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Abstract

Conventional asymptotic methods for survival analysis work well when sample sizes are

at least moderately sufficient. When dealing with small sample sizes or rare events, the

results from these methods have the potential to be inaccurate or misleading. To handle such

data, an exact method is proposed and compared against two other methods: 1) the Cox

proportional hazards model and 2) stratified logistic regression for discrete survival analysis

data.

Background and Motivation

Survival analysis models are used for data in which the interest is time until a specified

event. The event of interest could be heart attack, onset of disease, failure of a mechanical

system, cancellation of a subscription service, employee termination, etc. Survival analysis

models are used in a variety of applications, including biostatistics, social sciences, economics,

and engineering. One important distinguishing characteristic of survival analysis models is

the presence of censoring. Censoring arises when the event time is unknown, or if it is not

known whether or not the event occurred. Survival analysis has been widely studied and

applied across many areas of the biomedical and social sciences. There are many excellent

text books containing more details about the application of survival analysis models. For

example, Singer and Willett (2003) cover both discrete and continuous time models in Applied

Longitudinal Data analysis; while Tutz and Schmid (2018) focus on discrete time models

in their text Modeling Discrete Time-to-Event Data. Kleinbaum and Klein (2012) offer a

self-study approach in Survival Analysis: A Self-Learning Text.

As with other modeling approaches in statistics, some of the conventional methods that are

used for survival analysis are hampered when sample sizes or event rates are small. As a

result, there has been significant attention paid to alternatives for small or sparse samples.

For example, the asymptotic log-rank test requires the hazards to be proportional, while the

generalized Wilcoxon test is a good alternative when the proportional hazards assumption
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is not met. Both tests require that groups have similar sample sizes, but are still valid in

unequal follow-up situations. In situations where the group sizes are markedly different and

follow-up is equal, complete permutation tests are available, including the early generalized

Wilcoxon test by Gehan (1965), and the modified Savage test (Schemper, 1984). Heinze,

Gnant, Schemper (2003) propose two exact tests that are suitable for use in cases where:

group sizes are different, there are a low number of events, and groups have unequal follow-up

times. Based on simulations, the exact test (conditional on follow-up) has been shown to

be the best choice when follow-up is unequal. When follow-up is equal, the exact complete

permutation has a slight advantage in terms of performance. These tests are designed to

detect differences in survival curves, but do not provide estimates for the hazard rate.

Wang, Lagakos, and Gray propose two types of permutation tests for accelerated failure time

(AFT) models when sample sizes are small (2010); as interval estimates tend to perform poorly

for small samples. The methods proposed rely on first imputing the survival and censoring

times, after which the the permutation methods are applied. Based on a simulation study,

the two methods have good Type I error and power properties. Additionally, the confidence

intervals constructed under the AFT model have better coverage than the approach of Jin

and others (2003) when used with small samples.

Samuelsen (2003) proposes a method where survival data is analyzed using a conditional

logistic model. So-called Type I and Type II censoring are considered, where type I censoring

refers to an experiment that ends after a pre-specified number of years, and type II censoring

refers to an experiment that ends after a pre-specified number of events have occurred. The

results of his simulation study show that the type I censored data yields conservative coverage,

and lower power than score and likelihood ratio tests; while the type II censored data also

yields conservative coverage, although not as conservative as the type I results. Power was

demonstrably better for the exact test than the Wald test. Additionally, coverage and power

were evaluated with one covariate in the model.

Rabinowitz, Betensky, and Tsiatis (2000) present an approach to survival analysis using a
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conditional logistic regression to fit a proportional odds model to interval-censored data. Shih

and Fay (1999) consider permutation tests for stratified survival data by permuting scores

based on a functional of estimated distribution functions.

Methodology

The Cox proportional hazards model is the most widely applied model for time-to-event

data. One advantage of the Cox model is that both continuous and categorical predictors can

be considered in the same model. Another advantage is that the model is semi-parametric,

meaning that the baseline hazard function, h0(t), does not need to be known. The hazard

function for continuous time survival models can be interpreted as the instantaneous rate of

failure and, for the Cox model, can be expressed as

h(t) = h0(t) exp[β1X1 + β2X2 + · · ·+ βpXp]

Where h0(t) is the baseline hazard with p predictors (X1, X2, · · · , Xp).

