
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

April 2021

Concentration Inequalities in the Wild: Case Studies in Blockchain Concentration Inequalities in the Wild: Case Studies in Blockchain

& Reinforcement Learning & Reinforcement Learning

A. Pinar Ozisik
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, and the OS and Networks Commons

Recommended Citation Recommended Citation
Ozisik, A. Pinar, "Concentration Inequalities in the Wild: Case Studies in Blockchain & Reinforcement
Learning" (2021). Doctoral Dissertations. 2128.
https://scholarworks.umass.edu/dissertations_2/2128

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/395013563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/2128?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

CONCENTRATION INEQUALITIES IN THE WILD:
CASE STUDIES IN BLOCKCHAIN & REINFORCEMENT

LEARNING

A Dissertation Presented

by

A. PINAR OZISIK

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February, 2021

College of Information and Computer Sciences

© Copyright by A. Pinar Ozisik 2021

All Rights Reserved

CONCENTRATION INEQUALITIES IN THE WILD:
CASE STUDIES IN BLOCKCHAIN & REINFORCEMENT

LEARNING

A Dissertation Presented

by

A. PINAR OZISIK

Approved as to style and content by:

Brian Neil Levine, Chair

Philip S. Thomas, Member

Yuriy Brun, Member

Phillipa Gill, Member

Nikunj Kapadia, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

ACKNOWLEDGMENTS

It takes an army, not just a village, to complete the long, arduous, and exciting

but frustrating journey that is the Ph.D. Many thanks first and foremost go to my

advisor, Brian Levine, for being an incredibly supportive mentor and collaborator,

and for having the monk-like patience to deal with my struggles and contentions. I

learned so much from you. Thank you Philip Thomas for the countless hours you

have spent teaching and guiding me in a completely new field. You are rocking this

new role as a mentor. Thank you Phillipa Gill for the support and mentoring you

provided towards the end of my Ph.D. I wish you had been around even sooner! I also

thank the rest of my committee, Yuriy Brun and Nikunj Kapadia, for their thoughtful

feedback on this work.

I am very grateful to my collaborators, George Bissias, Gavin Andresen, Amir

Houmansadr and Sunny Katkuri, for their guidance in formulating a research agenda,

and sharing their vast knowledge. Thank you to all the professors, especially Gordon

Anderson and Bill Verts, for whom I have been a teaching assistant. By imparting

your wisdom on how to be a great teacher, you have helped me shape my own teaching

philosophy. I am also thankful to my undergraduate mentors, Antonella D. Lillo, for

being a strong and determined role model, and Kyle Harrington, for introducing me

to the curious world of research. I also want to thank Leeanne Leclerc and Emma

Anderson for helping me achieve the milestones toward the Ph.D.

In addition to the people who have supported me professionally, I am also very

grateful to those who were by my side emotionally. Thank you Marc Liberatore and

Eva Hudlicka for listening to and encouraging me when I was at my lowest. To all

my friends at UMass, thank you for including me in a great community of friends

iv

and colleagues. I was inspired by each and every one of you. Thank you to my tribe

of wonderful and inspirational women: Asli, Defne, Ece, Eren Sila, Zeynep, with the

addition of Naz and Sila Ozkara. It has been a privilege to grow up together and

transform into the women we are today; I appreciate you all. Joey—your unexpected

debut into my life has been a breath of fresh air.

My number one supporters, my grandmothers, both of whom I lost during this

journey—thank you for teaching me the importance of kindness and staying true to

myself. And of course, my family: Mom, Dad and sister Deno, who have been with

me from start to finish, and have unconditionally supported me through it all—my

thank yous for you are uncountable.

v

ABSTRACT

CONCENTRATION INEQUALITIES IN THE WILD:
CASE STUDIES IN BLOCKCHAIN & REINFORCEMENT

LEARNING

FEBRUARY, 2021

A. PINAR OZISIK

B.S., BRANDEIS UNIVERSITY

B.A., BRANDEIS UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Brian Neil Levine

Concentration inequalities (CIs) are a powerful tool that provide probability

bounds on how a random variable deviates from its expectation. In this dissertation,

first I describe a blockchain protocol that I have developed, called Graphene, which

uses CIs to provide probabilistic guarantees on performance. Second, I analyze the

extent to which CIs are robust when the assumptions they require are violated, using

Reinforcement Learning (RL) as the domain.

Graphene is a method for interactive set reconciliation among peers in blockchains

and related distributed systems. Through the novel combination of a Bloom filter

and an Invertible Bloom Lookup Table, Graphene uses a fraction of the network

bandwidth used by deployed work for one- and two-way synchronization. It is a

vi

fast and implementation-independent algorithm that uses CIs for parameterizing an

IBLT so that it is optimal in size for a given desired decode rate. I characterize

performance improvements through analysis, detailed simulation, and deployment

results for Bitcoin Cash, a prominent cryptocurrency. Implementations of Graphene,

IBLTs, and the IBLT optimization algorithm are all open-source code.

Second, I analyze the extent to which existing methods rely on accurate training

data for a specific class of RL algorithms, known as Safe and Seldonian RL. Several

Seldonian RL algorithms have a component called the safety test, which uses CIs

to lower bound the performance of a new policy with training data collected from

another policy. I introduce a new measure of security to quantify the susceptibility to

corruptions in training data, and show that a couple of Seldonian RL methods are

extremely sensitive to even a few data corruptions, completely breaking the probability

bounds guaranteed by CIs. I then introduce a new algorithm, called Panacea, that is

more robust against data corruptions, and demonstrate its usage in practice on some

RL problems, including a grid-world and diabetes treatment simulation.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Randomness as a Resource . 1

1.1.1 Randomness for Set Reconciliation in Blockchains 2
1.1.2 Randomness for Safety in Seldonian RL . 2

1.2 Concentration Inequalities . 4

1.2.1 A Brief History . 4
1.2.2 Application of Concentration Inequalities . 5

1.2.2.1 Chernoff Bound for Blockchain Systems 6
1.2.2.2 Chernoff-Hoeffding Bound for Seldonian RL 7

1.3 Collaborators . 9

2. SET RECONCILIATION APPLIED TO BLOCKCHAIN
PROPAGATION . 10

2.1 Introduction . 10
2.2 Background and Related Work . 12

2.2.1 Set Reconciliation Data Structures . 13
2.2.2 Block Propagation . 15

viii

2.3 The Graphene Protocol . 17

2.3.1 Protocols . 19
2.3.2 Graphene Extended . 21

2.3.2.1 Mempool Synchronization . 23

2.3.3 Ensuring Probabilistic Data Structure Success 23

2.3.3.1 Parameterizing Bloom filter S and IBLT I 23
2.3.3.2 Parameterizing Bloom filter R and IBLT J 26

2.4 Enhancing IBLT Performance . 32

2.4.1 Optimal Size and Desired Decode Rate . 33
2.4.2 Ping-Pong Decoding . 37

2.5 Evaluation . 39

2.5.1 Comparison to Bloom Filter Alone . 39
2.5.2 Implementations . 43
2.5.3 Monte Carlo Simulation . 44

2.5.3.1 Graphene: Protocol 1 . 44
2.5.3.2 Graphene Extended: Protocol 2 . 46

2.6 Systems Issues . 48

2.6.1 Security Considerations . 48
2.6.2 Transaction Ordering Costs . 50
2.6.3 Reducing Processing Time . 50
2.6.4 Limitations . 50

3. SECURITY ANALYSIS OF SAFE AND SELDONIAN
REINFORCEMENT LEARNING ALGORITHMS 52

3.1 Introduction . 52
3.2 Background . 54

3.2.1 Safe Reinforcement Learning . 55

3.3 Related Work . 57
3.4 Problem Formulation . 58
3.5 Analysis of Existing Algorithms . 61
3.6 Panacea: An Algorithm for Safe and Secure Policy Improvement 65
3.7 Empirical Evaluation . 67

ix

3.7.1 Experimental Methodology and Application Domains 67
3.7.2 Results and Discussion . 69

3.8 Supplementary Proofs . 70

3.8.1 Analysis of Existing Algorithms . 70
3.8.2 Proof of Theorem 5 . 81
3.8.3 Panacea: An Algorithm for Safe and Secure Policy

Improvement . 82

3.8.3.1 Proof of Corollary 1 . 82
3.8.3.2 Proof of Corollary 2 . 84

4. CONCLUSIONS . 86

BIBLIOGRAPHY . 88

x

LIST OF TABLES

Table Page

3.1 α–security of current methods (center); settings for clipping
weight, c, for α-security written in terms of a
user-specified k and α (right). The minimum IS weight is
denoted by imin. 64

3.2 α–security of Panacea. 82

xi

LIST OF FIGURES

Figure Page

2.1 (Left) The receiver’s mempool contains the entire block; Protocol 1:
Graphene manages this scenario. (Right) The receiver’s mempool
does not contain the entire block. Protocol 2: Graphene Extended

manages this scenario. 18

2.2 An illustration of Protocol 1 for propagating a block that is a subset of
the mempool. 19

2.3 If Protocol 1 fails (e.g., if the block is not a subset of the mempool),
Protocol 2 recovers with one roundtrip. 20

2.4 [Protocol 1] Passing m mempool transactions through S results in a
FPs (in dark blue). A green outline illustrates a∗ > a with
β-assurance, ensuring IBLT I decodes. 21

2.5 [Protocol 2] Passing m transactions through S results in z positives,
obscuring a count of x TPs (purple) and y FPs (in dark blue).
From z, we derive x∗ < x with β-assurance (in green). 21

2.6 [Protocol 2] From our bound m− x∗ > m− x with β-assurance (in
yellow), we can derive a bound for the false positives from S as
y∗ > y with β-assurance outlined in green. 21

2.7 [Simulation, Protocol 2] The fraction of Monte Carlo experiments
where x∗ < x via Theorem 2 compared to a desired bound of
β = 239/240 (shown as a red dotted line). 30

2.8 [Simulation, Protocol 2] The fraction of Monte Carlo experiments
where y∗ > y via Theorem 3 compared to a desired bound of
β = 239/240 (shown as a red dotted line). 31

2.9 Parameterizing an IBLT statically results in poor decode rates. The
black points show the decode failure rate for IBLTs when k = 4
and τ = 1.5. The blue, green and yellow points show decode failure
rates of optimal IBLTs, which always meet a desired failure rate on
each facet (in magenta). Size shown in Fig. 2.11. 33

xii

2.10 An example IBLT (without the checksum field) and its equivalent
hypergraph representation. In the IBLT, k = 3, there are c = 3k
cells, and j = 5 items are placed in k cells. In the hypergraph, j
hyperedges each have k vertices out of c vertices total. 34

2.11 Size of optimal IBLTs (using Alg. 1) given a desired decode rate; with
a statically parameterized IBLT (k = 4, τ = 1.5) in black. For
clarity, the plot is split on the x-axis. Decode rates are shown in
Fig. 2.9. 37

2.12 Decode rate of a single IBLT (parameterized for a 1/240 failure rate)
versus the improved ping-pong decode rate from using a second,
smaller IBLT with the same items. 38

2.13 [Deployment on BCH, Protocol 1]: Performance of Protocol 1 as
deployed on the Bitcoin Cash network, where the node was
connected to 6 other peers. Points are averages of binned sizes;
error bars show 95% c.i. if at least 3 blocks of that size can be
averaged. 42

2.14 [Implementation, Protocol 1] An implementation of Protocol 1 for the
Geth Ethereum client run on historic data. The left facet compares
against Ethereum’s use of full blocks; the right compares against an
idealized version of Compact Blocks using 8 bytes/transaction. 42

2.15 [Simulation, Protocol 1] Average size of Graphene blocks versus
Compact Blocks as the size of the mempool increases as a multiple
of block size. Each facet is a block size: (200, 2000, and 10000
transactions). (N.b., This figure varies mempool size; Fig. 2.13
varied block size.) . 45

2.16 [Simulation, Protocol 1] Decode rate of Graphene blocks with β = 239
240

(red dotted line), as block size and the number of extra transactions
in the mempool increases as a multiple of block size. 46

2.17 [Simulation, Protocol 2] Decode rate of Graphene blocks with β = 239
240

,
shown by the black dotted line, as block size and the number of
extra transactions in the mempool increase. Error bars represent
95% confidence intervals. 47

2.18 [Simulation, Protocol 2] Graphene Extended cost as the fraction of the
block owned by the receiver increases. The black dotted line is the
cost of Compact Blocks. 48

xiii

2.19 [Simulation, Mempool Synchronization] Here m = n and the peers
have a fraction of the sender’s mempool in common on the x-axis.
Graphene is more efficient, and the advantage increases with block
and mempool size. 49

3.1 Two numerical solutions . 71

xiv

LIST OF ALGORITHMS

1 IBLT-Param-Search(j, k, p) . 35
2 Panacea(D, πe, α, k) . 82

xv

CHAPTER 1

INTRODUCTION

Randomness is inherent in the world. We owe our unique existence to random

biological processes, mutation and recombination, that result in the genetic composition

of our DNA. However, in our everyday lives, the uncertainty of our future due to the

random nature of our world, especially nowadays escalated by the onset of a worldwide

pandemic, can be daunting, and even frightening. Yet in computer science, we manage

to use randomness as an asset. This dissertation discusses two significant instances

where randomness is valuable to computation.

1.1 Randomness as a Resource

At times, computer scientists study naturally occurring phenomena using probabil-

ity and statistics, which model how randomness works; at other times, they artificially

add randomness to algorithms. In computer networking, the Ethernet protocol lever-

ages randomness by requiring each node in a network to wait a random amount of

time before transferring frames in order to avoid collisions [83]. In cryptography, a

random key and algorithm encode information, enabling a sender and receiver to

privately communicate over the Internet. In operating systems, lottery scheduling

addresses the problem of starvation, by incorporating randomness into an algorithm

used to select processes. In the following section, we discuss the role of randomness

as it pertains to specific problems in blockchain systems [87, 113] and Seldonian

reinforcement learning [108].

1

1.1.1 Randomness for Set Reconciliation in Blockchains

The first half of this dissertation attempts to solve a canonical problem in network-

ing and distributed systems, known as set reconciliation, to achieve synchronization

among replicas, in the context of blockchain systems. Our version of the problem

poses the question of how to relay information, i.e., a set of items, from a sender to a

receiver if the receiver already possesses all or some of the items. First, we create a

protocol assuming that the receiver has all of the items, and then extend it to the

case where the receiver is missing items.

Our proposed solution, instead of sending all the items directly, leverages random-

ness by using probabilistic data structures. These data structures use hash functions

to compactly represent a set of items. Hence, our introduced source of randomness

comes from these hash functions, given the widely held assumption that a good

hash function appears random [83]. The benefit of our non-deterministic protocol is

minimized bandwidth given a low error rate, introduced by the use of probabilistic

data structures.

Minimizing bandwidth while guaranteeing performance is crucial in blockchain

systems for numerous reasons, which are discussed in detail in Section 2.1. To

summarize briefly, the majority of bandwidth in these systems is due to transactions,

similar to those generated by financial institutions. Reduced bandwidth implies

that peers in the system can receive transactions more rapidly, and encourages the

participation of peers with limited-bandwidth links. Furthermore, the system can

scale up if it can support more transactions.

1.1.2 Randomness for Safety in Seldonian RL

The second half of this dissertation analyzes a class of reinforcement learning (RL)

algorithms, referred to as Safe and/or Seldonian RL [108]. This class of algorithms uses

randomly sampled datasets to make predictions, and ensures safety, which guarantees

2

that the algorithm will behave correctly with a user-specified probability. It is a

specific component, called the safety test, that is largely responsible for ensuring safety.

Our analysis of this component answers to what extent the safety guarantee holds

when a subset of the samples is not random.

In real world applications, such non-random samples are caused by anomalies in

training data. For example, RL has been suggested for type 1 diabetes treatment

wherein training data includes measurements taken from a patient’s insulin pump [108].

These devices, often with Internet connection, can run out of battery or malfunction.

Marin et al. [76] showed how a malicious attacker could exploit the security protocols

of a peacemaker to harm a person wearing the device. As more medical devices with

Internet access get approved for distribution, such vulnerabilities will only increase.

Therefore, we must address how to handle discrepancies, which can lead to very

dangerous consequences, in data.

Our formulation of the problem represents anomalies as samples artificially created

by a malicious attacker. The incorporation of an adversary provides a worst-case

analysis to understand the robustness of safety tests to anomalies in data; because any

algorithm robust to an adversary is also robust to non-adversarial anomalies in data.

After quantifying the robustness of existing methods, we introduce a new algorithm,

Panacea, which provides a user-specified level of robustness when the number of

non-random samples in the dataset is upper bounded.

Next, we define a concentration inequality (CI), and provide a brief history. Then

we present some canonical applications of CIs in computer science to exhibit their

importance and benefits, before specifying how they are used in blockchain systems

and Seldonian RL.

3

1.2 Concentration Inequalities

Both sections of the dissertation leverage CIs to bound the probability that a

random variable deviates from some value, typically its expectation or median. A

CI is a proven statement that specifies the properties of the random variable, and

also quantifies the following: 1) The specific value around which the values of the

random variable are centered; 2) The deviation or distance around this center; and

3) The probability of observing values within a given distance to the center. Such

statements are also known as tail inequalities or tail bounds. A random variable is

highly concentrated if its values are close to some specific value with high probability.

All CIs require samples to be random, but differ in terms of the additional

information needed in order to use them. Some considerations for picking the right

CI for an application domain include whether random variables are independent and

drawn from a specific distribution, as well as whether it is easy to obtain a sample

mean and variance.

1.2.1 A Brief History

Mathematicians, especially those interested in probability theory, statistical me-

chanics and functional analysis—subareas dealing with an infinite number of variables—

studied and developed ideas surrounding the concentration of a random variable within

the last century [15]. In 1952, the American statistician Herman Chernoff published

a paper, which introduced the canonical form of the Chernoff bound. However, in

his personal essay titled “A career in statistics,” which appeared in the book, “Past,

Present and Future of Statistics,” Chernoff regretfully claimed that he should have

also given credit to his colleague Herman Rubin, a statistician, who earned his Ph.D.

from the University Chicago in 1948 [67]. Alas, it is Rubin’s proof of Chernoff’s upper

bound that is often presented to graduate students today.

4

Rubin used Markov’s inequality to obtain Chernoff’s upper bound. In fact,

Markov’s inequality is also a misnomer because it first appeared in the work of Russian

mathematician Pafnuty Chebyshev [50]. Although it is named after Chebyshev’s stu-

dent, Andrey Markov, sometimes it is also referred to as the first Chebyshev inequality

(making the well-known Chebyshev inequality the second Chebyshev inequality). In

his proof, Rubin applied the Markov inequality to the moment generating function—a

set of mathematical functions uniquely characterizing a probability distribution—of a

random variable.

A major development occurred with the birth of a concept called the concentration

of measure, which appeared in a 1971 paper, by mathematician Vitali Milman [63].

French mathematician, Michel Talagrand, expanded on Milman’s work in the 1990’s

and formally defined this concept, which he summarized as follows: “A random variable

that depends (in a ‘smooth’ way) on many independent random variables (but not too

much on any of them) is essentially constant” [15, 103]. Depending on the smoothness

condition, this statement can have multiple meanings [15]. Nonetheless, it often means

that “a random variable X concentrates around” the sample mean “x in a way that

the probability of the event {|X − x| ≥ t}, for a given t > 0, decays exponentially in

t” [97]. In the decades following Talagrand’s work, CIs gained momentum, becoming

a main subject of study and widely used in areas such as statistics, physics and the

social sciences.

1.2.2 Application of Concentration Inequalities

In computer science, CIs are important tools with many applications. The subfield

of randomized algorithms is dedicated to solving difficult problems, by adding a non-

deterministic component into an algorithm, which outputs a random variable. Applying

a CI to the observed samples, obtained over multiple runs of an algorithm, enables

making predictions on the mean or median of that random variable. Additionally, CIs

5

provide a method to analyze the runtime of a randomized algorithm, i.e., how many

runs are required such that the observed values predict the mean or median with high

probability.

Another domain for the application of CIs in theoretical computer science is

streaming algorithms. In the streaming model, at a high level, the goal is to compute

some statistic—such as the mean, number of distinct numbers, most occurring number—

from an input sequence of numbers within a given range, coming in one at a time [22].

A CI informs the design of a randomized algorithm that can compute the statistic

with high probability, given space constraints, which are often defined as a function of

the sequence size or the size of the universe of numbers from which the sequence is

generated. Both in the case of streaming and randomized algorithms, CIs offer speed

and simplicity, compared to their deterministic counterpart [86].

In machine learning, the assumption that samples are random is crucial to learn

from data [1]. CIs offer a partial solution to the learning problem, which asks how to

learn an unknown function f from a dataset [1]. Although a CI does not tell us what

f is, it enables us to learn something, such as the mean or median of f , outside of the

data [1].

1.2.2.1 Chernoff Bound for Blockchain Systems

In Chapter 2, we use the well-known Chernoff bound [23] for parameterizing

our probabilistic data structures in order to guarantee our protocol’s performance

with high probability. The parameterization of our data structures ensures minimal

bandwidth given a user-specified performance.

There are many variants of the Chernoff bound, depending on the the distribution

of the random variable, and whether the random variable in question is a sum of

other independent random variables. The version, which we utilize in Chapter 2, is

6

concerned with a random variable X that is the sum of n independent Bernoulli trials.

The inequality states the following.

Chernoff Bound. Let X be the sum of n independent Bernoulli trials, X1, . . . , Xn,

with mean µ = E[X]. Then for δ > 0, Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)1+δ

)µ
.

For the same set of assumptions and variables, we use the following version of the

bound:

Pr[X ≥ (1 + δ)µ] ≤ Exp

(
− δ2

2 + δ
µ

)
. (1.1)

The derivation of Eq. (1.1) starting from the well-known version of the bound is:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
=Exp

(
ln

(
eδ

(1 + δ)1+δ

)µ)
=Exp(µ(ln(eδ)− ln((1 + δ)1+δ)))

=Exp(µ(δ − (1 + δ) ln(1 + δ)))

≤Exp

(
µ

(
δ − (1 + δ)

(
2δ

2 + δ

)))
=Exp

(
µ

(
δ(2 + δ)− 2δ(1 + δ)

2 + δ

))
=Exp

(
−δ2

2 + δ
µ

)
.

Above, we rely on the inequality that ln(1 + x) ≥ x
1+x/2

= 2x
2+x

for x > 0 (see Love

[71]), and that ea−b ≤ ea−c when b ≥ c.

