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Pseudomonas aeruginosa reverse 
diauxie is a multidimensional, 
optimized, resource utilization 
strategy
S. Lee McGill1,2, Yeni Yung3, Kristopher A. Hunt1,4, Michael A. Henson5, Luke Hanley3 & 
Ross P. Carlson1,2*

Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. 
The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than 
many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow 
common systems biology assumptions including preferential consumption of glucose with an 
‘overflow’ metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate 
environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, 
omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as ‘reverse 
diauxie’. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model 
interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable 
carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional 
strategy which minimized resource investment into central metabolism while completely oxidizing 
substrates. Application of a common, in silico optimization criterion, which maximizes growth 
rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic 
strategies foundational to its wide distribution and virulence including its potentially, mutualistic 
interactions with microorganisms found commonly in the environment and in medical infections.

Pseudomonas aeruginosa is an opportunistic pathogen commonly isolated from diabetic ulcers, burn wounds, 
and battlefield injuries, as well as from the lungs of patients with cystic fibrosis (CF)1–3. Its presence is correlated 
with high patient morbidity and  mortality4–6. P. aeruginosa is found in ~ 80% of chronic, diabetic ulcers which 
cost the US medical system $20–50 billion per year to  treat4–6. P. aeruginosa virulence and persistence mecha-
nisms are enabled across strains by a pangenome possessing approximately 5,200 core  genes7. Maintaining the 
large genome and implementing the myriad of virulence strategies necessitates effective strategies for nutrient 
acquisition and nutrient allocation to metabolic pathways. While foundational to its global distribution and 
virulence, the basis of the P. aeruginosa central metabolism is poorly  understood4,6.

Global regulatory systems select preferred carbon sources from pools of substrates in a process known as 
carbon catabolite control (CCC) or carbon catabolite repression (CCR)8. The best studied examples of CCR are 
from Escherichia coli and Bacillus subtilis8–10. The metabolic designs of these model organisms, which prefer 
glucose over other substrates, form the basis of most textbook CCR  examples11. The CCR strategy represented 
by E. coli and B. subtilis is referred to here as ‘classic carbon catabolite repression’ (cCCR) to distinguish it from 
the broader CCR term. P. aeruginosa does not display a cCCR phenotype. Instead, this competitive microorgan-
ism, as evidenced by its global distribution which is arguably broader than E. coli12–14, has substrate preferences 
that are almost opposite of E. coli. P. aeruginosa utilizes a CCR strategy termed ‘reverse diauxie’ or reverse 
CCR (rCCR) which is defined by a hierarchy of preferred carbon sources that is nearly reverse that of cCCR 
 preferences8,15. P. aeruginosa can readily catabolize glucose although it is not a preferred substrate, instead this 
bacterium preferentially catabolizes less energetic, nonfermentable substrates like succinate. The contrarian 
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hierarchy of preferred carbon sources is proposed to be central to the versatility of P. aeruginosa. The ecological 
basis of rCCR is an open question with few published  theories8,9,16,17. A quantitative understanding of rCCR lags 
cCCR. This is a critical knowledge gap that contributes to degradation of patient quality of life and costs society 
tens of billions of dollars per  year5.

Natural environments do not permit unconstrained microbial  growth18. Instead, life is constrained by the 
availability of resources such as reduced carbon or nitrogen  sources18. Phenotypic plasticity can permit micro-
organisms to acclimate to resource  scarcity19–21. In silico systems biology approaches have investigated resource 
investments (e.g. carbon, nitrogen) into different metabolic pathways via the enzyme synthesis requirements. The 
in silico methodologies, often referred to as resource allocation analysis or metabolic tradeoff theory, are powerful 
tools for predicting and interpreting phenotypes and have been applied extensively to cCCR microorganisms E. 
coli and B. subtilis19,22–30. For example, in silico and in vitro studies of E. coli quantified acclimation to carbon, 
nitrogen, or iron limitation along a metabolic tradeoff surface by optimizing the functional return on the limiting 
nutrient, at the expense of substrates found in  excess21,31. This strategy resulted in ‘overflow metabolisms’ with 
the secretion of byproducts like acetate and lactate; overflow metabolisms are also known as the Warburg or 
Crabtree effect in  eukaryotes32. Resource allocation analysis has not been applied to rCCR organisms. Given the 
large genomic potential and phenotypic plasticity of P. aeruginosa, these approaches hold potential for decoding 
the metabolic organization of this problematic bacterium.

Here, the ecological basis of P. aeruginosa rCCR was tested using a combination of physiological studies, 
exometabolomics, proteomics, and systems biology. The preference for substrates was measured and pheno-
typic characteristics, like the general lack of an overflow metabolism, were quantified. Proteomics measured a 
constitutive core metabolism centered on respiration and a dynamic set of enzymatic pathways that catabolized 
specific substrates, directing intermediates toward the core metabolism. The experimental data was analyzed 
with a genome-scale, metabolic model of P. aeruginosa and flux balance analysis (FBA) to identify ecological 
theories that predicted the observed phenotypes. P. aeruginosa did not optimize substrate preference based on 
standard systems biology assumptions such as the maximization of growth rate, as is commonly applied to cCCR 
phenotypes. Instead, P. aeruginosa metabolism was organized around a multidimensional, resource utilization 
strategy with constitutive expression of a respiration-based, core metabolism and substrate preferences that were 
based on minimizing the nutrient investment required to completely oxidize the substrate. Understanding a 
molecular-level basis of substrate preference, energy metabolism, and cell growth is foundational to controlling 
virulence mechanisms in P. aeruginosa including consortial interactions.