The estimates for βi are obtained through a so-called partial likelihood function. These

estimates are obtained in a similar manner to traditional maximum likelihood estimates,

and assume that characteristics of the partial likelihood function are likewise asymptotically

normally distributed (Singer and Willett, 2003). Wald-type confidence intervals are thus

applied to regression coefficients and are typically the default in software programs such as

R and SAS. When sample sizes are small and/or there are few observed events, asymptotic

properties of the partial likelihood function may not hold. To handle this issue within the

framework of a Cox model, profile likelihood intervals have been suggested and tend to yield

more robust results over Wald confidence intervals (Heinze and Schemper, 2002). This is of

particular consequence for adaptive design clinical trials, where sample sizes can be small due

to the choice of design. For example, in a group-sequential clinical trial design, the earlier

phases will have a small number of events, and then increase at pre-specified times during
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the course of the trial. During the earlier phases, the Type I error rate may be inflated if a

conventional large-sample method is used.

When the event rate is low, discrete survival models are another good option for analyzing

survival data. The proposed method in this paper is an exact method for discrete survival

analysis (DT-E). In order to analyze the data properly, it must be in person-period format.

This is done in R using the longFormat function from the discSurv package. In this format,

each subject will have multiple observations. Because the data are gathered over time

(logitudinal) rather than just a snapshot in time (cross-sectional), this format will appropriately

allow each subject to contribute to the risk set for each time period until the subject is

censored or experiences the event. The probability of an event at time t is conditional on the

subject surviving up until time t, resulting in conditional independence.

With the data appropriately formatted, the usual method for discrete survival analysis is to

then perform logistic regression, with the model expressed as

log
(

πij

1− πij

)
= γi + x′

ijβ,

where i = 1, 2, . . . , N indicate the strata, and j = 1, 2, . . . , ni indicates each of the ni subjects

within stratum i. Let Yij = 1 if the jth subject in the ith stratum experienced the event, and

Yij = 0 otherwise. πij is then defined as Pr(Y ij = 1|xij) where xij is a vector of covariates

with p dimensions for the jth subject in the ith stratum, γi is a scalar parameter of the ith

strata, and β is a (p×1) vector of parameters. When the time measurements are considered to

be discrete, but rounded due to measurement restrictions, the logit model estimates converge

to a Cox proportional hazards model (Thompson, 1977). In the discrete time model, the

odds ratio is used; while in the Cox Proportional Hazards model, we use the hazard ratio.

Based on this logistic regression model, two separate approaches are explored. The first

approach, which will be referred to as DT-A throughout the paper, will rely on stratifying

on all parameters that are not of interest, including time. This method conditions out the
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nuisance parameters on their sufficient statistics to calculate estimates only for the parameters

of interest and relies on asymptotic assumptions of the MLE.

The second approach, which will be referred to as DT-E throughout the paper, uses exact

conditional logistic regression. Like DT-A, all nuisance parameters are conditioned out, but

rather than relying on the asymptotic properties of the MLE, this method relies on the exact

distribution for only the parameter of interest to obtain the estimate for β. All simulations

and examples were analyzed using Cytel Studio LogXact software. LogXact is a statistical

package for regression procedures featuring exact methods. LogXact is an industry standard

in clinical trials because they use highly efficient algorithms for exact methods. However,

other widely used software packages such as R or SAS also have the capability to fit an exact

conditional regression model for discrete time survival data if the data are formatted properly.

