11547.35

rh eto ea avg pressure winds avg

visibilitykm avg

0.7166 11547.38

rh eto td avg winds avg visibilitykm avg

pressurekpasealevel

0.7166 11547.61

rh eto td avg pressure winds avg

visibilitykm avg

0.7165 11547.64

rh eto ea avg co2 avg winds avg

visibilitykm avg

0.7156 11549.88

eto ea avg co2 avg airt avg winds avg

visibilitykm avg

0.7155 11550.17

Table 8.4: The predictor list, R-squared values and the AIC for the top 10 best performing
models in terms of R-squared value.
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VIF Variable

1.41 eto

1.21 ea avg

1.41 airt avg

1.39 winds avg

1.12 visibilitykm avg

1.34 pressurekpasealevel

Table 8.5: VIF values for the best performing predictor set from Table 8.4.

In the next few steps we will use the best performing predictor set and build our first lin-

ear regression model (LR1). In other words we will fit an OLS linear regression model (LR1)

to the data, using eto, ea avg, airt avg, winds avg, visibilitykm avg, pressurekpasealevel

to predict bee motion counts or the foraging activity. If we compare Table 8.4 and Table 8.3,

we can see that when we combined multiple variables the model was a better fit as reflected

in the R-squared value and AIC value. In Table 8.5, we see the VIF values corresponding

to the predictor set of the best performing model.

We tested our first model LR1 on data from the bee keeping season of 2019, specifically

we tested for the months of May, June and July for hives R 4 5 and R 4 7. We evaluated

the performance of the model by comparing the predicted bee counts against the actual bee

motion counts and then calculating the mean absolute error per day along with the overall

root mean squared error (RMSE).

In Figures 8.19a and 8.19b for the month of May 2019, we see a big spike in bee motion

counts at the beginning of the month. The reason behind the huge spike is due to the fact

that a fresh hive was installed in both the cases. As the days progressed in that month, we

see the bees settling down and the bee motion counts becoming smaller. We can see that

our predicted model was able to capture the effect if we refer to the predicted bee motion

count curves. The mean error for both predictions in Figures 8.19a and 8.19b is reported in

the ‘Error’ column in Table 8.6. We see that the values are less than 250 in both the cases
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(a) May 2019, Hive R 4 5 (b) May 2019, R 4 7

(c) June 2019, Hive R 4 5 (d) June 2019, R 4 7

(e) July 2018, R 4 5 (f) July 2018, R 4 7

Figure 8.19: A linear regression model LR1 was fitted to the data from the months
of June and July 2018 using eto, ea avg, airt avg, winds avg, visibilitykm avg,
pressurekpasealevel as predictors with bee motion counts as the response or dependent
variable. The prediction was performed on data from the months of May, June and July
2019. Actual/ Measured (red) bee motion counts are presented in the same graph as the
predicted (blue) bee motion counts across the months of May, June and July during the
bee keeping season of 2019 for hives R 4 5 and R 4 7.
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for the month of May. This means the error in the bee counts predicted by the model LR1

was within 250 bees of the original bee motion counts per day. In Figures 8.19c and 8.19d

for the month of June 2019, we see that the prediction curve is closer to the original bee

count curve. It is especially closer in Figure 8.19d, where we see that apart for some sudden

spikes, most of the days in the month the prediction was closer to the actual count. It is

reflected in Table 8.6 as well, where the mean error was 218.27 for the month of June in

case of hive R 4 7.

Hive Month RMSE Error

R 4 5 May 1073.47 161.35

R 4 5 June 608.54 371.07

R 4 5 July 518.99 248.64

Hive Month RMSE Error

R 4 7 May 684.97 247.43

R 4 7 June 748.47 218.27

R 4 7 July 905.07 394.51

Table 8.6: The tables show the RMSE and the mean error for the respective graphs in
Figure 8.19 for hives R 4 5 and R 4 7. The error in the fourth column is the mean absolute
error per day. In other words, it is the mean of the absolute difference per day between the
actual bee motion counts and the number of bees predicted by our model LR1.

In Figure 8.19e, we see the shape of prediction curve matches closely to the actual bee

count curve over the entire month of July 2018 for hive R 4 5. In Figure 8.19f, we see that

during certain days in July when the bee count was high, the model LR1 was not able to

predict those higher counts effectively. This resulted in higher RMSE of 905.07, which can

be seen in Table 8.6. Thus we can see the power of a simple model wherein by using a

simple linear regression model LR1 we were able to match the original bee motion counts

within a certain error percentage. A more complex model with quadratic predictors might

lower the error percentage and generate better results. But in this study, our objective was

to investigate whether it is possible to use different meteorological variables (in addition

to the ones previously studied in the literature) to explain observed bee foraging activity

and we have seen for our hives evapotranspiration, visibility play an important role too

alongside temperature and humidity.
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8.8 Using Regression Model To Study Hive Health