Results
Growth physiology and substrate preference of rCCR . Pseudomonas aeruginosa strain 215 (Pa 215) 
is a medical isolate from a chronic  wound33,34. Pa 215 was grown in chemically-defined, glucose containing, CSP 
G medium (materials and methods, supplementary material S1). Cultures exhibited two distinct exponential 
growth phases followed by stationary phase (Fig. 1). A subset of amino acids was consumed preferentially during 
the first exponential growth phase, which had the highest specific growth rate (Fig. 1, supplementary material 
S2). The second exponential growth phase corresponded with the catabolism of second and third tier amino 
acids and glucose. CSP G media contained a small concentration (3 mM) of citrate, which was added as an 
ion chelator; however, the citrate was readily catabolized as a preferred substrate during the first growth phase. 
The cultures did not exhibit an overflow metabolism defined by the secretion of reduced metabolic byproducts 
like acetate, as is typical of microorganisms expressing cCCR  phenotypes17,30. Trace amounts of gluconate were 
secreted during glucose metabolism but were quickly depleted (supplementary material S3). Amino acid deami-
nation products like α-ketoglutarate and pyruvate were not observed in spent medium or found in only trace 
amounts (< 1 mm), respectively.

Substrate utilization order for Pa 215 was quantified using five different formulations of CSP G medium sup-
plemented with permutations of additional carbon sources: lactate (L), acetate (A), and succinate (S) (Fig. 2). 
Pa 215 grown on CSP GL medium, preferentially consumed the top tier amino acids, represented by aspartate 
in Fig. 2, followed by lower tier amino acids (data for each measured amino acid can be found in supplementary 
material S3–S8) and lactate before finally catabolizing glucose. Glucose catabolism was not observed while 
lactate was present. Pa 215 grown on CSP GA consumed the top tier amino acids followed by lower tier amino 
acids and acetate and finally glucose after the acetate was exhausted. Pa 215 grown on CSP GLA preferentially 
consumed top tier amino acids, then lower tier amino acids and lactate followed by acetate and glucose. Finally, 
Pa 215 grown on CSP GLAS preferentially catabolized the top tier amino acids, followed by succinate, lactate, 
acetate, and ultimately glucose. Ion chelator, citrate, was readily catabolized as a preferred substrate in all media 
formulations. No or minimal overflow metabolism (< 4 mM acetate, ~ 3% of lactate and glucose carbon moles 
in CSP GL medium) was observed. An exception was CSP GLAS grown cultures which accumulated acetate 
(~ 10 mM) above the initial medium concentrations. Upon exhaustion of succinate and lactate, the acetate was 
catabolized prior to glucose catabolism. The glucose was not completely catabolized in CSP GLAS medium 
because the medium was nitrogen limited (supplementary material S1). Culture parameters are summarized in 
supplementary material S2 and data is available in supplementary material S3–S7.

The order of amino acid catabolism was assessed for all five CSP medium formulations by binning the amino 
acids into three categories based on their time of exhaustion (Table 1). Binning was used, as opposed to using 
an absolute time metric, because each medium formulation had a different number of substrates leading to dif-
ferent total growth times. Other substrate usage metrics were considered including the initial time of substrate 
catabolism and nonlinear fitting of the temporal metabolite profiles to calculate a substrate ‘half-life’  value35; 
these metrics were sensitive to experimental variability during the initial growth phase where small fluctuations 
in substrate concentration, based likely on analytical techniques, influenced predictions. All amino acid data, 
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including bin designations, time metrics, and fitting parameters, can be found in supplementary material S8. 
The preferred amino acids, referred to here as top tier, included aspartate, asparagine, glutamine, glutamate, and 
alanine. Most top tier amino acids were binned consistently across the five CSP media formulations as quanti-
tated by their small standard deviations. The middle tier amino acids had more variability which may have been 
CCR-related or based on the temporal granularity of the experimental sampling schedule. The temporal trends 
in medium pH reflected the metabolism of different substrates. Catabolism of amino acids increased medium 
pH based on nitrogen chemistry. Catabolism of organic acids also raised the culture pH because the bacterium 
imports the protonated base, removing a proton from the medium.

Approximately 90% of the anabolic nitrogen in CSP G medium was in the form of amino acids (supplemen-
tary data S1). P. aeruginosa can use ammonium as the sole nitrogen  source36. CSP G medium formulations were 
modified with the addition of 2 g/L ammonium chloride to test the effect of nitrogen form. The rCCR phenotype 
was not changed by the presence of ammonium. The cultures consumed the amino acids as preferred substrates 
followed by lactate and then glucose (supplementary material S9). The amino acid utilization order remained 
largely unchanged (supplementary material S10).

