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ABSTRACT

This thesis outlines the procedure and theory used to calibrate the UMass eX-

perimental X-band Radar (UMAXX) for the purpose of monitoring meteorological events 

in the Pioneer Valley region. Due to the complex topography of the area, lower tilt angles 

are subject to partial or full beam blockage as well as ground clutter observed through the 

main beam or sidelobes. Additionally, there are biases internal and external to the system 

that impact the reflectivity and differential reflectivity measurements. These biases and 

corrections are addressed in this work. As the radar has been operational since September 

of 2018, there is ample data available to diag-nose and to perform the necessary 

corrections to the system. A variety of methods are employed to validate these corrections 

including comparing intersecting scan volumes between the UMAXX and nearby 

WSR-88Ds of the NEXRAD network as well as the use of membership functions.
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Ultimately, the goal is to establish UMAXX as a reliable and well understood 

benchmark with which to calibrate Raytheon’s dual-polarized phased array radar. The two 

radars operate in sufficiently close frequencies within X-band and collected data 

simultaneously while colocated. While phased arrays show great promise and potential in 

meteorologic observations, they come with many challenges that neces-sitate the use of a 

trustworthy baseline with which to validate its measurements. Additionally, UMAXX’s 

data is to be streamed to serve as a source to fill any gaps present in the National Weather 

Service’s network in the region.

iv

1. Ground clutter is principally identified through differential phase and secondarily 

through velocity and co-polar correlation

   2.    Partial beam blockage is best estimated assuming a 1.67◦, 2-way beamwidth    

          with an 8dB cutoff

   3.   System differential phase and Differential Reflectivity bias are functions of az-imuth

         due to the radome panels.   

   4.   A linear relation between wet radome attenuation and rain rate is found

   5.  Using an attenuation factor of a = .28 to determine path integrated attenuation  

         improves correlation of reflectivity measurements between UMAXX and NEXRAD      

         network.

Key results of this work are:
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CHAPTER 1

INTRODUCTION

The purpose of this undertaking is to prepare and calibrate the UMAXX radar to

be used as a reliable and well understood radar to monitor the Pioneer Valley region’s

meteorological events. The more precisely the UMAXX products are understood, the

greater confidence we can place in the studying of meteorological phenomena in the

area. Additionally, the mechanically scanned, parabolic dish radar will be used as a

baseline with which to validate the design and calibration of Raytheons 2D phased

array radar, Skyler, currently on loan to MIRSL. Thus, any uncertainty remaining in

UMAXXs calibration will contaminate and perhaps compound in Skyler’s measure-

ments.
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(a) UMAXX tower from the ground (b) A view inside UMAXX radome

Figure 1.1: UMAXX tower on Orchard Hill

At present, UMAXX (shown in Figure 1.1) is installed in a tower on Orchard Hill

in the East-Northeast section of campus and has been in operation collecting weather

data since September 19, 2018. The center operating frequency is 9.41 GHz and is

transmitted via a 1.2m parabolic dish yielding a 1.85 degree 3-dB beam width in both

principle planes. Listed in Table 1.1 are some additional operating characteristics for

UMAXX.

2



Table 1.1: UMAXX Parameters

Center Frequency 9.41 GHz
Peak Power 12.5 kW

Peak Channel Power 6.25 kW
Bandwidth 5 MHz

Polarization Dual
Beamwidth 1.85 Degrees

Scan Range (azimuth) 360 degrees
Scan Range (elevation) -5 to 90 degrees

Waveform Pulse
Sequences Single, Dual PRT

In 2018, the UMAXX radar (Formerly MA-1) underwent hardware upgrades to

support cross polarization measurements [12]. As shown in Figure 1.2, an electro-

mechanical switch was added inline to the vertical transmit channel. This essen-

tially adds in a secondary mode which transmits solely the horizontally polarized

channel and receives on both channels; the default mode being Simultaneous Trans-

mit/Simultaneous Receive (STSR). When the UMAXX is in this secondary mode,

the vertical portion of the transmit signal is not radiated. Thus, any signal received

on the vertical channel should be from cross-polarization leakage present internal or

external to the system.

(a) MA-1 Transmit Configuration (b) UMAXX Upgraded

Figure 1.2: MA-1 and UMAXX block diagrams (Image from Sanchez, et al [12])

3



Chapter 2 introduces a review of various radar products as well as the radar range

equation. Having an understanding in this chapter is necessary before reading through

the fundamentals of what our calibration goals are and how they will be achieved.

Chapter 3 discusses the issues concerning the complex terrain of the Pioneer Valley.

Specifically in the form of clutter present in the data and partial-to-full blockage of

the radar’s main beam. Non-meteorological reflectors that are observed by the radar

are referred to as ”clutter”. In this chapter, the process of using machine learning

to develop a decision tree classifier to identify clutter is explained. Using a 10-fold

cross validation, it is shown that it is feasible to construct a classifier with a high

rate of detection with an acceptably low rate of false positives (Figure 3.5). Then, to

correct for beam blockage, a Digital Elevation Model (DEM) of the region is used in

conjunction with a geometric model of the main beam’s shape to detect and quantify

areas that will partially or fully block the radar’s main beam. These results are then

compared with observed UMAXX data to derive the effective beamwidth and tune

the beam blockage corrections.

Chapter 4 discusses the calibration of Reflectivity Factor and Differential Reflec-

tivity. Reflectivity, particularly at X-band is influenced by the attenuation of heavy

precipitation. Many have analyzed the relation between Z and φDP , and have empir-

ically derived linear equations to describe the attenuation to Z using changes in φDP

over range ([6], [9], and [10]). A path towards implementing this method is shown

here. Then, for the purpose of validating these corrections, a comparison is made

against the nearby KENX radar on the NEXRAD network (Figure 4.3). Another

source of attenuation is rainfall over the radome which causes a sheet of water to

form. This acts as an additional lossy layer the radar signal must propagate through.

It has been demonstrated that the presence of water on the radome as well as distant

storms will increase the microwave emission incident on the radar (Thompson [11]).

Using φDP to calculate the loss of the storm effects of the wet radome, storm, radar,

4



and atmospheric background are broken out into stages of a cascade to analyze the

varying contributions to the radar signal’s attenuation. This process yielded a linear

relation between rain rate and wet radome attenuation. The results give promise

to using the outlined method in conjunction with a stable calibration procedure to

mitigate wet radome attenuation.

Differential Reflectivity is also calibrated to account for Differential Attenuation

due to heavy rain and any biases that exist internal/external to the system. Differ-

ential phase again can be used to correct for differential attenuation due to heavy

rain. The UMAXX system itself (including the radome) feature a bias that requires

calibration as well. As can be seen in Figure 4.13, differential reflectivity can diverge

in azimuth significantly from the expected value. A method is then implemented to

mitigate for this bias and removed from the data.

Finally, Chapter 5 draws conclusions on the efforts taken in calibrating this radar

and makes suggestions for further actions or improvements that could be explored.
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CHAPTER 2

OVERVIEW OF RADAR MEASUREMENTS

2.1 Weather Radar Equation

Before delving into the various data products involved in weather observations,

it is worth acknowledging the Weather Radar Equation. The Weather Radar

Equation is the radars received power, Pr0 , related to the collection of individual

scatterers within a given scan volume [3]. The relation as given in Doviak and Zrnić

[3] is

P (r0) =
Ptg

2gsλ
2ηcτπθ21

(4π)3r20l
2lr16 ln 2

(2.1)

where, Pt is the transmitted peak power emitted from the antenna, g is the total

antenna gain, gs is the receiver gain, θ1 is the antenna’s 3dB bandwidth, η is the

volume reflectivity, λ is the wavelength of the transmitted signal, l is the one-way

attenuation of the atmosphere, and lr is the loss of the matched filter.

