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ABSTRACT

OPTIMIZATION AND TECHNOLOGY-BASED STRATEGIES TO IMPROVE
PUBLIC TRANSIT PERFORMANCE ACCOUNTING FOR DEMAND

DISTRIBUTION

February 2021

Charalampos Sipetas

Diploma and M.S., University of Patras, Greece

Ph.D., University of Massachusetts Amherst

Directed by: Dr. Eric Gonzales

Public transit is important to societies worldwide. The operation of public transit

systems is generally associated with great benefits for the users, but there are also

cases in which these systems demonstrate inefficient performance. Quantifying transit

performance is an important area of research over the last decades. This disserta-

tion presents models to improve transit system performance through optimization

techniques and new technologies, recognizing the effects of non-uniform distribution

of demand over space and time. The contributions span fixed route transit services

and on-demand transit, as well as models for flexible transit operations that lie in

between.

Regarding fixed route systems, a methodology is proposed to estimate the number

of passengers being left-behind subway train vehicles due to overcrowding. Methods

to identify appropriate time periods and locations for studying this phenomenon are

presented. The effects of overcrowding on passenger waiting times are also investi-

gated. The challenging case of transit networks where passengers tap-in only upon

entrance is analyzed, adding a new methodology to a very short list of similar studies

and enhancing previous work in this field.
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For demand responsive systems, this dissertation focuses on optimizing the opera-

tion of paratransit services through coordination with alternative providers in order to

decrease high operating costs of such a service. The analysis includes a heuristic-based

method. The proposed model is more detailed than existing aggregated methods and

is able to perform well in high demand levels, unlike existing exact approaches. This

part of the dissertation also assists in making transportation network companies a

complementary part of public transit, rather than a competitor.

Finally, flexible transit systems are studied to identify the operational and de-

mand related characteristics of a service area that could serve as indicators of such

systems’ efficient performance. The focus here is on route deviation flexible services.

Continuous approximation is used to model this flexible system. A new optimized

hybrid transit system with elements of both fixed route and flexible services is pro-

posed. Finally, it is highlighted that the current COVID-19 pandemic has proven the

need for public transit systems that could be adjusted to accommodate changes in

transit demand.
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1 INTRODUCTION

Public transit (also known as public transportation, public transport or mass

transit) is a key component of societies around the world. The range of flexibility

for a system’s routes and schedules defines different types of public transit services.

First, fixed route systems are those with the lowest flexibility, meaning that they

operate on predefined routes and with specific schedules (e.g., heavy rail), without

the ability to deviate. Second, flexible transit systems are the ones that allow some

level of flexibility, as for example the deviation from the fixed route and/or schedule

in order to serve passengers door-to-door or curb-to-curb. Third, on-demand (or

demand responsive) services have the greatest level of flexibility, with all passengers

being served at locations and times of their choice (e.g., paratransit services). In this

dissertation, flexible and on-demand services are often mentioned with the general

term “non-fixed route” systems. Designing and operating fixed and non-fixed route

public transit systems depends greatly on the demand, among other factors. The

non-uniform distribution of demand over space and time results in challenges that

must be addressed to assure the efficient operation of these systems for both agencies

and users.

This Chapter is organized as follows. Section 1.1 explains the motivation for

conducting the research included in this dissertation. Section 1.2 presents the research

questions that are addressed here. Finally, the organization of this dissertation is

described in Section 1.3.

1.1 Motivation

The impact of public transit on a city’s planning and development, as well as on

an individual’s daily activities, made it a topic of great interest over the years. The

1



benefits to users and non-users expand over many fields. Transit systems assure user

accessibility to employment, health care and entertainment. In cases of emergency,

their role has proven critical in assisting evacuation processes. Neighborhoods with

well-functioning transit stations are associated with prosperous businesses and high

levels of safety and security. The importance of public transit can also be highlighted

by the increase in demand that results from current trends, such as urbanization,

environmental concerns, aging populations, etc.

Cases in which public transit systems demonstrate inefficiencies emerge regularly

and trigger questions regarding their operation and performance improvements. Re-

garding operation, delays and long waiting times are among the top reasons for transit

user dissatisfaction. Discomfort during the trip due to aged vehicles or overcrowding

is common as well. In economic terms, the efficient performance of a transit system

leads to increased operating costs and thus subsidies. Demand responsive systems,

and more specifically paratransit services, are often associated with very high operat-

ing costs per trip. Issues are also related with transit station accessibility. Travelers

for instance, try to avoid long walking distances to access a station for various rea-

sons. Comfort related purposes and phenomena of criminality around some transit

stops are among these reasons.

Strategies to improve transit systems are consistently of interest for operating

authorities. Such strategies include increasing service frequency, purchasing new ve-

hicles and replacing the old ones, developing information systems regarding transit

operations (e.g., train arrival times), and modernizing payment methods. Apart from

improving equipment and infrastructure, transit authorities focus on alternative ef-

forts such as making trips more affordable through partnering with other entities.

The costs of such enhancements, though, are often high and raise the need for evi-

dence that the expense of public transit is indeed justified in terms of satisfying the

2



users’ needs and the operators’ goals.

The importance of having healthy public transit systems is demonstrated in part

by the number and diversity of people who use their services. According to the Ameri-

can Public Transportation Association, 9.9 billion public transit trips were completed

in 2018 in the US alone. This is despite the fact that 45% of Americans do not have

access to public transit, according to the same source. A survey conducted by the

Pew Research Center (2015) revealed that public transit is preferred by demographic

groups aged 18-29. Various studies support the need of public transit opportunities

for elderly people as well (Davey, 2007). This highlights the importance of operating

more flexible route transit systems for this age group.

Regarding fixed route systems, a study by Buehler and Pucher (2012) highlights

a big contrast between rail and bus users in the USA. Rail passengers tend to have

the highest incomes compared to other modal user groups and even higher than the

national average income. Buses on the other hand are more often used by ethnic mi-

norities and people with low income. Bullard et al. (2004) attributes such a contrast

to the spatial distribution of households, where high income population is gathered

in the suburbs and low income in the inner city. The purpose of the trips could

also assist in portraying the users of public transit systems. According to the Fed-

eral Highway Administration (2002) work appears to be the primary destination of

the travelers with a percentage of approximately 50%, followed by social, church or

personal business and shopping (approximately 13%).

It is evident that public transit is used by many travelers within the US and

covers a wide variety of demographic groups who travel daily to satisfy basic needs.

Public transit systems are made to serve those needs, and their design and operation

are strongly related with the demand distribution over space and time, in many

different ways. For fixed route services, peak hours and high demand stations cause
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overcrowding phenomena. As a result, waiting times increase and passengers may

turn to other modes of transportation, either inside or outside the public transit

umbrella. In the case of non-fixed route services, the non-uniform distribution of

demand over time results in increasing the fleet size on a daily basis which in turn

leads to high operating costs. On the contrary, spatial aggregation of trip requests

may lead to faster service and with fewer vehicles, which is beneficial for both the

demand and supply side of a transit system.

1.2 Research questions

Public transit affects the lives of many people on a daily basis and improving

its operation could both increase user satisfaction and reduce operating costs. The

general goal of this dissertation is to understand:

• What are the effects of demand distribution on transit service performance?

• What are the challenges and opportunities that different distributions of de-

mand pose for public transit systems?

The purpose of this dissertation is to identify methods to quantify these effects,

focusing on fixed and non-fixed route systems. In terms of fixed route services, subway

overcrowding phenomena are studied in an effort to answer:

• What are the effects of crowding on passengers’ experiences and the transit

system’s reliability?

Regarding non-fixed route systems, on-demand paratransit systems are studied to

identify:

• How can trips be efficiently allocated to alternative services to reduce high

operating costs?
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In the area of non-fixed route systems, flexible transit services were also investigated

in order to answer:

• What are the operational and demand-related characteristics of a service area

that indicate efficient performance of such a system?

Both the demand and supply sides are studied to address these research questions and

real data obtained from transit authorities are considered, when available. Existing

tools and databases are utilized and no further costs are required for the developed

models’ proper implementation. For the cases where real data were not available,

simulation techniques were used to validate all assumptions made during the model

development.

1.3 Dissertation organization

This dissertation is organized as follows. Chapter 1 includes the motivation for

this research, as well as the investigated research questions. Chapter 2 presents the

literature review on the respective research fields and the contribution of this work on

fixed route and non - fixed transit systems. In Chapter 3, the effects of non-uniform

demand on fixed route systems are presented through the analysis of crowding phe-

nomena of subway transit vehicles. Demand related challenges and opportunities

for on-demand transit systems are included in Chapter 4. The operational and de-

mand - related characteristics of a service area that is a good candidate for flexible

systems implementation are investigated in Chapter 5. Finally, Chapter 6 presents

conclusions, transferability of methods and future extensions.
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2 LITERATURE REVIEW

Demand is distributed unevenly over space and time, which affects transit sys-

tems’ operation. Section 2.1 presents literature on investigating the spatio-temporal

patterns of transit users mobility in an attempt to comprehend their impact on tran-

sit performance. Performance measures developed for any type of transit system are

included in Section 2.2. Focusing on fixed route systems, Section 2.3 investigates ex-

isting performance measures related to subway vehicles’ crowding phenomena, which

are a very common cause of transit users inconvenience. Regarding demand respon-

sive transit systems, their high operating costs lead to investigate related studies,

such as modelling and scheduling approaches, which are presented in Section 2.4.

Section 2.5 describes literature on flexible services, emphasizing on different types of

such services and highlighting the need for specific guidelines and optimization tech-

niques for their implementation. Finally, Section 2.6 presents the contribution of this

dissertation to the existing literature of fixed route systems, on-demand and flexible

services.

2.1 Distribution of transit demand

Human mobility patterns have been investigated in many studies over the years

in areas such as urban planning, transportation, geography and crisis management

(Gong et al., 2012; Zhang et al., 2018). Multiple passengers move simultaneously in

both spatial and temporal space and studying their overall behavior leads to iden-

tifying their network mobility patterns (Faroqi et al., 2019). Even though the first

studies on understanding travel behavior focused on temporal aspects (Agard et al.,

2006), more recent studies consider both spatial and temporal characteristics (Yu and

He, 2017). Neutens et al. (2012) highlight the importance of understanding that the
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transit user activities are spatially and temporally linked. In fact, measuring passen-

ger flows in a large spatio-temporal scale is becoming more and more feasible due to

emerging demand data sources (Luo et al., 2019).

According to Hasan et al. (2013), available mobility data sources include phone

calls, credit card transactions, bank notes dispersal, and location detection through

social network applications, among others. Research on transit users’ spatio-temporal

mobility is often performed through the use of smart cards in existing literature. In

terms of equity, a study by Farber et al. (2016) confirms that more marginalized

groups tend to travel at times of the day that are not considered as peak and are

consequently poorly served. From a spatial perspective, Scott and Horner (2008)

conclude that due to uneven distribution of population groups around transit stops,

some of them might be favored over others. Ma et al. (2017) provide useful insights

for policymakers to achieve a more balanced job–housing relationship in a given area

by visualizing spatial distribution of homes and workplaces for both commuters and

non-commuters. Manley et al. (2018) identify spatial and temporal clusters of travel

events in order to study regularities and irregularities in travel patterns.

A significant body of research focuses on the relationship between spatio-temporal

characteristics of transit demand and the surrounding land uses. Lee et al. (2013)

implement aggregated stop methods to identify the relationship between land use

types and demand patterns within a specified area around the transit stop. In Gong

et al. (2012), the authors explain how the homogeneity and high density of land uses

around a station can lead to morning and afternoon demand peaks. Similarly, Shi

et al. (2018) focus on the station level and study the association between the hourly

ridership and the characteristics of the built environment and topology. Yu et al.

(2019) worked on cases in which the station peak hours are not completely consistent

with those of the city to which they belong. Hu et al. (2016) present a general
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framework of modelling transit and land use relationship that could shed light on

both urban planning procedures and transit systems improvements.

Tang et al. (2018) affirm that the non-uniform spatio-temporal distribution of de-

mand requires the implementation of proper strategies in order to maintain a transit

system’s operating efficiency. A preceding step that is of equal importance is relat-

ing this non-uniformity directly with transit performance and quantifying its effects.

Evans and Wener (2007), for instance, investigate crowding inconveniences for transit

users as a result of peak hours. Regarding non-fixed systems, Faroqi et al. (2019)

emphasize on the importance of knowing the spatial and temporal distribution of

demand in creating clusters that could be beneficial for group-based transit services

(e.g., DRT). Thus, it is apparent that these effects can be both negative and positive.

2.2 Transit performance

The interest towards public systems’ performance is constantly increasing due to

concerns of policymakers, stakeholders and citizens on both quality and cost of public

services (Stanley, 2004). The evident need for quantitatively evaluating the perfor-

mance of public transit has led to the development of many performance measures

(Fielding et al., 1977; Karlaftis, 2004; Lem et al., 1994; Talley, 1986). In addition to

evaluating public transit in satisfying users’ daily need for commuting, studies have

also measured its performance in terms of sustainability (Miller et al., 2016), acces-

sibility (Mamun et al., 2013) and emergency preparedness (Nakanishi et al., 2003),

among others.

The first edition of the Transit Capacity and Quality of Service Manual (TCQSM)

was published in 1999 (Kittelson & Associates, Inc., 1999) and included six perfor-

mance measures, namely service frequency, hours of service, service coverage, passen-

ger loading, reliability, and transit vs. automobile travel time. The TCRP Guidebook
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for Developing a Transit Performance-Measurement System (Transportation Research

Board, 2003) includes four regularity indicators, namely headway adherence, service

regularity, observed to scheduled headway ratio, and headway regularity index. In

fact, according to Ruan and Lin (2009) the most commonly used metric in existing

literature is related to service regularity and it is the average passenger wait time

proposed by Osuna and Newell (1972).

Efficiency, effectiveness and impact were the dominating measure areas for many

decades according to Phillips (2004). In this study, efficiency refers to the production

of a given output using the least possible resources (e.g., labor, vehicle, maintenance).

Effectiveness refers to the comparison between the intended and the actual output

(e.g., utilization of service, operating safety, passenger convenience, service reliabil-

ity). Regarding impact, although it partly reflects the efficiency and effectiveness, it

also includes the effects of public transit on society, economy, and environment (e.g.,

energy consumption, user accessibility and pollution reduction). One of the first stud-

ies that supports these three areas in measuring transit performance is Gilbert and

Dajani (1975). In their study, among others, the authors argue whether the transit

related goals of the government should be considered when developing performance

measures or not.

Eboli and Mazzulla (2012), separate transit performance measures in two broad

categories, the subjective and the objective. The first refers to indicators based on

passenger perception whereas the latter is expressed through numerical values of quan-

titative measures. Rietveld (2005) highlights the importance of studying the transit

quality indicators from both the demand and supply side, since there is evidence that

there are systematic differences. This approach is also followed by Trépanier et al.

(2009), where the supply-based indicators include vehicle-kilometers and vehicle-hours

per route per day and the demand-based indicators are a single passenger’s travel
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distance and time on a single run. All these indicators are then integrated into two

broader ones, which are average vehicle occupancy and vehicle capacity ratio. In fact,

many other studies tend to combine categories as well in order to develop integrated

tools of performance measurement (Tyrinopoulos and Antoniou, 2008).

There are many methods developed in existing literature to estimate the perfor-

mance of a public transit system. In terms of efficiency, Yao et al. (2019) separate

these methods in two basic groups, the parametric and the non-parametric ones. The

first group is primarily represented by the stochastic frontier approach, whereas the

second by the data envelopment analysis. Karlaftis and Tsamboulas (2012) refer to

the stochastic frontier approach, the data envelopment analysis as well as to neural

networks as three basic approaches in estimating efficiency and effectiveness of transit

performance. Gattoufi et al. (2004) study data envelopment analysis and concludes

that its implementation is associated with significant advantages compared to other

methods.

2.3 Crowding on fixed route systems

Crowding is a major challenge for public transit systems all over the world. It is as-

sociated with increases in waiting and travel times and decreases in operating speeds,

reliability, and passenger comfort, among others (Tirachini et al., 2013). Studies show

that crowding in public transit increases anxiety, stress, and feelings of invasion of

privacy for passengers (Lundberg, 1976). Many recent studies are focused on under-

standing how overcrowding levels may affect a traveler’s behaviour. Some of these use

stated and/or revealed preferences data (Batarce et al., 2015; Tirachini et al., 2016),

whereas others utilize available smartcard data (Kim et al., 2015). Cats et al. (2016)

develop a stochastic model based on simulations and use Stockholm subway as the

application network.
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TCQSM (Kittelson and Associates Inc et al., 2013) determines some guidelines

for measuring the quality of service to track passenger related metrics. It states that

crowding affects several aspects of transit availability and all the elements of comfort

and convenience related to the quality of service. The indicators of availability as

presented on the TCQSM are frequency, service span, and access. The indicators of

comfort and convenience as defined by TCQSM are passenger load, reliability, and

travel time. Evidence has shown that the users perceive waiting and travel times to

be longer in crowded conditions than in uncrowded conditions due to the additional

crowding discomfort (Fan et al., 2016).

2.3.1 Crowding measures and user perception

Li and Hensher (2013) reviewed objective and subjective (or psychological) mea-

sures of crowding. In their study it is highlighted that a common key factor used

to evaluate transit vehicle crowding in the USA is the load factor (passengers per

seat), defined as the number of passengers divided by the number of seats. Another

commonly used objective measure for crowding is the number of standing passengers

per square meter (m2) of a vehicle. However, unacceptable crowding levels may vary

across countries and transit services. For example, transit agencies in the USA con-

sider five standees per square meter as the limit of accepted crowding in bus services,

whereas the same limit equals four in Australia and Europe (Diec et al., 2010; Furth

et al., 2006). The use of density as a crowding measure, however, lacks in consid-

eration of individual perceptions of crowding (Cox et al., 2006; Turner et al., 2004).

Perceived crowding is investigated by many authors over the years (Van der Reis,

1983; Sundstrom, 1978). Batarce et al. (2016) found that the value of time of a user

experiencing an overcrowded situation (equal to six standing passengers per square

meters in this study) is 2.5 times larger than the respective value if there were empty
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seats available.

Most of the literature on crowding has focused on passenger discomfort. It has

been shown that waiting and in-vehicle travel time savings are inversely proportional

to the number of people in the platform or vehicles (Douglas and Karpouzis, 2005).

This is the basis for estimating the crowding externality or crowding cost (Kraus,

1991). Many studies have investigated the value of crowding from the perspective

of the user, in terms of value of time and willingness to pay an extra fee to avoid

crowding (Haywood and Koning, 2015; Haywood et al., 2017; Hörcher et al., 2017; Li

and Hensher, 2011). Furthermore, various studies have aimed to determine the effect

that crowding has on passengers’ travel decisions and path choice (Raveau et al.,

2014). For instance, research in Seoul, South Korea, suggests that crowding affects

the path choice in networks that are large and connected enough to offer multiple

path choices to users between origin-destination pairs (Kim et al., 2015).

2.3.2 Utilization of Intelligent Transportation Systems

In Camacho et al. (2012) the authors examine the potential of utilizing Intelli-

gent Transportation Systems (ITS) in improving transit system reliability and user

satisfaction. An example of a suggested solution to the current transit problems is

the use of a system that would inform passengers for seat availability in a transit

vehicle. Such an approach is presented by Zhang and Chen (2014), who develop a

real-time broadcast system for crowding based on the Internet of things. Utilizing

existing ITS, Nuzzolo et al. (2016) present a mesoscopic transit assignment model

that could be used to predict the number of passengers on-board a transit vehicle

in real time. Noursalehi et al. (2019) propose a decision support platform for real-

time crowding prediction and information generation to assist passengers’ decision

on whether to board a train or not. The effects of real-time crowding information in
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public transport networks is investigated by Drabicki et al. (2017).

2.3.3 Left behind passengers

When transit vehicles are overcrowded, commuters can’t board the vehicle they

wish. These commuters are “left-behind passengers” or “passengers denied board-

ing”, and determining their numbers is crucial (Ma et al., 2019). Surprisingly, the

existing literature on this topic is not as wide as expected. A table included in Ma

et al. (2019) summarizes all of the existing papers in the area, presenting detailed

comparison between developed methods. One of the existing approaches in estimat-

ing the number of left-behind passengers uses statistical techniques at a station level.

Following statistical inference, Zhu et al. (2017) make use of Automatic Fare Collec-

tion (AFC) and Automatic Vehicle Location (AVL) datasets from metro systems that

include smartcard tap not only in the entrance but also in the exit. Another proposed

approach to estimate the number of left-behind passengers refers to the network level

and proposes a network assignment method (Stasko et al., 2016).

To date, most studies that infer travel patterns of transit system users are de-

veloped using farecard data from transit systems that require passengers to tap-in

and tap-out for zone-based fare collection (Ma et al., 2013). Such systems give exact

information about arrivals, departures, and travel times of passengers in the system.

Pelletier et al. (2011) presents the various uses of smartcard technology. Most exist-

ing studies to detect left-behind passengers have been conducted with data from the

London Underground, which offers both tap-in and tap-out information (Zhu et al.,

2018). Only one of the existing studies by Miller et al. (2018) proposes a method

that could be utilized in transit systems where passengers tap their cards at the

entrance, but not at the exit, making it hard or even impossible in some cases to

identify the passenger flow within the transit network with certainty (e.g., Boston,
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New York, Chicago). The method utilizes archived data and the results are promising

for successful implementation in overcrowded conditions.

2.4 Operating costs of on-demand systems

Paratransit services are one of the many systems under the umbrella of Demand

Responsive Transportation (DRT) services, which are considered a fully flexible-route

transit system. Transit agencies in the United States are required to provide door-

to-door paratransit service for customers with disabilities under the Americans with

Disabilities Act (ADA) of 1990, which had a great impact on the operation of such

systems (Quadrifoglio et al., 2008). Lewis et al. (1998) study the impact of this regu-

latory framework on the system’s operating costs, focusing mostly on the restriction

of zero denial rate from the supply side. The National Transit Summaries and Trends

(NTST) of 2017 reports that the cost per passenger trip on a demand responsive

system is higher than any other pubic transit mode.

2.4.1 Early studies on DRT

All the above highlight the need for studying DRT and understanding the funda-

mental elements of its operation. In fact, research on DRT systems exists in literature

from the early 1970’s already and it has been vivid over the last decades. The inte-

gration of DRT with traditional transit is studied by Aex (1975). Lerman and Wilson

(1974) focused on predicting a DRT system’s performance. The inefficient operation

of conventional taxi services led to the development of more advanced DRT, such as

Dial-A-Ride Transit (DART), with pre-arrangement and ride-sharing opportunities

(Stein, 1978; Wilson et al., 1976). Vitt et al. (1970) used survey data and analytic

techniques to identify the importance of user attributes in DRT systems. The im-

plementation of DRT systems in various case studies is widely investigated (Carlson,
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1976; Flusberg, 1976; Guenther and Authority, 1976). The importance of demand

responsive systems for the private sector is investigated by Heathington et al. (1974).

The results prove the economic viability of these systems and their crucial contribu-

tion to the overall public transportation system.

2.4.2 Recent studies on DRT

Over the next decades, research on DRT expanded and various approaches are

implemented. Many studies investigate the impacts of zoning and time window

strategies on DRT performance (Diana et al., 2006; Quadrifoglio et al., 2008; Rahimi

and Gonzales, 2015; Shen and Quadrifoglio, 2012). Simulation-based approaches are

widely applied by many authors, as for example for simulating DRT requests (Deflo-

rio, 2011), paratransit services (Fu, 2002c), and scheduling strategies (Torkjazi and

Huynh, 2019), among many other applications. A review of simulating DRT is pre-

sented by Ronald et al. (2015). Another category of existing approaches accounts

for stochasticity in DRT systems (Chevrier et al., 2006; Daganzo, 1978; Fu, 1999,

2002b; Lerman and Wilson, 1974). Such methods, however, are both time and cost

consuming due to the level of detail and precision that is required for their proper

development. Approximate analytical models offer an alternative approach to analyze

the DRT operating characteristics (Daganzo, 1978, 1984; Figliozzi, 2008, 2009).

2.4.3 Dial-a-Ride Problem

Scheduling a DRT system can be achieved through the implementation of Dial-A-

Ride Problems (DARP), which consist of designing vehicle routes and schedules on

a static − all requests known in advance (Desrosiers et al., 1986) or dynamic way −

requests occur real-time (Attanasio et al., 2004). The route scheduling of paratransit

services in the past has been achieved mostly through the implementation of DARP
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approaches. According to Cordeau and Laporte (2007) these models differ from others

(e.g., Vehicle Routing Problem with Time Windows - VRPTW) since they account

for the human perspective as well. One of the first approaches included a heuristic for

multiple vehicle static DARP (Jaw et al., 1986). The heuristic selects users starting

from the earliest feasible pick-up request and gradually inserts all requests into vehi-

cle routes. In the area of multi-vehicle DARP, existing studies have considered the

coordination of a regular demand responsive service with taxis, in an effort to serve all

requested trips. A real-life problem concerning service of people with disabilities with

taxis using a penalty cost is tackled by Toth and Vigo (1996). A detailed comparison

between DARP approaches is included in Cordeau and Laporte (2003, 2007). Studies

on DARP are vivid over the last decade, as well (Bongiovanni et al., 2019; Ritzinger

et al., 2016; Tellez et al., 2018; Torkjazi and Huynh, 2019).

2.4.4 The use of taxis and TNCs for people with disabilities

The use of taxis in DRT services for people with disabilities is investigated in many

studies (Burkhardt, 2010; Chia, 2008; Ellis, 2016; Tuttle and Eaton, 2012). Examples

of successful collaboration among taxi and paratransit services include transit services

in California, Illinois and Washington, D.C., among others (Burkhardt et al., 2008).