The common laboratory strain of P. aeruginosa, PAO1, was also grown on CSP GLAS medium. The PAO1 
substrate utilization order of organic acids and glucose was the same as Pa 215 and the order of amino acid 
consumption was very similar to Pa 215 (supplementary material S11).

Figure 1.  P. aeruginosa 215 was grown in chemically-defined, glucose containing, medium (CSP G) in 
batch culture. Cultures demonstrated two exponential growth phases highlighted with different background 
shading. Amino acids were binned into three categories based on their time of exhaustion. Top tier amino 
acids were consumed during the first exponential growth phase while lower tier amino acids and glucose were 
consumed during the second exponential growth phase. All values are averages of three biological replicates, 
and metabolite values are also averaged from two technical replicates. Additional data can be found in 
supplementary material S3.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1457  | https://doi.org/10.1038/s41598-020-80522-8

www.nature.com/scientificreports/

Proteomics quantifies a constitutive, respiration-centric metabolism. Proteomic data were col-
lected from CSP G and CSP GL grown cultures. Proteomic data are more predictive of cell function than tran-
scriptomic or genomic data alone because they represent an actual allocation of resources into relatively stable, 
macromolecular  pools37,38. Phenotypes were analyzed using label-free proteomics with mass-spectrometry (MS) 
of whole-cell lysates collected mid-first, exponential growth phase (4 h), early-second, exponential growth phase 
(7 h), and late-second, exponential growth phase (11 h). The proteomics data were analyzed with focus on central 
metabolism proteins associated with catabolizing the available substrates and with producing cellular energy.

Enzymes from the tricarboxylic acid (TCA) cycle and associated auxiliary enzymes had largely, constitutive 
abundances regardless of the medium formulation and the growth phase (Fig. 3). All TCA cycle enzymes except 
the membrane-associated succinate dehydrogenase were detected and quantified. Additionally, the enzymes 
oxaloacetate decarboxylase (PA4872) and PEP synthase which process metabolic intermediates from the TCA 
cycle for gluconeogenesis, were expressed constitutively. The abundance of ATP synthase subunits was also 
constitutive. Membrane-associated, electron transport chain (ETC) enzymes were not detected. It was assumed 
that the ETC enzymes were also constitutively expressed based on the TCA cycle and the ATP synthase protein 
abundances and the lack of an overflow metabolism.

Enzymes associated with the processing of specific substrates did change in abundance based on presence and 
concentration of substrates, contrary to most TCA cycle enzymes (Fig. 4). Aspartate was plotted as a representa-
tive top tier amino acid (Table 1). Protein abundance for aspartate ammonia-lyse (AspA), responsible for the 

Figure 2.  P. aeruginosa 215 substrate utilization order during batch growth in chemically-defined media. Panels 
plot biomass and substrate concentrations as a function of time for five medium configurations supplemented 
with different carbon sources at a concentration of 22 mM each. G = glucose, GL = glucose and lactate, 
GA = glucose and acetate, GLA = glucose, lactate, and acetate, GLAS = glucose, lactate, acetate, and succinate. 
Aspartate concentration (second y-axis) is plotted as a representative top tier amino acid. Cultures demonstrated 
two exponential growth phases highlighted with different background shading. Medium composition and 
additional data for each culture can be found in the supplementary material. All substrate values are averages of 
three biological replicates and two technical replicates.
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catabolism of aspartate, was elevated during the first exponential growth phase. When aspartate was exhausted, 
the abundance of AspA dropped as the metabolism shifted to other substrates. Following the depletion of top 
tier amino acids, the presence or absence of lactate was correlated with increasing or minimal abundances of 
lactate dehydrogenase protein (Lld), respectively. Pa 215 catabolized glucose, like all Pseudomonads, via the 
Enter-Doudoroff (ED)  pathway36,39. Abundance of ED phosphogluconate dehydratase (Edd) increased while 
glucose was being metabolized, after the exhaustion of top tier amino acids. Acetate kinase (AckA) abundance 
increased for the CSP GL culture at the exhaustion of lactate and glucose. AckA quickly metabolized the small 
amount of acetate (< 4 mM) secreted at the exhaustion of lactate and glucose.

Proteomic analysis measured additional proteins that displayed changes in expression during exponential 
growth and stationary phases. Data can be found at ftp://massi ve.ucsd.edu/MSV00 00855 90/.

In silico analysis of rCCR phenotypes. CCR is a regulation scheme that contributes to metabolic plastic-
ity. CCR regulation schemes have evolved to control expression of metabolic strategies that favor cellular fitness. 
The order of substrate utilization is hypothesized to reflect the ecological strategy used by P. aeruginosa to thrive 
in environmental and medical niches. Computational systems biology was used to test hypotheses regarding 
what fitness properties were being optimized in the Pa 215 cultures, with predictions compared to experimental 
data. In silico analyses used flux balance analysis (FBA) of a published, genome-scale, metabolic model of P. 
aeruginosa updated here with genome-supported, amino acid catabolism  reactions40,41 (supplementary mate-
rial S12). Stoichiometric modeling methods, such as FBA, can be utilized with a minimum number of a priori 
fitting parameters. The applied FBA considered only steady state simulations. Temporally-resolved simulations 
require enzyme kinetic parameters for every considered substrate, which are not available in the literature for P. 
aeruginosa.