One of the important aspect for a beekeeper is to monitor the health of the hives during

a bee keeping season. There could be several factors behind a hive not developing properly

in comparison to others. We saw in the previous chapter that during the timeline of end

of September–beginning of October the performance of both of our hives R 4 5 and R 4 7

decreased simultaneously showing almost a similar downward trend. There could be various

reasons for this downward trend, but we believe one such reason could be attributed to the

local weather conditions. During this time of the year, the temperature starts to go down

as fall arrives in Logan, UT. During mid October–end November, which are months in the

back end of the beekeeping season, the temperature falls below freezing occasionally. So it

is expected to see less forager traffic during this time as the bees prepare their hives for the

winter. But if a hive is struggling it would be reflected in the forager activity too as there

will be less to no movement with significant drop in foraging activity during these times,

hence telling us that the hive is close to dying. Between hives R 4 5 and R 4 7, we know

that hive R 4 7 was not able to survive the winter. Thus in this section we will see if it is

possible to identify the hive’s struggle beforehand through a prediction model using only

meteorological variables.

As we discussed earlier regarding the decrease in forager activity during the time-

line of end of September–beginning of October, it would be wise to design a new linear

regression model that would be trained on data during that particular period. Towards

that end we design a new regression model LR2, using eto, ea avg, airt avg, winds avg,

visibilitykm avg, pressurekpasealevel as predictors, and bee motion counts as the response

or dependent variable. We train the model on data from the hive R 4 5 during the month of

October 2018. The reason behind selecting hive R 4 5 is that the hive survived the winter

and hence we have chosen the foraging activity observed in that hive to be the reference

point. The training data initially had 1612 (31×13×4) data points for the whole month of

October 2018 from hive R 4 5. Since the weather data is timestamped every hour, we had

to reduce our dataset of bee motion counts to 1 value per hour. We did this by calculating
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the mean of the bee motion counts every hour. Hence the final training set had (31 × 13)

403 data points. We tested the model on data from both the hives R 4 5 and R 4 7 during

the month of November 2018.

(a) November 2018, Hive R 4 5

(b) November 2018, R 4 7

Figure 8.20: A linear regression model LR2 was fitted to the data from hive R 4 5 during
the month of October 2018 using eto, ea avg, airt avg, winds avg, visibilitykm avg and
pressurekpasealevel as the predictors, and bee motion counts as the response or dependent
variable. The prediction was performed on data from both hives during the month of
November 2018. Actual/ Measured (red) bee motion counts are presented in the same
graph as the predicted (blue) bee motion counts across the months of November during the
bee keeping season of 2018 for hives R 4 5 and R 4 7.
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In the graphs in Figure 8.20, we can clearly see the difference in the forager activity

between the hives R 4 5 and R 4 7. In Figure 8.20a we see that the predicted bee motion

counts and the actual bee motion counts match very closely for hive R 4 5. This means the

hive was performing normal as expected towards the end of the bee keeping season. But

on the other hand, we see in Figure 8.20b, the predicted bee counts are a lot larger than

the actual counts for hive R 4 7. This tells us that the hive R 4 7 was not performing as

it should have towards the end of the beekeeping season. This event was also mirrored by

our observation recorded in the beekeeping journal, wherein we noted that hive R 4 7 was

not able to survive the winter and hence died. Thus we can see that using meteorological

variables we were able to describe the performance of a hive by predicting the forager activity

and comparing against actual bee motion counts. To remove any bias in our results, we

did the same analysis as above by training a different model LR3 on data from hive R 4 7

during the month of October 2018 and tested the model on data from November 2018. The

results can be interpreted similarly as above and we can clearly see in Figure 8.21b, that

hive R 4 7 was struggling.

A way to analyze this difference is to use a metric which will compare the model

predictions with the actual bee motion counts generated by our dpiv based algorithm. Since

the bee population changes depending upon the time or the stage during the bee keeping

season, the metric needs to be calibrated accordingly. For example the allowable difference

between the predicted counts and the actual counts could be higher during June or July

or even August, since there is a lot of foraging activity or bee movement during this time.

But the acceptable difference needs to be small during November, since we already know

forager activity goes down a lot during the final stages of the beekeeping season. Hence we

believe that a carefully designed metric that could track continuous discrepancies over time

would help a beekeeper identify abnormal behaviour such as bees abandoning their hives,

swarming or hive dying due to parasitic infestation or other hive threatening events.
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(a) November 2018, Hive R 4 5

(b) November 2018, R 4 7

Figure 8.21: A linear regression model LR3 was fitted to the data from hive R 4 7 during
the month of October 2018 using eto, ea avg, airt avg, winds avg, visibilitykm avg and
pressurekpasealevel as the predictors, and bee motion counts as the response or dependent
variable. The prediction was performed on data from both hives during the month of
November 2018. Actual/ Measured (red) bee motion counts are presented in the same
graph as the predicted (blue) bee motion counts across the months of November during the
bee keeping season of 2018 for hives R 4 5 and R 4 7.

