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Abstract 

Crowding is one the most common problems for public transportation systems 

worldwide. It has been proven to cause anxiety to commuters and create reliability 

problems when commuters are not able to board on the first train or bus that arrives. 

These commuters are referred as left-behind passengers, and their number is directly 

related to various basic performance measures of public transportation systems that 

represent the user’s experience. Among these measures the most significant are 

ridership, service quality and, more importantly, travel time. Identifying left behind 

passengers is a tool to address crowding in stations and respond appropriately, by 

applying various operational strategies such as decreasing headways.  

The methodology proposed in this study has been applied to two stations with 

high probability of left behind passengers, Sullivan Square and North Station on the 

MBTA Orange Line in Boston, Massachusetts. Two types of technologies were used to 

detect passengers being left behind in the platform. The first one was an object detection 

software, namely You Only Look Once (YOLO), using surveillance cameras. The 

second type was a Bluetooth and Wi-Fi sensor mounted on the two selected stations. 

Moreover, manual counts of left behind passengers were collected in the two stations. 

Both technologies will be individually compared with the manual counts to test 

accuracy and precision. Finally, the two technologies are compared with the manual 

counts to determine a best way to detect left behind passengers. 
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1.0 Introduction 

Public transportation is a major part in a commuter’s daily routine, especially 

in large cities. Transit ridership has increased in the past few years, as commuters prefer 

public transit from passenger cars due to the increased congestion within the urban area 

as well as the suburban areas. However, one of the most critical components of this 

choice is the reliability and cost-effectiveness of each mode choice. It is evident that 

public transportation is more cost-effective than a passenger car, but not as reliable and 

comfortable with some limited exceptions. Therefore, it is of vast importance for any 

public transit agency to improve those performance measures, increase ridership, 

relieve congestion and reduce financial pressure from passenger car users while 

increasing the agency’s revenue. Crowding is a very common problem for public 

transportation systems and commuters might not be able to board on the first train or 

bus that arrives. These commuters are referred as left-behind passengers and their 

number is directly related to various basic performance measures of public 

transportation systems related to the user’s experience, such as ridership measures, 

service quality and reliability. Ridership measures are focusing on the level of public 

transportation riders using the services (Grant M., 2011).  Addressing the existence of 

left behind passengers will allow public transportation agencies to identify the locations 

and magnitude of this issue and act accordingly, in order to improve quality of service 

and reliability. Most of the studies that have been completed on left behind passenger 

detection, occurred in transit authorities that had a tap-out system such as the London 

Underground (Zhu Y., 2017),  which gives exact information about travel times, 

arrivals and departures of passengers. In this project a non-tap-out system is examined 

and investigated using emerging technologies to address the left-behind passengers. 

2.0 Literature Review 

 

2.1 Crowding 

Crowding is a major issue in public transit systems all over the world, due to 

the inconvenience and effects that it causes on operating speed, waiting time, travel 

time, reliability and route choice (Tirachini A., 2006). Studies on crowding has have 

shown an increase anxiety, stress and feeling of invasion of privacy (Lundberg, 1976).  
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In addition, crowding is directly related to a high density of passengers on vehicles, 

platforms and stations which furtherly establishes the above-mentioned disadvantages.  

The Transit Capacity and Quality of Service Manual (TCQSM) (Kittelson & 

Associates Inc, 2013) determines some guidelines for measuring the quality of service 

as an effort to track passenger related metrics. It states that crowding affects several 

aspects of availability and all the elements of comfort and convenience related to the 

quality of service framework. 

 The indicators of availability as presented on the TCQSM are frequency, 

service span and access. The effects of crowding such as vehicles operating more 

slowly or passengers being left behind at stations and stops, cause an effective reduction 

in service frequency for users, which represents a limitation on the availability of transit 

service for users compared to the same uncrowded system. The hours of service in a 

day that a transit system operates are not typically affected by crowding. However, an 

exception could occur if crowding on the last run of the night prevents some users from 

being able to use the system during its hours of operation. Access also affects crowding 

indirectly in the sense of users being able to physically get to the system which in some 

cases may delay a passenger’s ability to get to an otherwise accessible station (Kittelson 

& Associates Inc, 2013). 

The indicators of comfort and convenience as defined by TCQSM are passenger 

load, reliability and travel time. Passenger load directly affects crowding and there is a 

demonstrated relationship between crowding and passengers’ perception of time. For 

instance, more crowded vehicles increase the likelihood of passengers having to stand 

or squeeze with other passengers, which deteriorates the quality of the passenger 

experience. Evidence has shown that the users perceive longer waiting and travel times 

in crowded conditions than in uncrowded conditions (Fan Y., 2015).  