Existing studies of paratransit operations provide modeling capabilities to quantify

the effect of changes in demand, as they may result from diverting some trips to taxis

or TNCs. In Rahimi and Gonzales (2015) and Amirgholy and Gonzales (2016) a

quantitative basis for decision making on trip allocation is provided. Also, in Turmo

et al. (2018) a study of the Pioneer Valley Transit Authority (PVTA) ADA paratransit

service provided an initial analysis of the potential cost savings from coordinating

with taxis or TNCs. According to Tirachini (2019), the relationship between public

transport and ride hailing systems, such as TNCs, is one of the most interesting
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research areas regarding the increasing use of ride hailing in general. This is mainly

because TNCs can both substitute and complement public transport.

2.5 Efficient implementation of flexible systems

According to Mulley and Nelson (2009), the main goals of flexible systems refer

to improving convenience of public transport and maintaining a comparable price to

existing public transit systems. A survey by Koffman (2004) reveals that most flex-

ible transit services are planned and designed without established guidelines. Errico

et al. (2013) classified existing studies on flexible transit into two categories. The first

group includes studies that describe practical experiences, whereas the second refers

to methodological contributions to assist planning processes. They also concluded

that there are a few cases of implementing optimization techniques for actual flexible

systems, with which Potts et al. (2010) and Scott (2010) also agree. Many approaches

are based on analytical modeling, considering rectilinear distances because a rectilin-

ear movement of the vehicle is a good approximation of reality according to Dessouky

et al. (2005).

2.5.1 Case studies

Existing literature includes flexible transit related surveys that aim at portraying

the current conditions under which flexible transit services operate. According to

Koffman (2004), at the time of the study development flexible transit services were

implemented in more than 50 transit agencies throughout North America. Weiner

(2008) complements Koffman (2004) by focusing on integrated flexible transit services

that either were designed according to ADA (1990) or have proved beneficial for riders

with disabilities. The report also presents and discusses cases in USA where integrated

services discontinued, such as Sarasota County Area Transit, Calgary Transit, and
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Access-A-Ride in New York. In Potts et al. (2010) the authors aim at providing a

practical guide regarding the implementation of flexible transit services through the

identification of 26 agencies as best practices for further research, including Mason

County Transportation Authority and Jacksonville Transportation Authority, only to

mention a few.

According to Fu (2002a), the main benefit of flexible services that involve vehicle

route deviation is that they serve trips that would not be otherwise served or that

would be served by a more expensive alternative, such as driving or additional fixed

transit routes. A service area of width W = 2.4 miles and length L = 10 miles is

simulated as part of their investigation for issues in designing flexible route systems,

considering stochasticity in passenger demand.

2.5.2 User preferences

Most of the studies on public transit user preferences focus on the competition

between fixed route and demand responsive services (Commins and Nolan, 2011;

Hensher et al., 2013). Few studies have focused on flexible route transit more generally

(Zheng et al., 2018a). In Broome et al. (2012) the authors completed a study showing

the public’s positive perception of flexible transit systems. In Chavis and Gayah

(2017) a stated preference survey is performed to develop a mode choice model that

can be used to describe how transit users select among competitive transit options.

Their study covered the entire public transit spectrum, from traditional fixed route

to flexible and pure on-demand services (including e-hailing such as Uber and Lyft).

Although there are passengers that always choose the same mode, the results also

indicated that there are statistically significant predictors of the flexible service type

selected, such as monetary cost, expected in-vehicle, waiting, and walking time.

In Broome et al. (2012) the performance of a flexible route is evaluated in Hervey
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Bay, Queensland, Australia. Analysis of ticket sales data showed that the replacement

of the conventional fixed route by a flexible service led to approximately doubled use of

the service by elderly people. The authors conclude that flexible route bus transport

is a promising technology for meeting the transport needs of elderly people. Among

the many types of flexible transit services, deviated fixed route services are the most

widely used (Qiu et al., 2015).

2.5.3 Modeling approaches

In Zheng et al. (2018a) a methodology is proposed to support the decision-making

process when choosing between a route deviation policy and a point deviation policy.

In Nourbakhsh and Ouyang (2012) the agency and user cost components of a flexible

transit system are analyzed considering idealized square cities. In Kim et al. (2019)

a planning model is presented for optimizing a flexible system serving many-to-one

and one-to-many demand patterns, identifying relations among optimal zone sizes,

headways, and relevant exogenous factors. A study included in Pei et al. (2019)

summarizes valuable findings from the existing literature on modeling approaches for

flexible transit systems.

Continuous approximation methods are widely implemented in existing literature

for transportation systems in general (Quadrifoglio and Li, 2009). An early study on

this topic was conducted by Newell (1973). The optimized coordination between rail

and bus transit services through analysis of the user and agency benefits is presented

in Wirasinghe et al. (1977). A recent study by Chen et al. (2018) investigates the

utilization of local route and short-turn services to complement a regular fixed route

transit service by implementing a continuous approximation to model the proposed

hybrid system. A detailed review of continuous approximation techniques in existing

literature for transportation systems is presented in Ansari et al. (2018).
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2.6 Contributions

2.6.1 Fixed route systems

The contributions of this dissertation on fixed route systems pertain to estimating

the number of left behind passengers, which are a result of crowding phenomena

in subway systems. The methodology proposed here addresses a more challenging

case than the ones presented in Section 2.3. More specifically, the developed method

accounts for transit systems where the passengers only tap-in when they enter the

system and thus their movements within the transit network and their destinations

can only be inferred. Existing literature includes only one study that considers this

challenging case. The study developed by Miller et al. (2018) proposes a method based

on statistical regression. Both AVL and AFC data are utilized and the passenger

movements within the network are based on calibrations including either survey data

or the origin-destination-transfer model developed by Sánchez-Mart́ınez (2017).

The method presented in this dissertation outperforms Miller et al. (2018) for

estimating low numbers of left-behind passengers. This method complements Miller

et al. (2018), which is more appropriate for high levels of crowding. The two ap-

proaches could, thus, be also combined for the same transit network, depending on

the fluctuations in the level of crowding within a day and across stations. The inno-

vative study presented here is the first to implement image processing techniques for

estimating the number of left behind passengers due to overcrowding. It also offers

unique and valuable insights on the effect of left behind passengers on the transit

reliability measure of passenger waiting times. Even in cases of low demand, as for

example the current pandemic, this study provides significant guidance for model-

ing experienced waiting times and estimating important values that are not directly

available for the transit agency (i.e., train dwell times). With fewer passengers using
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the system, the methods for monitoring passenger counts on station platforms can

be used to track the level of crowding, even when demand is low enough that no

passengers are left behind. Finally, the overall approach adopted here highlights the

potential of fusing archived transit data and object detection techniques in quanti-

fying the effects that non-uniform spatial (i.e., crowded stations) and temporal (i.e.,

peak hours) distribution of demand has on the performance of a subway system.

2.6.2 On-demand systems

The contribution of this dissertation in the field of on-demand services refers

primarily in presenting a new methodology for identifying paratransit trips that would

be better served by alternative providers (e.g., taxis or TNCs) in order to reduce

the high operating costs. This part of the dissertation illustrates the opportunities

provided by spatially clustered demand (e.g., shorter travel times and thus lower costs

of service by the transit agency) and the challenges of temporal peaks of requests (e.g.,

peak morning hours when the need for alternative providers is increased) in developing

more efficient operating strategies for demand responsive systems. The new method

proposed here is the first one to estimate the marginal cost of a paratransit trip, as a

result of its relationship with the other requested trips. The great challenge of making

TNCs serve as complements and not substitutes for public transport is addressed here

through the proposed method for a strategic coordination of the two systems. The

high significance of this study is highlighted by the major need for such quantifiable

studies in this area according to recent literature (Tirachini, 2019).

Existing aggregated models in this field (Rahimi et al., 2018; Turmo et al., 2018)

can answer part of the question that is set here. More specifically, they achieve to

estimate the number of paratransit trips that should be assigned to an alternative

provider, but they do not determine which specific trips. There are also earlier studies
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in this area of research, that focus on a trip’s level. In Toth and Vigo (1996), such a

method is developed and tested for a real life case with a maximum of 312 requests,

whereas Wong and Bell (2006) propose a model that is further tested using 150

artificial customers. The method proposed here is based on a heuristic algorithm and

can be utilized for service areas with much greater demand. More specifically, the

developed algorithm has been tested on a dataset with more than 3,000 trip requests.

In fact, according to Toth and Vigo (1997), exact approaches for the solution of real-

life transport of people with disabilities are not practicable and the authors propose

the use of heuristics.

2.6.3 Flexible systems

This dissertation contributes greatly in the existing literature of flexible services

through the development of a hybrid transit system, with elements of both fixed route

and flexible route deviation services. This system is optimized to minimize the total

generalized costs, considering the size of the flexible region within the service area

where vehicles are able to deviate to pick up passengers on request and the spacing

between fixed stops as the decision variables. According to existing studies there are a

few cases of implementing optimization techniques for actual flexible systems (Errico

et al., 2013; Potts et al., 2010; Scott, 2010), and this study aims at providing transit

agencies with valuable quantifiable tools to support the design and operation of such

optimized systems.

Most of the existing studies in this field focus on the analysis of a specific type of

flexible service or the comparison between different systems. This study is the first to

introduce a hybrid service model that allows the degree of flexibility to be optimized

continuously for every location along a transit route. The model combines elements of

two different transit systems, considering optimization techniques based on continu-
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ous approximation approach. The result is a unique model that calibrates the degree

of flexibility to the characteristics of the region and demand served. On one extreme,

the lowest flexibility converges to a conventional fixed-route service. On the other

extreme, a fully flexible service would allow deviation to serve passengers anywhere

in corridor. A study that implements similar methods to optimize the coordination

between rail and bus transit systems was developed from the early 1970s (Wirasinghe

et al., 1977). That study, however, focuses on optimizing the coordination of different

types of fixed route transit services and also considers different service area configu-

ration than the ones considered here. The same holds for more recent studies, such

as Chen et al. (2018). The method presented here considers the case where the level

of flexibility for a service area is determined by the proposed models, leading often to

a hybrid operation where the same fleet of vehicles serves passengers at fixed stops

and at curb-to-curb locations within an optimized flexible region.

Finally, this part of the dissertation offers major insights on what are the oper-

ational features and the spatio-temporal characteristics of demand that determine

whether a service area would be better served as a conventional fixed route system,

as a fully flexible service, or as an intermediate system. Such insights are essential,

since the existing literature includes various examples of unsuccessful implementation

of flexible services in practice. For example, Weiner (2008) reports cases where in-

tegrated services were discontinued, such as Sarasota County Area Transit (SCAT),

Calgary Transit, and Access-A-Ride in NY, among others. The implementation of

the methodology proposed here could reveal the level of flexibility that is required in

serving a given area. If this level is very low, the flexible service and the respective

losses for both the agencies and the users could be avoided.
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3 CROWDING ON FIXED ROUTE SYSTEMS

The focus of this Chapter is to identify methods to quantify the effects of non-

uniform spatio-temporal distribution of demand on fixed route systems as a result of

crowding phenomena. The proposed methodology addresses the challenging case of

systems where passengers only tap-in when they enter the system and their move-

ments within the transit network can only be inferred. To perform this study both

archived data and video image processing techniques are required. The results indi-

cate that this methodology is particularly valuable for detecting the number of left

behind passengers, and its performance is greater in low crowding levels.

This Chapter is organized as follows. Section 3.1 presents an introduction to the

research topic. Section 3.2 includes a literature review on existing image processing

studies for object detection. The methodology developed to achieve the goals of

this study is explained in Section 3.3. The case study considered here is described in

Section 3.4. The identification of study sites is presented in Section 3.5. In Section 3.6,

the process and results of manual data collection are explained. The content of

Section 3.7 refers to the automated detection of passengers waiting on the platform.

Section 3.8 includes the logistic regression models that were developed to estimate the

number of left behind passengers fusing archived and real-time data. The summary

of this research is presented in Section 3.9.

3.1 Introduction

Peak hours and highly utilized stations often lead to vehicle crowding on sub-

way systems, which results in passengers not being able to board the first arriving

train. These passengers are called left behind passengers and their number can affect

significantly the transit system’s measures of reliability, even though it is not often
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taken into consideration. The proposed methodology is a technique for estimating the

number of left behind passengers at a station and involves multiple steps, referring

either to the system or the station level. The case study considered here refers to

the Boston’s subway operated by the Massachusetts Bay Transportation Authority

(MBTA), where the system’s reliability is measured through the percentage of pas-

sengers experiencing waiting times longer than a headway. The lower this percentage,

the greater the system’s reliability.

Existing rail data sources include AFC, AVL, the inferred model of origin-destina-

tion-transfer (ODX) and the Rail Flow tool (based on ODX), which are utilized to

identify stations and time periods with the highest probability of detecting left behind

passengers. ODX could be the main data source for a study like this, but it is based on

the fundamental assumption that everyone is able to board the first departing train.

Although its utilization remains valuable for addressing crowding related issues, the

quantification of left behind passengers requires further analysis.

The only existing study to the date that can be implemented in transit systems

with only tap-in upon entrance to estimate left behind passengers is a recent study

by Miller et al. (2018). The authors use AFC and AVL data in order to define a

measure of cumulative transit vehicle capacity shortage. This measure is proven to

be correlated with the number of left behind passengers. Manual counts from video

feeds are used to calibrate the model. The results indicate that the model performs

better in very crowded conditions. The results presented in this Chapter prove that

the study proposed here can complement the study by Miller et al. (2018) depending

on the level of crowding at a given station.

The methods and results presented here offer insights to the potential utilization of

existing rail data sources and emerging technologies, such as object detection tools,

in measuring the number of left behind passengers. An existing body of research
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investigates algorithms for tracking pedestrian movements within transit stations and

a number of studies have developed image processing tools to track pedestrians in

video footage (Li et al., 2014; Mukherjee et al., 2011; Ozer and Wolf, 2014; Yan-yan

et al., 2014). The object detection tool adopted here is called You Only Look Once

(YOLO) and is described in the following Section.

3.2 Digital image processing for object detection

There are a number of technologies that can be used to observe, count, and track

pedestrians and pedestrian movements in an area. Digital image processing for object

detection is an appealing approach for transit systems because surveillance videos are

already being recorded in transit stations for safety and security purposes. The video

feed records passenger positions and movements in the same way that a person would

observe them, as opposed to infrared or wireless signal detectors that merely detect the

movement of a person passed a point or their proximity to a detector. The detection

of objects in surveillance videos is an invaluable tool for passenger counting and has

numerous applications. For example, object detection can be used for passenger

counting or tracking, recognizing crowding, and hazardous object recognition. In a

relevant application, Velastin et al. (2006) uses image processing techniques to detect

potentially dangerous situations in railway systems. Computer vision is the duplicate

of human vision aiming to electronically perceive, understand and store information

extracted from one or more images (Sonka et al., 2014).

There are various techniques to use computers to process an image for object

detection by extracting useful information. Recent methods use feature-based tech-

niques rather than segmentation of a moving foreground from a static background,

which was used in the past. Then, the detected features are extracted and classified,

typically using either boosted classifiers or Support Vector Machine (SVM) methods
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(Cheng et al., 2015; Viola, 1993). SVM is one of the most popular methods used

in object detection algorithms and especially passenger counting, because it offers a

method to estimate a hyperplane that splits feature vectors extracted from pedes-

trians and other samples (Cheng et al., 2015), differentiating pedestrians from other

unwanted features. Boosting uses a sequence of algorithms to weight weak classifiers

and combine them to form a strong hypothesis when training the algorithm to attain

accurate detection (Zhou, 2012). Current methods for object detection take a classi-

fier for an object and evaluate it at several locations and scales in a test image, which

is time-consuming and creates numerous computational instabilities at large scales

(Deng et al., 2010).

The most recent methods, such as Region Based Convolutional Neural Network

(R-CNN), use another method to decrease the region over which the classifier runs

and includes the SVM. First, category-independent regions are proposed to generate

potential bounding boxes. Second, the classifier runs and extracts a fixed-length

feature vector for each of the proposed regions. Finally, the bounding boxes are

refined by the elimination of duplicate detections and rescoring the boxes based on

other objects on the scene using SVMs (Girshick et al., 2014). The bounding box

is a rectangular box located around the objects in order to represent their detection

(Coniglio et al., 2017; Lézoray and Grady, 2012). The resulting object detection

datasets are images with tags used to classify different categories (Deng et al., 2009;

Everingham et al., 2010).

The open-source software tool called YOLO uses a different method than the

above-mentioned techniques for object detection. It generates a single regression

problem to estimate bounding box coordinates and class probabilities simultaneously

by using a single convolutional network that predicts multiple bounding boxes and

class probabilities for these boxes (Redmon et al., 2016). Another advantage of YOLO
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is that, unlike other techniques such as SVMs, it sees the entire image globally instead

of sections of the image. This feature enables YOLO to implicitly transform contex-

tual information to the code about classes and their appearance and at the same time

makes YOLO more accurate, making fewer than half the number of errors compared

to Fast R-CNN (Redmon et al., 2016). YOLO uses parameters for object detection

that are acquired from a training dataset. YOLO can learn and detect generalizable

representations of objects, outperforming other detection methods, including R-CNN.

The ability to train YOLO on images has the potential to directly optimize the detec-

tion performance and increase the bounding box probabilities (Redmon et al., 2016).

The calibration of parameters for object detection using an algorithm like YOLO

requires training datasets with a large number of tagged images. Although a custom

training set that is specific to the context of application (e.g., MBTA transit stations)

would be desirable for achieving the most accurate object detection outcomes, it is

very costly to create a large tagged training set from scratch. The Common Objects

in Context (COCO) dataset is a large-scale object detection, segmentation, and cap-

tioning dataset that is freely available to provide default parameter values for YOLO.

The COCO dataset is not specific to passengers or transit stations, but it is a general

dataset that includes 328,000 images, 2.5 million tagged objects and 91 object types,

including “person” (Lin et al., 2014). Nevertheless, the tool is effective for identifying

individual people in camera feeds, and the use of general training data allows the

same tool to be applied in other contexts without requiring additional training data.

3.3 Methodology

The proposed methodology aims to estimate the number of left behind passengers

at a transit station when trains are too crowded to board. Figure 3.1 presents a

flowchart of the data and methods used in this study in order to provide a roadmap
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for the analysis described in this study. The methods rely heavily on two data

sources that are automatically collected and recorded (shown in blue): train tracking

records that indicate train locations over time, and surveillance video feeds. Addi-

tional archived data on inferred travel patterns from farecard records is used only to

identify the most crowded parts of the system (shown in purple), and manual counts

are used to estimate and validate models (shown in red). For model implementation,

the proposed models require only the automatically collected input data.

Train Tracking 
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Passenger 
Flows (ODX)

Surveillance 
Video

Identification of Study 
Locations and Times

Left Behind Model
Estimation and Validation

Left Behind Model 
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Estimated Left 
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Automated Dwell 
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(COCO)

Archived Input

Manually Collected Input Manually Collected Input

Figure 3.1: Flowchart of proposed methodology

3.3.1 Identification of study locations and times

The first step of the analysis presented in this study is to identify the stations

and times of day when crowding is most likely to cause passengers to be left behind
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on the platform. This analysis is used only for determining where to collect data to

demonstrate the implementation of the proposed model. This step could be skipped

for cases in which the locations for implementation are already known.

The identification of study sites involves a crowding analysis that makes use of

two data sources: train tracking records, which denote the locations of trains over

time; and inferred passenger flows. As discussed later in this study, the study site

is MBTA where passenger flows are inferred through ODX model using passenger

farecard data. Other similar models can be equally applied, if available by the transit

authority that implements this methodology. Peaks in train occupancy and numbers

of boarding passengers show where and when passengers are most likely to be left

behind, as described in Section 3.5.1. Then, Section 3.5.2 describes an analysis of

surveillance camera views to determine which stations have unobstructed platform

views and station geometry that allows the automated video analysis techniques to

be used to count passengers.

3.3.2 Automated dwell time estimation

Train tracking data, which includes the time each train enters a track circuit, is

automatically recorded in transit networks, including the MBTA Research Database.

By comparing this data against manual observations of the times that train doors

open and close in the station, a linear regression model is estimated to predict dwell

time from the train tracking records, as described in Section 3.6.1. This model is

used to obtain automated dwell time estimates as inputs to the model of left behind

passengers.
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3.3.3 Automated passenger counts from video

Automated counts of the number of passengers on each station platform are ob-

tained using YOLO, an automated image detection algorithm. The parameters of

the algorithm are associated with the freely-available COCO training dataset, as

described in Section 3.2. The threshold for object identification is calibrated, as de-

scribed in Section 3.7.1, by applying the algorithm to the surveillance video feed and

comparing with manual counts of the passengers remaining on the platform after the

doors have closed (Section 3.6.2) and the passengers entering and exiting the platform

(Section 3.6.3). With the parameter values and calibrated threshold, YOLO produces

estimates of the number of passengers on the platform as a time series. The number

of passengers that remain on the platform after the doors close is a raw automated

passenger count, as shown in Section 3.7.2. These raw counts are not very accurate

as a direct measure (Section 3.7.3), but they provide a useful input for modeling the

number of left behind passengers.

3.3.4 Model estimation and validation for left behind passengers

A logistic regression is used to predict the probability that a passenger is left

behind on the station platform based on automated dwell time estimates and/or au-

tomated passenger counts from video. The model parameters are estimated using

the manually observed counts of passengers left behind on the station platforms as

the observed outcome. The diagnostics, parameters, and fit statistics of the models

developed in this dissertation are presented in Section 3.8.1. The explanatory vari-

ables in the study presented here are automated dwell time estimates and automated

passengers counts. The quality of the proposed models is evaluated through valida-

tion against manually collected counts on a different day than the one used for model
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estimation. The accuracy of the model predictions is then calculated relative to man-

ually observed passenger counts on the same day as the one used for prediction, as

shown in Section 3.8.2.

3.3.5 Model implementation

Implementation of the model to make ongoing estimates of the numbers of pas-

sengers left behind each departing train requires only train tracking data and surveil-

lance video feeds as model inputs. The manual observations of door opening/closing

times and the number of passengers on the platforms are used only for estimating

model parameters. The models then produce predictions of the number of passengers

left behind each departing train based only on data that is automatically collected.

Therefore, the numbers of left behind passengers and the associated impact on the

distribution of wait times experienced by passengers could be tracked as a perfor-

mance measure over time. If data feeds were processed as they are recorded, it would

also be possible to implement the models to make real-time predictions of the left

behind passengers.

3.4 Study site

3.4.1 Raw data

The case study considered here is the MBTA subway system, where there are three

main sources of raw data related to passenger and vehicle movements, as described

in the following sections.
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3.4.1.1 Automatic Fare Collection (AFC)

Automatic fare collection data is collected from the fare collection system at sta-

tion fare gates and on-board buses and light rail vehicles. The AFC records are

associated with events in which Charlie Cards (MBTA’s farecard) are used to load

value, pay a fare, or validate a pass. The data is partitioned by month and year,

and includes records of Charlie Card transactions from individual fare cards as well

as passes. Relevant AFC data that could potentially be useful for assessing crowding

are:

• Unique identifier of the device that records the AFC event

• The station location of the device (e.g., fare gate, firebox, or ticket vending

machine) that recorded the event

• The timestamp of the event

• Card/ticket serial number from the AFC system

• Type of transaction (e.g., top-up, validation, or fare deduction)

From this raw data, counts of passengers entering transit stations can be tracked

over time based on the transactions’ times and locations. The dataset includes good

coverage of passengers entering fare gate-controlled stations on the red, orange, and

blue lines. However, passengers are able to board inbound green line trains without

necessarily validating a ticket, so some passengers are able to enter the system and

make transfers without being counted.

The MBTA’s rapid transit fare system charges a single fare for entry to the system,

and passengers do not tap out when they leave the system. As a result, AFC records
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only account for station and vehicle entry, and there are no direct observations of

exits.

3.4.1.2 Automatic Passenger Counter (APC)

Automatic passenger counters (APC) are devices that count the number of pas-

sengers boarding and alighting each vehicle. APC devices are not in widespread

deployment on MBTA rail vehicles, so this is not a data source that can be reliably

used for assessing crowding in the system.

3.4.1.3 Train Tracking Records (TTR)

The train-tracking system records the position of heavy rail vehicles as they move

from track circuit to track circuit through the system. The analogous data for tracking

bus positions on the network are reported through the AVL systems. Since much of

the heavy rail operations are in tunnels, track circuits are used to identify train

locations. There is typically one track circuit associated with each station, and a few

circuits between consecutive stations. The relevant TTR data for this study are:

• The timestamp of the train-tracking record

• Numeric code for heavy rail line

• Letter code for heavy rail line

• Numeric code identifying a trainset

• Latitude associated with track circuit

• Longitude associated with track circuit
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• Unique identification number for track circuit

• The direction of train traffic on the track circuit

• The location type of the track circuit

• Name of station associated with the track circuit

The AVL data provides detailed data about vehicle movements in the system that

can be compared against passenger data from the AFC data. From the AVL data, it

is possible to piece together the progression of an individual vehicle along a line. It

is also possible to look at the headways of departures from a specific station.

3.4.2 Models and inferred data

The raw data collected and logged by the MBTA contains extensive (although not

complete) information about passenger entrances to rail stations and boarding buses

at bus stops. It also contains comprehensive records of vehicle movements. By itself,

this data is sufficient to count passenger entries and track performance of transit

vehicles for schedule or headway adherence. In order to assess crowding, additional

processing of the data is necessary to link records and infer travel patterns.

3.4.2.1 Origin-Destination-Transfer model (ODX)

A model to link trip records and infer origin-destination and transfer patterns in

the system has been developed to populate a database of ODX records. Inference

models based on farecard data have been improved over the years. The most recent

advances make use of dynamic programming to minimize generalized disutility for

travelers, accounting for path-specific waiting time, in-vehicle time, and transfers

(Sánchez-Mart́ınez, 2017). The model identifies records from AFC that can be linked
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to infer transfers or return trip patterns. For example, a passenger using a Charlie

Card to enter a rail station and later board a bus near a different rail station can

be assumed to have used the rail system and then transferred to the bus. Another

passenger who enters one rail station in the morning and enters a different rail station

in the afternoon may be completing a round-trip commute, so the destination of the

morning and afternoon trips can be inferred by linking the two trips. Through this

method, the model infers values for 97% of trip origins, 75% of trip destinations, and

92% of transfers.