Here, Volume Reflectivity η refers to the backscattering cross section per unit

volume. When measuring precipitation with short-wavelength (<10 cm) radars as

is done here, one can relate the Volume Reflectivity to Equivalent Reflectivity

Factor, Ze, by:

η =
π5

λ4
|Kw|2 Ze (2.2)

Where Kw is the complex refractive index of water and Ze is the Reflectivity

Factor which is defined as
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Ze =
1

∆V

∑
i

D6
i (2.3)

Because of Ze’s frequency independence, it is the value most often referred to by

meteorologists when discussing the reflectivity of a radar observation. Throughout

remainder of this paper, we will simply refer to Ze as Reflectivity Factor, Z. Rewriting

equation 2.1 in terms of Z:

P (r0) =
π3Ptg

2gsθ
2
1cτ |Kw|2 Z

210 ln 2λ2r20l
2lr

(2.4)

Note that because the same radar is transmitting and receiving throughout, the

radar is assumed stable/consistent and thus Pt g, gs, θ1, τ , λ, l, and lr are taken

to be approximately constant. Hence they are combined with the other constants

into a variable known as the Radar Constant, Rc, to form the following simplified

expression:

P (r0) =
RcZ

r20
(2.5)

2.2 Radar Products

2.2.1 Base Radar Products

Base Radar Products constitute measurements that can be directly obtained from

the received signals of the radar. These do not require comparison of two orthogonal

polarized signals. They most commonly include Equivalent Reflectivity Factor,

Radial Velocity, and Spectrum Width.

2.2.1.1 Reflectivity Factor

Due to its frequency independence (note equation 2.3)The Reflectivity Factor, Z is

the preferred way by meterologists to discuss reflectivity [3]. This allows comparisons

across different systems which will be leveraged in Section 4.1.2 when the C-Band
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NEXRAD network will be used as a reference for UMAXX’s X-Band measurements.

By rearranging equation 2.5, one can quickly calculate Z by dividing the received

power by UMAXXs radar constant and multiply by the square of the range:

Z =
P (r0)r20
Rc

(2.6)

Where P (r0) is estimated as follows using the horizontally polarized channel:

Sh =
1

M

M∑
i=1

|H2i|2 −Nh (2.7)

where Sh is the mean received power, M is the number of samples, H2i is the

received signal of ith sample, and Nh is the mean noise power. An h in the sub-

script designates the variable is observed in the horizontal channel as opposed to the

vertical channel which will be indicated by a v in the subscript.

Reflectivity Factor can vary by several orders of magnitude depending upon the

severity of rainfall and thus equation 2.6 is typically expressed on a logarithmic scale

in units of dBZ:

Z(dBZ) = 10 logZ (2.8)

2.2.1.2 Radial Velocity

The UMAXX radar system is a coherent, or Doppler, radar and thus tracks the

phase of the received signal. Using the known phase of the received and transmitted

signals, the mean radial velocity of the scatterers within a target volume is calculated.

It is important to note that by radial velocity, it implies only the velocity compo-

nent parallel to the radar beam is captured. There is zero contribution to the Doppler

shift from the perpendicular component and thus cannot be deduced by this radar

alone.
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When receiving successive signals, the phases are compared and deconstructed to

approximate the radial velocity component. The phase will be of the form

φ =
−4π

λ
vr∆t (2.9)

Where φ is the phase, vr is velocity, and ∆t is the PRT or 1
PRF

. The radial

velocity recorded is in fact an average of the samples received during the dwell along

that radial.

2.2.1.3 Spectrum Width

Spectrum width essentially provides the range of velocities within a given range

bin. When factors such as turbulence and wind sheer occur within a range bin, the

range of Doppler shifts will be wide thus producing a large spectrum width. It can

also be thought of as standard deviation of velocity.

As demonstrated in [3], spectrum width is typically derived from estimated auto-

correlation function R̂(Ts) and signal power estimate Ŝ

σ̂v =
λ

2πTs
√

2

∣∣∣∣∣∣ln
 Ŝ∣∣∣R̂1

∣∣∣
∣∣∣∣∣∣

1
2

(2.10)

Where Ts is simply the pulse repetition time.

R̂1 with sample time lag time Ts can be approximated as

R̂(Ts) =
1

M

M−1∑
m=0

V ∗(m)V (m+ 1) (2.11)

and for Ŝ we have
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Ŝ =
1

M

M−1∑
k=0

|V (k)|2 −N (2.12)

These operations are done for both polarization channels and to approximate the

true spectrum width the average is taken between the two results.

2.2.2 Dual-polarization Products

2.2.2.1 Differential Reflectivity

Differential Reflectivity, or ZDR, is a crucial product yielded from the dual po-

larizations. Essentially ZDR is a ratio between the received horizontal and vertical

mean sampled powers. Given error reflectivities less than .2 dB, it is possible to gain

a higher level of accuracy when measuring rainfall quantities than when using Re-

flectivity alone (Ventura et al) [6]. To obtain ZDR, Sh and Sv are calculated directly

over M samples as was done for volume reflectivity in equation 2.2. We have [3]:

Sh =
1

M

M∑
i=1

|H2i|2 −Nh, (2.13)

Sv =
1

M

M∑
i=1

|V2i+1|2 −Nv (2.14)

Where Sh and Sv] are the mean sampled horizontal and vertical powers, H and

V are the received horizontal and vertical samples, and Nh and Nv are the mean

sampled noise powers.

The i-subscripts indicate position in time; however, note that because UMAXX’s

default mode is STSR, the samples are not interwoven but in fact recorded at the

same time step. This has the added benefit of twice as many samples for a given

dwell time. Thus,
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Sh =
1

M

M∑
i=1

|Hi|2 −Nh, (2.15)

Sv =
1

M

M∑
i=1

|Vi|2 −Nv (2.16)

and

ZDR ≡ 10 log
Sh

Sv
(dB) (2.17)

2.2.2.2 Propagation Differential Phase

Propagation Differential Phase, or φDP , is the measure of the difference in phase

of the horizontal and vertical polarizations due to a delta in the electrical length of

the propagation paths of the two polarization channels. With a little effort, φDP can

be extracted from the UMAXX’s observed differential phase, ΨDP . In addition to

effects due to the waves’ propagation paths, ΨDP will feature a system differential

phase, φ0 and a potential backscatter φBS.

System differential phase, φ0, is the baseline difference in phase between the two

polarization channels due to differing electrical lengths internal to the transmit and

receive pathways. This value is relatively stable and can be determined by analyzing

the first range bins along a radial to encounter a patch of dense rain fall. This initial

value obtained along the radial has had little opportunity to drift and is close to

the true φ0. For this thesis, many sample bins were averaged in an attempt to best

approximate the φ0. This averaged value is then subtracted from ΨDP to obtain φDP .

Backscatter differential phase, φDP,bs, occurs with larger, more complexly shaped

scatterers. They are the result of resonance effects when the scatterer is not small

compared with the wavelength such as large hail or wet snow. In general, for rain,

this portion of the measured φDP is considered small (< 1.5 deg) [3].
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Propagation differential phase, φDP , is the portion of ΨDP of primary concern

in this thesis. In the case of nearly symmetrical (spherical) scatterers, there will

be very little difference in the paths of the two polarization channels and thus this

value will drift minimally. In an event such as heavy rain, the hydrometers are

oblate spheres and larger in the horizontal polarization than the vertical. The two

polarization channels’ paths of propagation will be of unequal electrical lengths as

the horizontal channel encounters a greater percentage of the hydrometeors than the

vertical channel. Due to this imbalance, the φDP trends positively.

φDP = φH − φV (2.18)

Where φH and φV are the horizontal and vertical channels’ phase, respectively.

