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Abstract 
 

Nearly 1 billion people around the world experience intermittent water supply (IWS), including about 

70% of residents in the Mexico City area. Households with IWS often rely on multiple sources of water to 

meet their needs, including municipal piped water, trucked water, and rainwater. When calculating water 

costs and reliability of supply, models of these systems must account for household decision-making 

regarding the volume of water to use from each different source each day. Modeling these household 

decisions (or “control policies”) is challenging, especially when households use rainwater as a water 

source, due to the complexity of the input variables involved (e.g. intermittent water schedule, season, day 

of week), but is critical to understanding the role that household-level interventions, such as household 

storage and rainwater harvesting, may play in water access. Universal approximators provide a solution to 

this challenge by allowing for flexible shaping of these control polices. This study uses Radial Basis 

Function Networks to determine optimal household water management decisions, maximizing reliability 

of water supply while minimizing costs for an arbitrary household in Mexico City. The model design is 

informed using data collected during interviews with households in the city. The model produces Pareto-

optimal solution sets that demonstrate which household-level investments are most effective for 

improving the reliability of water access. Results show that household storage tanks are a critical 

component of water access, especially in households with very low access to the municipal piped water 

supply. A tank volume of around 1500-2500 liters can provide most of the savings, depending on the 

availability of municipal water, although a larger tank is better able to collect rainwater. IWS households 

with sufficient storage are able to meet their water needs with piped water nearly as reliably as those with 

continuous water supply, as long as a minimal threshold of water is delivered. When household storage is 

limited, households are more vulnerable to disruptions in the piped network, and costs increase if supply 

is not delivered consistently. Rainwater harvesting systems are shown to be economically viable at the 
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household level regardless of the frequency of municipal piped water service. The techniques presented in 

this study are a crucial step in modeling water resources in cities with IWS. 
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Introduction 
 

Nearly 1 billion people around the world are affected by intermittent water supply (IWS), in which 

consumers are supplied with fewer than 24 hours/7 days per week of piped water supply (Bivins et al., 

2017). Households lack continuous piped water service due to scheduled water rationing or insufficient 

water pressure. The number of people impacted by IWS is expected to increase with global urbanization 

trends (United Nations, Department of Economic and Social Affairs, Population Division, 2019; WHO & 

UNICEF, 2015) while the average number of hours of piped municipal water supply available to urban 

households decreases (van den Berg & Danilenko, 2010). This impact will likely be much greater in low- 

and middle-income countries, where IWS systems are especially common (van den Berg & Danilenko, 

2010). Water provided through IWS systems is often of worse quality than water provided by continuous 

water supply (CWS) systems (Coelho et al., 2003; Elala et al., 2011; Kumpel & Nelson, 2016; Tokajian 

& Hashwa, 2003). Bivins et al. estimate that IWS systems may be responsible for 17.2 million infections 

and cause 1560 deaths each year worldwide when compared to CWS systems (Bivins et al., 2017). 

Households have adapted to IWS systems in a variety of ways, including household water storage and 

diversifying water supply portfolios.  

Households have invested in water storage for when piped water is unavailable including expensive 

underground cisterns, rooftop storage tanks, large buckets, or even an assortment of small storage vessels 

(Abubakar, 2018; Choe et al., 1996; Galaitsi et al., 2016; Guragai et al., 2017; Gurung et al., 2017; 

Majuru et al., 2016; Pattanayak et al., 2005; Vásquez, 2012; Zérah, 2000). Storage capacity varies widely, 

and is often correlated with household income: wealthier households tend to have larger, more permanent 

water storage while more socioeconomically disadvantaged households are often limited in storage 

capacity (Gulyani et al., 2005; Majuru et al., 2016; Pattanayak et al., 2005; Vásquez, 2012). Vásquez 

found that household storage investments in León, Nicaragua were primarily driven by households’ 

perceptions of their water reliability, although home ownership and income were also significant 
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(Vásquez, 2012). Although previous studies have shown storage to be ubiquitous in areas with IWS, its 

role in users’ water access is not well understood.  

In addition, water storage allows households access to multiple sources of water. Households often 

expend both time and money obtaining water from alternate sources such as water trucks, private wells or 

boreholes, bottled water, or rainwater (Majuru et al., 2016). Water delivered by tanker trucks has become 

a significant source of water in both Mexico City (Monserrat Iliana Gómez-Valdez et al., 2016; 

Kimmelman, 2017; Lerner et al., 2018; Tortajada, 2006) and other communities served by IWS 

worldwide (Fuentes-Galván et al., 2018; Galaitsi et al., 2016; Guragai et al., 2017; Gurung et al., 2017; 

Klassert et al., 2015; Londhe et al., 2004; Whittington et al., 1991; Zozmann et al., 2019). Water trucks 

deliver bulk volumes of water directly to residents’ homes, often at a much higher cost than the municipal 

piped network. In Mexico City, there have been reports that trucked water deliveries may take up to 30 

days and require residents to pay drivers a bribe (Kimmelman, 2017). Along with purchasing water in 

bulk, residents with IWS often purchase small volumes of purified, bottled water for drinking, since IWS 

water is often of poor quality (Coelho et al., 2003; Elala et al., 2011; Kumpel & Nelson, 2016; Tokajian 

& Hashwa, 2003). 

Rainwater harvesting has recently been touted as a solution to Mexico City’s water challenges (Chelleri et 

al., 2015; Garcia, 2016; Grabinsky, 2019; Valdez et al., 2016) and water scarcity in other cities 

(Campisano et al., 2017; Grant et al., 2013; Luthy et al., 2019; Yannopoulos et al., 2017) and can provide 

benefits at both the household and community level. Decentralized water sources like rainwater 

harvesting increase resilience and reliability of water supply at the household level (Chelleri et al., 2015). 

Rainwater harvesting gives households access to a low cost water source, although the financial viability 

of sophisticated rainwater collection systems at the household level has been contested (Concha Larrauri 

et al., 2019; Kumar, 2004; Rahman et al., 2007; Roebuck et al., 2011). At the community level, rainwater 
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harvesting reduces stress on the centralized water system and provides conservation benefits in water-

stressed areas where water supplies may otherwise come from an ancient aquifer or other non-renewable 

water source. Rainwater harvesting can delay the need for communities to build new infrastructure and 

may provide flood control (Campisano et al., 2017).  

Adaptations to IWS, such as investing in storage or alternative water sources, place significant financial 

burdens on households. The additional costs incurred by households with IWS, often called “coping 

costs,” often amount to a per-liter cost that is much more expensive than a household’s bill for piped 

water (Majuru et al., 2016; Pattanayak et al., 2005; Zérah, 2000). Households with IWS also often incur 

time-related coping costs, since household members may need to spend time waiting for water service to 

fill storage containers, and may also need to spend time procuring alternative water sources, potentially 

forcing them to miss out on educational or employment opportunities outside of the home (Burt & Isha, 

2014; Majuru et al., 2016; Zérah, 2000). Since this burden falls disproportionately on women, IWS 

systems exacerbate inequities in household tasks (Majuru et al., 2016). The goal of a significant portion of 

previous work in IWS systems has been to estimate these coping costs and use them as a proxy for 

households’ willingness-to-pay for improved piped water service (Majuru et al., 2016).  

Previous research on household-level water use and consumption generally considers only a household’s 

“primary” source of water rather than assessing all of a household’s water sources together (Coulibaly et 

al., 2014; Elliott et al., 2017, 2019; WHO & UNICEF, 2018). Even in previous research on IWS systems, 

where it has been demonstrated that households are likely to cope by using alternative sources of water 

and storage tanks, typically only the main piped source of water is examined. By limiting the focus to a 

single source of water, previous literature misses important nuances in water consumption patterns. For 

example, Andey and Kelkar (2009) use water meter data to explore changes in consumption of piped 

water in four Indian cities under intermittent water supply that then switched to continuous water supply 
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without considering alternative water supply sources, such as water trucks, which have been shown to be 

of growing importance in the region (Londhe et al., 2004).  

