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ABSTRACT 

 

MENTAL FATIGUE:  EXAMINING COGNITIVE PERFORMANCE AND DRIVING 

BEHAVIOR IN YOUNG ADULTS 

 

FEBRUARY 2021 

ABIGAIL F. HELM, B.A., COLBY COLLEGE 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Jennifer McDermott 

Mental fatigue causes an increase in task-based EEG theta and alpha power and a 

decrease in performance (for a review, see Tran et al., 2020). However, little is known 

about the emergence of mental fatigue in resting state EEG recordings and whether the 

progression of mental fatigue over time is influenced by individual differences. The 

current dissertation examined the utility of resting state EEG as a measure of mental 

fatigue by testing whether EEG power changed in young adults over the course of a 

cognitively demanding battery of tasks. The current dissertation also tested how this 

measure of mental fatigue interacted with individual differences in ADHD 

symptomology to predict performance on one of the cognitive tasks as well as 

performance in a driving simulator. Resting state EEG was recorded at four intervals, 

before and after the three cognitively demanding tasks. Driving outcomes were collected 

at a separate visit to a driving simulator lab. Results indicated that resting state EEG theta 

and alpha power significantly decreased over time, but this association was not 

influenced by levels of ADHD symptomology. There was no evidence that resting state 

EEG power changes over time predicted cognitive or driving performance, even when 



vii 

 

ADHD symptomology was included. The current findings present preliminary evidence 

that resting state EEG power can be used as a marker of mental fatigue and provide 

unique insight into how mental fatigue develops by including an initial measurement of 

neural readiness before individuals engage in a cognitively demanding task. 
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1 Literature Review 

1.1 Introduction  

Mental fatigue is induced following prolonged cognitive engagement (Arnau, 

Möckel, Rinkenauer, & Wascher, 2017). A common explanation for the underlying cause 

of mental fatigue is that sustained attentional engagement and behavioral action demand 

substantial cognitive resources, leaving a person mentally fatigued and causing 

disruptions in performance (Muraven & Baumeister, 2000). In addition, some people 

exhibit impaired performance and mental fatigue after very little time spent completing a 

cognitively challenging task, while others take a significant amount of time to show 

impairments related to mental fatigue.  

As such, examining individual differences in the development of mental fatigue 

can guide our understanding of the different ways in which cognitive and behavioral 

performance are compromised and can inform methods of reducing or coping with 

mental fatigue. Mental fatigue has been tested in lab settings using cognitive measures 

and in real world circumstances that require constant vigilance such as driving. However, 

very little work has examined the combined effects of individual differences and mental 

fatigue on cognitive and behavioral performance. Furthermore, it is important to consider 

how individual differences may influence distinct temporal dynamics of mental fatigue 

that are not readily observed in typical methodological practices, thus this study sought to 

enhance the body of mental fatigue research by investigating neural measures that are 

seldom studied in the literature. 

The aims of the current study were three-fold. First, lab-based neural measures of 

mental fatigue were explored, and these measures were also evaluated based on 
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individual differences in attention and impulsivity. Although prior research on neural 

markers of mental fatigue has mainly focused on individuals’ psychophysiology during 

tasks, the current study took a novel approach by focusing on the measurement of mental 

fatigue during rest intervals that occur before, in between, and after a sequence of various 

cognitively challenging tasks in order to broaden the understanding of mental fatigue 

development. Second, this study assessed whether these neural measures of mental 

fatigue predicted performance on a cognitive task and examined the impact of attention 

and impulsivity difficulties on this association. Finally, this study investigated whether 

the neural measures of mental fatigue, individual differences in attention and impulsivity, 

and overall cognitive performance predicted young adults’ driving behavior. 

1.2 Mental Fatigue  

Mental fatigue is characterized by decreasing alertness and impaired performance 

as compared to usual functioning levels (Ackerman & Kanfer, 2009). Research has 

assessed individuals’ subjective reports of fatigue to measure mental fatigue before, 

during, and after difficult cognitive tasks (Ackerman, 2011). These types of assessments 

are useful when objective assessment may not be practical or if changes in task 

performance do not occur (Smith, Chai, Nguyen, Marcora, & Coutts, 2019). Although 

there is some evidence that subjective ratings reflect mental fatigue before an individual 

begins to show deficits in task performance (Kanfer, 2011), people can be inaccurate or 

even dishonest reporters of their own experiences of mental exhaustion. Thus, researchers 

have employed more objective means of investigating mental fatigue.  

One objective method of examining mental fatigue is to assess how behavioral 

performance changes over time during a variety of cognitive tasks. Another avenue is to 
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examine deficits in behavioral performance on a subsequent task, after the mentally 

exhausting task has been completed. Tasks used to induce mental fatigue include n-back, 

go/no-go, flanker, oddball paradigm, Stroop, continuous performance, psychomotor 

vigilance, and others. Changes in behavioral performance during such tasks can be best 

explained by a reduction in top-down processing, leading to an inability to focus and 

meet task demands (Tran, Craig, Craig, Chai, & Nguyen, 2020). As a result, the skills 

needed for these tasks decline in efficiency when a person is experiencing mental fatigue.  

The literature is currently unclear as to what is an ideal task duration to induce 

mental fatigue in young adults, thus it is not known how long it takes for a change in task 

performance to become significant. Some experimental procedures that aim to induce 

mental fatigue use tasks that last for approximately 2 to 4 hours (Arnau et al., 2017; 

Boksem, Meijman, & Lorist, 2005; Tanaka, et al., 2012; Wang, Trongnetrpunya, Samuel, 

Ding, & Kluger, 2016; Wascher et al., 2014). However, evidence from these studies and 

others suggests that shorter task durations may suffice to induce mental fatigue as 

significant deficits in cognitive performance were evident after only 60 minutes (Washer 

et al., 2014) or 90 minutes (Wang et al., 2016).  

There is also evidence from studies that have used other objective measures of 

mental fatigue, such as brain activity and eye-tracking, in addition to task performance. 

Barwick, Arnett, and Slobounov (2012) administered a 90-minute neuropsychological 

concussion test battery composed of visuospatial memory, working memory, verbal 

memory, reaction time, and processing speed tests. Changes in brain activity and 

increased subjective ratings of fatigue during the tests as well as worse performance on a 

Stroop task from pretest to posttest were indicative of mental fatigue. Additionally, 
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Hopstaken and colleagues (2016) used a combination of eye-tracking, brain activity, 

subjective, and task performance measures to examine mental fatigue during a 90-minute 

n-back task. In addition to increases in self-reported mental fatigue, participants also 

showed decreases in task performance and physiological engagement as measured by 

brain activity, gaze, and pupil diameter. 

Other studies that include even shorter task sessions have produced evidence of 

mental fatigue as well. For example, mental fatigue was reflected in subjective ratings 

and brain activity measures during a 60-minute sustained attention task (Cao, Wan, 

Wong, Nuno da Cruz, & Hu, 2014). In comparison, Smith and colleagues (2019) 

examined brain activity, subjective ratings, reaction time, and heart rate variability in a 

pre/post design to look at mental fatigue and subsequent recovery. After 45 minutes of a 

psychomotor vigilance task, a continuous performance task, or a Stroop task, only the 

comparison of pre-test and post-test subjective ratings reflected significantly increased 

mental fatigue. Post-test subjective ratings of fatigue also remained higher than pre-test 

ratings for 20 minutes after the vigilance task, 50 minutes after the Stroop task, and 60 

minutes after the continuous performance task. Furthermore, Tanaka, Ishii, and Watanabe 

(2014) administered a 10-minute continuous performance task and found that brain 

activity during the task as well as subjective ratings of sleepiness provided evidence of 

mental fatigue, even after such a brief duration. 

Overall, evidence from a variety of biological, behavioral, and self-report 

measures suggests that mental fatigue can occur during different durations of cognitively 

demanding tasks. Prior studies have used tasks that last multiple hours, but additional 

research suggests 60 to 90 minutes is enough time to induce mental fatigue. Less is 
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known about tasks that have durations shorter than an hour, thus future research should 

aim to fill this gap in the literature. Individual differences may also play an important role 

in the development of mental fatigue and the task durations necessary to induce it. 

However, few studies have examined individual differences in the emergence of mental 

fatigue.  

Research has indicated that personality traits can predict subjective ratings of 

mental fatigue across various durations of a cognitively demanding task. Individuals 

higher in neuroticism and anxiety tend to report higher mental fatigue, whereas 

individuals motivated by achievement and learning typically report lower mental fatigue 

(Ackerman & Kanfer, 2009). Understanding individual differences and their influence on 

mental fatigue development is essential. If researchers learn more about the various 

impacts on cognitive and behavioral performance, they will be able to develop tailored 

approaches to help individuals reduce or manage their mental fatigue. Future research 

must consider that task durations necessary to induce mental fatigue may be different for 

people with attention difficulties, such as attention-deficit/hyperactivity disorder 

(ADHD). 

1.2.1 ADHD 

Individuals with ADHD present behaviors from one or both subtypes of 

symptoms: hyperactivity/impulsivity and inattention. Hyperactivity and impulsivity are 

typically combined into one subtype of ADHD because research has indicated that they 

are highly correlated and commonly load onto one factor in factor analyses (Roberts, 

Milich, & Barkley, 2015). Hyperactivity is characterized by feelings of restlessness as 

well as excessive speech and motor activity, and impulsivity is characterized by 
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difficulties inhibiting, waiting, or sharing. Individuals who display symptoms of 

inattention spend less time on-task and tend not to finish their work on time because they 

can be easily distracted and have a hard time concentrating (American Psychiatric 

Association [APA], 2013). 

ADHD affects approximately 2.5% of adults and 5% of children, but the number 

of adults who are being diagnosed with ADHD has been increasing dramatically over the 

last decade (APA, 2013). This increase can be attributed to improved recognition of the 

disorder, or possibly overdiagnosis (Paris, Bhat, & Thombs, 2015). With respect to 

symptomology, adults with ADHD experience similar attention problems as children 

with ADHD, such as difficulty concentrating and completing tasks. In contrast, adult 

symptoms of hyperactivity are exemplified by excessive speech rather than gross motor 

activity (Roberts et al., 2015). In addition, factor analyses of ADHD symptoms in adults 

reveal that hyperactivity may split from impulsivity to form its own symptom dimension, 

resulting in three distinct categories for adult ADHD as compared to the dual symptom 

structure (hyperactivity/impulsivity and inattention) for children with ADHD (Roberts et 

al., 2015).  

Given these symptom categories, hyperactivity, impulsivity, and inattention may 

each be responsible for additional deficits in performance under mentally fatiguing 

conditions for people with ADHD. However, the literature on mental fatigue among 

individuals with ADHD is very limited. In a study of adults with ADHD, their 

performance was more susceptible to mental fatigue, even if they were taking medication 

for their symptoms, as they performed worse than healthy controls on a cognitive task 

following 2.5 hours of neurocognitive testing (Maruta, Spielman, Tseretopoulos, 
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Hezghia, & Ghajar, 2014). Research with children also supports this theory, as 7- to 10-

year-old children with ADHD were unable to sustain performance on a challenging 14-

minute continuous performance task as compared to their typically developing peers 

(Bioulac et al., 2012).  

Mental fatigue may have a greater impact on cognitive and behavioral 

performance in individuals with ADHD. A possible explanation is that individuals with 

ADHD may need to use more cognitive resources to perform at levels equal to those of 

individuals without ADHD (Fassbender & Schweitzer, 2006). As a result, mental fatigue 

may have an earlier onset in individuals with ADHD as more cognitive resources are 

being utilized and top-down processes are impaired sooner. It is critical to know how 

behavioral measures of mental fatigue worsen in individuals with and without ADHD, as 

mental fatigue may compound differences in task performance, especially by the end of 

the testing session.  

Maruta and colleagues (2014) suggest that 20 minutes of a cognitively demanding 

task could result in substantial differences in task performance between individuals with 

and without ADHD. Such differences would reflect more rapid development of mental 

fatigue in those individuals with ADHD. Moreover, the limited number of previous 

studies have only used behavioral performance on cognitive tasks as a marker of mental 

fatigue to compare people with and without ADHD, thus other measures should also be 

examined in order to broaden our understanding of the influence of individual differences 

on the development of mental fatigue. 