1.2.2.2 Chernoff-Hoeffding Bound for Seldonian RL

In Chapter 3, we analyze the affect of non-random samples added to a dataset,

which is provided as input to a safety test that uses the Chernoff-Hoeffding (CH) [47]

bound to guarantee safety. More accurately known as Hoeffding’s inequality, this

bound is named after the Finnish statistician, Wassily Hoeffding, who is regarded

as one of the primary contributors to the subfield of nonparametric statistics [48].

7

His inequality is a generalization of the Chernoff bound, which initially considered a

random variable that is the sum of Bernoulli random variables. In his proof written

in 1963, Hoeffding relaxed the problem by bounding a random variable that is the

sum of random variables that can come from any distribution. The inequality states

the following.

Chernoff-Hoeffding Bound. Let X1, . . . , Xn be independent bounded random

variables with Xi ∈ [a, b] for all n, where −∞ < a ≤ b < ∞. Let X = 1/n
∑n

i=1Xi

and µ = E[X]. Then for any t > 0, Pr(X − µ ≥ t) ≤ Exp

(
− 2nt2

(b−a)2

)
.

The version of the CH inequality we use, keeping the same set of definitions and

assumptions, is the following. For any δ ∈ [0, 1],

Pr

(
X − (b− a)

√
ln(1/δ)

2n
≥ µ

)
≤ δ. (1.2)

To arrive at Eq. (1.2), we start from the canonical form of the CH inequality. Let

δ = e
− 2nt2

(b−a)2 . It follows that

1

δ
=e

2nt2

(b−a)2

ln(1/δ) =
2nt2

(b− a)2

t2 =
ln(1/δ)(b− a)2

2n

t =

√
ln(1/δ)(b− a)2

2n

=(b− a)

√
ln(1/δ)

2n
.

Replacing the definition of δ and t into the canonical form, we arrive at Eq. (1.2) .

8

Pr(X − µ ≥ t) ≤ Exp

(
− 2nt2

(b− a)2

)
Pr(X − t ≥ µ) ≤ δ

Pr

(
X − (b− a)

√
ln(1/δ)

2n
≥ µ

)
≤ δ.

Overall, this dissertation provides a use case for the application of CIs, yet all

the while determines their limitations when samples are not completely random—a

likely scenario when anomalies such as errors, missing entries, malicious attacks etc.

interfere with the natural course of events. Notice that randomness is necessary for

the application of CIs, which, in the case of blockchain systems, reduces network

bandwidth. In the case of Safe and Seldonian RL, it is due to the randomness of

training data, that we are able to use CIs, and consequently, guarantee safety even

when a subset of the samples is not random.

1.3 Collaborators

The study presented in Chapter 2 was conducted under the supervision of Professor

Brian Levine. Additional collaborators include George Bissias, Gavin Andresen, Darren

Tapp, Sunny Katkuri, and Amir Houmansadr [89, 90]. Chapter 3 was completed

in collaboration with Philip Thomas [91], and was partly the result of insightful

conversations with members of the Autonomous Learning Laboratory, specifically

Yash Chandak and Stephen Giguere.

9

CHAPTER 2

SET RECONCILIATION APPLIED TO BLOCKCHAIN
PROPAGATION

2.1 Introduction

Minimizing the network bandwidth required for synchronization among replicas

of widely propagated information is a classic need of many distributed systems.

Blockchains [87, 113] and protocols for distributed consensus [26, 56] are the most

recent examples of systems where the performance of network-based synchronization

is a critical factor in overall performance. Whether based on proof-of-work [55, 87],

proof-of-stake [18, 39], or a directed acyclic graph (DAG) [65], the ability for these

systems to scale to a large user base rely on assumptions about synchronization.

In all these systems, if the network protocol used for synchronization of newly

authored transactions and newly mined blocks of validated transactions among peers is

efficient, there are numerous benefits. First, if blocks can be relayed using less network

data, then the maximum block size can be increased, which means an increase in the

overall number of transactions per second. Scaling the transaction rate of Bitcoin is

a critical performance issue [25, 27] driving many fundamental design choices such

as inter-block time [113], block size, and layering [31]. Second, throughput is a

bottleneck for propagating blocks larger than 20KB, and delays grow linearly with

block size [25, 27]. As a consequence of the FLP result [35], blockchains cannot

guarantee consensus. Smaller encodings of blocks allow for miners to reach consensus

more rapidly, avoiding conflicts called forks. Moreover, systems based on GHOST [101],

such as Ethereum [113], record forks on the chain forever, resulting in storage bloat.

10

Finally, using less bandwidth to relay a block allows greater participation by peers

who are behind limited-bandwidth links or routes (e.g., China’s firewall).

Contributions. In this chapter, we introduce Graphene, a probabilistic method

and protocol for synchronizing blocks (and mempools) with high probability among

peers in blockchains and related systems. Graphene uses a fraction of the network

bandwidth of related work; for example, for larger blocks, our protocol uses 12% of

the bandwidth of existing deployed systems. To do so, we make novel contributions

to network-based set reconciliation methods and the application of probabilistic data

structures to network protocols. We characterize our performance through analysis,

detailed simulation, and open-source deployments. Our contributions include the

following.

• We design a new protocol that solves the problem of determining which elements

in a set M stored by a receiver are members of a subset N ⊆ M chosen by a

sender. We apply the solution to relaying a block of n = |N | transactions to a

receiver holding m = |M | transactions. We use a novel combination of a Bloom

filter [12] and an Invertible Bloom Lookup Table (IBLT) [44]. Our approach

is smaller than using current deployed solutions [24] and previous IBLT-based

approximate solutions [33]. We show our solution to this specific problem is an

improvement of Ω(n log n) over using an optimal Bloom filter alone.

• We extend our solution to the more general case where some of the elements

of N are not stored by the receiver. Thus, our protocol extension handles

the case where a receiver is missing transactions in the sender’s block; our

solution is a small fraction of the size of previous work [111] at the cost of an

additional message. Additionally, we show how Graphene can efficiently identify

transactions held by the receiver but not the sender.

11

• We design and evaluate an efficient search algorithm for parameterizing an

IBLT so that it is optimally small in size but meets a desired decode rate with

arbitrarily high probability. Because it is based on a hypergraph representation,

it has faster execution times. This result is applicable beyond our context to

any use of IBLTs.

• We design and evaluate a method for significantly improving the decode rate of

an IBLT when two IBLTs are available that are based on roughly the same set

of elements. This method is also a generally applicable.

• We provide a detailed evaluation using theoretical analysis and simulation to

quantify performance against existing systems. We also characterize perfor-

mance of our protocol in a live Bitcoin Cash deployment, and in an Ethereum

implementation for historic blocks. We also show that Graphene is more resilient

to attack than previous approaches.

We have publicly released our Bitcoin Cash and Ethereum implementations of

Graphene [7, 53], a C++ and Python implementation of IBLTs including code for

finding their optimal parameters [64], and we have released a public network specifica-

tion of our basic protocol for standard interoperability [9]. It has been adopted by

blockchain developers in released clients, replacing past approaches [10, 11]. While

our focus is on blockchains, our work applies in general to systems that require set

reconciliation, such as database or file system synchronization among replicas. Or

for example systems such as CRLite [61], where a client regularly checks a server for

revocations of observed certificates.

2.2 Background and Related Work

Below, we summarize and contrast related work in network-based set reconciliation

and protocols for block propagation.

12

2.2.1 Set Reconciliation Data Structures

Set reconciliation protocols allow two peers, each holding a set, to obtain and

transmit the union of the two sets. This synchronization goal is distinct from set

membership protocols [21], which tell us, more simply, if an element is a member of a

set. However, data structures that test set membership are useful for set reconciliation.

This includes Bloom filters [12], a seminal probabilistic data structure with myriad

applications [16, 72, 104]. Bloom filters encode membership for a set of size n

by inserting the items into a small array of −n log2(f)
ln(2)

bits. Each item is inserted

k = log(2)m/n times using independent hash functions. This efficiency gain comes at

the expense of allowing a false positive rate (FPR), f .

Invertible Bloom Lookup Tables (IBLTs) [44] are a richer probabilistic data struc-

ture designed to recover the symmetric difference of two sets of items. Like Bloom

filters, items are inserted into an IBLT’s array of c cells, which is partitioned into

subsets of size c/k. Each item is inserted once into each of the k partitions, at indices

selected by k hash functions. Rather than storing only a bit, the cells store aggregates

of the actual items. Each cell has a count of the number of items inserted and the

xor of all items inserted (called a keySum). The following algorithm [33] recovers the

symmetric difference of two sets. Each set is stored in an IBLT, A and B, respectively,

(with equal c and k values). For each pairwise cell of A and B, the keySums are

xor’ed and the counts subtracted, resulting in a third IBLT: A4 B = C that lacks

items in the intersection. The cells in C with count = 1 hold an item belonging to

only A, and to only B if count = −1. These items are removed from the k − 1 other

cells, which decrements their counts and allows for the additional peeling of new items.

This process continues until all cells have a count of 0. (A checkSum field catches a

special case: if x values in a cell from A and x− 1 values that are not a subset from

the corresponding cell in B are subtracted, then count= 1 but the value contained

is part of neither set.) If c is too small given the actual symmetric difference, then

13

iterative peeling will eventually fail, resulting in a decode failure, and only part of the

symmetric difference will be recovered.

There are many variations of Bloom filters that present different trade-offs, such

as more computation for smaller size. Similarly, IBLTs are one of several alternatives.

For example, several approaches involve more computation but are smaller in size [30,

80, 114] (see [33] for a comparison). We have not investigated how alternatives to

IBLTs improve Graphene’s size nor how, for example, computational costs differ.

Our focus is on IBLTs because they are balanced: minimal computational costs and

small size. While miners may have strong computational resources, full nodes and

lighter clients in blockchains may not. More importantly, as our deployment results in

Section 2.5.3 show, Graphene’s size grows slowly as block size increases for the most

likely scenarios in Bitcoin, Bitcoin Cash, and Ethereum, demonstrating that IBLTs

are a good fit for our problem. Finally, some of these solutions are complementary; for

example, minsketch [114] can be used within the cells of IBLTs to reduce Graphene’s

size further.

Comparison to related work. We provide a novel solution to the problem of set

reconciliation, where one-way or mutual synchronization of information is required by

two peers. Our results are significantly better than deployed past work that is based

on Bloom filters alone [111] or IBLTs alone [33, 44], as we show in Section 2.5.3.

Byers et al. [19] introduce a new data structure called Approximate Reconciliation

Trees (ARTs), based on Merkle trees, for set reconciliation. Their focus is different

than ours, as their goal is not to discover the exact symmetric difference between two

sets held by sender and receiver. Eppstein et al. [33] also present a set reconciliation

solution, based primarily on IBLTs. They show their approach is more efficient for

symmetric differences of 10k or fewer than ARTs as well as Characteristic Polynomial

Interpolation [80], which is another solution to set reconciliation. Our method is more

14

efficient than these past approaches for discovering the exact symmetric difference in

terms of storage or computation or both.

We provide several contributions to IBLTs. In general, if one desires to decode

sets of size j from an IBLT, a set of values τ > 0 and k > 2 must be found that result

in c = jτ cells (divisible by k) such that the probability of decoding is at least p. We

provide an implementation-independent algorithm for finding values τ and k that

meet rate p and result in the smallest value of c.

Our work advances the usability of IBLTs. Goodrich and Mitzenmacher [44]

provide values of τ that asymptotically ensure a failure rate that decreases polynomially

with j. But these asymptotic results are not optimally small in size for finite j and

do not help us set the value of k optimally. Using their unreleased implementation,

Eppstein et al. [33] identify optimal τ and k that meet a desired decode rate for a

selection of j values; however, the statistical certainty of this optimality is unclear.

In comparison, using our open-source IBLT implementation [64], we are able to

systematically produce statistically optimal values for τ and k (within a finite search

range) for a wide range of j values. Because our method is based on hypergraphs, it

is an order of magnitude faster than this previous method [33].

We also contribute a novel method for improving the decode rate of IBLTs that is

similar in approach to Gollakota and Katabi [40]. Our method is complementary to

related work by Pontarelli et al. [95], who have the same goal.

2.2.2 Block Propagation

Blockchains, distributed ledgers, and related technologies require a network protocol

for distributing new transactions and new blocks. Almost all make use of a p2p network,

often a clique among miners that validate blocks, and a random topology among

non-mining full nodes that store the entire chain. New transactions have an ID equal

to their cryptographic hash. When a new transaction is received, a peer sends the

15

ID as the contents of an inventory (inv) message to all d neighbors, who request

a getdata message if the transaction is new to them. Transactions are stored in a

mempool until included in a valid block. Blocks are relayed similarly: an inv is sent to

each neighbor (often the header is sent instead to save time), and a getdata requests

the block if needed. The root of a Merkle tree [78] of all transactions validates an

ordered set against the mined block.

The block consists of a header and a set of transactions. These transactions can

be relayed by the sender in full, but this wastes bandwidth because they are probably

already stored by the receiver. In other words, blocks can be relayed with a compressed

encoding, and a number of schemes have been proposed. As stated in Section 2.1,

efficient propagation of blocks is critical to achieving consensus, reducing storage bloat,

overcoming network firewall bottlenecks, and allowing scaling to a large number of

transactions per second.

Transactions that offer low fees to miners are sometimes marked as DoS spam and

not propagated by full nodes; yet, they are sometimes included in blocks, regardless.

To avoid sending redundant inv messages, peers keep track, on a per-transaction and

per-neighbor basis, whether an inv has been exchanged. This log can be used by

protocols to send missing transactions to a receiver proactively as the block is relayed.

Comparison to related work. Xtreme Thinblocks [111] (XThin) is a robust and

efficient protocol for relaying blocks, and is deployed in Bitcoin Unlimited (BU) clients.

The receiver’s getdata message includes a Bloom filter encoding the transaction IDs in

her mempool. The sender responds with a list of the block’s transaction IDs shortened

to 8-bytes (since the risk of collision is still low), and uses the Bloom filter to also

send any transactions that the receiver is missing. XThin’s bandwidth increases with

the size of the receiver’s mempool, which is likely a multiple of the block size. In

comparison, Graphene uses significantly lower bandwidth both when the receiver is

16

and is not missing transactions. However, Graphene may use an additional roundtrip

time to repair missing transactions.

Compact Blocks [24] is a protocol that is deployed in the Bitcoin Core, Bitcoin

ABC, and Bitcoin Unlimited clients. In this protocol, the receiver’s getdata message

is a simple request (no Bloom filter is sent). The sender replies with the block’s

transaction IDs shorted to 6-bytes (as well as the coinbase transaction). If the receiver

has missing transactions, she requests repairs with a followup inv message. Hence,

the network cost is 6n bytes, which is smaller than XThin’s cost of a Bloom filter

and a list of transaction IDs, which is approximately m log2(f)
8ln(2)

+ 6n; however, when the

receiver is missing transactions, Compact Blocks has an extra roundtrip time, which

may cost more if enough transactions are missing. Graphene is significantly lower in

cost than Compact Blocks, as we show in Section 2.5.3.

Recently, Xthinner [110] was proposed as a variant of Xthin that employs com-

pression techniques on the list of transactions in a block. Since the author states that

Xthinner is not as compact as Graphene, we do not compare against it [109].

2.3 The Graphene Protocol

The primary goal of Graphene is to reduce the amount of network traffic resulting

from synchronization of a sender and receiver; we do so in the context of block

propagation. To motivate Graphene, consider a protocol that uses a Bloom filter alone

to encode a block containing n transactions. Assume the receiver has a mempool of

m transactions that are a super set of the sender’s block. If we set the FPR of the

sender’s Bloom filter to f = 1
144(m−n) , then we can expect the filter to falsely include

an extra transaction in a relayed block about once every 144 blocks (approximately

once a day in Bitcoin). This approach requires −n log2(f)
8 ln(2)

bytes, and it is easy to show

that it is smaller than Compact Blocks (6n bytes) when m < 71, 982, 340 + n, which

is highly likely.

17

n in block
andmempool

m − n
not in
block

m in mempool
n in block

x inm − x
not in
block

block
and

mempool

m in mempool

Figure 2.1: (Left) The receiver’s mempool contains the entire block; Protocol 1:
Graphene manages this scenario. (Right) The receiver’s mempool does not contain
the entire block. Protocol 2: Graphene Extended manages this scenario.

But we can do better than using a Bloom filter alone: in Graphene, we shrink

the size of the sender’s Bloom filter by increasing its FPR, and we correct any false

positives at the receiver with an IBLT. The summed size of the two structures is

smaller than using either alone. In practice, our technique performs significantly

better than Compact Blocks for all but the smallest number of transactions, and we

show in Section 2.5.3 that it performs better than any Bloom-filter-only approach

asymptotically.

We design two protocols for Graphene, which we define presently. Both protocols

use probabilistic data structures that fail with a tunable probability. Throughout our

exposition, we use the concept of probabilistic assurance. Specifically, a property A is

said to be held in data structure X with β-assurance whenever it is possible to tune

X so that A occurs in X with probability at least β.

In Protocol 1, we assume that the receiver’s mempool contains all transactions in

the block, a typical case due to the aggressive synchronization that blockchains employ.

So, our first design choice is to optimize for this scenario illustrated in Fig. 2.1-Left.

As we show in Section 2.5.3, Protocol 1 is usually enough to propagate blocks.

In Protocol 2, we do not assume that the receiver’s mempool is synchronized, as

illustrated in Fig. 2.1-Right, which allows us to apply it to two scenarios: (i) block

relaying between unsynchronized peers; and (ii) intermittent mempool synchronization.

18

Protocol 1

block: n txns

Sender

mempool: m txns

1. inv

2. getdata, m

I = IBLT(insert=block, symdiff=a*)

4. Z=mempool txns in S
 I’=IBLT(insert=Z, symdiff=a*)
 block= Z corrected with IΔI’

S = BF(insert=block, fpr=)

 3. S, I, a*

Receiver

Figure 2.2: An illustration of Protocol 1 for propagating a block that is a subset of
the mempool.

A receiver may not be synchronized with the sender because of network failures, slow

transaction propagation times relative to blocks, or if the block contains unpropagated

low-fee transactions erroneously filtered out as spam. Protocol 2 begins when Protocol

1 fails: the receiver requests missing transactions using a second Bloom filter; and

the sender transmits any missing transactions, along with a second IBLT to correct

mistakes. (Compact Blocks and XThin also handle this scenario but do so with greater

network bandwidth.)

2.3.1 Protocols

Our first protocol is for receivers whose mempool contains all the transactions in

the block; see Fig. 2.1-Left. The protocol is illustrated in Fig. 2.2.

PROTOCOL 1: Graphene

1: Sender: The sender transmits an inv (or blockheader) for a block.

2: Receiver: The receiver requests the unknown block, including a count of transac-

tions in her mempool, m.

3: Sender: The sender creates Bloom filter S and IBLT I from the transaction IDs

of the block (purple area in Fig. 2.1-Left). The FPR of S is fS = a
m−n , and the

19

Protocol 2

2. R, b, y*

J = IBLT(insert=block, symdiff=b+y*)
T = block txns not in R

5. J’=IBLT(insert=Z+T, symdiff=b+y*)
block= Z+T corrected with JΔJ’

 3 and 4. T, J

R = BF(insert=Z, fpr=)
1. computes x* and y*

block: n txns

Sender

mempool: m txns

Receiver

Figure 2.3: If Protocol 1 fails (e.g., if the block is not a subset of the mempool),
Protocol 2 recovers with one roundtrip.

IBLT is parameterized such that a∗ items can be recovered, where a∗ > a with

β-assurance (outlined in green in Fig. 2.4). We set a so as to minimize the total

size of S and I. S and I are sent to the receiver along with the block header (if

not sent in Step 1).

4: Receiver: The receiver creates a candidate set Z of transaction IDs that pass

through S, including false positives (purple and dark blue areas in Fig. 2.4).

The receiver also creates IBLT I′ from Z. She subtracts I 4 I′, which evaluates

to the symmetric difference of the two sets [33]. Based on the result, she adjusts

the candidate set, validates the Merkle root in the block header, and decodes the

block.

In blockchains, the sender knows the transactions for which no inv message has been

exchanged with the receiver1; those transactions could be sent at Step 3 in order to

reduce the number of transactions in I 4 I′. (N.b., the IBLT stores only 8 bytes of

each transaction ID; but full IDs are used for the Bloom filter.)

1In theory peers know this information; but in practice they use lossy data structures to keep
track of this information.

20

n in block
andmempool

a
FP
s f
ro
m
S

m in mempool

m − n notm − n notm − n not
in blockin blockin block

a∗>aa∗>aa∗>a

Figure 2.4: [Protocol 1] Passing m mem-
pool transactions through S results in a
FPs (in dark blue). A green outline illus-
trates a∗ > a with β-assurance, ensuring
IBLT I decodes.

n in block

x in block
and

mempool

m in mempool

m − x notm − x notm − x not
in blockin blockin block

y
FP

sf
ro
m

S

x∗ < xx∗ < xx∗ < x

Figure 2.5: [Protocol 2] Passing m trans-
actions through S results in z positives,
obscuring a count of x TPs (purple) and
y FPs (in dark blue). From z, we derive
x∗ < x with β-assurance (in green).

n in block
m in mempool

less than
m − x∗m − x∗m − x∗

not in block
y
FP
s f
ro
m
S

y∗>yy∗>yy∗>y

Figure 2.6: [Protocol 2] From our bound m−x∗ > m−x with β-assurance (in yellow),
we can derive a bound for the false positives from S as y∗ > y with β-assurance
outlined in green.

We use a fast algorithm to select a such that the total amount of data transmitted

over the network is optimally small; see Section 2.3.3.1. The count of false positives

from S has an expected mean of (m−n)fS = a, whose variance comes from a Binomial

distribution with parameters (m− n) and fS. Because of this variance, a∗ should be

used to parameterize I instead of a. We derive a∗ in Section 2.3.3.1 via a Chernoff

bound.

2.3.2 Graphene Extended

If the receiver does not have all the transactions in the block (Fig.2.1-Right), IBLT

subtraction in Protocol 1 will not succeed. In that case, the receiver should continue

with the following protocol, illustrated in Fig. 2.3. Subsequently, we show how this

21

protocol can also be used for intermittent mempool synchronization. Our contribution

is not only the design of this efficient protocol, but the derivation of parameters that

meet a desired decode rate.