When households have multiple sources of water, the reliability of their water supply is dependent not 

only on the availability of the municipal water supply, but also on the cost and availability of other water 

sources and the household’s decisions about managing their water storage and supply options (Galaitsi et 

al., 2016; Rosenberg et al., 2008). Therefore, representation of household water reliability requires 

representation of the human decision process for selecting and managing multiple water sources with 

alternative prices and availability (Shelton et al., 2018). 

Modeling IWS and Multiple Water Sources 
 

Previous models of IWS and multiple water source systems have been limited. Coulibaly et al. estimate 

water demand for a community in Jordan with multiple water sources using a combination of economic 

models: probability models to determine if a household will purchase a water source or not, and an 

Almost Ideal Demand System model to determine how much water they will purchase from each source. 

They found that demand for piped water becomes more elastic as water alternatives became available, 

signaling that the price of municipal piped water may be more price-constrained than previously thought 

(Coulibaly et al., 2014). Taylor et al. used customer demand satisfaction rate, source water availability, 

customer demand, and leakage to create an analytical model of the average behavior of an IWS system, 

calibrated with data from four actual distribution systems. Notably, their model did not consider water 

costs, unlike many other IWS models, but rather focused on water volume delivered. They found that 

satisfied customer demand was a local optimum for utilities, possibly explaining the persistence of these 

systems. They also suggest that demand satisfaction may be a useful metric for quantifying equity in IWS 

systems (Taylor et al., 2019). Baisa et al. attempted to quantify the social costs of water service 

uncertainty. They modeled water consumption for households in an IWS system in Mexico City assuming 
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two water sources: IWS-constrained piped municipal water and an unlimited, expensive alternative (e.g. 

trucked water). In their model, households tailored their water consumption and usage to how much water 

they had available, resulting in misallocation of water supplies (e.g. one household in desperate need 

while a nearby household used water frivolously). Their results showed that many of the costs and 

inefficiencies from IWS can be eliminated by normalizing the piped water delivery schedule so all IWS 

households receive water at the same regular, equally-spaced intervals (Baisa et al., 2010). Rosenberg et 

al. (2007, 2008) modeled an IWS system in Amman, Jordan, using stochastic optimization, where costs 

are minimized for a set household water delivery. They identified household-level interventions (e.g. 

installing water-efficient appliances, fixing leaks, modifying water use behaviors, installing storage, etc) 

that were able to provide households with sufficient water supply at the lowest cost. Their results showed 

the importance of demand management and water conservation programs (Rosenberg et al., 2007, 2008).  

All of these reviewed models relied on municipal piped water consumption data to simulate real 

households, data that is often lacking or incomplete in IWS systems. Additionally, all considered IWS 

communities in aggregate rather than assessing the interests of each individual household; the city-wide 

optimal solution is not necessarily the same as the household optimal. Finally, only Rosenberg et al. 

consider rainwater harvesting; the variability of rainwater availability means that water purchasing 

decisions must be dependent on the past rainfall and the household’s capacity to store water, requiring 

daily decisions based on the state of the model. We develop a model that does not require previous 

household water purchasing data and instead only requires input data about the costs and volumes of 

water sources available to the household. Rather than aggregating water supply across an entire region, 

our model results show an individual household’s economically optimal water purchasing decisions and 

investments. Additionally, we model rainwater harvesting and household water storage using a universal 

approximator (Radial Basis Function Networks) as a proxy for daily human decision making based on the 

current state of the system.  
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Universal approximators can be used to approximate the outputs of any unknown function, given enough 

“training” data. They are stand-in functions that use given input/output training data to predict outputs 

(Cybenko, 1989). Radial Basis Function Networks (RBFNs) are a type of universal approximator based 

on an artificial neural network, where radial basis functions are used as the “hidden layer” activation 

functions. Radial basis functions are a class of function where the output is a function of the distance 

(radius) from a given point (center). The output decreases (or increases) monotonically based on the 

distance from the central point.  The RBFN format provides more structure than a traditional artificial 

neural network by limiting model parameters to a radius around a constrained center point, giving a 

significant response only near the center point (Liao et al., 2003). They have been used widely in water 

resources predictive modeling to model flood forecasting, rainfall-runoff, and reservoir water quality 

(Jayawardena et al., 1997; Lin & Chen, 2004; Tatar et al., 2015); in these cases, RBFNs require previous 

input/output data (e.g. past flood level, rainfall-runoff, or water quality data) to train the network. Recent 

applications have also demonstrated their efficacy in identifying optimal control policies – management 

decisions such as storage-release decisions (Giuliani et al., 2016). In these applications, the model is not 

trained on previous output data, but rather trained to find optimal outputs for the current state of the 

system. Universal approximators such as RBFNs are a flexible way to parameterize control policy for 

these multiobjective applications. Giuliani et al. (2014) demonstrated the utility of RBFNs in determining 

optimal reservoir releases. Quinn et al. (2017) applied RBFNs to identify pollution control policies for 

phosphorous release decisions in a shallow reservoir. These diverse applications demonstrate the 

versatility of RBFNs to use information on the state of a system (e.g. water level in storage tank) to 

determine an output decision (e.g. buying trucked water). 

The objective of this study was to determine the implications of household-level investments (e.g. 

rainwater harvesting, storage tank size) on water supply reliability for households with IWS. We develop 

a novel model of household-scale water management that can be generalized to investigate household 
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water supply reliability and coping costs for households with IWS that use multiple water sources. To 

accomplish this, we used a novel method of RBFNs as a proxy for human decision making. Using this 

approach, we determine optimal water purchasing and storage investments for households in Mexico 

City. Interviews were conducted with households in areas of the city with IWS to identify a range of 

water source availabilities and to ensure the model can accurately represent reality for households.  

Materials and Methods 
 

Study Site  
 

The Mexico City Metropolitan Area (MCMA) is home to more than 20 million people as of 2018 (United 

Nations, 2019). Less than 30% of MCMA residents receive continuous piped water service (Sistema de 

Aguas de la Ciudad de Mexico (SACMEX), 2014); the remaining households are supplied with IWS. 

Municipal water is usually delivered based on a weekly schedule (tandeo), however deliveries in some 

parts of the city may be erratic (Baisa et al., 2010). Households in the MCMA have various types of water 

storage containers at their homes to store water for household uses (e.g. laundry, sanitation) for periods 

when piped municipal water is unavailable, including cisterns (underground tanks, typically 1000 liters or 

more), tinacos (smaller tanks, typically on rooftops and around 500-1100 liters), tambos (plastic drums, 

typically 100-200 liters), and/or large buckets (Monserrat I. Gómez-Valdez et al., 2015). In addition to 

helping residents cope with unreliable piped water deliveries, household storage also provides residents 

with alternative water options, including ordering bulk water from water trucks (pipas), capturing 

rainwater, or drawing water from springs or shallow groundwater (Tortajada, 2006). Water trucks may be 

either supplied by the city (public pipas) or owned by private companies for profit (private pipas). Private 

pipas are much more expensive than the piped water network. Public pipas are free but may require long 

wait times or bribing a water truck driver (Kimmelman, 2017). The majority of residents of the MCMA 

rely on bottled or filtered water for drinking due to widespread perception that the municipal piped system 
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is unsafe to drink (Espinosa-García et al., 2015; Inter-American Development Bank (IDB), 2011; 

Tortajada, 2006). Households typically purchase and store this purified water separately from bulk water 

supplies in 20-liter jugs (garrafones) or individual water bottles (Inter-American Development Bank 

(IDB), 2011).  