Since the measurement is strictly a phase quantity, it is unaffected by factors such as

attenuation, partial beam blockage, or radar miscalibration [7]. As such, it is a useful

tool in correcting for attenuation in severe weather.

2.2.2.3 Co-polar Correlation Coefficient

Co-polar Correlation Coefficient, or ρHV , is a measure (from 0 to 1) of how cor-

related the two polarization channels behave from pulse to pulse [Kumjian] [7]. This

serves as an indication of how diverse the geometric shapes of the scatterers are in a

given volume. Smooth, nearly spherical drops (light rain) will contribute equally to

changes in either channel, thus a correlation coefficient > .98 is expected. Pure dry

hail behaves similarly but when wet can produce values < .95. Ground clutter and

chaff are much more complexly shaped and will produce values < .8 [7]. As will be

seen later, this distinction will play a role in identifying and removing clutter from

the radar scans. The magnitude of the Copolar Correlation Coefficient can be defined

[2] as
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|ρco| =
|〈n (ShhS

∗
vv)〉|√〈

n |Shh|2
〉 〈
n |Svv|2

〉 (2.19)

Where Shh and Svv are the received scattered powers for the H- and V-channel,

respectively.
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CHAPTER 3

CLUTTER CLASSIFICATION AND BEAM BLOCKAGE
CORRECTION

3.1 Ground Clutter Filter

Ground clutter arises from obstructions in the landscape both natural and man-

made that interfere with the radar’s observations. This occurs either via partial/total

blockage of the main beam, or reflections from the antenna side lobes. With a co-

herent, dual-polarized radar, there exists several data products that make it possible

to discern between reflections from clutter and weather phenomena. Ground clutter,

for example, should have near zero radial velocity. Second, ground clutter is much

more complex in shape than hydrometeors and thus will give seemingly random, or

noisy ZDR values. For this same reason, there will be very little correlation between

the two channels. As explained in section 2.2.2.3, the co-polar correlation coefficient

is predicted to be < .8 for non-hydrometeors.

3.1.1 Present Filter

Presently, we have a crude filter in place to remove clutter. Essentially any range

bin with a sufficient signal to noise ratio that has ρHV < .6 is presumed ground clutter

and ignored. Raising this level of ρHV any further without proper precautions may

also increase the rate of false negatives - leading to the unintended omission of weather

data. Additionally, the mean of the samples in a given dwell period are subtracted

from the data. The reasoning here is it is assumed that when observing weather, the

samples of a dwell period will have a complex mean of zero. Any amount the mean

drifts from zero is likely due to contributions from stationary ground clutter.
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3.1.2 Decision Tree Classifier

vr

CC

ZDR

σv

Weather Clutter

Figure 3.1: General Structure of potential binary tree

By utilizing machine learning, we can comb through high volumes of pre-classified

data to find the optimum cut-off point for parameters such as ρHV and ZDR unique to

this radar. Using scikit-learn, a Python machine learning package, UMAXX data was

analyzed in this expanded variable space and a more precise and definitive boundary

between clutter and weather was implemented. In the past, decision trees have been

used in weather radar post-processing to decide if a given range bin is predominantly

filled with clutter or precipitation [8]. The data algorithm also lends itself well to

machine learning techniques and is utilized frequently. The goal is by creating the

classifier based around previously collected UMAXX data (training data), system-

specific boundaries are derived that maximize clutter detection while simultaneously

attempting to minimize false negative detections.

3.1.2.1 Training the Model

To train our model, we first established a preclassified training dataset. This

can be done simply by identifying days in which no weather occurred and classifying

all range bins as ground clutter. Then, identify days with which there is weather
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and classify all populated range bins sufficiently distant from the radar (≈ 30km) as

weather. It is also important here to utilize different days with varying instances of

weather to ensure we get enough variation in data and don’t specialize our filter too

closely with a particular day.

Figure 3.2: Shows an example storm with data excluded close to radar. Although
large amounts of data are unfortunately removed in the process, there are substantial
days of data collection during storm events to provide more than enough data to work
with.
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Once the dataset is established, one can observe how the clutter and weather data

behaves differently when looked at through the various observables as shown in Figure

3.3.

Certain products are more telling than others. ΨDP for example is centered close

to -160 degrees for weather due to that being the approximate φ0 location (see section

4.1.1.1). Conversely, clutter has a more uniformly random distribution. Note there

is spike at 0 degrees, likely due to cross polarization that results in comparing the

phase of a channel with itself.
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Figure 3.3: X and Y axes are various radar products to be plotted against each other.
Along diagonal is a kernel density function approximating the probability distribution
of clutter and weather data points for that particular product. Off diagonal shows
scatter plots of two radar products.

The tree is then constructed using an algorithm that prioritizes maximum entropy.

In this context, maximum entropy is determined by choosing an observable and a

threshold which best separates the two classes of data (clutter and weather). The

algorithm proceeds in this way until it reaches either a preset level of purity at a

particular node (or leaf), or a preset depth of decisions. Both the purity and depth

are empirically determined and are chosen to best balance accuracy of the classifier

as well as complexity, which directly impacts latency.
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Figure 3.4: This figure shows a graphical representation of the resulting decision tree
generated by the scikit-learn’s classifier package. The top line on the node states the
parameter and threshold of the decision. The second line states the entropy of the
node, or how well mixed the sample set is. The closer to 0, the more uniform the
node is. Then there is sample size, distribution of samples, and majority classification
(weather or clutter)

In Figure 3.4, one can track how the classifier makes its decisions. Each node

represents the algorithm selecting the measurement and its threshold based on the

greatest reduction in entropy. The nodes which reveal the most insight and confirma-

tion into the nature of the targets being observed are as follows: the most significant

separator of clutter and weather bins is the φDP value with a threshold of -114.15

degrees. The tree implies that range bins above this threshold are largely clutter.

The significance of this threshold value will be made clear in sec 4.1.1.1 when φ0 is

determined. For values above this threshold, radial velocity is check: if close to 0

(−3 < vr < 3), then range bin is deemed likely to be clutter. For range bins below

the φDP threshold, ρHV < .83 is checked. Values less than this indicate the targets

in the range bin have less correlation in the horizontal and vertical channels than to

be expected for rainfall.
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Beyond these primary levels in the decision tree, range bins are checked for condi-

tions such as a narrow spectrum width (σ̂v < 6) and larger negative ZDR (ZDR < −4).

Range bins with values agreeing to these conditions are less likely to be weather and

thus omitted from the final data.

The resulting tree shown in Figure 3.4 can easily be implemented in the format

of a series of if...else statements as follows:

for each bin in range_bins:

if (bin.phidp <= -114.15):

if (bin.rho_hv <= 0.83):

if (bin.spec_width <= 6.56):

if (-2.39 <= bin.vel <= 1.99):

bin.setClass(‘clutter’)

else:

bin.setClass(‘weather’)

else: //bins with spec_width > 6.56 very likely to not be stationary clutter

if (-2.72 <= bin.vel <= 2.68):

if (bin.snr <= -2.99):

bin.setClass(‘clutter’)

else:

bin.setClass(‘weather’)

else:

bin.setClass(‘weather’)

else if (bin.spec_width <= 4.19): //cross corr larger than .86 is largely indicative of precipitation

if (bin.snr <= 20.02):

bin.setClass(‘weather’)

else:

bin.setClass(‘clutter’)
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else if (bin.zdr <= -4.04):

bin.setClass(‘clutter’)

else:

bin.setClass(‘weather’)

else if (-3.34 <= bin.vel <= 2.99):

bin.setClass(’weather’)

else: //near-zero velocity bin with phi_dp greater than -114 deg

bin.setClass(‘clutter’)

3.1.2.2 Verification

Once the tree had been constructed, it was validated by generating a Receiver

Operator Characteristic Plot. This was done by using a 10-fold verification algorithm.

essentially a rotating 9/10’s of the data builds the tree while the remaining 1/10

validates the thresholds. This is done 10 times to build confidence/enforce the validity

of the decision tree. Figure 3.5 shows the classifier produces a ROC that approximates

an ideal right angle.
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Figure 3.5: ROC Plot: This receiver operating characteristic plot seeks to demon-
strate the accuracy with which the decision tree can distinguish clutter from weather

Figures 3.6 and 3.7 demonstrate the application of the decision tree in classifying

real data. The clear day plot (3.6) is an example at 1 degree tilt when zero filtering

is applied (all clutter was left in). The latter (3.7) shows the difference between our

current, crude filter and the decision tree classifier in the presence of precipitation.
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Figure 3.6: Clutter Filtering on a Clear Day: This example features no filtering
whatsoever at a 1 deg tilt. Here it can be seen how severely the radar scrapes along
the terrain. In the right, after applying the clutter classifier, we see that a very large
percentage of the clutter has been removed.