For example, in addition to task performance, electroencephalography (EEG) is 

an objective measure that can provide insight into neurophysiological changes during the 
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development of mental fatigue. Neural measures are helpful beyond behavioral measures 

because they can provide evidence of mental fatigue developing before cognitive 

performance begins to decline. Additionally, observing neural measures before and after 

task performance will illuminate how temporal dynamics of mental fatigue may differ 

across individuals with and without ADHD. 

1.2.2 EEG  

EEG is one of the most widely used methods for measuring brain electrical 

activity  (Buzsáki, Anastassiou, & Koch, 2012). EEG is a recording of synchronized 

firing of cortical neurons, which leads to negative charges near the dendrites of neurons 

and positive charges around the cell body of the neuron (Jackson & Bolger, 2014). 

Electrodes placed on the scalp detect this activity from nearby neurons and the signal is 

derived from the sums of these positive and negative charges. EEG recordings provide a 

continuous measure of electrocortical rhythms or frequency bands (Anderson & Perone, 

2018). There are five separate EEG bands characterized by different oscillation speeds: 

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-50 

Hz). 

 Research on mental fatigue typically examines the alpha and theta EEG frequency 

bands, as both are commonly observed during cognitive task performance and have been 

linked with top-down processing (Min & Park, 2010; van Driel, Ridderinkhof, & Cohen, 

2012). The alpha frequency band is also pronounced during relaxed wakefulness and is 

blocked by intense concentration, whereas the theta frequency band is additionally linked 

with drowsiness (Nayak & Anilkumar, 2020). Changes in EEG spectral power, the 

inverse of neural activation, are commonly referenced as evidence for mental fatigue 
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during cognitively demanding tasks. Increases in alpha and theta EEG power are strongly 

associated with mental fatigue (Tran et al., 2020), and these EEG power changes that 

reflect mental fatigue can be evident during a cognitively demanding task after only 15 to 

30 minutes (Trejo, Kubitz, Rosipal, Kochavi, & Montgomery, 2015). As such, higher 

alpha and theta EEG power during task performance are considered reliable indicators of 

mental fatigue.  

There is mixed evidence for where in the brain these changes in EEG power 

might occur when reflecting mental fatigue. For both alpha and theta frequency bands, 

research has commonly pointed to the frontal (Arnau et al., 2017; Trejo et al., 2015) and 

central regions (Barwick et al., 2012; Wascher et al., 2014) as primary regions that reflect 

EEG power changes associated with mental fatigue. There are also a few studies that 

show evidence of power changes in parietal and occipital regions (Boksem et al., 2005; 

Fan, Zhou, Liu, & Xie, 2015; Tanaka et al., 2012). Across these studies, power changes 

in alpha and theta have been measured while people are engaged with cognitively 

demanding tasks that test abilities such as visual attention, visuospatial memory, working 

memory, verbal memory, reaction time, and processing speed. Results from these studies 

indicate increases in EEG power for both frequency bands regardless of task type (Tran et 

al., 2020).  

In addition to measuring EEG power during task performance, it can also be 

recorded while an individual is not performing any tasks by using a technique called 

resting state EEG. Resting state EEG is useful due to its simplicity, as subjects are simply 

asked to sit quietly with their eyes open and/or closed. This simple procedure enables 

researchers to examine people at all developmental levels in both typical and atypical 
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populations (Anderson & Perone, 2018). Furthermore, investigations of changes in alpha 

and theta EEG power during resting state EEG before and after cognitively demanding 

tasks also provide evidence of mental fatigue (Li et al., 2020). However, resting state 

EEG patterns may be different than patterns recorded during a cognitive task. For 

example, Tanaka and colleagues (2012) measured resting state EEG in healthy adult 

males before and after mental fatigue induction. Following a cognitively demanding 2-

hour lab task, participants’ resting state EEG showed increased theta power in central 

regions but decreased alpha power in parietal and occipital regions as compared to their 

resting state EEG before the task.  

As the literature on resting state EEG and mental fatigue is very limited, more 

work must be done to examine whether changes in alpha and theta power related to 

mental fatigue are different when measured using resting state EEG. It would be valuable 

to measure an individual’s resting state EEG before they engage in fatiguing tasks 

because this measurement will provide a baseline measure of neural readiness to perform 

cognitive tasks. From this starting point, researchers can examine changes in resting state 

EEG as markers of mental fatigue and examine associations between these neural 

patterns and subsequent behavioral task performance. Multiple resting state EEG 

recordings over the duration of a lab visit would also provide an opportunity to examine 

the development of mental fatigue more closely. 

Additionally, it is important to expand the field’s knowledge of how individual 

differences such as ADHD might impact the development of mental fatigue as measured 

by resting state EEG. When simply comparing individuals with and without ADHD, 

higher alpha power during eyes-closed resting state EEG is observed in those with 
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ADHD (Poil et al., 2014; van Dongen-Boomsma et al., 2010). Research has also 

indicated that individuals with ADHD show increased alpha and theta power across 

frontal, central, and parietal regions as compared to normal controls (Loo et al., 2009; 

Snyder & Hall, 2006). Further research is also needed to provide clarity on whether EEG 

markers of mental fatigue in individuals with and without ADHD can be applied across 

other contexts that could be negatively and dramatically impacted by mental fatigue, such 

as driving. 

1.3 Mental Fatigue and Driving Behavior 

Drivers experiencing mental fatigue tend to make more mistakes behind the wheel 

and thus endanger not only themselves but others on the road as well. Research shows 

that driver fatigue tends to account for approximately 15 to 20% of traffic accidents 

(Horne & Reyner, 1999; Phillip, 2005). Some reports even suggest that mental fatigue 

may be responsible up to 40% of all motor vehicle accidents (Fletcher, McCulloch, 

Baulk, & Dawson, 2005). In addition to damage to cars involved in such accidents, 

serious if not fatal injuries can result from these accidents as well. To make our roads 

safer, research can provide insight into how mental fatigue impacts driving and how 

drivers might be able to cope with it. For instance, if drivers learn to recognize signs of 

mental fatigue, they may be more apt to take precautions on the road. Additionally, 

helping drivers understand how their individual differences may impact their own driving 

behavior will also aid in increasing safety for all. 

Getting in the car and driving while mentally fatigued is dangerous, but driving 

itself can also cause mental fatigue. Participants who complete on-road and lab-based 

simulated driving assessments designed to induce mental fatigue spend more time 
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speeding and weaving in their lanes over the duration of the tasks (Morales et al., 2017; 

Perrier et al., 2016). Research has also sought to examine neurophysiological changes 

related to mental fatigue that occur during driving. The driving tests and simulations in 

these studies range from 1 to 2 hours in duration, timing durations that are much shorter 

than many mental fatigue studies that use cognitive tasks. As with other cognitively 

demanding tasks, driving can trigger similar patterns of increasing alpha and theta EEG 

power across a variety of regions (Borghini, Astolfi, Vecchiato, Mattia, & Balboni, 

2014).  

For instance, mental fatigue caused by driving has been linked with increased 

alpha power in frontal and posterior regions over various durations of driving sessions. 

After a 54-minute session of mentally fatiguing simulated driving, individuals have 

shown increased alpha power in frontal and posterior regions (Getzmann, Arnau, 

Karthaus, Reiser, & Wascher, 2018; Wascher, Arnau, Gutberlet, Karthaus, & Getzmann, 

2018). Gharagozlou and colleagues (2015) used EEG to assess mental fatigue in the first 

10 minutes and final 10 minutes of a 70-minute driving task, and they found increases in 

alpha power in parietal regions. Additionally, EEG assessments of mental fatigue 

recorded in the first 5 minutes and last 5 minutes during a 90-minute driving task 

revealed that alpha power increased significantly at central, parietal, occipital, and 

temporal regions (Zhao, Zhao, Liu, & Zheng, 2012). In comparison, the patterns of theta 

power as a measure of mental fatigue while driving are not clear. Although EEG studies 

of mental fatigue and driving do find that theta power increases at frontal, central, and 

occipital regions (Zhao et al., 2012), mental fatigue caused by driving has been linked 
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with decreases in theta power at frontal and posterior regions (Getzmann et al., 2018; 

Wascher et al., 2018).  

A main limitation of these prior studies is that they tend to focus on healthy adults 

around 25 years of age (Tran et al., 2020). There is very little research about how 

younger drivers and individuals with attention difficulties, such as ADHD, might be 

particularly vulnerable to mental fatigue and thus must endure an increased influence of 

mental fatigue while driving. The latter population is critical to focus on as individuals 

with ADHD are already more likely to speed, get into more crashes, and make more 

driving errors than those without ADHD (Fuermaier et al., 2015). Thus far, the limited 

evidence suggests that mental fatigue imposes a stronger negative effect on attention and 

driving performance among adults with ADHD as compared to healthy controls. For 

instance, drivers with ADHD were more likely to get into a collision during a mentally 

fatiguing driving simulation than drivers without ADHD (Reimer, D’Ambrosio, 

Coughlin, Fried, & Biederman, 2007). A possible explanation for why the drivers in this 

study had more collisions were the driving conditions: a long, monotonous drive on an 

open road. The combination of mental fatigue and boredom is a recipe for mind-

wandering in anyone, but it can become a big problem for drivers with ADHD, as their 

difficulties with attention may result in more frequent mind-wandering under mentally 

fatiguing conditions. 

Research across different driving settings has helped to shed light on the 

difficulties that individuals with ADHD experience behind the wheel. During simulated 

driving, drivers with ADHD tend to display poorer steering control and more lane 

swerving, while also showing higher rates of hard braking and sudden decelerating 
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during actual driving in on-road assessments (Fuermaier et al., 2015). Common issues for 

individuals with ADHD who show higher rates of inattention are difficulties regulating 

speed, maintaining lane position, scanning for hazards, and using signals (Classen et al., 

2013). In comparison, individuals with greater hyperactivity and impulsivity symptoms 

tend to have higher rates of motor vehicle accidents and receive more tickets for speeding 

(Thompson, Molina, Pelham, & Gnagy, 2007). Future research on the effects of mental 

fatigue on driving outcomes should aim to expand the scope of the literature by 

investigating the impacts of ADHD, especially in young drivers. 

1.3.1 Driving Patterns Among Young Adult Drivers  

Research on the effects of mental fatigue on driving does not often include young 

adult drivers, as most studies have mean ages of 25 years old or older. Yet, it is important 

to assess mental fatigue and its potential impact on driving behavior among younger 

populations because of the high rates of automobile accidents and mortality within this 

age group. For example, motor vehicle accidents were the cause of 23% of total deaths 

among 15- to 24-year-olds in 2015 (Murphy, Xu, Kochanek, Curtin, & Arias, 2017). 

Compared to all other ages, this age group had the highest number of fatal motor vehicle 

accidents as well.  

Before a person has had an adequate amount of time to learn and get comfortable 

behind the wheel of a car, driving demands more cognitive resources (Gregersen & 

Bjijrulf, 1996). For more experienced drivers, many actions become automatic, thus 

minimizing the drain on their cognitive resources. If driving conditions are increasingly 

stressful (e.g., bad weather, heavy traffic, unfamiliar location), making safe decisions 

becomes more important but also more difficult for inexperienced drivers (Deery, 1999). 
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Age predicts the likelihood of drivers being involved in an accident, even when 

controlling for driving experience. Among adults under 25 years of age with at least one 

year of driving experience, Constantinou and colleagues (2011) found that younger 

drivers reported more dangerous driving behaviors and got into more accidents.  

Young adult drivers also tend to overestimate their driving skills. When young 

drivers rate their driving ability and complete driving simulations, there are discrepancies 

between perceived skill and actual performance (Brown, 1982; Finn & Bragg, 1986). 

Once again, these self-report ratings and driving performance could both be linked to lack 

of driving experience. In addition, Lajunen and Summala (1995) reported that more 

experienced drivers tend to rate themselves as being more capable behind the wheel, but 

they do not always rate themselves as being safer than drivers with less experience. 