8.9 Using Bee Buzzing Intensity

In the previous chapter we learned about calculating the buzzing intensity from audio

recordings and how we can comment on the health of a hive by analyzing those buzzing
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intensities over time. From the Figures 8.1 and 8.2 we can tell that the buzzing intensities

and the foraging activity are positively correlated and the correlation value was above 0.50

for majority of the days for both hives R 4 5 and R 4 7 during our investigation period.

In this section we will investigate whether we can use the buzzing intensity alongside the

weather variables to predict future foraging traffic. Towards that end, we fitted a linear

regression model LR4 on the data from hive R 4 5 during the month of June and July

2018 (same data as in the previous sections) using buzzing intensity alongside the weather

variables, to predict bee motion counts. We saw in Table 8.4, that the predictor set of

eto, ea avg, airt avg, winds avg, visibilitykm avg and pressurekpasealevel resulted in

the best performing model with the highest R2 value. The first step is to calculate the VIF

after adding buzzing intensity to the above predictor set. We can see in Table 8.7, that all

the VIF corresponding to each variable is less than 2. But when we fit model LR4 to our

training data, the p-values corresponding to POWER and airt avg are greater than 0.05.

This tells us that both the variables are not statistically significant in the model. Hence

simply adding buzzing intensity to the best performing predictor list was not a good idea.

VIF Variable

1.09 POWER

1.41 eto

1.22 ea avg

1.51 airt avg

1.39 winds avg

1.12 visibilitykm avg

1.34 pressurekpasealevel

Table 8.7: VIF values for after adding buzzing intensity to the best performing predictor
set from Table 8.4.

From Table 8.1, we can see that there are 20 different weather variables and we are now
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adding buzzing intensity to the list. Hence if we consider every possible combinations of the

variables we will have 221 = 2097152 different combinations. We could have used PCA to

reduce the dimensions of the data or perform feature importance using Random Forest and

reduce the number of features from 21, but for completeness we did an exhaustive analysis

involving all the variables. So we followed Algorithm 8.1 for selecting only the relevant

set of predictor variables out of the 2097152 possible combinations that satisfied the VIF

and p-value criteria. As a result we were able to reduce 2097152 possible combinations of

weather variables to 3179 different sets.

Table 8.8 lists the 10 best performing predictor sets which had POWER as one of the

predictors. We can see in Table 8.8 that eto is present in all of the sets which tells us about

the importance of eto in predicting forager traffic. We fit a linear regression model LR5 to

the data using the top predictor set in Table 8.8, but we can see that adding POWER or

the buzzing intensity to the list of predictor variable did not improve the R2 value of the

model, rather the value is slightly lower than the R2 value of the best performing model

in Table 8.4. It is important to know that R2 value does not always indicate how well the

model fits to the data. Even if a model has a low R2 value, we can still draw important

conclusions about the relationship between the variables as long as the independent variables

are statistically significant (satisfied in our study following Algorithm 8.1). High R2 values

are important when we need to generate almost precise predictions. But in our case our

goal is not to generate precise predictions rather a general estimate of the forager traffic.

Next, in order to compare the performance of the models LR1 and LR5, we plot the

corresponding diagnostic plots to visually determine how our models fit the data and if any

of the basic assumptions of an OLS model are being violated. Each diagnostics plot will

focus on the residuals (or errors) generated by a model, which is basically the difference

between the actual value and the predicted value. The basic assumptions of the OLS model

are: the data can be fit by a line, any errors during model fitting are normally distributed

with mean zero and all errors have constant variance.
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Predictor List R-squared (R2) AIC

POWER eto td avg winds avg

visibilitykm avg pressurekpasealevel

0.7151 11551.27

POWER eto td avg pressure winds avg

visibilitykm avg

0.7151 11551.3

POWER eto ea avg winds avg

visibilitykm avg pressurekpasealevel

0.7150 11551.42

POWER eto ea avg pressure winds avg

visibilitykm avg

0.7150 11551.45

POWER eto ea avg co2 avg winds avg

visibilitykm avg

0.7141 11553.62

POWER eto td avg co2 avg winds avg

visibilitykm avg

0.7139 11554.22

POWER eto td avg airt avg

visibilitykm avg pressurekpasealevel

0.7130 11556.49

POWER eto td avg airt avg pressure

visibilitykm avg

0.7130 11556.53

POWER eto ea avg airt avg

visibilitykm avg pressurekpasealevel

0.7125 11557.79

POWER eto ea avg airt avg pressure

visibilitykm avg

0.7125 11557.82

Table 8.8: The predictor list, R-squared values and the AIC for the top 10 best performing
models in terms of R-squared value, when buzzing intensity was added along with the
weather variables

First we analyzed the ‘Residuals vs Fitted’ plots for both the models. This type of

graph shows if there are any nonlinear patterns in the residuals, and thus in the data as

well. One of the mathematical assumptions in building an OLS model is that the data can
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be fit by a line. If this assumption holds and our data can be fit by a linear model, then

we should see a relatively flat line when looking at the residuals vs fitted. An example

of this failing would be trying to fit the function f(x) = x2 with a linear regression y =

C +M1 ∗X1 +M3 ∗X2 +M3 ∗X3 + . . .+ ε. Clearly, the relationship is nonlinear and thus

the residuals will have non-random patterns.