Figure 3.7: Clutter Filtering on a Stormy Day: This example features a storm
and the crude clutter filter mentioned in Section 3.1.1. Notice here that again a
large percentage of clutter is removed, yet storm system is intact. This highlights the
improvements made from present crude filter to the decision tree classifier.

3.2 Partial Beam Blockage Correction

In addition to obscuring data in the form of clutter, complex terrain can also

block significant portions of the radar’s main beam. Since the receiver has no way of

”knowing” this, the data will under report any precipitation that may exist further
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along the radial beyond the point of blockage. The resulting effect will be regions

of stepped-down reflectivity levels that will appear as shadow-like cones emanating

outward from the regions of blockage. This section explains the process by which a

Digital Elevation Model of the region was used as well as an approximation of the

energy distribution of the radar’s main beam to analyze the effects of partial beam

blockage and attempt to correct for them.

3.2.1 Digital Elevation Model

By using a digital elevation model (DEM), one can calculate the angle of approach

to surrounding obstructions and eventually the percentage of beam blockage by ap-

proximating the main beam as a first-order Bessel function. Figure 3.8 shows the

angle of approach (in degrees) from the UMAXX location to the point in the terrain.
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Figure 3.8: Location and level of UMAXX beam blockage overlaying Digital Elevation
Model: With UMAXX located at center, highlighted regions are points which could
potentially block the main beam. The colorbar conveys what degree tilt from radar
objects are blocking.

After processing the DEM with UMAXX’s beam characteristics as presented in

Figure 3.8, a mapping is generated to translate the radar beam’s azimuthal direction

and range into a level of blockage with respect to tilt angle as shown in Figure 3.9.

It’s important to note these levels of blockage are only increasing with distance. For

example, along a given radial at a particular range bin, if the main beam is obscured

below 1 degree angle of approach from the UMAXX location, then the beam will be

blocked by at least that degree for further range bins and increase as it reaches taller

obstacles.
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Figure 3.9: Levels of Beam Blockage: Using findings from Figure 3.8, radials track
maximum blockage moving away from center. Everything below tilt shown in colorbar
will be obscured by terrain.

3.2.2 Beam Shape

To determine beam shape for a parabolic reflector antenna, there are well docu-

mented formulas that describe the shape of radiation intensity for an ideal reflector

antenna ([1] and [13]). Below are the formulas that represent the θ and φ (in context

of spherical coordinates) components of the Electric Field.

Eθs =
jke−jkr

4πr
(1− cos θ)

∫ ∫
S0

(−Eaxcosφ−Eaysinφ)× ejk(x′ sin θ cosφ+y′ sin θ sinφ)dx′dy′

(3.1)
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Eφs =
jke−jkr

4πr
(1−cos θ)

∫ ∫
S0

(−Eax sinφ+Eay cosφ)×ejk(x′ sin θ cosφ+y′ sin θ sinφ)dx′dy′

(3.2)

where, Eθs and Eφs are the θ and φ components of the transmitted E-field, k is

the wave number, r is the range to an observation point, S0 is the projected cross-

sectional area, x′, y′ are positional vectors on the surface S0, and θ, φ are the angle of

sight line to observation point in relation to the center of surface S0.

Using the equations for the E-fields of a parabolic reflector antenna, a model

for the shape of the beam is developed and used to determine percentage of beam

blockage at any given tilt, azimuth, and range.

When determining the beamshape of a reflector antenna, the projected, two di-

mensional shape of the broadside of the antenna is approximated as the radiating

element [1]. In the case of UMAXX, this is taken to be a flat circle of radius 1.2m.

Using the symmetry available due to this fact, Equations 3.1 and 3.2 reduce to simply

E(θ) = 2πr20
J1(ξ)

ξ
(3.3)

where ξ = 2π r0
λ

sin θ and J1(ξ) is the first order Bessel function. This drastically

simplifies the analysis of the antenna’s beam shape and can readily be solved to

determine our radiation pattern as shown
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(a) 3D Model of the radiation inten-
sity of UMAXX antenna

(b) Radiation intensity in dB. x-
and y-axis represent degrees off from
boresight.

With a model of radiation intensity established, it is now possible to utilize the

blockage progression derived in Sec 3.2.1 to solve for the percent of energy blocked

during transmit/receive through UMAXX’s scan strategy. The method is essentially

to sweep outward along each radial and track the maxima in the terrain as the beam

moves outward from the radar. At each successive range bin the area under the current

maxima will be summed and taken to be the portion of blocked energy. Divide this by

the total area under the radiation pattern’s main beam and the result is percentage

of the energy blocked.

3.2.3 Generating Blockage Correction Tables

So with the blockage progression along each radial defined and an approximation

of the main beam available, it is possible to attempt to determine the percentage of

energy blocked at each range bin along a given radial. A 2D integration is performed

between the current maximum along a particular radial and the beam’s radiation

pattern to determine the percentage of transmitted energy that is obscured by the

terrain. This is done for each tilt angle as shown in Figure 3.11. This beam blockage
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percentage is then converted to a loss value in dB to be added to the reflectivity, Z,

to compensate for the blocked portion of the beam.

Figure 3.11: Blockage Correction Tables (by tilt): 1 degree tilt experiences some level
of blockage in nearly every direction. 2 degrees still sees blockage due to Pelham Hills
to the east. 4 and 6 degree tilt observe near zero blockage.

3.2.4 Validation Using Averaging by Scan Angle

Next, it is crucial to compare our model of UMAXX’s blockage levels with actual

reflectivity factor data in order to validate our correction tables. The results presented

in the previous section represent the beam blockage that would be expected if the
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UMAXX system possessed the sensitivity to capture the entire main beam within the

first null. However it is unlikely for any system to have this level of sensitivity, thus

real data is needed to determine the effective beam width.

To do so, the average of several rain events at each tilt angle were calculated.

During data collection, the various tilt angles are interleaved and thus adjacent tilt

angles should see very similar results on average in an environment containing zero

blockage. Any delta that exists between tilt angles can thus be attributed to blockage

due to terrain.

This delta is then compared against the delta of the correction tables determined

via the DEM. A non-unity correlation implies the beam width in the blockage pro-

gression model needs to be adjusted. In doing so, this has the added benefit of

experimentally determining the effective beam width of the radar. This is necessary

because our receiver is lacking the sensitivity to detect the entire beam width out to

the first null. As such, it would yield misleading results to consider that entire region

of the beam when calculating the percentage of energy obscured by the terrain.