The ODX model is structured in three levels:

1. Ride – One ride; boarding and alighting one vehicle

2. Stage – One fare card tap; this could be a single ride, boarding a bus and riding

to a destination stop to alight. This could also be a station entry that is followed

by a ride on a train and then a gateless transfer to another train

3. Journey – One trip from origin to destination; this may consist of one or more

rides and stages. For example, a multi-stage journey could include a first stage

consisting of a ride on a bus and then a second stage consisting of entry to a rail

station. The stages are each recorded by a separate tap (on the bus and at the

fare gate), but a transfer from one mode or route to another may be required

to complete a trip.

The ODX records are based on the raw data from AFC and AVL, but the dataset

contains information related to journeys by inferring the destination and transfer

locations and times associated with each origin. The relevant data from the ODX

records are:

• Serial number of card, or arbitrary assigned number for cash transactions
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• Location of the stop or station where fare transaction was recorded

• Timestamp of fare transaction

• The sequence of the journey for a specific card

• Sequence of the stage within the journey

• Total number of stages within the journey

• Recorded or inferred journey origin location

• Inferred journey destination location

• Timestamp when the stage starts, based on vehicle’s departure time from origin

stop

• Timestamp when the stage ends, based on vehicle’s arrival at destination stop

• Timestamp when the stage ends, based on vehicle’s arrival at destination stop

• The route of the vehicle trip or the route of the station where the fare card was

tapped

• The direction of the vehicle trip

• Code indicating if the origin was inferred, or the reason it was not inferred

• Code indicating if the destination was inferred, or the reason it was not inferred

• Code indicating if a transfer was inferred, or the reason it was not inferred

• The given or inferred origin of a ride, usually a bus stop or station platform

• The time at which the vehicle departed from the ride’s origin
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• The inferred destination of a ride, usually a bus stop or station platform

• The time at which the vehicle arrived at this ride’s destination

The ODX data provides a comprehensive and useful view of travel patterns in the

MBTA system. Although it appears at a glance to provide the same information as

records from a tap-in and tap-out AFC would provide, it is important to be mindful

of the assumptions on which inferences are based. Notably, for this study, inferred

stages are based on the assumption that passengers are always able to board the

next arriving vehicle. Therefore, destination times provide an optimistic estimate,

assuming that crowding did not prevent a passenger from boarding the next arriving

vehicle.

3.4.2.2 Rail flow

The Rail Flow tool provides processed and aggregated data based on the ODX

records. This data includes estimates of passenger boardings and alightings at stations

for 15 minute increments. In this way, the ODX model provides valuable data for

estimating the level of crowding in the system. The tool shows the variability of

passenger flows between stations and provides an indication of locations and times

that are likely to be experiencing the greatest crowding. However, Rail Flow does

not provide an indication of left-behind passengers, because the ODX data is built

on the assumption that passengers are not left behind.

Perhaps a subsampling of stage data could be extracted to consider only multi-

stage journeys in which the start time of the second stage can be used to work

backward to estimate when the previous stage likely ended. Comparing the estimate

of stage end time to the passage of vehicles may provide a rough estimate of whether
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or not a passenger was left behind. This would not provide a comprehensive measure

of the left-behinds problem.

3.4.3 Surveillance video feeds

Stations throughout the MBTA are equipped with surveillance cameras for se-

curity purposes. The placement of cameras has been designed to provide coverage

for security purposes, and the view angles are not necessarily optimized for counting

passengers on platforms. Variations in station architecture (e.g., side platforms vs. is-

land platforms, columned stations with low station ceilings vs. open vaulted ceilings)

create many different contexts for video observation. A challenge is that columns and

curvature in the station limit how much of the platform, where passengers may be

walking or waiting, is visible in a single frame. The extensive placement of cameras,

especially in recently renovated stations, provides multiple vantage points to observe

platform crowding and vehicle boarding.

3.5 Identification of study sites

To test the implementation of object detection with video in transit stations, a

first step is to identify locations and times to collect video feeds as well as direct man-

ual observations of left-behind passengers. For this study, stations were selected based

on a crowding analysis and evaluation of station geometry and camera view charac-

teristics. The goal was to identify stations with the greatest likelihood of passengers

being left behind during a typical morning or afternoon rush and where object detec-

tion techniques would be most successful. The analysis focused on the Orange Line,

which is 11-miles long with 20 stations. Oak Grove and Forest Hills are the northern

and southern end stations, respectively. There are two main reasons for choosing

this specific line. First and most important, it has no branch lines, so all travelers
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can reach their destination by boarding the next available train, which simplifies the

identification of left-behind passengers. Second, it passes through several transfer

stations in the center of Boston, which highlights its significance for passengers’ daily

commuting.

3.5.1 Crowding analysis

A crowding analysis is a necessary step to identify the times and stations where

crowding is observed and left behinds have the highest probability of occurring. The

data used in this part of the analysis have been extracted from the Rail Flow database

in the MBTA Research and Analytics Platform. The Rail Flow dataset includes

aggregated boarding and alighting counts by time of day with 15-minute temporal

resolution averaged across all days in a calendar quarter. An example is given in

Figure 3.2 for 5:15-5:30pm in Winter 2017. These data are derived from the ODX

model, which makes use of AFC and AVL systems to infer the flow of passengers

within the subway (Sánchez-Mart́ınez, 2017) and is described in Section 3.4.2.1.

For the crowding analysis in this study, cumulative counts of passengers boarding

and alighting at each station have been created along the direction of train travel

using the aggregated railflow data. For a 15-minute time period, B(n, t) is the cumu-

lative count of all passengers that board trains in the direction of interest at stations

preceding and including station n during time interval t. Similarly, A(n, t), is the

cumulative count of passengers that are assumed to have exited trains traveling in

the direction of interest at stations preceding and including station n during time

interval t. It should always be true that A(n, t) ≤ B(n, t), because passengers can

only alight a train after boarding it.

The difference between the cumulative boardings, B(n, t), and alightings, A(n, t),

is the estimated passenger flow, Q(n, t), between station n and n + 1 during each
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Figure 3.2: Count of passengers a) boarding by station, and b) alighting by station,
for Northbound Orange Line, 5:15 – 5:30pm

15-minute time period.

Q(n, t) = B(n, t)− A(n, t) (1)

This calculation is approximate, because cumulative counts are calculated for a single

15-minute time period, and real trains take more than 15 minutes to traverse the

length of a line.

To calculate the number of passengers per train, the passenger flow per time
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period must be converted to passenger occupancy, O(n, t) (passengers/train), which

is calculated by multiplying the passenger flow by the scheduled headway of trains,

h(t) (minutes), at time t.

O(n, t) = Q(n, t)× h(t)

15
(2)

The headway is divided by 15 minutes to account for the fact that the passenger

flow is per 15-minute time period. This measure is an approximation of the number

of passengers onboard each train that is based on the assumptions that headways

are uniform and passengers are always able to board the next arriving train. In

reality, variations in headways may lead to increased crowding after longer headways,

increasing the likelihood that some passengers will be left behind.

The 2017 MBTA Service Delivery Policy (SDP) (MBTA, 2017) provides guide-

lines for reliability and vehicle loads. In the 2010 MBTA SDP (MBTA, 2010), the

maximum vehicle load was explicitly defined as 225% of seating capacity in the peak

hours (start of service to 9:00am; 1:30pm – 6:30pm) and 140% of the seating capacity

in other hours. The 2017 SDP notes that accurately monitoring the passenger occu-

pancy of heavy rail transit is not yet feasible on the MBTA system. Nevertheless,

the guidelines from Table B2 in the 2017 SDP are used to identify general crowding

levels, recognizing that each Orange Line train is six cars long and has a total of 348

seats.

A visualization of average train occupancy for the Winter 2017 Rail Flow data

is shown in the color plot in Figure 3.3a. The color for each station and 15-minute

time interval corresponds to the value of O(n, t). Since the trains have 348 seats,

red parts of the plot indicate large numbers of standing passengers, with dark red

indicating crowding near vehicle capacity. This figure shows that in the northbound

direction, the most severe crowding occurs between Downtown Crossing and North
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Station shortly before 6:00pm. Note that the crowding appears to decrease before

rebounding again at 6:30pm. This is due to the change in scheduled headway at

6:30 pm from 6 minutes to 10 minutes, which increases occupancy, as calculated in

equation (2).

A more detailed visualization combines transit vehicle location records and in-

ferred origin-destination trip flows from a specific date. As mentioned already, the

ODX trip flows are constructed with simplifying assumptions about passenger move-

ments; for example, all passengers entering a station are assumed to board the first

arriving train. Despite such assumptions, however, the model is valuable for many

applications. The trajectories in Figure 3.3b are associated with the recorded arrival

and departure times of train at each station. The colors are associated with the esti-

mated train occupancy based on the inferred boardings and alightings, assuming that

no passengers are left behind. The trajectory plot shows that the headway between

trains can vary substantially, especially for the stations north of Downtown Crossing.

Longer headways are followed by more crowded trains, because more passengers have

arrived to board since the previous train. The occurrence of left-behind passengers

would make actual train occupancies slightly lower for the trains following long head-

ways. Those left-behind passengers would then be waiting to board the next train,

thereby increasing the occupancy on one or more subsequent trains.

Tracking the average number of passengers onboard trains provides an indicator

for the likelihood of passengers being left behind, because full trains leave little room

for additional passengers to board. During the most crowded times of the day, it

is also useful to look at the numbers of passengers boarding and alighting trains at

each station. Passengers are most likely to be left behind at stations where trains

arrive with high occupancy, few passengers alight, and many more passengers wait

to board. By this measure, North Station in the afternoon peak appears to be an
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ideal candidate for observing left behind passengers. Using the same method for the

southbound direction, Sullivan Square station was identified as an ideal candidate

location for data collection in the morning peak. Other candidate stations include

Back Bay, Chinatown and Wellington stations.

3.5.2 Station geometry and camera views

In addition to identifying stations with the greatest likelihood of passengers getting

left behind crowded trains, the stations that are selected for detailed analysis should

also have characteristics that are amenable to successful testing of video surveillance

counting methods. There are a variety of station layouts and architectures that

contribute complicating factors to the analysis of left behind passengers, and the goal

of this study is to identify the potential for the adopted detection method under the

best possible conditions. Ideal conditions for the proposed analysis are:

• Dedicated Platform for Line and Direction of Interest – In this case, all passen-

gers on a platform are waiting for the same train, so any passenger that does

not board can be counted as being left behind. In the case of an island plat-

form, observed passengers may be waiting for trains arriving on either track.

In the MBTA system, more than half of the station platforms for heavy rail

rapid transit in the city center (the most crowded part of the system) meet this

criterion.1

• High Quality Camera Views – Surveillance cameras vary in age, quality, and

placement throughout the MBTA system. Newer cameras have higher definition

video feeds. The quality of the view is also affected by lighting conditions,

1All stations from Tufts Medical Center through Haymarket and the northbound platform at
North Station on the Orange Line (11 platforms), three out of four Blue Line stations in downtown
Boston (5 platforms), and all northbound platforms for the Red Line from South Station to Porter
(8 platforms) meet this criterion.
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(a)

(b)

Figure 3.3: Inferred passenger crowding using a) inferred passenger occupancy (Win-
ter 2017), and b) train trajectories with inferred passenger loads (PM Peak, November
15, 2017), for Northbound Orange Line trains
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especially at above-ground station where sunlight and shadows can affect the

clarity of the images.

• Platform Coverage of Camera Views – The surveillance systems are designed

to provide views of the entire platform area for security purposes. In some

stations, the locations of columns obfuscate the views, requiring more cameras

to provide this coverage.

Surveillance camera views were considered from five stations on the Orange Line

(Back Bay, Chinatown, North Station, Sullivan Square, and Wellington) that were

identified through crowding analysis as candidate stations. Ultimately, North Station

was selected as the study site for the northbound direction afternoon peak period

because the station exhibits consistent crowding and the geometry provided good

camera views. Samples of the camera views from this station are shown in Figure 3.4.

Figure 3.4: Selected camera views from North Station, Orange Line, Northbound
direction

3.6 Manual data collection

Manual observations on the platform needed to be collected to establish a ground

truth against which to compare alternative methods for measuring and estimating the

number of passengers left behind crowded trains. Detailed data collection at North

Station was conducted during afternoon peak hours (3:30-6:30 pm) on midweek days

during non-holiday weeks (Wednesday, November 15, 2017, and Wednesday, January
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31, 2018). Three observers worked simultaneously on the station platform to record

observations.

3.6.1 Train door opening and closing times

Although Train-Tracking Records (TTR) report the times that each train enters

the track circuit associated with a station, there is no automated record of the precise

times that doors open and close. Since passengers can only board and alight trains

while the doors are open, recording these times manually is important for identifying

when passengers board trains, when they are left behind, the precise dwell time in

the station, and the precise headway between trains. Each of the three observers

recorded the times of doors opening and closing. The average of these observations

is considered the true value.

A simple linear regression model shows that observed dwell times (time from doors

opening to doors closing) can be accurately estimated from automatic records of TTR

arrival and departure times associated with each station. Figure 3.5 shows the data

and regression results combining manual counts for November 15, 2017 and January

31, 2018. There is no systematic difference between records from different days, and

the R2 is greater than 0.9, indicating a good fit.

3.6.2 Number of passengers left behind

Each observer counted the number of passengers left behind on the station plat-

forms after the train doors closed. In order to avoid double-counting, each observer

was responsible for observing passengers in a two-car segment of the six-car train

(front, middle, and back). Some judgement was necessary in determining which pas-

sengers to count, because some passengers linger on the platform after alighting the

train and some choose to wait for a later train even when there is clearly space avail-
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Figure 3.5: Regression model to estimate dwell time from Train-Tracking Records
(TTR)

able to board. The goal of the left-behind passenger count is to measure the number

of passengers that are left behind due to crowding within ±2 passengers of the true

number.

3.6.3 Number of passengers waiting on platform

In addition to counting the number of passengers left behind by crowded trains,

it is important for model calibration to get an accurate count of the number of pas-

sengers waiting to board each arriving train. Given the large number of commuters

using the heavy rail system during commuting hours, it is not possible to accurately

count this total number of passengers in person.

Surveillance video feeds of escalators, stairs, and elevators used to access the

platform of interest were used to manually count the number of passengers entering

and exiting the platform offline. Specifically, an open-source software tool was used

to track passenger movements by logging keystrokes to the video timestamp during

playback (Campbell, 2012). Counts were conducted by watching the surveillance

video playback of each entry and exit point from the platform and logging the entry
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and exit of each individual passenger. The resulting data log records the time (to

the nearest second) that each passenger entered and exited the platform. Since the

platforms of interest serve only one train line in one direction, all entering passengers

are assumed to wait to board the next train, and all exiting passengers are assumed to

have alighted the previous train. Combining these counts with the direct observations

of the number of passengers left behind each time the doors close provides an accurate

estimate of the number of passengers that were successfully able to board each train.

Figure 3.6 illustrates the cumulative numbers of passengers entering the platform

(blue curve) and boarding the trains (orange curve). The steps in the orange curve

correspond to the times that the train doors close. If passengers are assumed to arrive

onto the platform and board trains in first-in-first-out (FIFO) order, the red arrow

represents the waiting time that is experienced by the respective passenger, which is

estimated as the difference between the arrival and the boarding time.

A timeseries of the actual number of passengers waiting on the platform is con-

structed by counting the cumulative arrivals of passengers to the platform over time

and assuming that all passengers board departing trains except those that are ob-

served to be left behind. This ground truth for data collected on November 15, 2017,

is shown in blue in Figure 3.7. The sawtooth pattern shows the growing number

of passengers on the platform as time elapses from the previous train. The drops

correspond to the times when doors close. At these times, the platform count usually

drops to zero. When passengers are left behind, the timeseries drops to the number of

left behind passengers. One such case is illustrated with the red arrow in Figure 3.7.
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Figure 3.6: Cumulative number of passengers entering the platform and boarding
vehicles, North Station, November 15, 2017
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Figure 3.7: Timeseries of passengers on platform from manual counts, North Station,
November 15, 2017
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3.7 Automated detection of passengers on platforms in video

feeds

This part of the study was performed by the research team of Dr. Eric J. Gonzales

and is not one of the author’s individual accomplishments. However, the outputs

obtained here are used as inputs for the remaining of the analysis for the estimation of

left behind passengers, thus, a brief presentation of the implemented methodology and

the main results are described in this section. For more details about the automated

object detection methods adopted here, the readers are referred to Gonzales et al.

(2018) and Sipetas et al. (2020).

3.7.1 Calibration of parameters

The YOLO algorithm uses pattern recognition to identify objects in an image. A

threshold for certainty can be calibrated to adjust the number of identified objects in

a specific frame. If the threshold is set too high, the algorithm will fail to recognize

some objects that do not adequately match the training dataset. If the threshold is

set too low, the algorithm will falsely identify objects that are not really present. In

order to identify the optimal threshold, frames from 14 camera views were analyzed.

Each frame was analyzed separately for threshold values ranging from 6% to 25% to

determine the optimal threshold value in relation to a manual count of passengers

visible in the frame. The optimal threshold across all camera views was found equal

to 7%. Figure 3.8 shows the identified objects at each threshold level for the same

frame from camera installed in North Station.
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Figure 3.8: Effect of threshold values on object detection in a sample video frame

3.7.2 Raw video counts

The output from YOLO is a text file that lists the objects detected for each

frame and the bounding box for the object within the image. A time series count

of passengers on the platform is simply the number of “person” objects identified in

the corresponding frames from each sample video feed. Figure 3.9a shows the raw

passenger counts on the platform at North Station for the time period from 5:00 –

6:30pm on November 15, 2017. Although there are noisy fluctuations, there is a clear

pattern of increasing passenger counts until door opening times (green). To facilitate

analysis of the automatic passenger counts from the surveillance videos, it is useful

to work with a smoothed time series of passenger counts, as shown in Figure 3.9b.

3.7.3 Accuracy of detected left behind passengers

The smoothed video counts from the three surveillance camera feeds used to mon-

itor the northbound Orange Line platform at North Station are shown as the green

curve in Figure 3.10. The automated passenger counting algorithm clearly under-

counts the total number of passengers on the platform. The reason for this large

discrepancy is that the algorithm can only identify people in the foreground of the
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Figure 3.9: a) Raw (unsmoothed) and b) smoothed passenger counts from video,
November 15, 2017

images, where each person is large. Therefore, the available camera views do not

actually provide complete coverage of the platform for automated counting purposes.

Furthermore, when conditions get very crowded, it becomes more difficult to identify

separate bodies within the large mass of people.

The problem of undercounting aside, it is clear that the automated counts gener-
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ate a pattern that is representative of the total number of passengers on the platform.

Using regression, the smoothed timeseries can be linearly transformed into a scaled

timeseries (the orange curve in Figure 3.10), which minimizes the squared error com-

pared with the manually counted timeseries. Using this scaling method, the data from

November 15, 2017, were used to compare estimated counts of left-behind passengers

in the peak periods with the directly observed values. This provides a measure of

the accuracy of automated video counts. The total number of left-behind passengers

estimated by this method is presented in Table 3.1, where the Root Mean Squared

Error (RMSE) is calculated by comparing the number of passengers left-behind each

time the train doors close.

The scaling process, which makes the blue and orange curves in Figure 3.10 match

as closely as possible, results in substantially overcounted left behinds, because the

scaling factor tends to over-inflate the counts when there are few passengers on the

platform. As a direct measurement method, automated video counting is not sat-
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Figure 3.10: Automated passenger counts from surveillance video, North Station,
November 15, 2017
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Table 3.1: Accuracy of video counts of left-behind passengers, North Station, 3:30–
6:30pm, November 15, 2017

Left-Behind Passengers RMSE

Manual Observation 198
Unscaled Video Count 73 16.7

Scaled Video Count 336 11.9

isfactory, at least as implemented with YOLO. However, Figure 3.10 shows a clear

relationship between the video counts and passengers being left behind on station

platforms, so there is potential to use the video feed as an explanatory variable in a

model to estimate the likelihood of passengers being unable to board a train.

3.8 Modeling left-behind passengers

In order to improve the accuracy of estimates of the number of passengers left

behind on subway platforms, a logistic regression model is formulated to estimate

the probability that each passenger is left behind based on explanatory variables that

can be collected automatically. A logistic regression is used to estimate the number

of passengers left behind by way of estimating the probability that each waiting

passenger is left behind, because the logistic function has properties that are more

amenable to this application. Since passengers are only left behind when platforms

and trains are very crowded, a linear regression has tendency to provide many negative

estimates of left behind passengers, which are physically impossible. The binary logit

model, by contrast is intended for estimating the probability that one of two possible

outcomes is realized (e.g., a passenger is either left behind or not left behind). The

estimated probability from a logit model is always between 0 and 1, so the resulting

estimate of the number of left-behind passengers is always non-negative and cannot

exceed the total number of waiting passengers.
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For estimation of the logistic regression, each passenger is represented as a separate

observation, and all passengers waiting for the same departing train are associated

with the same set of explanatory variables. Over the course of a 3-hour rush period,

there are typically about 30 trains serving North Station, serving 1,500 to 3,000 pas-

sengers per period, and leaving behind well over 100 passengers. Logistic regression

models are generally expected to give stable estimates when the data set for fitting in-

cludes at least 10 observations for each outcome, so there is sufficient data to estimate

parameters for a model that is structured this way.

The logistic function defines the probability that a passenger is left behind by

P (x) =
1

1 + e−(β0+βx)
(3)

where x is a vector of explanatory variables, β is a vector of estimated coefficients for

the explanatory variables, and β0 is an estimated alternative-specific constant. The

estimation of the model can be thought of as identifying the values of β0 and β that

best fit the observed outcomes

y =


1, β0 + βx+ ε > 0

0, else

(4)

where y = 1 corresponds to a passenger being left behind, and y = 0 corresponds to

a passenger successfully boarding.

The underlying assumption in this formulation is that the likelihood of being left

behind can be expressed in terms of a linear combination of explanatory variables and

a random error term, ε, which is logistically distributed. The explanatory variables

that are considered in this study are as follows:

1. Dwell time (time from door opening to door closing) or difference of TTR arrival
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and departure times

2. Video count of passengers on platform following doors closing

These explanatory variables can all be monitored automatically, without manual

observations. Video counts of passengers on the platform following doors closing

are obtained from the object detection process described above. Although dwell

time is an appropriate explanatory variable because doors stay open longer when

trains are crowded, the dwell time is not directly reported in archived databases. As

demonstrated in Figure 3.5, observed dwell times can be accurately estimated from

automatic records of TTR arrival and departure times. This leads to using TTR

reported values of difference between train arrival and departure instead of dwell

times for the model development. Since these are essentially the same explanatory

variable, we call this difference “dwell time” for the remainder of the study.

3.8.1 Model estimation

Initially, three models were estimated, making use of only TTR data (Model 1),

only video counts (Model 2), and then fused TTR and video counts (Model 3). The

data from November 15, 2017, were used to develop these models. The number of pas-

sengers waiting on the platform (as described in section 3.6.3) are used to determine

the number of observations for estimating the parameters of the logit model. In total,

2167 passengers boarded arriving trains at North Station during the rush period and

198 of them were left behind. This leads to a sample size of 2365 passengers for the

logistic models.

Models 1 and 2 are simple logistic regressions, each with only one independent

variable. Neither model has influential values (i.e., values that, if removed, would

improve the fit of the model). Model 3 uses both TTR data and video counts, so it
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is important to diagnose the model’s fit, especially with respect to the assumptions

of the logistics regression. First, multicollinearity of explanatory variables should

be low. The correlation between dwell time and video count is −0.643 and the

variance inflation factor is 1.7, both indicating that the magnitude of multicollinearity

is not too high. Second, no influential values were identified. Third, the logistic

regression is based on the assumption that there is a linear relationship between each

explanatory variable and the logit of the response, log (p/ (1− p)), where p represents

the probabilities of the response. Figure 3.11 shows that dwell time is approximately

linear with the logit response, while there is somewhat more variability with respect

to the video counts. Neither plot suggests that there is a systematic mis-specification

of the model.

(a) (b)

Figure 3.11: Linearity of explanatory variable of a) dwell time and b) video counts
with respect to logit, Model 3

A summary of the estimated model coefficients and fit statistics is presented in

Table 3.2. The log likelihood is a measure of how well the estimated probability of
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Table 3.2: Logistic regression model parameters, North Station, November 2017

Parameter Model 1 Model 2 Model 3
Value p-stat Value p-stat Value p-stat

Constant for Left-Behind -10 0.00 -4.18 0.00 -7.57 0.00
Dwell Time (sec) 0.0903 0.00 0.0487 0.00
Video Count 0.370 0.00 0.232 0.00
Null Log Likelihood, LL0 -1639.29 -1639.29 -1639.29
Model Log Likelihood, LL -551.94 -533.28 -514.43
ρ2 0.663 0.675 0.686
AIC 1107.9 1070.6 1034.9

a passenger being left behind matches the observations. The null log likelihood is

associated with no model at all (every passenger is assigned a 50% chance of being

left behind), and values closer to zero indicate a better fit. The ρ2 value is a related

measure of model fit, with values closer to 1 indicating a better model.

For all three models, the estimated coefficients have the expected signs and mag-

nitudes. The positive coefficients for dwell time and video counts indicate a positive

relationship with the probability of having left-behind passengers, which is intuitive.