(a) Model LR1 (b) Model LR5

Figure 8.22: Residual vs Fitted plots for model LR1 and LR5.

In an ideal ‘Residuals vs Fitted’ plot, the red line in Figure 8.22 would be horizontal.

This is due to the fact that, for a perfect fit, there should not be any pattern or clustering

in a ‘Residuals vs Fitted’ plot, rather it should be spread more like randomly around the

zero x-axes(in an uniform way). In Figures 8.22a and 8.22b, neither of the red lines are

horizontal. If we observe the plot in Figure 8.22b, the bow shaped red line indicates that

our simple linear model has failed to capture some of the non-linear features that could be

present and hence the model has resulted in underfitting. One way to address that is to

transform the predictor variables in a way such that the variance in the data could be better

captured. The transformation could be performed by squaring (or some other non-linear

transformation) of one or more of the predictor variables.

Next, in order to check if all the errors or the residuals are normally distributed, we

plot the corresponding Q-Q plot. An ideal Q-Q plot will have all of the residuals lying in
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or close to the red line. If we look at the plots in Figures 8.23a and 8.23b, we see that there

are number of points that fall further away from the red line. Although in Figure 8.23b the

points are comparatively closer to the red line, but still we can see in both the cases the

errors not being normally distributed.

(a) Model LR1 (b) Model LR5

Figure 8.23: Q-Q plots for model LR1 and LR5.

When we plotted the the residuals vs the fitted response values (as per the model),

we observed that the variance of the residuals increase with response variable magnitude.

So the next step is to visually check if the residuals suffer from non-constant variance or

heteroscedasticity. For that we will plot our fitted values against residuals values which are

standardized (i.e. mean=0 and variance=1). The more horizontal the red line is, the more

likely the data is homoscedastic i.e. the errors will have constant variance. We can see in

Figure 8.24, that neither red line is horizontal. This might be caused due to the fact that

the models were not able to capture the non-linearities and hence this tells us that further

tweaking of both the models is necessary.
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(a) Model LR1 (b) Model LR5

Figure 8.24: Plots to check heteroscedasticity for models LR1 and LR5.

On visual observation of the diagnostic plots we can see that the residuals for LR5 were

more normally distributed in comparison to LR1. This tells us that the model LR5 was a

better fit. We also learned from the plots that both models were not able to capture the

non-linearity in the data and thus further tweaking of the model with different non linear

transformation of the predictor variables are needed to achieve better model fit.

8.10 Discussion

One important aspect we need to keep in mind regarding our study is that the weather

data is obtained from a weather station that is almost 2 miles away from the apiary. Thus

it might not always reflect the local conditions near the hive which might affect the forager

activity differently, thus resulting in over prediction or under prediction by our model. The

goal of this study was not to design a perfect model, but was to investigate by designing a

simple linear model, whether local weather conditions have an effect on foraging activity.

In particular this study was also in part to validate our bee motion counting algorithm

presented in Chapter 5. Previous researchers have used additional costly intrusive hardware

to get an estimate of bee counts which were then used for the weather analysis. But here we

have used our designed bee motion counting algorithm which counts the bee motions insitu.

Next we have seen, weather conditions have an effect on foraging activity and the results
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suggest that weather conditions particularly temperature, humidity, evapotranspiration and

surrounding visibility are continuously monitored by the bees in making decisions regarding

taking a flight outside of the hive or not. On the other hand, we can also assume a similar

decision making process is constantly happening outside the hives as well, where the bees

decide whether to return back to their hives depending upon the weather conditions. We also

designed a different linear regression model by including the buzzing intensity captured by

the microphone of our BeePi sensor as one of the predictors and did not find any significant

improvement in the performance on our data. We have seen in our analysis in Section 8.5

that bees can sense instantaneous weather changes and thus behave accordingly rather than

holding information about previous weather conditions. This tells us one important aspect,

in which we can hypothesize that no complicated neural network with millions of parameters

is needed to implement a system that can replicate how bees think. Rather just a simpler

pre–trained model would be sufficient. Thus such low storage and processing requirements

would help us do these analysis on a low powered device such as a Raspberry Pi. We believe

our analysis is just a starting point, and it would require further investigation to understand

the response of bee colonies to changing climatic conditions and how it effects pollination.