Household Water Management Model 
 

Simulation Model. 
 

The goal of the model is to represent water purchasing, storage, and consumption for an arbitrary 

household in Mexico City. This is accomplished via multi-objective optimization using a RBFN. The 

simulation model uses RBFN decisions and other inputs to output the optimization objectives: cost and 

reliability (Figure 1).  

 

Figure 1. Model schematic.  A multi-year simulation uses RBFNs to make daily decisions regarding volume of 

water to purchase from trucks and the piped network based on the current state of the simulation model. These water 

volumes, along with rainwater, are modeled as storage. Consumption and spill are accounted for. The simulation 

model determines total costs and reliability which become objectives in the optimization. The optimization model 

decision variables are the RBFN parameters. The final model (after optimization) represents a household making 

optimal purchasing and storage decisions.  

Water Sources: 
1. Rain 

3. Piped Water 

2. Trucked Water 

Consumption 

Storage 

RBFN 

Optimizer 

Input Variables: tank volume, date  

Decision variables: RBFN parameters 

Outputs: 

Cost, Reliability 

Simulation 
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 In the simulation model, the RBFN decisions are constrained by the availability of piped municipal water 

according to the household’s IWS schedule and the minimum required trucked-water delivery (the 

minimum volume of piped water that must be purchased in order for the truck driver to make the 

delivery). We calculated the volume of rainwater harvested using roof area and a standard loss factor 

(Abdulla & Al-Shareef, 2009). The household’s daily consumption is either the target consumption (if 

sufficient water is available), or else the remaining stored water. The total volume of water that can be 

stored at one time is constrained by the household’s storage tank size; any excess water is subtracted as a 

spill factor. The simulation model is run for the life expectancy of a storage tank, which is estimated to be 

twelve years (Inter-American Development Bank (IDB), 2011). The full details of the simulation model 

can be found in the Supporting Information.  

The household water context in the MCMA is complex and nuanced (Romero Lankao, 2010; Tortajada, 

2006) so simplifications were introduced to create this model. We consider only three water sources: 

piped water, trucked water from privately owned pipas, and rainwater. Piped water was chosen since it 

was the most common water source. Although use of city-supplied public water trucks is common, this 

source was neglected since its main costs are time-related costs and this model considered only financial 

costs; therefore, trucked water from privately owned trucks were used to represent all trucked water. 

Finally, rainwater, while not a common water source, was included as it has been touted as an important 

part of Mexico City’s water future (Chelleri et al., 2015; Garcia, 2016; Grabinsky, 2019; Valdez et al., 

2016). Bottled and filtered water were not modeled, since they are stored separately from the other water 

sources (i.e., not in a bulk storage tank). Although households may have multiple water storage tanks for 

different types of water, we modeled only total storage volume (assuming all water sources are stored 

together). 

Optimization Model: Management Objectives. 
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The simulation model of the household provides the optimization with its objectives: to maximize 

reliability of water supply and minimize cost (Equation 1). 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑀𝑖𝑛(𝐶𝑜𝑠𝑡, (1 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦))       (1) 

Reliability is defined as the probability that the system is in a satisfactory state (Hashimoto et al., 1982). 

Here, the satisfactory state is when the daily household consumption target is met (Equation 2). Since the 

optimization was a minimization, we used unreliability as the objective. 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃𝑟𝑜𝑏(𝑉𝑡𝑎𝑟𝑔𝑒𝑡 ≤ 𝑉𝑐𝑜𝑛𝑠𝑢𝑚𝑒)        (2) 

In this equation, the household consumption target volume (Vtarget) is the product of the household size 

and per capita consumption, while Vconsume is the volume of water that is actually consumed that day.  

The second objective, cost, is equal to the net present value of annual costs associated with each water 

source and the infrastructure investments for the household (piped water, trucked water, tank investment, 

and rainwater harvesting investment) summed over the length of the simulation (Equation 3)  

𝐶𝑜𝑠𝑡 = ∑
𝑉𝑚𝑢𝑛𝑖,𝑦∗𝐶𝑚𝑢𝑛𝑖

(1+𝐷)𝑦 +
𝑉𝑡𝑟𝑢𝑐𝑘,𝑦∗𝐶𝑡𝑟𝑢𝑐𝑘

(1+𝐷)𝑦 +  

𝐶𝑡𝑎𝑛𝑘
𝐿𝑡𝑎𝑛𝑘

+𝐶𝑀𝑡𝑎𝑛𝑘

(1+𝐷)𝑦 +  

𝐶𝑟𝑎𝑖𝑛
𝐿𝑟𝑎𝑖𝑛

+𝐶𝑀𝑟𝑎𝑖𝑛

(1+𝐷)𝑦
𝐿
𝑦=1     (3) 

 

where D is the discounting rate; Vmuni,y  is the total volume of piped municipal water for year y as 

determined by the RBFN decision; Cmuni,y is the per-liter cost of city water; Vtruck,y is the RBFN-

determined volume of water supplied from water trucks for year y; Ctruck is the cost per liter of trucked-

water; Crain is the cost of a rainwater harvesting system investment; Ltank is the expected lifespan of the 

storage tank; Lrain is the expected lifespan of the rainwater harvesting system; CMtank is the annual tank 

maintenance cost; and CMrain is the annual rainwater harvesting system maintenance cost. Ctank, the cost 
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of a water storage tank investment (Equation 4) was derived as a linear function using observed tank 

volume (Vtank) cost data from Mexico City (Isla Urbana, n.d.).  

𝐶𝑡𝑎𝑛𝑘 = 2.0621 ∗ 𝑉𝑡𝑎𝑛𝑘      (4) 

 

RBFN Model: Water Supply Decisions.  
 

Our model uses two RBFNs: one to determine the volume of water to purchase from the piped municipal 

system and one to determine the volume from trucked water. Both decisions are based on the current state 

of the model (i.e. current volume of water stored, day of the week relative to IWS schedule, and day of 

the year to account for rainfall seasonality).  

Equation 5 shows the decision equation (RBFN) as a function of the sum of the individual radial basis 

functions (RBFs), where ut
k is the output decision (the volume of water purchased from water source k on 

day t) and N is the number of radial basis functions, ϕi(Xt). The weight of each RBF, wi,k determines its 

importance in the overall decision. Each decision function contains N number of RBFs. The weight of 

each RBF determines its importance in the overall decision. Weights must be positive and sum to one 

(Giuliani et al., 2014). 

𝑢𝑡
𝑘   = ∑ 𝑤𝑖,𝑘  𝜑𝑖(𝑋𝑡)𝑁

𝑖=1           (5) 

Equation 6 is the actual RBF, here we use a Gaussian function where M is the number of input variables 

Xt. For each input variable ci,j represents the center of the function, constrained by 𝑐𝑖 ∈ [−1,1], and be,j 

represents the radius, constrained by 𝑏𝑖 ∈ (0,1] (Giuliani et al., 2014).  

𝜑𝑖(𝑋𝑡) = 𝑒𝑥𝑝 [− ∑
((𝑋𝑡)𝑗−𝑐𝑖,𝑗)2

𝑏𝑗,𝑖
2

𝑀
𝑗=1 ]                (6)  
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Each of the RBFNs in our model contains two radial basis functions; we found that two functions were 

sufficient to determine optimal purchases and limiting the RBFNs to two functions reduced the number of 

decision variables and the computation time. The RBFN decisions are based on four input variables (Xt): 

current volume of stored water, day of the week relative to IWS schedule, sin(2πT/365), and 

cos(2πT/365) where T is the numerical day of the year. These last two are a method of representing 

seasonality (Pianosi et al., 2011), a critical factor to include since rainfall in Mexico is highly seasonal.  