In order to compare models, the likelihood ratio statistic is used to determine whether

the improvement of one model is statistically significant compared to another. The

likelihood ratio test statistic is calculated by comparing the log likelihood of the re-

stricted model (with fewer explanatory variables) to the unrestricted model (with

more explanatory variables):

D = 2(LLunrestricted − LLrestricted) (5)

Comparing Model 1 (restricted) to Model 3 (unrestricted), one additional variable in

Model 3, indicates one degree of freedom, which requires D > 3.84 to reject the null

hypothesis at the 0.05 significance level. Comparison between Models 1 and 3 gives

D = 75.02, indicating that Model 3 provides a significant improvement over Model
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1 by adding video counts. Comparison between Models 1 and 2 gives D = 37.7,

which is also a significant improvement. The Akaike Information Criterion (AIC) is

an additional model fit statistic that weighs the log likelihood against the complexity

of the model. Although Model 3 has more parameters, the AIC is greater than for

Model 1 or Model 2, indicating that the improved log likelihood justifies the inclusion

of both TTR and video count data.

3.8.2 Model validation

3.8.2.1 Number of passengers left behind

The logistic regression provides an estimate of the probability that passengers are

left behind each time the train doors close. In order to translate this probability into

a passenger count, the estimated number of passengers waiting on the platform from

the scaled video count is used as an estimate of the number of passengers waiting

to board. Table 3.3 shows the validation results when the models were applied to

data collected on January 31, 2018, for North Station. The scaling factor used for

the number of passengers waiting on the platform is estimated from November 15,

2017 data. Considering the estimated number of left behind passengers for each train

separately, it is observed that these models achieve higher accuracy when there are

a few passengers left behind. Overall, Model 1 exhibits error of only 3.3% since

it estimates that 116 passengers are left behind in total when 120 passengers were

observed to be left behind. Model 3 gives a lower estimate of 100 passengers being

left behind, which leads to an error of approximately 17%.

As shown in Table 3.1 and Table 3.3, direct video counts (unscaled and scaled) do

not provide accurate estimates of the total numbers of passengers left behind without

some additional modeling. The unscaled video counts underestimate the total, while
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the scaled video counts overestimate the total. The logistic regression provides much

better results. Although there are some discrepancies for specific train departures,

the estimated numbers of passengers left behind are not significantly biased and the

total number of passengers left behind during the three-hour rush period is similar

to the manually counted total.

The logistic regressions estimate the probability of a passenger being left behind

using only the explanatory variables listed in Table 3.2. However, the estimated num-

ber of left behind passengers is calculated by multiplying the probability by the scaled

video count of passengers on the platform at the time the doors opened, as estimated

from the TTR data. Therefore, the estimated number of passengers left behind with

Model 1 and Model 3 rely only on TTR data that is currently being logged and

supplemented by automated counts of passengers in existing surveillance video feeds.

The models therefore utilize explanatory variables that are monitored automatically,

and they can be deployed for continuous tracking of left behind passengers without

needing additional manual counts.

The logistic models could actually perform even better if there were a way to

obtain a more accurate count of the number of passengers waiting for a train. Dur-

ing the morning peak period, the count of farecards entering outlying stations can

provide a good estimate for the number of passengers waiting to board each inbound

train. This is more challenging at a transfer station, like North Station, in which

many passengers are transferring from other lines. In some cases, strategically placed

passenger counters could provide useful data. Nevertheless, Table 3.4 presents the

performance of the developed logistic regression models if their estimated probabil-

ities are multiplied by the actual number of passengers on the platform instead of

the estimated number as in Table 3.3. This reveals the value of more accurate data,

because Model 3 decreases its error compared to Table 3.3. Model 3 in Table 3.4
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estimates 122 passengers being left behind in the afternoon rush on the observed date

when the previous estimate was 100, which is a reduction of error from 17% to 2%

for this model compared to the 120 observed left behind passengers.

3.8.2.2 Occurrence of a train leaving behind passengers

Another way to evaluate the performance of the developed models is to consider

whether or not trains that leave behind passengers can be distinguished from trains

that allow all passengers to board. Through the course of data collection and analysis,

the number of passengers being left behind because of overcrowding can only be

reliably observed within approximately ±2 passengers. The reason for this is that

sometimes people choose not to board a train for reasons other than crowding, and

one or two passengers left on the platform did not appear to be consistent with

problematic crowding conditions.

If a train is defined to be leaving behind passengers when more than 2 passengers

are left behind, the results presented in Table 3.3 can be reinterpreted to evaluate

each method by four measures:

1. Number of Trains Leaving Behind Passengers : The number of trains in a time

period that leave behind passengers due to overcrowding.

2. Correct Identification Rate: The percent of trains that are correctly classified

as leaving behind passengers or not leaving behind passengers, as compared to

the manual count. This value should be as close to 1 as possible.

3. Detection Rate: The percent of departing trains that were manually observed to

leave behind passengers that are also flagged as such by the estimation method.

This value should be as close to 1 as possible.
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Table 3.3: Validation of probability and count of left behind passengers, January 31,
2018

Train Manual Count Unscaled Scaled Model 1 Model 3
Prob. Count Vid.Count Vid.Count Prob. Count Prob. Count

1 6.5% 2 1 7 3.2% 2 2.2% 2
2 0.0% 0 2 15 1.0% 0 1.5% 0
3 0.0% 0 2 15 0.4% 0 0.9% 0
4 0.0% 0 1 7 0.8% 0 1.1% 1
5 0.0% 0 0 0 0.3% 0 0.5% 0
6 0.0% 0 0 0 0.7% 0 0.8% 0
7 0.0% 0 0 0 0.6% 0 0.7% 0
8 0.0% 0 2 15 1.2% 1 1.7% 1
9 0.0% 0 2 15 2.1% 1 2.2% 1
10 0.0% 0 1 7 0.6% 0 0.9% 0
11 15.2% 23 2 15 18.2% 27 7.4% 11
12 0.0% 0 1 7 1.2% 1 1.3% 1
13 0.0% 0 1 7 2.1% 1 1.8% 1
14 0.0% 0 2 15 0.8% 0 1.3% 0
15 14.4% 24 3 22 15.6% 19 8.4% 10
16 5.8% 5 4 30 7.0% 6 6.6% 6
17 14.6% 19 3 22 19.5% 24 9.6% 12
18 10.6% 14 10 77 18.2% 20 33.9% 37
19 8.7% 9 3 22 6.4% 3 5.1% 2
20 2.4% 1 4 30 0.9% 0 2.3% 1
21 3.5% 4 3 22 3.8% 3 3.8% 3
22 3.0% 3 2 15 1.7% 1 2.0% 2
23 0.0% 0 1 7 0.8% 0 1.0% 0
24 0.0% 0 3 22 0.8% 0 1.6% 1
25 0.0% 0 3 22 1.1% 1 2.0% 2
26 2.7% 2 2 15 2.7% 1 2.5% 1
27 6.7% 7 2 15 3.2% 3 2.8% 2
28 3.6% 2 3 22 0.5% 0 1.3% 1
29 3.6% 2 1 7 0.8% 0 1.0% 0
30 2.7% 3 2 15 2.5% 2 2.4% 2

Total 120 66 490 116 100
MAE 3.5 12.9 1.5 2.8
RMSE 6.5 17.6 2.4 5.8

63



Table 3.4: Validating count of left behind passengers using actual number on platform,
North Station, January 31, 2018

Measured Model 1 Model 2 Model 3

Number of left behind passengers 120 137 102 122
MAE 1.5 4.1 2.8
RMSE 2.6 8.6 6.5

4. False Detection Rate: The percent of departing trains that are estimated to

leave behind passengers but have not, according to manual observations. This

value should be as close to 0 as possible.

There is an important distinction to make here, because there are two ways that

the model to identify trains leaving behind passengers can be used:

1. to estimate the number of trains that leave behind passengers, in which case we

only care about measure 1; or

2. to identify which specific trains are leaving behind passengers, in which case

measures 2 through 4 are important.

Depending on how the data will be used, application (1) or (2) may be more relevant.

For example, application (1) provides an aggregate measure of the number of trains

leaving behind passengers. Application (2), on the other hand, is what would be

needed to get toward a real-time system for identifying (even predicting) left-behind

passengers.

A comparison of the four measures is presented in Table 3.5 for the 30 trains that

departed North Station between 3:30pm and 6:30pm on January 31, 2018. Unscaled

video counts provide a good estimate of the number of trains that leave behind pas-

sengers (measure 1), but suffer from a low detection rate and high false detection rate.

Scaled video counts are poor estimators for the occurrence of left-behind passengers
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Table 3.5: Validation of estimated occurrence of left-behinds, January 31, 2018

Man.Count Unscaled Vid. Scaled Vid. M1 M3

Total Departing Trains 30 30 30 30 30
Trains with Left-Beh.Pax 10 10 27 8 6
Correct Ident. Rate 0.77 0.37 0.90 0.93
Detection Rate 0.25 1 0.80 0.80
False Alarm Rate 0.33 0.70 0.05 0

because they are high enough to trigger too many false detections. The modeled

estimates both perform well in approaching the actual number of trains leaving be-

hind passengers. Model 3 has the best performance for measures 2 through 4. It

never falsely identifies a train as leaving behind passengers, and it correctly detects

most occurrences of passengers being left behind. Like the count estimates above,

both Model 1 and Model 3 rely on the scaled video counts to estimate the number

of passengers waiting on the platform when the train doors open, so a fusion of TTR

records and automated video counts provide the most reliable measures.

3.8.2.3 Estimating distribution of experienced waiting times

Another application of the model is to consider the distribution of waiting times

implied by the estimated probabilities that passengers are left behind each departing

train. From the direct manual counts, a cumulative count of passengers arriving onto

the platform and of passengers boarding trains provides a timeseries count of the

number of passengers on the platform. If passengers are assumed to board trains

in the same order that they enter the platform, the system follows a first-in-first-out

(FIFO) queue discipline. Although it is certainly not true that passengers follow FIFO

order in all cases, this assumption allows the cumulative count curves to be converted

into estimated waiting times for each individual passenger. The FIFO assumption
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yields the minimum possible waiting time that each passenger could experience, and

the waiting time for each passenger can be represented graphically by the horizontal

distance between the cumulative number of passengers entering the platform and

boarding trains (see Figure 3.6 for data from November 15, 2017). The yellow curve in

Figure 3.12a represents the cumulative distribution of waiting times that are implied

by the observed numbers of passengers entering the platform if all passengers on the

platform are assumed to be able to board the next departing train. We call this the

expected waiting time. The blue curve in Figure 3.12a is the cumulative distribution

of waiting times if the number of left-behind passengers are accounted for when trains

are too crowded to board. We call this the observed waiting time, because it reflects

direct observation of passengers waiting on the platform using manual counts. The

distribution indicates the percentage of passengers that wait less than the published

headway for a train departure, which is the reliability metric used by the MBTA. For

the Orange Line during peak hours, the published headway is 6 minutes (360 seconds).

Currently, the MBTA is only able to track the expected wait time as a performance

metric. The difference between the yellow and blue curves indicates that failing to

account for left-behind passengers leads to overestimation of the reliability of the

system.

The models developed in this study provide the estimated probability that a pas-

senger is left behind each time the train doors close. In the absence of additional

passenger count data, a constant arrival rate is assumed over the course of the rush

period, the door closing times from TTR and the probability of passengers being left

behind from Model 3 can be used to estimate the cumulative passenger boardings

onto trains over time. Under the same FIFO assumptions described above, the dis-

tribution of experienced waiting times can be estimated based on train-tracking and

video counts. By this process a cumulative distribution of waiting times is estimated
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Figure 3.12: Distribution of passenger wait times considering comparison between
a) expected (without left-behind passengers) and observed (with actual left-behind
passengers), and b) observed and estimated (with estimated left-behind passengers)
distributions of waiting times, North Station January 31, 2018
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Table 3.6: Comparison of distributions of passengers wait time (seconds)

Cumulative Probability Observed Expected Abs.Error Modeled Abs. Error

0 0 0 0 0 0
0.1 44 35 9 49 5
0.2 81 69 12 87 6
0.3 118 103 15 124 6
0.4 162 140 22 162 0
0.5 207 188 19 202 5
0.6 254 236 18 246 8
0.7 294 281 13 302 8
0.8 369 344 25 369 0
0.9 457 444 13 466 9
1 693 693 0 718 25

Total 146 72

using probabilities from Model 3 is shown as a red curve in Figure 3.12b, which we

call the uniform arrivals modeled wait time. Table 3.6 includes the values of expe-

rienced waiting times for the observed, the expected, and the modeled distributions.

This table also shows how the accuracy of estimating waiting times can be improved

if we consider the actual arrival rate under the same assumptions used to develop

the uniform arrivals modeled wait time. We call this distribution the actual arrivals

modeled wait time. The Earth Mover’s Distance (EMD) is used to measure the

difference between the observed distribution and the expected, uniform arrivals and

actual arrivals modeled distributions (Rubner et al., 2000). As shown in Table 3.6,

the EMD for the expected case is much higher than the EMD for the modeled cases,

which indicates that the proposed model reduces errors.

The modeled distributions of waiting times closely approximate the observed dis-

tribution. This suggests that the estimated probabilities of passengers being left be-

hind each departing train are consistent with the overall passenger experience. The

percentage of passengers experiencing waiting times lower or equal to the 6 minute

published headway is 79% for both the observed and uniform arrivals model curve,
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and 77% for the actual arrivals model curve. The automated count of left behind pas-

sengers provides a close approximation of the actual service reliability when applied

to the independent data collected on January 31, 2018. The expected distribution,

which does not account for left-behind passengers produces an estimate of 81% of

passengers waiting less than 6 minutes. The expected distribution overestimates the

reliability of the system by failing to account for the waiting time that left-behind

passengers experience.

3.9 Summary

This Chapter investigates the potential for measuring the number of left-behind

passengers using existing data sources and automated passenger counts derived from

existing surveillance video feeds. The analysis of automated passenger counts is based

on the implementation of a fast, open-source algorithm called You Only Look Once

(YOLO) using existing training sets that identify people as well as other objects. The

performance is fast enough that frames from surveillance video feeds could potentially

be analyzed in real time.

Following a preliminary analysis of crowding conditions on the MBTA’s Orange

Line, data collection and analysis focus specifically on northbound trains at North

Station during the afternoon peak hours. Data was collected on two typical week-

days and confirmed that overcrowding is a common problem, even on days without

disruptions to service. This is an indication that the system is operating very near

capacity, and even small fluctuations in headways lead to overcrowded trains that

result in left-behind passengers.

Although video counts were not accurate in isolation, the development of mod-

els to use automated video counts with automated train-tracking records (Model 3)

demonstrate good results for different applications. In predicting the number of trains
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leaving behind passengers, the developed models can correctly identify whether or not

passengers were left behind for 93% of the trains. The number of passengers that are

left behind during the afternoon rush period can be estimated within 17% of their

actual number using only automated video counts and automatically collected train

tracking records. With actual counts of the numbers of passengers on the station plat-

form at each train arrival the model can predict the number of left behind passengers

with 2% of the actual number. Furthermore, the modeled distribution of experienced

waiting times reduces the total EMD error by more than 50% compared to the error

of the operator’s expected distribution, where left-behind passengers are not consid-

ered. This highlights the need of accounting for left-behind passengers when tracking

the system’s reliability metrics.
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4 OPERATING COSTS OF ON-DEMAND SYS-

TEMS

The focus of this Chapter is on non-fixed transit systems, and more specifically

on demand responsive paratransit systems, in order to identify challenges and oppor-

tunities resulting from the non-uniform distribution of requests. High operating costs

of paratransit services, highlight the need for research on identifying strategies for

their proper reduction. The research in this chapter is focused on developing a fast

and efficient method to identify whether there are trips that should be better served

by a TNC and, if yes, which are these trips exactly. The dataset used in this chapter

derives from the Massachusetts Bay Transportation Authority (MBTA) paratransit

service for the year 2017.

This Chapter is organized as follows. Section 4.1 presents an introduction to the

research topic. Section 4.2 describes existing aggregated models that can answer how

many paratransit trips, but not which trips specifically, should be better served by

TNCs. Section 4.3 includes the methodology that is proposed here in order to fill the

aforementioned gap in existing literature. The dataset used to implement the pro-

posed methodology is described in Section 4.4. Section 4.5 presents the results from

implementing the existing aggregated models, as well as the proposed methodology

using the given dataset. Special considerations related to this research are discussed

in Section 4.6. Finally, the summary of this part of the dissertation is included in

Section 4.7.

4.1 Introduction

The purpose of ADA paratransit is to provide service that complements con-

ventional fixed-route transit for people who are unable to use conventional buses,
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subways, or trolleys. According to existing literature presented in Section 2.4, rising

ridership with ADA paratransit services poses a challenge due to the high costs of

operation and transit agencies are seeking ways to reorganize operations and form

partnerships with alternative providers in order to contain costs while meeting rising

needs. Taxi companies have provided services to transit agencies under partnering

agreements for many years. In similar lines, partnering with TNCs is a potential

strategy investigated by transit agencies in an attempt to reduce the high operat-

ing costs of the paratransit service. For example, the National Transit Database

(NTD) estimates the average cost of a paratrasit trip in the greater Boston area as

high as $52.13 for 2017. This further enhances the crucial importance of developing

methodologies to quantify the value of public transit and TNCs collaboration.

Existing studies have focused on this or relevant topics, implementing different

approaches. The aggregated approaches (Rahimi et al., 2018; Turmo et al., 2018)

achieve to answer how many paratransit trips should be allocated to taxis or TNCs,

but are not detailed enough to determine which trips specifically. More exact methods,

as for example Toth and Vigo (1996) and Wong and Bell (2006), can perform well in

lower demand levels than the ones often met in big urban centers (e.g. Boston). The

use of a heuristic approach in this study allows the implementation of the method

to a dataset of more than 3,000 requested trips on a daily basis. The use of such

approaches in this research area is supported by Toth and Vigo (1997).

The dataset utilized here comes from the MBTA’s ADA paratransit service called

“The RIDE”, where a Pilot Program allows eligible riders to make subsidized trips

with ridesharing companies (Uber, Lyft, and Curb). The dataset includes detailed

records for the trips implemented during the year 2017, which we used for develop-

ing our proposed method. This study initially investigates the application of exist-

ing aggregated models in determining the shift of paratransit trips to TNCs. The
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methodology proposed here achieves a more detailed approach in answering which

trips specifically should be better served by TNCs. An important aspect for mak-

ing such decision, is to identify how well a requested trip fits with the other trips

in the service area. Thus, our study proposes a more detailed methodology, that

accounts for individual trips’ characteristics and most importantly for their spatio

- temporal relationship with the other requested trips through the quantification of

their marginal costs of service.

Finally, it needs to be highlighted that even though existing studies and public

debates prove that partnerships between transit agencies and TNCs have the potential

to provide large cost savings, we acknowledge that there are several critical challenges

that must be considered and addressed including legal requirements for ADA service

providers and the potential of inequitable provision of service. This study focuses

only on the technical challenge of determining the most cost effective way to organize

these arrangements.

4.2 Aggregate operations models

Models of aggregated VMT, VHT, and fleet size are based on geometric probability

and the resources needed to serve a density of demand over each operator’s service

area. The models are of the form introduced in Daganzo (1978) and Rahimi et al.

(2018). These models are based on simplifying assumptions about the distribution

of demand in each service regions and the operating algorithm for serving requested

trips. What the model lacks in detail and realism, it makes up for in providing an

analytical formula that physically relates explanatory factors to operational outcomes.

This approach is valuable, because only two parameters (one for the VMT model and

another for the VHT and fleet model) must be calibrated to fit the data. All the

other variables are measurable quantities.
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The aggregate model builds on the basic operating assumptions for a dial-a-ride

system presented in Daganzo (1978). Demand is uniformly distributed within a

roughly circular region with area A, and conditions do not change significantly within

an analysis time period. For this study, we break each day into time periods of length

tp, within which the demand rate, λ, and network traffic speed, v, are assumed to be

constant. At any time, all the demand within a pick-up window of duration T are

potential customers to pick-up. Each vehicle is assumed to operate by first picking

up the nearest waiting customers until the target vehicle occupancy, n, is reached.

Then, the vehicle alternates between dropping off the on-board customer with the

nearest destination and picking up the next nearest waiting customer. In this way,

the number of passengers on-board the vehicle is maintained at a near constant level,

and the vehicle is approximately minimizing distance and time traveled by always

proceeding to the next nearest stop.

4.2.1 Vehicle Miles Traveled (VMT) model

The total VMT operated within a time period is the sum of the distances trav-

eled to pick-up each requested trip and then to drop-off each requested trip. From

geometric probability, the average distance to the nearest of n uniformly distributed

points within an area of size A is:

E(d|n,A) =
r

2

√
A

n
(6)

where r is a unitless adjustment factor for the network that can be thought of as

the ratio between the actual network distance and the straight-line distance. The

distance traveled to pick-up a customer is associated with the nearest among λT

potential customers. The drop-off is associated with the nearest among n customers
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on-board. Therefore, the total VMT within an analysis period of duration tp is given

by

VMT = rVMT
1

2

(
1√
λT

+
1√
n

)
λtp
√
A (7)

where rVMT is the factor that is calibrated to fit the observed data for the region.

This model forms a linear relationship between the right-hand side expression and

the VMT, so the value of rVMT can be estimated using linear regression.

4.2.2 Vehicle Hours Traveled (VHT) model

The model for VHT is based on the VMT model in equation (7) with three

important changes. First, the distance traveled is converted to travel time by dividing

by the average network speed, v. Second, the time required for loading and unloading

each passenger, b, is added. Finally, the calibration factor is replaced by a new

parameter rV HT , which allows for the relationship between travel time variables to

differ from the relationship between travel distance variables.

V HT = λtp

[
b+ rV HT

1

2v

(
1√
λT

+
1√
n

)√
A

]
(8)

In theory, rV HT = rVMT if there is no wasted time or slack in the system schedule.

In practice we always expect rV HT > rVMT , and the degree to which they differ

provides some indication of how efficiently the system is operating compared to an

unachievable baseline. For estimation of rV HT , it can be useful to rearrange the terms

as follows:

V HT

tp
− λb = rV HT

1

2v

(
1√
λT

+
1√
n

)
λ
√
A (9)

where the slope relating the right-hand side expression to the left-hand side expression

is the calibrated value for rV HT .
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4.2.3 Fleet size (M)

The number of vehicles in operation is closely related to the VHT. Within a time

period, operations are assumed to be in roughly steady state conditions, meaning

that there are no peaks within each interval. In this case the fleet required during

each time period is

M =
V HT

tp
(10)

because each vehicle is assumed to be fully occupied for the entire time period. The

required fleet size for a region is the maximum fleet size required over the course of a

day, so the busiest time period determines the necessary resources.

4.2.4 Total operating and marginal cost

The total costs of operating a paratransit service are based on the magnitude

of the operational components that are modeled. These components correspond to

VHT, VMT, and M and the total cost model is expressed as follows:

TC = a0 + a1VMT + a2V HT + a3M (11)

where a0 are the fixed costs associated with setting up a paratransit operation in a

region, and a1, a2, and a3 are the incremental cost of each vehicle-hour, vehicle-mile,

and vehicle in the fleet. The actual costs to an agency depend on the details of the

operating contracts. On some level, however, the underlying costs of operating a DRT

service follow a pattern as shown in equation (11).

By replacing VMT, VHT and M in equation (11) with equations (7), (8), and

(10), we get an expanded total cost equation. The first derivative of this equation

with respect to λ is the marginal cost of the paratransit service. Considering λ as the
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total daily demand, we can express the marginal cost as follows:

MC(λ) =
a1tprVMT

√
A

2

(
1

2
√
λTtp

+
1

tp
√
n

)
+

(a2tp + a3)

[
b

tp
+
rV HT

√
A

2v

(
1

2
√
λTtp

+
1

tp
√
n

)] (12)

If a trip can be served by alternative providers at a lower cost, then its allocation

to them leads to lower total cost for the paratransit service. By implementing this

process repeatedly, we can define the number of trips that should be shifted to taxis

or TNCs, if any. More details on allocating trips to paratransit service or taxis/TNCs

using the aggregate models mentioned above are included in Turmo et al. (2018). In

this study, the authors utilized the aggregate model to identify the number of trips

that should be shifted to alternative providers to minimize the combined cost of the

system.

4.3 Proposed algorithm

The aggregate operations model described above provides unbiased estimates of

the total operating parameters associated with serving a level of demand in a service

area. These totals are useful for estimating the total monthly or annual costs of

operations, but the model is not sensitive to specific variations in the timing and

location of requested trips. By its very nature, the aggregate model treats all trips

as equivalent components of the total demand λ.

In order to decide which trips to allocate to alternative providers versus keep

on the ADA van service, it is necessary to estimate the marginal cost of each ADA

paratransit trip and the corresponding cost of service by the other provider. In order

to do this, the specific routing of vehicle must be known so that the incremental
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effect on cost of unilaterally eliminating each requested trip can be calculated. The

trip records provide information about the actual vehicle routes that are operated

each day, but the task of allocating all trips requires the routes can be incrementally

re-optimized each time a requested trip is shifted to a taxi or TNC.

The following subsections present a proposed approach to quickly create a routing

plan for vehicles based on a set of actual trip requests in the region. Then the marginal

cost of each trip is estimated for each trip as a result of this routing and compared

against the estimated taxi or TNC fare of the same trip. The trip with the greatest

cost benefit for switching is removed from the pool of ADA trips, and the routes

are re-optimized. In this manner, trips are incrementally shifted to the alternative

provider until no cost savings can be achieved. It is possible that all trips should

ultimately be shifted to taxis or TNCs or that some subset of the total ADA demand

should shift. This approach is designed in such a way that the algorithm could be

run daily as part of the vehicle routing solution.

4.3.1 Algorithm to construct representative routes

A fast algorithm is needed to construct the hypothetical vehicle routes, because

the procedure will be run iteratively each time a trip is allocated to taxis or TNCs.