We designed and validated our models using data from only 2 hives. Although we

validated our model on data from a different year with a completely different bee race, still

a large scale study is necessary with data from lots of hives. Data recordings in our new

BeePi system have been seamless starting with the bee keeping season of 2020 and thus

we plan to obtain good quality data from each of our hives in the apiary. This would help

us mix data from several hives in order to efficiently train our models and in effect help

the models generalize better. This study used data from weather station located 2 miles

away. Hence in the next step we plan to incorporate data from our own weather stations

located in close proximity to the hives in the same apiary. This would help us to improve

our evaluation of truly local weather condition on foraging activity.
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CHAPTER 9

CONCLUSION

Honeybee forager traffic, which is the number of bees that move in close proximity to

a beehive, acts an important factor to indicate how honey bee colonies react to external

conditions like foraging opportunities, weather events, pests and diseases. Many commercial

and amateur beekeepers observe the bee traffic near their respective hives to identify the

state of the corresponding bee colonies, since it is believed that honeybee traffic carries

information on colony behavior and phenology. But commercial beekeepers have to manage

several hundreds of beehives. Therefore, it is not always possible for them to be physically

present to observe the beehives in time to administer appropriate treatment. According

to the report published by the United States Department of Agriculture [130], it has been

estimated that the cost to the commercial beekeepers to replace lost colonies was around

$2 billion between the years 2006–2012. We believe that if the labor cost of monitoring the

hives can be reduced by automating the process, along with early detection of stressors (for

example, failing queens, predatory mites, airborne toxicants etc), then the complete loss of

honeybee colonies can be averted, which in turn may have a significant economic impact on

the industry.

In this dissertation we have seen how electronic beehive monitoring (EBM) can be

used to extract useful information on bee colony behavior and hive health without invasive

beehive inspections and transportation costs. In our research we have conducted various

tests and have proposed diagnostic models to address different aspects of electronic bee-

hive monitoring. We have seen that it is possible to computationally estimate bee traffic

patterns and correlate them to beehive development through an integration of audio and

video analysis. This estimation and correlation were achieved by collecting and analyzing

audio and video data in the vicinity of each monitored beehive. We also investigated the

connection between foraging activity of honey bees and local weather conditions and dis-
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cussed its potential application in continuous and remote monitoring of honey bee colonies.

Our designed approach has several advantages. It helps in the reduction of invasive hive

inspections that disrupt the colony’s life cycle and put stress on the bees. It helps reduce

the transportation costs for the beehive owners who travel long distances to their beehives.

One of the primary goals of this dissertation was to design an EBM system that required no

structural modifications to a standard beehive (such as the Langstroth beehive [14] or the

Dadant beehive [15]), thereby preserving the sacredness of the bee space without disturbing

the natural beehive cycles. In this dissertation we have been able to build a reliable and

low–cost EBM system based on raspberry pi that does not require any structural modifica-

tions to be made and can just be placed on top of the beehive to be monitored. Through

our designed system, we were also able to collect good data, which has been used in building

diagnostic models to investigate the health of a hive.

In Chapter 3, we presented an algorithm to count bees on the landing pad of a

Langstroth beehive [14] from static images recorded by a raspberry pi camera. The camera

was placed just above the landing pad and it recorded static images of forager traffic leaving

and entering the hive. The above static images were first passed through a pad localization

module to localize the landing pad and were then processed by a skew detection module

where the pad’s skew angle was determined and the images were rotated accordingly. The

above localized and rotated images of landing pads with bees were given to our designed bee

counting module which returned a non-negative real number approximating the number of

bees on the pad. We evaluated the performance of our presented method on 793 images of

landing pads with bees and for 90.29% of the images we were within an error margin of 15

when compared to the ground truth or actual counts.

In our continuing research in [1], we presented video bee traffic analysis where we

analyzed 30 seconds of videos captured by the raspberry pi camera. We contributed to the

body of research on object recognition in videos by proposing a two-tier system that couples

motion detection with image classification. Our system used motion detection (KNN [131],

MOG [132], MOG2 [133]) to extract possible object regions and then classified each detected
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region using a class-specific classifier (e.g., a Convolutional Neural Network or a Support

Vector Machine) or an ensemble of classifiers such as a random forest (RF) [115]. In [1], we

also presented a strategy to automate the design of Convolutional Neural Network (CNN)

architectures to classify each detected motion region. We designed a multi-generational

greedy grid search (GS) method to automate the finding of the best performing CNN

architectures with 1, 2, 3, 4 and 5 hidden layers respectively by constraining the number of

convolutional and maxpooling layer pairs (i.e., hidden layers), filter sizes, and the number of

nodes in each hidden layer. We trained our models on 19083 Bee Images and 19057 No-Bee

Images. For model accuracy, we tested our models on 6362 Bee Images and 6362 No-Bee