PROTOCOL 2: Graphene Extended

1: Receiver: The size of the candidate set is |Z| = z, where z = x+y, a sum of x true

positives and y false positives (purple and dark blue areas in Fig. 2.5). Because

the values of x and y are obfuscated within the sum, the receiver calculates x∗

such that x∗ ≤ x with β-assurance (green outline in Fig. 2.5) She also calculates

y∗ such that y∗ ≥ y with β-assurance (green outline in Fig. 2.6).

2: Receiver: The receiver creates Bloom filter R and adds all transaction IDs in Z

to R. The FPR of the filter is fR = b
n−x∗ , where b minimizes the size of R and

IBLT J in step 4. She sends R, y∗ and b.

3: Sender: The sender passes all transaction IDs in the block through R. She sends

all transactions that are not in R directly to the receiver (red area of Fig. 2.6)

4: Sender: The sender creates and sends an IBLT J of all transactions in the block

such that b + y∗ items can be recovered from it. This size accounts for b, the

number of transactions that falsely appear to be in R, and y∗, the number of

transactions that falsely appear to be in S.

5: Receiver: The receiver creates IBLT J′ from the transaction IDs in Z and the

new transaction IDs sent by the sender in step 3. She decodes the subtraction of

the two blocks, J4 J′. From the result, she adjusts set Z, validates the Merkle

root, and decodes the block.

As in Protocol 1, we set b so that the summed size of R and J is optimally small; see

Section 2.3.3.1. We also derive solutions for x∗ and y∗; see Section 2.3.3.2.

22

2.3.2.1 Mempool Synchronization

With a few changes, Protocols 1 and 2 can be used by two peers to synchronize

their mempools so that both parties obtain the union of the two mempools, instead of

a block that is a subset of one of the mempools. In this context, instead of a block,

the sender places his entire mempool in S and I. The receiver passes her mempool

through S, adding any negatives to H, the set of transactions that are not in S. Some

transactions that the sender does not have in his mempool will falsely pass through

S, and these are identified by I (assuming that it decodes); these transactions are

also added to H. If I does not decode, Protocol 2 is executed to find transactions

in the symmetric difference of the mempools; all missing transactions among the

sender and receiver are exchanged, including those in set H. The protocol is more

efficient if the peer with the smaller mempool acts as the sender since S will be smaller.

Section 2.5.3.2 shows that the protocol is efficient.

2.3.3 Ensuring Probabilistic Data Structure Success

Cryptocurrencies allow no room for error: the header’s Merkle root can be validated

with an exact set of transactions only. Yet, Graphene is a probabilistic solution, and

if its failure rate is high, resources are wasted on recovery. In this section, we derive

the parameters for Graphene that ensure a tunable, high success rate.

2.3.3.1 Parameterizing Bloom filter S and IBLT I

Graphene sends the least amount of data over the network when the sum of the

Bloom filter S and IBLT I is minimal. Let T = TBF + TI be the summed size of the

Bloom filter and IBLT. The size of a Bloom filter in bytes, TBF , with false positive

23

rate fS and n items inserted is TBF = −n ln(fS)

8 ln2 2
[12]. Recall that we recover up to a∗

items from the IBLT, where a∗ > a with β-assurance. As we show in Section 2.3.3.1,

a∗ = (1 + δ)a, where δ is parameterized by β. An IBLT’s size is a product of the

number of items recoverable from a symmetric difference and a multiplier τ that

ensures recovery at a desired success rate. Therefore, given the cost of r bytes per

cell, TI is

TI = rτ(1 + δ)a.

When we set fS = a
m−n , the total size of the Bloom filter and IBLT in bytes is

T (a) =
−n ln(a

m−n)

8 ln2 2
+ rτ(1 + δ)a. (2.1)

The value of a that minimizes T is either: a = 1; a = m− n; or the value of a where

the derivative of Eq. (2.1) with respect to a is equal to zero. When δ = 0 this is equal

to

a = n/(8rτ ln2 2). (2.2)

Eq. (2.2) is a good approximation for the minimum when δ is close to 0; and the

exact value is difficult to derive. Furthermore, implementations of Bloom filters and

IBLTs involve non-continuous ceiling functions. As a result, Eq. (2.2) is accurate only

for a ≥ 100; otherwise the critical point a′ produced by Eq. (2.2) can be inaccurate

enough that T (a′) is as much as 20% higher than its true minimum value. Graphene

exceeds the performance of previous work when Eq. (2.2) is used to select a. However,

implementations that desire strictly optimal performance should take an extra step.

If Eq. (2.2) results in a value of a less than 100, its size should be computed using

24

accurate ceiling functions and compared against all points a < 100. This is a typical

case in our implementation for current block sizes.

Derivation of a∗a∗a∗. We can parameterize IBLT I based on the expected number of false

positives from S, but to ensure a high decode rate, we must account for the natural

variance of false positives generated by S. Here we derive a closed-form expression for

a∗ as a function of a and β such that a∗ > a holds with β-assurance, i.e. a∗ > a with

probability at least β. Define A1, . . . , Am−n to be independent Bernoulli trials such

that Pr[Ai = 1] = fS, A =
∑m−n

i=1 Ai, and µ = E[A].

Theorem 1. Let m be the size of a mempool that contains all n transactions from

a block. If a is the number of false positives that result from passing the mempool

through Bloom filter S with FPR fS, then a∗ ≥ a with probability β when

a∗ =(1 + δ)a,

where δ=
1

2
(s+
√
s2+ 8s) and s =

− ln(1−β)

a
.

Proof. There are m − n potential false positives that pass through S. They are a

set A1, . . . , Am−n of independent Bernoulli trials such that Pr[Ai = 1] = fS. Let

A =
∑m−n

i=1 Ai and µ = E[A] = fS(m − n) = a
m−n(m − n) = a. From Lemma 1, we

have

Pr[A ≥ (1 + δ)µ] ≤ Exp

(
− δ2

2 + δ
µ

)
,

for δ ≥ 0. The receiver can set a bound of choice, 0 < β < 1, and solve for δ using the

right hand side of the above equation. To bound with high probability, we seek the

complement of the right hand side

25

β = 1− Exp

(
− δ2

2+δ
a

)
δ = 1

2
(s+

√
s2 + 8s), where s = − ln(1−β)

a
.

(2.3)

According to Theorem 1, if the sender sends a Bloom filter with FPR fS = a
m−n ,

then with β-assurance, no more than a∗ false positives will be generated by passing

elements from Z though S. To compensate for the variance in false positives, IBLT

I is parameterized by a symmetric difference of a∗ = (1 + δ)a items. I will decode

subject to its own error rate (see Section 2.4), provided that a < a∗ (which occurs

with probability β) and the receiver has all n transactions in the block. We evaluate

this approach in Section 2.5.3; see Fig. 2.16.

2.3.3.2 Parameterizing Bloom filter R and IBLT J

Parameterizing bbb. In Protocol 2, we select b so that the summed size of R and J

is optimally small. Its derivation is similar to a. We show below that y∗ = (1 + δ)y.

Thus, for protocol 2 the total size is:

T (b) =
z ln(b

n−x∗)

8 ln2 2
+ rτ(1 + δ)b. (2.4)

When δ = 0, the optimal value of b assuming continuous values is

b = z/(8rτ ln2 2). (2.5)

26

Similar to Section 2.3.3.1, an exact closed form for b is difficult to derive; and a

perfectly optimal implementation would compute T (b) using ceiling functions for

values of b < 100.

Using z to parameterize R and J. Here we offer a closed-form solution to the

problem of parameterizing Bloom filter R and IBLT J. This is a more challenging

problem because x and y cannot be observed directly.

Let z be the observed count of transactions that pass through Bloom filter S. We

know that z = x+ y: the sum of x true positives and y false positives, illustrated as

purple and dark blue areas respectively in Fig. 2.5. Even though x is unobservable,

we can calculate a lower bound x∗, depending on x, z, m, fS and β, such that x∗ ≤ x

with β-assurance, illustrated as a green outline in Fig. 2.5.

With x∗ in hand, we also have, with β-assurance, an upper bound on the number

of transactions the receiver is missing: n− x∗ > n− x. This bound allows us to

conservatively set fR = b
n−x∗ for Bloom filter R. In other words, since x∗ < x with

β-assurance, the sender, using R, will fail to send no more than b of the n − x

transactions actually missing at the receiver. IBLT J repairs these b failures, subject

to its own error rate (see Section 2.4).

We also use x∗ to calculate, with β-assurance, an upper bound y∗ ≥ y on the

number of false positives that pass through S. The green area in Fig. 2.6 shows y∗,

which is a superset of the actual value for y, the dark blue area.

The sender’s IBLT J contains all transactions in the block. The receiver’s IBLT J′

contains true positives from S, false positives from S, and newly sent transactions.

Therefore, we bound both components of the symmetric difference by b+y∗ transactions

in order for the subtraction operation to decode. In other words, both J and J′ are

parameterized to account for more items than actually exist in the symmetric difference

between the two IBLTs. Note that we use β-assurance to bound the performance of

27

each probabilistic data structure; in doing so, we establish worst-case performance

guarantees for our protocol.

The following theorems derive values for x∗ and y∗.

Theorem 2. Let m be the size of a mempool containing 0 ≤ x ≤ n transactions from

a block. Let z = x+ y be the count of mempool transactions that pass through S with

FPR fS, with true positive count x and false positive count y. Then x∗ ≤ x with

probability β when

x∗ = arg min
x∗

Pr[x ≤x∗; z,m, fS] ≤ 1− β.

where Pr[x ≤ k; z,m, fS] ≤
k∑
i=0

(
eδk

(1 + δk)1+δk

)(m−k)fS

and δk =
z − k

(m− k)fS
− 1.

Proof. Let Y1, . . . , Ym−x be independent Bernoulli trials representing transactions not

in the block that might be false positives; i.e., Pr[Yi = 1] = fS. We have y = E[Y]

and Y =
∑m−x

i=1 Yi.

For a given value x, we can compute Pr[Y ≥ y], the probability of at least y false

positives passing through the sender’s Bloom filter. We apply a Chernoff bound [23]:

Pr[y; z, x,m] = Pr[Y ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
(2.6)

where δ > 0, and µ = E[Y] = (m− x)fS. By setting (1 + δ)µ = z − x and solving for

δ, we have

(1 + δ)(m− x)fS = z − x

δ =
z − x

(m− x)fS
− 1.

We substitute δ into Eq. (2.6) and bound the probability of observing a value of

y = z − x or greater, given that the receiver has x transactions in the block. This

28

realization allows us to enumerate all possible scenarios for observation z. The

cumulative probability of observing y, parametrized by z, given that the receiver has

at most k of the transactions in the block, is:

Pr[x ≤ k; z,m, fS] =
k∑
i=0

Pr[y; z, k,m]

≤
k∑
i=0

(
eδk

(1 + δk)1+δk

)(m−k)fS

where δk = z−k
(m−k)fS

− 1. Finally, using this closed-form equation, we select a bounding

probability β, such as β = 239/240. We seek a probability β of observing z from a

value x∗ or larger; equivalently, we solve for the complement:

arg min
x∗

Pr[x ≤ x∗; z,m, fS] ≤ 1− β.

To summarize, x∗ is the smallest number of true positives such that the cumulative

probability of observing y = z − x∗ false positives is at least 1− β.

For good measure, we validated the theorem empirically, as shown in Fig. 2.7.

Theorem 3. Let m be the size of a mempool containing 0 ≤ x ≤ n transactions from

a block. Let z = x+ y be the count of mempool transactions that pass through S with

FPR fS, with true positive count x and false positive count y. Then y∗ ≥ y with

probability β when

y∗ = (1 + δ)(m− x∗)fS,

where δ=
1

2
(s+
√
s2 + 8s) and s =

− ln(1− β)

(m− x∗)fS
.

29

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

● ● ●

●
● ●

●
● ● ●

●
●

● ● ● ●
●

●
●

●
●

●
● ●

●
● ● ●

●
●

● ● ● ●
●

●
●

●
●

2
0
0

2
0
0
0

1
0
0
0
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.996

0.997

0.998

0.999

1.000

0.996

0.997

0.998

0.999

1.000

0.996

0.997

0.998

0.999

1.000

Fraction of block in mempool

Fr
a
cti
o
n
of
 ti
m
e

x*
 i
s
a
l
o
w
er

b
o
u
n
d

Figure 2.7: [Simulation, Protocol 2] The fraction of Monte Carlo experiments where
x∗ < x via Theorem 2 compared to a desired bound of β = 239/240 (shown as a red
dotted line).

Proof. First, we solve for x∗ ≤ x with β-assurance using Theorem 2. We find

y∗ = z−x∗ ≥ y by applying Lemma 1 to Y =
∑m−x∗

i=1 , the sum of m−x∗ independent

Bernoulli trials such that Pr[Yi = 1] = fS trials and µ = (m− x∗)fS:

Pr[Y ≥ (1 + δ)µ] ≤ Exp

(
− δ2

2 + δ
µ

)
,

for δ ≥ 0. We select 0 < β < 1, and solve for δ using the right hand side of Eq. (2.7).

To bound with high probability, we seek the complement of the right hand side.

β = 1− Exp

(
− δ2

2 + δ
(m− x∗)fS

)
(2.7)

δ =
1

2
(s+

√
s2 + 8s), where s =

− ln(1− β)

(m− x∗)fS
. (2.8)

Then, we set

y∗ = (1 + δ)(m− x∗)fS.

30

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ●

● ●
● ●

● ●● ●

●
● ● ● ● ● ● ● ● ●

● ●
● ●

● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

2
0
0

2
0
0
0

1
0
0
0
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.996

0.997

0.998

0.999

1.000

0.996

0.997

0.998

0.999

1.000

0.996

0.997

0.998

0.999

1.000

Fraction of block in mempool

Fr
a
cti
o
n
of
 ti
m
e

y*
 i
s
a
n
u
p
p
er

b
o
u
n
d

Figure 2.8: [Simulation, Protocol 2] The fraction of Monte Carlo experiments where
y∗ > y via Theorem 3 compared to a desired bound of β = 239/240 (shown as a red
dotted line).

Since, x∗ ≤ x with β-assurance, it follows that y∗ also bounds the sum of m − x

Bernoulli trials, where

y∗ = (1 + δ)(m− x)fS,

with probability at least β for any δ ≥ 0 and m > 0.

We validated this theorem empirically as well, as shown in Fig. 2.8.

Special case: m ≈ nm ≈ nm ≈ n.When m ≈ n, our optimization procedure in Protocol 1 will

parameterize fS to a value near 1, which is very efficient if the receiver has all of the

block. But if m ≈ n and the receiver is missing some portion of the block, Protocol 1

will fail. Subsequently, with z ≈ m, Protocol 2 will set y∗ ≈ m and x∗ ≈ 0, and

fR ≈ 1; and most importantly, IBLT J will be sized to m, making it larger than a

regular block.

31

Fortunately, resolution is straightforward. If Protocol 1 fails, and the receiver finds

that z ≈ m, y∗ ≈ m, and fR ≈ 1, then in Step 2 of Protocol 2, the receiver should

set fR to a value less than 1. We set fR = 0.1, but a large range of values execute

efficiently (we tested from 0.001 to 0.2). All mempool transactions that pass through

S are inserted into Bloom filter R, and R is transmitted to the sender.

The sender follows the protocol as usual, sending IBLT J along with h transactions

from the mempool not in R. However, he then deviates from the protocol by also

sending a third Bloom filter F intended to compensate for false positives from R. The

n−h transactions that pass through R are inserted into F. The roles of Protocol 2 are

thus reversed: the sender uses Theorems 2 and 3 to solve for x∗ and y∗, respectively,

to bound false positives from R (substituting the block size for mempool size and

fR as the FPR). He then solves for b such that the total size in bytes is minimized

for F with FPR fF = b
m−x∗ and J having size b + y∗. This case may be common

when Graphene is used for mempool synchronization; our evaluations in Fig. 2.19 in

Section 2.5.3.2 show that this method is more efficient than Compact Blocks.

Alternatives to Bloom filters. There are dozens of variations of Bloom filters [72,

104], including Cuckoo Filters [34] and Golomb Code sets [41]. Any alternative can

be used if Eqs. (2.1), (2.2), (2.4), and (2.5) are updated appropriately.

2.4 Enhancing IBLT Performance

The success and performance of Graphene rests heavily on IBLT performance.

Using IBLTs over a network has been studied in only a handful of papers [13, 33,

44, 81, 95], and current results are generally asymptotic with the size of the IBLT

(the notable exception is Eppstein et al. [33], which we discuss in Section 2.2). In

this section, we contribute several important results that allow for IBLTs to be used

in practical systems with reliable precision. IBLTs are deceptively challenging to

parameterize so that j items can be recovered with a desired success probability of

32

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●
●
●●●
●●●
●

●
●
●●
●●●●
●●
●
●
●●
●●
●●●
●
●
●●●●●●
●●●
●
●
●
●●●●●●
●

●
●
●

●
●
●
●●●
●
●●●●
●
●
●
●●●
●●●●●●●●
●
●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●
●
●●●
●●●
●

●
●
●●
●●●●
●●
●
●
●●
●●
●●●
●
●
●●●●●●
●●●
●
●
●
●●●●●●
●

●
●
●

●
●
●
●●●
●
●●●●
●
●
●
●●●
●●●●●●●●
●
●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●●●

●
●

●
●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●●
●

●

●●

●

●

●●
●●●
●

●

●

●

●
●

●●
●●

●

●
●●

●
●

●
●
●

●
●
●
●

●

●●●
●

●
●●
●

●

●

●

●

●

●●●●

●
●●
●●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●●●

●
●

●
●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●●
●

●

●●

●

●

●●
●●●
●

●

●

●

●
●

●●
●●

●

●
●●

●
●

●
●
●

●
●
●
●

●

●●●
●

●
●●
●

●

●

●

●

●

●●●●

●
●●
●●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●●●

●

●
●
●●
●●

●
●
●
●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●●

●

●
●●
●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●

●
●
●

●

●

●●

●

●

●●

●
●

●

●●●

●

●

●●●●

●●
●

●

●
●

●
●●

●●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●
●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●

●●

●
●
●

●

●

●●

●

●

●●

●
●

●

●●●

●

●

●●●●

●●
●

●

●
●

●
●●

●●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

1/24 1/240 1/2400

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0.01%

0.10%

1.00%

10.00%

100.00%

j items recovered

F
ail
ur
e
pr
o
b
a
bil
it
y

(l
o
gs
c
al
e)

Figure 2.9: Parameterizing an IBLT statically results in poor decode rates. The black
points show the decode failure rate for IBLTs when k = 4 and τ = 1.5. The blue,
green and yellow points show decode failure rates of optimal IBLTs, which always
meet a desired failure rate on each facet (in magenta). Size shown in Fig. 2.11.

p, using the minimal number of cells. Only two parameters can be set: the hedge

factor, τ (resulting in c = jτ cells total), and the number of hash functions, k, used to

determine where to insert an item (each function covers c/k cells).

Motivation. Fig. 2.9 motivates our contributions, showing the poor decode rate of an

IBLT if static values for k and τ are applied to small values of j. The figure shows three

desired decode failure rates (1− p) in magenta: 1/24, 1/240, and 1/2400. The black

points show the decode failure probability we observed in our IBLT implementation for

static settings of τ = 1.5 and k = 4. The resulting decode rate is either too small from

an under-allocated IBLT, or exceeds the rate through over-allocation. The colored

points show the failure rates of actual IBLTs parameterized by the algorithm we define

below: they are optimally small and always meet or exceed the desired decode rate.

2.4.1 Optimal Size and Desired Decode Rate

Past work has never defined an algorithm for determining size-optimal IBLT

parameters. We define an implementation-independent algorithm, adopting the IBLT

33

8

1

5

9

j1⊗j2

j1⊗j2

j3⊗j4

j3⊗j5

j4⊗j5

2

2

2

2

2

valuecount

v1,v4,v7

v1,v4,v7

v2,v5,v9

v2,v6,v8

v3,v5,v8

j1

j2

j3

j4

j5

connected
verticesedge

– j items and hyper-edges
– c cells and vertices
– k hash functions and vertices
 connecting each edge

j31

} 2-core

row

j51

j41

j1⊗j22

3

2

4

6

7

IBLT Hypergraph equivalent

Hash 1

Hash 2

Hash 3

V1={v1,v2,v3}
V2={v4,v5,v6}
V3={v7,v8,v9}

V =V1⋃V2⋃V3

Figure 2.10: An example IBLT (without the checksum field) and its equivalent
hypergraph representation. In the IBLT, k = 3, there are c = 3k cells, and j = 5
items are placed in k cells. In the hypergraph, j hyperedges each have k vertices out
of c vertices total.

interpretation of Molloy [84] and Goodrich and Mitzenmacher [44] as uniform

hypergraphs.

Let H = (V,X, k) be a k-partite, k-uniform hypergraph, composed of a set of c

vertices. Let V = V1 ∪ · · · ∪ Vk, where each Vi is a subset of c/k vertices (we enforce

that c is divisible by k). X is a set of j hyper-edges, each connecting k vertices, one

from each of the Vi. The hypergraph represents an IBLT with k hash functions, j

inserted items, and c cells. As illustrated in Figure 2.10, each cell corresponds to a

vertex, and we have |V | = c and |Vi| = c/k. Each item represents an edge connecting

k vertices, with the ith vertex being chosen uniformly at random from Vi. Vertices in

Vi correspond to hash function i, which operates over a distinct range of cells.

Decoding corresponds to removing edges that contain a vertex of degree 1, re-

peatedly. The r-core [99] of H is the maximal subgraph (after decoding) in which

all vertices have degree at least r. H contains a non-empty 2-core iff the IBLT it

represents cannot be decoded. In the example illustrated in Figure 2.10, edges j3, j4

and j5 contain degree 1 vertices v9, v6, and v3 respectively and can be removed; the

34

remaining subgraph comprised of j1 and j2 and degree 2 vertices v1, v4, and v7 is a

2-core. Equivalent operations on the IBLT would show that items j1 and j2 cannot

be decoded.

Algorithm 1: IBLT-Param-Search(j, k, p)

1: cl = 1
2: ch = cmax
3: trials = 0
4: success = 0
5: L = (1− p)/5
6: while cl 6= ch do
7: trials += 1
8: c = (cl + ch)/2
9: if decode(j, k, c) then

10: success += 1
11: end if
12: conf=conf int(success, trials)
13: r = success/trials
14: if r − conf ≥ p then
15: ch = c
16: end if
17: if (r + conf ≤ p) then
18: cl = c
19: end if
20: if (r − conf > p− L) and (r + conf < p+ L) then
21: cl = c
22: end if
23: end while
24: return ch

Algorithm 1. This algorithm searches for the optimally small size of c = jτ cells
that decodes j items with decode success probability p (within appropriate confidence
intervals) from an IBLT with k hash functions. decode() operates over a hypergraph
rather than a real IBLT.