In comparison to older drivers, drivers under the age of 25 are also experiencing 

ongoing neurophysiological development (Paus, 2005). With underdeveloped cognitive 

abilities, young adult drivers can struggle to be as safe as older and more experienced 

drivers. They might simply be unprepared to face the risks of the complex task of driving, 

especially in unfavorable conditions exacerbated by distractions, mental fatigue, or even 

substance use (Constantinou et al., 2011). Although lack of knowledge about and 

experience with road hazards may be the underlying causes of incidents on the road, it is 

also plausible that negative driving outcomes among young drivers could be associated 

with immaturity of cognitive abilities (Romer, Yi-Ching, McDonald, & Winston, 2014; 

Walshe, McIntosh, Romer, & Winston, 2017). 
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1.3.2 Cognitive Abilities Implicated in Driving  

Driving requires the utilization of multiple cognitive abilities to operate a vehicle 

safely and effectively. To gauge actual driving performance, researchers test drivers 

using cognitive and motor tasks which have been shown to correlate with performance in 

driving simulators as well as during on-road assessments. Results from experimental 

assessments performed during lab tasks and on-road tests indicate that cognitive abilities 

such as attention, inhibitory control, and working memory show the most consistent 

connections with several aspects of driving behavior. 

In self-reports of driving behavior, drivers with greater inattentiveness admit to 

making many errors while behind the wheel (Garner et al., 2004) as well as receiving 

more traffic tickets and getting into more vehicle collisions (Ledesma, Montes, Poó, & 

López-Ramón, 2015). Both simulated driving and on-road driving outcomes are 

significantly predicted by drivers’ performance during assessments of attention (Baldock, 

Mathias, McLean, & Berndt, 2007; Hoffman, McDowd, Atchley, & Dubinsky, 2005). 

Data from various types of attention tasks are strongly correlated with many critical 

aspects of driving, including turning, merging, evaluating distances, and scanning 

surroundings (Richardson & Marottoli, 2003). When a driver has poor selective attention 

and attention shifting skills, they are more likely to make errors related to checking blind 

spots, using indicators, braking, accelerating, and maintaining lane position (Anstey & 

Wood, 2011). Sustained attention is typically examined in continuous performance tasks, 

and worse performance during these types of tasks is correlated with more driving errors, 

such as failing to notice pedestrians and getting into the wrong lane, as well as worse 

driving habits overall (Tabibi, Borzabadi, Stayrinos, & Mashhadi, 2015).  
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Another cognitive ability that is important for driving outcomes is inhibitory 

control. This skill refers to controlling behavior by withholding a strong prepotent 

response (Diamond, 2013). Strong inhibitory control is associated with more skill in 

specific aspects of safe driving such as recognizing and responding to hazards in the road 

as well as maintaining lane position (Ross et al., 2015). In addition, better inhibitory 

control has been linked with increased skill under both normal and difficult driving 

conditions, such that individuals with strong inhibitory control abilities are able to 

maintain high levels of performance under distracting conditions as compared to peers 

with weaker inhibitory control (Guinosso, Johnson, Schulteis, Graefe, & Bishai, 2016). 

Inhibitory control difficulties have also been linked with increased risk taking while 

driving such as speeding, unsafe acceleration, and more errors related to blind spots 

around the vehicle (Anstey & Wood, 2011; Brown et al., 2016). Drivers who display poor 

performance on inhibitory control tasks also are more likely to get into accidents and 

commit violations such as speeding and going through an intersection when the stoplight 

is yellow (Daigneault, Joly, & Frigon, 2002; Tabibi et al., 2015). Worse inhibitory 

control performance on a go/no-go task has also been associated with more frequent 

speeding and slower response times to salient stimuli in the driving environment such as 

lane merges, oncoming traffic, and stoplights (Hatfield, Williamson, Kehoe, & 

Prabhakharan, 2017; O’Brien & Gormley, 2013).   

Driving also relies on a person’s working memory, or their skill at remembering 

and using information to solve a problem (Diamond, 2013). Drivers with poor working 

memory have difficulty recognizing hazards in the road and taking their feet off the 

accelerator (Engström, Aust, & Viström, 2010; Wood, Hartley, Furley, & Wilson, 2016). 
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Both verbal and visuospatial (non-verbal) working memory have been linked with 

specific negative driving outcomes. Poor verbal working memory has been associated 

with increased lane weaving in a simulated driving environment, whereas strong 

visuospatial working memory has been linked with a tendency to drive through yellow 

lights and follow other cars too closely (Ross et al., 2015). In a study by Johannsdottir 

and Herdman (2010), when drivers completed a verbal working memory task while 

driving, they had more difficulty remembering the position and proximity of vehicles 

behind them. Then, when drivers completed a visuospatial working memory task while 

driving, they had more difficulty remembering the cars in front of them. 

Cognitive performance is a strong predictor of driving behavior, and this 

association is particularly relevant for young adults who are new drivers and whose 

cognitive abilities are still developing. When driving scenarios are complex and 

demanding, unsafe behavior of inexperienced drivers is easily distinguishable from 

driving behavior of more experienced drivers, and it can be linked with ongoing 

development of cognitive abilities (Guinosso et al., 2016). Young adults’ poor 

performance on a visual attention task helps to predict their crash risk and driving speed 

(Michaels et al., 2017). In addition, young drivers with strong inhibitory control typically 

perform better during challenging driving scenarios, whereas those with weaker 

inhibitory control tend to show more swerving behavior (Jongen, Brijs, Komlos, Brijs, & 

Wets, 2011), slower reactions to road hazards (Ross et al., 2015), and increased rates of 

speeding (Hatfield et al., 2017). Additionally, young drivers with weak inhibitory control 

are more likely to run red lights when accompanied by a risky peer (Cascio et al., 2015). 

Interestingly, the likelihood of running yellow lights and disregarding the maintenance of 
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a safe following distance increases among young drivers with strong working memory 

(Ross et al., 2015).  

In summary, safe driving behavior is influenced dramatically by cognitive 

abilities, especially for young adults whose cognitive abilities are still developing. Poor 

attention and weak inhibitory control in young adult drivers are both linked with adverse 

driving outcomes. Additionally, individuals with ADHD have difficulty modulating their 

attention and engaging inhibitory control, thus young adults with ADHD display even 

more unsafe driving behaviors than typically developing young adults (Classen et al., 

2013; Thompson et al., 2007). In addition, little is known about the combined effects of 

mental fatigue and cognitive abilities on safe driving behavior, especially in young adults 

with and without attention difficulties. Understanding how these factors influence safe 

driving will aid in identifying at-risk drivers and informing these drivers about the 

dangers of mental fatigue. 

1.4 The Current Study 

The current study had three primary aims. The first aim of the current study was 

to examine resting state EEG before, in between, and after three cognitive tasks to 

explore its utility as a measure of mental fatigue in young adults. In most prior research, 

EEG recorded during cognitively demanding tasks has been typically examined as a 

measure of mental fatigue (Tran et al., 2020). However, the demands of the tasks may 

influence the patterns of EEG and impact how clearly these measures can reflect mental 

fatigue. Measuring resting state EEG at the beginning of the session provided a baseline 

measurement of mental fatigue for individuals before they engaged in any tasks. Resting 

state EEG measurements after each of the three tasks provided clear comparisons to the 
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first measurement as they occurred in the same resting recording context that eliminated 

the possibility of task engagement interfering with the EEG patterns of mental fatigue. 

Previous studies on mental fatigue have generally focused on typically developing adults, 

thus there is a large gap in the literature surrounding individuals with attention difficulties 

who may be more susceptible to mental fatigue and its subsequent negative effects 

(Fassbender & Schweitzer, 2006). Consequently, this study compared this measure of 

mental fatigue across individuals with high versus low levels of ADHD symptomology. 

The second aim of the current study was to assess whether mental fatigue as 

measured by resting state EEG predicted performance on cognitive tasks. Research 

suggests that mental fatigue dramatically impairs cognitive performance (Tran et al., 

2020), and individuals with ADHD typically experience difficulties with their cognitive 

abilities (Roberts et al., 2015). Thus, this study also examined whether mental fatigue as 

measured by resting state EEG and ADHD symptomology predicted cognitive 

performance. 

The third aim of the current study was to investigate whether mental fatigue (as 

measured by resting state EEG), ADHD symptomology, and overall cognitive task 

performance predicted young adults’ driving behavior since mental fatigue is responsible 

for unsafe driving behaviors as well as a substantial number of injuries and fatalities due 

to motor vehicle accidents (Fletcher et al., 2005; Horne & Reyner, 1999; Phillip, 2005). 

The current study examined the combined effects of mental fatigue, ADHD 

symptomology, and cognitive performance on driving behavior because individuals with 

ADHD and drivers with weaker cognitive abilities are more likely to display unsafe 
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driving behaviors (Anstey & Wood, 2011; Classen et al., 2013; Johannsdottir & 

Herdman, 2010; Ross et al., 2015; Thompson et al., 2007).  

 The hypotheses for the three aims of this study were:  

Aim 1: (a) Explore the utility of resting state EEG as a measure of mental fatigue in 

young adults and (b) compare this measure across individuals with high versus low 

levels of ADHD symptomology 

Based on prior literature examining task-based EEG power in the central region 

(Barwick et al., 2012; Wascher et al., 2014; Zhao et al., 2012), both alpha and theta 

resting state EEG power were predicted to increase from the first to the fourth recording, 

thus reflecting a similar pattern of mental fatigue development between both task-based 

and resting state EEG methods. Individuals high in self-reported ADHD symptoms were 

expected to show significant increases in resting state EEG power by the third resting 

state EEG recording because they experienced mental fatigue sooner than individuals 

with low levels of ADHD symptoms.  

Aim 2: (a) Assess whether mental fatigue as measured by resting state EEG predicts 

cognitive performance and (b) examine whether ADHD symptomology moderates 

this association 

Larger increases in resting state EEG alpha and theta power from the first to the 

third recording were predicted to be associated with worse performance on the third 

cognitive task, as this association has been commonly observed for task-based EEG 

power in the central region (Tran et al., 2020). Furthermore, the combined effects of 

larger increases in resting state EEG power from the first to the third recording and 
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higher levels of ADHD symptoms were expected to be associated with worse 

performance on the third cognitive task. 

Aim 3: Investigate whether mental fatigue (as measured by resting state EEG), 

ADHD symptomology, and overall cognitive performance predict young adults’ 

driving behavior  

Young adults with larger increases in resting state alpha and theta EEG power 

from the first to the fourth resting state EEG recording, higher levels of ADHD 

symptoms, and worse overall task performance were predicted to display riskier driving 

behavior due to more inattention, more impulsivity, and weaker cognitive abilities.  

2 Methods 

2.1 Participants 

Individuals were recruited at the University of Massachusetts Amherst campus 

using flyers, table tents, website postings, and email advertisements. Participants had to 

be between the ages of 18 and 24 years old and were also required to have a valid US 

driver’s license and at least two years of driving experience. Individuals were not eligible 

if they had a history of motion sickness or wore glasses. Contact lens wearers were 

eligible. 

Participants also completed an online survey via Qualtrics to report their ADHD 

diagnosis history and whether they take medication for ADHD (if applicable). If 

participants indicated an ADHD diagnosis and took medication, they were asked to 

refrain from taking the medication at least 24 hours prior to their participation in each lab 
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visit.1 Participants were asked to complete two different lab visits, in no particular order. 

An attempt was made to randomize which visit participants completed first. However, the 

majority of participants completed the EEG visit first (see Figure 1) and a campus-wide 

shutdown of research activities due to the COVID-19 pandemic did not allow for more 

participants to complete the driving simulator visit. 

For the EEG lab visit, 97 participants completed the full protocol. One additional 

participant’s visit was stopped before data collection due to technical problems. For the 

driving simulator lab visit, 76 participants completed the full protocol. One additional 

participant succumbed to motion sickness during the driving simulation practice, thus the 

visit was stopped before data collection. The total number of participants who completed 

driving simulator lab visit with useable data was 74 because driving data for two 

participants was irretrievable due to technical failure. Coincidentally, these two 

participants did not complete the EEG lab visit. A total of 70 participants completed both 

visits fully. 