To find the effective beam width, start with the entire main beam and incremen-

tally contract narrower until the regression line relating the DEM correction table to

the averaged data has a slope of 1. For this radar, an 8-dB cut-off point resulting in

a 1.67 degree, 2-way beam width is sufficient.
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(a) Comparison w/ Full Beam (b) Comparison w/ Effective Beam

Figure 3.12: A comparison of the calculated beam blockage corrections and averaged
Z data. A 2D histogram of deltas for the point pairs are plotted on a logarithmic
scale. Point pairs are determined based on coinciding azimuth and range bin. Here
one can see the improvement when using the determined effective beam width of the
UMAXX Radar. By adjusting the effective beam width we are able to calibrate DEM
blockage correction table to represent the true levels of blockage that the UMAXX
radar is seeing.

With the beam blockage table calibrated against averaged data, the corrections

can be applied to an actual data frame. in Fig 3.13, UMAXX is looking at a storm

passing to its north using the 1 degree tilt angle. After applying the corrections in

(b), one can see an improvement to the shadows as well as an overall increase in

the region. This is due to partial obscurity in nearly all directions when using the 1

degree tilt as can be recalled after referring to Fig 3.11.
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(a) Uncorrected UMAXX Data (b) UMAXX Data Corrected

Figure 3.13: Here is the data displayed at 1 deg tilt and with obvious blockage (note
the shadows cast in left image). After applying beam blockage corrections, we can
see the shadow-effect is mitigated and an overall higher intensity of reflectivity.

Below in Figure 3.14 is another example featuring a significant amount of blockage

to the east at a 2 degree tilt. This sector is normally completely blocked at the 1

degree tilt, but at 2 degrees still is at least partially recoverable.

Figure 3.14: Significant blockage is corrected at a 2 degree tilt due to shadowing by
the Pelham Hills.
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CHAPTER 4

REFLECTIVITY AND DIFFERENTIAL REFLECTIVITY
CALIBRATION

4.1 Reflectivity Factor Calibration

There are two sources of attenuation impacting reflectivity factor measurements

that will be addressed in this section. First, is the two-way path integrated attenua-

tion (PIA). This is the attenuation that the radar signal experiences as it propagates

to the scatterer and reflects back to the radar. At X-band, this effect is more severe

than at lower frequencies and needs to be addressed. For this, many have exam-

ined the relation between φDP and attenuation ([5], [6], and [9]). These works have

resulted in an attenuation factor that can be used to approximate levels of attenu-

ation using φDP . This chapter will further study and verify those findings as they

apply to UMAXX. The results after applying these attenuation corrects, in addition

to the beam blockage corrections, will be validated using the Albany NEXRAD radar

KENX.

Another issue that needs attention is the variation in radome attenuation UMAXX

sees when the radome is wet or dry. The presence of water on the radome results in

a warmer scene from perspective of the antenna. This increase in brightness temper-

ature is visible when viewing the noise floor. Efforts have been made to relate this

increase in temperature to a radome attenuation ([11]) and will be investigated in

this chapter as well. In an attempt to verify this method, the KENX radar site will

again be leveraged as a baseline data set for comparison.
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4.1.1 Path Integrated Attenuation Correction Using φDP

The linear equation for correcting PIA is as follows:

Zint
e = Ze + aφDP (4.1)

where, Zint
e is the intrinsic (true) reflectivity factor, Ze is the reflectivity observed

by UMAXX, φDP is the differential phase of the echo, and a is the attenuation coef-

ficient used to scale φDP to an attenuation value.

The key here is the attenuation coefficient, a. It scales the changing φDP value

to compensate for the attenuation the propagating wave was subjected to along that

radial. Generally the accepted value to use is about .28 ([9]) and is the value to be

used throughout the analysis in this paper.

4.1.1.1 System Differential Phase, φDP,sys

Before the horizontal and vertically polarized waves emit from the radar, they

are subject to a variation in phase due to the difference in their respective path

lengths. This initial difference is known as the System Differential Phase, φ0. Since

the PIA calculation proposed relies on calculating the difference in phase between

these two channels, it is necessary to determine this system bias and remove it from

the measurement.

φDP = ΨDP − φ0 (4.2)

This can be done simply by observing various rain events over long periods of time

and averaging the earliest echoes along each radial. The idea here is that through open

air the phase between the two channels should not diverge, thus upon first contact

with rainfall the ΨDP of the first received echoes should be largely attributed to the

system bias. Once this value is determined, it can be subtracted from the measured

differential phase ΨDP to determine true φDP . The resulting data is displayed in Fig
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(4.1). One can see in the figure that aside from the anomaly in 1 degree tilt, the

variation is approximately 8 degrees which amounts to a swing of ≈ 2.24 dB thus

highlighting the necessity to consider azimuth before performing corrections.

Figure 4.1: Plotted above are the φ0 values calculated for each tilt angle: Note the
azimuth dependence. Can make out 5 peaks which correspond well with 5 panels
that make up the radome. the 1 degree tilt has some variance in it likely due to the
heavy level of ground clutter present.

Once φ0 is determined, it can be saved as a correction table and referenced when

processing incoming data to remove the radar’s contributions to the ΨDP observable

before applying the PIA corrections.

4.1.1.2 Applied to Data

After determining the azimuth dependent φ0 and solving for φDP , can apply equa-

tion 4.1 to determine the Path Integrated Attenuation. In our assumption, the path
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leading away from the radar and its return trip are the same, thus our value is the

attenuation of the total trip, and double the attenuation of the 1-way journey.

Figure 4.2: PIA correction: Demonstration of PIA corrections applied. Top left shows
observed data at 4 deg tilt angle. Top right shows corrections after ground clutter
removed and beam blockage corrected (minimal at this tilt). Bottom left shows the
corrected data. Bottom right shows separate WSR-88D’s view of same weather event.
Dotted shapes and X’s intended to show corresponding regions of precipitation.

In Fig (4.2), on can see qualitatively how the PIA correction brings UMAXX’s

data set closer to its neighboring WSR-88D’s perspective of the storm. As mentioned

previously, the NEXRAD network’s data sets will be taken as ”calibrated” and will

be the standard with which UMAXX’s data is compared throughout this paper.

Note the areas enclosed by the dotted circle (square) in either figure are objectively

much closer in value than in the original, observed data. It is important to continue
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to keep in mind that some data is sufficiently blocked/attenuated such that it is

irretrievable as indicated by the bold X’s.

4.1.2 NEXRAD Comparison

To validate these attempts in correcting for signal attenuation and beam block-

age, data streamed from nearby radars in the NEXRAD network is leveraged. By

calculating overlapping regions in the UMAXX and Albany (KENX) radar’s scan

strategies, one can analyze approximately adjacent range bin pairs from each radar.

In the context of reflectivity factor, the range bin pairs would ideally exhibit a 1-to-1

relation given the two radars are well calibrated. A similar strategy is used in other

papers to validate corrections when another radar in reasonable proximity is available

to serve as a baseline ([14]).

When collecting range bin pairs, the ideal set of conditions would be the pairs

were observed at the exact same time and at the exact same altitude. However, in

the interest of obtaining sufficient data points for meaningful incite, we assume there

exists a duration of time and a range in altitude within which the precipitation ex-

periences minimal variation. For our purposes, it was empirically determined that 15

seconds and 200 meters were appropriate constraints to achieve visibly linear correla-

tion. Hence, a 120 by 120 kilometer square was drawn around the UMAXX radar site

and subdivided into 200 meter squares. Each square was populated by object holding

KENX and UMAXX reflectivity data as well as time stamps and other supplemental

data to achieve reflectivity pairs for comparison.
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Figure 4.3: A 2D histogram of single rain event on May 24, 2019 is analyzed
Top: Shows comparison in dBZ of KENX and the uncalibrated UMAXX radar in
overlapping regions of space. The dashed diagonal line shows the ideal, 1-to-1 relation.
Bottom: After applying the PIA calibration and beam blockage corrections, Note how
UMAXX data aligns itself with the KENX along the dashed, 1-to-1 line.
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In Fig 4.3, a green regression line is generated to illustrate the relation between the

range bin pairs. A slope less (more) than 1 would indicate the UMAXX is under (over)

compensating for the effects of attenuation and beam blockage. Note the regression

line is partially below dashed 1-to-1 line. This indicates the UMAXX radar could be

running somewhat ”cold” in comparison to KENX. Recall from 2.6 The reflectivity

constant Rc is made up of a variety of constants including gain of the antenna. If

regression line were consistently below 1-to-1 line across many data sets, the source

of the offset could be within this value.