Such an algorithm for constructing routes is a Greedy Algorithm, which is a heuristic

in which each vehicle route is constructed in sequence by choosing among available

trips that result in the most efficient route. The paratransit trip configuration consid-

ered in this study is illustrated in Figure 4.1. As shown in this figure, the simplifying

assumptions made here are that each vehicle is serving one passenger per ride and pas-

sengers experience zero waiting times before service. More specifically, the algorithm

works as follows:

1. Daily trip data within a region is sorted chronologically by requested time.
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2. The first vehicle route starts from the first requested trip of the morning. As-

suming the first pick-up is on-time, the arrival time at the drop-off location is

estimated based on the straight-line distance factored up by the network circu-

ity factor and divided by the average network speed. Upon drop-off, the vehicle

becomes available to serve the next customer.

3. The time to serve each other unserved pick-up request is calculated by adding

together the estimated travel time (straight-line distance factored up for net-

work circuity and divided by average speed) and then additional waiting time

until the requested pick-up time. Any trips that could only be served with neg-

ative waiting time are eliminated as infeasible next pick-ups. The trip with the

shortest time from drop-off to pick-up is selected as the next trip in the route.

4. Steps 2 and 3 are repeated until one of two constraints are reached: the duration

of the route has reached the maximum length of a shift (if such a constraint is

desired), there are no more trips at the end of the day left to serve.

5. Steps 2, 3, and 4 are repeated to construct each route until there are no unserved

trip requests left.

6. Using garage location data, the distance and travel time associated with assign-

ing a vehicle to the route from each existing garage is estimated. This distance

and time is the dead-head to get the empty vehicle from the garage to its first

pick-up and from the last drop-off to the same garage. The cost associated with

the distance and time is estimated, and the garage associated with the lowest

cost is assumed to supply the vehicle for the route.

7. The daily totals for VMT, VHT, and the required fleet size are calculated from

these constructed trips in the same manner used for the actual vehicle routing
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plan. The Greedy Algorithm’s operating characteristics should be compared

with historic operations and proper calibration should be implemented, if pos-

sible.

2 3 4 5

Garage location

Pick-up location

Drop-off location

trip to pick-up

trip to drop-offloading unloading

1

waiting

trip from garage trip to garage

Idle time

Travel time Arrival time

Requested time

Departure time

1 4

2

3 5

Figure 4.1: Paratransit trip configuration

4.3.2 Estimation of marginal cost of each trip

4.3.2.1 Marginal cost of each paratransit trip

The total paratransit costs of serving the daily demand are estimated based on

equation (11), so they are considered a function of fleet size, VHT and VMT. The

marginal cost of each trip is estimated by considering the effect of unilaterally remov-

ing the trip on the remaining costs of operations. Each trip falls into one of three

cases, each having different degrees of impact on operations and cost.

• Type 1 – Trips that are in a route that contains only that trip are the costliest.

Eliminating the trip reduces the required fleet size by 1 vehicle; eliminates the

VMT associated with going to pick-up, drop-off, and loaded travel in-between;

and eliminates the VHT associated with the route. These trips have a very high

marginal cost, because reducing the number of vehicles in the fleet saves a lot of
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money. Type 1 trips are associated with the peak demand times during which

all other vehicles are occupied, and an additional vehicle must be brought into

service to serve a single requested trip.

• Type 2 – Trips that are at the beginning or end of a route have a moderate cost.

Eliminating a Type 2 trip does not affect the fleet size, but it does eliminate

the VMT associated with serving the trip and reduces the VHT by allowing

the vehicle to start operating later or stop operating sooner. Once all of the

Type 1 trips have been eliminated, Type 2 trips are the most likely to have high

marginal cost.

• Type 3 – Trips that are served in the middle of a route typically have the lowest

cost, because eliminating the trip only affects VMT. The fleet size and VHT

is unchanged because the vehicle must still be out in operation to serve the

preceding and following trip. The effect of removing a Type 3 trip is only the

change in VMT associated with deviating the vehicle’s route for the pick-up,

to carry the passenger, and after drop-off. This saving is offset by the distance

that would have been traveled anyway from the previous drop-off to the next

pick-up.

4.3.2.2 Cost of taxi and TNC trip

The proposed algorithm can be implemented for both taxis and TNCs as potential

alternative providers of the paratransit trips. The part that needs update depending

on the case is the definition of the alternative service’s cost function. Taxis are part

of an industry with many private operators providing services. The fares are charged

according to a regulated cost function based on distance and time. The average cost

81



of a paratransit trip served by taxi is given by:

Ftaxi = β0 + β1l + β2d (13)

where l is the length of the trip (in miles) and d is the delayed time experienced (in

minutes). Proper average cost coefficients β0 ($) for fixed cost, β1 ($/mi) for the trip

length and β2 ($/min) for the trip distance can be identified by analyzing historic

data or through existing literature and online sources.

The cost of serving a trip by TNC varies depending on the specific service provider,

time of day, and length of trip. It is not possible to know exactly what the trip will

cost, because prices can fluctuate in real-time in response to the relative supply and

demand (dynamic or surge pricing). The basic TNC fare is relatively consistent. A

TNC cost function is the following:

FTNC = max{fmin, γ0 + γ1l + γ2t} (14)

where l is the trip length (in miles) and t is the trip time (in minutes). TNC fares

are usually structured so that a minimum amount, fmin ($), is charged no matter

how short or fast the trip is. Proper average cost coefficients γ0 ($) for fixed cost, γ1

($/mi) for the trip length and γ2 ($/min) for the trip time are available online for

every TNC and for different regions. As in the case of taxis, average values available

online could be replaced by a more detailed analysis of trip costs based on historic

data, if such data are available. In most cases, cost data are not available for this

type of transportation service.
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4.3.3 Procedure to allocate trips to paratransit or taxi/TNC

Equipped with a method to estimate the marginal cost of each trip on the ADA

paratransit service and the cost of the subsidy to serve it with a taxi or TNC, the

trips with the greatest benefit of shifting to another provider can be identified. The

procedure for optimally allocating trips is as follows.

1. Group all of the requested ADA paratransit trips in a region into routes using

the algorithm described in Section 4.3.1.

2. Identify the trip with the greatest estimated cost saving associated with a switch

to service with a taxi or TNC using the cost calculations presented in Sec-

tion 4.3.2. The net marginal costs, MCnet, are calculated as shown below:

MCnet = MCp −MCtaxi/TNC (15)

where MCp is the marginal cost of the trip if served by the paratransit vans

and MCtaxi/TNC the marginal cost of the trip if served by a taxi/TNC.

3. Eliminate the trip from the pool of requested ADA paratransit trips and re-

peat steps 1 and 2. Each time updating the total cost estimate for the ADA

paratransit operations and adding the cumulative cost of all of the trips shifted

to alternative provider. This process can be repeated until there are no trips

remaining on the ADA paratransit service.

In order to implement the proposed methodology, both historic and daily acquired

data are required. In terms of historic data, the average network speed (mph) and

the average loading and unloading times (min) are needed. These values can be esti-

mated either on a daily or a time-period-specific basis, depending on the impact that
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this is expected to have on the performance of the model. Proper cost coefficients for

both the paratransit and the taxi/TNC operation need to be identified. If garages

are considered in the route scheduling, then their location coordinates (latitude, lon-

gitude) should be known. Regarding the demand related information, the operators

should know the exact requested time of the trip (hh:mm:ss), as well as the origin

and the destination coordinates (latitude, longitude). Each trip’s expected length

and duration can be estimated either analytically (e.g., straight line distance from

coordinates properly calibrated) or through available tools.

In practice, the total cost to the agency is minimized when it is no longer possible

to save money by transferring trips from ADA paratransit to the taxi/TNC. Although

it may appear at the first iteration that there are many ADA trips with very low

marginal cost, this incremental approach shows how this cost increases as other trips

are removed. As Type 2 trips are removed from a route, formerly Type 3 trips become

new Type 2 trips. Eventually, when one trip is left in the route, it becomes a costly

Type 1 trip. This means that the marginal cost of each trip depends on all of the

other demand that is served. Trips that appear to be very cost efficient with one

set of demand may become very costly as the trips around are shifted to alternative

providers.

The final challenge is that it may not be possible to shift all trips to TNCs either

because the vehicles are not accessible to some customers or because some customers

are reluctant to use an alternative service provider. In this case, the same procedure is

implemented with the difference being that only feasible trips are actually eliminated

from the pool of requested ADA paratransit trips and shifted to TNCs. The process

of shifting trips must then stop when no feasible trips remain. Figure 4.2 summarizes

the proposed algorithm in a flow chart format.
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START

1. Collect Required Data

2. Construct Routes

3.a. Estimate MC of Paratransit trips     
(𝑀𝐶𝑝)

3.b. Estimate MC of taxi/TNC trips
(𝑀𝐶𝑡𝑎𝑥𝑖/𝑇𝑁𝐶)

4. Rank trips in order from greatest to 
least 𝑀𝐶𝑛𝑒𝑡

END

Yes

No

5. Switch top ranked trip to taxi/TNC, 
removing it from the paratransit dataset

6. Are there any 
trips remaining?

7. Identify set of trips associated with 
minimum total costs, if assigned to 

taxi/TNC

Figure 4.2: Flow chart of proposed methodology

4.4 Study site

There are two main types of data on which the models and analyses in this study

are based. First, customer records from the MBTA provide demographic information
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about each eligible paratransit customer which can be used to associate travel patterns

with personal characteristics such as age and type of disability. Second, detailed

records from each ADA paratransit trip served include the locations and times of

each passenger pick-up and drop-off as well as identification of the vehicle or route

that served each trip. This data not only shows the temporal and spatial distribution

of ADA paratransit trips, it can also be used to reconstruct the vehicle routes, which

reveals the operations associated with serving the demand.

4.4.1 Description

The MBTA operates public transit services throughout Greater Boston, Mas-

sachusetts, including buses, light rail, heavy rail, commuter rail, electric trolleybuses,

and ferries. The RIDE is generally available to customers with eligible disabilities and

between the hours of 5 AM and 1 AM daily. It is typical of many ADA paratransit

services across the United States in that operation of vehicles is provided by private

operators under contract to the MBTA. During the year 2017, four different providers

operated the system under contract. In this study we analyse the results from the

three largest of them. The service area is divided in three subregions (North, West,

South) which overlap forming a shared area. For the purposes of this study, we name

“Provider 1” the provider that served North region before June 2017, “Provider 2”

the one who operated in West region during the entire year and “Provider 3” the one

that operated partly in South region before June and fully on North and South region

after June. The shared area is considered in all three cases. Figure 4.3 illustrates the

operating areas for each provider where garages are represented by black squares.

Although the ADA only requires that paratransit service be made available within

3/4 of a mile of MBTA bus and subway stops, the MBTA makes The RIDE available

to customers throughout 58 towns and cities in Greater Boston. This is common
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(a) January 2017 (b) October 2017

Figure 4.3: MBTA paratransit service’s monthly pick-up requests and garage locations

for many agencies, because the 3/4 of a mile boundary can exclude many important

origins and destinations in a region, limiting access for customers who may not have

other options for travel. A distinction is made in the fares charged:

1. Local ADA one-way fare for trips with origin and destination within 3/4 mile

of an MBTA bus or subway stop is $3.15.

2. Premium one-way fare for trips with an origin and/or destination further than

3/4 mile from an MBTA bus or subway stop is $5.25.

The MBTA is implementing a pilot that allows customers to perform subsidized

trips with TNCs. The fare policy considered in this study is to charge the first $2

to the pilot participant and pay the next $40 of fare. Since the travel time and

network distance have been calculated for every requested trip and reported in the

trip database, estimation of the subsidy for each trip is a straightforward calculation
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using equation (14) and subtracting $2 for each trip. The respective parts of the

proposed methodology can be very easily adjusted to this fare policy.

4.4.2 ADA paratransit customer data

The database of eligible customers for The RIDE contains records for 40,721

individuals. Personal identifying information is not necessary for the analysis of this

study, but the following data fields were available:

1. Customer ID – A unique number is assigned to each eligible ADA customer.

This ID allows us to track the trips that each individual makes and relate those

trips to other customer characteristics.

2. Date of Birth – The customer’s date of birth allows us to calculate age, which

has the potential to be an explanatory factor for travel behavior.

3. Home ZIP Code – The zip code for each customer’s registered home address

provides an indication of where customers reside and where many of their trips

are likely to start or end.

4. Disability – The qualifying disability or disabilities associated with customer

are recorded, and these have the potential to be explanatory factors for travel

behavior.

5. Equipment – In addition to customer disabilities, the type or types of equip-

ment that the customer uses is listed. This includes mobility devices such as

wheelchair, power chair, scooter, walker, cane, etc. This is also the field where

specific vehicle requirements are listed, such as requirement of a lift or service

only with a van. This field is particularly important for identifying which cus-
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tomers are ambulatory and which customers require a Wheelchair Accessible

Vehicle (WAV).

4.4.3 The RIDE trip records

In addition to records about each customer, the MBTA maintains a database of

all The RIDE trips. These records include a detailed accounting of where and when

each customer travelled, and which vehicle or route was used to serve them. For this

study, the MBTA provided the research team with all 4,012,592 trip records from

January 2016 (prior to the Pilot’s start in October 2016) through March 2018. Each

trip record includes the following data that is used in the analysis:

1. Trip ID – Each trip is uniquely identified by an ID.

2. Customer ID – The ID for the customer requesting the trip allows each trip to

be linked to the specific customer characteristics in the customer data table.

3. Trip Date – The calendar date of each requested, scheduled, and served trip.

4. Subscription – Customers that make regular trips (e.g., to and from work) are

able to request their trip as a subscription rather than having to call in the same

request over and over again. This data field indicates the ID of the associated

subscription, if applicable.

5. Provider – Each trip is served by a private operator that works under contract

with the MBTA. This field indicates which provider serves the trip. This pro-

vides an indication of the region in which the trip is assigned, because each of

the three regions is initially served by a different provider. Some reorganiza-

tion during the time period of observation has resulted in changing geographic

coverage for each provider.
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6. Pick-up Location – The address and latitude/longitude coordinates of the re-

quested pick-up location are recorded. This is used (along with the drop-off

location) to determine if the trip is within the required ADA service area or

in the broader “premium” service region in which the ADA does not require

service.

7. Drop-off Location – The address and latitude/longitude coordinates of the re-

quested drop-off location. This is used along with the pick-up location to cate-

gorize trips.

8. Origin-Destination Network Distance – The estimated driving distance from the

pick-up location to the drop-off location is recorded, assuming the trip can be

served as a direct ride without intermediate stops. Ultimately most trips are

served directly in this manner, but some vehicles are routed to share multiple

rides, so the actual distance travelled by a customer may be somewhat greater.

9. Estimated Trip Time – Based on the location and time of day of the pick-up

and drop-off, a travel time estimate is generated by the scheduling software for a

direct trip following the network distance above. This is a travel time estimate

that may be greater or less than the actual travel time for the passenger.

10. Requested Pick-up Time – This is the time that the customer initially requested

to be picked up by The RIDE.

11. Promised Pick-up Time – This is the time that The RIDE offered to the cus-

tomer during the booking process. Customers are expected to be prepared to

board the vehicle from 5 minutes before to 15 minutes after the promised time.

12. Arrival Time at Pick-up – This is the time that the vehicle arrived at the pick-

up address. As described above, the vehicle is intended to arrive between 5
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minutes before to 15 minutes after the promised pick-up time. Any arrival after

this time window is considered to be late.

13. Departure Time from Pick-up – This is the time that the vehicle departs the

pick-up location. The difference between the departure time and the arrival

time at pick-up is the time that the driver waits for the customer to get ready

and to get into the vehicle.

14. Arrival Time at Drop-off – This is the time that the customer actually arrives

at his or her destination. The difference between the arrival time at drop-

off and the departure time from pick-up is the time that the customer spends

traveling in the vehicle, including any intermediate stops. For trips that are

served without intermediate stops, this elapsed time can be used with the origin-

destination network distance to calculate the average speed of the vehicle in the

network.

15. Vehicle ID or Route ID – Depending on the month, the data set includes a

field for the vehicle ID or route ID. Within a day, all trips with a common

vehicle/route ID can be grouped to identify the actual vehicle routing. By

linking together trips in this way, the actual operations of all The RIDE vehicles

can be deduced in terms of the total number of vehicles operating, VHT, and

VMT.

4.4.4 Relevant explanatory variables

In order to develop and calibrate the aggregated models, as well as to perform the

proposed methodology, all necessary explanatory variables related with the operation

of the paratransit service need to be calculated. For the purpose of this analysis, we

consider time periods of length tp = 3 hours, which results in 5 time periods per day:
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6AM–9AM ; 9AM–12PM ; 12PM–3PM ; 3PM–6PM ; and 6PM–9PM . Very few

trips are completed outside of these hours, and they are not considered neither for

the calibration of the aggregate operations modeling nor the proposed methodology.

Annual average values by operator, day of week, and time of day are included in

Table 4.1. Even though the average values used in our study were calculated on

a monthly and daily basis, the values included in the table present the expected

magnitudes of each variable for each provider.

The percentage of total time by number of passengers onboard is shown in Fig-

ure 4.4. The three providers are similar, and vehicles in all regions spend most of

their time without any passengers onboard at all. Although the vans are observed

to carry as many as 8 passengers, the vehicles are rarely loaded with more than one

passenger at a time. This observation highlights that the simplifying assumption of

developing a routing strategy with maximum one passenger onboard is not far from

what is in reality implemented by the MBTA.
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Figure 4.4: Percentage of total time by number of passengers onboard for MBTA
paratransit service
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The unloading time is not observed, because only records of vehicle arrival time at

the drop-off location are available. A working assumption is that the unloading time

is one third as long as loading, because drivers do not have to wait for customers to

get ready and come out to the vehicle. Without including the shared area, the service

area, A, for the North is 211.8 mi2, for South is 330.1 mi2 and for West 216.6 mi2.

The shared area is 64 mi2. Finally, for The RIDE, the policy is to pick-up customers

within a 20 minute window, T , from 5 minutes before the scheduled pick-up time to

15 minutes after.

4.4.5 Observed operational outputs

Considering a vehicle’s travel between consecutive stops as a segment, the straight-

line distance associated with each segment is calculated based on the difference of

latitude and longitude of the coordinates. Trip segments that correspond to a single

customer’s travel directly from pick-up to drop-off have a corresponding network

distance reported in the data set. By comparing the straight-line distance and the

network distance for these segments, a network circuity factor can be estimated.

When multiplied by the straight-line distance, this factor provides an estimate of the

actual network distance traveled. Figure 4.5 illustrates the estimation of this factor

for each provider’s service area. Using these factors for all trip segments that their

network distance is not reported in the dataset, the calculation of VMT could be

completed. A summary of the average VMT and VHT per three-hour time period by

operator, day of week, and time of day is summarized in Table 4.2.
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Table 4.1: Average values of relevant explanatory variables

Time Period Provider 1 Provider 2 Provider 3
Weekday Weekend Weekday Weekend Weekday Weekend

Average Loading/Unloading Time, b (min/passenger)

6 AM – 9 AM 5.03 5.25 7.48 8.82 6.33 7.40
9 AM – 12 PM 5.37 5.65 8.13 8.91 6.95 7.22
12 PM – 3 PM 6.19 6.27 9.26 8.55 8.28 7.70
3 PM – 6 PM 6.59 6.62 9.30 9.62 8.10 8.41
6 PM – 9 PM 6.76 6.93 9.38 10.13 9.00 9.13

Average Vehicle Occupancy, n (passengers/vehicle)

6 AM – 9 AM 1.46 1.24 1.41 1.20 1.47 1.26
9 AM – 12 PM 1.35 1.33 1.27 1.22 1.31 1.28
12 PM – 3 PM 1.38 1.29 1.35 1.23 1.40 1.29
3 PM – 6 PM 1.49 1.31 1.41 1.22 1.50 1.30
6 PM – 9 PM 1.28 1.26 1.25 1.18 1.28 1.27

Average Network Speed, v (miles/hour)

6 AM – 9 AM 15.56 22.06 15.13 20.21 16.03 21.85
9 AM – 12 PM 17.83 18.69 15.57 16.50 17.60 18.48
12 PM – 3 PM 17.29 17.70 15.56 15.96 16.74 17.41
3 PM – 6 PM 14.69 18.19 13.05 16.67 14.01 17.86
6 PM – 9 PM 19.36 20.80 16.54 19.42 18.83 20.91

Average Demand, λ (trips/hour)

6 AM – 9 AM 128 43 146 41 191 71
9 AM – 12 PM 183 92 165 72 256 131
12 PM – 3 PM 181 82 188 70 262 119
3 PM – 6 PM 118 56 126 50 173 81
6 PM – 9 PM 35 27 35 23 52 41
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Figure 4.5: Network versus straight-line distance for a) Provider 1, b) Provider 2, c)
Provider 3 service area

4.5 Results

4.5.1 Aggregate model of The RIDE paratransit operations

The calibration of VMT and VHT using equations (7) and (9) resulted in rVMT

and rV HT factors, which are included in Table 4.3. Note that in all cases the value of

rV HT > rVMT , and the difference is greater during time periods when demand is lower.

Also, the model fit as represented by the R2 values is lower for rV HT than for rVMT ,

especially at times with lower demand. This is an indication of greater variability in

the data, which leads to greater uncertainty in model estimates. Regarding the fleet

size, it is directly related to VHT, so the same model outcomes are used to estimate

the number of vehicles using equation (10).

95



Table 4.2: Average VMT and VHT by time of day, 2017

Time Period Provider 1 Provider 2 Provider 3
Weekday Weekend Weekday Weekend Weekday Weekend

Average Vehicle Miles Traveled per Time Period, VMT (veh-mi)

6 AM – 9 AM 2399 857 2267 644 3713 1455
9 AM – 12 PM 3093 1581 2299 1008 4378 2262
12 PM – 3 PM 3118 1478 2814 1051 4757 2205
3 PM – 6 PM 2091 1072 1976 817 3324 1641
6 PM – 9 PM 705 618 572 442 1125 975

Average Vehicle Hours Traveled per Time Period, VHT (veh-hr)

6 AM – 9 AM 419.6 165.9 460.4 167.8 617.1 277.1
9 AM – 12 PM 538.6 268.8 481.2 209.4 799.7 394.6
12 PM – 3 PM 529.4 270.1 541.9 232.7 880.8 444.0
3 PM – 6 PM 405.1 201.3 469.1 194.9 646.2 324.3
6 PM – 9 PM 151.2 101.3 148.1 96.1 269.6 181.9

Without detailed cost information from the MBTA’s operators, it is necessary to

make cost estimates based on data from other operators. For the purposes of this

study, we use cost factors estimated from the PVTA in Springfield, Massachusetts

(Turmo et al., 2018):

• Cost per Vehicle Mile of Operation, a1 = 0.518 $/veh ·mile;

• Cost per Vehicle Hour of Operation, a2 = 19.89 $/veh · hour;

• Cost per Vehicle, a3 = 150.81 $/veh · day or 55, 046 $/veh · year (fleet size cost)

Regarding the TNC cost function, we identified online the cost coefficients for

one of the currently available TNCs in the area of Boston. The respective TNC cost

function is described as:

FTNC = max{6.85, 3.95 + 0.88l + 0.36t} (16)

where l is the trip length (in miles) and t is the trip time (in minutes). This TNC’s
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Table 4.3: Modeled values of rVMT and rV HT by time of day, 2017

Time Period Provider 1 Provider 2 Provider 3
r R2 r R2 r R2

Modeled value of rVMT

6 AM – 9 AM 1.08 0.98 0.88 0.99 0.77 0.99
9 AM – 12 PM 1.14 0.98 0.94 0.98 0.78 0.99
12 PM – 3 PM 1.09 0.98 0.87 0.99 0.75 0.99
3 PM – 6 PM 1.11 0.97 1.06 0.98 0.84 0.98
6 PM – 9 PM 1.24 0.88 0.98 0.87 0.90 0.95

All times 1.11 0.99 0.92 0.97 0.78 0.98

Modeled value of rV HT

6 AM – 9 AM 1.95 0.92 1.71 0.94 1.32 0.94
9 AM – 12 PM 1.92 0.93 1.50 0.96 1.33 0.97
12 PM – 3 PM 1.85 0.94 1.52 0.96 1.37 0.96
3 PM – 6 PM 1.89 0.94 1.69 0.95 1.32 0.96
6 PM – 9 PM 2.60 0.85 2.11 0.87 2.12 0.92

All times 1.91 0.95 1.59 0.95 1.36 0.95

fares are structured so that a minimum of $6.85 is charged no matter how short or

fast the trip is. The proposed algorithm is structured such that any TNC or taxi

cost can be easily incorporated and further studied. Our purpose is not to evaluate

the performance of a specific TNC, but to identify the efficiency of our method in

allocating trips, no matter who is the alternative provider.

By implementing the results of our analysis into the marginal cost function derived

from the aggregate models, we get the graph shown in Figure 4.6. Data from January

23, November 14 and October 17 were respectively used for Provider 1, Provider 2

and Provider 3. Comparing the marginal cost of the paratransit service with respect

to demand shifted to TNC to the TNC costs associated with the requested trips, we

observe that there is no point of intersection between the two systems (i.e., paratransit

service and TNCs). Thus, a combined system would not be efficient. Moreover, since

the TNC costs are lower than the paratransit service’s, it is evident that the allocation
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of all requested trips to TNCs would be beneficial, if that was practically feasible.