The decision variables for the optimization model are the parameters of the RBFNs (wi,k for each RBF, 

and ci,j and be,j for every input variable in every RBF for a total of 36 decision variables). Additionally, 

storage tank size is included as a decision variable in some runs of the model (total of 37 decision 

variables) so that the models output the optimal storage tank size. 

RBFNs were trained over a 12-year simulation period using historical rainfall data for a gauge in 

Iztapalapa from 2006-2017 from Mexico City’s water utility, SACMEX (Sistema de Aguas de la Ciudad 

de México). The Borg multi-objective evolutionary algorithm (Hadka & Reed, 2013) was used to identify 

approximate Pareto-optimal (non-dominated) solutions.    

Model Construction through Household interviews  
 

The model was informed by interviews with households in the MCMA. Responses were compared to 

input variable assumptions and used to confirm that the household model was able to accurately represent 

real-world situations in the MCMA. Between March and April 2019, we conducted sixteen semi-

structured interviews in three municipalities of the region – Álvaro Obregón, Iztapalapa, and Tláhuac – to 

elicit information on household demographics, water services, and household water infrastructure (Figure 

2). All participants in this study were adults over the age of 18 who lived in the selected municipalities for 

at least two years. We obtained informed consent from all participants (the study protocol was approved 

by the University of Massachusetts Amherst Institutional Review Board (IRB)).  
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Figure 2. Location of the study municipalities — Álvaro Obregón, Iztapalapa, and Tláhuac – shown in orange 

within the MCMA region. Other municipalities considered for the study shown in green (shapefile courtesy 

SACMEX). 

 

In pilot work and over the course of fieldwork, we developed a preliminary typology of water access 

(Kumpel et al., 2017) that grouped households according to their available water sources: 1) Piped water 

(piped municipal water is both accessible to the household and is their main source of water); 2) both 

piped and trucked water (piped water is accessible to the household, but they regularly use trucked water 

as well); 3) exclusively trucked water (piped water is not accessible to the household and they rely 

entirely on trucked water); and 4) households that lacked regular access to both piped and trucked water, 

but obtained these water sources by proxy. Households were recruited from each of the water access types 

to interview. The sample was not designed to be representative, but rather was intended to capture a range 

of household experiences with water supplies and water-related infrastructure. Notably, water supply 

varies throughout the year and therefore the timing of interviews affected how households were classified 

(i.e., households might belong to a one type during the dry season and another during the rainy season); 
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therefore, these classifications represent the situation that existed at the end of the dry winter season (in 

late March/early April) at time of the interviews.  

Service areas for household interviews were selected based on communication with local organizations 

and trucked water filling points (garzas) to understand services areas for network and trucked water. The 

second house on the street in a selected service area was approached. If that household was ineligible or 

refused to participate, we continued up the street until an eligible and willing household was recruited.  

Sensitivity Analysis  
 

A one-at-a-time (local) sensitivity analysis was performed on the model to determine which variables 

have the greatest effect on annual household costs. “Low” and “high” values were derived from both 

literature and interview results (Table 1). One variable at a time was changed to its extreme value while 

all other variables remain at their original value. The reliability was fixed so the model could output a 

single numerical value (annual household cost) to facilitate comparisons between low/high ranges. While 

this approach does not explicitly capture interactive effects between variables, it is useful for initial 

screening of their relative importance. These results were used to identify variables to study in more depth 

and the factors most affecting household costs.  

Table 1. Variable names and descriptions.  Values are given for the original model (with data sources referenced), 

interview results, and sensitivity analysis high/low ranges.  

Variable 
Name 

Variable Description 
Original Model 
Value 

Sensitivity 
Analysis Low 
Value 

Sensitivity 
Analysis High 
Value 

CTruck 
Per liter cost of Truck 
Water 

$0.25 MXN/liter (St. 
George Freeman et 
al., 2020) 

$0.05 
MXN/liter 

$0.80 
MXN/liter 

CMunicipal 
Per liter cost of 
Municipal Water 

$0.05 
MXN/liter(Sistema 
de Aguas de la 
Ciudad de Mexico 
(SACMEX), 2017) 

$0.003 
MXN/liter 

$0.09 
MXN/liter 

CRain 
Cost of Rainwater 
Harvesting System 

$8800 MXN(Isla 
Urbana, n.d.) 

$100 MXN $12900 MXN 
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CMtank 
Annual Tank 
Maintenance Cost 

$88 MXN (Inter-
American 
Development Bank 
(IDB), 2011) 

NA NA 

CMrain 
Annual Rainwater 
Maintenance Cost 

$88 MXN (Inter-
American 
Development Bank 
(IDB), 2011) 

NA NA 

Ltank 
Storage Tank 
Expected Lifespan 

12 years (Inter-
American 
Development Bank 
(IDB), 2011) 

NA NA 

Lrain 
Rainwater 
Harvesting Expected 
Lifespan 

12 years (Inter-
American 
Development Bank 
(IDB), 2011) 

NA NA 

D Discounting Rate 
0.1 (Coppola et al., 
2014) 

0.15 0.05 

Drain Depth of rainfall 
SACMEX Rain 
Gauge Data 

+20% -20% 

A 
Rainwater Collection 
Area 

75 m2 (Google & 
Instituto Nacional 
de Estadistica y 
Geografia (INEGI), 
2018) 

30 m2 
(Marosi, 
2017) 

500 m2 
(Concha 
Larrauri et 
al., 2019) 

LF 
Fraction of rainwater 
lost to collection 
inefficiencies  

20% (Abdulla & Al-
Shareef, 2009) 

NA NA 

P Household Size 
3.4 
people/household 
(INEGI, n.d.) 

1 10 

Vconsume Water Consumption 
110 
liters/person/day 
(INEGI, n.d.) 

15 380 

Vtank 
Volume of water 
storage 

Output, or 2500 L 500 L 5000 L 

Limtruck 
Minimum volume of 
water delivered by 
pipa 

200 L 50 L 2500 L 

R 
Flowrate of 
Municipal water 

500 L/hour 250 L 1000 L 

 

Model Scenarios 
 

Varying IWS Schedules and Household Water Infrastructure Investments 
 

The model produces the set of optimal (i.e. non-dominated) household water purchasing policies which 

maximize reliability while minimizing costs. We ran the model for various piped municipal water supply 

scenarios to compare households with different water situations. The scenarios shown in Table 2 were 
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selected based on typical household IWS schedules in Mexico City (Sistema de Aguas de la Ciudad de 

Mexico (SACMEX), 2006) and insights from the household interviews. 

Table 2. Municipal Piped Water Supply Scenarios 

Name Description 

Continuous Water 

Supply (CWS) 
24 hours of piped water, 7 days/week 

Medium IWS Schedule 12 hours of water, 1 scheduled day/week 

Low IWS Schedule 4 hours of piped water, 1 scheduled 

day/week 

No Piped Supply No piped water is available 

Random IWS Supply 
4 hours of piped water is delivered on one 

random day per week. Water delivery day is 

random for each model run. 

Split IWS Supply 
12 hours of piped water is delivered on two 

non-consecutive days: 6 hours on Monday, 6 

hours on Thursday. 

 

By targeting a reliability of 95% for each scenario, we can see the daily and seasonal breakdown of water 

sources output from the model and compare them to the household interview results. Costs at 95% 

reliability were modeled for the entire range of IWS schedules (from 2 hours/week to 168 hours/week) 

both with and without rainwater harvesting to explore how costs were affected by varying hours of piped 

supply, and to find IWS schedules where rainwater harvesting is optimal. Finally, we explore what factors 

drive model behavior. The one-at-a-time (local) sensitivity analysis was used to determine the factors that 

most affected coping costs, significant factors were explored in more detail. These tests provided insights 

into the role that individual households play in safeguarding their own water supply. Based on these 

results, household storage volume was explored in more detail.  