We seek an algorithm for determining the most space-efficient choice for c and k

that is sufficient to ensure a decode rate of p for a fixed number of inserted items

j. Items are inserted pseudo-randomly by applying the hash functions. There-

fore, it makes sense to model the edge set X as a random variable. Define Hj,p =

{(V,X, k) | E[decode((V,X, k))] ≥ p, |X| = j}, or the set of hypergraphs (V,X, k) on

35

j edges whose expected decode success rate is bounded by p. Based on this definition,

the algorithm should return

arg min
(V,X,k)∈Hj,p

|V |. (2.9)

Our approach for solving Eq. (2.9) is to fix j, p, and k and perform binary search

over all possible values for c = |V |. A key point is that binary search is justified by

the fact that the expected decode failure rate is a monotonically increasing function of

c. This notion can explained as follows. A 2-core forms in (V,X, k) when there exists

some group of v vertices that exclusively share a set of at least 2v edges. Define vertex

set U such that |U | > |V |. Since the j edges in X are chosen uniformly at random,

and there are more possible edges on vertex set U , the probability that a given set of

2v edges forms in (U,X, k) must be lower than in (V,X, k).

Fig. 1 shows the pseudocode for our algorithm, which relies on two functions. The

function decode(j,k,c) takes a random sample from the set of hypergraphs Hj,p

and determines if it forms a 2-core (i.e., if it decodes), returning True or False. The

function conf int(s,t) returns the two-sided confidence interval of a proportion of s

successes and t trials. We set cmax = 20 in our implementation; in general, that value

could be made part of the search itself [6]. In practice, we call Alg. 1 from an outer

loop of values of k that we have observed to be reasonable (e.g., 3 to 12), and prune

the search of each k when it is clear that it will not be smaller in size than a known

result. To be clear, the algorithm is optimal within the values of k that are searched.

Selecting a maximum value of k to search is an open problem, but we observe a trend

that smaller k are better as j increases. See Bissias [8] for a related discussion.

We have released an open-source implementation of IBLTs in C++ with a Python

wrapper [64]. The release includes an implementation of Alg. 1 and optimal parameters

for several decode rates. Although the runtime is linear with j, for any given rate, the

parameter file can be generated once ever and be universally applicable to any IBLT

implementation. Compared to a version of our algorithm that uses actual IBLTs, our

36

0 50 100

150

200

250

300
400
500
600
700
800
900

0

200

400

600

800

1000

1200

0
50

100
150
200
250
300
350

j items recovered

S
iz

e
(c

el
ls

)

Decode
failure rate 1/24 1/240 1/2400 static

k=4,tau=1.5

Figure 2.11: Size of optimal IBLTs (using Alg. 1) given a desired decode rate; with a
statically parameterized IBLT (k = 4, τ = 1.5) in black. For clarity, the plot is split
on the x-axis. Decode rates are shown in Fig. 2.9.

hypergraph approach executes much faster for all j. For example, to parameterize

j = 100, our approach completes in 29 seconds on average (100 trials). Allocating

actual IBLTs increases average run time to 426 seconds. The speed increase is due to

our use of hypergraphs, which are larger than IBLTs in terms of storage but are faster

to compute with.

Fig. 2.11 shows the size of IBLTs when parameterized optimally for three different

decode rates. If parameterized appropriately, the number of cells in an IBLT grows

linearly, with variations due to inherent discretization and fewer degrees of freedom in

small IBLTs.

2.4.2 Ping-Pong Decoding

Graphene takes advantage of its two IBLTs to increase the decode rate for Protocol

2. IBLTs I (and I′) and J (and J′) are different sizes, and may use a different number

of hash functions, but contain the same transactions. When an IBLT fails to decode

completely, it still can succeed partially. The transactions that are decoded from

37

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●
●

● ●

● ●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●●

●

●
●●
●●●

●●
●●

●●

●

●●
●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●●●●●●

●●●●●●●●●●

●

●
●●
●●●

●●
●●

●●

●

●●
●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●●●●●●

●●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●

●●●●

●
●●●

●
●●

●
●●

●●

●

●

●●●

●

●●

●
●

●●●●●●

●

●

●●●●●●
●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●●●

●●
●

●
●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●

●●●●

●
●●●

●
●●

●
●●

●●

●

●

●●●

●

●●

●
●

●●●●●●

●

●

●●●●●●
●

●

●●

●●

●

●●

●

●

●

●

●
●

●

●

●●●

●●
●

●
●

●●

●

Items: 50 Items: 100

Items: 10 Items: 20

0 10 20 30 40 50 0 25 50 75 100

2.5 5.0 7.5 10.0 0 5 10 15 20

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1

240

(
1

240
)2

1

240

(
1

240
)2

size (j) of smaller IBLT

F
ail
ur
e
pr
o
b
a
bil
it
y
(l
o
gs
c
al
e)

●● ●●sibling single

Figure 2.12: Decode rate of a single IBLT (parameterized for a 1/240 failure rate)
versus the improved ping-pong decode rate from using a second, smaller IBLT with
the same items.

J4 J′ can be removed from I4 I′, and decoding of the latter can be retried. Then,

transactions from I4 I′ can be removed from J4 J′, and decoding of the latter can

be retried; and so on in a ping-pong fashion (see Gollakota and Katabi [40]). We note

that if the count of a decoded item is 1, then it should be subtracted from the other

IBLT; if the count is −1, then it should be added to the other IBLT. The IBLTs

should use different seeds in their hash functions for independence.

Fig. 2.12 shows an experiment where we compared the decode rate of a single

IBLT parameterized to be optimally small and recover j ∈ [10, 20, 50, 100] items with

decode failure rate of 1− p = 1/240. We then inserted the same items into a second

IBLT parameterized to hold 0 < i ≤ j items. When i is the same size as j, the failure

rate is (1− p)2 or lower. But improvements can be seen for values i < j as well. When

j is small, very small values of i improve the decode rate. For larger values of j, larger

38

values of i are needed for decoding. Ping-pong decoding is computationally fast since

IBLT decoding itself is fast.

The use of ping-pong decoding on Graphene Protocol 2 is an improvement of

several orders of magnitude; results are presented in Fig. 2.17 in Section 2.5.3.2.

This approach can be extended to other scenarios that we do not investigate here.

For example, a receiver could ask many neighbors for the same block and the IBLTs

can be jointly decoded with this approach.

2.5 Evaluation

Our evaluation reaches the following conclusions:

• Graphene Protocol 1 is more efficient than using a Bloom filter alone, by

Ω(n log n) bits. For all but small n, it is more efficient than deterministic

solutions.

• We deployed Protocol 1 worldwide in Bitcoin Cash and show it performs as

expected; and our implementation of Protocol 1 for Ethereum evaluated against

historic data also shows expected gains.

• Using extensive Monte Carlo simulations, we show that Graphene Protocols 1

and 2 are always significantly smaller than Compact Blocks and XThin for a

variety of scenarios, including mempool synchronization.

• In simulation, the decode success rates of Graphene Protocols 1 and 2 are above

targeted values.

2.5.1 Comparison to Bloom Filter Alone

The information-theoretic bound on the number of bits required to describe any

unordered subset of n elements, chosen from a set of m elements is dlog2

(
m
n

)
e ≈

n log2(m/n) bits [17]. Carter et al. also showed that an approximate solution to the

39

problem has a more efficient lower bound of −n log2(f) bits by allowing for a false

positive rate of f [21].

Because our goal is to address a restricted version of this problem, Graphene

Protocol 1 is more efficient than Carter’s bound for even an optimal Bloom filter alone.

This is because Graphene Protocol 1 assumes all n elements (transactions) are stored

at the receiver, and makes use of that information whereas a Bloom filter would not.

Theorem 4. Relaying a block with n transactions to a receiver with a mempool (a

superset of the block) of m transactions is more efficient with Graphene Protocol 1

than using an optimally small Bloom filter alone, when the IBLT uses k ≥ 3 hash

functions. The efficiency gains of Graphene Protocol 1 are Ω(n log2 n).

Proof. We assume that m = cn for some constant c > 1. Our proof is asymptotic.

Thus, according to the law of large numbers, every value δ > 0 (where δ is defined as in

Theorem 1) is sufficient to achieve β-assurance when choosing values for a∗, x∗, and y∗.

Accordingly, we may proceed under the assumption that δ = 0; i.e., there is no need

to lower the false positive rate of either Bloom filter to account for deviations because

the observed false positive rate will always match its expected value asymptotically.

Let f , where 0 < f < 1, be the FPR of a Bloom filter created in order to correctly

identify n ≥ 1 elements from a set of m ≥ 1 elements. The size of the Bloom filter

that has FPR f , with n items inserted, is −n log2(f) bits [21]. Let f = p
m−n , where

0 < p < 1. The expected number of false positives that can pass through the Bloom

filter is (m − n) p
(m−n) = p. Since 0 < p < 1, one out of every 1/p Bloom filters is

expected to fail.

To correctly identify the same set of items, Graphene instead uses a Bloom filter

with f = a
m−n , where we set a = n/(rτ) since the Bloom filter is optimal, and uses

an IBLT with aτ cells (r bytes each) that decodes with probability p. The expected

number of false positives that pass through Graphene’s Bloom filter is (m−n) a
(m−n) = a.

40

An IBLT with 1 to a items inserted in it decodes with probability 1 − p. In other

words, one out of every 1/p Graphene blocks is expected to fail.

The difference in size is

−n log2

(
p

m− n

)
−
(
− n log2

(
a

m− n

)
+ arτ

)
=n log2(a/p)− arτ

=n(log2 n+ log2
1/pτ)− 1)

=n(log2 n+ Ω(τ 2−k))

=Ω(n(log2 n)),

where Eq. 2.5.1 follows from Theorem 1 from Goodrich and Mitzenmacher [44], given

that we have an IBLT with k ≥ 3 hash functions.

Graphene cannot replace all uses of Bloom filters, only those where the elements

are stored at the receiver, e.g., set reconciliation.

As m− n approaches zero, Protocol 1 shrinks its Bloom filter and approaches an

IBLT-only solution. The special case where Graphene has an FPR of 1 is equivalent to

not sending a Bloom filter at all; in that case, Graphene is as small as any IBLT-only

solution, as expected. As the size of m− n increases, Graphene is much smaller than

sticking with an IBLT-only solution, which would have τ(m− n) cells.

Graphene is not always smaller than deterministic solutions. As we show in

our evaluations below, for small values of n (about 50–100 or fewer depending on

constants), deterministic solutions perform better. For larger values, Graphene’s

savings are significant and increase with n.

We leave analytic claims regarding Protocol 2 for future work; however, below we

empirically demonstrate its advantage over related work.

41

0 KB

10 KB

20 KB

29 KB

39 KB

0 500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of transactions in block

Av
g

en
co

di
ng

 s
iz

e

Graphene Protocol 1 XThin*
Failure Rate: 46/15647 = 0.003

Figure 2.13: [Deployment on BCH, Protocol 1]: Performance of Protocol 1 as deployed
on the Bitcoin Cash network, where the node was connected to 6 other peers. Points
are averages of binned sizes; error bars show 95% c.i. if at least 3 blocks of that size
can be averaged.

●●●●●●
●●●●
●●●
●●●●
●●●●●●
●●●●
●●●●●
●
●
●●●
●●●

●

●●
●●●
●
●●●

●
●

●

●
●●●
●
●●●
●
●
●●●●
●●●
●●
●

●

●●●●
●●●●
●
●
●●
●
●●
●
●
●
●●
●●●
●

●
●●
●
●
●●●●
●●●
●
●●●●
●●●
●●
●
●●
●●●●●●●
●
●
●●
●
●●●
●●●
●●

●
●●
●
●
●
●●
●
●●

●

●
●●●

●
●●
●●●
●

●

●
●●●●●●
●
●●
●
●
●●
●
●
●
●

●

●●
●
●

●
●
●
●●●●

●

●
●

●

●●

●
●●
●
●
●

●

●

●●

●

●
●
●

●●●
●

●
●●●

●
●
●

●

●●●

●

●
●●
●●

●
●
●●

●

●

●

●

●

●

●
●●

●●
●●
●
●

●

●

●

●●

●

●

●●
●●●

●

●●

●

●●●
●●

●
●
●
●
●●●
●
●●
●●●
●

●●●●●●
●●●●
●●●
●●●●
●●●●●●
●●●●
●●●●●
●
●
●●●
●●●

●

●●
●●●
●
●●●

●
●

●

●
●●●
●
●●●
●
●
●●●●
●●●
●●
●

●

●●●●
●●●●
●
●
●●
●
●●
●
●
●
●●
●●●
●

●
●●
●
●
●●●●
●●●
●
●●●●
●●●
●●
●
●●
●●●●●●●
●
●
●●
●
●●●
●●●
●●

●
●●
●
●
●
●●
●
●●

●

●
●●●

●
●●
●●●
●

●

●
●●●●●●
●
●●
●
●
●●
●
●
●
●

●

●●
●
●

●
●
●
●●●●

●

●
●

●

●●

●
●●
●
●
●

●

●

●●

●

●
●
●

●●●
●

●
●●●

●
●
●

●

●●●

●

●
●●
●●

●
●
●●

●

●

●

●

●

●

●
●●

●●
●●
●
●

●

●

●

●●

●

●

●●
●●●

●

●●

●

●●●
●●

●
●
●
●
●●●
●
●●
●●●
●

●● ●●● ●●● ●●●
●●

●●
●●●●

●●●
●●

●●
●●●●

Observed vs. 8 B/txn

0 250 500 750 1,000 0 250 500 750 1,000

0 KB

2 KB

4 KB

6 KB

8 KB

0 KB

20 KB

39 KB

59 KB

Txns in block

Av
g
e
nc
o
di
n
g
si
z
e

●●●● ●●●● ●●●●8 B/txn Full Blocks Protocol 1

Fail Rate: 43/5672 = 0.0076

Figure 2.14: [Implementation, Protocol 1] An implementation of Protocol 1 for the
Geth Ethereum client run on historic data. The left facet compares against Ethereum’s
use of full blocks; the right compares against an idealized version of Compact Blocks
using 8 bytes/transaction.

42

2.5.2 Implementations

Bitcoin Cash implementation. We coded Graphene (Protocol 1) for Bitcoin

Unlimited’s Bitcoin Cash client. It appeared first in edition 1.4.0.0 (Aug 17, 2018) as

an experimental feature, and since 1.5.0.1 (Nov 5, 2018) it has been the default block

propagation technique. Currently, 686 nodes (operated by persons unknown to us)

are running Graphene on the Bitcoin Cash mainnet.

Fig. 2.13 shows results from our own peer running the protocol on the real

network from January 9–April 29, 2019. Fig. 2.13 also shows results from using

Bitcoin Unlimited’s XThin implementation; however, we have removed the cost of the

receiver’s Bloom filter to make the comparison fair (hence it is labelled XThin*). The

cost of XThin* is computed for the same blocks. As expected, while XThin* costs

grow quickly, the costs of Graphene grow much more slowly as block size increases.

We have not yet deployed Protocol 2 (below we discuss our simulation of Protocol

2). Out of 15,647 Graphene blocks, 46 failed to decode, which is within our β-assurance

of 239/240. This statistic also confirms our two-protocol approach: most of the time

Protocol 1 is sufficient; and correcting failures with Protocol 2 is rarely needed if β is

set appropriately. And although the failure rate of Protocol 1 is low, Protocol 2 is a

necessary part of a complete solution for our probabilistic approach.

Ethereum implementation. We implemented Graphene Protocol 1 for Geth, Ether-

eum’s primary client software, and submitted a Pull Request [53]. We replayed all

the blocks produced on the Ethereum mainnet blockchain on Jan 14, 2019 (a total of

5,672 blocks), introducing new message types to comply with Graphene’s protocol.

During our test, the size of the mempool at the receiver was kept constant at 60,000

transactions, which is typical (see https://etherscan.io/chart/pendingtx). The

left facet of Fig. 2.14 shows the size in bytes of full blocks used by Ethereum and

Graphene. The right facet compares Graphene (including transaction ordering infor-

43

https://etherscan.io/chart/pendingtx

mation) against a line showing 8 bytes/per transaction (an idealization of Compact

Blocks without overhead).

2.5.3 Monte Carlo Simulation

Methodology and assumptions. We also wrote a custom block propagation

simulator for Graphene (Protocols 1 and 2) that measures the network bytes exchanged

by peers relaying blocks. We executed the protocol using real data structures so that

we could capture the probabilistic nature of Bloom filters and IBLTs. Specifically,

we used our publicly released IBLT implementation and a well-known Python Bloom

filter implementation. In results below, we varied several key parameters, including

the size of the block, the size of the receiver’s mempool, and the fraction of the block

possessed at the receiver. Each point in our plots is one parameter combination and

shows the mean of 10,000 trials or more; if no confidence interval is shown, it was very

small and removed for clarity. For all trials, we used a bound of β = 239/240 (see

Eqs. (2.3) and (2.8)).

In all experiments, we evaluated three block sizes (in terms of transactions): 200,

which is about the average size of Ethereum (ETH) and Bitcoin Cash (BCH) blocks;

2,000 which is the average size of Bitcoin (BTC) blocks; and 10,000 as an example of

a larger block scenario. In expectation of being applied to large blocks and mempools,

we used 8-byte transaction IDs for both Graphene and Compact Blocks. Also for

Compact Blocks, we used getdata messages with block encodings of 1 or 3 bytes,

depending on block size [24].

2.5.3.1 Graphene: Protocol 1

Size of blocks. Fig. 2.15 shows the cost in bytes of Graphene blocks compared

to Compact Blocks. We focus on varying mempool size rather than block size. In

44

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

2
0
0

2
0
0
0

1
0
0
0
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.5

1.0

1.5

0
5
10
15

0
20
40
60
80

Txns in mempool not in blk
 as a multiple of blk size

Av
g
e
n
c
o
di
n
g
si
z
e
(
K
B)

●● ●●Compact Blocks Graphene

Figure 2.15: [Simulation, Protocol 1] Average size of Graphene blocks versus Compact
Blocks as the size of the mempool increases as a multiple of block size. Each facet is a
block size: (200, 2000, and 10000 transactions). (N.b., This figure varies mempool
size; Fig. 2.13 varied block size.)

these experiments, the receiver’s mempool contains all transactions in the block plus

some additional transactions, which increase along the x-axis as a multiple of the

block size. For example, at fraction 0.5 and block size 2,000, the mempool contains

3,000 transactions in total. The experiments demonstrate that Graphene’s advantage

over Compact Blocks is substantial and improves with block size. Also, the cost

of Graphene grows sublinearly as the number of extra transactions in the mempool

grows.

Decode rate. Fig. 2.16 shows the decode rate of Graphene blocks, as the mempool

size increases. In all cases, the decode rate far exceeds the desired rate, demonstrating

that our derived bounds are effective. Graphene’s decode rate suffers when the receiver

lacks the entire block in her mempool. For example, in our experiments, a receiver

holding 99% of the block can still decode 97% of the time. But if the receiver holds

less than 98% of the block, the decode rate for Protocol 1 is zero. Hence, Protocol 2

is required in such scenarios.

45

● ● ● ●
●

● ● ● ● ●
●

● ● ● ●
●

● ● ● ● ●
●

●

●
● ●

● ●
●

●
●

●

●●

●
● ●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

2
0
0

2
0
0
0

1
0
0
0
0

0 1 2 3 4 5

0.000

0.002

0.004

0.000

0.002

0.004

0.000

0.002

0.004

Txns in mempool not in blk
 as a multiple of blk size

D
ec
o
d
e
f
ail
ur
e
pr
o
b
a
bil
it
y

Figure 2.16: [Simulation, Protocol 1] Decode rate of Graphene blocks with β = 239
240

(red dotted line), as block size and the number of extra transactions in the mempool
increases as a multiple of block size.

2.5.3.2 Graphene Extended: Protocol 2

Our evaluations of Protocol 2 focus on scenarios where the receiver does not possess

the entire block and m > n; we evaluate m = n as a special case.

Size by message type. Fig. 2.18 shows the cost of Graphene Extended, broken

down into message type, as the fraction of the block owned by the receiver increases.

The dashed line on the plot shows the costs for Compact Blocks, where the receiver

requests missing transactions by identifying each as a 1- or 3-byte index (depending on

block size) in the original ordered list of transactions in the block encodings [24]. (We

exclude the cost of sending the missing transactions themselves for both protocols.)

Overall, Graphene Extended is significantly smaller than Compact Blocks, and

the gains increase as the block size increases. For blocks smaller than 200, eventually

Compact Blocks would be smaller in some scenarios.

46

●
●

●

●

●
●

●

● ● ● ●
●

● ● ● ●
●

●

● ●

●
●

●

●

●
●

●

● ● ● ●
●

● ● ● ●
●

●

● ●●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ●

●

●
●

●
● ●

● ●
● ● ● ●

● ● ● ● ●
● ●

●

●

●
●

●
● ●

● ●
● ● ● ●

● ● ● ● ●
● ●

●● ● ●

●

● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ●● ● ●

●

● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ●

●

●

● ●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ●

●

●

●

●

●

●

● ●

● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

● ● ●

●

● ● ● ● ● ● ● ● ● ●

2
0
0

2
0
0
0

1
0
0
0
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1e−05

1e−04

1e−03

1e−05

1e−04

1e−03

1e−05

1e−04

1e−03

Fraction of blk receiver has in mempool

D
ec
o
d
e
f
ail
ur
e
pr
o
b
a
bil
it
y

 (
l
o
gs
c
al
e)

●● ●●with ping−pong without

Figure 2.17: [Simulation, Protocol 2] Decode rate of Graphene blocks with β = 239
240

,
shown by the black dotted line, as block size and the number of extra transactions in
the mempool increase. Error bars represent 95% confidence intervals.

Decode rate and Ping-Pong enhancement. Fig. 2.17 shows the decode rate of

Graphene blocks; it far exceeds the desired rate. And when ping-pong decoding is

used, the simulation results show decoding rates close to 100%.