Images. For model selection, we tested our models against a validation data (the held-out

testing dataset) set of 1810 Bee images and 1718 No-Bee images. We also introduced three

image datasets (BEE1 [24], BEE2 1S [25], BEE2 2S [26]) for our analysis. We found out

that the best performing models generated from the automated design of CNN architecture

performed on par with the popular image classification CNN architectures of ResNet32 [134]

and VGG16 [80] on BEE1 and BEE2 1S and even better in case of BEE2 2S. Through

our above two studies, we experimentally demonstrated that computer vision and deep

learning, which had so far not been explored in EBM systems ( [10, 73, 75, 76, 135]), could

be put to productive use in estimating forager bee traffic levels through by estimating bee

motion counts. In that same study we also made a preliminary evaluation of the proposed

two-tier method on four 30-seconds videos with different levels of bee traffic. We manually

labeled each frame from the video and counted the bees that moved between successive

frames. We then evaluated our two-tier system on the four videos to count the number of

bee motions using MOG2 [132] for motion detection. We obtained good result on a video

that had low traffic, but overestimated in case of mid and high traffic videos mainly due to

detected overlapping motion regions.

The two-tier bee counting method in [1] was only able to count omnidirectional bee

motions in that it did not distinguish between incoming and outgoing bee traffic. So in

our following research [2] we addressed the above by introducing a bee motion estimation
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algorithm using digital particle image velocimetry (dpiv) to measure levels of directional

traffic along with omnidirectional bee motions. The dpiv based approach did not rely on

image classification and hence could be used to measure traffic of any other insects such as

bumble bees and ants. Since dpiv is purely analytical, it does not require the use of any

machine learning or large curated datsets. On the same four evaluation videos as above,

the dpiv based bee motion estimation algorithm [2] performed on par with the two-tier

bee motion counting algorithm [1] in measuring omnidirectional honeybee traffic. Since our

goal is to have the BeePi system process the recorded videos on the raspberry pi itself, the

advantage of the dpiv based approach was apparent when the running time was compared

to the two-tier method. We distributed the dpiv processing over 6 different raspberry pis

and found that it took ≈19.49 min to process a 30-sec video of resolution 640×480 at 25fps.

On the other hand, we were not able to distribute the two-tier method and hence it took

more than 2.5hrs on a single raspberry pi.

We continued our research [22] by improving the design of the dpiv based algorithm

to count bee motions in Chapter 4 and Chapter 5. In order to improve the dpiv based bee

counting method, the first step we took was to reduce the size of the video frames from

(640×480) to (80×60). In Chapter 4, we saw how we could take frames with bees and convert

them into a frames with white background having only the positions of interest marked,

i.e. identifying the bees that have moved between successive frames and then separating

the corresponding positions on a different frame with a white background. In Chapter 5,

we combined the above bee movement localization technique with the dpiv based algorithm

to count bee motions between successive frames. We showed how we could use dpiv to

analytically classify and count different bee motions into incoming, outgoing or lateral and

then use those individual counts as measurements of directional traffic levels. We added 28

more videos to our video evaluation dataset, which were taken from different times during

the beekeeping season with varying levels of bee traffic across different backgrounds. To

generate the ground truth data, each of the frames in the 32 videos (744*32=23808 frames)

were individually evaluated before hand and the number of bees that moved in successive
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frames were counted from them. The data is publicly available at [96]. In Chapter 5, we saw

the combined dpiv based bee motion count algorithm along with bee movement localization

performed better than the two-tier bee motion counting algorithm proposed in our previous

research [1] in terms of omnidirectional bee motions based upon the results on 32 evaluation

videos. It also improved upon our previous study [2], where in we were able to get actual

counts of bee motions rather than a general estimate. For the 32 evaluation videos we saw

that the combined dpiv method presented in Chapter 5 was able to generate results which

were closer to the actual bee counts. We also saw that our improved dpiv based method

was able to run on a single raspberry pi computer and was able to process each video in

≈2.15 minutes. Since the BeePi system records video every 15 minutes, we envision that in

the future BeePi monitors will use the remaining time (15-2.14=12.86 minutes) to process

and analyze data from other sensors as well. In Chapter 5, we also investigated whether

the newly proposed approach could be used to analyze the incoming and outgoing traffic

levels in healthy beehives. We also compared the time series data for the bee motion counts

during the entire beekeeping season of 2018 from May to November for two of our hives

R 4 5 and R 4 7 and observed some interesting events concerning the health of the hives.

In Chapter 6, we focused our attention towards analyzing audio samples recorded by

the BeePi monitors. We discussed the design of a CNN architecture that processed raw

audio waveforms and compared the performance of different deep learning models towards

classifying audio samples recorded by microphones on beehives. We introduced two different

datasets of manually labeled audio samples to aid us in our investigation and evaluation.