In silico testing of ecological strategies was applied first to amino acid utilization order and included all experi-
mentally measured amino acids except for aromatic and sulfur containing amino acids due to their specialty 
chemistries. The experimental amino acid utilization order did not correlate with the amino acid frequency in 
genome open reading frames (Fig. 5a) indicating the amino acids were not consumed solely for protein assembly; 
amino acids were also used as anabolic building blocks for other macromolecules and catabolized for cellular 
energy (supplementary material S8). Therefore, simulations considered either the production of cellular energy 
(e.g. ATP) or cellular growth which was quantified as carbon moles (Cmol) of biomass.

The first round of in silico analyses considered six separate, single dimension, optimization criteria which 
were informed by previous studies that examined numerous optimization  criteria22,30,42. The criteria included 
(1) maximizing biomass or energy production rates based on electron donor, (2) maximizing biomass or energy 
production rates based on electron acceptor  (O2), or (3) minimizing nutrient investment into the proteome 
required for either biomass or energy synthesis. The results of these simulations are presented in the next two 
sections and a summary of the results and analyses can be found in supplementary material S13.

Amino acid utilization order did not correlate with in silico maximization of rates. Computa-
tional approaches for studying metabolism often assume cells utilize metabolic potential to maximize growth 
 rate43–45. The experimental amino acid utilization order, as quantified across five media formulations (Table 1), 
was analyzed using this maximum rate theory. Separate, steady state simulations were run for each individual 
amino acid and for either biomass production or cellular energy production. Simulations identified the optimal 
phenotypes for the conversion of each substrate into product. The in silico phenotypes which maximized elec-

Table 1.  Amino acid utilization order for P. aeruginosa 215 cultures grown on five different, chemically-
defined media supplemented with various additional carbon sources. Amino acids were binned into three 
categories (1, 2, 3) based on the time of exhaustion, averaged between three biological replicates for each of five 
medium conditions, n = 15. Data can be found in supplementary material S8.

AA Score

L-Asn 1 ± 0

L-Asp 1 ± 0

L-Glu 1 ± 0

L-Ala 1.2 ± 0.45

L-Pro 1.4 ± 0.89

L-Gln 1.5 ± 1

Gly 1.8 ± 0.45

L-Thr 1.8 ± 0.45

L-Arg 2 ± 0

L-Iso 2 ± 0.71

L-Ser 2 ± 0

L-Leu 2.2 ± 0.45

L-Val 2.8 ± 0.45

L-Lys 3 ± 0

ftp://massive.ucsd.edu/MSV000085590/
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tron donor yields also mineralized the substrates secreting only  CO2, consistent with in vitro cultures which did 
not utilize overflow metabolisms.

Maximizing cellular energy yield per amino acid, on a mole substrate or Cmol substrate basis, did not cor-
relate with amino acid utilization order, having  r2 values of 0.06 and 0.15 respectively (Fig. 5b). The in silico 
phenotypes which maximized yields were used to calculate maximum product rates using enzyme parameters 
from survey  studies46,47 and experimental medium composition (supplementary material S1). This common 
theoretical treatment linked product yields to product rates such that maximizing one maximizes the other, this 
was an assumption of convenience and the advantages and disadvantages of its application have been discussed 
in the  literature30,43,48. Maximizing the rate of cellular energy production (or growth) did not predict amino acid 
utilization order, as the correlation was  r2 = 0.17 (Fig. 5c) (supplementary material S13–S18).

Figure 3.  Proteomics data for P. aeruginosa 215 grown on chemically-defined, CSP G and CSP GL medium 
which contained glucose (G) or glucose and lactate (GL), respectively. CSP G culture data are represented by 
dark blue bars and CSP GL culture data are represented by light blue bars. Bars quantify the abundance of the 
enzyme during the first exponential growth phase (4 h), early second exponential growth phase (7 h), and late 
second exponential growth phase (11 h). Presented enzymes are involved in the tricarboxylic acid (TCA) cycle, 
anaplerotic reactions, and ATP synthesis. All values are averaged from three biological replicates. *p value < 0.05; 
**p value < 0.01.
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P. aeruginosa has a respiration-centric metabolism. The rate maximization criterion was also applied to 
 O2 which is required to mineralize the amino acids under the experimental conditions. This alternative, rate 
maximization criterion predicted substantial overflow metabolisms for most of the amino acids. This predicted 
phenotypic trait was not consistent with the experimental data indicating the criterion was not relevant for Pa 
215 metabolism (supplementary material S13).

Amino acids with high cellular energy yields (mol ATP (mol amino acid)−1) also had high biomass yields 
(Cmol biomass (mol amino acid)−1); the two yields correlated with an  r2 value of 0.99 (supplementary data S18). 
Therefore, maximizing rates for cellular energy production or biomass production had similar trends and neither 
predicted rCCR phenotype (supplementary material S13).