Likewise, crowding contributes to diminished reliability with regard to on-time 

performance and maintaining consistent headways, because boarding and alighting are 

delayed when there are many people in vehicles and at stations (Carrion C., 2013). 

Another consequence for reliability is that left-behind passengers essentially experience 

one or more extra headways of waiting time if they are unable to board on the first 

vehicle that arrives due to crowding conditions.  

Finally, like increasing the perceived travel time, the actual travel times are also 

increased by crowding due to delays on performance and headways. Therefore, vehicles 

operate more slowly, especially because of the above-mentioned delays associated with 
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boarding and alighting. Besides, passengers that are left behind experience longer total 

travel times due to the additional time they must wait to board a vehicle.  

 It is also critical to state that crowding is included in several demand models as 

a parameter (Douglas N., 2005) and that it has been shown that waiting and in-vehicle 

travel time saving are inversely proportional to the number of people in the platform or 

vehicles. Therefore, an external parameter is produced called crowding externality or 

crowding cost (M., 1991). All the above mentioned prove the importance and influence 

of crowding on passengers and agencies decisions. The vast majority of the literature 

on crowding has focused on passenger discomfort. Limited research has been 

completed on actions that transit agencies can apply to relieve crowding. Moreover, 

crowding has demonstrated to affect the demand patterns on bus and rail systems 

(Tirachini A., 2006). Several studies have investigated the value of crowding from the 

perspective of the user, in terms of value of time and willingness to pay an extra fee to 

avoid crowding (Li Z., 2011) (Haywood L. K. M., 2015) (Haywood L. K. M., 2017) 

(Hörcher D., 2017). Furthermore, various studies aimed to determine the effect that 

crowding has on passengers’ travel decisions and path choice. For instance, research 

that has been completed in Seoul, South Korea, suggests that crowding affects the path 

choice in networks that are large and connected enough to offer multiple path choices 

to users between origin-destination pairs (Kim K.M., 2015). 

 

2.2 Technologies for Passenger Counting 

There are a number of technologies that can be used to observe and count 

pedestrians and pedestrian movements in an area. The two main categories of 

technologies that are considered are the following:  

• Image processing techniques through surveillance videos to directly observe and track 

pedestrians 

• Device detection technologies that register a unique device identifier associated with 

Bluetooth and Wi-Fi signals, called media access control(MAC) address 

Numerous technologies for simple pedestrian counting exist, mostly based on 

manual counts for a short period of time and applying different models for volume 

predictions (Schneider R. J., 2008). Those models are often misleading and cannot 

accurately address whether or not there are left behind passengers. 
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2.2.1 Digital Image Processing for Object Detection 

The detection of objects in surveillance videos is an invaluable tool for 

passenger counting and has numerous applications. For example, object detection can 

be used for passenger counting or tracking, crowding recognition, hazardous object 

recognition and safety evaluation of autonomous technologies that use object detection 

to avoid conflicts. Computer vision is the duplicate of human vision aiming to 

electronically perceive, understand (Sonka M., 2014) and store information regarding 

one or multiple images. There are various techniques of using computer to process an 

image for detecting objects, by extracting useful information.  

Recent methods for detecting objects use feature-based techniques, rather than 

segmentation of a moving foreground from a static background that was used in the 

past. Then, the detected features are extracted and subjected to a classification stage, 

typically using either boosted classifiers or Support Vector Machine (SVM) methods 

(Viola, 1993) (Cheng D., 2015). SVM is one of the most popular methods used in object 

detection algorithms and especially passenger counting, because it offers a method to 

estimate a hyperplane that splits feature vectors extracted from pedestrian and negative 

samples (Cheng D., 2015), differentiating pedestrians from other unwanted features. 

Boosting aims to use a sequence of algorithms to convert weak learners to strong 

learners (Zhi-Hua, 2012). The main idea of the boosted classifiers is weighting weak 

classifiers and combining them to form a strong hypothesis when training the algorithm 

to attain an accurate detection. Current methods for object detection take a classifier for 

an object and evaluate it at several locations and scales in a test image which has been 

found to be time-consuming and created numerous computational instabilities at large 

scales (Deng J. B. A.-F., 2010).  

The most recent methods such as Region Based Convolutional Neural Network 

(R-CNN), use another method to decrease the region the classifier runs and include the 

SVM. Firstly, category-independent regions are proposed to generate potential 

bounding boxes. Secondly, the classifier runs and extracts fixed-length feature vector 

for each of the proposed regions. Finally, the bounding boxes are refined by the 

elimination of duplicate detections and rescoring the boxes based on other objects on 

the scene using SVMs (Girshick R., 2014). 