In the first dataset BUZZ1 [23] with 10,260 audio samples, the training and testing samples

were separated from the validation samples by beehive and location. In the second dataset,

BUZZ2 [23] with 12,914 audio samples, the training and testing samples were separated

from the validation samples by beehive, location, time and bee race. We saw in Chapter 6

that the CNN model we designed to classify raw audio waveforms performed better than

the four machine learning methods [21] and a CNN model trained to classify spectrogram

images of audio samples. We also experimentally showed that our CNN model designed to
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process raw audio waveforms is able to operate in situ on a raspberry pi computer.

Continuing with our audio analysis in Chapter 7, we used band-pass filtering to re-

move any background noises and filter out the relevant frequencies that are associated with

bee buzzing from the audio samples. Examples of background noises can be bird chirping,

very low intensity of human conversation, sudden spike of audio pulse or a constant noise

produced due to hardware issues in audio recording arrangement. We found in our litera-

ture review that the frequency range of 200–3000Hz was able to capture most of the honey

bee signals. We filtered out the above frequencies which are associated with bee buzzing

from audio recordings and then used those filtered audios to find the power/intensity of bee

buzzing. We then analyzed the power/intensity of the bee buzzing over the entire beekeep-

ing season of 2018 from May to November and investigated how two of our hives(R 4 5 and

R 4 7) had progressed through the 2018 beekeeping season. We analyzed the time series

data of power/intensity of the bee buzzing and observed interesting events during certain

times of the season. Specifically we saw that one hive showed better performance in com-

parison to the other during the middle of the bee keeping season. We envision that in the

future a metric would be developed and a dissemination system would be designed which

would address such discrepancies and inform the beekeepers regarding the health of the

hives, in process acting as an early detection alarm for beekeepers. In a large-scale apiary

with many hives equipped with BeePi sensors, those hives that show a downward trend in

performance during the middle of the season could be manually inspected and necessary

steps for hive treatment could be performed. We also saw the effect of the cold temperature

in Logan, UT during the timeline of mid October–end November, on the buzzing intensities

in both the hives. Both the hives showed lower buzzing intensities, but the variability in the

time series graph told us that one hive was struggling to stay alive which was also confirmed

from our beekeeping journal as well.

Following our findings in Chapter 7, we investigated in Chapter 8 the effect of local

weather conditions on the forager traffic. We studied the effect of 21 different meteorological

variables on the foraging activity during the period of May–November of our beekeeping
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season in 2018 and during May–July 2019. Through our study we were able to show that

without the use of additional costly intrusive hardware to count the bees, we can use our

bee motion counting algorithm to count the bee motions and then use the counts to in-

vestigate the relationship or correlation between foraging activity and local weather. We

also fitted several simple linear regression models to the data using different combinations

of weather variables to predict the bee motion counts and saw that for our hives, evap-

otranspiration and visibility play an important role alongside temperature and humidity.

We found that 71% of the observed variation in the forager activity can be explained by

the variation in evapotranspiration, visibility, temperature, pressure and humidity. We also

designed separate linear regression models by including the buzzing intensity captured by

the microphones as one of the predictors and did not find any significant improvement in

the performance. The above results were interesting, because in Figures 8.1 and 8.2 we

saw that the median correlation values between forager traffic and buzzing intensity were

high positive above 0.65 during the months of June–July 2018. We can also see from Fig-

ures 7.20 and 7.21, that the shape of the time series plots of buzzing intensity and forager

traffic counts followed each other closely during certain months in the beekeeping season

of 2018. Thus the above observations tell us that while buzzing power is not contributing

much as a predictor variable, it is definitely highly correlated to forager traffic. Towards

that end, we believe that a future study involving the use of weather variables to predict

the power/intensity of bee buzzing could be fruitful. Hence we can think of the audio as a

redundant sensor variable which could be useful during certain scenarios when the camera

fails and we could still be able to get information regarding the status of the hive.

We acknowledge that there are certain open ended challenges associated with our analy-

sis and addressing them as part of future work could help our goal of building an autonomous

beehive monitoring system capable of making informed decisions. In Chapter 8, we learned

through our investigation that the linear regression models were not able to capture the

non-linearity in the data and thus further tweaking of the model with different non linear

transformation of the predictor variables are needed to be done as part of future work to
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achieve a better model fit. In order to better generalize the predictive models and truly

understand the effect of local weather on foraging activity, a large scale study is necessary

with data from lots of hives across a wide range of weather conditions. The weather data

that we used was from a weather station 2 miles away. Hence in the future we plan to

incorporate data from our own weather stations which will be located in close proximity to

the hives in the same apiary. We plan to incorporate in our future study, a detailed and

manual colony health assessment by an experience beekeeper which could help shine light

to certain hive specific events as an effect from different external conditions. The addition

of other sensors such as brood temperature, hive weights etc may reveal predictor variables

that were not considered in this dissertation. Along with that since our final goal is to

build an autonomous monitoring system, we believe that there is a need to develop a metric

that would compare the model predictions with the observed bee motion counts, which in

turn could lead to better understanding of hive stressors. Differences between the predicted

counts and the observed counts could be tracked and appropriate warnings could be sent

to the user depending upon the designed metric and the length of the time period over

which the discrepancies occurred. Hence a large scale study is important for us to build

the confidence in our predictive modeling, which in turn could save labor costs by reducing

periodic manual inspections of all hives by a beekeeper in a large apiary.