4.1.3 Wet Radome Attenuation Analysis

Another issue that impacts the reflectivity measurement is when water collects

on the radome’s outer surface due to rain directly overhead. It is assumed with

older radomes that the hydrophobic coating on the radome’s surface degrades and

an approximately uniform layer of water forms. This layer of water on the radome

attenuates the radar’s signal thus degrading the sensitivity of the system.

It has been investigated and shown that this additional boundary contributes to

the brightness temperature of the radar’s antenna [11]. This increase in noise tem-

perature can be quantified and thus mapped to an attenuation that is then attributed

to the microwave emission of distant storms as well as the water layer collected on

the radome. This section outlines the process that attempts to untangle these two

contributing noise sources with the overarching goal of solving for the wet radome

attenuation.

4.1.3.1 Calibrating Noise

The concept of monitoring the brightness temperature of the UMAXX antenna

essentially involves using the radar as a radiometer. Radiometer’s are ultra sensitive

remote sensing devices used to measure and detect changes in the microwave emission

of a given environment. As such, they require frequent calibration to ensure drift in
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system temperature and performance of components do not contaminate the mea-

surements. Presently, this is not implemented in the UMAXX’s scan strategy, thus

some crude calibration measures are taken in an attempt to perform this analysis.

Figure 4.4: This figure shows UMAXX data collected over the course of an afternoon
on receive only. At the low elevations the radiometer is observing higher temperatures
due to the higher brightness temperature emitting from the ground clutter. At various
points the sun is also observed sporadically throughout the day. Temperatures are
related to A/D voltages by making assumptions based upon the well understood clear
sky and sun temperatures.

Above in Fig (4.4), the plot shows the median noise value along each radial for

each elevation angle. Using well understood values of brightness temperature for the

sun and the sky at X-band, the radar’s receiver is able to be calibrated to measure

the brightness temperature of the surrounding environment. The result is a linear

equation which maps the noise power from the ADC to a brightness temperature as

follows:

m =
Thot − Tcold
psun − psky

(4.3)

40



b = Tcold −m× psky (4.4)

where m is the slope and b is intercept. psky is the noise power received when

observing just the sky (minimal emission from ground or other targets and surfaces)

and Tcold is the corresponding brightness seen by the sky at X-band which is ≈ 10K.

psun is the noise power received when the sun is within the region of UMAXX’s main

beam and Thot is the corresponding brightness temperature which can be calculated

as follows

Thot =

(
θ2sun
θ2umaxx

)
Tsun +

(
1− θ2sun

θ2umaxx

)
Tsky (4.5)

where θsun is the angle subtended by the sun, θumaxx is beam width of UMAXX’s

main beam, and Tsun is the temperature of the Sun (≈ 5778K).

The effects of the dry radome itself also need to be considered. While the loss

of the radome (L) isn’t precisely known, .3 dB is currently used as a typical value

to be expected for radome material. The below equations apply the corresponding

self-emission (e = 1− 1
L

) and transmission coefficient (t = 1
L

) to Thot and Tcold

T ′hot = tThot + e290 (4.6)

T ′cold = tTcold + e290 (4.7)

Where 290 K is the radome’s assumed temperature. The new resulting linear

equation is defined as

m′ =
T ′hot − T ′cold
phot − pcold

(4.8)

b′ = T ′cold −m′psky (4.9)
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Using this linear equation, the data set from Figure 4.4 can then be generated by

mapping the received noise power to a corresponding antenna radiometric tempera-

ture. Can also use t and e to compensate for the absorption and emission of the dry

radome and yield a brightness temperature closer to the truer value:

Tmeas =
T ′meas − e290

t
(4.10)

Where Tmeas is the brightness temperature of the target and T ′meas is the antenna

temperature. Going forward, when discussing brightness temperatures measured by

the radar, it is implied that Tmeas is being used.

Considering it would be infeasible to run this calibration during normal operation,

we instead elect to use this data set as our assumed benchmark to recalibrate UMAXX

on a given day. Using an interval of the day in which no weather is present, the radar’s

scan at 1 degree tilt and 6 degree tilt are used as the new hot and cold targets,

respectively. The corresponding Thot and Tcold are taken to be the median value along

each tilt found in the above receive-only data set (110K and 30K, respectively).

This method of calibration does have the potential for error, but will be useful for

the explicit purpose of detecting a relationship between the water on the radome and

the resulting increase in microwave emission. For an implemented radome attenuation

correction process, the UMAXX scan strategy would be modified to include a known

injected noise source periodically to recalibrate throughout data collection; much like

in a traditional radiometer. With a method of calibrating the receiver’s noise factor

established, the next step is to begin looking at data featuring weather.

4.1.3.2 Noise Contribution of Distant Storms

One challenge with this proposed method is that when water has collected on

the radome, more often than not there will be a storm present as well. This storm

will have its own microwave emission that will contribute to the rise in noise floor.
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Unfortunately, looking at the noise floor alone it is impossible to untangle the joint

contributions from the distant storm and the wet radome. Recall from section 4.1.1

that it was demonstrated that the outlined PIA method utilizing φDP was effective in

determining the attenuation of the radar’s signal due to rain. Therefore, it is explored

in this subsection if one can achieve a comparable total attenuation value from the

distant storm via analyzing the changes in the noise floor resulting from the increased

microwave emission. This will be done using periods of time where rain is present

in the region while the radome itself is dry to ensure the predominant contribution

to rises in the noise floor is from the distant storm. The goal in this section is to

show that calculating the loss of distant storms using φDP is comparable to when

measured using the noise floor. This will build the case that using φDP is a viable

option to help isolate the wet radome’s contribution to the fluctuations in the noise

floor measurement.
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Figure 4.5: This plot shows the reflectivity of a data frame collected for a storm
on July 27, 2019. The outer ring of discrete color mappings shows the total 1-way
attenuation along each radial as calculated using the φdp method.

In the Figure (4.5) above, an approaching storm is observed and the total attenu-

ation along each radial is displayed in the outer ring. This is calculated by using the

φDP method and then divided by 2 to represent the 1-way attenuation. This scan

serves as a good starting point as it features an isolated storm yet no precipitation

has had a chance to collect on the radome.
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Figure 4.6: This image illustrates how UMAXX perceives the noise temperature of a
distant storm.

By considering the storm and background sky as a two-element network, UMAXX

was used as a means of measuring the noise temperature at the port closest to the

radar, T1. In this instance, T1 = Tmeas is the noise temperature as measured by

UMAXX after removing effects of dry radome. In looking at the problem this way,

one can write T1 in terms of the temperature, T pstorm and loss Lstorm of the storm as

well as the temperature of the atmospheric background, Tsky as was done in equations

4.6 and 4.7:

T1 =

(
1− 1

Lstorm

)
T pstorm +

Tsky
Lstorm

(4.11)

It is now possible to solve for the loss, Lstorm:

Lstorm =
Tsky − T pstorm
T1 − T pstorm

(4.12)

Where we approximate the physical temperature T pstorm as 280K. The storm’s

physical temperature is likely somewhere between 270 and 290 so choosing 280K

ensures an error in 1-way storm attenuation of < .6 dB.
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Below, in Figure 4.7, the noise floor is recorded earlier in the day with no rain

present and then again later when storm is approaching. The top plot features the

data with no weather present averaged over the course of three hours to ensure the

median temperature is captured for each radial, this is our Tsky in equation 4.12.