Simulation

A variety of packages have been developed for simulating survival data in R. Common

approaches for simulating survival data involve sampling from specified distributions (e.g. ex-

ponential, Weibull, Gompertz) that assume a particular shape for the baseline hazard. Note

that with the Cox model, we assume that the baseline hazard is from a family of parametric

distributions that yield proportional hazards. However, the Cox model allows you to model

data without assuming a particular shape for the baseline hazard. For this simulation study,

rather than drawing from a specific parametric distribution, a randomly generated baseline

hazard is created for each simulated dataset, using the coxed package (Harden and Kropko,

2018). Applying this method makes the simulation applicable to a wider variety of data,

increasing the generalizability of the simulation study. Harden and Kropko (2018) describe

their method (noting that T = maximum duration value possible):

This function employs the flexible hazard method to generate a baseline failure
CDF: it plots points at (0, 0) and (T+1, 1), and it plots knots additional points
with x-coordinates drawn uniformly from integers in [2, T] and y-coordinates drawn
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from U[0, 1]. It sorts these coordinates in ascending order (because a CDF must be
non-decreasing) and if spline=TRUE it fits a spline using Hyman’s (1983) cubic
smoothing function to preserve the CDF’s monotonicity. Next it constructs the
failure-time PDF by computing the first differences of the CDF at each time point.
It generates the survivor function by subtracting the failure CDF from 1. Finally, it
computes the baseline hazard by dividing the failure PDF by the survivor function.

Two examples of these randomly generated hazard functions used for simulation our simulation

study in Figures 1 and 2 are shown below with their accompanying PDFs, CDFs, and Survivor

functions.

Survivor Hazard
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Figure 1: Example 1

For our study, we used three sample sizes (N = 40, 80, 200), two levels of right censoring

(50% and 80%), and two binary predictor variables. The first predictor variable could assume

one of four values: β1 = log(θ) = 0, 0.6, 1.2, 1.8, where θ is the true hazard. The second
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Survivor Hazard
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Figure 2: Example 2

predictor was assigned β2 = log(θ) = 0. For each sample size, level of censoring, and value

for log(θ), 5000 datasets were simulated. The censoring was assumed to be uninformative,

i.e., independent of failure time. The times are assumed continuous, but rounded due to

coarseness of the measurements. The first predictor, x1, has N
2 observations belonging to

group 1, where N is the sample size. The second predictor, x2, was randomly selected, with

probability p = 0.5 for each of the two groups.

Three methods were applied: Cox porportional hazards model, DT-A, DT-E. The parameter

estimates for the Cox proportional hazards model are obtained by maximizing the partial

likelihood. Theoretically, event times are considered continuous so no two event times will

be the same. However, in practice, measurement rounding can produce ties. The partial

likelihood equation is valid only when there are no tied event times. When ties do occur,

the two methods most commonly considered for approximation come from Breslow (1974)
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and Efron (1977). The data in this simulation study are analyzed using a Cox Proportional

Hazards model with Efron’s approximation. Efron’s approximations are used in this study, as

Breslow’s approximation does not perform as well when there are a relatively large number

of ties in the risk set but, when there are few to moderate ties, results tend to yield similar

coefficients (Allison, 2010). Given that the sample sizes are relatively small, we used profile

likelihood confidence intervals.

Results

The DT-E method retains 95% coverage in nearly all data sets, only dropping slightly below

in three instances of the larger sample (N = 200) simulations. For the 50% censoring level

and β = 1.2 and β = 1.8, the coverage drops just below the desired coverage level, to 94.96%.

For the 80% censoring level and β = 1.8, the coverage drops to 93.82%. See figure 3 and

table 1 for the coverage for each method, at each level of censoring, beta, and sample size.

Table 1: Percent Coverage

Censoring = 50% Censoring = 80%

N Method 0.0 0.6 1.2 1.8 0.0 0.6 1.2 1.8

DT-E 96.76 97.26 97.60 96.92 97.94 97.90 98.28 97.96

DT-A 95.06 95.82 96.38 95.68 98.02 97.86 97.76 95.3440

Coxph 93.90 94.84 94.34 93.14 95.26 95.44 95.90 94.54

DT-E 96.64 96.68 96.76 96.34 97.84 97.04 96.82 96.38

DT-A 95.16 95.08 95.12 94.62 96.74 95.92 95.40 93.6880

Coxph 94.68 94.00 93.14 91.80 95.26 94.38 93.66 92.22

DT-E 96.52 96.16 94.96 94.96 96.68 96.14 95.42 93.82

DT-A 95.60 95.10 93.74 93.30 95.46 94.84 93.70 91.00200

Coxph 95.42 94.00 90.92 86.94 94.94 94.10 92.82 89.60
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One thing to note about performance is that both the DT-A and Cox model have issues

with nonconvergence of the likelihood function when sample sizes are small (N = 40) and

censoring is high (80%). The most notable instances are when β = 1.2, the DT-A model does

not achieve convergence 8.26% of the time, and the Cox model does not achieve convergence