2.2 EEG Lab Visit  

2.2.1 Procedure 

Individuals went to the Learning Lab at the University of Massachusetts Amherst 

for a 90-minute lab visit. Individuals were given a full description of the study and were 

asked to provide signed consent to participate. Participants’ head circumferences were 

then measured to determine sizing for the EEG cap. Participants completed 

questionnaires on an iPad while research assistants completed the capping process. Once 

 
1 Of the six participants who reported an ADHD diagnosis, two participants reported that they take 

medication and reported taking it within 24 hours of their lab visits. When these participants were 

excluded, the patterns and significance of the analyses did not change. 
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the capping process and the questionnaires were complete, participants completed the 

first resting state EEG recording (RS-EEG 1). During the recording, participants first sat 

still and stared at a white ‘+’ presented on a black computer screen for 60 seconds. 

Participants were then asked to sit still with their eyes closed for 60 seconds. Participants 

then completed both steps once more (see Figure 2). There were three more recordings of 

resting state EEG throughout the testing session, once after each computer task (see 

Figure 3). 

After RS-EEG 1, participants completed one of three computer tasks: digit span 

(forward and backward), flanker, or go/no-go. The order of the tasks was 

counterbalanced across participants (see Table 1). All tasks were coded and run using 

Psychtoolbox-3 in Matlab (Mathworks, Natick, USA). After the first task, a second 

resting state EEG recording (RS-EEG 2) was completed, followed by the second task. 

After the second task, a third resting state EEG recording (RS-EEG 3) was completed, 

followed by the final task. After the final task, a final resting state EEG recording (RS-

EEG 4) was completed. Research assistants then removed the cap, and the participant 

was compensated $20, or $30 if they had completed the driving simulator lab visit 

previously. 

2.2.2 Measures  

Electroencephalography. Electroencephalographic (EEG) activity was recorded 

using a 32-electrode Neuroscan Quick-cap EEG cap (Compumedics Neuroscan, 

Charlotte, NC) during the EEG lab visit. EEG activity was referenced to an external 

electrode located at the nasion and a midline electrode anterior to Fz served as the ground 

electrode. Impedances were kept below 50 kΩ. Electro-oculographic (EOG) activity was 
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recorded by placing one external electrode above and one external electrode below the 

left eye. Continuous raw EEG data were collected using Curry 8 software (Compumedics 

Neuroscan, Charlotte, NC) and was amplified through a Grael 4K amplifier. Data were 

digitized at 1000 Hz and amplified with 0.1-100hz band-pass filter. EEG data were re-

referenced off-line to the average mastoids. Eye blinks were regressed using principal 

components analysis projections, and data were filtered using a 30 Hz zero phase and 

Butterworth low-pass filter. Data were tapered with a Hamming window with 10% of the 

total segment length. Fast Fourier transformation (FFT) spectral analyses were calculated 

for each 60-second interval (two eyes open, two eyes closed) of the four resting state 

EEG recordings for all participants. Frequency power was averaged across 1-second 

epochs in each interval. Averaged spectra power values were extracted from all 

electrodes. Based on prior literature, the current study focused on alpha and theta 

frequency power at central region electrodes C3, Cz, and C4 (Boksem et al., 2005; Fan et 

al., 2015; Tran et al., 2020) during the first 60-second interval when participants had their 

eyes open.  

Digit Span Task. Participants completed a forward and backward version of a 

digit span task. For both the forward and backward versions of the task, all participants 

were presented with different number sequences from two digits in length to nine digits 

in length. Both versions had a total of 16 trials. Digits were presented in 1 second 

intervals by a computer-generated voice played from the computer speakers at the same 

volume level for each participant. Participants were asked to listen to the sequence and 

wait until they saw a green square cue appear on the computer screen before repeating the 

sequence out loud for the research assistant. This cue appeared 2 seconds after the final 
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digit in the sequence had been presented (see Figure 4). In the forward version of the 

task, participants were asked to repeat the digits in the same order they were presented. In 

the backward version of the task, participants were asked to repeat the digits in the 

reverse of the presentation order. After the research assistant determined whether the 

participant’s response was correct, they continued to the next trial. After a participant 

completed two trials of the same length, a digit would be added to the length of the next 

sequence until two trials of nine digits were completed. 

Flanker Task. In the flanker task, participants were asked to identify the middle 

or third letter presented in a line of five white letters on a black computer screen. There 

were four different stimuli, and trials were either congruent (SSSSS or HHHHH) or 

incongruent (SSHSS or HHSHH). The task was presented in two blocks, with 160 trials 

in each block for a total of 320 trials. In each block, there were 80 congruent trials (40 

HHHHH, 40 SSSSS) and 80 incongruent trials (40 HHSHH, 40 SSHSS). In a trial, 

participants were first presented with a ‘+’ for 50 milliseconds, followed by a blank 

screen for 100 milliseconds. Stimuli were then presented for 100 milliseconds, followed 

by a blank screen for up to 900 milliseconds to allow for participants’ responses (see 

Figure 5). Participants pressed buttons on the keyboard to indicate that the middle or third 

letter was S (red button) or H (blue button). As soon as participants responded, the trial 

would continue with the presentation of a blank screen for 800 milliseconds before the 

following trial. If participants did not respond before the end of the 900-millisecond 

response window, a blank screen was still presented for 800 milliseconds before the next 

trial. 



39 

 

Go/No-Go Task. In the go/no-go task, participants were asked to respond to a 

white letter presented on a black computer screen if it was any letter in the alphabet other 

than X. If the letter was X, participants were asked to avoid responding. The task was 

presented in two blocks, with 200 trials per block for a total of 400 trials. In each block, 

there were 140 go trials (any letter except X) and 60 no-go trials (X). For each trial, 

participants were first presented with a ‘+’ for 50 milliseconds, followed by a blank 

screen for 100 milliseconds. A letter was then presented for 80 milliseconds, followed by 

a blank screen for up to 900 milliseconds to allow for participants’ responses (see Figure 

6). Participants responded by pressing a white button on the keyboard. As soon as 

participants responded, the trial would continue with the presentation of a blank screen 

for 750 milliseconds before the following trial. If participants did not respond before the 

end of the 900- millisecond response window, a blank screen was still presented for 750 

milliseconds before the next trial. 

Questionnaires. Participants completed questionnaires on an iPad at the 

beginning of the study during the EEG capping process. Participants answered questions 

about their demographic information, ADHD diagnosis history, and ADHD medication 

status as well as the Adult Temperament Questionnaire Short Form (ATQ-Short; Evans 

& Rothbart, 2007), the Current Symptoms Self-Report Form (Barkley & Murphy, 1998), 

the Adult Self-Report (ASR; Achenbach & Rescorla, 2003), and the Behavior Rating 

Inventory of Executive Function – Adult (BRIEF-A; Roth, Isquith, & Gioia, 2005). The 

current study utilized participants’ ratings from the Current Symptoms Self-Report Form 

(see Appendix A), an 18-item questionnaire for which participants select the rate of 
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behavior problems related to ADHD, using choices from 0 (“never/rarely”) to 3 (“very 

often”).  

2.3 Driving Simulator Lab Visit 

2.3.1 Procedure 

Individuals went to the Arbella Insurance Human Performance Laboratory at the 

University of Massachusetts Amherst for a 60-minute lab visit. Individuals were given a 

full description of the study and were asked to provide signed consent to participate. 

After filling out a brief questionnaire, participants were seated in the driving simulator 

and asked to adjust their seat until it was in a comfortable driving position. Researchers 

then instructed the participants to fasten their seatbelts, observe the posted speed limit, 

use indicators when necessary, and carry out on-screen prompts (e.g., Turn right at the 

intersection). The researcher then put an eye-tracker on the participant, but these data 

were not used in the current study. Participants were shown how to engage and disengage 

the automated technology system in the driving simulator. The automated features of the 

simulator consisted of adaptive cruise control and a lane centering control system. After 

being introduced to the features of the driving simulator, participants completed a 3-

minute practice drive.  

Participants were randomly assigned to one of two groups. Participants either 

drove normally in the driving simulator, or they were asked to drive while also 

completing a task aimed to distract them from the road. Regardless of group assignment, 

participants completed three different 3-minute driving scenarios twice. For the two 

attempts of each scenario, participants drove one attempt with the automated technology 

system engaged and drove the other attempt with the automated technology system 
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disengaged. The automated technology system was either engaged for the first three 

scenarios or for the second three scenarios, as determined by counterbalancing. After 

completing the six driving scenarios, participants completed questionnaires about their 

driving history and driving tendencies. Participants were then compensated $20, or $30 if 

they had completed the EEG lab visit previously.  

2.3.2 Measures 

Driving Simulator. Driving data were collected using a fixed-based Realtime 

Technologies Inc. (RTI) driving simulator during the driving simulator lab visit. The 

simulator included a 2013 Ford Fusion and six screens that provided a 330º field of view. 

The simulator’s rear-view mirror and side mirrors also provided simulated views of the 

surroundings. Speakers simulated environmental noise and engine sounds. Three 

different scenarios were designed for this study. In the intersection scenario, participants 

drove toward a four-way intersection with a stoplight and the light was green. A 

pedestrian approached the crosswalk of the intersection, but the pedestrian was obscured 

by a building close to the road until the car reached the crosswalk. During the curve 

scenario, participants drove along a two-lane road (one lane in each direction) that curves 

to the right. A truck was also parked on the right side of the curved section of road, 

protruding into the road and obscuring a pedestrian at a crosswalk. Participants had to 

drive over the dotted yellow dividing line to avoid hitting the truck. In the merge 

scenario, participants drove to the end of a four-lane road (two lanes in each direction) 

and reached the beginning of a section where the road merged from four lanes to two 

lanes. A bicyclist in a hidden driveway was waiting to cross the road at the beginning of 
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this section, and a sign warning about the hidden driveway was placed a good distance 

before the actual driveway. 

Questionnaires. Participants completed the pre-exposure section of the Simulator 

Sickness Questionnaire (SSQ; Kennedy, Lane, Berbaum, & Lilienthal, 1993) before 

getting into the driving simulator. After the drive in the simulator, participants completed 

the post-exposure section of the SSQ and three other questionnaires: a demographics and 

driving history questionnaire, the US version of the Driver Behavior Questionnaire 

(DBQ; Reason, Manstead, Stradling, Baxter, & Campbell, 1990), and an automated 

technology trust questionnaire. Responses from these questionnaires were not examined 

in the current analyses. 

3 Analyses 

The first set of analyses investigated the hypothesis that the development of 

mental fatigue can be reflected by changes in resting state EEG power over time. 

Changes in alpha and theta EEG power from all four resting state recordings were each 

compared in repeated measures ANOVAs to examine the development of mental fatigue. 

Task order was used as a between-subjects variable in these analyses to check for order 

effects of the cognitive tasks.2 

Next, the influence of self-reported ADHD symptomology on the development of 

mental fatigue as measured by resting state EEG power was examined in additional 

repeated measures ANOVAs. Averages of total ADHD symptoms, inattention symptoms, 

and impulsivity/hyperactivity symptoms reported on the Current Symptoms Self-Report 

 
2 Gender and age were not included in these analyses. When they were included in preliminary analyses, 

the patterns did not change. 
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Form were used to assign individuals to groups. Individuals were grouped as either high 

(above the sample mean) or low (below the sample mean) separately for overall ADHD 

symptoms, inattention symptoms, and hyperactivity/impulsivity symptoms.  

The second set of analyses assessed whether the development of mental fatigue as 

measured by resting state EEG power was associated with young adults’ cognitive task 

performance using multiple linear regression analyses. Difference scores for alpha and 

theta EEG power were calculated by subtracting RS-EEG 1 power from RS-EEG 3 

power. Resting state EEG power difference scores were used to predict performance on 

Task 3. Due to counterbalancing of the three cognitive tasks between participants, 

participants completed different tasks for Task 3 depending on their assigned task order 

(Table 1). Z-scores of performance from participants’ Task 3 were used as outcome 

variables (i.e., total digits correct from the backward version of the digit span task, 

percent correct on incongruent trials during the flanker task, or percent correct on no-go 

trials during the go/no-go task).  