Then the rain event is observed (bottom of Fig 4.7) as it approaches the radome and

serves as T1. The same day is utilized in an attempt to minimize effects of drift in

system noise.

Figure 4.7: Top: the median noise floor value is taken along each radial over the
course of three hours. The fluctuations can be attributed to the panels as well as
physical temperature of the radome material. Bottom: A storm is observed over
three hours as it approaches the radar. Blank data points represent either missing
data or when weather is present at the furthest points of the radial. The gray masses
are the storm as it travels across UMAXX’s scan region.

Using the values obtained in Figure 4.7 with equation 4.12, one can now calcu-

late the attenuation due to the storm along each radial via fluctuations detected in

the noise floor. Below, is an analogous plot to Fig 4.5 replaced with results using

brightness temperature to calculate the attenuation of the storm.
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Figure 4.8: This plot shows the same dataframe as Fig 4.5 but with attenuation
calculated using the brightness temperature.

We can compare the two methods more directly: focusing on the sector ranging

from 180 to 360 degrees in azimuth shown in Figure 4.9a is the two methods and how

they track each other. While the the microwave emission method appears to mimic

the φDP method, it features significant variance. Throughout the course of this rain

event, the data obtained from either method was compared in the 2D histogram

format to help visualize the trend with a larger collection of data (Figure 4.9b).
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(a) This plot shows the 180 to 360 degree
sector of the data frame featured in Fig 4.5
and 4.8 with both the φDP and the noise fig-
ure method displayed. While the two meth-
ods appear to track each other, the values
derived from the noise floor method features
greater variance.

(b) This plot shows an average of loss as
calculated by interpretting the noise floor.
The averages are binned along the x-axis by
the corresponding loss calculated by φDP .
The raw loss pairs are highly variant, but
the averages show a strong 1-to-1 correlation
as indicated by the dashed line.

The high variance in loss calculated via the noise floor analysis can be mitigated

by increasing samples in the absence of a transmit pulse/echo. Presently, the final 10

range bins are sampled of each pulse and checked for a transmit echo. If no echo is

present then the received power is taken to be the antenna brightness temperature.

Either increasing this number of samples or disabling the transmitter for one pulse

period would serve to increase stability of this measurement.

Using these results from Figure 4.9b, it is inferred that the two methods of calcu-

lating the total loss along a radial due to an approaching storm are interchangeable.

This conclusion will be useful in the following section when water on the radome is

considered.
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4.1.3.3 Extracting Radome Attenuation

With a better understanding of how the presence of a distant storm impacts the

noise floor, the next step is to look at the presence of both distant storms and water

over the radome and attempt to extract the attenuation due to the wet radome. The

storm and atmospheric background will still be regarded as a two-element network,

but for this part of the analysis Lstorm is determined from the φDP method. Using

the relation derived from 4.9b, the attenuation determined from φDP is converted to

a noise temperature and then used to solve for T1 in equation 4.11. This is necessary

because as shown in Figure 4.10, with the addition of the water layer on the radome

T1 is no longer the noise temperature measured by UMAXX. Instead, T1 is the emis-

sion incident upon the wet radome before being subject to the transmission and self

emission of the water layer.

Figure 4.10: This image illustrates how UMAXX perceives the noise temperature of
a distant storm with the presence of water on the radome.

To account for the effects of the additional lossy layer, one can modify Equation

4.11 to add in a new stage that represents the water collected on the radome:
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Tmeas =

(
1− 1

Lw

)
T pw +

1

Lw

[(
1− 1

Lφstorm

)
T pstorm +

Tsky

Lφstorm

]
(4.13)

Note, in equation 4.13 the section inside the square brackets is analogous to equa-

tion 4.11. The addition of the φ in the superscript indicates the loss was determined

using the φDP method. Can thus re-write as

Tmeas =

(
1− 1

Lw

)
T pw +

1

Lw

[
T φ1

]
(4.14)

Lastly, with an equation in the same form as 4.11, Lw can be found as follows

Lw =
T φ1 − T pw
Tmeas − T pw

(4.15)

Where the physical temperature of the water on the radome is approximated to

be T pw = 290K. As can be seen, this method relies on using φDP to calculate the noise

temperature of the environment incident upon the wet radome.

4.1.3.4 Method Validation

To validate this method, reflectivity close to the radar was used as a means to

approximate the rain rate in the region over the radar. These Z data points were then

compared with the radome loss calculated via the microwave emission. As shown in

Figure 4.11a, there is a clear correlation between the two variables, ie Z close to the

radar and the wet radome attenuation.

The results were further compared in 4.11b with those of Frasier, et al [14]. The

relation to rain rate and wet radome attenuation was empirically derived via inter-

radar comparisons in the French Alps. While the results of either study yield similar

values of attenuation for a given rain rate, the polynomial equations describing the

results are slightly different in nature. Note the radars from the Frasier study are in a

starkly different environment situated in the French Alps. Additionally, the radome

from that study is approximately spherical as opposed to the UMAXX’s cylindrical
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side walls. These considerations alone make the differing nature of the polynomials

in Figure 4.11b unsurpising.

With a linear relation fit to the points, one would expect a y-intercept of 0. That

is, with no rain there should be no excess radome attenuation to account for. A

nonzero intercept (as seen in Figure 4.11a) could result from several factors. There

could be an error in our approximation of the loss of the radome, the precise noise

temperature of the Thot or Tcold calibration points, the attenuation scale factor a used

to isolate the microwave emission from the distant storm, or an overall offset due to

the variance that exists in the noise floor measurement. The source of this nonzero

intercept can be more precisely attributed and corrected for by implementing a more

stable noise calibration procedure, refining the scale factor, a, and increasing the

number of noise floor samples.

(a) Reflectivity close to the radar plotted vs
the two way radome attenuation. The data
was averaged to help determine trend. The
numeric label indicates numbers of samples
comprising each data point.

(b) 1 way radome loss shown as a function of
rain rate. Results are compared with find-
ings from Frasier et al, 2013.

The findings of this thesis represent a single case from a storm that passed overhead

the UMAXX site on August 18, 2019. Due to the unstable nature of the calibration

process available and utilized, it wasn’t prudent to compile multiple rain events to

represent a single trend. The conclusion to be made from this section is that it

is effective to derive, quantitatively, the attenuation effects of a wet radome using
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the microwave emission of the sheet of water. With a stable and consistent noise

calibration process, it would be feasible to use the method outlined here to implement

a radome attenuation correction procedure during normal operation.

4.2 Differential Reflectivity Calibration

There are two sources of bias when looking at Differential Reflectivity (ZDR) that

are addressed in this section. First, like reflectivity, ZDR is subject to attenuation

when in heavy rainfall. For ZDR this is referred to as differential attenuation. As

demonstrated in Sec 4.1.1, an attenuation coefficient can be used to scale our φDP as

an attenuation correction [9]. This is explained and illustrated further in the following

subsection.

In addition to differential attenuation, there are biases internal to the system that

need to be calibrated out of the measurement. There exists several methods that

have been examined to correct for this. Two are discussed in this section: the vertical

(or birdbath) scan and the observation during light (20-22 dBZ) rainfall.

As a means of validating that our ZDR has improved due to these corrections, we

utilize what’s known as a Membership Function [4] relating Z to ZDR. In this way,

we use the verified Z to confirm our corrected ZDR has improved.

4.2.1 Differential Attenuation

Like reflectivity, ZDR is subject to attenuation when heavy rainfall is present, al-

beit to a lesser degree of severity. Recall from 2.17 that ZDR is a ratio between the

vertical and horizontal polarization channels. If the two channels had identical prop-

agation paths, ZDR measurements would not experience attenuation. However, as

explained in section (4.1.1), the horizontal channel propagates through an electrically

longer path due to geometric shape of rain droplets in heavy rain, thus experiencing

more severe attenuation. Similar to Reflectivity Factor, a coefficient was empirically
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derived to scale φDP to correct for this attenuation. According to Yu [9], the co-

efficient a = .032 fits the data well and thus will be used to correct for differential

attenuation in this paper.