7.84% of the time. When β = 1.8, the DT-A model does not converge in 14.84% of instances,

and the Cox model does not converge in 15.2% of instances. Under these circumstances, the

estimate is not reliable. Tests that do not converge are excluded from the results in figure 3,

and table 1. Percentages of nonconvergence for sample sizes N = 40, 80 are reported in table

2. Convergence is a non-issue for all values of β and censoring levels when N = 200, and are

consequently not reported in table 2.

Figure 4 illustrates that average bias for all three tests are similar.

To handle issues with nonconvergence, SAS offers an option to run the Firth correction,

which uses the penalized partial likelihood to calculate estimates (Heinze & Dunkler, 2008).

However, this option is not available with Efron’s approximation. As an initial look into

the estimates, 1000 datasets were simulated with a sample size of 40, β = 1.8, and an 80%

censor rate. Of the 1000 datasets, roughly 15% of the tests did not converge using the Cox

Proportional Hazards model. This is as expected, based on table 2. Average estimates and

coverage were then calculated on the 15%.

• Exact test: Mean β = 2.326671, coverage = 99.34%

• Firth Corrected: Mean β = 2.604367, coverage = 97.37%

Coverage is conservative, which is not surprising given the large confidence intervals of both

the Firth method and the DT-E method. In the cases where nonconvergence is an issue, the

DT-E test yields one-sided confidence intervals. Both tests give beta estimates that are high,

but the exact tests perform slightly better in terms of bias. The average exact test gives a

beta value of 2.3, which translates to a hazard ratio of roughly 10; while the average Firth

test gives a beta value of 2.6, which translates to a hazard ratio of roughly 13.5. This is

compared to the target value for beta of 1.8, or a hazard ratio of 6.
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There are two notable limitations of this initial look into the Firth option. First, the methods

are not strictly comparable since Breslow’s method is used in conjunction with the Firth

option, but all other tests use Efron’s. Second, the sample size is too small to reach any

definite conclusions. Further analyses are recommended in order to better understand how

the Firth correction compares to the results of the exact test.

Table 2: Percentage of Nonconvergence

log(θ) = β

N = 40 N = 80

Censoring Method 0.0 0.6 1.2 1.8 0.0 0.6 1.2 1.8

DT-E 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00

DT-A 0.00 0.00 0.20 1.24 0 0.00 0.00 0.0050%

Coxph 0.00 0.00 0.18 0.92 0 0.00 0.00 0.00

DT-E 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00

DT-A 3.08 3.10 8.26 14.84 0 0.04 0.38 1.7080%

Coxph 3.20 3.24 7.84 15.20 0 0.04 0.38 1.64
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Application

Three datasets from are analyzed using the Cox proportional hazards method, DT-A method,

and DT-E method.

Lung Cancer

The dataset used comes from a study on lung cancer (Kalbfleisch and Prentice, 1980) and can

be accessed through the R package ncvreg. There are 137 observations and 9 predictors, where

69 subjects were assigned to the control group, and 68 patients assigned to the treatment

group. The type of tumor was recorded for each patient: adenoma, large cell, small cell, and

squamous. Time until death was recorded in days.

For the purpose of analysis, the observations were divided into groups based on their tumor

type. The two methods give similar estimations (see figure 5), which is consistent with what

was observed in the simulations when β is close to zero.
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Bladder Cancer

Data for this example come from a study of bladder cancer discussed by Pagano and Gauvreau

(2000) After surgery to have one or more tumors removed, 86 patients were either treated

with chemotherapy (Thiotepa), or given a placebo. Of the 86 patients, 48 were assigned to

the placebo group, and 38 were given chemotherapy. Patients were then divided into two

groups based on how many tumors were removed: one tumor removed vs. multiple tumors

removed. Time until reocurrence is recorded in months. Table 3 gives a breakdown of patients

by treatment and number of tumors removed.