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

C
o

s
t 

p
e

r 
tr

ip
 (

$
/t

ri
p

)

Number of trips assigned to TNC (trips)

Marginal Cost

TNC Cost

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500

C
o

s
t 

p
e

r 
tr

ip
 (

$
/t

ri
p

)

Number of trips assigned to TNC (trips)

Marginal Cost

TNC Cost

(a)

(b)

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000 3500 4000

C
o

s
t 

p
e

r 
tr

ip
 (

$
/t

ri
p

)

Number of trips assigned to TNC (trips)

Marginal Cost

TNC Cost

(c)

Figure 4.6: Marginal cost of the paratransit service with respect to demand shifted
to TNC and the TNC cost for a) Provider 1, b) Provider 2, c) Provider 3 service area
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4.5.2 Optimized allocation of trips to paratransit and TNCs

The first step in this part of the study is to implement the routing algorithm for

several weekdays and for all providers and then compare the estimated VHT and

VMT with their actual values during those days. Although the Greedy Algorithm

does not exactly match the observed operations, the model produces estimates that

are proportional. Figure 4.7 shows the results of calibrating the outputs of the Greedy

Algorithm for the first 10 weekdays of January 2017, for North region (provider 1).

The R2 is higher than 90% in both cases, indicating a good fit. Similar results are

achieved for the other two providers. Such calibration allows for having more realistic

operating values for our method’s implementation, partly reducing the errors caused

by the simplifying assumptions of having maximum one passenger onboard and that

passengers do not experience waiting times before service.
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Figure 4.7: Calibrating greedy algorithm’s outputs for a) VHT and b) VMT in the
North Region during January 2017

The implementation of the entire optimal allocation methodology for each provider

is shown in Figure 4.8 (blue curve). The horizontal axis indicates the cumulative

number of trips shifted to TNCs and the vertical axis is the total agency cost, including

subsidies paid for TNC trips. The days selected for application are the same as the

ones used in Figure 4.6 for every provider. The costs drop most dramatically for
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the first few trips as inefficient routes serving peak demand are eliminated. For the

particular dates selected, and the cost parameters used, the agency costs continue

to decline until all demand has been shifted to TNCs. In this case, the lowest cost

is achieved by shifting all trips from ADA paratransit to TNCs, thus confirming the

conclusion from the aggregate models implementation presented above.

Also in this figure, the effect of shifting trips strategically to TNCs is compared

with alternative patterns. First, the effect of allocating trips using their TNC cost

as criterion is investigated (orange curve). As we can see, the costs still decline, but

not as efficiently as using the estimated marginal costs. Second, the effect on total

cost of randomly shifting trips was calculated for 10 realizations for Provider 1. The

mean and 95% confidence interval based on these realizations is shown in gray. It is

noteworthy that all cases have a general downward trend in cost. Therefore, total

costs are expected to decline with increasing utilization of TNCs, at least with the

estimated cost parameters.

4.5.2.1 Marginal cost of paratransit trips

The proposed algorithm is first implemented on the entire set of requested ADA

trips for January 23, 2017, in the North region. By sequentially generating vehicle

routes, the marginal cost of each trip is estimated and compared with the fare that

would be charged if the trip were served by a TNC (based on TNC’s fare structure).

Figure 4.9 shows the distribution of the net marginal cost of each trip based on the

estimated cost savings from shifting the trip away from The RIDE, MCp, offset by

the estimated cost of the TNC fare, MCTNC . The net marginal costs are calculated

as shown in equation (15).

A positive value in Figure 4.9 indicates that the marginal cost of paratransit
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Figure 4.8: Comparison of costs by incrementally shifting trips to TNC under different
patterns for a) Provider 1, b) Provider 2, c) Provider 3 service area
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Figure 4.9: Distribution of estimated marginal costs for all trips, North, January 23,
2017

operations exceeds the expected TNC fare, and shifting the trip would save money.

A negative value indicates that the expected TNC fare would exceed the marginal

operating cost. The greatest values are for the small number of Type 1 trips for

which an extra vehicle is needed to serve a single trip. Many trips with negative net

marginal costs are the Type 3 trips within a route, which can be served at relatively

low cost by the ADA fleet, because the vehicles are already out on the road.

By the proposed algorithm, the costliest trip should be shifted to a TNC, and

then the routing process must be recalculated to estimate the new marginal costs.

Therefore, trips with low (or negative) net marginal cost at the first iteration may

become more beneficial contenders for shifting to TNCs as the routes change.

4.5.2.2 Shifted trips characteristics

It is also useful to look at the characteristics of the trips that are shifted. For

example, the distribution of shifted trips by requested pick-up time is shown in Fig-
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ure 4.10. Each curve in the figure shows the distribution of trip start times after a

number of trips have been shifted to TNCs in the optimized order. The curve for all

trips represents that existing case that all demand is served by The RIDE, and this

curve exhibits two distinct peaks: a late morning peak at 11 AM and an afternoon

peak at 3 PM. The first 250 trips to be shifted from The RIDE to TNCs are mostly

Type 1 trips from the peak of the peak and Type 2 trips from the end of the day.

The effect of removing these trips is to flatten the peaks and drop demand faster at

the end of the day (as shown by the curve labeled “250 Removed”). As trips are

sequentially removed, the resulting demand pattern for The RIDE is a more uniform

distribution, which allows vehicles to be used more consistently throughout the day.
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Figure 4.10: Distribution of remaining ADA paratransit trips by time of day, Provider
1, January 23, 2017

A second analysis of the shifted trips is to look at the geographic locations of

shifted trips within the region. Figure 4.11 shows a series of maps of the North and

Shared regions, served by Provider 1 during January 2017. Each map shows the towns

with requested trip pickups, and the colors indicate the percentage of requested trips
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that are selected to shift to TNCs. Gray color is used to indicate towns with no pick-

up requests. There is not an obvious geographic pattern to the trips being removed,

because trips in the suburbs and in the city center are selected for removal at each

stage. In general, there seems to be a trend to eliminate suburban trips sooner than

Boston city center trips. This is expected, because the requested trips in the suburbs

tend to be longer in distance and more spread apart, which makes them costlier to

serve with the ADA vans.

Figure 4.11: Percent of trips shifted to TNCs per town considering a) 100 first removed
trips, b) 200 first removed trips, c) 300 first removed trips, d) 400 first removed trips,
and e) 500 first removed trips for Provider 1, Jan. 23, 2017
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4.6 Discussion

4.6.1 Special equipment

It is not always possible (or desirable) to shift all trips to taxis or TNCs. Part

of this may be due to general attitudes or preferences regarding the modes, but

the evidence suggests that customers with wheelchairs, power chairs, scooters, or

other devices requiring a Wheelchair Accessible Vehicle (WAV) with a lift are unable

or uncomfortable using a taxi or TNC. Applying the same procedure for optimally

allocating trips to TNCs while leaving all wheelchair and lift customers on ADA

paratransit, the red curve in Figure 4.12 shows the sequence of changing costs. During

the day of January 23, 2017 that is presented in this figure, 250 out of the total 1,800

customers in North region used heavy equipment and, thus, could potentially have

difficulties in using alternative providers.
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Figure 4.12: Change in cost by incrementally shifting trips with greatest net marginal
cost to TNC, North, January 23, 2017

Overall the pattern in the red curve is similar to the blue curve, with a steep initial
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decline in agency costs associated with eliminating the most inefficient routes during

peak demand. Then the cost savings accrue more slowly and the effect of shifting

trips levels off before all of the feasible trips have been shifted. The prevailing pattern

is still that costs are minimized when as many trips as possible are shifted to TNCs

(although this may not necessarily happen in all regions with all demand patterns).

In this case, because there are some customers that must always be served by the

ADA paratransit van fleet, there is a small number of general trips that can be more

efficiently served by the vans in combination with the other trips than shifting to

TNCs.

Other concerns regarding users with heavy equipment refer to the higher loading

and unloading times that they might require. Our efforts in this study were put in

developing a fast and efficient model that would consider trip requests as individuals,

in terms of temporal (request time) and spatial (origin and destination locations) trip

characteristics. The proposed method, however, offers the flexibility to the operators

to incorporate more individual user characteristics (e.g., different loading times), if

required. Also, concerns may rise about the curb-to-curb (and not door-to-door)

service that taxis and TNCs offer. Similar to customers with heavy equipment, cus-

tomers that require door-to-door service could be eliminated from the trip requests

that are examined for allocation to alternative providers.

As previously mentioned, current regulations do not allow customers to be directly

assigned to TNCs, so the choice of using TNCs or the paratransit service is up to the

customer. If trips that should be better served by taxis/TNCs are identified, how-

ever, then proper incentives can be defined in order to achieve the expected benefits

from their shift to alternative providers. The proposed model aims at quantifying

the potential benefits from such an operating strategy in order to reduce the very

high operating costs of paratransit services and deploy ride-hailing services as more
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strategic partners for public transit agencies.

4.6.2 Taxi/TNC pricing

The application presented in Section 4.5, considers some average cost coefficients

for TNCs that are available online. These values, however, do not reflect changes

that might occur within the day due to high levels of demand, for example (i.e.,

surge pricing). Also, these values are expected to change over greater time periods

(e.g., semester). Figure 4.13 presents the changes in the trip allocation as a result

of multiplying the time and distance cost coefficients by a multiplier, m, similar to

how surge pricing works (although, surge pricing occurs during specific time periods

within a day).
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Figure 4.13: Change in trip allocation by increasing the value of TNC cost coefficients,
North, January 23, 2017

Our purpose here is to identify the sensitivity of the proposed model’s outputs

related to the taxi/TNC costs. As we observe from this figure, the overall conclusion

is intuitive. After the first (more costly) trips are reallocated, as m increases the
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total daily operating cost decreases with a lower rate (for m = 1.25 to 1.75), then

presents an almost flat rate (m = 2.00) and eventually increases (m = 3.00 to 5.00).

A TNC with almost double the values of the cost coefficients considered in this study

is an alternative provider almost equivalent with the MBTA’s paratransit service,

in terms of operating costs. The fare subsidies of maximum $40 and all other pilot

characteristics as described in Section 4.4.1 are still applied.

4.6.3 Environmental impacts

The operation of TNCs is often associated with environmental concerns due to

the operation of more vehicles within a city network and the respective increase of

emissions. According to existing literature, vehicle emissions are mostly related with

VMT (Lyman et al., 2019) and they can be calculated by multiplying VMT with a

properly calibrated emission factor. This factor depends on vehicle technology and

network speed. For example, the average network speed for provider 1 is 17 mph,

which corresponds to an emission factor of around 530 gCO2-eq/veh·mi, for light duty

automobiles. The graph for estimating this factor is included in Figure 4 of Lyman

et al. (2019) with data from the California Air Resources Board EMFAC model. This

is a macroscopic emission model that relates average emission rate to average speed

with a u-shaped curve.

Vehicle speed and technology are expected to be similar between paratransit and

TNC vehicles. Thus, the investigation of the environmental impacts of assigning

paratransit trips to TNCs should focus on the effect of the strategy on the vehicle

miles traveled. Figure 4.14 shows the change in total VMT as trips are assigned to

TNCs for North region during January 23, 2017. In order to calculate the distance

associated with serving the trips by TNCs, the distance needed for the TNC to pick

a passenger up is required. The available dataset offers the distance needed to drop
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passengers off (i.e., trip length) and existing literature offers insights on how these

two types of distances are related in the case of TNCs. More specifically, Wenzel et al.

(2019) estimate the distance needed by TNC vehicles to pick-up a passenger equal to

21% of the requested trip length, based on a study in Austin, Texas. According to San

Francisco County Transportation Authority (2017), the authors estimate this distance

to be equal to 26% of the trip length. The estimated value from San Francisco was

used for the analysis illustrated in Figure 4.14.
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Figure 4.14: Total VMT of serving paratransit trips in coordination with TNCs,
North, January 23, 2017

Figure 4.14 shows that as trips are assigned to TNCs, the total VMT of the para-

transit trips keeps reducing. This means that the total emissions decrease as a result

of this strategy. This observation depends on several assumptions. First, the algo-

rithm assumes that one passenger is served per trip by the paratransit vehicles. As

discussed above, this assumption is not far from reality for the paratransit services

of Boston. A second assumption is that TNCs and paratransit vehicles use the same

type of vehicle. The two vehicle types are not expected to be very different especially
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when the paratransit service uses sedans, but heavier multipassenger vans would make

the emission factor greater for paratransit than for the TNC. Finally, the adopted

relationship between TNC distance to pick-up and drop-off might be slightly differ-

ent for the case study of Boston that is analyzed here. Figure 4.15 shows how the

environmental impact of such strategy changes for different pick-up distance factors,

p, ranging from 20% to 100% of the distance to drop-off. This figure shows that for

p > 60% the effects of this strategy become harmful for the environment if all trips

are assigned to TNCs.
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Figure 4.15: Total VMT of serving paratransit trips in coordination with TNCs for
various pick-up distance factors, North, January 23, 2017

4.7 Summary

The focus of this Chapter is to address challenges associated with high operat-

ing costs of on-demand services. The strategy analyzed here is the allocation of

paratransit trips to alternative providers, such as taxis and TNCs. The relationship

between public transit and ride-hailing systems can lead to benefits that are yet to
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be identified. Our study aims to offer insights in the ways that taxis or TNCs can

complement the public transit operations, by developing a flexible tool that could

be easily adjusted to the specific needs of a paratransit agency in order to assist

optimized decision making. A first approach to determine whether paratransit trips

should be shifted to taxis/TNCs or not, includes the implementation of existing ag-

gregated models. However, those models are lacking because not all paratransit trips

have the same impact on operations and operating costs.

This study investigates the optimal allocation of trips between conventional ADA

paratransit service and TNCs using data from the MBTA’s ADA paratransit ser-

vice called “The RIDE”. MBTA implements a pilot that allows paratransit eligible

passengers to perform subsidized trips with alternative providers, in an attempt to

reduce their high operating costs. Although The RIDE is not currently structured in

a way to assign riders directly to TNCs, this could be a potential future operating

strategy that requires careful investigation. Using operating cost coefficients from

existing literature, the results indicate that for all the studied regions within MBTA

service area, all trips should be better served by TNCs. The implementation of the

more detailed algorithm that is proposed through this dissertation confirmed this re-

sult. Apart from the number of trips to be assigned to taxis or TNCs, however, this

algorithm orders the trips from the most to the the least costly, which could benefit

the decision-making processes of the service operator. For the days of operation that

were investigated here, the expected cost savings are approximately 48% for Provider

1, 53% for Provider 2, and 47% for Provider 3.

The proposed algorithm is developed to estimate the marginal cost of each para-

transit trip in the context of the vehicle routings so trips can be incrementally reas-

signed to alternative providers when the costs make it advantageous to do so. The

routing model is based on some simplifying assumptions to maintain its development

111



and implementation as fast and efficient as possible. These assumptions refer to ve-

hicle occupancy of maximum one passenger and zero waiting times from customers

before they are served. Expected deviations of the estimated VHT and VMT values

from such assumptions are partly eliminated by performing proper calibrations. Re-

garding average occupancy particularly, it is proved that the assumption of only one

passenger served per ride is quite realistic, at least for the case study considered here.
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5 EFFICIENT IMPLEMENTATION OF FLEXI-

BLE SYSTEMS

The inefficiencies of fixed route (e.g., low user satisfaction) and on-demand services

(e.g., high operating costs) can be avoided through the implementation of flexible

services. This Chapter focuses on flexible systems which combine elements from both

fixed and non-fixed systems. There are challenges, however, regarding which are the

operational and demand related characteristics of a service area that can assure a

successful implementation of such a service. This chapter proposes the development

of a hybrid transit service, which could take the form of conventional fixed route,

fully flexible route deviation or an intermediate form where vehicles that operate

on a fixed corridor can deviate within a flexible region to serve passengers curb-to-

curb. The resulted type of service is based on the operational characteristics and the

expected demand levels for a given service area. The system’s decision variables of

flexible region and station spacing at a location x are optimized considering continuous

approximation approach with the objective of minimizing the total generalized costs

from such a service.

The Chapter is organized as follows. Section 5.1 presents an introduction to the

research topic. Section 5.2 describes the operation of the proposed service. The model

development for the route deviation services is explained in Section 5.3, whereas

Section 5.4 describes the cost modeling. The results of the optimization process

are presented in Section 5.5. Section 5.6 includes numerical implementation of the

proposed models considering numerical values as close to real case studies as possible.

The benefits from implementing the hybrid service rather than conventional fixed

route or fully flexible route deviation systems in different case studies are shown

in Section 5.7. Section 5.8 attempts to simplify the optimized formula for station
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spacing through making it independent from the formula for optimal flexible region

at a location x. Section 5.9 includes sensitivity analysis for three important input

values. Section 5.10 compares the performance of the analytical models with the

results of a simulated case study. Finally, Section 5.11 presents the summary of this

chapter.

5.1 Introduction

Current economic trends and population growth patterns pose challenges for the

operation of fixed route systems, whereas demand responsive systems are often asso-

ciated with high operating costs. There are a number of flexible transit services as an

intermediate system between conventional fixed-route and demand responsive transit

services, which leads to the improved efficiency of transit systems. Flexible route

systems are preferable in areas with demand density that is too low to support fixed

route systems. The ability of flexible transit services to adapt to customer demands

also makes it suitable for serving passengers with a disability. Changing demand for

transit services, including disruptions due to the COVID-19 pandemic, has created

a need for alternative public transit systems that accommodate the need for user

mobility and agency cost reduction associated with low transit demand.

Flexible transit systems can be designed under different service configurations

according to service area characteristics and demand levels. It is thus important to

properly identify the service areas where such systems may be effective, as well as the

type of flexible transit that is most appropriate. There are many variations of flexible

route services, and it is not uncommon for similar types of services to be referred to

by different names, since individual transit agencies do not follow a standard naming

practice. According to Koffman (2004), there are four elements of service design that

could assist in defining the type of flexible service: a) where vehicles operate; b)
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boarding and alighting locations; c) schedule; and d) advance notice requirements.

The same study suggests that the flexible transit services can be broadly categorized

as: 1) route deviation; 2) point deviation; 3) demand-responsive connector; 4) request

stops; 5) flexible-route segments; and 6) zone route.

Existing literature includes flexible transit modeling approaches, such as analyt-

ical methods, simulation, empirical analysis, and stochastic processes. The study

proposed here analyzes a hybrid fixed route transit system with elements of flexible

services. More specifically, continuous approximation techniques are implemented to

identify the optimal boundaries in a given corridor for providing flexible services in

the form of route deviation. The proposed flexible hybrid service is compared with

conventional fixed route service and fully flexible route deviation within the same

corridor. The proposed model for flexible transit is expected to be beneficial in areas

where the best transit solution lies between the fixed route and the full flexible route

systems.

5.2 System description

The service area considered in this study is rectangular with length L and width

W . Vehicles are assumed to travel within the corridor on a rectilinear street network.

The basic model of a fixed route transit service is a straight-line corridor in the

middle of the service area, with one end being a major terminal station. A typical

configuration for this network is given in Figure 5.1a. Demand in the corridor is

assumed to follow a many-to-one pattern in which trips with uniformly distributed

origins are all destined for the terminal and trips that originate at the terminal are

destined for uniformly distributed points in the service area. The one-way demand

in the corridor is the number of passengers trip origins per area per time, Q, which

is assumed to be uniformly distributed over space and time. The vehicle average
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speed, V , accounts for stopping times and traffic delays. Vehicles operate on uniform

headway, H, and vehicles are assumed to be large enough that passenger capacity

is not a binding constraint. The stop spacing, S(x), can vary across the fixed route

corridor as a continuous function of the distance from the start of the route x.

W/2

(a)

(b)

W/2

W/2

W/2

(c)

W/2

W/2

requested stopfixed stopterminal

corridor deviation flexible region

A(x)

x
L

x
L

x
L

Figure 5.1: Examples of system configuration for a) conventional fixed route, b)
flexible with route deviation, c) hybrid fixed with route deviation
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Users are assumed to travel from a location within the service area to a terminal

station, or vice-versa. The terminal station is assumed to connect the service area

with a city center or other transportation hub. Thus, it is considered that passengers

only board the vehicle as it moves towards the terminal station and they only alight

in the opposite direction. Two types of users are analyzed:

• Curb-to-curb users – system users that request curb-to-curb service either for

their pick-up or drop-off and will be served by a vehicle that is routed to the

requested stop.

• Fixed stop users – system users that use only the fixed stops that are served by

the flexible system.

Flexible services may involve only one or both the types of users presented above.

Examples of curb-to-curb requests include users that are eligible for ADA paratransit

or other passengers that want to avoid the efforts associated with accessing a fixed

stop and waiting at a transit stop rather than their own private space. Such phenom-

ena are expected to increase substantially during the ongoing COVID-19 pandemic,

since public transit users aim to reduce their risk of infection to the extent possible.

Alternatively, curb-to-curb requests could be assigned on a first-come-first-served ba-

sis to the first a(%) of trips requested, based on the number of users that can be

served curb-to-curb during a single trip time.

The modeling approach presented in this study assumes that all users are served

as they desire, either curb-to-curb or at fixed stops. Thus, the factors that could lead

to rejection of service (e.g., vehicle seating capacity) are considered negligible. Both

types of demand are perfectly inelastic, which means that they are not affected by

the quality of service. This study focuses specifically on a model of flexible service

using route deviation, as described in the following section.
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5.3 Modeling route deviation

A vehicle starts its trip from the terminal station and serves customers in a given

corridor at fixed stops or by deviating to serve the curb-to-curb demand, which makes

up a fraction a ∈ [0, 1] of the total demand. The locations of fixed stops are defined

in terms of the stop spacing at location x, S(x). The curb-to-curb users are assumed

to request their pick-ups or drop-offs with sufficient advanced notice that the vehicle

routing can be scheduled and determined prior to dispatch. The route has a longi-

tudinal length L, which is the length of the corridor. For each requested stop, the

vehicle travels a lateral distance, d, to pick-up or drop-off the curb-to-curb requests

and then the same distance, d, to return to the main route. The expected distance of

a uniformly distributed requested stop from the main route is W/4. The vehicle does

not backtrack to serve curb-to-curb demand. The remaining (1− a) portion of total

demand is associated with passengers that walk to the nearest fixed stop and wait

at that location for service. A typical configuration of a flexible system with route

deviation is shown in Figure 5.1b.

The focus of this study is to optimize the operation of a transit system in order to

identify when and where flexible service will be more beneficial for both agency and

users. The resulting system is a hybrid system between a conventional fixed route and

a flexible route deviation system. An example of such a system’s configuration is given

in Figure 5.1c. The red dashed line indicates the flexible region where the vehicles

may deviate from the fixed corridor to serve the curb-to-curb requested demand. The

width of the flexible area around a point x along the fixed corridor is A(x), where

A(x) ∈ [0,W ]. The expected deviation is A(x)/4.

Here we present calculations for distributed demand and vehicle operations in a

corridor heading toward the terminal. The reverse direction, with distributed desti-
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nations for passengers heading away from the terminal, is symmetric. The number of

passengers boarding each vehicle per unit distance traveled in the corridor is the prod-

uct of the demand rate, the headway since the last vehicle, and the corridor width,

QHW . Of this total demand, the number of passengers with request stop service is

aQHA(x), where the width of the flexible service area can vary as a function of the

location in the corridor, x.

Vehicle distance and travel time can be calculated by integrating across the incre-

mental vehicle distance and time required for the transit vehicle to traverse a distance

dx at any location x. The total distance and time required to traverse the corridor is

obtained by integrating the incremental values over the length L. The one-directional

value is then doubled to obtain the distance and travel time associated with a cycle

of travel from the terminal back to the terminal.

The vehicle distance is the sum of longitudinal distance traveled along the corridor

and the lateral distance traveled to serve each requested stop:

VMT = 2

∫ L

0

(
1 + aQHA(x)

A(x)

2

)
dx (17)

The first term is the longitudinal distance traveled per unit length of the corridor;

the total longitudinal distance is 2L per cycle. The second term is the product of

the expected number of passengers with request stop service per unit length of the

corridor and the expected lateral distance per request stop, which is twice A(x)/4.

The cycle time, C, includes the travel times for the longitudinal and lateral travel

at speed V . It also includes dwell time for three kinds of stops: the dwell time at fixed

stops, τ f ; the dwell time at requested stops, τ r; and the dwell time at the terminal

station, τ t. Fixed stops have spacing S(x), as defined above, so the expected number

of fixed stops per unit length of corridor is 1/S(x). The number of requested stops
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per unit length of the corridor is the same as the expected number of passengers with

request stop service, because each request trip is served individually. The vehicle

stops once at the terminal. As a result, the cycle time is given by:

C = 2

∫ L

0

(
1

V
+ aQHA(x)

A(x)

2V
+ τ f

1

S(x)
+ aQHA(x)τ r

)
dx+ τ t (18)

5.4 Modeling costs

The continuous approximation approach is adopted here to determine the optimal

width of the flexible service area, A(x), as well as the optimal spacing between fixed

stops, S(x). Both characteristics are treated as continuous functions of the distance,

x, from the edge of the corridor. Specifically, A(x) can be implemented as a continuous

function, and S(x) is approximated by a continuous function. Like the formulation

for VMT and C, the analysis is focused on the costs associated with the cycle of

vehicle traversing the corridor from the terminal to the end and back.

5.4.1 Agency costs

The agency cost per vehicle cycle, AC, consists of three parts: costs attributed

to vehicle distance traveled, costs attributed to vehicle hours of operation, and costs

associated with the fleet size. Each of these costs is calculated by multiplying a cost

coefficient by the corresponding value,

AC = aVMTVMT + aV HTV HT + aMM
H

O
(19)

where aVMT is the cost per vehicle distance traveled, aV HT is the cost per vehicle time

operated, aM is the daily capital cost per vehicle, and M is the number of vehicles in

the fleet. The vehicle distance traveled per cycle, VMT , and the cycle time, C, are

120



given by equations (17) and (18). The fleet size is considered to be constant for this

analysis, so its cost must be spread over the number of vehicle cycle operated within

a daily period of operations. If the daily operating hours are denoted by O and the

service headway is H, then there are O/H vehicle cycles operated per day.

5.4.2 User costs

User costs include costs associated with walking, waiting, and riding as experi-

enced by the users. Like the analysis of vehicle operations and agency costs, the user

costs can be calculated by integrating the incremental user cost associated with each

unit length across the corridor. As a result, the total daily user cost is the sum of

these components, weighted by corresponding user cost coefficients: aWK for time

spent walking per vehicle cycle, WK; aWT for time spent waiting per vehicle cycle,

WT ; and aR for time spent riding per vehicle cycle, R.