The technique that will be used in this project is bounding boxes prediction. The 

bounding box is a rectangular box located around the detections in order to represent 

their detection (Coniglio C., 2017) (Lézoray O., 2012). Object detection datasets are 
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images with tags used to classify different categories (Deng J. D. W.-J.-F., 2009) 

(Everingham M., 2010).  

 

2.2.2 You Only Look Once 

You Only Look Once (YOLO) software uses a different method than the above-

mentioned techniques for object detection. It generates a single regression problem, 

straight from image pixels to estimate bounding box coordinates and class probabilities 

(Redmon, 2016). YOLO uses a single convolutional network that simultaneously 

predicts multiple bounding boxes and class probabilities for these boxes (Redmon J., 

2015). The minimum bounding box size is 13x13 tiles. The ability to train YOLO on 

images has the potential to directly optimize the detection performance (Redmon J., 

2015) and increase the bounding box probabilities. Another advantage of YOLO is that, 

unlike other techniques such as SMVs, it sees the entire image globally instead of 

sections of the image. This feature enables YOLO to implicitly transform contextual 

information to the code about classes and their appearance and at the same time makes 

YOLO more accurate, making less than half the number of errors compared to Fast R-

CNN (Redmon J., 2015). YOLO uses COCO which is a large-scale object detection, 

segmentation, and captioning dataset (COCO Common Objects in Context, 2018). The 

minimum bounding box restricted size is 13x13 tiles (Redmon, 2016). 

Additionally, YOLO can learn and detect generalizable representations of 

objects, outperforming other detection methods, including R-CNN. It is imperative to 

state that YOLO could be used in numerous applications and it is less likely to break 

down when applied to new domains or unexpected inputs due to the ability to generalize 

(Redmon, 2016) (Redmon J., 2015). 

 

2.2.3 Passenger Counting Using Bluetooth and Wi-Fi Detectors 

There are a number of technologies for detecting electronic devices which can 

be used for passenger counting. The widespread standard is Bluetooth technology, 

which facilitates radio communications between smart devices. In order to be detected, 

a Bluetooth device must be set to discoverable, and this is reportedly between 5%–12 

% of potential Bluetooth devices (Brennan T.M., 2010). The Bluetooth device detects 

the unique media access control (MAC) address for each device within range. The 

Bluetooth detector pings for devices over a period of time repeatedly, a running list of 
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detected devices is collected with time-stamps for the times that they were observed. 

By considering devices as a proxy for passengers, this data provides observations of 

the time that a passenger arrives in a station (based on the first observed timestamp) 

and the time that they leave a station (based on the last observed timestamp), which is 

critical for detecting whether that passenger was left behind. An additional benefit of 

tracing MAC addresses is that it does not change for the same device, so if the same 

MAC address is later observed at another station, it represents a direct observation of a 

passenger movement from one location to another. Some previous studies have sought 

to use Bluetooth data to estimate transit wait times (Kurkcu A., 2017) and origin-

destination flows (V., 2008) (Dunlap M., 2016).  

Bluetooth scanning is based on polling, and not on passive listening. This makes 

Bluetooth detection slow and leaves the chance for a device to avoid detection by 

ignoring a polling request. Any smartphone can be configured to be visible or not by 

other Bluetooth devices. Setting this option as “NOT VISIBLE” will make the 

smartphone undetectable by any other Bluetooth device or sensor. This relates to the 

major downside of Bluetooth detection, which is that the sampling rate is very low, as 

stated above. When collecting data to aggregate over long periods of time, this may not 

be a big problem because the aggregation of a low sampling rate can still yield a large 

data set. Hence, estimates of how many passengers were left behind due to crowding 

could not be reliably made for a specific date and time. For the problem of identifying 

left behind passengers, it would be useful to have a much richer data set. For this 

purpose, there has been recent development of sensors that use both Bluetooth and Wi-

Fi signals to detect devices.  

Some products even use cellular or Wi-Fi signal detection and make use of a 

communications channel that allows devices to connect to a wireless local area 

network. This is a common communication for smart phones, tablets, and laptop 

computers that passengers often carry with them. A prominent manufacturer of 

combined Bluetooth and Wi-Fi detectors claims that by using Wi-Fi and Bluetooth 

signals, as many as 95% of smartphone, tablets, hands free devices, and laptops are 

detected by their MAC address within the detection range, Libelium Meshlium Scanner 

(Guide, n.d.). Detection of Wi-Fi enabled devices requires that Wi-Fi is on, and this is 

more likely to be the case in environments where people are used to using free Wi-Fi 

services. Nevertheless, more and more devices are left to scan for Wi-Fi signals at all 

times, so the detection rate is likely to be high, and certain to be higher than Bluetooth 
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alone. A few challenges and complications are related to the use of wireless detection 

devices to identify passengers.  