The influence of different self-reported ADHD symptomology on this association 

was then examined in separate multiple linear regression analyses. Along with 

standardized values of alpha or theta resting state EEG power difference scores between 

RS-EEG 1 and RS-EEG 3, the standardized averages of total ADHD symptoms, 

inattention symptoms, and impulsivity/hyperactivity symptoms reported on the Current 

Symptoms Self-Report Form were used to predict performance on Task 3 separately. An 

interaction term was calculated using the standardized EEG power difference scores and 

the standardized symptom averages. 
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 To examine the third aim, the final set of analyses tested whether mental fatigue 

(as measured by resting state EEG power), ADHD symptomology, and cognitive 

performance predict driving behavior in young adults using several additive multiple 

linear regression analyses. Difference scores for alpha and theta EEG power were 

calculated by subtracting RS-EEG 1 power from RS-EEG 4 power. The standardized 

averages of total ADHD symptoms, inattention symptoms, and impulsivity/hyperactivity 

symptoms reported on the Current Symptoms Self-Report Form were used for these 

analyses. A composite score of cognitive performance was created by standardizing the 

averaged z-scores of performance on the digit span task (total digits correct from 

backward version), flanker task (percent correct on incongruent trials), and go/no-go task 

(percent correct on no-go trials). Driving outcomes included mean acceleration, mean 

velocity, and lane offset deviation from the scenarios when the automation systems were 

not activated during the driving lab visit. 

4 Results 

 Demographic information can be found in Table 2 and Table 3. Variables were 

examined for outliers and nine participants were excluded from all analyses because their 

EEG measures were unusable (n = 5) or greater than 3.29 standard deviations above the 

mean (n = 4; Tabachnick & Fidell, 2013). To maximize individual differences in 

behavior, outliers on the cognitive tasks and driving measures were not excluded.3  

Descriptive data for the variables are included in Tables 4 to 7. Correlations between 

variables are presented in Table 8. 

 
3 When outliers on cognitive tasks and driving measures were included in preliminary analyses, the patterns 

did not change. 
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4.1 Aim 1: Changes in Resting State EEG Over Time 

4.1.1 Theta  

There was a main effect for Time (F(3,240) = 9.94, p < .001, p
2 = .11; see Figure 

7). Follow-up tests showed that RS-EEG 1 power was significantly higher than RS-EEG 

3 power (F(1,82) = 15.31, p < .001, p
2 = .16) and RS-EEG 4 power (F(1,81) = 22.31, p 

< .001, p
2 = .22), but not significantly higher than RS-EEG 2 power (F(1,81) = 2.08, p = 

.153, p
2 = .03). RS-EEG 2 power was significantly higher than RS-EEG 3 power 

(F(1,83) = 5.94, p = .017, p
2 = .07) and RS-EEG 4 power (F(1,82) = 13.78, p < .001, 

p
2 = .14), however, RS-EEG 3 power did not differ from RS-EEG 4 power (F(1,83) = 

2.15, p = .146, p
2 = .03). There was not a main effect for task order  (p = .915), nor an 

interaction between the variables (p = .642). 

Overall ADHD Symptomology. There was a main effect for Time (F(3,231) = 

7.51, p < .001, p
2 = .09).4 There were no main effects for task order (p = .952) or ADHD 

group (p = .924), nor were there any significant interactions between the variables (ps > 

.064). 

Hyperactive/Impulsive Symptomology. There was a main effect for Time 

(F(3,231) = 8.59, p < .001, p
2 = .10).4 There was also a significant three-way interaction 

between Time, Task Order, and Hyperactivity/Impulsivity group (F(6,231) = 2.67, p = 

.016, p
2 = .07). Follow-up tests revealed that individuals in the high 

Hyperactivity/Impulsivity group who completed Task Order 2 had higher power at RS-

 
4 Follow-up tests indicated that the patterns were the same as when overall ADHD symptomology group 

was not included. 
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EEG 1 as compared to others in the high Hyperactivity/Impulsivity group who completed 

Order 1 (t(20) = -2.32, p = .031) and Order 3 (t(19) = 2.11, p = .048; see Figure 8). 

Additionally, among individuals who completed Task Order 3, those in the high 

Hyperactivity/Impulsivity group had significantly higher power at RS-EEG 3 power as 

compared to those in the low Hyperactivity/Impulsivity group (F(1,24) = 6.19, p = .020, 

p
2 = .21; see Figure 9). There were no main effects for task order (p = .864) or 

Hyperactivity/Impulsivity group (p = .309), nor were there any other significant 

interactions between the variables (ps > .114). 

Inattentive Symptomology. There was a main effect for Time (F(3,231) = 8.59, 

p < .001, p
2 = .10).4 There were no main effects for task order (p = .949) or Inattention 

group (p = .595), nor were there any significant interactions between the variables (ps > 

.267). 

4.1.2 Alpha 

There was a main effect for Time (F(3,240) = 10.74, p < .001, p
2 = .12; see 

Figure 10). Follow-up tests showed that RS-EEG 1 power was significantly higher than 

RS-EEG 3 power (F(1,82) = 16.76, p < .001, p
2 = .17) and RS-EEG 4 power (F(1,81) = 

24.76, p < .001, p
2 = .23), but not significantly higher than RS-EEG 2 power (F(1,81) = 

2.11, p = .151, p
2 = .03). RS-EEG 2 power was significantly higher than RS-EEG 3 

power (F(1,83) = 6.56, p = .012, p
2 = .07) and RS-EEG 4 power (F(1,82) = 13.71, p < 

.001, p
2 = .14). RS-EEG 3 power was not significantly higher than RS-EEG 4 power 

(F(1,83) = 2.37, p = .127, p
2 = .03). There was no main effect for task order  (p = .931), 

nor was there a significant interaction between the variables (p = .673). 
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Overall ADHD Symptomology. There was a main effect for Time (F(3,231) = 

8.06, p < .001, p
2 = .10).4 There were no main effects for task order (p = .964) or ADHD 

group (p = .961), nor were there any significant interactions between the variables (ps > 

.073). 

Hyperactive/Impulsive Symptomology. There was a main effect for Time 

(F(3,231) = 9.21, p < .001, p
2 = .11).4 There was also a significant three-way interaction 

between Time, Task Order, and Hyperactivity/Impulsivity group (F(6,231) = 2.77, p = 

.013, p
2 = .07). Follow-up tests revealed that individuals in the high 

Hyperactivity/Impulsivity group who completed Task Order 2 had significantly higher 

power at RS-EEG 1 as compared to others in the high Hyperactivity/Impulsivity group 

who completed Order 1 (t(20) = -2.23, p = .038) and Order 3 (t(19) = 2.20, p = .040; see 

Figure 11). Additionally, among individuals who completed Task Order 3, those in the 

high Hyperactivity/Impulsivity group had significantly higher power at RS-EEG 3 as 

compared to those in the low Hyperactivity/Impulsivity group (F(1,24) = 6.24, p = .020, 

p
2 = .21; see Figure 12). There were no main effects for task order (p = .902) or 

Hyperactivity/Impulsivity group (p = .293), nor were there any other significant 

interactions between the variables (ps > .121). 

Inattentive Symptomology. There was a main effect for Time (F(3,231) = 10.14, 

p < .001, p
2 = .12).4 There were no main effects for task order (p = .954) or Inattention 

group (p = .723), nor were there any significant interactions between the variables (ps > 

.196). 
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4.2 Aim 2: Resting State EEG Change and Task Performance 

4.2.1 Theta  

There was not a significant relation between the change in power from RS-EEG 1 

to RS-EEG 3 and performance on Task 3 (B = -.09, SE = .10, p = .357, ß = -.10).  

Overall ADHD Symptomology. Standardized average ADHD symptomology 

was included as a moderator. The main effect of EEG power change (B = -.10, SE = .11, 

p = .350, ß = -.11) and the main effect of ADHD symptomology (B = -.03, SE = .11, p = 

.760, ß = -.04) were not significant. The interaction between the variables was not 

significant (B = .07, SE = .15, p = .636, ß = -.06). 

Hyperactive/Impulsive Symptomology. Standardized hyperactive/impulsive 

symptomology was separately included as a moderator. The main effect of EEG power 

change (B = -.08, SE = .11, p = .430, ß = -.09) and the main effect of 

hyperactive/impulsive symptomology (B = -.05, SE = .11, p = .658, ß = -.05) were not 

significant. The interaction between the variables was not significant (B = .003, SE = .14, 

p = .981, ß = .003). 

Inattentive Symptomology. Standardized inattentive symptomology was 

separately included as a moderator. The main effect of EEG power change (B = -12, SE = 

.11, p = .267, ß = -.13) and the main effect of inattentive symptomology (B = -.02, SE = 

.11, p = .855, ß = -.02) were not significant. The interaction between the variables was 

not significant (B = -.13, SE = .14, p = .363, ß = -.11). 

4.2.2 Alpha  

There was not a significant relation between the change in power from RS-EEG 1 

to RS-EEG 3 and performance on Task 3 (B = -.09, SE = .10, p = .369, ß = -.10).  
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Overall ADHD Symptomology. Standardized average ADHD symptomology 

was included as a moderator. The main effect of EEG power change (B = -.12, SE = .11, 

p = .308, ß = -.13) and the main effect of ADHD symptomology (B = -.03, SE = .11, p = 

.798, ß = -.03) were not significant. The interaction between the variables was not 

significant (B = -.11, SE = .16, p = .499, ß = -.08). 

Hyperactive/Impulsive Symptomology. Standardized hyperactive/impulsive 

symptomology was separately included as a moderator. The main effect of EEG power 

change (B = -.09, SE = .11, p = .435, ß = -.09) and the main effect of 

hyperactive/impulsive symptomology (B = -.05, SE = .11, p = .670, ß = -.05) were not 

significant. The interaction between the variables was not significant (B = -.01, SE = .15, 

p = .924, ß = -.01). 

Inattentive Symptomology. Standardized inattentive symptomology was 

separately included as a moderator. The main effect of EEG power change (B = -.14, SE 

= .11, p = .213, ß = -.15) and the main effect of inattentive symptomology (B = -.01, SE = 

.11, p = .894, ß = -.02) were not significant. The interaction between the variables was 

not significant (B = -.17, SE = .15, p = .257, ß = -.14). 

4.3 Aim 3: Resting State EEG Change, Task Performance, and Driving   

Preliminary t-tests were run to determine if any of the variables were significantly 

different between driving groups (distraction, no distraction). The mean difference score 

between RS-EEG 1 and RS-EEG 4 was significantly greater in the distraction group than 

in the no distraction group for both theta power (t(59) = 2.59, p = .012) and alpha power 
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(t(59) = 2.52, p = .015).5 All other variables were not different between groups (ps > 

.264). 

4.3.1 Theta 

Overall ADHD Symptomology. The main effects of EEG power change, task 

performance, and standardized ADHD symptomology were not significant for 

acceleration (see Table 9), lane offset deviation (see Table 10), and velocity (see Table 

11). 

Hyperactive/Impulsive Symptomology. The main effects of EEG power change, 

task performance, and standardized hyperactive/impulsive symptomology were not 

significant for (see Table 9), lane offset deviation (see Table 10), and velocity (see Table 

11). 

Inattentive Symptomology. The main effects of EEG power change, task 

performance, and standardized inattentive symptomology were not significant for 

acceleration (see Table 9), lane offset deviation (see Table 10), and velocity (see Table 

11). 

4.3.2 Alpha  

Overall ADHD Symptomology. The main effects of EEG power change, task 

performance, and standardized ADHD symptomology were not significant for 

acceleration (see Table 12), lane offset deviation (see Table 13), and velocity (see Table 

14). 

 
5 Driving group was not included as a predictor in the following analyses. When it was included as a 

predictor in preliminary analyses, the patterns did not change. 
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Hyperactive/Impulsive Symptomology. The main effects of EEG power change, 

task performance, and standardized hyperactive/impulsive symptomology were not 

significant for acceleration (see Table 12), lane offset deviation (see Table 13), and 

velocity (see Table 14). 

Inattentive Symptomology. The main effects of EEG power change, task 

performance, and standardized inattentive symptomology were not significant for 

acceleration (see Table 12), lane offset deviation (see Table 13), and velocity (see Table 

14). 