UC = aWKWK + aWTWT + aRR (20)

The models for each of these components of time spent by users are presented in the

subsections below.

5.4.2.1 Walking

Passengers that receive request stop service do not experience walking time, so

the remaining demand QH(W − aA(x)) per unit length of the corridor must walk to

the nearest fixed transit stop. On average, this is W/4 in the direction perpendicular

to the main corridor and S(x)/4 along the corridor. The walking speed is assumed

to be VWK . The total walking time for all users served in a vehicle cycle is thus given
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by

WK = 2

∫ L

0

(
QH(W − aA(x))

W + S(x)

4VWK

)
dx (21)

5.4.2.2 Waiting

All transit users, either served curb-to-curb or at fixed stops, are expected to

experience waiting time equal to half the headway. The total waiting time for all

passengers served in a vehicle cycle is simply the product of the demand, 2QHW ,

and the average waiting time, H/2.

WT = QH2W (22)

5.4.2.3 Riding

The expected riding time is calculated based on the incremental riding time ex-

perienced by all passengers on board a vehicle as it traverses a unit length of the

corridor at location x. The number of passengers onboard the vehicles is the cumu-

lative number of passengers that have boarded since the beginning of the line. It is

useful to think of this in terms of a vehicle trip from the edge of the corridor that

starts empty and picks up passengers en route to the terminal. By the time the vehicle

reaches location x, there are QHWx passengers onboard. Each of these passengers

experiences travel time associated with longitudinal and lateral vehicle distance as

well as loss time per fixed and requested stop. The incremental travel time per unit

length of the corridor for all passengers is the product of QHWx and the incremental

vehicle travel time, which is the integrand of equation (18). Therefore, total riding

time for a vehicle cycle, R, has a similar structure to the expression for cycle time,
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C.

R = 2

∫ L

0

QHWx

[
1

V
+ aQHA(x)

A(x)

2V
+ τ f

1

S(x)
+ aQHA(x)τ r

]
dx

+QHWLτ t
(23)

In order to estimate the total riding costs, the dwell time at the terminal should also

be considered. For a fixed corridor of length L, there are 2QHWL passengers that

each experience half of the dwell time at the terminal, τ t/2.

5.4.3 Total weighted generalized costs

The total generalized for a day of flexible transit operations, GC, is the sum of

agency costs, AC, and user costs, UC, weighted by wAC and wUC , respectively.

GC = wACAC + wUCUC (24)

This cost depends on the size of the flexible region, A(x), and the fixed stop spacing,

S(x), which can be designed as functions of x.

The total daily generalized cost, TGC, is then calculated by multiplying the cost

per cycle by the number of vehicle cycles that are operated in a day, O/H.

TGC = GC
O

H
(25)

The objective in this study is to minimize TGC with respect to A(x) and S(x) for

given O and H in order to achieve the optimal performance for the hybrid transit

system studied here. The respective analysis is presented in the following section.
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5.5 Optimal spacing and flexible region

Given that the duration and daily operations, O, and the service headway, H, are

treated as exogenous values in this analysis, the minimization of TGC is equivalent

to minimizing GC. Thus, the optimization problem that this study addresses is the

following:

min
A(x),S(x)

GC (26)

subject to

0 ≤ A(x) ≤ W, (27)

0 ≤ S(x) ≤ 2L (28)

The constraints on A(x) ensures that the flexible region is always a subset of the

corridor. The stop spacing is constrained to 2L, which would be the case if there

were only a stop at the terminal, thereby forcing any customer that does not receive

request stop service to walk all the way to their destination.

To facilitate the optimization, it is useful to note that in equations (17), (18), (21),

(22), and (23), which are the inputs to equation (24), the decision variables, A(x) and

S(x), only appear within the integrand. This integrand containing the terms with

decision variables can be rewritten as:

wAC

[
aVMT

(
aQH

2
A(x)2

)
+ aV HT

(
aQH

2V
A(x)2

)
+

τ f

S(x)
+ aQHτ rA(x)

]
+

wUC

[
aWK

(
QH

4VWK

(W − aA(x))(W + S(x))

)]
+

wUC

[
aRQHWx

(
aQH

2V
A(x)2

)
+

τ f

S(x)
+ aQHτ rA(x)

] (29)

The value of the continuous approximation formulation is that we can now focus on
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identifying the values of A(x) and S(x) that minimize the integrand at any x, and

the results are functions that minimizes the integral, and thus the generalized cost.

Expression (29) is not quite separable with respect to S(x) and A(x), because the

term associated with walking cost includes (W −aA(x))(W +S(x)), which combined

both decision variables. This combined term prevents us from being able to derive

a closed form analytical solution for the optimal values for S(x) and A(x) at any

location x, S∗(x) and A∗(x). We note that expression (29) is convex in S(x) if A(x)

is treated as given, and it is convex in A(x) if S(x) is treated as given. Therefore, a

closed form for the optimal stop spacing at each location, S∗(x), can be expressed in

terms of A(x) by solving the first order conditions for expression (29) with respect to

S(x); i.e., setting the first derivative equal to zero and solving for S(x).

S∗(x) = 2

[
VWKτ

f (wACaV HT + wUCaRQHWx

wUCaWKQH(W − aA(x))
)

]0.5
(30)

Likewise, a closed form for the optimal size of the flexible service area at each location,

A∗(x), can be expressed in terms of S(x) by solving the first order conditions with

respect to A(x).

A∗(x) =
V

VWK

wUCaWK(W + S(x))− 4wUCaRQHWxτ rVWK − 4wACaV HT τ
rVWK

wUCaRQHWx+ wACaVMTV + wACaV HT
(31)

Equations (30) and (31) are directly applicable to cases where one of the two decision

variables is exogenous. For example, equation (30) provides the optimal fixed stop

spacing for a system in which an agency has already decided how big the flexible

service area should be (e.g., A(x) = 1.5 miles to satisfy minimum ADA requirements).

Similarly, equation (31) defines the optimal size of the flexible service area for a transit

agency that may not want to move the stop locations of a fixed route service that has
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already been designed.

The more complex case is to optimize both decision variables, S(x) and A(x),

simultaneously, because each depends on the other. A computational approach can

be implemented to identify the fixed point solution satisfying equations (30) and

(31). This can be solved substituting the expression for S∗(x) in equation (30) into

equation (31) to obtain an expression with only A(x) terms. The optimal value, A∗(x),

that satisfies the equation can be identified by iterating through potential values of

A(x) ∈ (0,W ) for increments of x. A numerical solution can be obtained quickly with

a computer. Once A∗(x) has been identified, S∗(x) is given by equation (30).

Finally, it is necessary to confirm that the available fleet size, M , is sufficient for

the designed service operation. Although it is theoretically possible to make M a

variable that depends on design variables, the reality is that flexible transit service

in low density corridors typically operates at such long headways that only a small

number of vehicles are ever needed. Therefore, M is treated as an input parameter.

The fleet size must be at least large enough to sustain the headway, H, with the cycle

time, C.

M ≥ C

H
(32)

5.6 Numerical analysis

We now present a numerical analysis to illustrate application of the model to

realistic corridors. Optimal values of A∗(x) and S∗(x) are calculated every 0.001

miles in order to provide a high-resolution representation optimized functions. The

input values for the numerical examples presented here are summarized in Table 5.1.

The fundamental assumption for user costs is that walking should have higher

cost coefficients than waiting and riding and the two latter are considered equal.

Insights on the transit user cost coefficients can be found in Wardman (2004). The
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Table 5.1: Input values

Parameter Value Units

Percent of Curb-to-Curb Demand,a 0.5 unitless
Fleet Cost Coefficient, aM 100 $/veh
Riding Cost Coefficient, aR 10 $/veh

VHT Cost Coefficient, aVHT 20 $/veh.hr
VMT Cost Coefficient, aVMT 20 $/veh.mi
Walking Cost Coefficient, aWK 20 $/hr
Waiting Cost Coefficient, aWT 10 $/hr

Vehicle Headway, H 1 hr/veh
Operational Hours, O 18 hr/day

Cruising Speed, V 25 mph
Walking Speed, Vwk 3 mph

Weighting Factor for AC, wAC 1 unitless
Weighting Factor for UC, wUC 1 unitless
Dwell Time at Fixed Stops, τ f 0.008 hr/stop

Dwell Time at Curb-to-Curb Stops,τ r 0.005 hr/stop
Dwell Time at Terminal Stop, τ t 0.010 hr/stop

magnitudes considered here for agency costs are derived from existing literature for

the paratransit services in New Jersey and Greater Boston Area, which are considered

the worst case scenario, since demand responsive operations in large cities tend to be

made more expensive by the high costs of labor. For more details on the agency cost

coefficients the readers are referred to Rahimi et al. (2018) and Turmo et al. (2018).

Real-world flexible service areas where vehicles deviate their route to serve cus-

tomers as needed can be identified in existing literature. In Zheng et al. (2018a)

Route 289 in a suburban area of Zhengzhou City, China, is evaluated for an imple-

mentation of point and route deviation services. A single service vehicle is considered

for a service area of W = 1 mile and L = 3 miles. The demand density ranges from

4 to 17 pax/mi2/hr. The MTA Line 646 in Los Angeles County is used in several

case studies of flexible system (Qiu et al., 2015; Zheng et al., 2018b). The service

area has a width of W = 1 mile and length of L = 10 miles, with one operating
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service vehicle. In Zheng et al. (2018b) demand ranging from 0.8 to 2.8 pax/mi2/hr

is considered. In Qiu et al. (2015) slightly higher demand levels are considered for

the same service area and a corridor of size W = 2 and L = 5 miles is evaluated. A

third real-world case study for flexible systems is the Plymouth Area Link in Greater

Attleboro Taunton Regional Transit Authority in Massachusetts, USA, which oper-

ates the Manomet/Cedarville Deviated Link, where two vehicles operate on a fixed

corridor of L ≈ 8 miles, with a headway H = 1 hour, which is a common headway

for such services. The vehicles are allowed to deviate to serve passengers within 3/4

miles of the fixed route, indicating a service area of width W = 1.5 miles.

In the remaining analyses, the magnitudes of W , L, and Q are based on values

in existing literature to investigate the implementation of the proposed method un-

der different service area scenarios. For input values with no clear indications from

existing literature, a sensitivity analysis is performed to investigate their impact on

the proposed flexible transit service.

5.6.1 Optimal decision variables

Figure 5.2 shows the flexible region boundaries for W ∈ {1, 2, 3} miles for a service

area of length L = 10 miles. Since A∗(x) and S∗(x) depend only on cumulative

demand up to x, shorter corridors are represented by the same figures, just truncated

to L < 10. The horizontal line in the middle of each service area represents the fixed

route corridor. Three cases of demand density per direction are investigated in this

figure, Q ∈ {2.5, 5, 7.5} pax/mi2/hr. The three shaded areas represent the flexible

regions in each case, colored with grey, blue, and red, respectively. For all W , the

lower value of Q leads to a greater flexible service region and the flexible region gets

smaller as W increases. Station locations are also shown for each demand density by

black, blue, and red dots, respectively. The station spacing increases with x, because
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greater vehicle occupancy increases the generalized cost of stopping. For more details

on determining the station location from a continuous function of spacing between

stations, the readers are referred to Wirasinghe et al. (1977).

(a)

(b)

(c)

Figure 5.2: Service area configuration for a) W = 1, b) W = 2, and c) W = 3
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5.6.2 Optimized system cost components

Figures 5.3 and 5.4 show that increasing W , L, and Q increases all of the cost

components. The costs associated with walking have the greatest impact, and the

costs associated with VMT have the least impact. Fleet size costs shown in Fig-

ure 5.4a present a step increase of one vehicle after x = 4. The maximum fleet size

for all scenarios investigated here is equal to two vehicles. Although fleet size costs

and waiting costs are independent of the optimization process, their values offer in-

sights to the relative magnitudes of the components of the generalized costs. In the

case of V HT and VMT shown in Figure 5.4b and Figure 5.4c, it is apparent that

the increase of Q has a lower effect on costs, compared with the increase of W .

5.7 Comparison between fixed, hybrid and route deviation

system costs

Table 5.2 compares the benefit of the optimized hybrid system with a fixed route

and the fully flexible service. The agency cost components considered in optimizing

the hybrid service are the V HT and VMT costs. Three corridor lengths are consid-

ered, L ∈ {3, 5, 10} miles. The percent benefit, BS (%), from implementing hybrid

transit (HT ) is

BS(%) =
CS − CHT

CS
100% (33)

where CS represents the cost of system S, with S ∈ (FR,RD) for fixed route and

route deviation, respectively. Fixed route service has the lower agency costs among

all three systems, so the benefit of hybrid service is negative. Route deviation has

the highest agency costs, so the benefit of hybrid service is positive.

The user benefits associated with the hybrid system compared to the fixed route
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Figure 5.3: Daily user costs of a) walking, b) waiting, and c) riding
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Figure 5.4: Daily agency costs of a) fleet size, b) VHT, and c) VMT
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are shown in Figure 5.5. The user costs of walking and riding affect the optimization

process and are considered here. The user benefits range from 0 to 35% for all

combinations of service areas and demand densities. Smaller service areas and lower

demand densities lead to greater user benefits from the implementation of hybrid

systems compared with fixed route. Comparing with full route deviation systems,

the implementation of the hybrid transit has a user benefit of up to ∼ 80%, with

some cases having a small loss (i.e., ≤ 5% for small areas and low demand densities).

This loss is due to the effect of agency costs in the optimization process for the hybrid

service.

Under the COVID-19 pandemic and the resulting decrease in transit ridership, it

is noteworthy that for any one of the service areas studied here, there is a significant

increase in users’ benefits with a hybrid system as the demand density decreases.

The hybrid system is also more beneficial for users than full route deviation systems,

especially for W > 1. Finally, the agency loss associated with the hybrid system

compared to conventional fixed route is slightly affected by falling demand. For these

reasons, the proposed hybrid system has the potential for many beneficial applications

in low density communities or in areas where demand has dropped significantly due

to the pandemic.

5.7.1 Optimal percent flexibility

The percent flexibility for the services of a given area can be calculated considering

the results of implementing equation (31) and the dimensions of the service area, as

shown in equation (34). Thus, it can be defined as the percentage of the service

area that is covered by the flexible region. For the inputs presented in Table 5.1,

the optimal percent flexibility for a service area of length L = 10 miles is shown in

Figure 5.6, for different values of headway and service area width. This figure shows
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Figure 5.5: Percent user benefits from implementing hybrid transit instead of fixed
route for a) Q = 2.5, b) Q = 5, c) Q = 7.5, and route deviation for d) Q = 2.5, e)
Q = 5, and f) Q = 7.5

that lower headways, demand densities and widths of service area lead to greater

flexibility. Such graphs can be easily constructed and provide guidance for transit

agencies to make decisions such as whether or not to implement flexible services in a

corridor.

flexibility (%) =

∫ L

0

A(x)dx

WL
∗ 100 (34)
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Table 5.2: Percent agency benefit from implementing the optimized hybrid transit
instead of Fixed Route (FR) and Route Deviation (RD)

Q = 2.5 (pax/sq.mi/hr)

Benefits(%) W = 1 W = 2 W = 3
L = 3 L = 5 L = 10 L = 3 L = 5 L = 10 L = 3 L = 5 L = 10

FR -26.3 -19.6 -12.0 -52.1 -35.9 -20.4 -77.7 -52.4 -29.3
RD 11.4 18.0 25.5 44.3 52.3 60.0 63.2 70.1 76.3

Q = 5 (pax/sq.mi/hr)

Benefits(%) W = 1 W = 2 W = 3
L = 3 L = 5 L = 10 L = 3 L = 5 L = 10 L = 3 L = 5 L = 10

FR -28.8 -19.8 -11.2 -53.5 -35.5 -19.5 -78.7 -51.9 -28.4
RD 31.7 38.7 45.6 65.3 71.1 76.2 79.0 83.3 87.0

Q = 7.5 (pax/sq.mi/hr)

Benefits(%) W = 1 W = 2 W = 3
L = 3 L = 5 L = 10 L = 3 L = 5 L = 10 L = 3 L = 5 L = 10

FR -28.8 -19.2 -10.5 -53.2 -34.8 -19.0 -78.2 -51.1 -28.0
RD 45.0 51.3 57.3 74.9 79.3 83.1 85.4 88.5 91.0

5.8 Optimization of station spacing based on fixed route and

route deviation systems

We now consider the effect of the the size of the flexible region, A(x) on the optimal

fixed stop spacing and the costs of the system. Specifically, we are interested in the

two extreme cases: A(x) = 0, which is a fixed route system, and A(x) = W , which is

a route deviation system. Although S∗(x), as calculated in equation (30) is sensitive

to the value of A(x) used, A∗(x) from equation (30) is not greatly affected whether

S∗(x,A(x) = 0) or S∗(x,A(x) = W ) is used. Figure 5.7a shows that the optimized

fixed stop spacing for the hybrid transit, S∗HT (x) lies between the optimized station

spacings for fixed route, S∗FR(x), and route deviation, S∗RD(x). In this case, S∗HT (x)

overlaps S∗RD(x) for locations x where A∗(x) = W and then moves towards S∗FR(x).

Although the optimized spacings differ depending on the type of service, the optimized

flexible regions that result from implementing each of the three optimal spacings are

135



(a) (b)

(c)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 1 2 3 4 5 6 7 8 9 10

%
 F

le
xi

b
ili

ty
 o

f 
Se

rv
ic

e
 A

re
a

Demand Density, Q (pax/sq.mi/hr)

W=1 W=2 W=3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10%
 F

le
xi

b
ili

ty
 o

f 
Se

rv
ic

e
 A

re
a

Demand Density, Q (pax/sq.mi/hr)

W=1 W=2 W=3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 1 2 3 4 5 6 7 8 9 10

%
 F

le
xi

b
ili

ty
 o

f 
Se

rv
ic

e
 A

re
a

Demand Density, Q (pax/sq.mi/hr)

W=1 W=2 W=3

Figure 5.6: Optimal percent flexibility of a service area with length L=10 (miles) and
headway equal to a) 0.5 hours/veh, b) 1 hours/veh, and c) 1.5 hours/veh

very similar, as shown in Figure 5.7b.

The difference in cost is more important than that difference in the design vari-

ables, because it is the generalized cost of the system that we seek to minimize. The

percent change in cost for implementing either the fixed route or full route deviation

system relative to the optimized hybrid system is given by

∆(%) =
C(S∗T )− C(S∗HT )

C(S∗HT )
100% (35)

where C(S∗T ) is the cost of implementing the optimal station spacing for system T ,
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Figure 5.7: Optimized decision variable of a) station spacing, and b) flexible region
for a corridor with W = 2, L = 10, and Q = 5

with T ∈ {FR,RD}, and C(S∗HT ) the cost of implementing the optimal spacing for

the hybrid service. The costs considered in this analysis are those that are included

in the optimization process, namely walking, riding, V HT and VMT costs.

This analysis shows that the effect of different optimized station spacings on the

user and agency costs is always small; less than 2% for the cases presented in Fig-

ure 5.8. As a result, it is acceptable to approximate the joint optimization of A(x)

and S(x) by implementing equations (30) and (31) independently. Although the

optimized station spacing might differ based on what system is considered in its opti-

mization, the optimal flexible region and the resulting operating costs are not severely

impacted.

5.9 Sensitivity analysis

5.9.1 Effect of headway

The headway of service has a significant effect on the system design and cost,

because it determines the number of passengers served by each vehicle and the number
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Figure 5.8: Percent cost difference for a) Q = 2.5, b) Q = 5, and c) Q = 7.5

of vehicles needed in the fleet. To facilitate the analysis in this study, H = 1 hr was

used as an exogenous value in accordance with many real-world flexible systems. We

now consider the effect of varying H ∈ (0.1, 2) hrs on the optimized design variables

and the resulting costs. Figure 5.9a and Figure 5.9b show the effect of H on S∗(x) and

A∗(x) for a service area with W = 2 miles, L up to 10 miles, and Q = 5 pax/mi2/hr.

Greater H leads to smaller the flexible regions and shorter stop spacing as the system

138



more closely resembles fixed route.

Table 5.3 shows that as H increases, daily user costs increase significantly for any

percentage of demand served curb-to-curb, a. Lower H is associated with greater

impact of a on user costs. The costs included in Table 5.3, refer to all types of user

and agency costs in order to offer an overview of the overall cost magnitudes.

5.9.2 Effect of flexible service demand

The percentage of demand receiving request stop service within the flexible region,

a, affects the distance and time traveled to serve the requested stops. Figure 5.9c

shows that S∗(x) increases with a. For the extreme case of a = 1.00, the fixed

spacing tends to infinity for x ≤ 0.22 miles, A∗(x) = W in this range so no passengers

use fixed stops. Further along the corridor, A∗(x) drops, increasing the number of

passengers using fixed stops. Grey lines in Figure 5.9c and Figure 5.9d are associated

Table 5.3: User and agency costs per day for different headways and percent of
demand served curb-to-curb

H=0.5 User Costs ($/day) Agency Costs ($/day)
hr/veh a=0.25 a=0.5 a=0.75 a=0.25 a=0.5 a=0.75

L=3 mi 7,599.9 7,260.9 6,908.1 722.3 832.0 947.8
L=5 mi 13,984.5 13,591.2 13,183.4 968.8 1,087.6 1,212.7
L=10 mi 33,509.7 33,066.5 32,608.2 1,738.5 1,864.4 1,996.6

H=1.0 User Costs ($/day) Agency Costs ($/day)
hr/veh a=0.25 a=0.5 a=0.75 a=0.25 a=0.5 a=0.75

L=3 mi 10,435.2 10,246.7 10,053.2 471.5 529.4 589.5
L=5 mi 18,659.78 18,458.4 18,252.0 792.9 852.8 914.9
L=10 mi 42,730.3 42,525.6 42,315.9 1,375.7 1,436.4 1,499.3

H=1.5 User Costs ($/day) Agency Costs ($/day)
hr/veh a=0.25 a=0.5 a=0.75 a=0.25 a=0.5 a=0.75

L=3 mi 13,192.0 13,064.4 12,934.2 483.6 522.5 562.6
L=5 mi 23,226.6 23,096.3 22,963.4 764.0 803.4 844.1
L=10 mi 51,800.2 51,669.9 51,537.1 1,452.2 1491.7 1,532.4
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with increments of a from 0 to 1, with a step of 0.1. Figure 5.9d shows that the

optimal flexible region is very insensitive to a. Only when a = 0.00 does it have no

impact on costs. Therefore, advanced knowledge of the percent of users served with

request stops is not necessary for identifying A∗(x) is due to S∗(x).

5.9.3 Effect of cost weights

These weights can control the relative effect that agency costs and user costs have

on the optimal values for the two decision variables. Figure 5.9e and Figure 5.9f show

the effects of changing user cost weights from 0.1 to 1 with a step of 0.1 and 1 to 10

with a step of 1. When a cost weight is examined the other is considered equal to

one.

Figure 5.9e shows that station distance is decreased as user costs are weighed more

heavily against agency costs. Intuitively, this could be attributed to walking costs,

which are reduced as user costs have a higher impact on the total generalized costs.

The change in S∗(x) is greater for 0.1 < wUC < 1 and much lower for 1 < wUC < 10.

At x ≈ 0.20 miles, the lines that correspond to wUC > 1 overlap, indicating that

station spacing is independent of the weight of user costs. This location is the point

where the optimal flexible region boundaries reach their maximum value (i.e., W = 2

in this case). At some locations x, the optimal value for A∗(x) is bounded by the

feasibility condition that A∗(x) ≤ W and the optimal spacing is estimated based

on this bounded value of A∗(x). These points are at x = 0.12 for wUC = 1 and at

x = 0.41 for wUC = 10. For wUC = 0, the optimal value for station spacing goes

to infinity. Similarly, for wUC = 0, the optimal flexible region boundaries go to 0.

Figure 5.9f shows the increase of flexible region boundaries as the weight of user costs

increase. Again, for 0.1 < wUC < 1, the boundaries present a greater rate of increase

compared to the respective changes in 1 < wUC < 10.
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Figure 5.9: Optimal decision variable of a) S∗(x) for various headways, H, b) A∗(x)
for various headways, H, c) S∗(x) for various percentages, a, d) A∗(x) for various
percentages, a, e) S∗(x) for various weights, wUC , f) A∗(x) for various weights, wUC

The effect of the agency cost weight, wAC , on the two decision variables is the

opposite of the ones described for wUC sensitivity analysis. More specifically, an
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increase in wAC leads to an increase in the station spacing and decrease in the flexible

region boundaries. At the same locations x as in the case of wUC , there are overlaps

between the lines of station spacing when A∗(x) is bounded by W . The overlap in this

case occurs when the agency costs are undervalued. Overall, undervaluing the agency

costs has a smaller effect on the two optimized decision variables than overvaluing

it. However, undervaluing the weight of user costs has a greater effect on the two

decision variables than overvaluing them, even if this overvalue is as great as 10 times

up.

5.10 Simulation

The simulation process adopted in this study is developed using the R program-

ming language and aims to evaluate the assumptions made for the development of the

analytical model. The output of the simulation algorithm is the scheduling of vehicles

in terms of times of arrival at the fixed and curb-to-curb stops, as well as the costs

that result from their operation. The demand is generated as a Poisson process. The

algorithm serves curb-to-curb passengers following a first–come, first–served pattern

and the vehicles don’t backtrack. The input data considered in the simulation pro-

cess are the ones used for the analytical model implementation and are summarized

in Table 5.1.