4.2.2 Calibrating for System Bias

4.2.2.1 Birdbath Scan

First and perhaps most notable method of correcting for ZDR is the vertical,

or “birdbath,” scan. As the name implies, the radar is set to 90 degrees and scans

during light rain (20-30 dBZ). This method assumes that when observed from directly

underneath, rain drops are essentially symmetrical and will appear as spheres. As

explained in section 2.2.2.1, spheres should yield a ZDR of 0 dB. Also, by rotating

radar dish during scan, any asymmetries that could exist due to factors such as wind

are further mitigated. In this scan, because the vertical and horizontal polarized

channels will be observing the same conditions, there should be no difference in Zh or

Zv and thus a ZDR of 0 dB is expected. If there is some bias inherent in the system

it will make itself apparent in some offset from 0 dB.
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Figure 4.12: Birdbath Scan ZDR plot (Image from Sanchez, et al [12]): x-axis shows
times, y-axis shows range (or height above the radar), and color bar indicates ZDR in
dB. The yellow, nonzero results suggest the radar is biased positive.

Two disadvantages of this method are as follows. First, it requires interrupting

the radar’s normal scan procedure to collect the vertical-pointing scan data. A minor

inconvenience, but nonetheless having a method available that utilizes data collected

during normal operation would be useful if one wished to perform more frequent

calibrations or if retroactively confirming the validity of a calibration in an older data

set was needed.

Second, the birdbath method assumes there is no azimuth-based dependence for

ZDR bias. As will be demonstrated here and has been shown elsewhere [6], the radome

has considerable influence over the bias which results in an azimuth dependence that

is worthwhile to mitigate against.
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4.2.3 Light Rain Observations During Normal Scan Strategy

A method that answers the above concerns is by analyzing rainfall data collected

during light rain under normal scanning procedure. As explained in [6] and [10], it

can be assumed that rain droplets within a range bin that is exhibiting a reflectivity

within 20-22 dBZ is very close to spherical and hence a ZDR of ≈ .2 dB is expected.

Figure 4.13 shows an average of several rain events throughout the month of July at

the four tilt angles.

Figure 4.13: Light Rain ZDR averaging: Data for light rain (20-22 dBz) taken over
the course of several rain events throughout July, 2019. ZDR data taken near the
radar was binned by azimuth and averaged. At the higher tilts, 5 peaks can be made
out which likely correlate with the five panels that make up the radome.

There are several restrictions that need to be placed on these data sets to ensure

the quality of the data. ρHV should be limited to > .99 to restrict range bins to purely

rain drops. Additionally, to limit effects of differential attenuation, we will restrict
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range to a maximum distance of 5 km. These are comparable restrictions to those in

Ventura et al [6].

4.2.4 Results

Shown in Fig 4.14 is a storm on 19 May, 2019. the uncorrected data has windmill-

like pattern aligned with radials of the radar. This can be attributed to the peaks/troughs

we see in the calibration data set when applying corrections, the patterns are resolved

and a ZDR plot that is more consistent with reflectivity data is the result.

Figure 4.14: Corrections Applied to ZDR Data at 4 deg tilt: In top left, uncorrected
ZDR data exhibits ”windmill” pattern suggesting azimuthal bias in system. After
applying PIA corrections as well as ZDR bias corrections (top right) the resulting
corrected data is displayed in bottom left. Note the corrected ZDR data is more
typical of what could be expected based on Reflectivity data shown in bottom right.
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Fig 4.14 helps see from a qualitative perspective how ZDR benefits from these

corrective measures. However to verify in a more concrete sense, can compare ZDR

against the corrected reflectivity using what’s known as membership functions (H.

Al-Sakka, et all [4]). Essentially these functions were developed to better understand

the relation between various radar products in different categories of precipitation.

For our purposes they will serve to illustrate that ZDR measurements have improved

as a result of the corrections illustrated above.

Membership Function ZDR = f(ZH) for X-Band

Figure 4.15: Reflectivity vs ZDR at X-Band (figure from Al-Sakka et al [4]): Shows
how Z relates to ZDR for various forms of precipitation. This thesis is interested
specifically in Z vs ZDR in rain (dark blue).

For UMAXX, one can see in Figure 4.16 that the corrected reflectivity factor and

ZDR data fits in well with the range provided by [4]. This compares well against the

uncorrected version of the data set and indicates that the calibrations performed for

both reflectivity factor and differential reflectivity aided in improving accuracy and

consistency of the data.
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Figure 4.16: UMAXX Reflectivity vs ZDR: Uncorrected shows a 2D histogram of
reflectivity factor vs ZDR before correcting for ground clutter, beam blockage, atten-
uation, differential attenuation, or ZDR bias. Corrected shows the same data set with
these corrections applied. Comparing both with expected results from 4.15 shows a
marked improvement.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis has outlined a path towards taking a previously uncalibrated, dual

polarized radar and using various techniques and tools to bring it to a point where it

can serve as a reliable system for monitoring meteorological events in the region. By

leveraging data available from the NEXRAD network, as well as various assumptions

that can be made about the geometric and physical phenomena that exist with ter-

rain and precipitation, the improvements were verified and quantified. With a more

concrete understanding of the observables recorded by UMAXX it can now serve its

purpose to be used as a reference for Raytheon’s SKYLER, as well as aid NWS as

it seeks to bolster its ability to monitor meteorological events in the Pioneer Valley

region.

While the techniques outlined here aid to calibrate the system and remove biases,

there is additional work that can be done to further solidify the integrity of the radar’s

measurements.

First, the scan time of 30 seconds per tilt limits our time available for processing.

This in turn has implications for the complexity and thoroughness of the decision tree

classifier. A deeper, more complex tree or perhaps an image classification approach to

detect clutter were computationally prohibitive if one wished the data to be streamed

in a consistent

Secondly, the methods of radiometric observations need to be improved in order

to implement the technique of using the microwave emission of the wet radome to

calculate the resulting attenuation value. Additionally, if proven effective, using the
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radar as a radiometer to monitor the attenuation of a wet radome will require ad-

ditional modifications to the system. Typically, in the operation of a radiometer,

frequent calibration is employed to maintain the integrity of its measurements. As

the radar stands now, the calibration procedure is not consistent and is unstable. It

would be worthwhile to consider using a stable noise source to frequently reference

so as to correct for drift in the system. Additionally, the signal processor takes the

median of the final 10 range bins along a given radial. By increasing the number of

samples, one can diminish error in attenuation. One method of doing this is to have

a pulse with Transmit off. This has the effect of essentially reducing the dwell time

of the radar in lieu of increasing precision of attenuation calculations.

Also, the φDP attenuation coefficients meant to correct for attenuation in reflec-

tivity factor and differential reflectivity were determined and confirmed in differing

climates and at different frequencies than UMAXX. While it is confirmed here that

the coefficients provided serve to improve the measurements, it could be worthwhile

to investigate these values and see if some optimal coefficient could be reached that

is uniquely determined for this system and in this region. This could either be done

by deriving a coefficient, a independently or by simply adjusting a over many data

sets to some optimal value.

Finally, the methods outlined in this thesis generate tables of correction values and

system biases to be referenced during the radar’s operation. As the radar is subject

to seasonal changes, degradation, and other sources of drift, these tables may lose

their validity. Implementing a system of more frequent calibration and monitoring

for significant drifts in the data could serve to ensure consistency and accuracy of

UMAXX’s measurements through the years.
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