Results and Discussion 
 

Optimal household water storage and supply portfolios.  
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The Pareto front, which shows the set of non-dominated (optimal) solutions for modeled household water 

portfolios, demonstrates the trade-offs between annual household water costs and reliability of water 

supply. Logically, increased reliability is associated with increased cost across all water supply scenarios 

(Figure 3a). Daily volumes purchased from each water source for the Pareto-optimal solution where 

households experience a 95% reliability provide more insight into each scenario (Figure 3b-f). The 

continuous water supply (CWS) scenario and medium IWS scenario (12 hours of piped supply per week) 

have similar household cost/reliability trade-off curves: the medium IWS scenario is only slightly more 

expensive than CWS scenario, even though water is available only once per week. Households with CWS 

would purchase municipal piped water and collect rainwater (Figure 3b). Under the medium-supply 

scenario, households can still rely on only municipal-piped water and rainwater by investing in a 

sufficiently large storage tank to store enough piped water to last through the week, rather than 

purchasing trucked water (Figure 3c). Since the division of water sources remains the same as the CWS 

model under this scenario, the only additional cost to the household is a larger, more expensive storage 

tank.  

The curve for the low IWS scenario (4 hours of piped supply per week) is similar to the previous two until 

a reliability of 90%. At this point, the piped/rain water is insufficient and additional water must be 

purchased from water trucks to meet consumption needs, driving up costs considerably (Figure 3d). These 

results demonstrate that, as long as a sufficient total volume of piped water is delivered throughout the 

week, households can negate the coping costs of IWS by purchasing a larger storage tank; it is only when 

the total volume of piped water delivered per week is insufficient to meet a household’s total weekly 

needs that annual water costs increase drastically (Figure 4). This “sufficient” volume of water is around 

five hours of supply per week for an average sized household. Furthermore, when piped water delivery 

days are randomized (4 hours delivered on one random day per week), cost/reliability trade-off curve is 

not significantly affected (Figure 3e); household storage is able to compensate for uncertainty in 
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deliveries. The no-piped-water scenario is much more expensive than any other scenarios since 

households must purchase much more trucked water (Figure 3f). 

 

 
Figure 3. Household cost and reliability trade-off and optimal tank size for various scenarios a) Pareto fronts for 

various piped municipal water supply scenarios. Symbol shapes represent the different piped water supply scenarios 

and colors represent the optimal storage tank volume. Volume (L) obtained from each water source on each day 

throughout the year to achieve 95% Reliability for: b) Continuous Water Supply (CWS); c) Medium IWS (12 hours 

per week); d) Low IWS (4 hours per week); e) Random Low IWS (4 hours delivered on one random day per week); 

f) No municipal piped water available.  

 

 

 

     

     

     

    

     
 

 

a) 
b) 

c) 

d) 

95% Reliability 
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Figure 4. Annual cost of water supply for reliability of 95% at varying hours of municipal piped water supply. The 

low- and medium- IWS and CWS scenarios are marked on the graph with dashed lines. Costs for both with and 

without rainwater harvesting are included. The x-axis is truncated at 50 hours/week for clarify, but the costs are flat 

until the 168 hours/week (i.e. CWS). Error bars on Rainwater Harvesting data indicate a) the range of values for 

different rain gauges across Mexico City; b) range of values for different years of rainfall data.  

 

Seasonality and Rainwater Harvesting. Optimal water sources vary seasonally. During the rainy 

summer season, half of a household’s water needs could be supplied by rainwater. Under all three IWS 

scenarios considered, the other half can be met with piped municipal water (Figure 5a, c). However, 

rainwater can only supply about 5% of a household’s water during the drier winter months, most of which 
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comes from late spring or early fall rains on the edges of the rainy season. Households with CWS or a 

medium IWS schedule can supply the remainder of their water needs with piped municipal water (Figure 

5b). However, households with low IWS (Figure 5c) require trucked water to meet the remaining water 

needs during the dry winter months. Households with no access to piped water (Figure 5d) may be able to 

rely more on rainwater during the summer months than those with IWS since their optimal storage tank is 

slightly larger. Additionally, trucked water in this model is assumed to be available whenever and 

wherever it is needed, so these households may have more space in their storage tank for rainwater than 

IWS households that must use much of their storage for their piped water delivery 

 
Figure 5. Fraction of water provided by each source calculated for each scenario at 95% reliability for both summer 

(May-October) and winter (November-April) for four water-supply scenarios: a) CWS; b) Low Intermittent Supply 

Schedule; c) Randomized-Low IWS schedule; and d) No piped water scenario.  
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The model demonstrates that rainwater harvesting is economically optimal for every piped water supply 

schedule, including CWS (Table 3). This is especially significant since the model accounts for the costs of 

both the rainwater harvesting system investment and maintenance, and the increased cost of a larger 

storage tank. The cost savings are especially large for low IWS schedules where rainwater replaces more 

expensive trucked water (Figure 4). Although cost savings from rainwater harvesting vary in different 

parts of the city (Figure 4a) and throughout the years (Figure 4b) due to spatial and temporal rainfall 

variation, especially for low IWS scenarios, the annual water costs are always lower than the non-

rainwater harvesting scenarios.  

Table 3. Average annual water costs for households with and without rainwater harvesting for three piped water 

supply schedules. 

Schedule With 

Rainwater 

Harvesting 

($ MXN) 

Without 

Rainwater 

Harvesting 

($ MXN) 

Rainwater 

Harvesting 

Savings 

CWS 3350 3957 607 

Medium 3391 4123 732 

Low 4497 7521 3024 

 

Notably, rainwater harvesting may provide many community-wide benefits, such as decreased pressure 

on strained water supplies and flood mitigation potential (Chelleri et al., 2015; Grant et al., 2013; Luthy et 

al., 2019; Valdez et al., 2016) that are not considered in this model. However, the seasonal breakdown of 

water sources (Figure 5) demonstrates that even during the rainy summer season, rainwater can only meet 

about half of the average household’s needs (assuming a collection area of 75 m2), and during the winter, 

rainfall is virtually nonexistent. Therefore, although rainwater harvesting may save a household money 

and provide community-wide benefits, it must be part of a larger water resources plan. The rainwater in 

this model can also be used as a proxy for other water sources that require an initial investment but then 
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provide “free” water, such as water from springs or wells. These options are not as common in Mexico 

City, but are important water sources in other IWS communities (Majuru et al., 2016).  

Household Interviews: Sources and Storage 
 

The sixteen interviewed households reported using water sources generally in-line with the model 

structure: piped municipal water, trucked water (from private or publicly owned trucks), and rainwater. 

Households also purchased bottled or filtered water separately for drinking. Households with CWS (or 

sufficient IWS that were able to rely primarily on piped water) did not usually receive trucked water on a 

regular basis, although they did report occasionally purchasing trucked water during extreme events that 

interrupted piped water service, such as the earthquake in 2017. While piped, bottled, and filtered water 

were accessed year-round, households that used trucked water regularly often did so only for a few 

months during the dry season, a choice consistent with model results. More households in our sample 

than expected (5 of 16), reported using rainwater, primarily for cleaning or other hygiene-related 

activities. However, only one household had a formal rainwater harvesting system like that modeled here; 

most households collected rainwater in buckets. Use of rainwater was reported only for two to three 

months of the year during the rainy season, consistent with model results.  