5 Discussion 

Mental fatigue undermines the cognitive skills required to be successful and safe 

in our daily lives, yet we know very little about how mental fatigue progresses over time, 

especially among individuals with heightened attention difficulties. The primary 

objective for the current study was to examine changes in EEG power from multiple 

resting state recordings in young adults over the course of a lab visit consisting of various 

cognitively demanding tasks. The secondary objective was to determine whether 

individual differences in attention difficulties as assessed via self-reports of ADHD 

symptomology influence the progression of mental fatigue as assessed by resting state 

EEG.  

Since mental fatigue severely impacts cognitive functioning (Tran et al., 2020) 

and individuals with ADHD also demonstrate difficulties engaging cognitive abilities 

(Roberts et al., 2015), this study also examined whether EEG power derived from resting 

state recordings and ADHD symptomology predicted cognitive performance. Mental 

fatigue is also a major concern when individuals get behind the wheel of a car, especially 
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when drivers are young and brain regions needed for efficient driving are still developing 

and/or when individuals may already be predisposed to have difficulty with certain 

cognitive skills essential to driving (Anstey & Wood, 2011; Classen et al., 2013; 

Johannsdottir & Herdman, 2010; Ross et al., 2015; Thompson et al., 2007). Thus, the 

current study also examined whether resting state EEG power, ADHD symptomology, 

and performance on cognitive tasks predicted driving outcomes measured in a driving 

simulator. These analyses aimed to broaden and enhance mental fatigue research by 

examining how individual differences in the progression of mental fatigue and in 

attention vulnerabilities might interact to influence cognitive performance over time as 

well as patterns of driving behavior in young adults.  

The major finding in this study was that young adults’ resting state theta and 

alpha EEG power significantly decreased in a linear pattern over time across the four 

recordings. Interestingly, resting state EEG changes over time did not predict cognitive 

performance nor driving behavior. Although ADHD symptoms have previously been 

linked to general driving behavior, the current study did not find that driving patterns 

vary depending upon ADHD symptomology. Each of these findings will be discussed in 

detail below. 

5.1 Resting State EEG as a Measure of Mental Fatigue 

 Mental fatigue is typically examined during multiple hour sessions of cognitively 

demanding tasks (Arnau et al., 2017; Boksem, Meijman, & Lorist, 2005; Tanaka, et al., 

2012; Wang, et al., 2016; Wascher et al., 2014), although evidence suggests that much 

shorter durations are sufficient to induce mental fatigue (Cao et al., 2014; Smith et al., 

2019; Tanaka et al., 2014). For EEG measures of mental fatigue, prior research typically 
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focuses on how EEG measured during task performance changes over time, however the 

rest period between tasks has yet to be explored in depth as an important assessment of 

how cognitive resources may be modulated to impact outcomes over time. The current 

study was therefore designed to explore this novel approach to measuring mental fatigue 

via resting state EEG change over time and investigate whether this type of assessment 

would interact with individual differences in attention difficulties when predicting 

performance across different contexts. 

 Results of the current study indicate that both alpha and theta measures of resting 

state EEG decrease in a linear fashion over time. This pattern for resting state EEG is 

distinct from task-based EEG power and reflects how quickly can mental fatigue develop. 

Thus far, the only other studies that have examined a pre-task and post-task recording 

resting state EEG power as a measure of mental fatigue do not reflect the same patterns. 

Tanaka and colleagues (2012) demonstrated that alpha power decreased and theta power 

increased, whereas Li and colleagues (2020) showed that both alpha and theta power 

increased. The patterns for alpha resting state EEG in the current study are in line with 

those demonstrated by Tanaka and colleagues, but the patterns for theta differ. These 

differing patterns could be due to the fact that these studies used only one cognitively 

demanding task and tested individuals on that task for two hours. Additionally, the first 

recording of resting state EEG in the current study provided a valuable baseline measure 

of neural activity in individuals before they began the cognitively demanding tasks. In 

studies that only focus on task-based EEG, they lack this critical component of measuring 

initial neural readiness in individuals, especially in populations which may exhaust their 

cognitive resources faster and show mental fatigue sooner.  
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Interestingly, this pattern of resting state EEG power did not correspond with the 

pattern presented in previous research on task-based EEG power where both theta and 

alpha EEG power tend to increase over time (Tran et al., 2020). Although, in many prior 

studies, individuals were required to complete the same cognitive or driving task during 

an extended period of time. Moreover, there is evidence that task-based theta power 

decreased over time after approximately an hour of simulated driving (Getzmann et al., 

2018; Wascher et al., 2018). There is also evidence that resting state alpha power 

decreased as compared to resting state alpha recorded prior to a two-hour challenging 

cognitive task (Tanaka et al., 2012). 

These findings also highlight that testing sessions do not need to be multiple 

hours in duration to measure mental fatigue with resting state EEG. Prior work on task-

based EEG has demonstrated that 10 minutes to 30 minutes of a cognitively demanding 

task is enough to induce significant increases in alpha and theta EEG power (Tanaka et 

al., 2014; Trejo et al., 2015). In this study, individuals demonstrated significant decreases 

in resting state alpha and theta EEG power in a similarly brief time, from the first 

recording to the third recording. In between those recordings, individuals completed two 

different cognitively demanding tasks and the second resting state recording. This 

interval was a total duration of approximately 25 minutes, including approximately 20 

minutes engaged with the cognitively demanding tasks. Thus, significant changes in 

resting state EEG power can be detected after much shorter durations than those 

traditionally used in mental fatigue research. These methodological differences could 

allow researchers to examine mental fatigue in a broader population (e.g., atypical 

samples, children) for which long testing sessions would not be ideal. Additionally, being 
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able to examine changes in resting state EEG earlier than in task-based EEG would help 

to shed light on mental fatigue across more diverse contexts during a brief amount of 

time (i.e., short drives while fatigued). 

Resting state EEG also provides an interesting contrast to task-based EEG 

recordings because there are few demands during the resting state recording. As such, 

engagement with the cognitively demanding tasks influences EEG power very differently 

than the disengagement that occurs during resting state recordings. Thus, these 

measurements may provide a glimpse of how an individual’s base levels of cognitive 

resources fluctuate over the course of the experimental session. For the current study, 

individuals were instructed to stare at a fixation cue or sit with their eyes closed while 

resting state EEG was being recorded. This “task” is dramatically different than the 

flanker, go/no-go, or other cognitive tasks commonly used in mental fatigue research. 

There is minimal cognitive stress and participants are not required or encouraged to make 

motor or verbal responses during these resting state intervals. With fewer demands during 

this measurement of mental fatigue, researchers can use resting state EEG in mental 

fatigue research with a variety of typical and atypical populations.  

The pattern of decreasing resting state EEG power over time in the current study 

also corresponds to a small body of mental fatigue research that has shown theta and 

alpha EEG power may decrease over time (Getzmann et al., 2018; Tanaka et al., 2012; 

Wascher et al., 2018). According to these studies and others, increased alpha EEG power 

is typically observed during relaxation and repetitive and dull tasks, indicating boredom 

and attentional withdrawal. In contrast, decreased or suppressed alpha EEG power is 

observed in situations of cognitive engagement and following demanding tasks which 
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drain cognitive resources, causing mental fatigue (Borghini, et al., 2014; Wascher et al., 

2014). Additionally, increased theta power has been observed during and after tasks with 

greater task difficulty (Tran et al., 2020).  

The tasks in this study required constant alertness and flexibility to complete and 

meet the changing demands of each task. The resting state EEG data suggest this 

challenge compelled individuals to employ increasing amounts of cognitive resources 

over the course of the experimental session, resulting in heightened levels of mental 

fatigue during non-challenging periods of resting state EEG. Thus, these results uniquely 

demonstrate that mental fatigue of resting state cognitive resources can be induced by the 

sustained attentional engagement  required by cognitively demanding tasks. Additional 

studies will be needed to determine how resting state EEG may interact with or drive 

emergence of task-based measures of mental fatigue. 

5.2 ADHD Symptomology 

There are very few studies that have examined the impact of individual 

differences in the emergence of mental fatigue, and the studies that have been run explore 

the influence of personality traits, such as neuroticism and conscientiousness, on mental 

fatigue development (Ackerman & Kanfer, 2009). The current study was designed to 

expand the field’s knowledge of the influence of individual differences on mental fatigue 

by focusing on individual differences in attention skills. Specifically, this study examined 

whether high or low levels of ADHD symptoms could shed light on how mental fatigue 

may develop differently in the population as a whole. It was expected that individuals 

with attention and hyperactivity difficulties would be more susceptible to the pressures of 
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the cognitively demanding tasks and mental fatigue would develop sooner (Fassbender & 

Schweitzer, 2006).  

Interestingly, there were no main or interactive effects with attention 

symptomology. There could be several reasons for this unanticipated lack of findings. 

First, the overall ratings on inattention, hyperactivity, and hyperactivity  in this sample 

were relatively low. In order to create the two groups used for analyses, the sample was 

divided at the mean to form a low symptomology group and a high symptomology group. 

Thus, many individuals who did not often experience many issues with inattention, 

hyperactivity, or impulsivity were included in the group with “higher” levels of 

symptomology. Follow-up exploratory analyses splitting into high, medium, and low 

symptomology groups still indicated similar patterns, suggesting that ADHD 

symptomology may not be a distinguishing factor in the progression of resting state 

measures of mental fatigue in this sample of high functioning college students.  

Second, the variation of tasks used in this study may have provided interesting 

challenges that strongly engaged the attentional focus of the individuals with elevated 

levels of symptomology. More repetitive tasks that were not as engaging may have been 

more conducive to eliciting more rapid or intense changes in resting state EEG reflecting 

mental fatigue and task disengagement. Third, although, task-based mental fatigue 

research suggests that individuals with ADHD can experience mental fatigue more 

rapidly than their typically developing peers (Bioulac et al., 2012; Maruta et al., 2014), 

resting state EEG may reflect preparatory states such that variation among individuals 

with ADHD would be less likely to arise until they are cognitively challenged as in the 

task-based EEG. Additional studies should explore the change between resting state EEG 
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and task-based EEG (Karamacoska, Barry, Steiner, Coleman & Wilson, 2018) as a 

potentially important distinguisher of ability to modulate cognitive resources across a 

task (and thus resist mental fatigue) among individuals high and low in ADHD 

symptomology. 

5.3 Cognitive Performance  

 Another goal of the current study was to assess whether mental fatigue as 

measured by resting state EEG could predict performance on cognitive tasks. Mental 

fatigue research typically uses worsening task performance as an indicator of mental 

fatigue (Tran et al., 2020), thus this current study reflected a similar process by 

examining performance on the third task of three different tasks completed by 

participants. Due to counterbalancing, the third task was not the same for all participants, 

so performance variables from participants’ third task were standardized, removing some 

of the existing variability in the data. As participants showed significant changes in 

resting state EEG from the first recording to the third recording, this third task was poised 

to provide useful information about how cognitive performance is impacted following the 

onset of mental fatigue.  

However, the current study did not find any connections between the development 

of mental fatigue as measured by resting state EEG and subsequent task performance. As 

associations have been observed between EEG collected during a task and task 

performance, it is possible that EEG recorded during rest in this study does not directly 

map onto task performance. There is some evidence in the literature that mental fatigue 

can be observed using other objective and subjective measures while not impacting task 

performance (Cao et al., 2014; Smith et al., 2019). With different orders and tasks 
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throughout the experimental session, performance comparisons across tasks over time 

were not used to assess the development of mental fatigue due to very small sample sizes. 

To include the important element of resting state EEG in the task performance tracking 

aspect of prior mental fatigue research, future studies should combine the use of resting 

state EEG and repeated measures of the same cognitive task over the duration of 

experimental sessions. 

ADHD symptomology as a continuous measure was also examined in conjunction 

with resting state EEG power to predict task performance on the third cognitive task. 

Including ADHD symptomology as a predictor and in interaction with resting state EEG 

power did not reveal an association between these variables and task performance. The 

absence of findings for these analyses was interesting, given that individuals with ADHD 

commonly have problems engaging cognitive skills effectively (Roberts et al., 2015). 