Table 3:

Placebo Chemotherapy

One Tumor 26 23

Two Or More Tumors 22 15

Three methods were then applied to each of two subgroups based on number of tumors
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removed. All three methods give similar estimates for the log of the hazard (see figure 6),

which is what we would expect based on the simulations.

Recidivism

The recidivism dataset used here is obtained from the carData package in R, and originally

published by Rossi et. all (1980). The dataset contains information from 432 prisoners

released from prison, of which half were given financial aid. Subjects were followed up for

one year after their release date. Time of first arrest after release is recorded in weeks.

The observations were split into two groups: those who were on parole (N = 267), and those

who were not (N = 165). The censoring rates of those who are on parole is 75%, and 72%

for those who were not on parole. The aim of the analysis is to determine if the financial

aid program reduced recidivism rates. As shown in figure 7, all three methoded give similar

estimates for β, with the exact method producing slightly larger confidence intervals.
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Conclusion

The DT-E method appears to perform well in the presence of high rates of censoring, small

samples, and situations with non-convergence. While not the main objective of this project,

we also conducted a small comparative investigation of bias where the Cox Proportional

Hazards model ran into problems with non-convergence. Some limited results indicated that,

in the presence of a high rate of censoring and/or small samples, DT-E also yielded less

biased estimates than the Cox model. However, a more definitive conclusion about this would

require a larger simulation study. Simulations and applications for the compared methods

consider only data with binary covariates and type I censoring.
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Code Appendix

The following code generates 1000 datasets for beta = 0 at 50% censoring with 200 observations

in each dataset.

seed <- 47347 # seed_N200_5

cens <- 80 # change this when running for 50% censoring

n <- 200 # sample size (n/2 is the size in each group)

top <- 36 # possible duration time limit

size <- 1000 # number of data frames

betaslist <- list(

'b00' = c(0, 0),

'b06' = c(0.6, 0),

'b12' = c(1.2, 0),

'b18' = c(1.8, 0)

)

# User Created Function:

longFormat <- function(x){

longdf <- lapply(x, function(x) dataLong(x, 'time', 'event', timeAsFactor = FALSE))

longdf_all <- bind_rows(longdf, .id = 'group')

longdf_all$group <- as.numeric(longdf_all$group)

# longdf_all$timeInt <- as.numeric(longdf_all$timeInt)

longdf_all <- longdf_all[, -9]

return(longdf_all)

}
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# create the groups for x1 (binary covariate)

# do this way to get the groups ordered together

x1 <- c(rep(0, n/2), rep(1, n/2))

set.seed(2) # don't need to reset this one for each of the 5 iterations of simulations

x2 <- sample(c(c(rep(0, n/2), rep(1, n/2))), size = n, replace = FALSE)

x <- data.frame(x1, x2)

# the following code returns a list of lists, one list for each level of beta, and

# each of those lists has a list of the generated info that includes the betas, data

# frame, simulated values, baseline hazard, etc.

set.seed(seed)

simdata200 <- list()

for(i in 1:length(betaslist)) {

simdata200[[i]] <- sim.survdata(

N = n,

T = top,

num.data.frames = size,

X = x,

beta = betaslist[[i]],

censor = cens/100

)

}

### create lists of 1000 dataframes ###

simdata200_b00 <- list()

for (i in 1:size) {
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# list of dataframes

simdata200_b00[[i]] <- simdata200[[1]][[i]]$data

simdata200_b00[[i]]$group <- i

# clean up to prepare for formatting

colnames(simdata200_b00[[i]]) <-

c('x1', 'x2', 'time', 'event', 'group')

simdata200_b00[[i]]$event <-

ifelse(simdata200_b00[[i]]$event == FALSE, 0, 1)

}

# format for SAS

simdata200_b00_ph <- bind_rows(simdata200_b00, .id = 'group')

simdata200_b00_ph$group <- as.numeric(simdata200_b00_ph$group)