Not shown are our simulations of the Difference Digest by Eppstein et al. [33]. The

Difference Digest is an IBLT-only solution that is an alternative to our Protocol 2. In

that work, the sender begins by telling the receiver the value n. The receiver creates

a Flajolet-Martin estimate [36] of m − n, using dlog2(m − n)e IBLTs, each with 80

cells where roughly m elements are inserted. The sender replies with a single IBLT of

twice the number of cells as the estimate (to account for an under-estimate). This

approach is several times more expensive than Graphene.

m ≈ nm ≈ nm ≈ n and mempool synchronization. As described in Section 2.3.2.1, Graphene

can be used for mempool synchronization, setting n to the size of the sender’s mempool.

In these cases, if peers are mostly synchronized, then m ≈ n, which is a special case for

47

200
2000

10000

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5

0

10

20

0

50

100

Fraction of blk in mempoolAv
g

en
co

di
ng

 s
iz

e
by

 p
ar

ts
 (K

B
) getdata BF S IBLT I BF R IBLT J

Figure 2.18: [Simulation, Protocol 2] Graphene Extended cost as the fraction of the
block owned by the receiver increases. The black dotted line is the cost of Compact
Blocks.

Graphene discussed in Section 2.3.3.1. Our evaluations of this scenario are shown in

Fig. 2.19. In these experiments, the sender’s mempool has n transactions, of which a

fraction (on the x-axis) are in common with the receiver. The receiver’s mempool size

is topped off with unrelated transactions so that m = n. As a result, Protocol 1 fails

and modifications from Section 2.3.3.1 are employed. As with previous experiments,

Graphene performs significantly better than Compact Blocks across multiple mempool

intersection sizes and improvement increases with block size.

2.6 Systems Issues

2.6.1 Security Considerations

Malformed IBLTs. It is simple to produce an IBLT that results in an endless decode

loop for a naive implementation; the attack is just as easily thwarted. To create a

malformed IBLT, the attacker incorrectly inserts an item into only k − 1 cells. When

48

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●

● ●

2
0
0

2
0
0
0

1
0
0
0
0

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

0
5
10
15
20

0
30
60
90

Fraction of txns common to mempools

Av
g
e
nc
o
di
n
g
si
z
e
(
K
B)

●● ●●Compact Blocks Graphene

Figure 2.19: [Simulation, Mempool Synchronization] Here m = n and the peers have a
fraction of the sender’s mempool in common on the x-axis. Graphene is more efficient,
and the advantage increases with block and mempool size.

the item is peeled off, one cell in the IBLT will contain the item with a count of -1.

When that entry is peeled, k − 1 cells will contain the item with a count of 1; and the

loop continues. The attack is thwarted if the implementation halts decoding when an

item is decoded twice. Once detected, the sender can be dropped or banned by the

receiver.

Manufactured transaction collisions. The probability of accidental collision of

two 8-byte transaction IDs in a mempool of size m is ≈ 1− Exp
(−m(m−1)

265

)
[82]. An

attacker may use brute force search to discover and submit collisions. SipHash [3] is

used by some blockchain protocols to limit the attack to a single peer.

With or without the use of SipHash, Graphene is more resilient against such

collisions than XThin and Compact Blocks. Let t1 and t2 be transactions with IDs

that collide with at least 8 bytes. In the worst case, the block contains t1, the

sender has never seen t2, and the receiver possesses t2 but has never seen t1. In this

case, XThin and Compact Blocks will always fail; however, Graphene fails with low

49

probability, fS · fR. For the attack to succeed, first, t2 must pass through Bloom filter

S as a full 32-byte ID, which occurs only with probability fS. If it does pass, the

IBLT will decode but the Merkle root will fail. At this point, the receiver will initiate

Protocol 2, sending Bloom filter R. Second, with probability fR, t1 will be a false

positive in R as a full 32-byte ID and will not be sent to the receiver.

2.6.2 Transaction Ordering Costs

Bloom filters and IBLTs operate on unordered sets, but Merkle trees require a

specific ordering. In our evaluations, we did not include the sender’s cost of specifying

a transaction ordering, which is n log2 n bits. As n grows, this cost is larger than

Graphene itself. Fortunately, the cost is easily eliminated by introducing a known

ordering of transactions in blocks. In fact, Bitcoin Cash clients deployed a Canonical

Transaction Ordering (CTOR) ordering in Fall 2018.

2.6.3 Reducing Processing Time

Profiling our implementation code revealed that processing costs are dominated

heavily by passing the receiver’s mempool against Bloom filter S in Protocol 1.

Fortunately, this cost is easily reduced. A standard Bloom filter implementation will

hash each transaction ID k times — but each ID is already the result of applying a

cryptographic hash and there is no need to hash k more times; see Suisani et al. [102].

Instead, we break the 32-byte transaction ID into k pieces. Applying this solution

reduced average receiver processing in our Ethereum implementation from 17.8ms to

9.5ms. Alternative techniques [28, 29, 54] are also effective and not limited to small

values of k.

2.6.4 Limitations

Graphene is a solution for set reconciliation where there is a trade-off between

transmission size, complexity (in terms of network round-trips), and success rate. In

50

contrast, popular alternatives such as Compact Blocks [24] have predictable transmis-

sion size, fixed transmission complexity, use a trivial algorithm, and always succeed.

Graphene’s performance gains over related work increase as block size grows, but it is

a probabilistic solution with a (tunable) failure rate. We do not claim to have the

optimal solution for propagating blocks, nor for scaling blockchains in general.

51

CHAPTER 3

SECURITY ANALYSIS OF SAFE AND SELDONIAN
REINFORCEMENT LEARNING ALGORITHMS

3.1 Introduction

Reinforcement learning (RL) algorithms have been proposed for many high-risk

applications, such as improving type 1 diabetes and sepsis treatments [57, 108]. One

type of safe RL algorithm [105, 107], subsequently referred to as Safe and/or Seldonian

RL [108], enables these high-risk applications by providing high-confidence guarantees

that the application will not cause undesirable behavior like increasing the frequency

of dangerous patient outcomes.

However, existing safe RL algorithms rely on the assumption that training data

is free from anomalies such as errors, missing entries, and malicious attacks. In real

applications, anomalies are common when training data comes from a pipeline that

includes human interactions, natural language processing, device malfunctions, etc.

For example, the recent application of RL to sepsis treatment in the intensive care

unit (ICU) used training data generated from hand-written doctors’ notes [57]. In a

high-stress ICU environment, missing records and poorly written notes are difficult to

automatically parse [2]. Furthermore, Petit et al. [92] demonstrated the importance of

using reliable training data for self-driving cars, a potential area for the real application

of RL. They executed a series of attacks on the camera and sensors of self-driving cars

in a lab environment to demonstrate how the safety of passengers can be compromised.

In this chapter, we analyze how robust Seldonian RL algorithms are to perturbations

in data. Specifically, we analyze the robustness of a specific component, called the

52

safety test. This component makes current Seldonian algorithms safe: the safety test

checks whether necessary safety constraints are satisfied with high probability. Using

data collected from a baseline policy, it outputs new policies that are highly likely

to perform at least as well as the baseline. The safety test first computes estimates

of the expected performance of a new policy from training data, using importance

sampling (IS). It then uses concentration inequalities (CI) to bound the expectation

of the IS estimates.

First, we propose a new measure, which we call α-security, for quantifying how

robust the safety test of a Seldonian RL algorithm is to data anomalies. To create this

measure, we define an attacker that adds adversarially corrupt data points to training

data. Although anomalies in data are often not due to an adversarial attacker, if

we create algorithms that are robust to adversarial attacks, they will also be robust

to non-adversarial anomalies in data. Second, we analyze the security of existing

safety test mechanisms using α-security, and find that even if only one data point is

corrupted, the high-confidence safety guarantees provided by several Seldonian RL

algorithms can be egregiously violated. Then we propose a new algorithm that is

more robust to anomalies in training data, ensuring safety with high probability when

an upper bound on the number of adversarially corrupt data points is known. Finally,

we present experiments that support our theoretical analysis.

Our work is directly applicable to any scenario that requires computing confidence

intervals around IS estimates. More broadly, the community is also interested in our

definition of safety [38] and its limitations [45], and IS [14, 51, 70, 75]. Lastly, our

α-security formalization also pertains to high-confidence methods that do not use IS

[60, 62, 105], and can be used as a general framework to study their robustness to

data corruption attacks.

53

3.2 Background

A Markov decision process (MDP) is a mathematical model of the environment

with which an agent interacts. Formally, it is a tuple (S,A,P ,R, d0, γ). S is the

set of possible states of the environment. St is the state of the environment at

time t ∈ {0, 1, . . . }. A is the set of actions that an agent interacting with the

environment can take. At is the action chosen by the agent at time t. For notational

simplicity, we assume that A and S are finite.1 P : S × A × S → [0, 1] is the

transition function, which characterizes the distribution of St+1 given St and At, using

the definition P(s, a, s′) := Pr(St+1=s
′|St=s, At=a). The reward provided to the

agent at time t is a bounded real-valued random variable, Rt. The reward function

R : S × A → [Rmin, Rmax] captures sufficient information about the distribution of

rewards given St and At in order to reason about optimal behavior, and is defined

by R(s, a) := E[Rt|St=s, At=a]. The initial distribution of states is captured by

d0 : S → [0, 1], i.e., d0(s) := Pr(S0=s). Finally, γ ∈ [0, 1] is a parameter used to

discount rewards based on the time at which they occur.

We consider episodic MDPs, which contain a special state s∞, called the terminal

absorbing state. Once the agent enters state s∞, it can never leave and all subsequent

rewards are zero. Upon reaching s∞, the trial, called an episode, has effectively ended

because there are no more rewards to be obtained. Although in theory the agent will

continue transitioning from s∞ back to s∞ forever, in practice, we can begin the next

episode. We say that a problem has a finite horizon, τ , if Sτ = s∞ almost surely,

regardless of how actions are chosen. A trajectory H is the sequence of states, actions,

and rewards from one episode: H = (S0, A0, R0, . . . , Sτ−1, Aτ−1, Rτ−1).

The mechanism for selecting actions within an agent is called a policy, which we

denote by π : S ×A → [0, 1], where π(s, a) := Pr(At=a|St=s). We consider the batch

1Our work generalizes to continuous MDPs as well, but care must be taken to select πe such that
importance sampling weights are bounded.

54

RL setting wherein training data D, also referred to as the safety data, consists of

trajectories generated using a single baseline policy πb, called the behavior policy. The

training data D, consists of n trajectories generated using πb: D := {Hi}ni=1. We write

Sit , A
i
t, and Ri

t to denote the state, action, and reward at time t in the ith trajectory in

D. If H denotes the set of all possible trajectories, each policy induces a distribution

over H. We abuse notation by reusing π, and write supp(πb) to denote the support

of this distribution. Let Hπb = supp(πb), i.e., the set of all trajectories that can be

created by running πb.

The return is the discounted sum of rewards, and the return from trajectory H

is g(H) :=
∑τ−1

t=0 γ
tRt. The goal of the agent is to find a policy that maximizes the

expected return it receives. This objective is captured by the objective function:

J(π) := E[
∑τ−1

t=0 γ
tRt|π], where conditioning on π denotes that At ∼ π(St, ·) for all t.

To simplify notation later, we assume that
∑τ−1

t=0 γ
tRt ∈ [0, 1].2

3.2.1 Safe Reinforcement Learning

Let a be a function that takes a dataset as input and produces a policy as output,

i.e., a(D) is the policy output by the algorithm a when run on training data D. Given

a user-specified constant δ ∈ [0, 1] (typically δ = 0.05 or δ = 0.01), a Seldonian RL

algorithm is any algorithm a that satisfies

Pr(J(a(D)) ≥ J(πb)) ≥ 1− δ. (3.1)

That is, the algorithm guarantees that with probability at least 1− δ, it will return a

policy with expected return at least equal to that of the behavior policy. For simplicity,

we assume that J(πb) is known—in previous work, J(πb), written instead as ρ(πb), was

left as a user-specified constant, for example a high-confidence upper bound on J(πb).

2This is equivalent to assuming that rewards are bounded, since given a finite horizon, the returns
can be normalized.

55

Note that an algorithm that always returns πb is technically safe. However, our goal

is to develop safe algorithms that frequently return policies that have larger expected

return than πb, while satisfying the safety guarantee in Eq. (3.1). In this framework, a

user can define many different reward functions that improvement can be guaranteed

with respect to (w.r.t.). This enables users to define safety constraints using reward

functions. For discussion of how this provides a useful interface for defining safety

constraints, see the work of Thomas et al. [108].

Several Seldonian RL algorithms have a component called the safety test, which

ensures that Eq. (3.1) is satisfied [79, 107, 108]. The safety test takes three inputs: 1)

A policy πe that is evaluated for safety, referred to as the evaluation policy ; 2) The

safety data, D; and 3) J(πb). If there is sufficient confidence that J(πe) ≥ J(πb), the

safety test returns True; otherwise, it returns False.

First, using each trajectory in D, the safety test computes n estimates of the

expected performance of πe. For this estimation, we make the standard assumption

that πb(s, a) = 0 implies πe(s, a) = 0.3 One method for estimating the expected

value of a function when samples come from a different distribution (πb) than the

desired distribution (πe) is importance sampling. In Seldonian RL, the safety test

uses IS to produce an unbiased estimator of J(πe) from D [96]. Specifically, for

each trajectory in D, it computes an importance weighted return that is defined by:

Ĵ?(πe|Hi, πb) := g(Hi)w
?(Hi, πe, πb), where w?(Hi, πe, πb) is the importance weight. For

traditional IS, wIS(Hi, πe, πb) :=
∏τ−1

t=0 πe(A
i
t, S

i
t)/πb(A

i
t, S

i
t). For weighted importance

sampling (WIS) [73], wWIS(Hi, πe, πb) := n(
∑n

x=1

∏τ−1
t=0 πe(A

x
t , S

x
t)/πb(A

x
t , S

x
t))−1 ×∏τ−1

t=0 πe(A
i
t, S

i
t)/πb(A

i
t, S

i
t). Notice that WIS normalizes the importance weights using

the sum of the importance weights in all trajectories. Given that πb(s, a) = 0 implies

πe(s, a) = 0, IS is strongly consistent and unbiased, while WIS is strongly consistent,

3In the more general setting, where A and S are not finite, this assumption corresponds to
requiring πe to be absolutely continuous with respect to πb.

56

but typically biased [106]. For the remainder of the chapter, we use ? ∈ {IS, WIS} to

denote weights computed using IS or WIS.

Second, the safety test uses concentration inequalities to bound the expectation of

the importance weighted returns. A CI provides probability bounds on how a random

variable deviates from its expectation. Let X denote the importance weighted returns

obtained from the trajectories in D, i.e., X := {Xi : i ∈ {1, . . . , n}, Xi = Ĵ?(πe|Hi, πb)}.

Safety tests leverage CIs to lower bound the performance of πe, using X. A commonly

used CI is the Chernoff-Hoeffding (CH) inequality [47], which states the following:

For n independent, real-valued, and bounded random variables, X1, . . . , Xn, such that

Pr(Xi ∈ [0, b]) = 1 and E[Xi] = µ, for all i ∈ {1, . . . , n}, where b ∈ R, with probability

at least 1− δ, µ ≥ 1/n
∑n

i=1Xi − b
√

ln(1/δ)/2n.

Let L∗,?(πe, D) denote the 1− δ confidence lower bound on J(πe), calculated using

weighting scheme ? and CI ∗, where ∗ ∈ {CH}. Let ϕ denote a safety test such that

ϕ(πe, D, J(πb)) ∈ {True, False}. Given πe and data D collected from πb, ϕ returns

True (i.e., the safety test passes) if L∗,?(πe, D) ≥ J(πb); otherwise, ϕ returns False.

For brevity, we use L∗,? to denote the 1−δ confidence lower bound on J(πe), calculated

using any dataset.

3.3 Related Work

This chapter arguably falls under the broad body of work aimed at creating

algorithms that can withstand uncertainty introduced at any stage of the RL framework.

Some works view a component as an adversary with stochastic behavior. For an

overview of risk-averse methods, e.g., those that incorporate stochasticity into the

system, refer to the work of Garcia and Fernandez [37].

Other works incorporate an adversary to model worst-case scenarios. In a model-free

setting, Morimoto and Doya [85] introduced Robust RL that models the environment

as an adversary to address parameter uncertainty in MDPs. Pinto et al. [94] extend

57

this work to non-linear policies that are represented as neural networks. Lim et al. [66]

consider MDPs with some adversarial state-action pairs. In model-based settings, i.e.,

those that build an explicit model of the system, although an adversary is not present,

worst-case analyses assume different components of an MDP are unknown [88, 98, 112].

Using the definition of safety we have introduced, Ghavamzadeh et al. [38] and

Laroche et al. [62] created algorithms for learning safe policies in a model-based

setting. Although we are also interested in ensuring security for these approaches, we

focus on a model-free setting that requires a different set of assumptions and attacker

model.

Learning in the presence of an adversary has also been studied in multi-agent RL,

where agents have competing goals [68, 93, 100]. Similar to our work, there have been

efforts to study the affect of adversarial inputs to algorithms, and create systems that

are “robust” to adversarial manipulation, in multi-armed bandits [46, 52, 69, 116, 117]

and on image related tasks in deep RL [20, 49, 58]. To our knowledge, there has not

been any research on analyzing adversarial attacks on Seldonian RL.

Outside RL, to increase the robustness of supervised and semi-supervised learning,

methods have been proposed during training to play adversarial games [32, 42], and

to generate adversarial examples [43].

3.4 Problem Formulation

We focus on a worst-case setting, where an attacker modifies training data to

maximize the probability that the Seldonian RL algorithm returns an unsafe policy.

When the stakes are high—for example, in the application of RL to sepsis treatment

in the ICU, wherein training data is generated from hand-written doctors’ notes—we

do not want to assume that training data contains only minor errors, such as patient

height, but also major ones, such as wrong drug or patient name.

58

Specifically, we will consider the case where the attacker can add k fabricated

trajectories to the safety data D. This is related to the case where the attacker can

change k of the trajectories in the data—in that setting, the attacker would identify

k trajectories to change, and then would replace them with k new ones. After the

attacker has identified the k trajectories to change, they are faced with the problem

that we solve: which k trajectories to add after the original k were removed.

There are two ways for the safety test to fail: 1) If J(πe) ≥ J(πb), the attacker

can minimize the estimated performance of πe by adding k trajectories; and 2) If

J(πe) < J(πb), the attacker can maximize the estimated performance of πe by adding

k trajectories. We focus on the latter attacker because the prior case does not cause

a poor policy to pass the safety test, but only prevents the identification of a good

policy. Therefore, we only consider an attacker who is interested in enabling a worse

policy than the behavior policy to pass the safety test. The attacker has the same

knowledge inputted to ϕ, which consists of: 1) The behavior policy, πb, that generated

D; 2) J(πb); 3) The evaluation policy, πe; 4) The CI, ∗, used by ϕ; 5) The method to

compute importance weights, ?; 6) The confidence level, δ; 7) The dataset, D.

Let Dπbn = {D : D ⊆ Hπb and |D| = n}, i.e., the set of all possible datasets of

size n, created by running πb. For all k ∈ Z+, let m : Dπbn × Z+ → Dπbn+k be the

attack function, which indicates a strategy that an attacker might use when appending

fabricated trajectories to the dataset. That is, for D ∈ Dπbn , m(D, k) ∈ Dπbn+k is the

dataset created by using attack strategy m to append k trajectories to D with size n.

Let M denote the set of all possible attack functions m. For notational completeness,

we note that m is actually a function of Dπbn , Z+ and items 1–6 enumerated in the

previous paragraph. However, we omit these items for brevity.

Next, we define α-security, which provides one way of quantifying how robust a

safety test (and thus a Seldonian algorithm relying on a safety test) is to adversarial

perturbations of data in terms of a parameter, α ≥ 0, such that smaller values of

59

α correspond to more robustness. We use the following assumptions when defining

α-security:

Assumption 1 (Inferior πe). J(πe) < J(πb).

Assumption 2 (Absolute continuity). ∀a ∈ A,∀s ∈ S,
(
πb(s, a) = 0

)
=⇒(

πe(s, a) = 0
)
.

Assumption 3 (ϕ safety). We only consider safety tests that ensure Eq. (3.1) is

satisfied by any algorithm that returns πe if ϕ
(
πe, D, J(πb)

)
= True, and πb otherwise.

That is, given Assumption 1, ϕ must satisfy Pr(ϕ(πe, D, J(πb)) = True) < δ.

Recall that the attacker is interested in enabling a worse policy than πb to pass the

safety test by appending trajectories to D. In order to succeed, they must manipulate

the metric used for decision making by the safety test, i.e., artificially increase L∗,?,

the 1− δ confidence lower bound on J(πe).

Our definition ensures Eq. (3.1) is satisfied even if D has been corrupted. In fact,

an undesirable policy passing the safety test with probability at most δ, must hold

across all attack functions, which includes the best attack strategy—one that causes

the largest increase in L∗,?. This artificial increase in L∗,?, due to the best attack

strategy, is represented by α, which we write as a function of n, k, πb, πe and δ.

Definition 1 (α-security). Under Assumptions 1, 2 and 3, ϕ is secure with constant

α for πe, πb, k, and D collected from πb, where |D| = n, if and only if,

∀m ∈M,Pr
(
ϕ
(
πe,m(D, k), J(πb) + α

)
= True

)
< δ. (3.2)

If a safety test does not satisfy Assumption 3, we can not easily analyze its

α-security. For example, any ϕ using WIS variants does not satisfy Assumption 3

because many CIs often rely on the independence of samples to guarantee probabilistic

bounds on their mean. WIS creates dependence between samples by normalizing the

60

importance weights. However, WIS variants are more likely to be used by safety tests

because they work better in practice and require less data than IS. Therefore, to

include WIS in our analysis, we define quasi-α-security to be the following.

Definition 2 (Quasi-α-security). Under Assumptions 1 and 2, ϕ is quasi-secure

with constant α for πe, πb, k, and D collected from πb, where |D| = n, if and only if,

∀m ∈M,Pr
(
ϕ
(
πe,m(D, k), J(πb) + α

)
= True

)
≤ Pr

(
ϕ
(
πe, D, J(πb)

)
= True

)
.

(3.3)

Note that Eq. (3.3) implies α-security if ϕ is “safe”. If it is not (as in WIS variants),

then ϕ can be quasi-α-secure, which still gives us a way to measure its robustness to

perturbations/attacks on data.

Notice that our definition does not consider how πe is chosen because the violation

of safety comes primarily from the safety test. In addition to the attacker model,

our worst-case analysis also stems from this definition of security, which assumes

that πe has lower performance than πb, but does not quantify how often this occurs.