Figure 4.  Substrate-specific, protein abundances for P. aeruginosa 215 cultures grown on chemically-defined 
CSP G (dark blue bars and dashed lines) and CSP GL (light blue bars and solid lines) media which contain 
glucose and glucose + lactate, respectively. Substrate concentrations for each enzyme are plotted in the same 
panel to highlight relationships. The three bars represent batch growth time points 4, 7, and 11 h. Metabolite 
values are averaged from three biological replicates and two technical replicates. Protein values are averaged 
from three biological replicates. *p value < 0.05; **p value < 0.01.
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Single dimension optimization of resource investment predicted overflow metabolism, incon-
sistent with rCCR phenotypes. Computational analysis was used to identify phenotypes that minimized 

Figure 5.  In silico analysis of reverse carbon catabolite repression (rCCR) substrate utilization order in 
P. aeruginosa 215. (a) Amino acid frequency in genome open reading frames plotted as a function of the 
experimental amino acid utilization order. (b) Optimal in silico cellular energy yield from the catabolism of 
each amino acid plotted as a function of experimental amino acid utilization order. Analysis considered both 
moles of amino acid and carbon moles (Cmol) of amino acid. (c) in silico maximization of cellular energy rate 
(qATP = mmol ATP g  cdw−1 h−1) plotted as a function of experimental amino acid utilization order. Enzyme 
parameters were based on a survey study of catabolic enzymes (0.5 mmol AA g  cdw−1 h−1,  Km = 0.2 mM, and 
CSP G medium composition, see supplementary material S1). (d) Computational analysis of amino acid 
utilization order based on resource investment into proteome for complete oxidation of substrate using the 
sum of fluxes as a proxy for proteome investment. Analysis considered a base metabolism scenario where all 
enzyme-catalyzed reactions were considered and a refined, no core metabolism scenario where only enzyme-
catalyzed reactions extraneous to the experimentally-measured, constitutive proteome core where considered. A 
subset of the core enzymes is shown in Fig. 3 while an explicit list can be found in supplementary material S15. 
(e) Proteome investment analysis using the minimal proteome investment proxy to predict experimental amino 
acid utilization order. Analysis considered base metabolism scenario and refined, no core metabolism scenario.
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resource investment into catabolic pathways. Explicit investment models were not possible in non-model organ-
ism, P. aeruginosa. Therefore, two previously developed resource investment proxies were applied to estimate 
relative, proteome investment into central  metabolism19,22,49,50. The flux minimization proxy assumes the total 
network flux is proportional to the enzymatic resources required to synthesize the necessary  proteome19,22,42,51. 
Another proxy for protein investment minimizes the number of enzyme catalyzed reactions (a.k.a. minimal pro-
teome investment) identifying the smallest proteome required to realize an in silico  phenotype19. These hypoth-
eses assumed central metabolism enzymes could be approximated as having the same molecular weight with the 
same amino acid distribution.

Both proxies for resource investment, when applied as the single optimization criterion, predicted overflow 
metabolisms for most amino acids (supplementary material S13,S15,S16). The in vitro experimental cultures did 
not demonstrate substantial overflow metabolisms indicating these single dimension criteria were not relevant 
for Pa 215 phenotypes.

Substrate utilization order was consistent with a resource utilization strategy optimizing sub-
strate oxidation and proteome investment. Life occurs in multifactorial environments with multiple 
stressors influencing  phenotypes20,42,52. Two dimensional, optimizations of in silico phenotypes were performed 
where the first dimension considered the optimal conversion of substrate into cellular energy which com-
pletely oxidized the substrate. The second dimension approximated the nutrient investment into the enzymes 
required to realize the in silico phenotype, for example the amount of anabolic nitrogen required to synthesize 
the proteome or the amount of ATP required to form the associated peptide  bonds19,22 (supplementary material 
S15,S16). Both the flux minimization and minimal proteome investment proxies were tested. Two-dimensional 
optimization (2-DO) using the flux minimization proxy had poor correlations with the observed amino acid 
utilization order (Fig. 5d). Alternatively, 2-DO using complete substrate oxidation and the minimal proteome 
proxy predicted the experimental utilization order for amino acids  (r2 = 0.67) (Fig. 5e).

2-DO was further refined using experimentally measured proteomics data. The constitutively expressed 
TCA cycle, anaplerotic enzymes, ATP synthase, and electron transport chain (Fig. 3) were considered part of a 
core, constitutive proteome, independent of substrate. The refined, 2-DO theory considered only the resource 
investment extraneous to the conserved, core proteome. This theory lead to improved predictions of amino acid 
utilization order with the minimal proteome investment theory but not the flux minimization theory (Fig. 5d, e). 
The outlier amino acid in Fig. 5e was serine. Serine is catabolized via the L-serine dehydratase enzyme which is 
 O2-labile suggesting higher cell densities and lower  O2 concentrations were necessary for its  functionality53. The 
predictive accuracy of the analysis improved to a correlation of  r2 = 0.88 if serine data were excluded.