We also see a scope for improvement in the bee motion localization algorithm proposed

in Chapter 4. The localization method is dependent upon the color variations between a

moving object and the background. Hence it is susceptible to non-bee movements as well.

An additional step could be added to it wherein after the movements have been localized,

the objects at those positions could be passed through a pre–trained image classification

model. This will help us detect the movements and classify not only honeybees but also

other flying or crawling insects or animals near the landing pad of the hive as long as we

have a trained model to classify them. The dpiv based method presented in Chapter 5

could then be applied on top of that to get the directional counts. Along with that we are

also in the process of increasing our evaluation dataset of 32 videos.
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In our study we were not able to record in our beekeeping journal any specific events

related to a hive such as queen loss, swarming, etc, which could have been reflected in

the audio recordings. Although we were able to analyze the bee buzzing within a certain

frequency range, but we were not able to analyze individual honey bee signals such as

recruit, tooting, quacking, hissing etc. Thus, we were not able to correlate different honey

bee signals to the forager activity for a much broader analysis. We believe as part of

the future work, an investigation into the different honey bee signals as indicators of hive

performance could give us valuable insights.
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APPENDIX A

Interrogation Window and Overlap

We chose 32 videos across different times during the bee keeping season of 2018 and

2019 [96] such that they had varying levels of bee traffic across different backgrounds. We

first found in Table A.1, for each video which values of interrogation window and overlap

worked the best, i.e. had the least error when compared to the ground truth data.

Video Window Overlap Dpiv Human Count Difference
Vid1 14 6 4893 5693 800
Vid2 17 2 189 343 154
Vid3 17 2 2656 2887 231
Vid4 17 2 59 73 14
Vid5 17 2 75 75 0
Vid6 17 4 231 239 8
Vid7 12 3 71 74 3
Vid8 10 4 360 361 1
Vid9 17 2 478 478 0
Vid10 12 3 368 357 11
Vid11 12 1 374 373 1
Vid12 17 2 339 348 9
Vid13 8 2 174 176 2
Vid14 12 3 208 208 0
Vid15 10 4 456 456 0
Vid16 10 4 263 270 7
Vid17 12 2 157 154 3
Vid18 12 1 294 294 0
Vid19 17 4 14 17 3
Vid20 12 1 65 60 5
Vid21 8 2 419 432 13
Vid22 10 2 101 101 0
Vid23 12 3 249 247 2
Vid24 12 3 168 168 0
Vid25 17 2 90 90 0
Vid26 16 4 74 74 0
Vid27 16 4 1901 1943 42
Vid28 12 3 6582 6580 2
Vid29 17 4 186 186 0
Vid30 17 4 279 289 10
Vid31 10 2 652 643 9
Vid32 14 3 1023 1401 378

Table A.1



241

A.1 A Simple Strategy To Select Interrogation Window And Overlap

We can design a strategy where in case of low traffic we could use 10% overlap, in case

of medium traffic we could use 20% overlap and in case of high traffic we could use 30%

overlap. Next we can select the size of the interrogation window based upon the average

size of an individual bee on an image frame. Since, the average size of an individual bee is

between 8-10 pixels, we can choose the size of the interrogation window to be approximately

twice the size of an individual bee (17 pixels).

Normalized Threshold (thresholdNorm) Interrogation Window Overlap

9 ≤ thresholdNorm < 18 17 2

18 ≤ thresholdNorm < 36 17 3

36 ≤ thresholdNorm < 65 17 5

Table A.2: Values for interrogation window and overlap used by the bee motion counting
algorithm DPIV A.

Table A.2 shows the choice of interrogation window and overlap based on thresholdNorm,

which is another measure of the level of bee traffic (Chapter 4). We tested our strategy

on 32 evaluation videos and the results are given in Figure A.1. The strategy described

in Table A.2 was used to generate the counts for the DPIV A bee counting algorithm.

Although we can see that for some videos the error in the bee count was low for DPIV A

but there were also certain cases where absolute error was higher. Hence, we can see that

Table A.2 was not the optimal choice as we found out through our experiments with 32

evaluation videos. One can design other strategies too to determine the interrogation win-

dow and overlap but since the videos were chosen in a way such that they had varying levels

of bee traffic across different backgrounds, we believe that fixing the interrogation window

size for the entirety was not an ideal choice.
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Figure A.1: Absolute difference in bee motion counts between the results of the five bee
counting algorithm and the ground truth data for 32 evaluation videos.
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