Attacking the data used to select πe can increase this frequency, but would not change

the definition of α-security.

3.5 Analysis of Existing Algorithms

In this section, we present our main contribution which quantifies the α-security of

different off-policy performance estimators. Notice that every safety test is α-secure

with α =∞, since the test whether L∗,? > J(πb) +∞ will always return False. So,

when comparing two estimators, it is not sufficient to compare arbitrary values of α

for which they are α-secure. Instead, we define the notion of a minimum α, which we

refer to as α∗.

Definition 3 (Tight α). ϕ is quasi-secure or secure with tight constant α∗ if and

only if α∗ = min{α : ϕ is quasi-α-secure or α-secure}.

61

The value of α can be interpreted as the largest possible increase in L∗,? when

an attacker adds k trajectories to D. To compute α∗, given a random dataset, we

first must determine the optimal attack strategy, where this increase is largest. This

strategy can be determined using the following realization: LCH, IS and LCH, WIS are

both increasing functions w.r.t. the IS weight and return. Therefore, for a given k,

the optimal attack is to create a trajectory that maximizes the value of the IS weight

and return. This strategy incurs the maximum “damage” by the attacker.

Notice that fake trajectories created using this strategy are those that have not

been performed in the real MDP environment. However, because the transition and

reward functions are not known, a practitioner can not distinguish real and fake

trajectories. Rare events are critical to account for in RL, and may look like fake

trajectories. Perhaps impossible trajectories can be identified using domain-specific

knowledge, but that must be analyzed on a per-domain basis.

Second, computing α∗ requires identifying the dataset on which the attack strategy

is most effective, i.e., the determination of D ∈ Dπbn that yields the greatest increase

in L∗,?. However, this is not possible since the distribution of trajectories for a given

πe is unknown, and thus, Dπbn is unknown.

Instead, we propose the use of a different value, α′, which may be slightly loose

relative to the tight α∗, but which we expect captures the relative robustness of the

methods that we compare. Instead of D ∈ Dπbn , D ∈ DHn is selected, on which the

attacker executes the optimal strategy. In other words, the dataset is chosen out of all

datasets of size n created by H, the set of all trajectories that can be created by any

policy. In Theorem 5, we present the values of α′ for each estimator.

Theorem 5. ϕ is quasi-secure or secure with α ≥ α′, where the values of α′ are

presented in Table 3.1.

Proof. In Section 3.8.1, we prove that LCH, IS and LCH, WIS are increasing functions

w.r.t. the IS weight and return. The largest IS weight is a function of πb, πe and τ , and

62

the largest return is always 1. Let any off-policy performance estimator, L∗,?(πe, D),

be written as a function f that incorporates an attacker strategy. In other words,

L∗,?(πe,m(D, k)) = f ∗,?(D,wy, gy, k), where wy is the IS weight and gy is the return,

computed from the trajectory added by the attacker. That is, f ∗,?(D,wy, gy, k) is the

result of applying CI ∗ and weighting scheme ? to D that includes k copies of H∗,

which is the trajectory added by the attacker. H∗ has an IS weight of wy and return

of gy.

The optimal attack strategy causes the largest increase in L∗,? such that L∗,?(πe,m(D, k))−

L∗,?(πe, D) is maximized. In Lemma 5 in Section 3.8.1, we prove that an appropri-

ate setting of α is equal to or greater than the largest increase in L∗,? across all

datasets, D ∈ Dπbn , and all attack functions. By Lemma 1, a safety test using L∗,? is

quasi-α-secure or α-secure if ∀D ∈ Dπbn and ∀m ∈M,

α ≥ L∗,?
(
πe,m(D, k)

)
− L∗,?(πe, D). (3.4)

Let U = {u : ∃D ∈ Dπbn ,∃m ∈M, u = L∗,?
(
πe,m(D, k)

)
− L∗,?(πe, D)}, i.e., permissi-

ble values of α∗ obtained from eachD ∈ Dπbn . Let α∗ = maxD∈Dπbn maxm∈M L∗,?
(
πe,m(D, k)

)
−

L∗,?(πe, D). For all u ∈ U ,

u ≤maxD∈Dπbn maxm∈M L∗,?
(
πe,m(D, k)

)
− L∗,?(πe, D)

= maxD∈Dπbn f ∗,?(D, i∗, 1, k)− L∗,?(πe, D). (3.5)

Besides the optimal attacker strategy, if the distribution of trajectories for a given

πe was also known, the right-hand side of Eq. (3.5), which is α∗, would be computable.

Instead, an upper bound of α∗ is

α∗ < maxD∈DHn f
∗,?(D, i∗, 1, k)− L∗,?(πe, D) = α′, (3.6)

63

Table 3.1: α–security of current methods (center); settings for clipping
weight, c, for α-security written in terms of a user-specified k and α (right).
The minimum IS weight is denoted by imin.

Estimator α′ c

CH, IS i∗
(√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ k
(n+k)

)
α(√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ k
(n+k)

)
CH, WIS

√
ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ ki∗

(imin+ki∗)

imin

(
α−
√

ln(1/δ)
2n

+
√

ln(1/δ)
2(n+k)

)
k

(
1−α+

√
ln(1/δ)

2n
−
√

ln(1/δ)
2(n+k)

)

where DHn = {D : D ⊆ H and |D| = n}. Substituting the definition of f ∗,? and L∗,?

into the right-hand side of Eq. (3.6) for various weighting schemes and CIs, we solve

for a clean expression for α′, presented in Table 3.1. For algebraic details, refer to

Section 3.8.2. This upper bound, α′, of α∗ satisfies Eq. (3.4), implying that any α

such that α ≥ α′ also satisfies Eq. (3.4).

Recall the following to interpret Table 3.1: 1) The IS weight is a ratio of the

probability of observing a trajectory under πe to that of πb; 2) We only consider

MDPs with finite length, τ . The largest IS weight, i∗, is a function of πe, πb and τ .

To compute i∗: 1) Through brute search, for a single time step, a state and action

pair is selected such that the ratio of its probability under πe to πb is maximized; 2)

If this ratio is greater than 1, the pair is repeated for the length of the trajectory,

exponentially increasing the IS weight. Notice that as imin → 0, the third term of α′

for WIS equals 1. Plus, due to the normalization of IS weights, importance weighted

returns are always bounded by 1 for WIS. Therefore, α′ for WIS is much smaller than

that of IS, and in the worst-case, is slightly over 1. The α′ for IS is roughly the same

as that of WIS, but scaled by i∗ that can be massive.

The conclusion to draw is not that WIS is more robust than IS because α-security

does not capture the whole story. The difference in true performance of πe and πb, in

64

addition to how accurate LCH,∗ estimates the performance of πe on a given uncorrupted

dataset, both contribute to the robustness of the estimators to data anomalies. Yet

α-security is useful for deciding whether πe is worth evaluating for a given estimator.

As α′ increases, L∗,? can artificially be increased by a greater amount; hence, given

the choice of two evaluation policies, a practitioner might pick the policy with lower

α′. If α′ = 0, ϕ for πe is highly robust against an adversary.

Although we focus on Chernoff-Hoeffding, our analysis also extends to other bounds

such as Azuma [4] and Bernstein [77]. Moreover, per-decision importance sampling and

weighted per-decision importance sampling are equivalent to IS and WIS, respectively,

when rewards are at the end of a trajectory. So, our analysis applies to these specific

cases as well.

3.6 Panacea: An Algorithm for Safe and Secure Policy Im-

provement

In this section, we describe our algorithm Panacea, named after the Greek goddess

of healing, that provides α-security, with a user-specified α, if the number of corrupt

trajectories in D is upper bounded. That is, the important additional input to the

algorithm is the number of adversarial trajectories. The algorithm also takes as input

all the information that the attacker already knows; except, is agnostic to which or

how many of the trajectories in m(D, k) have been corrupted.

Panacea caps the importance weights using some clipping weight, c. First intro-

duced for RL by Bottou et al. [14], clipping works by computing all the IS weights

in D and capping the weights to c, i.e., if any IS weight is greater than c, it is set to

c. Given a user-specified α and k as input, Panacea computes c, using the values in

Table 3.1. It then creates a clipped version of the dataset, denoted by Panacea(D, c).

For pseudocode, refer to Algorithm 2 in Section 3.8.3. In Corollary 1, we show that

when k is chosen correctly, our algorithm meets a user-specified level of security against

65

an attacker, whose optimal strategy does not change even if they know we are using

Panacea. In Corollary 2, we discuss how the clipping weights are computed.

Corollary 1. If the user upper bounds k, Panacea is quasi-secure or secure with

α ≥ α′, where α′ is user-specified.

Proof. The behavior of L∗,? does not change with Panacea: L∗,? is increasing w.r.t.

the IS weight and return, regardless of their range of values. So, the optimal attacker

strategy remains the same. Let k denote the number of adversarial trajectories added

by the attacker, and k′ denote the input provided to Panacea by the user. When this

value is upper bounded correctly, k′ = k, and Panacea computes a clipping weight for

the given estimator, denoted by c∗,?, using Table 3.1. By Theorem 5, the security of

Panacea is

maxD∈DHn maxm∈M L∗,?
(
πe, Panacea(m(D, k), c∗,?)

)
− L∗,?

(
πe, Panacea(D, c∗,?)

)
= maxD∈DHn f

∗,?(Panacea(D, c∗,?), c∗,?, 1, k)− L∗,?
(
πe, Panacea(D, c∗,?)

)
(3.7)

≤α′.

In Section 3.8.3.1, we solve for a clean expression in Eq. (3.7) by substituting in

the definition of f ∗,?, L∗,? and c∗,? for various weighting schemes and CIs, and then

simplifying the expression.

Corollary 2. If the user upper bounds k, Panacea is quasi-α-secure or α-secure with

the values of c in Table 3.1.

Proof. If the number of adversarial trajectories in D is upper bounded, rewriting

Eq. (3.7) in terms of c∗,?, and then solving Eq. (3.7) for a clean expression for c∗,?

by substituting α′, k and L∗,? with the user-specified inputs, equals the clipping

66

weights found in Table 3.1 for different estimators. For algebraic details, refer to

Section 3.8.3.2.

Panacea is more secure than existing methods if the user correctly determines k

and selects a value of α that is less than that of existing methods. Only then is c < i∗,

and Panacea clips the k largest IS weights in m(D, k) to c. Additionally, if c < In,

where In is the largest IS weight in the uncorrupted dataset D, then some values in

D are also clipped. Table 3.2 in Section 3.8.3 is the same as the middle column of

Table 3.1 with one modification: i∗ are replaced with c. As c decreases, more values

are collapsed, LCH,? is lower, and the probability of returning πb is higher.

3.7 Empirical Evaluation

We quantify the α-security of two safety tests, with and without Panacea, applied

to two domains: a grid-world, where the deployment of an unsafe policy has low-stakes,

and a diabetes treatment simulation, where the deployment of an unsafe policy could

lead to very dangerous outcomes.

3.7.1 Experimental Methodology and Application Domains

Grid-world. In a classic 3× 3 grid-world, the agent’s goal is to reach the bottom-

right corner of the grid, starting from the top-left corner. When viewed as an MDP,

actions correspond to directions the agent can move, and states correspond to its

current location on the grid. The agent receives a reward of 1, discounted by γt, if

they reach the bottom-right corner; otherwise all rewards are 0.

Diabetes Treatment Simulation. For the diabetes treatment simulation, we

use a Python implementation [115] of an FDA-approved type 1 diabetes Mellitus

simulator (T1DMS) by Kovatchev et al. [59] and Man et al. [74]. The simulator

simulates the metabolism of a patient with type 1 diabetes, where the body does

not make enough insulin, a hormone needed for moving glucose into cells. Insulin

67

pumps have a bolus calculator that determines how much insulin, specifically known

as bolus insulin, must be injected into the body before having a meal. One type of

bolus calculator is parameterized by two real-valued parameters, CR and CF. The

MDP view of the simulator represents the bolus calculator as a policy, injection doses

as actions, and states as the patient’s body’s reactions to consuming meals and getting

insulin injections. We adopt a similar reward function used in previous work that

penalizes any deviation from optimum levels of blood glucose [5].

Data Collection. We use RL to search the space of policies for grid-world, and

the space of probability distributions over policies for the diabetes domain [108]. For

the latter case, we assign the mode of a triangular distribution to a value sampled

uniformly from range [5, 50] for CR and [1, 31] for CF—admissible ranges for any

diabetic patient. Also, both triangular distributions have the same range from which

CR and CF values are sampled. The two modes parameterize the policy space

over which we sample policies. D is created by sampling a CR and CF pair from

their respective distributions, and observing the return. This reformulation is a

bandit problem, where the action corresponds to picking the modes of two triangular

distributions from which to sample CR and CF.

Let π(v, u, θ1, θ2) denote a policy representing the joint probability of sampling v

under a triangular distribution with mode θ1 and range [5, 50], and sampling u under a

triangular distribution with mode θ2 and range [1, 31]. Instead of finding a trajectory

with the largest IS weight and return, the optimal attack strategy is selecting a CR′ and

CF′ such that the ratio of their joint probability under πe to that of πb is maximized, i.e.,

arg maxCR′∈[5,50] arg maxCF′∈[1,31] πe(CR′,CF′, θ3, θ4)/πb(CR′,CF′, θ1, θ2). The attacker

then adds k copies of CR′ and CF′, along with a return of 1, to D. Our results show

that corrupting D collected from adult#003 within T1DMS can cause a Seldonian

RL algorithm to select a bad policy, i.e., a new distribution over policies with lower

return than πb.

68

3.7.2 Results and Discussion

We evaluated the number of trajectories that must to be added to D before ϕ

incorrectly returns unsafe policies with probability more than δ. The goal is not to

show how much data it takes to “break” each method—the goal is to show that,

without Panacea, both methods are extremely fragile. For our experimental setup, we

selected two policies per domain. We estimated J(πb) ≈ 0.797 and J(πe) ≈ 0.728 for

grid-world, and J(πb) ≈ 0.218 and J(πe) ≈ 0.145 for the diabetes domain, by averaging

returns obtained from running each policy 10,000 times. We added k adversarial

trajectories based on the optimal attacker strategy to a randomly created D of size

1,500. We executed the safety test by comparing J(πb) to LCH,?, computed using the

corrupt data. Figure 3.1 shows the average LCH,? over 750 trials, as k increases. The

error bars for variance are so small that they are negligible. Although not shown, the

average probability of passing the safety test across all trials is around 0% before and

100% after the blue and red lines cross the black dotted line, representing J(πb).

The results without Panacea show that LCH, IS and LCH, WIS cross the black dotted

line at k = 49 and k = 1, respectively, for both domains. For WIS, it only takes a

single trajectory for ϕ to return an unsafe policy; for IS, 49 trajectories only constitute

3.2% of D, where |D| = 1,549. This could correspond to a morning’s worth of data

collected from an incorrectly parameterized insulin pump, or the temporary period

over which the sensors of a self-driving car are not working due to severe weather

conditions. Notice that these results are not indicative of IS being less sensitive

than WIS: Because WIS estimates performance more accurately, small changes in its

estimate cause the incorrect conclusion that J(πe) > J(πb).

For Panacea, we computed the clipping weights, found in Table 3.1 per estimator,

using the user-specified α and the actual number of adversarial trajectories added

by the attacker. Our method never crosses the black dotted line for either domain

at α = 0.1 with IS; and it requires 65 adversarial trajectories to break rather than

69

a single trajectory for the diabetes domain at α = 0.01 with WIS. Notice how the

parameter settings affect α-security: 1) As α increases, so does the clipping weight.

2) As k increases, the clipping weight decreases to counteract the artificial increase

of LCH,? due to corrupt trajectories. In the worst-case—when the user inputs an α

that is greater than the α′ of existing methods—Panacea requires the same number

of adversarial trajectories to break as if not used because D is not clipped at all.

One of the practical considerations when deploying Panacea is estimating the

number of corrupt trajectories in training data. For areas such as natural language

processing and computer vision, a user might address this concern by using known

error rates in the data processing pipelines of well-known models. Also, choosing a

meaningful value for α might be challenging. Domain-specific knowledge of the range

of performance for different policies—especially the difference in performance between

good and bad policies—can be useful. But notice that WIS estimates are always

bounded by 1, and in practice, IS estimates are even smaller—when computing the IS

weight, the probability of a trajectory under πe is often much smaller than that of

πb. The middle column in Table 3.1 is usually ≥ 1, indicating that standard methods

can be completely broken (make pessimal policies appear optimal) easily. The right

column shows values of c that make Panacea α-secure for any α ∈ [0,∞]. However,

plugging in α ∈ [0, 1] such that α ≤ α′ gives Panacea a meaningful security guarantee.

3.8 Supplementary Proofs

3.8.1 Analysis of Existing Algorithms

Let f ∗,? denote a function that incorporates an attacker strategy. When k = 0,

fCH, IS(D,wy, gy, k) is the result of applying the CH inequality to the IS weighted

returns, obtained from D, which additionally includes k copies of a trajectory with an

IS weight of wy and return of gy. Notice that f ∗,? is written in terms of IS weights.

The following defines fCH, WIS, written in terms of IS weights, when k = 0.

70

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●

●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●

●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●

●

●
●●
●●●●●●●●●●

●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●

●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●

●

●

●
●●
●●●●

●●●●●●●●●●●●●●●●●●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●

●

●

●

●

●

●
●
●
●●
●●
●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●

α : 0.1 α : 0.5 α : 1 α : 5

D
iabetes

IS

G
rid

−
w

orld

IS

0 50 10
0

15
0 0 50 10

0
15

0 0 50 10
0

15
0 0 50 10

0
15

0

−200
−150
−100
−50

0
50

100

−1e+29

0e+00

1e+29

2e+29

3e+29

M
ea

n
 L

C
H

, *

●

●

●

●

●

●

●
●
●
●
●
●
●●

●●
●●

●●●
●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

●●
●●●

●●●●
●●●●●

●●●●●●●●●●
●●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●

●●
●●
●●

●●
●●●

●●●
●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●

●●
●●

●●
●●

●●
●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

α : 0.1 α : 0.5 α : 1 α : 5

D
iabetes

IS

G
rid

−
w

orld

IS

0 50 10
0

15
0 0 50 10

0
15

0 0 50 10
0

15
0 0 50 10

0
15

0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0 ●

●

with
Panacea
without
Panacea

●

●

●

●

●

●
●
●
●
●●

●●
●●●

●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●
●
●
●
●●

●●
●●●

●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●
●
●
●
●●

●●
●●●

●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

α : 0.01 α : 0.5 α : 1
D

iabetes

W
IS

G
rid

−
w

orld

W
IS

0 50 10
0

15
0 0 50 10

0
15

0 0 50 10
0

15
0

0.2

0.4

0.6

0.8

1.0

0.70
0.75
0.80
0.85
0.90
0.95

M
ea

n
 L

C
H

, *

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●
●●●

●●●
●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●
●●●

●●●
●

α : 0.01 α : 0.5 α : 1

D
iabetes

W
IS

G
rid

−
w

orld

W
IS

0 50 10
0

15
0 0 50 10

0
15

0 0 50 10
0

15
0

0.25

0.50

0.75

0.25

0.50

0.75

●

●

with
Panacea
without
Panacea

Number of adversarial trajectories added to dataset of size 1,500

Figure 3.1: Mean fCH, * as k increases with magnified view (right). Facets
represent the value of α inputted to Panacea, and do not matter for existing methods,
labelled as “without Panacea”. For IS, Panacea crosses the black dotted line at
k = 59, 53 and 49 for the diabetes domain, and k = 68, 55 and 50 for grid-world,
when α = 0.5, 1 and 5, respectively. For WIS, Panacea crosses the black dotted line
at k = 65, 65 and 1 for the diabetes domain, when α = 0.01, 0.5 and 1, respectively.
Panacea, using WIS, does not cross the black dotted line for grid-world.

71

fCH, WIS(D,wy, gy, 0) =
1∑n
i=1wi

n∑
i=1

wigi − b
√

ln(1/δ)

2n
.

For the rest of the section, we use the following notation. Let I = {I : ∃a ∈ A,∃s ∈

S, I =
∏τ−1

t=0 πe(At = a, St = s)/πb(At = a, St = s)}, i.e., the set of all IS weights that

could be obtained from policies πe and πb. The maximum and minimum IS weight is

denoted by i∗ = max(I) and imin = min(I), respectively. For shorthand, let the sum

of IS weights in D be written as β =
∑n

i=1wi. Also, we assume that β > 0 to ensure

that WIS is well-defined.

Next, we define a new term to describe how an attacker can increase the 1 − δ

confidence lower bound on the mean of a bounded and real-valued random variable. We

say that f ∗,? is adversarially monotonic given its inputs, if an attacker can maximize

f ∗,? by maximizing the value of the added samples. For brevity, we say that f ∗,? is

adversarially monotonic.

Definition 4. f ∗,? is adversarially monotonic for n > 1, k > 0, πb, πe and D if both

1. There exists two constants p ≥ 0 and q ∈ [0, 1], with pq ∈ [0, i∗], such that

f ∗,?(D, p, q, k) ≥ f ∗,?(D, p, q, 0), i.e., adding k copies of pq does not decrease f ;

2. ∂
∂gy
f ∗,?(D, i∗, gy, k) ≥ 0 and ∂

∂wy
f ∗,?(D,wy, 1, k) ≥ 0, with no local maximums,

i.e., f is a non-decreasing function w.r.t. the IS weight and return added by the

attacker, respectively.

Definition 4 means that f ∗,? is maximized when wy and gy is maximized. In other

words, the optimal strategy is to add k copies of the trajectory with the maximum IS

weight and return. Notice that f ∗,? does not incorporate all possible attack functions,

M: specifically, the set of attacks, where the attacker can choose to add k different

trajectories, is omitted. As described in Theorem 5, to perform a worst-case analysis,

only the optimal attack must be incorporated as part of f ∗,?.

72

In the following two lemmas, we show that a couple well-known Seldonian algo-

rithms are adversarially monotonic.

Lemma 1. Under Assumptions 1, 2 and 3, fCH, IS is adversarially monotonic.

Proof. Let wy ≥ 1
n

∑n
i=1wigi + (n+k)

k

(
b
√

ln(1/δ)
2(n+k)

− b
√

ln(1/δ)
2n

)
and gy = 1. To show

that wygy ∈ [0, i∗] as stated in (1) in Definition 4, it must be that wy ∈ [0, i∗]. For all

i ∈ {1, . . . , n}, wigi ∈ [0, i∗]. Thus, for any given dataset, 0 ≤ 1/n
∑n

i=1wigi ≤ i∗/n.