• Scanning devices must be installed – Unlike surveillance systems that have cameras 

already installed in stations, new devices would have to be acquired. For a long-term 

solution, these devices would have to be wired into communications channels in 

order to log records in a database.  

• Scanner range – The range of detection systems varies greatly from outdoor to 

indoor settings. It is not clear what range the devices will have in rail transit stations, 

especially those that have many concrete columns and walls, which are likely to 

block signals. Therefore, depending on the architecture more than one devices might 

need to be installed 

• Electronic devices do not map one-to-one with passengers – The essence of the 

technology is that it detects electronic devices that are enabled with 

communications, typically included in smart phones, tablets, computers, etc. Many 

commuters carry multiple devices, so it is likely that some passengers will be double 

counted. Likewise, some commuters do not carry any device at all or may not be 

detected at all. There is a risk that data from these sources will oversample relatively 

wealthier socioeconomic groups and undersample others. This raises some potential 

concerns for equity and sampling rates which will need to be carefully considered 

as part of a data collection trial. 

2.2.4 Bluetooth and Wi-Fi sensors manufacturers 

There are a few manufacturers who produce scanners that detect Bluetooth and 

Wi-Fi signals, but the manufacturers with applications related to public transportation 

systems and specifically platforms of subway stations are:  

• Libelium1: Products from Libelium include a high-powered scanner, called 

Meshlium, that is designed to collect maximum number of MAC address signals 

using a combination of Bluetooth and Wi-Fi signals. Their applications include 

indoor environments where the scanner is used to count and track pedestrian 

movements.  

• BlueMark Innovations2: BlueMark produces a modular platform to detect, track and 

locate smartphones based on Wi-Fi and Bluetooth (Classic, Low Energy, iBeacon, 

Eddystone) technology. They offer a components dashboard to view metrics, such 
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as unique visitors, admin portal to detect users. They claim to have a 25-meter range 

in an indoor location with pillars. The platform also offers ports of 3G/4G detection.  

• SMATS3: A highly portable product called TrafficTab and mountable product 

called the TrafficBox provide Bluetooth and Wi-Fi detection capabilities in a 

portable case that can be easily mounted for temporary data collection. A more 

permanent product called TrafficXHub connects with a constant power supply for 

an extended scanning range and long-term data collection. 

3.0 Methodology 

The software used for this part of an ongoing research project, YOLO, is an 

open source software designed for real-time object detection in video streams (Redmon, 

2016). The main element of its performance is setting the threshold of detection 

confidence (Redmon J., 2015), which means that the computer vision is able to 

determine how accurate the outputs will be. The videos that have been used come from 

the MBTA Orange Line in Boston, Massachusetts and more specifically from the 

security cameras that constitute the security system of Sullivan Square and North 

Station platforms.  

In order to identify left behind with higher accuracy a crowding analysis was 

completed. Subsequently, the passenger detection software was used to determine the 

most representative views with the highest accuracy in object detection in comparison 

to the manual counts. Finally, the optimal threshold was computed by finding the most 

precise detections validated with manual counts. 

3.1 Crowding Analysis 

Crowding analysis is a necessary step in the methodology applied to identify 

the times and stations where crowding is observed and left behinds have a higher 

probability of occurring.  The data used in this part of the analysis have been extracted 

from the MBTA Research and Analytics Platform (MBTA, 2018). More specifically, 

they represent rail flow data from the Winter of 2017, which was the most recent period 

of available data in the MBTA Research and Analytics Database. 

The analysis in the Orange Line of the MBTA rail system has been focused on 

identifying the stops in which overcrowding phenomena lead to the higher probability 

of observing left-behind passengers during the day. An additional task has been the 

identification of the exact 15-minute time periods when such phenomena are expected. 
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Finally, the scope of this part, is to define the location and time that commuters are 

most likely to be left behind while using the MBTA commuter rail system in order to 

focus where and when to collect data to validate left-behind detections. 

 

3.1.1 Passenger Flows 

Cumulative counts of the numbers of passengers boarding and passengers 

alighting have been created with respect to stations along the direction of train travel. 

For a 15-minute time period, 𝐵𝐵(𝑛𝑛) is the count of all of the passengers that are assumed 

to board trains in the direction of interest at stations preceding and including station 𝑛𝑛. 

Similarly, the cumulative number of passengers alighting, 𝐴𝐴(𝑛𝑛), is the count of all 

passengers that are assumed to have exited trains traveling in the direction of interest 

at stations preceding and including station 𝑛𝑛. 