# write to csv

write.csv(simdata200_b00_ph, file = 'simdata200_b00_ph.csv')

# convert to longFormat

simdata200_b00_long <- longFormat(simdata200_b00)

# write to csv

write.csv(simdata200_b00_long, file = 'simdata200_b00_long.csv')

#####################################

#### PHREG done in SAS ####

#### Profile Likelihood ####
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#### Confidence Intervals ####

#####################################

# import results back into R using the sas7bdat package

names1 <-

c('group',

'pl_betax1',

'pl_sex1',

'pl_pvaluex1',

'pl_lowerx1',

'pl_upperx1')

PLresults200_cens50_x1 <- list()

for (i in 1:length(betaslist)) {

PLresults200_cens50_x1[[i]] <-

read.sas7bdat(paste0('selected200_', names(betaslist)[[i]], '_ph.sas7bdat'))

PLresults200_cens50_x1[[i]] <- PLresults200_cens50_x1[[i]][,-2]

colnames(PLresults200_cens50_x1[[i]]) <- names1

PLresults200_cens50_x1[[i]] <- PLresults200_cens50_x1[[i]] %>%

mutate(

pl_coveragex1 = case_when(

pl_lowerx1 <= exp(betaslist[[i]][[1]]) &

pl_upperx1 >= exp(betaslist[[i]][[1]]) ~ 1,

pl_betax1 == 'NaN' |

pl_sex1 == 'NaN' | pl_lowerx1 == 'NaN' ~ 0,

TRUE ~ 0
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),

pl_usefulx1 = case_when(

pl_betax1 == 'NaN' | pl_upperx1 == 'NaN' | pl_lowerx1 == 'NaN' ~ 0,

TRUE ~ 1

)

)

}

####################################################

#### Analysis done in LogXact through SAS ####

####################################################

# Stratified ELR - stratify on timeInt and x2

# interested in asymptotic (MLE) and exact (CMLE) estimates

# import results back into R

names <- c('group', 'betax1', 'sex1', 'Type', 'lowerx1', 'upperx1', 'pvaluex1')

SASresults200_cens50_x1 <- list()

for (i in 1:length(betaslist)) {

setwd('~/Documents/SimulationData/cens50')

SASresults200_cens50_x1[[i]] <-

read.sas7bdat(paste0('selected200_', names(betaslist)[[i]], '_strat.sas7bdat'))

SASresults200_cens50_x1[[i]] <- SASresults200_cens50_x1[[i]] %>%

select(-Effect) %>%

filter(Type2 != 'Ex-MidP')
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SASresults200_cens50_x1[[i]]$LowerCI <-

exp(SASresults200_cens50_x1[[i]]$LowerCI)

SASresults200_cens50_x1[[i]]$UpperCI <-

exp(SASresults200_cens50_x1[[i]]$UpperCI)

colnames(SASresults200_cens50_x1[[i]]) <- names

SASresults200_cens50_x1[[i]] <- SASresults200_cens50_x1[[i]] %>%

mutate(

coverage = case_when(

lowerx1 <= exp(betaslist[[i]][[1]]) &

upperx1 >= exp(betaslist[[i]][[1]]) ~ 1,

betax1 == 'NaN' | sex1 == 'NaN' | lowerx1 == 'NaN' ~ 0,

TRUE ~ 0

),

useful = case_when(betax1 == 'NaN' |

upperx1 == 'NaN' | lowerx1 == 'NaN' ~ 0,

TRUE ~ 1)

)

}

### coverage

coverage200_cens50_elr <- vector()

coverage200_cens50_strat <- vector()

coverage200_cens50_pl <- vector()

for (i in 1:length(betaslist)) {
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coverage200_cens50_elr[i] <-

mean(SASresults200_cens50_x1[[i]]$coverage[SASresults200_cens50_x1[[i]]$useful == 1

& SASresults200_cens50_x1[[i]]$Type ==

'Exact']) * 100

coverage200_cens50_pl[i] <-

mean(PLresults200_cens50_x1[[i]]$pl_coverage

[PLresults200_cens50_x1[[i]]$pl_useful == 1]) * 100

coverage200_cens50_strat[i] <-

mean(SASresults200_cens50_x1[[i]]$coverage[SASresults200_cens50_x1[[i]]$useful == 1