2-DO, considering complete oxidation of substrate and minimal proteome investment, was extended to 
the other CSP media substrates including organic acids and glucose. Analysis applied the minimal proteome 
investment with conserved core proteome assumption and considered both cellular energy production as well 
as the more complex biomass production (Fig. 6a). The experimental substrate utilization hierarchy, which was 
determined using culturing data from the five CSP media formulations, was used to assess the accuracy of the 
predictions (Fig. 2). The in silico analysis accurately predicted, substrate utilization order with  r2 correlations 
of 0.94 and 0.73 for cellular energy and biomass production, respectively. The cellular energy simulations had a 
noteworthy correlation with experimental data suggesting ATP production was a superior in silico optimization 
criterion for Pa 215. The biomass simulations considered an aggregate amino acid substrate pool containing all 20 
metabolites, which was not considered for cellular energy simulations. As anticipated, the aggregate amino acid 
pool greatly reduced the requirement for enzymatic steps by negating de novo amino acid synthesis reactions 
(Fig. 6a, supplementary material S15,S16). The correlation between the predicted and experimental substrate 
utilization order for the biomass simulations was not as strong due largely to the predicted order of lactate and 
citrate utilization. The discrepancy could be due to a couple factors. First, the computational approach approxi-
mated the resource investment necessary to synthesize the in silico proteome by assuming all enzyme-catalyzed 
reactions required the same amount of anabolic resource. This was a necessary simplification due to the lack of 
detailed data for P. aeruginosa that could be improved as more data becomes available. Additionally, the experi-
mental utilization order was based on five separate media formulations which resulted in five separate, dynamic, 
batch growth profiles each with their own intricacies including cometabolism of substrates.

The maximization of rate criterion was also tested with the additional substrates. The analysis assumed opti-
mal product yields on substrate were proportional to the optimal product  rates43. The maximum rate criterion 
did not predict the experimental utilization order for organic acids over glucose. In fact, the predicted utilization 
order had negative correlations with the experimental data (Fig. 6b). Additional optimizations and aggregate 
substrate simulations were considered (supplementary material S17–S19). None outperformed the presented 
approach in terms of accuracy and simplicity.

Discussion
P. aeruginosa preferentially consumes nonfermentable, lower energy substrates, such as succinate over glucose in 
a strategy known as reverse diauxie or rCCR. The term has been defined in terms of substrate preference relative 
to cCCR organisms E. coli and B. subtilis. The rCCR preference for nonfermentable substrates is associated with 
minimal overflow metabolism and, under certain conditions, can result in cultures preferentially catabolizing 
substrates that do not maximize cellular growth  rates10,36,54–57. The CSP media studied here did not result in this 
property. The term ‘inverse diauxie’ has been proposed to describe microorganisms that prefer substrates that 
sustain lower growth  rates58. The rCCR strategy has enabled the broad, global distribution of P. aeruginosa in 
both environmental and medical niches including chronic, diabetic ulcers. The hierarchy of substrate preferences 
for Pa 215 was: amino acids such as aspartate, followed by citrate, succinate, lactate, acetate, and finally glucose. 
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These preferences were also observed with P. aeruginosa PAOI grown on CSP GLAS medium (supplementary 
material S11). Pa 215 maintained, constitutively, core TCA cycle enzymes and regulated the abundance of the 
proteins required for specific substrates as needed to convert the substrates into central metabolism intermedi-
ates. Analysis using an in silico metabolic model and FBA determined the rCCR phenotype was consistent with 
a multidimensional, resource utilization strategy where substrate utilization order was based on minimizing the 
proteome investment required to mineralize the metabolite. Optimization of multiple cellular functions simulta-
neously has been reported previously for cCCR model organism E. coli, albeit with optimization  criteria22,52. The 
rCCR phenotypes were not consistent with the commonly applied, systems biology criterion, which maximizes 
growth  rate43,44. Pseudomonads are commonly found in consortia and the rCCR metabolism is proposed to pro-
vide fitness advantages in these competitive  environments59,60. Consortia with populations expressing rCCR and 
cCCR phenotypes have the metabolic basis for an effective division of labor, thus avoiding overlapping substrate 
preferences which can result in species competition and  exclusion61–65 (Fig. 7). cCCR organisms prefer primary 
substrates like glucose where fast growth rate is likely a strong fitness determinant. Glucose can be catabolized 
by cCCR microorganisms via respiration, fermentation, or a combination of the two strategies. This flexibility 
enables tradeoffs between high yields during a fully respiratory catabolism and fast rates, with the associated 
overflow metabolism, during (partially) fermentative  catabolism30,48. rCCR organisms avoid competition for 

Figure 6.  Predicted substrate utilization order, based on in silico analysis, compared to experimental substrate 
utilization order for cultures of P. aeruginosa 215 growing on chemically-defined media. The experimental 
substrate utilization order was: (1) aggregate pool of amino acids, (2) citrate, (2) succinate, (3) lactate, (4) 
acetate, and (5) glucose. (a) Substrate utilization order predictions for cellular energy production and biomass 
production using a two-dimensional optimization including complete substrate oxidation and minimal 
proteome investment. Simulations used a refined, core proteome theory where only enzyme-catalyzed reactions 
extraneous to the experimentally-measured, constitutive, core proteome where considered. A subset of the core 
enzymes is shown in Fig. 3 while the explicit list can be found in supplementary material S15. (b) Predicted 
substrate preference based on the ‘maximization of rate’ criterion for cellular energy production and biomass 
production. In silico product yield on substrate was assumed proportional to rate.
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fermentable carbon sources by preferring to catabolize secondary, byproducts of cCCR metabolism. Fast growth 
may not be as central to fitness as the efficient extraction of energy from the lower energy substrates. Many rCCR 
preferred organic acids are nonfermentable which precludes the rCCR metabolism from utilizing the tradeoffs 
inherent to either high yield or high rate strategies, as commonly observed in cCCR  organisms48.