It should always be true that 𝐴𝐴(𝑛𝑛) ≤ 𝐵𝐵(𝑛𝑛), because passengers can only alight 

a train after boarding it. The difference between the cumulative boardings, 𝐵𝐵(𝑛𝑛), and 

alightings, 𝐴𝐴(𝑛𝑛), provides an estimation of the passenger flow, 𝑄𝑄(𝑛𝑛), between adjacent 

stations during each 15-minute time period.  

𝑄𝑄(𝑛𝑛) = 𝐵𝐵(𝑛𝑛) − 𝐴𝐴(𝑛𝑛)     (1) 

This calculation is approximate, because cumulative counts are calculated for a single 

15-minute time period, and real trains take more than 15 minutes to traverse the length 

of a line. Moreover, to calculate the crowding on trains, the passenger flow per time 

period should be converted to a passenger occupancy, 𝑂𝑂(𝑛𝑛) (passengers/train), which 

is calculated by multiplying the passenger flow by the scheduled headway, ℎ (minutes), 

of trains. 

     𝑂𝑂(𝑛𝑛) = 𝑄𝑄(𝑛𝑛) ℎ
15

                  (2) 

In this equation, the headway is divided by 15 minutes to account for the fact that the 

passenger flow is per 15-minute time period. This measure is an approximation of the 

number of passengers onboard each train that is based on the assumption that real 

headways are uniform. 

According to the official MBTA website, the Table 1 shows the scheduled 

headways for the Orange Line. 

 

Table 1: Orange Line Headways  
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Orange 

Line 

First 

Trip 

AM 

Peak 

Midday PM 

Peak 

Evening Late 

Night 

Last Trip 

Oak Grove 5:16AM 6min 9min 6min 10min 10min 12:30AM 

Forest Hills 5:16AM 6min 9min 6min 10min 10min 12:28AM 

 

A major assumption is that there are no delays in the arrival and departure of 

the trains, thus the schedule is being strictly respected and the headways remain as 

reported by MBTA (MBTA, 2018).  

The 2017 MBTA Service Delivery Policy (Service Delivery Policy, 2017) has 

been used in the following steps of this research. From Table 2, the capacity of each 

train on the Orange Line has been extracted.  Trains on each line are 6 cars long, so 

each of these vehicle capacities is multiplied by 6 to obtain the capacity of a train.  

The maximum vehicle load, according to the Service Delivery Policy, is 245% 

of seating capacity in the peak hours and 143% of the seating capacity in other hours.  

This standard was presented more explicitly in the 2010 Service Delivery Policy 

(Service Delivery Policy, 2010) and not explicitly emphasized in the 2017 revision due 

to the challenges associated with measuring occupancy and crowding on trains. 

The comparison between the passenger load expressed as a percentage of 

seating capacity and the passenger load is theoretically an important indicator of left-

behind passengers. Another way of identifying potential left-behind phenomena has 

been the comparison among the number of passengers boarding, the number of 

passengers alighting as well as, the passenger load per line and per 15-minute 

increments.  

The Table 2 states that for Orange Line (both directions) the vehicle load during 

peak hours, as they are presented in Table 2, is 86 passengers which equals to 

approximately 148% of the seating capacity which is 58. In addition, during non-peak 

hours, the vehicle load, 50 passengers, equals to approximately 86% of seating capacity. 

 

Table 2: Carriage capacity in Time Periods (Service Delivery Policy, 2017) 

Line Number of 
Seats 

Total Number of Passengers 
Early AM/ 
AM Peak 
6:00 AM – 
8:59 AM 

Midday 
Base 

9:00 AM – 
1:29 PM 

Midday School/ 
PM Peak 
1:30 PM – 
6:29 PM 

Evenings & 
Weekends 
6:30 PM –  
9:59 PM 

Orange 
Line 

88 86 50 86 50 
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The time period as defined by the Service Delivery Policy (Service Delivery Policy, 

2017) are shown in Table 2 above. The combination of tables 1 and 2 enables us to 

validate findings and determine the critical point between normal conditions and 

overcrowding.  

 

3.1.2 Identification of stations and times with overcrowding phenomena 

The stations with the maximum passenger load per 15 minute-time-period (both 

directions) have been identified in this part of the analysis. Two samples of the results 

of this procedure are given below, aiming at visualizing where and when trains are most 

crowded. This is a critical information in order to prioritize stations for further 

investigation.  

As indicated by the tables presented above, if we only take account the 

maximum passenger load per train, the stops that could be more efficient to research 

due to overcrowding are the North Station and the Sullivan Square.  