5.10.1 Optimal flexible region and station spacing

The optimal station spacing and the optimal flexible region are estimated based on

the respective analytical models presented in equations (30) and (31). The demand

density value required for the calculations is the expected demand density for the

service area during a given day. The following subsection describes in detail how the

demand is generated in this simulation.
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5.10.2 Simulated demand

Demand is simulated as a Poisson process with random trip requests occurring

throughout the day and across the service corridor according to the average demand

density. Every trip request includes the following information:

• x-axis coordinates of trip’s origin (or destination) bounded by the length of the

service corridor, such that x ∈ [0, L]

• y-axis coordinates of trip’s origin (or destination) bounded by the width of the

service area, such that y ∈ [0,W ]

• time of the request, t, expressed in minutes from the beginning of the operation

period, such that t ∈ [0, 60O], where O denotes the operational hours per day

The next step is to identify which of the generated trip requests lie within the

flexible region borders. From the eligible trips, a% are randomly identified to be

served curb-to-curb. The percentage of trips served curb-to-curb is assumed to be

a constant number throughout the day, and this may represent the percentage of

customers that are eligible for curb-to-curb service (e.g., passengers with disabilities,

senior citizens, etc.). This demand simulation process is performed for each direction

separately.

5.10.3 Simulated scheduling

The scheduling process starts with considering the first cycle of service for a vehicle

to traverse the length of the corridor and back. The duration of this cycle indicates

the number of vehicles that will be needed to maintain a constant headway, H, as

shown in equation (36) (Vuchic, 2007). For instance, if the first cycle time is greater

than H, then a second vehicle is needed. The number of required vehicles will then
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determine the times that each one of them starts from the terminal. For example, in

the case of n operating vehicles, the first will begin from the terminal every nH hours

starting at time 0, whereas the second vehicle will begin from the terminal every nH

hours starting at time H hours.

nveh =

⌈
C

H

⌉
(36)

An alternative approach, especially in the cases that first cycle duration is close to the

headway (or integer multipliers of it), is to account for many simulated cases of first

run duration in order to calculate a confidence interval. More specifically, multiple

simulations of the first run give a sample of first run duration with the respective

average value and standard deviation which can lead to the maximum bound of

the confidence interval considering t-distribution. Demand density per direction can

be generated through Poisson distribution for each run. The construction of such

confidence intervals is described later in this dissertation in Section 5.10.5.

After the starting times for each vehicle are determined, each vehicle is considered

separately and the algorithm “visits” every location x on the service corridor consid-

ering an appropriate space step ∆x, starting from direction 1 and then considering

direction 2. The time that each vehicle, m ∈ [1,M ], is at a location x, tmx , can be

calculated by the time that it was at location x− 1, tmx−1, plus the travel time ∆x/V

needed to reach location x, as shown below.

tmx = tmx−1 +
∆x

V
(37)

Then the algorithm checks whether there are requested curb-to-curb trips in the

interval ∆x or not. If there is a trip request from a passenger p at location x, then

the algorithm checks if the requested time of service, trp, is earlier than the time that
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is needed for the vehicle to deviate and serve the request, tdp, assuring that the service

is not before the requested time. If the curb-to-to-curb trip can be served, then the

vehicle deviates to serve it and the time that vehicle departs location x is updated

accordingly. The service criterion is shown in equation (38).

trp ≤ tmx−1 +
∆x

V
+ tdp (38)

The next step is to take into account whether there is a fixed stop at this location or

not. If there is a fixed stop, then it is assumed to be served after the curb-to-curb stops

at this location. It is also assumed that if there is more than one curb-to-curb request

to be served at the same time, then the vehicle serves them in order of request. Each

trip in the simulation is served independently, which means that the vehicle deviates

from the service corridor to serve the curb-to-curb trip and then drives back to the

service corridor. Even though trips served consecutively at the same location could

have combined service (e.g., after leaving the first trip’s location (x, y1) the vehicle

could move to the next curb-to-curb trip’s location (x, y2)), this is not done due to

consistency with the analytical model. This will only make a difference when the

demand density for curb-to-curb trips is very high.

The scheduling process is repeated for every vehicle for as long as the starting

time from the terminal (i.e., the starting time of a new cycle) is lower than O. If a

new cycle commences, then it will be completed, even if the operation time exceeds

O.

5.10.4 Simulated costs

The main outputs of this algorithm are the user and agency costs that result from

the simulation. These costs are then compared with the analytical estimations to
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evaluate their performance.

5.10.4.1 Walking costs

The algorithm inputs include the exact origin (or destination) locations of the

simulated users of the system in the form of coordinates, (xp, yp). Thus, the distance

between every passenger’s, p, origin (or destination) location and the location of fixed

stops can reveal which fixed stop is associated with the shortest walking time. This

is the station that the passenger is assumed to use for service. The distance, dp,s,

between every passenger’s origin (or destination) location and a fixed stop, s, with

coordinates (xs, ys) is calculated from:

dp,s =| xp − xs | + | yp − ys | (39)

For clarification, the direction that all passengers alight, the closest stop to the pas-

senger’s destination is the one that they alight. In the opposite direction, the closest

stop is the stop that the passengers will wait until they board. Passengers served

curb-to-curb have zero walking costs.

The sum of all passengers’ walking times multiplied by the cost coefficient results

in the simulated walking costs, as shown in equation (40).

WK = awk

P∑
p=1

dp,s′ (40)

where P is the total number of passengers and s′ is the closest stop.
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5.10.4.2 Waiting costs

After identifying the station at which each passenger is served, s′, the next step

is to identify the first vehicle, m′, that serves this station right after the passenger’s

request time. This identification is performed by simply checking the output of the

scheduling process as described in Section 5.10.3. More specifically, in this part of

the algorithm the code checks what is the smallest positive time difference between

the time that each vehicle, m, arrives at the fixed stop location of interest and the

requested time. The vehicle and the time of arrival that correspond to this value are

the service vehicle, m′, and the service time for the passenger, tsp, respectively.

The difference between the trip request time, trp, and the time of service, tsp, is the

respective waiting time, twp for the passenger, p, as shown in equation (41).

twp =| trp − tsp | (41)

For those waiting for a vehicle to board, the code assumes that they arrive at the

fixed stop at the requested time and they wait for the first vehicle to arrive. The

time of service is the time of their boarding. For those who alight, the code assumes

that they alight at the time that the first vehicle arrives at the closest stop to their

destination, which is some time after the request time. The time of service here is the

time they alight. For passengers served curb-to-curb, the waiting time is calculated

in a similar manner, considering the time they are served at the requested locations.

The sum of all passengers’ waiting times multiplied by the cost coefficient gives

the simulated waiting costs, as shown below.

WT = awt

P∑
p=1

twp (42)
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5.10.4.3 Riding costs

Here we consider direction 1 as the direction that passengers board at the terminal

and alight at distributed destinations, and direction 2 as the direction that passengers

board at distributed origins and alight at the terminal. Regarding direction 1, the

code identifies the last time that the vehicle of service, m′, departed the terminal

before the passenger’s request time, tt,1m′ . In the opposite direction, the passengers

are assumed to board the service vehicle, so the code identifies the first time that

the service vehicle arrives at the terminal right after the passenger’s request time,

tt,2m′ . Considering that all passengers boarded their vehicle on time, the riding time

in both cases is the difference between the boarding and alighting times, as shown in

equations (43) and (44) for direction 1 and 2, respectively.

r1p = tt,1m′ − tsp (43)

r2p = tsp − t
t,2
m′ (44)

The sum of all passengers’ riding times multiplied by the cost coefficient gives the

simulated riding costs.

R = ar

(
P1∑
p=1

r1p +

P2∑
p=1

r2p

)
(45)

where P1 is the number of passengers in direction 1 and P2 the number of passengers

in direction 2.

5.10.4.4 Fleet costs

The number of vehicles, M , required to serve the daily demand is determined
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as described in Section 5.10.3. The respective fleet size costs are then calculated by

aMM .

5.10.4.5 VHT costs

In order to measure the VHT, the code considers the duration of each cycle per-

formed by all vehicles. The calculation is the following:

V HT =
M∑
m=1

Cm∑
c=1

tmc (46)

where tmc is the duration of cycle c of vehicle m and, Cm is the number of cycles for

vehicle m.

The sum of all cycles duration multiplied by the cost coefficient leads to the

simulated VHT costs:

CV HT = avhtV HT (47)

5.10.4.6 VMT costs

The total miles traveled by the vehicles in this simulation depend on the number

of vehicles, M , the length of the fixed corridor, L, the number of cycles that each

vehicle performs, Cm, and the distance needed to deviate and serve each curb-to-curb

request, ∆ydp , as shown below:

VMT = 2L
M∑
m=1

Cm +
P ′∑
p=1

2∆ydp (48)
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where P ′ is the number of trips served curb-to-curb. The respective costs are:

CVMT = avmtVMT (49)

5.10.5 Comparison between simulation and analytical modeling

Figure 5.10 presents the comparison between the analytical model and the confi-

dence interval including lower bounds (LB) and upper bounds (UB) that result from

running 50 simulations. The confidence interval, CI, is calculated by

CI =

(
X̄ − t s.d.√

N
, X̄ + t

s.d.√
N

)
(50)

where X̄ represents the mean value of each simulated cost component, s.d. is the

standard deviation, N is the sample size and t is the t-distribution value. In this

case, the sample size is equal to 50 with 49 degrees of freedom, so t = 2.01.

The case study considered here is W = 2 (mi), L = 10 (mi) and Q = 5

(pax/mi2/hr) per direction, and the operational hours are equal to 8. All other

input values are as in Table 5.1. It is reminded that the system’s flexible region and

station spacing are fixed in each run and they are optimized for the expected demand

density per direction, Q = 5 (pax/mi2/hr). The simulation, however, allows in each

run the demand density per direction to be determined by Poisson. The results shown

in Figure 5.10 do not include the first and last cycle of the day, to account for the

algorithm’s “warm-up” and “cool-down” times.

As shown in Figure 5.10, for this case study it is confirmed that the analytical

model’s results are always statistically equivalent to the simulation, since the analyt-

ical values are always within the simulation confidence intervals. The same holds for

most case studies investigated here, but there are cases that the analytical value is out
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of the confidence interval. Such deviations can be attributed to differences between

the two methodologies. Such differences refer, for example, to the stochasticity asso-

ciated with the simulated demand distribution and to the continuous approximation

for variables that should be integer in reality (e.g., number of stations).
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Figure 5.10: Comparison between analytical model and simulation costs of a) users
and b) agency

5.11 Summary

This chapter proposes a method for optimizing station spacing and flexible region

boundaries for a hybrid transit service. These outputs are independent from the total
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length, L, of the service area. The user costs associated with waiting and the agency

costs associated with fleet size do not affect the optimized design variables. The fleet

size is calculated indirectly based on the decision variables. As the respective figures

reveal, the station spacing becomes greater as the distance x from the edge of the

fixed corridor increases (i.e., as the distance from the terminal decreases). For all

cases of W , the lower value of Q leads to a greater flexible service region and the

flexible region tends to zero sooner as the service area width, W increases.

When comparing the proposed hybrid system with fixed route systems, the great-

est area and demand density considered here correspond to the lowest benefit from

the hybrid transit, whereas the smallest area with the lowest demand density leads

to the greatest benefit. These results confirm that the fixed route service is more

beneficial for the operations in larger areas with higher demand, rather than in small

areas of low demand, such as suburban and rural communities. It is noteworthy that

since the resulting optimized flexible region narrows with x, the respective benefits or

costs always decrease as L increases. Although the optimized station spacing might

differ based on the type of system that is considered in its optimization, the optimal

flexible region and the resulting operating costs are not severely impacted. Thus, a

service area could switch from fixed route or full deviation to hybrid service within a

day, adjusting to any level of demand and maintaining the same station spacing and

infrastructure without negative impacts on the operational costs.

The sensitivity analyses performed in this study investigated the effects of different

input values on the model performance. For the input values considered in this study,

the percent demand of users served curb-to-curb, a, has a very small effect on the

optimal flexible region boundaries, which becomes even less important as x increases.

Thus, a lack of advance knowledge of a is not detrimental when optimizing the design

of the proposed hybrid transit service. Regarding the headway, the lowest value

152



considered here has the greatest decrease of user costs as a increases from 0.25 to 0.75.

Thus, transit services where low headways are maintained should expect greater user

benefit from implementing the proposed hybrid system. Finally, a simulation analysis

verified the results of the analytical models with randomly distributed origins and

destinations.
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6 CONCLUSIONS, TRANSFERABILITY AND

FUTURE EXTENSIONS

This Chapter aims at presenting the objectives, methods, results and conclusions

from the research associated with this dissertation. Comments on the transferability

of the dissertation outputs and future extensions are included here. This dissertation

addresses challenges and opportunities associated with transit demand, in order to

improve transit efficiency through the use of optimization techniques and technol-

ogy. The analysis presented here includes all three types of public transit systems,

namely fixed route, on-demand and flexible services. Crowding phenomena that re-

sult in left behind passengers are studied for a subway system, and models to quantify

their numbers and their effects on passenger waiting times are proposed. Paratransit

is studied as a specific implementation of demand responsive transit service. This

dissertation proposes a tool to optimize strategic coordination between paratransit

services and taxi/TNCs in order to reduce the high operating costs of the service.

Regarding flexible transit, a hybrid system is optimized here. This system has op-

erational characteristics from both fixed route and flexible route deviation services

and offers insights regarding the service area characteristics that are more suitable

for flexible services.

This Chapter is organized as follows. Section 6.1 describes the conclusions from

this dissertation, focusing of fixed route, on-demand and flexible services separately.

Section 6.2 offers guidelines and insights on how the outputs of this dissertation can

be transfered to other study sites. Finally, Section 6.3 describes the ways that the

content of this dissertation could be extended in the future.

154



6.1 Conclusions

6.1.1 Crowding on fixed route systems

This part of the dissertation highlights the challenges that non-uniform spatio-

temporal distribution of demand poses in fixed route transit, since it leads to over-

crowded geographic locations (i.e., stations) during specific time periods within a day

(i.e., peak hours). The proposed method aims to address this challenge by quantify-

ing its impact on the performance of transit systems considering various data sources.

More specifically, the objective of this analysis is to present a method for measuring

passengers that are left behind overcrowded trains in transit stations without records

of exiting passengers. Existing literature includes a study performed by Miller et al.

(2018) that also addresses this challenging case. Based on the results obtained here,

the method proposed in this dissertation performs better at low crowding levels,

whereas the study by Miller et al. (2018) performs better at high crowding levels,

proving the complementarity between the two works.

The proposed methodology uses archived data with automatic video counts as

inputs to estimate the total number of left behind passengers during peak demand

periods. Video counts were not proven accurate in isolation, but the development

of logistic regression models that combine automated video counts with automated

train-tracking records demonstrated good results for different applications. Logistic

regression was selected since it allows probabilities associated with discrete outcomes

(i.e., passengers boards or passengers is left behind) to be estimated based on measur-

able inputs. With the proposed methodology, the number of left behind passengers

can be estimated within 17% of their actual number. The work performed in this area

also revealed the effects of accounting for left behind passengers on the estimation

of the current reliability metric used by transit agencies: the experienced waiting
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times. The study site that was used to implement this method is the MBTA’s sub-

way Orange line. The results proved the need of accounting for left-behind passengers

when tracking a transit system’s reliability metrics. Finally, it is noteworthy that al-

though there are limitations to any single data source, the potential for improving

performance metrics through data fusion and modeling continues to grow.

6.1.2 Operating costs of on-demand systems

This study investigates the optimal allocation of trips between conventional ADA

paratransit service and TNCs, in an attempt to reduce their high operating costs.

In the case of on-demand services, the non-uniform spatio-temporal distribution of

demand is associated with both challenges and opportunities that need to be taken

into account when studying such systems. For example, a trip that happens to fall

along the path of an otherwise empty vehicle can be served at very little cost to the

agency. On the other extreme, a requested trip at the edge of the service area during

early, late, or peak hours might require an additional vehicle to be put into service to

drive out to serve the requested trip at great cost. Such detailed characteristics of a

trip cannot be captured by an aggregated approach, whereas existing exact methods

cannot be efficiently used for large datasets. In order to fill the respective gap in

existing literature, a heuristic-based algorithm was developed to estimate the fleet

size and vehicle operations required to serve a set of demanded paratransit trips each

day.

The proposed algorithm is developed to estimate the marginal cost of each para-

transit trip in the context of the vehicle routings so trips can be incrementally reas-

signed to alternative providers when the costs make it advantageous to do so. The

routing model is based on some simplifying assumptions to make its development

and implementation as fast and efficient as possible. The errors introduced by these
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assumptions were partially eliminated through calibrations. Focusing on the specific

study site of MBTA’s paratransit service, the analysis of the removed trips shows

that the first trips to be removed are the trips requested during the peak of the peak

hours as well as the trips at the end of the day. The expected cost savings from this

strategy for the transit agency can be as high as 53%. As explained in the discussion

section of Chapter 4, assigning all trips to TNCs may not be feasible for many reasons,

such as the case of passengers not willing or not being able to switch to TNCs due

to heavy equipment. In such a case, expected benefits for the operating agency from

implementing the allocation strategy were still proven to be high. It is noteworthy

that the total expected emissions of the paratransit service did not increase due to

this strategy. For TNC cost coefficients equal to almost double the ones considered

here, some trips still remain at the operation of the paratransit service. The imple-

mentation of the proposed method for the MBTA paratransit service did not prove

any geographical inequities of user service.

6.1.3 Efficient implementation of flexible systems

In the area of flexible services, this dissertation investigates the level of transit

service flexibility within a given area that would lead to the optimal costs for both

users and agencies. Various types of flexible systems have been implemented but

there is still room for improvement, both in terms of operation and design. This

dissertation focuses on a new hybrid transit system, with elements of both fixed route

and route deviation services. The level of flexibility is determined through continuous

approximation and optimization techniques. The numerical analysis performed here

adopts input values based on existing flexible service areas and reveals the behavior of

the modeling approach under various case scenarios. Demand is a significant factor

in this analysis, since it has a major effect on the results from implementing the
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optimization formulas of flexible region size and station spacing, which are the main

outputs of the proposed optimization approach.

Findings from this part of the dissertation confirm that the fixed route service

becomes more beneficial as greater areas with greater demand are considered. As

expected, the agency costs are always the lowest for the fixed route services, followed

by the agency costs of the hybrid service and the full route deviation services. The

hybrid service proposed here always has the lowest user costs compared to the other

two services, leading to user benefits of up to 35% when compared with fixed route

and 80% when compared with full flexible services. There is the exception of small

areas with low demand density where the proposed hybrid service has a small loss for

the users (less than 5%) compared to full route deviation. These losses are attributed

to the effect of agency costs in the optimization process. It is noteworthy that the

percentage of passengers served curb-to-curb is found to not play an important role

in determining the operational costs in this study. The investigation of headways

revealed that service areas with low headways should expect greater user benefits from

the proposed hybrid service. Finally, the benefits from the analyzed hybrid system as

transit demand decreases is promising for the implementation of such systems during

and after the COVID-19 pandemic when the density of transit demand has dropped

in many communities to levels that no longer support fixed route transit service.

6.2 Transferability

The proposed methodology for fixed route systems is developed to estimate the

number of left behind passengers at a transit station when trains are too crowded for

them to board. The method relies primarily on train tracking records and surveil-

lance video feeds automatically collected and recorded. Additional archived data that

describe inferred travel patterns based on farecards are used to identify stations with
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expected crowding conditions on the vehicles. If a transit agency knows in advance

which are their most crowded stations, then this part of the analysis could be ig-

nored. Manual counts considered in this analysis are used for model estimation and

validation only. Consequently, the proposed methodology here requires only the auto-

matically collected input data for further implementation at the station used here as

a case study. In order for this methodology to be transferred to other transit systems,

the first requirement is that the data sources described in Section 3.4 are available. It

is reminded that manual counts need to be collected only once per station and after

that the methodology depends only on the automatically collected input data.

In the case of on-demand services, the proposed methodology can be used as a

decision making tool for transit agencies regarding which paratransit trips should be

better served by an alternative provider rather than the agency vehicles. Implemen-

tation of this method only requires the daily trip requests in order for the models

to determine which trips to assign to alternative providers, if any. In order for this

methodology to be transferred to other case studies, the respective authorities should

have detailed trip records for their paratransit operation for a significant time period

(e.g., a semester). After proper processing, these data could provide the operational

and network related input values that are required here for the development of the

heuristic algorithm. After the algorithm that compares marginal trip costs with TNC

(or taxi) costs is calibrated to account for the new case study’s operational costs, the

only required input for implementing this method is the set of daily trip requests. The

required information about these requests is described in Section 4.4. It is highlighted

that the heuristic algorithm developed here can be easily adjusted to account for any

specific alternative provider, so the respective cost functions and/or cost coefficients

should be properly updated.

Flexible services described in Chapter 5 can be optimized using the proposed
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methodology of operating a hybrid service with elements of both fixed route and

route deviation services. The proposed models to design the optimal flexible region

and the optimal station spacing have been evaluated using a simulation method. This

simulation method could also be used as an assessment tool for agencies that want to

evaluate their performance under unexpected levels of demand after designing their

service area using optimized decision variables considering the expected demand.

Input values considered here are chosen from existing literature with the aim of using

hypothetical case studies as close to reality as possible. To implement the proposed

analytical models as well as the simulation approach, a transit agency would only

need to have the input values presented in Section 5.6. This study can also serve as

a reference for agencies to identify areas of additional data need.

6.3 Future extensions

There are a number of ways that the work presented here to address crowding

phenomena of fixed route systems could be extended. One approach would be to

implement and evaluate the developed models over more days. In terms of passenger

flow data, the ODX model has some known drawbacks given existing limitations, such

as lack of tap-out farecard data or passenger counters on trains. In systems without

these limitations, the developed models could achieve higher accuracy. The method-

ology presented here could also be combined with the previous study by Miller et al.

(2018) in order to improve the overall process for estimating left behind passengers

in subway systems without tap-out. Comparing the two studies, Miller et al. (2018)

achieves higher accuracy for very crowded conditions, whereas the method proposed

in this dissertation performs better when there are few passengers left behind. The

automated object detection presented in this study could also be combined with the

model proposed by Miller et al. (2018) as part of its real-time implementation in
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case of special events where real-time AFC is not available. In the area of image

processing, alternative object detection tools could be tested in order to identify the

one with the best performance.

In the area of on-demand services, this dissertation could be expanded in many dif-

ferent ways in the future. Individual passenger characteristics (e.g., loading/unloading

times) could replace the average values included in the algorithm. Dynamic (or surge)

pricing for TNCs could be incorporated in an attempt to achieve more accurate es-

timations of TNC trip costs. The allocation of paratransit trips to taxis or TNCs

could also be investigated from the user side as well. Surveys could reveal the user

perception towards such a strategy at a given study site and an improved algorithm

that accounts for the user preferences could be developed. For example, if such a

survey revealed that passengers that belong in a specific age group are not willing to

use alternative providers, then these users could easily be eliminated from the pro-

posed algorithm’s implementation. Moreover, the social costs of having more vehicles

driving around city centers as a potential result of such a strategy could be investi-

gated. Such costs refer, for example, its effects on traffic congestion in urban centers.

Also, ways to incorporate the environmental impacts in the algorithm as part of the

trip allocation process could be studied, to add more sustainability elements in this

research. In the case that the allocation strategy is satisfactory for users, the effects

of potential induced demand need to be studied.

Finally, regarding flexible transit systems, the analysis performed in this disserta-

tion could be extended to account for zone strategies associated with the operation

of the hybrid service. Moreover, if real data are available, the model’s performance

could be tested and calibrated, if needed. Elements of alternative types of flexible ser-

vices (e.g., point deviation) could be modeled and incorporated in the hybrid system’s

operation as a replacement of route deviation. Similarly to the extensions described
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above for the on-demand services, such a strategy of vehicles deviating to serve pas-

sengers curb-to-curb can have environmental impacts which could be incorporated in

the optimization process. Finally, since flexible transit systems respond to users needs

in order to improve user experience from public transit, surveys on user preference

toward proposed hybrid services could reveal the potential from implementing such

services in real-life case studies. Such surveys could also assist in making the user

cost coefficients better adjusted to users perceptions.

Public transit systems serve the needs of numerous users around the world and

their efficient operation is associated with the successful completion of their daily

activities. Acknowledging the importance of public transit for modern societies, this

dissertation focuses on addressing challenges related with the performance of public

transit systems, with studies ranging from fixed route to flexible and full on-demand

systems. Outputs include methods and tools that can be implemented by transit

agencies to improve the quality of their service and thus assure their successful opera-

tion. Focusing on both agencies and users, future work will enhance these outputs to

provide additional innovative and sustainable solutions to current and future transit

inefficiencies.
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A APPENDIX

A list of acronyms included in this dissertation is given below in alphabetical

order:

ADA - Americans with Disabilities Act

AFC - Automatic Fare Collection

AIC - Akaike Information Criterion

APC - Automatic Passenger Count

AVL - Automated Vehicle Location

COCO - Common Objects in Context

DARP - Dial-a-Ride Problem

DART - Dial-A-Ride Transit

DRT - Demand Responsive Transportation

EMD - Earth Mover’s Distance

EMFAC - Emission Factors

FIFO - First-In-First-Out

ITS - Intelligent Transportation Systems

MBTA - Massachusetts Bay Transportation Authority

MTA - Metropolitan Transportation Authority

NTST - National Transit Summaries and Trends

ODX - Origin-Destination-Transfer

PVTA - Pioneer Valley Transit Authority

R-CNN - Region Based Convolutional Neural Network

SCAT - Sarasota County Area Transit

SDP - Service Delivery Policy

SVM - Support Vector Machine
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TCQSM - Transit Capacity and Quality of Service Manual

TCRP - Transit Cooperative Highway Research Program

TNC - Transportation Network Company

TRB - Transportation Research Board

TTR - Train Tracking Records

VHT - Vehicle Hours Traveled

VMT - Vehicle Miles Traveled

VRPTW - Vehicle Routing Problem with Time Windows

YOLO - You Only Look Once

WAV - Wheelchair Accessible Vehicle
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