Both rCCR and cCCR phenotypes are found in microorganisms described as generalists, e.g. P. aeruginosa 
and E. coli. Both rCCR and cCCR phenotypes can be predicted using resource investment theories, albeit with 
the rCCR organism expressing a respiration-centric phenotype and the cCCR organism expressing a glycolysis-
centric, overflow phenotype. Natural environments are often limited by anabolic nutrients including  nitrogen18. 
Division of labor, thru rCCR and cCCR based phenotypes, can theoretically enable higher consortia fluxes, from 
a scarce nitrogen supply, based on the nonlinear relationship between enzyme flux and resource  investment17,66 
(Fig. 7c). This kinetic effect can translate into consortia having a better metabolic return on limiting nutrients, 
leading to higher biomass accumulation and higher host  bioburden17,67–70. Additionally, the CCR-based, divi-
sion of labor could create a positive feedback mechanism by removing inhibitory organic acids and preventing 
environmental acidification via both organic acid consumption and amino acid catabolism, ultimately increasing 
consortia productivity by permitting a more complete depletion of  substrates71. Amino acid catabolism and the 
release of ammonia can also function as an intercellular communication strategy where the small metabolite 
influences phenotype, like antibiotic susceptibility, in distant  populations72–74.

Most virulence mechanisms are nutrient acquisition strategies that are also effective in medical  niches8. CCR 
regulates a wide range of social behaviors and likely modulates division of labor which would facilitate substrate 
acquisition by rCCR  microorganisms17. P. aeruginosa preference for non-fermentable substrates like succinate 
makes it a secondary resource specialist that requires terminal electron acceptors like  O2 or  nitrate75. However,  O2 
is often limiting in biofilms where cellular  O2 consumption rates are faster than diffusion  rates34,76. P. aeruginosa 
possesses effective mechanisms to acquire scarce resources like  O2

70,77–80. For example, P. aeruginosa secretes a 
cocktail of moieties such as pyocyanin, quinolones, and  cyanide59,81–84. Exposure to this cocktail can manipulate 
the S. aureus cCCR phenotype, driving it toward overflow and fermentative  metabolisms70,85. Collectively, the 
compounds enable a secondary consumer to influence the metabolism of neighboring cells directing their pheno-
types toward secreting preferred substrates including organic acids while reserving the  O2 for P. aeruginosa69,70,84.

Lactate has remarkable connections to P. aeruginosa substrate preference and medical niches including dia-
betic wounds. Elevated lactate levels found in diabetic wounds come from two sources. First, diabetic patients 
can have higher levels of serum lactate due to diabetic ketoacidosis, and secondly, lactate is associated with 
wound bed colonization by bacteria which produce it as a  byproduct86–88. > 80% of chronic wounds are colo-
nized by P. aeruginosa89 while 90% of chronic leg ulcers are colonized by S. aureus78,90–93 which displays a cCCR 
 phenotype94,95. Not surprisingly, these bacteria are often co-isolated55,85,96. Wounds colonized by multispecies can 
be more difficult to treat and can have more negative outcomes than wounds colonized by a single  species69,91,93. 
Mutualistic interactions in consortia, based on complementary rCCR and cCCR metabolisms, could lead to 

Figure 7.  Theoretical consortial interactions including competition and cross feeding. (a) Consortium with 
multiple populations competing for the same electron donor and same electron acceptor and both populations 
utilizing an overflow metabolism producing inhibitor lactic acid. (b) Consortium of rCCR utilizing P. aeruginosa 
(Pa) and cCCR utilizing S. aureus (Sa) where substrate preferences are partitioned between the two populations 
and lactic acid is cross fed. (c) Cross feeding can lead to enhanced phenotypic properties, such as flux, for a 
scarce nutrient pool like reduced carbon or nitrogen. Michaelis–Menten-like kinetics and the requirement to 
invest resources into both enzyme and metabolite pools leads to a nonlinear relationship between invested 
resources and enzyme flux. Higher fluxes require a smaller, relative resource investment. See Beck et al.67 for 
parameter details.
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emergent properties such as enhanced biomass productivity based on enhanced resource acquisition and better 
metabolic return on investment of scarce nutrients, ultimately leading to greater virulence. Mitigating these 
consortia, through rational countermeasures, will require quantitative knowledge of the metabolic organization 
which forms the bases of all virulence mechanisms.

Materials and methods
Bacterial strain and cultivation. All experiments used P. aeruginosa str. 215, a clinical isolate obtained 
from a chronic  wound33,97. Frozen stocks of P. aeruginosa 215 were prepared by growing cultures in 10 mL of 
1/10 strength tryptone soy broth (TSB) at 37 °C with shaking (150 rpm), mixed with 3 mL of 20% glycerol, and 
stored at − 80 °C.