In order to observe the data more efficiently and reach to more firm conclusions, 

the following color map diagrams have been created, Figure 1 and 2. The color indicates 

the magnitude of the passenger loads, with blue being the lowest and red the highest. 

The capacity is 516 passengers/train and it is illustrated with orange. Any shade of red 

shows overcrowding and the darker the shape the higher the load. The Figures 1 & 2 

show the passenger loads across all stations of the Orange Line in both directions 

throughout the course of a day. 
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3.2 Camera rating  

Camera rating has been implemented to identify the cameras that would give us 

the best views as input for our video processing analysis, with the purpose of detecting 

the maximum number of passengers.  

Using the results of the crowding analysis, regarding the stations with maximum 

possibility of having left-behind passengers, we proceeded with the evaluation of the 

related camera videos. The sample of camera views from the MBTA transit line has 

been reviewed and the best camera views have been chosen according to number of 

passengers they detect through YOLO. In order to perform the evaluation of the views, 

we compared our counts of passengers with YOLO counts.  

 

3.3 Threshold selection 

In order to identify the optimal threshold, all the available camera screenshots 

from all the stations were analyzed. Each screenshot was run separately for threshold 

values ranging from 6% to 25% so as to determine the optimal threshold value in 

relation to the human eye count from each screenshot. According to the results of the 

image processing, we determined that the optimal threshold was 7%. This 7% threshold 

was chosen due to the smallest mean squared error difference between YOLO and 

human eye counts. Figure 3 below shows the progress of the threshold testing procedure 

using different threshold values.  

 
Figure 3:Testing Thresholds 

In Table 4, a sample of the images that were analyzed in YOLO are shown 

above, as well as the detected passengers for each different threshold value tested. 

 

Table 3: Threshold errors from YOLO counts 



  15 

Threshold Mean Error Mean Squared Error 
25% 6.82352941 62 
20% 5.82352941 43.70588235 
15% 4.58823529 28.47058824 
10% 3.05882353 14.11764706 
9% 2.23529412 8 
8% 1.35294118 4.647058824 
7% 0.11764706 1.176470588 
6% -1.5294118 6.823529412 

 

4.0 Results and Discussion 

4.1 Passenger Detection Time Series 
Applying this threshold to the analysis enables us to derive the maximum 

accuracy of counts of passengers being on the platform over time. Using YOLO a text 

file including location information for each detection, the frame of the video when it 

was detected and its nature (e.g. handbag, train, person) was produced. Using the output 

file, a time series of the people detected at each second was computed. Moreover, by 

adding the times the doors on the train close on the time series and looking at a shot 

time interval after that time, we can determine the number of passengers that may be 

left behind on the platform at this point in time. In Figure 4 below, the passenger counts 

time series illustrate the number of passengers detected by YOLO over time. The green 

and the red vertical lines represent the times that the doors were opening and closing, 

accordingly. The times of opening and closing doors were collected manually. 

 
Figure 4: Number of Passenger on the Platform over time Unsmoothed 
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However, Figure 4 has a lot of noise and does not illustrate clearly the peaks 

and troughs and for this purpose a moving average of the time series was created shown 

in Figure 5 below. The moving average averaged ten numbers before and after each 

second’s detection. Now, it is clearly visible where the trains left and how many 

passengers were detected after the trains left. 

 
Figure 5: Number of Passengers on Platform Smoothed 

In the figure above, the green lines represent the times that the train doors open 

and the red lines the times that the train doors close. The concept in this case is that the 

number of passengers on the platform right after the doors close may be a good indicator 

of the number of passengers being left-behind or the occurrence of left behind 

passengers. 

Figures 6 and 7 below illustrate the passenger detections in both North Station and 

Sullivan Square in November. The first graph in Figure 6 shows the detections at North 

Station from 3:30 PM to 5:00 PM. The second graph in Figure 6 illustrates the 

detections at North Station from 5:00 PM to 6:30 PM. 
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Figure 6: North Station 11/15/2017 Smoothed Counts 

The first graph in Figure 7 shows the detections at Sullivan Square from 6:30 

AM to 7:45 AM. The second graph in Figure 7 also illustrates the detections at Sullivan 

Square from 7:45 AM to 9:30 AM. 
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Figure 7: Sullivan Square 11/15/2017 Smoothed Counts 

 Figures 8 and 9 below illustrate the passenger detections in both North Station 

and Sullivan Square in January. More specifically, Figure 8 shows the detections at 

North Station from 3:30 PM to 6:30 PM. 

 

 
Figure 8: North Station 1/31/2018 Smoothed Counts 
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Figure 9 shows the detections at Sullivan Square from 6:30 AM to 9:30 AM. 