The small scope and aim of the field data collection means the percentages of households that rely on 

each water source is not meant to be representative of the MCMA population, but rather to gain 

understanding of experiences with water supply and infrastructure to inform the model (Table 4). Survey-

based methods of measuring household water use are often inaccurate (Apoorva et al., 2018; Kumpel et 

al., 2017; Wutich, 2009) as households – particularly those with more continuous piped supply – often did 

not know the volume of water purchased from each source. Households with IWS were able to estimate 

the frequency that piped water was available to them and the volume they collected each time.  
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Of the fourteen households with some piped water supply, only five households paid bills based on a 

metered rate; two households were on a fixed monthly rate, and seven households received a waiver of 

payment or had irregular connections. Households reported that purchasing trucked water was 

significantly more expensive than the piped municipal water rate, although only one household was able 

to estimate their piped metered rate. Filtered and bottled water were significantly more expensive than 

other sources but were purchased in much smaller volumes since they were reportedly used almost 

exclusively for drinking and cooking and were not stored with the other water sources. While households 

did not report that rainwater incurred expenditures per liter, it did require investment and maintenance in 

a collection system, although few households were able to remember how much they spent on this. 

Households often stored rainwater separately from other water sources and reported using it for different 

purposes, although our model groups all storage together. One household with a formal rainwater 

collection system had had their system installed for free. Our model does not account for waived water 

fees or free rainwater harvesting systems and instead assumes that households must pay for all water 

sources and investments. However, at a system-wide level, water sources and investments that are 

subsidized must still be paid for by the society collectively, even if the cost burden is removed from the 

individual household.  

Households used a variety of infrastructure to store and transport their water (Table 3), often using more 

than one type of tank to store water. Many households shared at least one water tank with their neighbors, 

especially the larger and more expensive cisterns (notably different than our model’s assumptions) On 

average, the total storage volume that households reported having access to was 2300 liters (similar to the 

model’s optimal storage tank volume) although reported values ranged from 200 liters to 8,000 liters. 
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Table 4. Summary of results of household interviews.  Fraction of respondents using, average monthly volumes, and 

average costs of each water source are reported (top). Fraction of households using each type of storage 

infrastructure, average capacity, and costs (bottom). “n” reports number of interviewed households reporting data. 

 % of households 

using: 

Volume (L) Costs ($MEX) 

Water Source Water source 

regularly / sometimes 

per household 

per month  

 Per liter  Additional cost per 

delivery or 

collection ($MXN)  

 

Piped 88% 6017 (n=3)  0.006 (n=1) NA  

City-supplied Truck 

Water 

12% / 25% 8350 (n=3)  Free source $0.83 (n=6)  

Privately-owned 

Truck Water 

6% / 19% 3373 (n=3)  0.36 (n=3) None reported  

Bottled 25% 53 (n=4)  4.38 (n=4) 0 min (n=4)  

Filtered 88% 351 (n=14)  0.72 (n=13) 2.14 min (n=14)  

Rainwater 31% 8275 (n=2)  Free source None reported  

Spring NA% / NA% NA  Free source None reported  

Other 12% NA  NA -  

Infrastructure Storage Capacity per 

tank  

Capacity per 

household a  

Purchase Cost Installation Annual 

maintenance 

Cistern 44%  4000 (n=6) 2958 (n=6) 8333 (n=3) None reported 52.1 (n=7) 

Tinaco 75%  1496 (n=12) 1031 (n=12) 1475 (n=4) 767 (n=3) 25 (n=10) 

Tambo 62%  294 (n=10) 259 (n=10) 173 (n=7) None reported 90.8 (n=6) 

Bottle 94% 69 (n=14) - 53 (n=11) None reported Not Relevant 

Pump 44%  1 (n=5) - 1700 (n=4) None reported 175 (n=1) 

a – 4 households shared cisterns, 5 households shared tinacos, and 2 shared tambos; this shows the adjusted volume per household after 
accounting for sharing. 

 

In general, the per-liter costs of each water source used in the model were very similar to values reported 

in the interviews for households that paid a per-liter rate; the biggest discrepancy was the number of 

households who reported receiving water for free or a flat fee. Installation costs and expected lifespans 

were hard to obtain, since interviewed households did not know how much they paid for their 

infrastructure installation and were not sure how long they expected it to last. Reported household sizes 

were higher than the 3.4-person average reported in the Mexican Census (INEGI) which was expected 

since the interviews targeted households in areas known to have IWS, which are expected to be less 

affluent, more densely populated parts of the city.  
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Drivers of Household Water Costs 
 

To identify the greatest drivers of household water costs, the difference in average annual household costs 

(for 95% reliability) between the “base” case and variable high and low ranges was determined with a 

one-at-a-time (local) sensitivity analysis (Figure 6). Results are shown for both the low IWS scenario (4 

hours/week of piped water supply) and the medium IWS scenario (12 hours/week). The CWS scenario 

analysis is similar to the medium IWS scenario since their water sources are the same. 

 

 Figure 6. One-at-a-time (local) sensitivity analysis results. One factor at a time was changed to an extreme value 

while the others were kept at the baseline value. Reliability was set to 95% and an average annual cost was output. 

The annual cost difference between baseline scenario and adjusted parameters are shown for the medium IWS 

scenario (12 hours per week) and low IWS scenario (4 hours per week).  
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Due to a lack of data typical in IWS settings, there were several model variables for which it was difficult 

to find reliable empirical estimates (including trucked-water minimum delivery volume, rainwater 

harvesting and storage tank installation costs, per liter trucked-water costs). Sensitivity analysis results 

show that many of these variables had a minimal effect on annual costs, although a few (such as per liter 

trucked water costs) did change model results significantly. Some variables became more or less 

significant depending on the household’s water piped water supply schedule: for example, per liter 

trucked water costs affected annual household costs more under low IWS than medium IWS. These 

results demonstrate that better data is critical to building accurate water models, especially in IWS areas 

where water costs/reliability depend on multiple factors. A household survey similar to our household 

interviews but at a much larger scale could provide much needed insights into the MCMA area and allow 

for accurate modeling of water resource.  

Sensitivity analysis results show that the costs of coping with IWS tended to be driven by household 

characteristics such as total household consumption (per capita consumption and household size), storage 

capacity, and roof area, although water distribution system characteristics (such as available hours of city 

water supply, piped water rates, and piped water flow rate) also greatly affected coping costs. Based on 

these results, two household characteristics were selected to be explored in more detail in the next section: 

household water consumption and storage tank volume.  

Household water consumption. In our model, average household size and per capita water 

consumption were multiplied to determined average daily household water consumption. However, 

interview results showed that both household size and per capita consumption varied significantly 

between households. In Figure 7a we examine varying per capita water consumption (varying household 

size would show the similar results, since both are directly related to daily household consumption) for 

both medium and low IWS scenarios with and without rainwater harvesting. Results show that once 

DocuSign Envelope ID: 3F0D957B-51D2-42AE-9AE7-C1921FE89C34



28 
 

consumption increases past the point where piped water can meet the household’s needs, costs increase at 

a faster rate since more expensive water sources are required at this higher level of consumption. This 

inflection point varies between IWS schedules and rainwater harvesting decisions, but is between 70-120 

liters per capita per day for a household size of 3.4 people. This inflection point is also dependent on the 

piped water flow rate; lower flow rates will require more hours of supply to meet household needs. IWS 

is often accompanied by low water pressure that is variable between neighborhoods, so it is important to 

account for water pressure when measuring water supply (Galaitsi et al., 2016; Guragai et al., 2017; 

Majuru et al., 2016). Additionally, households with IWS often reserve water-intensive activities (e.g. 

doing laundry, washing floors, etc) for days when water supply is turned on (Majuru et al., 2016), 

however we were not able to find any data quantifying how much these water use decisions affected daily 

water consumption. Therefore, this demand management was not accounted for in the model; target water 

consumption was assumed to be constant. Incorporating demand management into the model would allow 

total water consumption to increase without increasing costs as much, especially for IWS schedules with 

many hours of supply on one day per week. 