& SASresults200_cens50_x1[[i]]$Type ==

'AS']) * 100

}

coverage200_cens50_elr

round(coverage200_cens50_strat, 1)

round(coverage200_cens50_pl, 1)

### Bias

bias200_cens50_elr <- vector()

bias200_cens50_strat <- vector()

bias200_cens50_pl <- vector()

for (i in 1:length(betaslist)) {

a <- PLresults200_cens50_x1[[i]] %>%

filter(pl_usefulx1 == 1)

bias200_cens50_pl[i] <- mean(a$pl_betax1)
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a <- SASresults200_cens50_x1[[i]] %>%

filter(Type == 'Exact', useful == 1)

bias200_cens50_elr[i] <- mean(a$betax1)

a <- SASresults200_cens50_x1[[i]] %>%

filter(Type == 'AS', useful == 1)

bias200_cens50_strat[i] <- mean(a$betax1)

}

round(bias200_cens50_elr, 1)

round(bias200_cens50_strat, 1)

round(bias200_cens50_pl, 1)

## SAS code

## /* 50% CENSORING RATE */

PROC IMPORT OUT= WORK.SIMDATA40_b00_PH

DATAFILE=

"\\Mac\Home\Documents\SimulationData\AllSims\cens50\simdata40_b00_ph.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

ODS HTML;

title 'EFRON WITH PROFILE LIKELIHOOD CI';

26



title2 'N = 40, Beta = 0';

PROC PHREG data = WORK.SIMDATA40_B00_ph;

model time*event(0) = x1 x2 / ties=efron risklimits=pl;

by group NOTSORTED;

ods output ParameterEstimates=WORK.PLestimates40;

hazardratio x1 / cl=pl;

hazardratio x2 / cl=pl;

run;

DATA CENS50.selected40_b00_ph;

set WORK.PLestimates40

(keep = group parameter estimate stderr hrlowerplcl hrupperplcl probchisq);

if parameter = 'x2' then delete;

RUN;

PROC DATASETS LIB=WORK NOlist kill; RUN; QUIT;

ODS HTML CLOSE;

## /* firth's correction (for nonconvergence). have to use ties=breslow with firth's */

PROC IMPORT OUT= WORK.SIMDATA40_b18_PH

DATAFILE=

"\\Mac\Home\Documents\SimulationData\AllSims\cens80\simdata40_b18_ph.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;
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ODS HTML;

title 'EFRON WITH PROFILE LIKELIHOOD CI';

title2 'N = 40, Beta = 1.8';

PROC PHREG data = WORK.SIMDATA40_B18_ph;

model time*event(0) = x1 x2 / firth ties=breslow risklimits=pl;

by group NOTSORTED;

ods output ParameterEstimates=WORK.PLestimates40;

hazardratio x1 / cl=pl;

hazardratio x2 / cl=pl;

run;

DATA CENS80.selected40_b18_ph;

set WORK.PLestimates40

(keep = group parameter estimate stderr hrlowerplcl hrupperplcl probchisq);

if parameter = 'x2' then delete;

RUN;

PROC DATASETS LIB=WORK NOlist kill; RUN; QUIT;

ODS HTML CLOSE;

## Exact Test: call LogXact through SAS

PROC IMPORT OUT= WORK.data

DATAFILE=

"\\Mac\Home\Documents\SimulationData\AllSims\cens50\simdata40_b00_long.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC LOGXACT data = WORK.data seed = 902 CL=0.95;
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STRATUM timeInt x2;

MODEL y = x1;

ES/EX ESTIMATEFILE = WORK.estimates x1;

by group NOTSORTED;

TITLE 'beta = 0';

RUN;

DATA CENS50.selected40_b00_strat;

set WORK.estimates (keep = group effect Beta LowerCI UpperCI SEBeta Pvalue Type2);

RUN;

PROC DATASETS LIB=WORK NOlist MEMTYPE=data kill; RUN; QUIT;
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