 
Figure 9: Sullivan Square 1/31/2018 Smoothed Counts 

Apart from the aforementioned time series, a similar time series was produced 

using the surveillance videos of the stairs and escalators. The data collection was a 

manual procedure counting the passengers entering and exiting the platform and 

logging the time using an open source software. The difference of passengers entering 

and exiting the platform estimates precisely the number of passengers in the platform 

at each second, assuming zero passengers when the counting began. In Figure 10, the 

combination of smoothed YOLO counts and number of passengers on the platform are 

shown, as well as the scaled YOLO counts to observe their fit to the actual counts. The 

scaled counts fit the actual counts with an R2=0.74 using a regression analysis.  

 
Figure 10: Comparison of Manual and YOLO counts in North Station 11/15/2017 
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 The same graph was produced for the January 31, 2018 collected data and the 

new YOLO detections from the surveillance cameras. The fit was improved to R2=0.84, 

10% better than November’s data, the graph is shown on Figure 11 below. 

 
Figure 11: Comparison of Manual and YOLO counts in North Station 1/31/2018 

4.2 Bluetooth and Wi-Fi signal detection 

Another technology widely used for passenger detection is identifying 

smartphone and other electronic devices’ signals. Through logging individual addresses 

for each electronic device over time a similar pattern is expected to be observed as the 

one using object detection through surveillance cameras. For this purpose, four boxes 

in total, two were mounted in Sullivan Square and two North Station, each including 

one Bluetooth and one Wi-Fi sensor. The boxes collected data the night before the 

manual data collection when they were mounted and throughout the next day, when the 

manual data and surveillance videos were collected too. The batteries of the boxes 

collected data for about 20 hours before they run out. The total number of observations 

was almost 1,5 million with 87% of those being Wi-Fi signals. However, the period of 

interest was the three hours of manual data collection from 6:30 am to 9:30 am in 

Sullivan Square and from 3:30 pm to 6:30 pm in North Station. Therefore, the data 

corresponding to those two periods were 375,000 observations. The unique MAC 

addresses of those observations were 28,800. Those observations were far more than 

the observed ones, from the manual data collection. There might are many reasons for 

this result, including that there are devices there for very long periods of times, such as 

routers, modems etc. and devices that are not associated with the platform that was 

studied. Hence, two thresholds were set in order to eliminate unwanted electronic 
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devices. Firstly, devices that were detected for less than five seconds and more than 

three peak hour headways were eliminated from the data and secondly, devices that did 

not have their last observation within 120 seconds of a departing train were deleted. 

Table 5 below shows the number of observations that satisfied both constraints. 

 

Table 4: Bluetooth and Wi-Fi observations 1/31/2018 

 Sullivan Square (AM 
Peak) 

North Station (PM 
Peak) 

Data Box 3 Box 4 Box 1 Box 2 

Total Number of 
Observations (~20 hours) 

187,732 439,294 

 
 
 

306,156 553,673 

Observations During Peak 
(3 hrs) 55,628 115,719 

 
 

79,239 128,425 

Unique MAC Addresses in 
Peak 16,396 12,431 

*Filtered MAC Addresses 3,963 8,406 
*Duration from first to last observation ∈ (5,  960) seconds & last observation within 
120 sec of a departing train 
 

Moreover, in order to compare the detections with the manual counts, a time series 

using the number of detecting at each second of the filtered MAC addresses was 

produced. Figure 12 below illustrates the comparison between manual and combined 

Bluetooth and Wi-Fi counts. 

 
Figure 12: Comparison of Wireless and Manual Counts– North Station 1/31/2018 
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The Bluetooth and Wi-Fi counts shows a similar pattern with the manual counts 

but there is no statistically significant re-scaling factor and therefore this source is not 

indicative for left behind passengers. However, using the Wi-Fi and Bluetooth data the 

cumulative percentile against time was calculated in comparison with the waiting times 

of the manual counts observed. Figure 13 illustrates the abovementioned metrics that 

may be indicators of the conditions on the platform, in terms of the reliability standard 

by MBTA Service Delivery Policy. Specifically, the MBTA Service and Delivery 

Policy states that 90% of the commuters should be served within one headway, which, 

in peak hours, is 6 minutes.  

 
Figure 13: Comparison of Waiting Times – North Station 1/31/2018 

 Figure 13 shows that Bluetooth and Wi-Fi counts overestimate the percentile by 

almost 10% but they might be a good indicator of the reliability of the system. 

Additionally, the Bluetooth and Wi-Fi counts can be used to detect devices in multiple 

stations and inferring origin and destination pairs since a tap-out system does not exist 

in the Boston Subway yet. The sensors are not accurate enough to detect devices and 

left behind passengers because the signal ping is not constant and there is no way of 

controlling it. Therefore, the exact time of arrival and departure of each unique MAC 

detection is not accurate and might be totally misleading. 