Household storage capacity. Although the model is able to output the optimal storage tank size, the 

household interview results showed that many households have limited access to storage and so are not 

able to rely on their optimal storage volume. Storage tank volume was set to a range of fixed values to 

represent these households with limited access to storage (Figure 7b). Although Figure 3a showed 

optimal storage volumes of up to 8000 liters, Figure 7b shows that most of the cost-saving benefits can 

be met with much smaller tanks (around 2500 liters); although very large tanks are the optimal since 

they allow households to harvest more rainwater, a 2500 liter tank will lower costs nearly the same 

amount. Larger tanks can lower costs especially for households that receive plenty of piped municipal 
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water or harvest rainwater. Households with less available piped water or without rainwater harvesting 

have slightly smaller optimal tank volumes since they have less available cheap water to store. 

 

 
 

 
Figure 7. Coping costs at 95% reliability for varying household characteristics. a) Per capita consumption. The 

vertical lines represent common water consumption benchmarks: the WHO minimum recommendation (Howard & 

Bartram, 2003), the Mexico average (INEGI, n.d.), and the US average (Dieter et al., 2018); b) Limited storage 

volume. Increasing storage volume can lower annual costs, but savings plateau once all the water needed for the 

week can be stored. Vertical line shows the average storage volume reported by households through interviews.  
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When households are limited to very small tanks their water costs rise considerably, since if they are not 

able to store enough piped municipal water they must turn to alternative, expensive sources to get through 

the week. The effects of an extremely limited storage volume of 500 liters were explored for various 

delivery scenarios (Figure 8). When storage is limited to this volume, the total hours of piped delivery 

matter less than the water delivery schedule. Medium and low IWS schedules produce very similar 

results, although with sufficient storage we know that the medium scenario is much cheaper, since all of a 

household’s needs can be met with piped water. When storage is limited, however, households may need 

to purchase trucked water even if they receive enough piped water supply throughout the week (Figure 

8b,c). When sufficient storage is available, uncertain delivery times do not affect costs (Figure 3). 

However, when storage is limited, an IWS schedule with random delivery days does increase household 

costs, since households cannot plan ahead as well and cannot rely on storage as a buffer (Figure 8d). 

When the 12 hours of delivery per week are split and delivered on two non-consecutive days (e.g. 6 hours 

on Monday and 6 hours on Thursday) the costs of water delivery are greatly decreased (Figure 8e). For 

households with limited storage volume, water utilities can optimize the household’s use of piped water 

and decrease their costs by supplying water on more non-consecutive days for shorter durations without 

changing the total volume of water delivered per week. 
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Figure 8. Household cost and reliability trade-off under a set, limited storage volume of 500 liters. a) Pareto front, 

symbol shapes represent the different water supply scenarios. Volume (L) obtained from each water source on each 

day throughout the year to achieve 95% reliability for: b) Medium IWS (12 hours per week); c) Low IWS (4 hours 

per week); d) Randomized-Medium IWS (12 hours delivered on one random day per week); e) Split-Medium IWS 

(6 hours of supply delivered on Monday plus 6 hours of supply delivered on Thursday). The CWS scenario (with 

unlimited storage) is plotted in a) for reference. 

 

The seasonal breakdown of water sources changes significantly when storage is limited. Much less 

rainwater harvesting is possible with such a small tank volume (it can provide only around 10% of 

summer water sources), so there is less seasonal variation in optimal water sources (Figure 9). The 

breakdown of water sources is essentially the same for medium and low IWS schedules when storage is 

so limited; the limiting factor is no longer hours of water supply but rather ability to store piped water 
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(Figure 9a,b). A random IWS delivery schedule also has a much bigger impact on household water supply 

when storage is limited, especially during the winter when over 75% of household water must be 

purchased from water trucks, since they are not able to store sufficient piped water and may have to wait 

nearly two weeks between deliveries (Figure 9c). However, when the 12 hours of weekly water delivery 

are delivered on two non-consecutive days, households can make better use of their small storage 

container and can use nearly twice as much piped water and about one-third less trucked water (Figure 

9d).  

 
 

Figure 9. Fraction of water provided by each water source seasonally when storage was limited to 500 L calculated 

for each municipal piped water scenario at 95% reliability for both summer (May-October) and winter (November-

April) for four water-supply scenarios: a) Medium IWS schedule); b) Low IWS schedule; c) Randomized-Medium 

IWS schedule; and d) Medium IWS schedule split between two nonconsecutive delivery days.  
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Conclusion 
 

Our model reveals several implications for water management in IWS cities. First, cities can drastically 

lower residents’ water costs by focusing on delivering a “sufficient” total weekly volume of piped water. 

Our model finds that this is around five hours of supply per week at a flow rate of 500 liters/hour for an 

average sized household that consumes the Mexico per capita average of water. However, this minimum 

required delivery ranges widely based on household size, per capita consumption, and water delivery 

pressure; households with more people and lower water pressure require more hours of supply. This is 

consistent with the recommendation by Taylor et al. that demand satisfaction be used as a metric of IWS 

(Taylor et al., 2019). By focusing on delivering enough water to meet household demand (or at least a 

minimum “sufficient” water volume) cities can make IWS more equitable. 

Secondly, the model demonstrates the importance of household water storage. With sufficient storage, 

households can mitigate the coping costs and uncertainties associated with low IWS schedules, 

unscheduled delivery days, and temporary water shortages. Storage also allows households to harvest 

rainwater, an essentially “free” water source. Storage of 2500 liters is enough to gain most of the benefits 

of storage, although more rainwater can be collected with a tank up to 8000 liters. When households have 

limited access to storage, either due to financial or space constraints, the total number of hours of piped 

delivery has less of an effect on water reliability than the delivery schedule. Water utilities can help 

households with limited access to storage by splitting water deliveries up to nonconsecutive days to allow 

these households make better use of their storage and keeps costs low. However, household storage has 

several drawbacks. First, extensive research has shown that microbial water quality deteriorates in 

household storage tanks (Elala et al., 2011; Jagals et al., n.d.; John et al., 2014; Kumpel & Nelson, 2013; 

Levy Karen et al., 2008; Wright et al., 2004) so proper water storage techniques must be followed. 

Second, Eakin et al. argue that expecting socioeconomically disadvantaged households to provide their 

own water resiliency, while cities provide reliable piped water supply to wealthier areas, exacerbates 
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inequalities and perpetuates poverty traps (Eakin et al., 2016). Finally, although the cost/reliability 

benefits of increased storage investment may quickly pay for themselves, many socioeconomically 

disadvantaged households are renters without the ability to install permanent, large storage features (such 

as underground cisterns or plumbed roof ranks) or may lack the upfront capital or space needed to install 

such storage systems. Cities could help these households by subsidizing storage for households in 

neighborhoods that are known to have unreliable water supply or incentivizing landlords to install more 

household storage. Interview results show that households often share storage infrastructure with their 

neighbors, so even subsidized neighborhood-level storage may be beneficial.  

Finally, the model finds that rainwater harvesting is economically favorable for households in all water-

supply scenarios, although it is especially favorable for those with extremely limited access to piped 

water. This contrasts slightly with a recent paper by Concha Larrauri et al. who found that found that 

rainwater harvesting was not typically economically beneficial for domestic water users, and argued that 

rainwater harvesting programs be aimed at commercial buildings instead (Concha Larrauri et al., 2019). 