However, there is currently no other research that expressly discusses and measures the 

development of mental fatigue using EEG among individuals with ADHD. Additionally, 

there is very little evidence that individuals with ADHD perform worse than their 

typically developing peers on tasks during sessions meant to induce mental fatigue 

(Bioulac et al., 2012; Maruta et al., 2014). As mentioned previously, there was also not a 

broad distribution in reported inattention, hyperactivity, and impulsivity symptoms, thus 

limiting the ability to draw clear conclusions about the connections between mental 

fatigue, individual differences, and cognitive performance in this study. With so few prior 

publications surrounding this topic, future research must continue to investigate whether 

resting state EEG can be used to predict cognitive performance, especially among 

individuals with ADHD. 
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5.4 Driving Behavior 

 The third objective for this research was to investigate whether young adults’ 

driving behavior could be predicted by mental fatigue (as measured by changes in resting 

state EEG power over time), ADHD symptomology, and overall cognitive task 

performance. Although mental fatigue has long been noted as a leading cause for risky 

driving and traffic accidents (Fletcher et al., 2005; Horne & Reyner, 1999; Phillip, 2005), 

the current study also examined the additive effects of ADHD symptomology and 

cognitive performance specifically in young adults. Measures of working memory, 

attention, and inhibitory control have also been shown to predict driving behaviors 

(Baldock et al., 2007; Daigneault, Joly, & Frigon, 2002; Ross et al., 2015; Tabibi et al., 

2015). For these analyses, overall cognitive performance was a composite of individuals’ 

performance on all three cognitive tasks. Since drivers with ADHD and drivers with 

weaker cognitive skills are more likely to demonstrate risky driving behavior (Anstey & 

Wood, 2011; Classen et al., 2013; Johannsdottir & Herdman, 2010; Ross et al., 2015; 

Thompson et al., 2007), it was expected that these variables would play a role in 

predicting driving behavior.  

Prior work suggests that driving can be linked with mental fatigue related changes 

in alpha and theta EEG power (Borghini et al., 2014; Getzmann et al., 2018; Wascher et 

al., 2018; Zhao et al., 2012), and drivers dealing with mental fatigue demonstrate more 

speeding and lane weaving (Morales et al., 2017; Perrier et al., 2016). However, resting 

state EEG power, ADHD symptomology, and overall cognitive performance did not 

predict young adults’ driving behavior in this study. Exploratory analyses did show some 

connections between ADHD symptomology, task performance, and driving measures 
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which align with prior research (Jongen et al., 2011; Ross et al., 2015). These analyses 

revealed that individuals with high levels of ADHD symptomology and weaker working 

memory skills, as measured in the backward digit span task, demonstrated more lane 

weaving, as measured by lane offset deviation in the driving simulations. 

The absence of significant results in the prediction of driving measures from 

resting state EEG may be due to a low sample size, but it may suggest that this measure 

of mental fatigue in the EEG lab did not closely relate to the measures of driving in the 

very different atmosphere of the driving lab. Future studies on the associations between 

resting state EEG and driving behavior should combine the two visits, with individuals 

driving while wearing an EEG cap. These methods would allow for the investigation of 

how these patterns of mental fatigue develop among different populations, such as brand-

new drivers. It would be critical to examine mental fatigue in drivers who are learning 

and devoting significant cognitive resources to the process of driving. Mental fatigue may 

emerge sooner under these cognitively demanding conditions and thus play a bigger role 

in determining the safety of these younger drivers. 

5.5 Limitations 

 There were a few limitations to the current study. Although numerous recruitment 

efforts were made to oversample for individuals with ADHD, these efforts were not 

successful in ensuring a large sample size with clinically significant levels of ADHD 

symptomology. Many individuals scored very low on the measures of ADHD 

symptomology, reporting very few symptoms of inattention, hyperactivity, and 

impulsivity. As such, the measure of ADHD symptomology was heavily skewed and was 

standardized to provide clarity in the analyses. These findings also are limited in 
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generalizability as our sample was predominantly white college students. Additionally, 

due to the onset of the COVID-19 pandemic, more data could not be collected, and many 

participants were unable to complete the driving simulator lab visit. This anomaly 

enforced a strict limit on the sample size available for any analyses using the driving 

variables. 

Furthermore, there was an unanticipated drawback to the design of this study. 

During the EEG lab visit, the three different cognitive tasks were all cognitively 

demanding. However, the digit span tasks were inherently different from the go/no-go 

and flanker tasks due to the auditory presentation and the necessity of a verbal response 

during the tasks. Comparatively, the go/no-go and flanker tasks both were presented 

visually and required motor responses. The switches in presentation and response 

modality may have had unforeseen effects on task performance, especially across the 

different task orders. The three different tasks were counterbalanced among participants, 

however, interpreting any interactions involving ADHD groups and task order was 

problematic with the very limited group sizes.  

5.6 Future Directions 

 The robust patterns in decreasing alpha and theta resting state EEG power over 

the course of the experimental session in this study provide support for using this 

measure as a marker of mental fatigue in future studies. For next steps, resting state EEG 

should be measured at various intervals while participants complete the same cognitively 

demanding task during the alternating intervals. This approach would address the 

potential issues surrounding task order effects on performance such as response modality 

and task presentation. Additionally, when using the same task, it would be possible to 
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assess and compare changes in various variables related to task performance over time 

such as reaction time, accuracy, and error monitoring. Increasing the total duration of the 

cognitively demanding task to 60 or 90 minutes may also reveal changes in task 

performance (Barwick et al., 2012; Wang et al., 2016; Wascher et al., 2014) that could be 

linked with changes in resting state EEG. 

 To further explore whether resting state EEG reflects mental fatigue, individuals 

could be divided into separate groups. The main group could complete a classic task used 

to induce mental fatigue as in this study, and comparison groups could do a simple, 

relaxing activity or even nothing at all. Including one or more comparison group would 

allow researchers to extrapolate whether these decreases in resting state EEG power are 

in fact related to mental fatigue, rather than passage of time, sustained attention, 

motivation, or another variable (Hopstaken et al., 2016). 

 Moreover, future research on resting state EEG should examine how mental 

fatigue develops across different EEG bands and across levels of those bands. For 

instance, there is some work suggesting that the beta frequency is altered among children 

with ADHD (Barry, Clarke, Johnstone, McCarthy, & Selikowitz, 2009), and other 

literature has drawn a distinction between lower alpha from 8 to 10 Hz (linked to 

alertness) and upper alpha from 10 to 13 Hz (linked to target processing), which may 

correspond more closely to beta (Klimesch, Doppelmayr, Russegger, Pachinger, & 

Schwaiger, 1998; Li et al., 2020). Thus, future work should examine whether either upper 

alpha and/or beta frequency bands have differential patterns associated with task 

performance in individuals with varying levels of ADHD symptomology. In addition, 

future research should examine changes in resting state EEG power by creating a 
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theta/beta ratio to determine if the patterns of resting state EEG in adults with high 

ADHD symptomology are similar to or distinct from the patterns in children (Lubar, 

1991). 

To further develop a comprehensive picture of how mental fatigue emerges over 

time, it would be important for future studies of resting state EEG to include additional 

measures such as participants’ subjective ratings of fatigue. Collecting these ratings at 

multiple points during the session could provide interesting insights into people’s 

perceptions of their own mental fatigue and perhaps illuminate whether they can 

accurately pinpoint when their performance is going to start to be impaired. Such insight 

would be critical for those who find themselves in potentially dangerous situations when 

driving, and this knowledge could prevent potential risks for that driver and others on the 

road with them. 

 Related objective measures that could be combined with resting state measures of 

mental fatigue are pupillometry and eye-tracking (Hopstaken et al., 2016). These 

measurements would also be valuable additional measures for future mental fatigue 

research examining resting state EEG, especially during driving behavior. Pupillometry 

could help point to both arousal and mental engagement. Additionally, it would be 

important to examine how effectively individuals track visual stimuli in their 

environment when they begin to get mentally fatigued, as measured objectively via EEG, 

as this type of assessment may link to the anticipation and detection of hazards while 

driving. In addition, many cars now are equipped with technology that alerts drivers 

when their eyes are diverted from the road or even appear to be closed. This type of eye-

tacking technology and alert system could be life-changing for many people who struggle 
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to recognize that they are mentally fatigued while they are behind the wheel. Future 

research on mental fatigue that investigates both resting state EEG and eye-tracking 

measures could help inform the development of these alert systems and potentially 

improve the technology by detecting signs of mental fatigue sooner. 

Furthermore, as with some prior mental fatigue and driving studies, it would also 

be useful to examine these changes in resting state EEG while a person is driving. These 

recordings could be implemented in a manner similar to that of the current study, such 

that individuals would drive in a driving simulator for 10-15 minutes intervals with 

resting state EEG recordings occurring in between and throughout the course of the 

session. Additional studies should also examine how extending the duration of the 

driving task intervals would influence the induction of mental fatigue and how these 

changes in resting state EEG progress throughout the drive. Variability in this measure of 

mental fatigue should also be further explored by examining it in drivers with ADHD.  

Finally, future studies should also continue to test different age groups. This study 

was the first of its kind to focus on mental fatigue and individual differences in attention 

and hyperactivity difficulties, particularly in young adults. In 2015, 23% of the total 

deaths among 15- to 24-year-olds were due to motor vehicle accidents and this age group 

also had the highest number of fatal motor vehicle accidents (Murphy et al., 2017). This 

high rate among young drivers is likely to be strongly linked with their amount of 

experience behind the wheel, thus subsequent research must consider how years of 

driving experience could moderate possible associations. Future work should also aim to 

extend the age range of this research into younger and older populations. With pioneering 

developments in this kind of research, newly licensed drivers as well as experienced older 
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adult drivers can be taught specific signs of mental fatigue and encouraged to take breaks 

or develop habits to stay alert while driving.  

5.7 Conclusions 

 The current study investigated the use of resting state EEG as compared to task-

based EEG for the measurement of mental fatigue as well as its utility in predicting task 

performance and driving behavior. The study’s findings provide preliminary evidence 

that changes in power derived from resting state EEG recordings may reflect a variant of 

mental fatigue in young adults. However, it is unclear how this measure of mental fatigue 

might correspond to changes in cognitive performance on challenging tasks. These 

findings may indicate that the cognitively demanding tasks induced mental fatigue, yet 

the duration of the experimental session was not long enough to generate variation in task 

performance in a high-performing sample. This study adds to the growing body of 

literature which suggests that experimental sessions aimed at inducing mental fatigue can 

be shorter in duration (e.g., 30-40 minutes), rather than lasting for hours as in prior work. 

These findings also call for examination of these measures in other age groups, as this 

phenomenon is likely not unique to young adults. Furthermore, individual differences and 

other measures must be examined closely to determine whether the development of 

mental fatigue looks different across the wider population. 

Interestingly, the study did not show evidence that this measure of mental fatigue 

was able to predict performance in the driving simulator, suggesting that the associations 

described in prior literature may be dependent on measuring EEG and driving in the same 

context. The driving variables were of particular interest in this study because driving 

research that focuses on mental fatigue has not examined young adults. Future research 
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should continue to investigate whether there are associations between resting state EEG 

as a measure of mental fatigue and behavioral measures. It would also be useful to 

identify whether task-based EEG and resting state EEG measures differ in their 

predictions of other outcomes, such as the amount of time an individual can maintain 

high performance before demonstrating fatigue or the amount of recovery time required 

for an individual to attain prior levels of performance after fatigue. 

Previous mental fatigue research almost exclusively focuses on task-based EEG 

measures. The current study indicates that resting state EEG may also serve as a valuable 

measure of mental fatigue. Additional work should delve into which aspects of mental 

fatigue resting state EEG most closely relates to, in terms of performance outcomes and 

variability by age and/or individual differences (e.g., ADHD symptomology). Future 

work can build off this study to help identify how individual differences in attention and 

hyperactivity may impact mental fatigue development, with the ultimate goal of 

improving and designing driving technologies that can assist and alleviate mental fatigue 

vulnerabilities. 
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Figure 1. Study participation and attrition information 

 

  



69 

 

 
Figure 2.Resting state EEG recording sequence 
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Figure 3. Procedure at EEG lab visit 

Note. Resting state EEG recording = RS-EEG.  
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Table 1. 