5.0 Conclusions 

The scope of this project is to measure passengers being left behind due to 

crowding on the MBTA Orange Line in Boston using emerging technologies. In order 

to achieve that, a crowding analysis was completed to determine the stations with the 

highest probability of detecting left behinds.  
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Manual counts of left behind passengers were collected in two different dates 

on the two most crowded stations, Sullivan Square and North Station. Likewise, the 

surveillance videos of these stations were provided by MBTA, in order to extract 

passenger detections using YOLO, an object detection software, to compare with 

manual counts. Furthermore, four Bluetooth and Wi-Fi sensors were installed in the 

two stations. Again, the data collected from the sensors are going to be compared to the 

manual counts. Finally, the two methods using technologies to detect left behinds are 

going to be compared to each other. 

To sum up crowding leading to left-behind passengers is a regular occurrence 

on MBTA heavy rail, even on uneventful days. The demand is very near capacity, 

therefore even some small fluctuations of headways lead to overcrowding condition 

and induce left behind passengers. Moreover, accounting for left-behind passengers 

reduces the reliability measure according to the Service Delivery Policy for the 

passengers waiting less than one headway in the peak hours. It was observed that 

headway and dwell time are strong determinants of left-behinds at Sullivan Square and 

North Station, due to occurrence of left behind passengers when those two parameters 

are increased. Introducing logistic regression models would validate this observation 

and would prove the significance of headway and dwell times in relation to the 

occurrence of left behind passengers.  

In terms of the video processing analysis, it was based on a simple off-the-shelf 

algorithm, that could be improved for increased accuracy and precision of detections. 

Additionally, a dataset specifically made for detecting pedestrian could be implemented 

instead of COCO to further optimize the detections accuracy.  

The direct observations from video feeds are associated with errors. For example, the 

range of detection which included a small part of the platform and individual bodies 

were difficult to distinguish in crowded conditions. Finally, many camera angles are 

blocked or obscured by objects that increased the possibility of undercounting 

passengers on the platform and lead to misleading results. However, the scaled counts 

were statistically significant and represented real conditions with high accuracy. 

Likewise, the predictive models built on video detection observations provide 

good predictions of metrics of interest namely, the number of people left behind per 

rush period, the occurrences of trains leaving people behind and the distribution of 

waiting times experienced by passengers. 
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Conversely, the estimates of Left-Behinds or platform counts were very noisy 

and not as reliable as video counts from the Bluetooth and Wi-Fi sensors. The main 

reason for this result was the relatively low and highly variable sampling rate leading 

to inaccurate station entry and boarding estimates. In future research, the sensors are 

advised to be used in multiple station for the estimation of Origin and Destination pairs, 

as exact time of arrival and departure cannot be acquired. 

Similarly, it was extremely difficult to determine which devices were associated with 

the train in the platform studied in crowded situations and when many trains from 

different lines arrive in a quick succession and short time interval. Even when the 

detections were matched to the corresponding train departures the measured duration 

from wireless sensors will always be less than actual wait time in the station causing 

the cumulative waiting time estimates to get biased. Finally, the statistical models’ 

performance was not improved by wireless sensors’ data. 

 

5.1 Next Steps 
 
There is much room for improvement in terms of detection accuracy using both 

the surveillance cameras and the sensors. In order to improve object detection through 

video processing several aspects can be addressed accordingly. There are other faster 

and more accurate video detection algorithms that can be used for detection which are 

expected to further reduce false negatives. However, such algorithms are not free of 

charge.  

Adding passenger tracking algorithms to link observations in consecutive 

frames can significantly reduce false positive detections and would also allow the 

tracking of passenger movements that would identify demand patterns across the 

platform. There is an opportunity to train algorithm to detect only the heads of 

passengers rather than their whole bodies which will possibly increase the number of 

bounding boxes that can fit in each frame and therefore, increase the accuracy of the 

detections.  

Expanding the analysis to compare a broader number of stations and settings, 

such as stations with more obscured views, less consistent demand patterns, etc. would 

be able to examine the methodology and systemwide implementation possibilities. 
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The is a need to experiment further with the capabilities of the Bluetooth and 

Wi-Fi sensors by distributing the devices and mounting for extended periods of time in 

order to evaluate origin-destination patterns or origin-destination travel times. 

Ultimately, a costly suggestion for MBTA is to add new data sources such as 

Automated Passenger Counters (APC) on trains or a tap-out system that will provide 

very useful and precise measures of crowding that are relevant to passengers being left 

behind and exact origin-destination travel times 
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