Their spatial analysis does not consider all the nuances of IWS, however, they do conclude that areas 

where households rely primarily on trucked water could benefit from rainwater harvesting, which agrees 

with our results. Concha Larrauri et al. base these conclusions on the current subsidized tariff structure. 

Campisano et al. assert that this discrepancy is common in rainwater harvesting financial analysis, where 

the most important factor typically considered is the price of water. Since water is often heavily 

subsidized, either directly or through government-funded infrastructure projects, the value of rainwater is 

often minimal, especially in developed areas with robust water supply and infrastructure (Campisano et 

al., 2017). Our model sets the price of municipal piped water at $0.05/liter; Concha Larrauri et al. use a 

lower number. Their results may be more in line with our household interviews where many of 

households reported receiving free piped water, or water based on a flat monthly rate regardless of use, in 

which case investing in a rainwater harvesting system would not make financial sense. Only when water 
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prices are higher (either due to higher tariffs, or lack of piped water causing residents to purchase trucked 

water) do we find that rainwater harvesting makes financial sense. However, this conclusion neglects the 

savings experienced at the community level, including decreased reliance on the over-expended aquifer 

and delayed need for expensive infrastructure upgrades. Although our rainwater harvesting conclusions 

may not reflect the individual household’s experience, they do account for the supply cost of water 

(Rogers et al., 2002).  

These sorts of vast uncertainties due to minor assumptions are common in IWS systems since these areas 

often lack data necessary for water modeling. Therefore, the integration of additional field-based data 

collection and modeling of households within their broader systems is crucial to both understanding and 

planning for resilient urban water systems. Our sensitivity analysis results demonstrate that more data is 

needed, especially about specific household characteristics (e.g. roof area, hours of supply, piped water 

flow rate, etc.) to accurately determine its water reliability. This study, and others like it, could be 

strengthened by further data collection similar to a larger scale household survey. Even factors that are 

well documented, such as number of people per household (INEGI, n.d.) and rainfall (Carrera-Hernández 

& Gaskin, 2007) often vary widely across the city. Often, water reliability varies greatly across small 

distances and brief time periods (Jaeger et al., 2017) so a system-wide analysis must consider this 

heterogeneity. Additionally, these are relatively simple models could be changed drastically due to 

household behavior change, adoption of new technologies, corruption, other unforeseen complications. 

Additional field work is critical in this area to account for these on the ground realities. 

Megacities of the future will continue to face water challenges and increasingly intermittent water 

supplies as populations grow and stress limited water resources. In addition, water supplies in the future 

will likely experience more system shocks, stress events, and increased uncertainty (IPCC, 2014). Recent 

cuts to Mexico City’s water supply (for example, the Mega Corte in October 2018 and the drought of 
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2010) are recent examples of stress events. Interview results showed that households behaved differently 

during these times of water stress, many reported that their only experience purchasing trucked water was 

after piped water service was disrupted during the earthquake. Accounting for household actions in water 

models, therefore, is vital when planning for these events and working to increase resiliency. Traditional 

supply-side interventions are well explored but only tell half of the story of possible solutions. In IWS 

systems, household decisions regarding water sources and storage must also be included since they affect 

not only their own reliability but also the water-supply dynamics of the entire city. We have demonstrated 

that household level water supply decisions (e.g. household level infrastructure and behavior) can be an 

important complement to traditional supply-side interventions, especially as decentralized water supply 

systems have been considered as more resilient options (Biggs et al., 2010; Chelleri et al., 2015). Recent 

urban resilience literature has called for the development of models across different scales to evaluate 

tradeoffs between actions by different actors (e.g. households vs water utilities vs large investors) and at 

different scales. (St. George Freeman et al., 2020; Zhang & Li, 2018). Using RBFNs to model these 

decisions is an important step towards including household-level decisions and IWS in an integrated 

assessment of options across a range of scales of urban water systems, a desperately needed improvement 

in modeling urban water supply in the developing world.  
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Supporting Information 
 

12-Year Simulation Model 
 

The optimization model is part of a larger simulation model that calculates a household’s water sources, 

storage, and consumption. Equation SI1 below shows the storage calculation. 

𝑉𝑡+1
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

= 𝑉𝑡
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

+ 𝑉𝑡
𝑚𝑢𝑛𝑖 + 𝑉𝑡

𝑡𝑟𝑢𝑐𝑘 + 𝑉𝑡
𝑟𝑎𝑖𝑛 − 𝑉𝑡

𝑐𝑜𝑛𝑠𝑢𝑚𝑒 − 𝑉𝑡
𝑠𝑝𝑖𝑙𝑙

         (SI1) 

The volume of water stored (Vstorage) for day t+1 is the sum of storage for the previous day t, the volume 

of water supplied from the three different water sources (Vmuni, Vtruck, Vrain), the volume of water consumed 

by the household for day t (Vconsume), and a spill factor (Vspill). The volume of city-supplied water Vmuni for 

day t is given by Equation SI2.  

𝑉𝑡
𝑚𝑢𝑛𝑖 = 𝑀𝑖𝑛(𝑢𝑡

𝑚𝑢𝑛𝑖 , 𝐿𝑖𝑚𝑡
𝑚𝑢𝑛𝑖)     (SI2) 

In Equation 8, umuni is the RBFN recommended volume of city-supplied water for day t and the Limmuni is 

the volume of water available from the city according to the IWS schedule for day t. This constraint is 

necessary to limit the volume of city water that is available to a household to the volume available for that 

day’s IWS schedule.  

The volume of trucked-water purchased on day t, Vtruck is determined by the RBFN decision for that day 

(utruck) subjected to additional constraints. If the RBFN recommends trucked water be purchased for that 

day (utruck > 0), then the volume of trucked-water must be at least equal to some reasonable delivery 

volume Limtruck that represents the smallest volume of water a water truck driver would be willing to 

deliver (Equation SI3). This prevents the model from ordering unrealistically small volumes of water 

whenever water is needed rather than relying on storage.  

𝑉𝑡
𝑡𝑟𝑢𝑐𝑘 = 𝑀𝑎𝑥(𝑢𝑡

𝑡𝑟𝑢𝑐𝑘, 𝐿𝑖𝑚𝑡𝑟𝑢𝑐𝑘)     (SI3) 
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Else, if the RBFN does not recommend trucked water be purchased for that day (utruck = 0), then the 

volume of trucked-water for that day is zero. 

The volume of rainwater harvested Vrain on day t is a function of the depth of rainfall and the area of the 

collection surface (Equation SI4). 

𝑉𝑡
𝑟𝑎𝑖𝑛 = 𝐷𝑟𝑎𝑖𝑛 ∗ 𝐴 ∗ (1 − 𝐿𝐹)      (SI4) 

Drain is the depth of rainfall on day t; A is the area over which rainwater is collected (typically the 

household’s roof area); and LF is the fraction of harvested rainwater lost to evaporation, first flush, and 

other collection inefficiencies.  

The volume of water consumed by the household for day t is either the target consumption (Vtarget) if 

sufficient water is available, or else whatever volume is available in the storage tank on day t (Vstorage) as 

seen in Equation SI5. 

𝑉𝑡
𝑐𝑜𝑛𝑠𝑢𝑚𝑒 = 𝑀𝑖𝑛(𝑉𝑡𝑎𝑟𝑔𝑒𝑡, 𝑉𝑡

𝑠𝑡𝑜𝑟𝑎𝑔𝑒
)        (SI5) 

If the total volume to be stored is greater than the storage tank capacity, then the excess water is 

subtracted as spill (Equation SI6). 

𝑉𝑡
𝑠𝑝𝑖𝑙𝑙

= 𝑉𝑡
𝑠𝑡𝑜𝑟𝑎𝑔𝑒

− 𝑉𝑡𝑎𝑛𝑘         (SI6) 
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