Using this fact, for any given D, the range of wy is

1

n

n∑
i=1

(0) +
(n+ k)

k

(
b

√
ln(1/δ)

2(n+ k)
−b
√

ln(1/δ)

2n

)
≤ wy

≤ 1

n

n∑
i=1

(i∗) +
(n+ k)

k

(
b

√
ln(1/δ)

2(n+ k)
− b
√

ln(1/δ)

2n

)

b(n+ k)

k

(√
ln(1/δ)

2(n+ k)
−
√

ln(1/δ)

2n︸ ︷︷ ︸
<0

)
≤wy

≤i
∗

n
+
b(n+ k)

k

(√
ln(1/δ)

2(n+ k)
−
√

ln(1/δ)

2n

)
︸ ︷︷ ︸

<0

≤ i∗.

Therefore, wy can be selected such that wygy ∈ [0, i∗]. It follows that

fCH, IS(D,wy, 1, k) =
1

n+ k

n∑
i=1

wigi +
k

n+ k
(wy)(1)− b

√
ln(1/δ)

2(n+ k)

≥ 1

n+ k

n∑
i=1

wigi +
k

n+ k

(
1

n

n∑
i=1

wigi +
(n+ k)

k

(
b

√
ln(1/δ)

2(n+ k)
− b
√

ln(1/δ)

2n

))

− b

√
ln(1/δ)

2(n+ k)

=
1

n

n∑
i=1

wigi − b
√

ln(1/δ)

2n

=fCH, IS(D,wy, gy, 0).

73

Next, we show that (2) in Definition 4 holds.

∂

∂wy
f ∗,?(D,wy, gy, k) =

∂

∂wy

(n∑
i=1

wigi
n+ k

)
+
kwygy
n+ k

− b

√
ln(1/δ)

2(n+ k)

=
kgy
n+ k

∂

∂wy
f ∗,?(D,wy, 1, k) =

k

n+ k
.

∂

∂gy
f ∗,?(D,wy, gy, k) =

∂

∂gy

(n∑
i=1

wigi
n+ k

)
+
kwygy
n+ k

− b

√
ln(1/δ)

2(n+ k)

=
kwy
n+ k

∂

∂gy
f ∗,?(D, i∗, gy, k) =

ki∗

n+ k
.

Notice that both partial derivatives are non-negative when gy = 1 and wy = i∗, respec-

tively. To find any critical points, the following equations are solved simultaneously:

∂/∂gyf
CH, WIS(D,wy, gy, k) = 0 and ∂/∂wyf

CH, WIS(D,wy, gy, k) = 0. Notice that

points along the line (wg, 0) and (0, gy) are all critical points. The following partial

derivatives are computed to classify these points.

∂

∂(wy)2
(D,wy, gy, k) =0.

∂

∂(gy)2
(D,wy, gy, k) =0.

∂

∂gywy
(D,wy, gy, k) =

k

n+ k
.

Using the second partial derivative test, the critical points are substituted into the

following equation.

∂

∂(wy)2
· ∂

∂(gy)2
−
(

∂

∂gywy

)2

=−
(

k

n+ k

)2

,

which is less than zero. Therefore, points along the line (wg, 0) and (0, gy) are saddle

points.

74

Lemma 2. Under Assumptions 1 and 2, fCH, WIS is adversarially monotonic.

Proof. First, we show that (1) in Definition 4 holds with gy = 1 and wy = 0.

fCH, WIS(D,wy, gy, k) =
1

kwy + β

(
kwygy +

n∑
i=1

wigi

)
− b

√
ln(1/δ)

2(n+ k)

fCH, WIS(D, 0, 1, k) =
1

β

n∑
i=1

wigi − b

√
ln(1/δ)

2(n+ k)

>
1

β

n∑
i=1

wigi − b
√

ln(1/δ)

2n
(3.8)

=fCH, WIS(D,wy, gy, 0),

where Eq. (3.8) follows from b
√

ln(1/δ)
2n

> b
√

ln(1/δ)
2(n+k)

. Second, we show that (2) in

Definition 4 holds.

∂

∂wy
fCH, WIS(V,wy, gy, k) =− k

∑n
i=1wigi

(kwy + β
)2 − k2wygy

(kwy + β)2
+

kgy
(kwy + β)

=− k
∑n

i=1wigi

(kwy + β
)2 − k2wygy

(kwy + β)2
+
kgy(kwy + β)

(kwy + β)2

=− k
∑n

i=1wigi

(kwy + β
)2 +

kgyβ

(kwy + β)2

=− k
∑n

i=1wigi

(kwy + β
)2 +

k
∑n

i=1wigy
(kwy + β)2

=
k

(β + kwy)2

n∑
i=1

wi(gy − gi)

∂

∂wy
fCH, WIS(V,wy, 1, k) =

k

(β + kwy)2

n∑
i=1

wi(1− gi). (3.9)

Notice that Eq. (3.9) is non-negative: 1) When gy = 1, Eq. (3.9) is positive as long as

there exists at least one gi < 1 for i ∈ {1, . . . , n}; 2) If all gi = 1 in D, then Eq. (3.9)

is zero. The following is the derivative of fCH, WIS(D,wy, gy, k) w.r.t. gy.

75

∂

∂gy
fCH, WIS(D,wy, gy, k) =

kwy
(β + kwy)

(3.10)

∂

∂gy
fCH, WIS(D, i∗, gy, k) =

ki∗

(β + ki∗)
,

which is also non-negative. To find any critical points, the following equations are solved

simultaneously: ∂/∂gyf
CH, WIS(D,wy, gy, k) = 0 and ∂/∂wyf

CH, WIS(D,wy, gy, k) = 0.

Notice that Eq. (3.10) is zero when wy = 0. Plugging wy = 0 into ∂/∂wyf
CH, WIS(D,wy, gy, k) =

0, and then solving for gy, yields the x coordinate of a critical point.

k

(β + k(0))2

n∑
i=1

wi(gy − gi) = 0

k

β2

n∑
i=1

wi(gy − gi) = 0

gy

n∑
i=1

wi −
n∑
i=1

wigi = 0

gy =

∑n
i=1wigi
β

.

The following partial derivatives are computed to classify whether (0,
∑n
i=1 wigi/β) is a

minimum, maximum or saddle point:

∂

∂(wy)2
(D,wy, gy, k) =

−2k2

(β + kwy)3

n∑
i=1

wi(gy − gi).

∂

∂(gy)2
(D,wy, gy, k) =0.

∂

∂gywy
(D,wy, gy, k) =

∂

∂wy

kwy
(β + kwy)

=
kβ

(β + kwy)2
.

Using the second partial derivative test, the critical point is substituted into the

following equation.

76

∂

∂(wy)2
· ∂

∂(gy)2
−
(

∂

∂gywy

)2

=0−
(

kβ

(β + k(0))2

)2

=−
(
kβ

β2

)2

,

which is less that zero. Therefore, (wy = 0, gy =
∑n
i=1 wigi/β) is a saddle point.

Next, we describe the trajectory that must be added to D to execute the optimal

attack.

Definition 5 (Optimal Attack). An optimal attack strategy for k > 0 is to select

arg max
H∈Hπe

f ∗,?
(
D,wy = w(H, πe, πb), gy = g(H), k

)
.

Definition 6 (Optimal Trajectory). Given that a maximum exists, let (a′, s′) ∈

arg max
a∈A,s∈S

πe(a,s)
πb(a,s)

. If πe(a,s)
πb(a,s)

> 1, let H∗ = {S0 = s′, A0 = a′, R0 = 1, . . . , Sτ−1 =

s′, Aτ−1 = a′, Rτ−1 = 1}. Otherwise, let H∗ = {S0 = s′, A0 = a′, R0 = 1}.

Theorem 6. For any adversarially monotonic off-policy estimator, the optimal attack

strategy is to add k repetitions of H∗ to D.

Proof. An optimal attack strategy is equivalent to

arg max
H∈Hπe

f ∗,?
(
D,w(H, πe, πb), g(H), k

)
= arg max

i∗∈I,g∗∈[0,1]
f ∗,?
(
D, i∗, g∗, k

)
.

For any off-policy estimator that is adversarially monotonic, by (1) of Definition 4,

there exists a pq such that

f ∗,?(D, p, q, k) ≥ f ∗,?(D, p, q, 0).

A return that maximizes f ∗,?(D,wy, gy, k) implies that

max
g∗∈[0,1]

f ∗,?(D, p, g∗, k) ≥f ∗,?(D, p, q, k).

77

fCH, IS and fCH, WIS are non-decreasing w.r.t. the return. Therefore,

arg max
g∗∈[0,1]

f ∗,?(D, p, g∗, k) = max
g∗∈[0,1]

g∗.

Setting g∗ = 1, an importance weight that maximizes f ∗,?(D,wy, 1, k) implies that

max
i∗∈I

f ∗,?(D, i∗, 1, k) ≥f ∗,?(D, p, 1, k).

fCH, IS and fCH, WIS are also non-decreasing w.r.t. the importance weight. So,

arg max
i∗∈I

f ∗,?(D, i∗, 1, k) = max
i∗∈I

i∗.

Since the IS weight is a product of ratios over the length of a trajectory, the ratio at a

single time step is maximized.

max
i∗∈I

i∗ = max
a∈A,s∈S

τ−1∏
t=0

πe(At = a, St = s)

πb(At = a, St = s)

=

(

max
a∈A,s∈S

πe(a,s)
πb(a,s)

)τ
if max

a∈A,s∈S
πe(a,s)
πb(a,s)

> 1,

max
a∈A,s∈S

πe(a,s)
πb(a,s)

otherwise.

To create H∗, if the ratio at a single time step is greater than 1, a′ and s′ is repeated

for the maximum length of the trajectory, τ ; otherwise, a′ and s′ is repeated only for

a single time step. Thus, H∗ represents the trajectory with the largest return and

importance weight.

Next, we show how Eq. (3.3) and Eq. (3.2), that define quasi-α-security and α-

security, respectively, apply to L∗,?. Specifically, we show that a safety test using L∗,?

as a metric is a valid safety test that first predicts the performance of πe using D, and

then bounds the predicted performance with high probability. If L∗,?(πe, D) > J(πb),

the safety test returns True; otherwise it returns False.

78

Lemma 3. A safety test using L∗,? is quasi-α-secure if ∀m ∈M,Pr
(
L?,∗

(
πe,m(D, k)

)
>

J(πb) + α
)
≤ Pr

(
L?,∗

(
πe, D

)
> J(πb)

)
.

Proof. For x ∈ N+, let P : Π × Dπb
n → Rx denote any function to predict the

performance of some πe ∈ Π, using data D collected from πb. Also, let B : Rx× [0, 1]→

R denote any function that bounds performance with high probability, 1− δ, where

δ ∈ [0, 1]. Starting with the definition of quasi-α-security, we have that ∀m ∈M,

Pr
(
ϕ
(
πe,m(D, k), J(πb) + α

)
= True

)
≤ Pr

(
ϕ
(
πe, D, J(πb)

)
= True

)
⇐⇒ Pr

(
B
(
P(πe,m(D, k)), δ

)
> J(πb) + α

)
≤ Pr

(
B
(
P(πe, D), δ

)
> J(πb)

)

⇐⇒ Pr
(
L?,∗

(
πe,m(D, k)

)
> J(πb) + α

)
≤ Pr

(
L?,∗

(
πe, D

)
> J(πb)

)
.

Lemma 4. A safety test using L∗,? is α-secure if ∀m ∈M,Pr
(
L?,∗

(
πe,m(D, k)

)
>

J(πb) + α
)
< δ.

Proof. For x ∈ N+, let P : Π × Dπb
n → Rx denote any function to predict the

performance of some πe ∈ Π, using data D collected from πb. Also, let B : Rx× [0, 1]→

R denote any function that bounds performance with high probability, 1− δ, where

δ ∈ [0, 1]. Starting with the definition of α-security, we have that ∀m ∈M,

Pr
(
ϕ
(
πe,m(D, k),J(πb) + α

)
= True

)
< δ

⇐⇒ Pr
(
B
(
P(πe,m(D, k)), δ

)
> J(πb) + α

)
< δ

⇐⇒ Pr
(
L?,∗

(
πe,m(D, k)

)
> J(πb) + α

)
< δ.

79

In Lemma 5, we describe a condition that must hold in order to compute a valid

α. The condition states that a valid α must be equal to or greater than the largest

increase in the 1− δ confidence lower bound on J(πe) across all datasets D ∈ Dπbn and

all attack strategies (i.e., the optimal attack).

Lemma 5. A safety test using L∗,? is quasi-α-secure or α-secure if ∀D ∈ Dπbn and

∀m ∈M, L∗,?
(
πe,m(D, k)

)
≤ L∗,?(πe, D) + α.

Proof. If L∗,?
(
πe,m(D, k)

)
≤ L∗,?(πe, D) + α, then

L∗,?(πe, D) ≥ L∗,?
(
πe,m(D, k)

)
− α. (3.11)

A safety test checks whether L∗,?(πe, D) > J(πb). When Eq. (3.11) holds ∀D ∈ Dπbn

and ∀m ∈M,

Pr(L∗,?(πe, D) > J(πb)) ≥ Pr(L∗,?
(
πe,m(D, k)

)
− α > J(πb)), (3.12)

and hence via algebra that

Pr(L∗,?
(
πe,m(D, k)

)
> J(πb) + α) ≤ Pr(L∗,?(πe, D) > J(πb)),

which, by Lemma (3), implies that a safety test using L∗,? is quasi-α-secure. In the

case of α-security, by Assumption 3, we require a “safe” safety test. That is,

Pr(L∗,?(πe, D) > J(πb)) < δ. (3.13)

From the transitive property of ≥, we can conclude from Eq. (3.12) and Eq. (3.13)

that

Pr(L∗,?
(
πe,m(D, k)

)
− α > J(πb)) < δ,

80

and hence via algebra that

Pr(L∗,?
(
πe,m(D, k)

)
> J(πb) + α) < δ,

which, by Lemma (4), implies that a safety test using L∗,? is α-secure.

3.8.2 Proof of Theorem 5

Equation (3.6) for the estimator that uses CH and IS is the following.

α′ = max
D∈DHn

fCH, IS(D, i∗, 1, k)− LCH, IS(πe, D)

= max
D∈DHn

1

n+ k

n∑
i=1

wigi +
k

n+ k
(i∗)(1)− b

√
ln(1/δ)

2(n+ k)
−
(

1

n

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

(
i∗ −

∑n
i=1wigi
n

)
.

Recall that b represents the upper bound of all IS weighted returns. Let b = i∗, and

gi = 0 for all i ∈ {1, . . . , n}.

α′ =i∗
√

ln(1/δ)

2n
− i∗

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)
(i∗ − 0)

=i∗

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)
.

Equation (3.6) for the estimator that uses CH and WIS is the following.

α′ = max
D∈DHn

fCH, WIS(D, i∗, 1, k)− LCH, WIS(πe, D)

= max
D∈DHn

1

ki∗ +
∑n

i=1wi

(n∑
i=1

wigi + k(i∗)(1)

)
− b

√
ln(1/δ)

2(n+ k)
−
(

1∑n
i=1wi

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

ki∗

(ki∗ + β)

(
1−

∑n
i=1wigi
β

)
.

81

Let gi = 0 for all i ∈ {1, . . . , n}. Also, notice that b = 1 because importance weighted

returns are in range [0, 1] for WIS.

α′ = max
D∈DHn

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

ki∗

(ki∗ + β)
.

Recall that β 6= 0. So, let wi = 0 for all i ∈ {1, . . . , n− 1} and wn = imin.

α′ =

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

ki∗

(imin + ki∗)
.

3.8.3 Panacea: An Algorithm for Safe and Secure Policy Improvement

Table 3.2: α–security of Panacea.

Estimator α

CH, IS c
(√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ k
(n+k)

)
CH, WIS

√
ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ kc
(imin+kc)

Algorithm 2: Panacea(D, πe, α, k)

1: Compute c, using α and k, given estimator
2: for H ∈ D do
3: if IS weight computed using H is greater than c then
4: Set IS weight to c
5: end if
6: end for
7: return clipped D

Algorithm 2. This algorithm ensures a user-specified level of α-security when input
k is selected such that it represents the correct number of trajectories added by an
adversary.

3.8.3.1 Proof of Corollary 1

Let α′ and k′ denote the user-specified inputs to Panacea. Based on Table 3.1,

cCH, IS = α′/
(√

ln(1/δ)
2n

−
√

ln(1/δ)
2(n+k)

+ k
(n+k)

)
if k′ = k. Recall that b is the upper bound on all

82

IS weighted returns. Due to clipping, b = cCH, IS, and let gi = 0 for all i ∈ {1, . . . , n}.

The result of Eq. (3.7) for the estimator that uses CH and IS is the following:

max
D∈DHn

fCH, IS(Panacea(D, cCH, IS), cCH, IS, 1, k)− LCH, IS
(
πe, Panacea(D, cCH, IS)

)
= max

D∈DHn

1

n+ k

n∑
i=1

wigi +
k

n+ k
(cCH, IS)(1)− b

√
ln(1/δ)

2(n+ k)
−
(

1

n

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

(
cCH, IS −

∑n
i=1wigi
n

)
=cCH, IS

√
ln(1/δ)

2n
− cCH, IS

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)
(cCH, IS − 0)

=cCH, IS

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)

=
α′√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ k
(n+k)

·

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)
=α′.

For WIS, recall that no matter how the clipping weight is set, b ≤ 1 because

importance weighted returns are in range [0, 1], and β 6= 0. So, let wi = 0 for all

i ∈ {1, . . . , n − 1} and wn = imin. Also, let gi = 0 for all i ∈ {1, . . . , n}. Based on

Table 3.1, cCH, WIS = imin
(
α′ −

√
ln(1/δ)
2n

+
√

ln(1/δ)
2(n+k)

)
/k
(

1− α′ +
√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

)
if

k′ = k. Equation (3.7) for the estimator that uses CH and WIS is the following.

83

max
D∈DHn

fCH, WIS(Panacea(D, cCH, WIS), cCH, WIS, 1, k)− LCH, WIS
(
πe, Panacea(D, cCH, WIS)

)

= max
D∈DHn

1

kcCH, WIS +
∑n

i=1wi

(n∑
i=1

wigi + k(cCH, WIS)(1)

)
− b

√
ln(1/δ)

2(n+ k)
−

(
1∑n
i=1wi

n∑
i=1

wigi − b
√

ln(1/δ)

2n

)

= max
D∈DHn

b

√
ln(1/δ)

2n
− b

√
ln(1/δ)

2(n+ k)
+

kcCH, WIS

(kcCH, WIS + β)

(
1−

∑n
i=1wigi
β

)

≤
√

ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

kcCH, WIS

(kcCH, WIS + imin)

=

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)

)
+

(
α′ −

√
ln(1/δ)
2n

+
√

ln(1/δ)
2(n+k)

)
(
α′ −

√
ln(1/δ)
2n

+
√

ln(1/δ)
2(n+k)

)
+
(

1− α′ +
√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

)
=

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+ α′ −

√
ln(1/δ)

2n
+

√
ln(1/δ)

2(n+ k)

=α′.

3.8.3.2 Proof of Corollary 2

Let α and k′ denote the user-specified inputs to Panacea. If k′ = k, i.e., the user

inputs the correct number of trajectories added by the attacker, the result of Eq. (3.7)

for the estimator that uses CH and IS is the following.

α = max
D∈DHn

fCH, IS(Panacea(D, c), c, 1, k)− LCH, IS
(
πe, Panacea(D, c)

)
α =c

(√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

k

(n+ k)

)
c =

α(√
ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

+ k
(n+k)

) .

If k′ = k, the result of Eq. (3.7) for the estimator that uses CH and WIS is the

following.

84

max
D∈DHn

fCH, WIS(Panacea(D, c), c, 1, k)− LCH, WIS
(
πe,Panacea(D, c)

)
≤√

ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

kc

(kc+ imin)
.

(3.14)

Setting the right-hand side of Eq. (3.14) to α, and solving for c equals

α =

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)
+

kc

(imin + kc)

kc

(imin + kc)
=α−

√
ln(1/δ)

2n
+

√
ln(1/δ)

2(n+ k)

kc− kcα + kc

√
ln(1/δ)

2n
− kc

√
ln(1/δ)

2(n+ k)
=iminα− imin

√
ln(1/δ)

2n
+ imin

√
ln(1/δ)

2(n+ k)

kc

(
1− α +

√
ln(1/δ)

2n
−

√
ln(1/δ)

2(n+ k)

)
=iminα− imin

√
ln(1/δ)

2n
+ imin

√
ln(1/δ)

2(n+ k)

c =
imin
(
α−

√
ln(1/δ)
2n

+
√

ln(1/δ)
2(n+k)

)
k
(

1− α +
√

ln(1/δ)
2n
−
√

ln(1/δ)
2(n+k)

) .

85

CHAPTER 4

CONCLUSIONS

In this dissertation, we provided two instances demonstrating the importance of

and need for randomness in computer science. It is due to the random nature of

probabilistic data structures and the data generation process that we are able to

utilize concentration inequalities, which are powerful tools. The application of these

tools help conserve bandwidth while ensuring a desired decode rate in Chapter 2, and

guarantee safety in Chapter 3.

In Chapter 2, we introduced a novel solution to the problem of determining a subset

of items from a larger set two parties hold in common, using a novel combination

of two probabilistic data structures, Bloom filters and IBLTs. We also provided a

solution to the more general case, where one party is missing some or all of the items.

Specifically, we described how to parameterize the probabilistic data structures, using

the Chernoff bound, in order to meet a desired decode rate. Through a detailed

evaluation using simulations and real-world deployment, we compared our method to

existing systems, showing that it requires less data transmission over a network and is

more resilient to attack than previous approaches.

In Chapter 3, we analyzed a couple of safety tests that use the Chernoff-Hoeffding

bound. More specifically, we presented a new measure, called α-security, to quantify

the susceptibility of these safety tests to data corruption attacks, which represent

the insertion of non-random samples to a dataset. The effects of such attacks can

be dire, breaking the safety guarantee provided by these methods, and consequently,

highlighting the importance of collecting data randomly. Recognizing that anomalies

86

and disturbances can hinder this collection, we also introduced a new algorithm,

Panacea, which guarantees a user-specified level of security even when data is not

collected completely randomly.

87

BIBLIOGRAPHY

[1] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning
from data, volume 4. AMLBook New York, NY, USA:, 2012.