Task sequences during the EEG lab visit for different order groups 

 

 Task 1 Task 2 Task 3 

Order 1 Digit Span Flanker Go/No-Go 

Order 2 Go/No-Go Digit Span Flanker 

Order 3 Flanker Go/No-Go Digit Span 
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Figure 4. Digit span task sequence 
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Figure 5. Flanker task sequence 
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Figure 6. Go/No-Go task sequence  
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Table 2. 

Demographic information for the full sample and the samples included and excluded  

 

 Full sample Included Excluded 

N 97 88 9 

Sex (M/F) 40/57 38/50 2/7 

Mean Age 19.84 19.81  20.11  

Mean Age SD   1.75   1.75   1.83 

White    70.10%    71.60%    55.60% 

Asian    20.60%    20.50%    22.20% 

Black     3.10%      2.30%    11.10% 

Latino/Hispanic     3.10%      2.30%    11.10% 

Multiracial     3.00%      3.30% 0% 
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Table 3. 

Demographic information for the different ADHD groups 

 

 Overall ADHD Hyperactivity/impulsivity Inattention 

 Low High Low High Low High 

N 55 33 52 36 48 40 

Sex (M/F) 20/35 18/15 19/33 19/17 15/33 23/17 

Mean Age 19.67 20.03 19.62 20.08 19.67 19.97 

Mean Age SD   1.89   1.51   1.87   1.56   1.88   1.59 

White     70.90%     72.70%     69.20%     75.00%     72.90%     70.00% 

Asian     20.00%     21.20%     19.20%     22.20%     20.80%     20.00% 

Black       1.80%       3.00%       3.80% 0% 0%      5.00% 

Latino/Hispanic       3.60% 0%       3.80% 0%       4.20% 0% 

Multiracial       3.60%       3.00%       3.80%       2.80%       2.10%      5.00% 
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Table 4. 

Descriptive statistics of the study outcome variables 

 

 Minimum Maximum Mean Standard deviation 

Backward Digit Span 4 9   5.68 1.17 

Flanker 29.20% 98.80%    

87.79% 

 11.48% 

Go/No-Go 41.70% 99.20%    

83.24% 

 11.02% 

Mean Acceleration (m/s2) -.17  .19     .01   .07 

Lane Offset Deviation   .21 1.71     .42   .23 

Mean Velocity (m/s) 9.27    24.49 13.83  2.75 

Notes: Backward Digit Span- longest length sequence correct; Flanker- accuracy on 

incongruent trials; Go/No-Go- accuracy on no-go trials 
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Table 5. 

Descriptive statistics of the study outcome variables across overall ADHD symptomology group 

 

 Low High 

 Mean SD Mean SD 

Backward Digit Span 5.67  1.10  5.70 1.29 

Flanker  88.28%   10.82%   86.95%  12.68% 

Go/No-Go  83.76%   10.71%   82.39%  11.63% 

Acceleration (m/s2)   .01   .07   -.01   .07 

Lane Offset Deviation   .44   .29     .38   .06 

Velocity (m/s)              13.38 2.28 14.64 3.36 

Notes: Backward Digit Span- longest length sequence correct; Flanker- accuracy on incongruent trials; Go/No-Go- accuracy 

on no-go trials 
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Table 6.  

Descriptive statistics of the study outcome variables across hyperactivity/impulsivity symptomology group 

 

 Low High 

 Mean SD Mean SD 

Backward Digit Span   5.69 1.12   5.67 1.24 

Flanker    88.60%     8.30%    86.58%  15.09% 

Go/No-Go    84.29%    9.86%    81.68%  12.54% 

Acceleration (m/s2)     .01    .06     .00   .08 

Lane Offset Deviation     .45    .30     .38   .06 

Velocity (m/s) 13.37 2.31 14.48 3.21 

Notes: Backward Digit Span- longest length sequence correct; Flanker- accuracy on incongruent trials; Go/No-Go- accuracy 

on no-go trials 
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Table 7. 

Descriptive statistics of the study outcome variables across inattention symptomology group 

 

 Low High 

 Mean SD Mean SD 

Backward Digit Span 5.60 1.11 5.77 1.25 

Flanker   87.96%  11.47%  87.59%  11.65% 

Go/No-Go   83.54%  11.00%  82.90%  11.18% 

Acceleration (m/s2)    .02   .07  -.01   .07 

Lane Offset Deviation    .45   .30    .38   .06 

Velocity (m/s) 13.67 2.88 14.03 2.60 

Notes: Backward Digit Span- longest length sequence correct; Flanker- accuracy on incongruent trials; Go/No-Go- accuracy 

on no-go trials 
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Table 8.  

Bivariate correlations for the main study variables  

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 

1. RS 1 T 1              

2. RS 2 T -.11 1             

3. RS 3 T -.03      

.31** 

1            

4. RS 4 T -.15      

.49** 

     

.34** 

1           

5. RS 1 A      

.99** 
-.09 

-.04 -.15 1          

6. RS 2 A -.11      

.99** 

     

.29** 

     

.42** 

-

.09 

1         

7. RS 3 A -.01      

.33** 

     

.98** 

     

.32** 

-

.01 

     

.31** 

1        

8. RS 4 A -.16      

.50** 

     

.38** 

     

.98** 

-

.16 

     

.45** 

  

.37** 

1       

9. BDS  .09 -.18  .03 -.13  .09 -.19   .03 -.15 1      

10. 

Flanker 

 .08 -.11  .06 -.02  .08 -.10   .04 -.02   

.26* 

1     

11. GNG  .06  .01  .12  .06  .06  .01   .12  .05 .10  

.53** 

1    

12. Accel  .03 -.19   -.30*     -

.34** 

 .01 -.16  -

.38** 

-

.36** 

.09 -.14 -

.08 

1   

13. LO  -.03  .21  .01  .05 -

.02 

 .23   .03  .08 -.16 -.02  .10 -

.03 

1  

14. Vel -.14 -.13 -.02  .03 -

.15 

-.14  -.05  .02 -.08   .04 -

.05 

-

.09 

-

.04 

1 

Notes: RS - Resting state EEG recording; T – Theta EEG power; A – Alpha EEG power; BDS- longest length sequence correct 

in Backward Digit Span; Flanker- accuracy on incongruent trials in Flanker; GNG- accuracy on no-go trials in Go/No-Go; 

Accel- mean acceleration; LO – Lane Offset; Vel = Velocity; * p < .05, ** p < .01  
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Table 9. 

Regression analyses for the main effects of resting state theta power change, Task 3 performance, and ADHD symptoms on 

mean acceleration 

 

 

  

 Overall ADHD Hyperactivity/Impulsivity Inattention 

 B SE β p B SE β p B SE β p 

RS4 – RS1  .00 .00 -.08 .562   .00 .00 -.08 .555  .00 .00 -.08 .538 

Task 3 Performance (z) -.01 .01 -.10 .431 -.01 .01 -.11 .397 -.01 .01 -.10 .458 

Symptoms (z) -.01 .01 -.12 .369 -.01 .01 -.09 .491 -.01 .01 -.13 .327 
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Table 10. 

Regression analyses for the main effects of resting state theta power change, Task 3 performance, and ADHD symptoms on 

lane offset 

 

 

  

 Overall ADHD Hyperactivity/Impulsivity Inattention 

 B SE β p B SE β p B SE β p 

RS4 – RS1  .00 .00  .07 .619  .00 .00  .06 .648  .00 .00  .06 .637 

Task 3 Performance (z) -.01 .03 -.02 .874 -.01 .03 -.03 .811 -.03 .03 -.01 .930 

Symptoms (z) -.04 .03 -.16 .240 -.03 .03 -.11 .415 -.04 .03 -.19 .167 
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Table 11. 

Regression analyses for the main effects of resting state theta power change, Task 3 performance, and ADHD symptoms on 

mean velocity 

 

 

  

 Overall ADHD Hyperactivity/Impulsivity Inattention 

 B SE β p B SE β p B SE β p 

RS4 – RS1  .00 .00  .10 .455  .00 .00  .08 .524  .00 .00  .11 .390 

Task 3 Performance (z) -.20 .36 -.07 .581 -.19 .36 -.07 .605 -.19 .367 -.07 .607 

Symptoms (z)  .44 .37  .15 .248  .61 .38  .21 .115  .23 .36  .09 .527 
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Table 12. 

Regression analyses for the main effects of resting state alpha power change, Task 3 performance, and ADHD symptoms on 

mean acceleration 

 

 

  

 Overall ADHD Hyperactivity/Impulsivity Inattention 

 B SE β p B SE β p B SE β p 

RS4 – RS1  .00 .00 -.07 .614  .00 .00 -.07 .608  .00 .00 -.07 .586 

Task 3 Performance (z) -.01 .01 -.10 .432 -.01 .01 -.11 .398 -.01 .01 -.10 .459 

Symptoms (z) -.01 .01 -.12 .365 -.01 .01 -.09 .487 -.01 .01 -.13 .324 
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Table 13. 

Regression analyses for the main effects of resting state alpha power change, Task 3 performance, and ADHD symptoms on 

lane offset 

 

 

  

 Overall ADHD Hyperactivity/Impulsivity Inattention 

 B SE β p B SE β p B SE β p 

RS4 – RS1  .00 .00  .07 .586  .00 .00  .07 .615  .00 .00  .07 .607 

Task 3 Performance (z) -.01 .03 -.02 .880 -.01 .03 -.03 .816  .00 .03 -.01 .935 

Symptoms (z) -.04 .03 -16 .236 -.03 .03 -.11 .408 -.04 .03 -.19 .165 
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Table 14. 

Regression analyses for the main effects of resting state alpha power change, Task 3 performance, and ADHD symptoms on 

mean velocity 

 

 

 

 

 

 

 

 Overall ADHD Hyperactivity/Impulsivity Inattention 

 B SE β p B SE β p B SE β p 

RS4 – RS1  .00 .00  .10 .444  .00 .00  .09 .518  .00 .00  .12 .377 

Task 3 Performance (z) -.20 .36 -.07 .586 -.18 .36 -.07 .609 -.19 .37 -.07 .613 

Symptoms (z)  .43 .37  .15 .252  .61 .38  .21 .118  .23 .36  .08 .531 



88 

 

 
 

Figure 7. Changes in theta EEG power over time 
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Figure 8. Changes in theta EEG power over time by task order in the high 

hyperactivity/impulsivity group 
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Figure 9. Changes in theta EEG power over time by hyperactivity/impulsivity group for 

individuals who completed Task Order 3 
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Figure 10. Changes in alpha EEG power over time 
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Figure 11. Changes in alpha EEG power over time by task order in the high 

hyperactivity/impulsivity group  
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Figure 12. Changes in alpha EEG power over time by hyperactivity/impulsivity group for 

individuals who completed Task Order 3 
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APPENDIX A 

CURRENT SYMPTOMS SELF-REPORT FORM  

(BARKLEY & MURPHY, 1998) 

 

Instructions: Please circle the number next to each item that best describes your 

behavior during the past 6 months. 

 Never/   Very 

Items: rarely Sometimes Often often 

1. Fail to give close attention to details or make 

careless mistakes in my work 
0 1 2 3 

2. Fidget with hands or feet or squirm in seat 0 1 2 3 

3. Have difficulty sustaining my attention in tasks 

or fun activities 
0 1 2 3 

4. Leave my seat in situations in which seating is 

expected 
0 1 2 3 

5. Don’t listen when spoken to directly 0 1 2 3 

6. Feel restless 0 1 2 3 

7. Don’t follow through on instructions and fail 

to finish work 
0 1 2 3 

8. Have difficulty engaging in leisure activities or 

doing fun things quietly 
0 1 2 3 

9. Have difficulty organizing tasks and activities 0 1 2 3 

10. Feel “on the go” or “driven by a motor” 0 1 2 3 

11. Avoid, dislike, or am reluctant to engage in 

work that requires sustained mental effort 
0 1 2 3 

12. Talk excessively 0 1 2 3 

13. Lose things necessary for tasks and activities 0 1 2 3 

14. Blurt out answers before questions have been 

completed 
0 1 2 3 

15. Am easily distracted 0 1 2 3 
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16. Have difficulty awaiting turn 0 1 2 3 

17. Am forgetful in daily activities 0 1 2 3 

18. Interrupt or intrude on others 0 1 2 3 
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