[2] Daniel Albright, Arrick Lanfranchi, Anwen Fredriksen, William F. Styler IV,
Colin Warner, Jena D. Hwang, Jinho D. Choi, Dmitriy Dligach, Rodney D.
Nielsen, James Martin, et al. Towards comprehensive syntactic and semantic
annotations of the clinical narrative. Journal of the American Medical Informatics
Association, 20(5):922–930, 2013.

[3] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input
PRF. In Proc. Progress in Cryptology (INDOCRYPT), pages 489–508, December
2012.

[4] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku
Mathematical Journal, Second Series, 19(3):357–367, 1967.

[5] Meysam Bastani. Model-free intelligent diabetes management using machine
learning. M.S. Thesis, University of Alberta, 2014.

[6] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algo-
rithm for unbounded searching (see also https://en.wikipedia.org/wiki/

Exponential_search). Information Processing Letters., 5(3):82–87, Aug 1976.
doi: 10.1016/0020-0190(76)90071-5.

[7] George Bissias. Graphene Pull Request. https://github.com/

BitcoinUnlimited/BitcoinUnlimited/pull/973, July 2018.

[8] George Bissias. An Algorithm for Bounding the Probability of r-core Formation
in k-uniform Random Hypergraphs. arXiv preprint, Feb 1 2019. URL http:

//arxiv.org/abs/1901.04934.

[9] George Bissias and Brian Levine. BUIP093: Graphene Relay. https://github.
com/BitcoinUnlimited/BUIP/blob/master/093.mediawiki, July 26 2018.

[10] Bitcoin ABC. The bitcoin abc vision. https://medium.com/@Bitcoin_ABC/

the-bitcoin-abc-vision-f7f87755979f, August 24 2018.

[11] Bitcoin Unlimited. Bitcoin Cash Development And Testing Accord:
Bitcoin Unlimited Statement. https://www.bitcoinunlimited.info/

cash-development-plan, 2018.

88

https://en.wikipedia.org/wiki/Exponential_search
https://en.wikipedia.org/wiki/Exponential_search
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/973
https://github.com/BitcoinUnlimited/BitcoinUnlimited/pull/973
http://arxiv.org/abs/1901.04934
http://arxiv.org/abs/1901.04934
https://github.com/BitcoinUnlimited/BUIP/blob/master/093.mediawiki
https://github.com/BitcoinUnlimited/BUIP/blob/master/093.mediawiki
https://medium.com/@Bitcoin_ABC/the-bitcoin-abc-vision-f7f87755979f
https://medium.com/@Bitcoin_ABC/the-bitcoin-abc-vision-f7f87755979f
https://www.bitcoinunlimited.info/cash-development-plan
https://www.bitcoinunlimited.info/cash-development-plan

[12] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Commun. ACM, 13(7):422–426, July 1970.

[13] Anudhyan Boral and Michael Mitzenmacher. Multi-party set reconciliation
using characteristic polynomials. In Proc. Annual Allerton Conference on
Communication, Control, and Computing, pages 1182–1187, October 2014.

[14] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson.
Counterfactual reasoning and learning systems: The example of computational
advertising. The Journal of Machine Learning Research, 14(1):3207–3260, 2013.

[15] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration in-
equalities: A nonasymptotic theory of independence. Oxford university press,
2013.

[16] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters:
A survey. Internet mathematics, 1(4):485–509, 2004.

[17] Andrej Brodnik and J Ian Munro. Membership in constant time and almost-
minimum space. SIAM Journal on Computing, 28(5):1627–1640, 1999.

[18] Vitalik Buterin and Virgil Griffith. Casper the Friendly Finality Gadget. https:
//arxiv.org/abs/1710.09437, Oct 2017.

[19] John W Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost.
Informed content delivery across adaptive overlay networks. IEEE/ACM trans-
actions on networking, 12(5):767–780, 2004.

[20] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57.
IEEE, 2017.

[21] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Wegman.
Exact and approximate membership testers. In Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, pages 59–65. ACM, 1978. URL
http://doi.acm.org/10.1145/800133.804332.

[22] Amit Chakrabarti. Data stream algorithms lecture notes. 2020.

[23] Herman Chernoff et al. A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations. The Annals of Mathematical
Statistics, 23(4):493–507, 1952.

[24] Matt Corallo. Bip152: Compact block relay. https://github.com/bitcoin/

bips/blob/master/bip-0152.mediawiki, April 2016.

89

https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
http://doi.acm.org/10.1145/800133.804332
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

[25] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn
Song, and Roger Wattenhofer. On Scaling Decentralized Blockchains. In Proc.
Financial Cryptography and Data Security, pages 106–125, February 2016.

[26] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. In
Proc. Network and Distributed System Security Symposium (NDSS), page 14
pages., February 2016. doi: http://dx.doi.org/10.14722/ndss.2016.23187.

[27] Christian Decker and Roger Wattenhofer. Information Propagation in the Bitcoin
Network. In Proc. IEEE International Conference on Peer-to-Peer Computing,
pages 1–10, September 2013.

[28] Peter C. Dillinger and Panagiotis Manolios. Bloom filters in probabilistic
verification. In Proc. International Conference on Formal Methods in Computer-
Aided Design (FMCAD), pages 367–381. Springer-Verlag, November 2004.

[29] Peter C. Dillinger and Panagiotis Manolios. Fast and Accurate Bitstate Verifi-
cation for SPIN. In Proc. Model Checking Software (SPIN), pages 57–75, April
2004. doi: 10.1007/978-3-540-24732-6 5.

[30] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
Extractors: How to Generate Strong Keys from Biometrics and Other Noisy
Data. SIAM journal on computing, 38(1):97–139, 2008.

[31] Thaddeus Dryja and Joseph Poon. The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments. https://lightning.network/

lightning-network-paper.pdf, Jan 2016.

[32] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex
Lamb, Martin Arjovsky, and Aaron Courville. Adversarially learned inference.
arXiv preprint arXiv:1606.00704, 2016.

[33] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese.
What’s the Difference? Efficient Set Reconciliation Without Prior Context. In
Proc. ACM SIGCOMM, pages 218–229, August 2011.

[34] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proc. ACM International on
Conference on emerging Networking Experiments and Technologies (CoNEXT),
pages 75–88, December 2014. doi: 10.1145/2674005.2674994. URL http:

//doi.acm.org/10.1145/2674005.2674994.

[35] Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of distributed
consensus with one faulty process. JACM, 32(2):374–382, 1985.

90

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://doi.acm.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/2674005.2674994

[36] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algo-
rithms for data base applications. Journal of Computer and System Sci-
ences, 31(2):182–209, 1985. ISSN 0022-0000. doi: https://doi.org/10.
1016/0022-0000(85)90041-8. URL http://www.sciencedirect.com/science/

article/pii/0022000085900418.

[37] Javier Garcia and Fernando Fernandez. A comprehensive survey on safe rein-
forcement learning. Journal of Machine Learning Research, 16(1):1437–1480,
2015.

[38] Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy
improvement by minimizing robust baseline regret. In Advances in Neural
Information Processing Systems, pages 2298–2306, 2016.

[39] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Proc.
Symposium on Operating Systems Principles (SOSP), pages 51–68, October
2017.

[40] Shyamnath Gollakota and Dina Katabi. Zigzag decoding: Combating hidden
terminals in wireless networks. In Proc. ACM SIGCOMM Conference on Data
Communication, pages 159–170, August 2008. doi: 10.1145/1402958.1402977.
URL http://doi.acm.org/10.1145/1402958.1402977.

[41] Solomon W. Golomb. Run-length encodings (Corresp.). IEEE Transactions on
Information Theory, 12(3):399–401, July 1966. doi: 10.1109/TIT.1966.1053907.

[42] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in Neural Information Processing Systems, pages 2672–2680,
2014.

[43] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[44] Michael Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables.
In Conf. on Comm., Control, and Computing, pages 792–799, Sept 2011.

[45] Zhaohan Guo, Philip S. Thomas, and Emma Brunskill. Using options and
covariance testing for long horizon off-policy policy evaluation. In Advances in
Neural Information Processing Systems, pages 2492–2501, 2017.

[46] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochas-
tic bandits with adversarial corruptions. arXiv preprint arXiv:1902.08647, 2019.

[47] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

91

http://www.sciencedirect.com/science/article/pii/0022000085900418
http://www.sciencedirect.com/science/article/pii/0022000085900418
http://doi.acm.org/10.1145/1402958.1402977

[48] Wassily Hoeffding. The collected works of Wassily Hoeffding. Springer Science
& Business Media, 2012.

[49] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.
Adversarial attacks on neural network policies. arXiv preprint arXiv:1702.02284,
2017.

[50] Mark Huber. Halving the bounds for the markov, chebyshev, and chernoff
inequalities using smoothing. The American Mathematical Monthly, 126(10):
915–927, 2019.

[51] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for rein-
forcement learning. In International Conference on Machine Learning, pages
652–661. PMLR, 2016.

[52] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. Adversarial attacks
on stochastic bandits. In Advances in Neural Information Processing Systems,
pages 3640–3649, 2018.

[53] Sunny Katkuri. Improve block transfer efficiency using Graphene #17724. https:
//github.com/ethereum/go-ethereum/pull/17724, September 20 2018.

[54] Adam Kirsch and Michael Mitzenmacher. Less Hashing, Same Performance:
Building a Better Bloom Filter. Random Structures & Algorithms, 33(2):187–218,
September 2006. doi: 10.1002/rsa.20208.

[55] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,
Linus Gasser, and Bryan Ford. Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing. In Proc. USENIX Security
Symposium, pages 279–296, August 2016.

[56] Eleftherios Kokoris-Kogiasy, Philipp Jovanovicy, Linus Gassery, Nicolas Gaillyy,
Ewa Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. In Proc. IEEE Symposium on Security and Privacy, pages
583–598, May 2018.

[57] Matthieu Komorowski, Leo A. Celi, Omar Badawi, Anthony C. Gordon, and
A. Aldo Faisal. The artificial intelligence clinician learns optimal treatment
strategies for sepsis in intensive care. Nature Medicine, 24(11):1716, 2018.

[58] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies.
arXiv preprint arXiv:1705.06452, 2017.

[59] Boris P. Kovatchev, Marc Breton, Chiara Dalla Man, and Claudio Cobelli.
In silico preclinical trials: A proof of concept in closed-loop control of type 1
diabetes, 2009.

92

https://github.com/ethereum/go-ethereum/pull/17724
https://github.com/ethereum/go-ethereum/pull/17724

[60] Ilja Kuzborskij, Claire Vernade, András György, and Csaba Szepesvári. Confident
off-policy evaluation and selection through self-normalized importance weighting.
arXiv preprint arXiv:2006.10460, 2020.

[61] James Larisch, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and
Christo Wilson. CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers. In Proc. IEEE Symposium on Security and Privacy, pages
539–556, May 2017.

[62] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy
improvement with baseline bootstrapping. In International Conference on
Machine Learning, pages 3652–3661, 2019.

[63] Michel Ledoux. The concentration of measure phenomenon. Number 89. Ameri-
can Mathematical Soc., 2001.

[64] Brian Levine and Gavin Andresen. IBLT Optimization. https://github.com/
umass-forensics/IBLT-optimization, August 2018.

[65] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain
protocols. In Proc. International Conference on Financial Cryptography and
Data Security, pages 528–547, Jan 2015.

[66] Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in
robust markov decision processes. In Advances in Neural Information Processing
Systems, pages 701–709, 2013.

[67] Xihong Lin, Christian Genest, David L Banks, Geert Molenberghs, David W
Scott, and Jane-Ling Wang. Past, present, and future of statistical science. CRC
Press, 2014.

[68] Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine Learning Proceedings 1994, pages 157–163. Elsevier, 1994.

[69] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. arXiv
preprint arXiv:1905.06494, 2019.

[70] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of
horizon: Infinite-horizon off-policy estimation. In Advances in Neural Informa-
tion Processing Systems, pages 5356–5366, 2018.

[71] Eric Russell Love. Some Logarithm Inequalities. The Mathematical Gazette
(The Mathematical Association), 63(427):55–57, March 1980. URL https:

//www.jstor.org/stable/3615890.

[72] Lailong Luo, Deke Guo, Richard T.B. Ma, Ori Rottenstreich, and Xueshan
Luo. Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE
Communications Surveys Tutorials (see also arXiv:1804.04777), 21(2):1912–1949,
Second quarter 2019.

93

https://github.com/umass-forensics/IBLT-optimization
https://github.com/umass-forensics/IBLT-optimization
https://www.jstor.org/stable/3615890
https://www.jstor.org/stable/3615890

[73] A. Rupam Mahmood, Hado P. Van Hasselt, and Richard S Sutton. Weighted
importance sampling for off-policy learning with linear function approximation.
In Advances in Neural Information Processing Systems, pages 3014–3022, 2014.

[74] Chiara Dalla Man, Francesco Micheletto, Dayu Lv, Marc Breton, Boris Ko-
vatchev, and Claudio Cobelli. The UVA/PADOVA type 1 diabetes simulator:
New features. Journal of Diabetes Science and Technology, 8(1):26–34, 2014.

[75] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic.
Offline policy evaluation across representations with applications to educational
games. In AAMAS, pages 1077–1084, 2014.

[76] Eduard Marin, Dave Singelée, Flavio D Garcia, Tom Chothia, Rik Willems,
and Bart Preneel. On the (in) security of the latest generation implantable
cardiac defibrillators and how to secure them. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, pages 226–236. ACM, 2016.

[77] Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and
sample variance penalization. arXiv preprint arXiv:0907.3740, 2009.

[78] Ralph C. Merkle. A digital signature based on a conventional encryption function.
In Advances in Cryptology (CRYPTO ’87), pages 369–378, August, 1987. doi:
https://doi.org/10.1007/3-540-48184-2 32.

[79] Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun,
Emma Brunskill, and Philip S Thomas. Offline contextual bandits with high
probability fairness guarantees. In Advances in Neural Information Processing
Systems, pages 14893–14904, 2019.

[80] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with
nearly optimal communication complexity. IEEE Transactions on Information
Theory, 49(9):2213–2218, 2003.

[81] Michael Mitzenmacher and Rasmus Pagh. Simple multi-party set reconciliation.
Distributed Computing, 31(6):441—453, November 2018.

[82] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. doi:
10.1017/CBO9780511813603.005.

[83] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization
and probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

[84] Michael Molloy. The Pure Literal Rule Threshold and Cores in Random Hy-
pergraphs. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 672–681, January 2004. URL http://dl.acm.org/citation.cfm?id=

982792.982896.

94

http://dl.acm.org/citation.cfm?id=982792.982896
http://dl.acm.org/citation.cfm?id=982792.982896

[85] Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural Compu-
tation, 17(2):335–359, 2005.

[86] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
university press, 1995.

[87] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, May 2009.
URL https://bitcoin.org/bitcoin.pdf.

[88] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes
with uncertain transition matrices. Operations Research, 53(5):780–798, 2005.

[89] A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and
Brian Neil Levine. Graphene: A New Protocol for Block Propagation Using Set
Reconciliation. In Proc. of International Workshop on Cryptocurrencies and
Blockchain Technology (ESORICS Workshop), pages 420–428, September 2017.

[90] A Pinar Ozisik, Gavin Andresen, Brian N Levine, Darren Tapp, George Bissias,
and Sunny Katkuri. Graphene: efficient interactive set reconciliation applied to
blockchain propagation. In Proceedings of the ACM Special Interest Group on
Data Communication, pages 303–317. 2019.

[91] Pinar Ozisik and Philip S Thomas. Security analysis of safe and seldonian
reinforcement learning algorithms. Advances in Neural Information Processing
Systems, 33, 2020.

[92] Jonathan Petit, Bas Stottelaar, Michael Feiri, and Frank Kargl. Remote attacks
on automated vehicles sensors: Experiments on camera and lidar. Black Hat
Europe, 11:2015, 2015.

[93] Lerrel Pinto, James Davidson, and Abhinav Gupta. Supervision via competition:
Robot adversaries for learning tasks. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 1601–1608. IEEE, 2017.

[94] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust
adversarial reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2817–2826. JMLR. org, 2017.

[95] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. Improving
the performance of Invertible Bloom Lookup Tables. Information Processing
Letters, 114(4):185–191, 2014. doi: https://doi.org/10.1016/j.ipl.2013.11.015.

[96] Doina Precup. Temporal abstraction in reinforcement learning. 2001.

[97] Maxim Raginsky and Igal Sason. Concentration of measure inequalities in
information theory, communications and coding. arXiv preprint arXiv:1212.4663,
2012.

95

https://bitcoin.org/bitcoin.pdf

[98] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine.
Epopt: Learning robust neural network policies using model ensembles. arXiv
preprint arXiv:1610.01283, 2016.

[99] Stephen B. Seidman. Network structure and minimum degree. Social
Networks, 5(3):269–287, 1983. ISSN 0378-8733. doi: https://doi.org/10.
1016/0378-8733(83)90028-X. URL http://www.sciencedirect.com/science/

article/pii/037887338390028X.

[100] Rajneesh Sharma and Madan Gopal. A robust markov game controller for
nonlinear systems. Applied Soft Computing, 7(3):818–827, 2007.

[101] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing
in Bitcoin. In Proc. Financial Cryptography and Data Security, pages 507–527,
January 2015.

[102] Andrea Suisani, Andrew Clifford, Andrew Stone, Erik Beijnoff, Peter Rizun,
Peter Tschipper, Alexandra Fedorova, Chen Feng, Victoria Lemieux, and Stefan
Matthews. Measuring maximum sustained transaction throughput on a global
network of Bitcoin nodes. In Proc. Scaling Bitcoin Conference, November 2017.

[103] Michel Talagrand. A new look at independence. The Annals of probability, pages
1–34, 1996.

[104] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory
and practice of bloom filters for distributed systems. IEEE Communications
Surveys Tutorials, 14(1):131–155, First 2012. ISSN 1553-877X. doi: 10.1109/
SURV.2011.031611.00024.

[105] P. S. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, 2015.

[106] Philip S. Thomas. Safe Reinforcement Learning. PhD thesis, University of
Massachusetts Libraries, 2015.

[107] Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-
confidence off-policy evaluation. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[108] Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen Giguere,
Yuriy Brun, and Emma Brunskill. Preventing undesirable behavior of intelligent
machines. Science, 366(6468):999–1004, 2019.

[109] Jonathan Toomim. Block propagation data from Bit-
coin Cash’s stress test. https://medium.com/@j_73307/

block-propagation-data-from-bitcoin-cashs-stress-test-5b1d7d39a234,
September 2018.

96

http://www.sciencedirect.com/science/article/pii/037887338390028X
http://www.sciencedirect.com/science/article/pii/037887338390028X
https://medium.com/@j_73307/block-propagation-data-from-bitcoin-cashs-stress-test-5b1d7d39a234
https://medium.com/@j_73307/block-propagation-data-from-bitcoin-cashs-stress-test-5b1d7d39a234

[110] Jonathan Toomim. Benefits of LTOR in block en-
tropy encoding. https://medium.com/@j_73307/

benefits-of-ltor-in-block-entropy-encoding-or-8d5b77cc2ab0,
September 2018.

[111] Peter Tschipper. BUIP010 Xtreme Thinblocks. https://bitco.in/forum/

threads/buip010-passed-xtreme-thinblocks.774/, Jan 2016.

[112] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision
processes. Mathematics of Operations Research, 38(1):153–183, 2013.

[113] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
https://ethereum.github.io/yellowpaper/paper.pdf, June 2018.

[114] Pieter Wuille. Minisketch: a library for bch-based set reconciliation. https:

//github.com/sipa/minisketch/blob/master/doc/math.md, 2018.

[115] Jinyu Xie. Simglucose v0.2.1 (2018), 2019. URL https://github.com/jxx123/

simglucose. Accessed May 1, 2020.

[116] Lin Yang, , Mohammad H. Hajiesmaili, M. Sadegh Talebi, John C. S. Lui, and
Wing S. Wong. Adversarial bandits with corruptions: Regret lower bound and
no-regret algorithm. In Advances in Neural Information Processing Systems,
2020.

[117] Julian Zimmert and Yevgeny Seldin. An optimal algorithm for stochastic
and adversarial bandits. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 467–475. PMLR, 2019.

97

https://medium.com/@j_73307/benefits-of-ltor-in-block-entropy-encoding-or-8d5b77cc2ab0
https://medium.com/@j_73307/benefits-of-ltor-in-block-entropy-encoding-or-8d5b77cc2ab0
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/sipa/minisketch/blob/master/doc/math.md
https://github.com/sipa/minisketch/blob/master/doc/math.md
https://github.com/jxx123/simglucose
https://github.com/jxx123/simglucose

	Concentration Inequalities in the Wild: Case Studies in Blockchain & Reinforcement Learning
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Randomness as a Resource
	Randomness for Set Reconciliation in Blockchains
	Randomness for Safety in Seldonian RL

	Concentration Inequalities
	A Brief History
	Application of Concentration Inequalities
	Chernoff Bound for Blockchain Systems
	Chernoff-Hoeffding Bound for Seldonian RL

	Collaborators

	Set Reconciliation Applied to Blockchain Propagation
	Introduction
	Background and Related Work
	Set Reconciliation Data Structures
	Block Propagation

	The Graphene Protocol
	Protocols
	Graphene Extended
	Mempool Synchronization

	Ensuring Probabilistic Data Structure Success
	Parameterizing Bloom filter S and IBLT I
	Parameterizing Bloom filter R and IBLT J

	Enhancing IBLT Performance
	Optimal Size and Desired Decode Rate
	Ping-Pong Decoding

	Evaluation
	Comparison to Bloom Filter Alone
	Implementations
	Monte Carlo Simulation
	Graphene: Protocol 1
	Graphene Extended: Protocol 2

	Systems Issues
	Security Considerations
	Transaction Ordering Costs
	Reducing Processing Time
	Limitations

	Security Analysis of Safe and Seldonian Reinforcement Learning Algorithms
	Introduction
	Background
	Safe Reinforcement Learning

	Related Work
	Problem Formulation
	Analysis of Existing Algorithms
	Panacea: An Algorithm for Safe and Secure Policy Improvement
	Empirical Evaluation
	Experimental Methodology and Application Domains
	Results and Discussion

	Supplementary Proofs
	Analysis of Existing Algorithms
	Proof of Theorem 5
	Panacea: An Algorithm for Safe and Secure Policy Improvement
	Proof of Corollary 1
	Proof of Corollary 2

	Conclusions
	Bibliography