Frozen stocks were plated on tryptic soy agar (TSA) at 37 °C for 12 h, five colonies were picked to inoculate 
10 mL of Clostridium, Staphylococcus, Pseudomonas (CSP) medium in culture tubes. CSP is a chemically defined 
medium developed to support the growth of P. aeruginosa, Staphylococcus aureus, and Clostridium perfringens 
as monocultures or  consortia34 (supplementary material S1). For CSP supplemented with one or more organic 
acids, 22 mM of each organic acid specified was added.

A total of three culturing tubes containing 10 mL of CSP were each inoculated with about five colonies from 
the TSA plates, incubated at 37 °C with shaking at 150 rpm (tubes were placed at a 45° angle in the shaker to 
increase mixing) and grown until the cultures reach an  OD600 of 0.5. 1 mL of each culture was then added to 
49 mL of fresh CSP medium in 250 mL baffled flasks and an  OD600 of 0.010. The baffled flasks were capped with 
gas permeable foam lids and incubated at 37 °C with shaking at 150 rpm. Sampling occurred about every hour 
during the first 12 h and less frequently afterwards.

Culture sampling. Samples were drawn from each flask for  OD600, pH, amino acid, and carbon metabolite 
measurements. An aliquot of 1.5 mL of culture was collected at each sampling, cells were separated from the 
supernatant using centrifugation at 7000  rpm for 10 min (Eppendorf 5415D microcentrifuge). Supernatants 
were then filtered using 0.22 µm syringe filters prior to being stored at − 20 °C.

At each sampling, a volume of culture was collected for  OD600 measurement.  OD600 readings were blanked 
with fresh CSP and samples were diluted, if necessary, to keep  OD600 measurements ≤ 0.30.

Organic acid and sugar analyses. HPLC analysis of select carbon metabolites including glucose and 
organic acids was performed with an Agilent 1200 series HPLC equipped with a refractive index detector (RID) 
and an Aminex HPX-87H ion exclusion column, 300 mm × 7.8 mm. A mobile phase of 5 mM  H2SO4 was run at a 
flow rate of 0.6 mL/min for 25 min/injection. A volume of 200 µL of sample was added to an HPLC vial with 200 
µL of an internal standard of 1 g/L fucose dissolved in 10 mM  H2SO4. Each sample was injected twice for a total 
of two technical replicates for each of the three biological replicates for each time point. HPLC analysis of culture 
supernatants were compared to NMR analysis (Chenomx library and an internal standard of DSS) as a verifica-
tion of metabolite identities and to ensure no major metabolites were being  missed34. Supplementary material S3 
includes a comparison of HPLC- and NMR-based analyses of select metabolites during batch growth.

Amino acid analysis. HPLC analysis of amino acids was performed with an Agilent 1100 series equipped 
with a diode array detector (DAD) and a ZORBAX Eclipse XDB-C18 column, 4.6 mm ID × 250 mm (5 µm) 80 
Å. This setup was used with the Agilent protocol for HPLC analysis of amino  acids98.

Cell dry weight measurement. A correlation curve between  OD600 and grams of cell dry weight (g CDW) 
per liter was constructed. 5 mL aliquots of P. aeruginosa culture harvested in mid-exponential growth phase 
diluted to a range of densities were dried at 80 °C for 24 h in aluminum drying pans and weighed. Correlation 
equation was: (g CDW/L) = (OD600)*2.23−1.

Proteomics analyses. P. aeruginosa cultures (n = 3) were collected via centrifugation at 3600×g and washed 
three times with phosphate buffered solution to remove residual media. Cells were resuspended in 1.25 mL radi-
oimmunoprecipitation assay buffer consisting of 12.5 μL of protease inhibitor (Halt Protease Cocktail Inhibitor, 
Thermo Fisher Scientific, Rockford, IL) to prevent enzymatic degradation upon cell lysis, 0.1 mg/ml lysozyme 
to solubilize the cell peptidoglycan layer, and 5 mM dithiothreitol (DTT) to cleave protein disulfide bonds. Cells 
were lysed mechanically in a beadbeater (Mini-beadbeater-1, Biospec Products, Inc, Bartlesville, OK) at 4800 
oscillations/min with the remainder of the vial filled with 0.1 mm diameter zirconia/silica beads for a total time 
of 2.5 min (five cycles at a duration of 30 s each with chilling in an ice water bath between cycles).

Protein concentrations were determined by protein assay kit (DC Bradford Reagent, Thermo Fisher Scien-
tific). 15 µg of proteins were taken from all samples and transferred to centrifugal filter units (Microcon-30 kDa 
Centrifugal Filter Unit with Ultracel-30 membrane, Millipore Sigma, Billerica, MA). The samples were then 
processed following the filter aided sample preparation  method99, in which proteins were reduced with DTT, 
alkylated with iodoacetamide to prevent disulfide bond reformation, then enzymatically digested overnight 
into peptides with trypsin at 1:50 enzyme:substrate (w:w) at 37 °C. The resulting peptides were desalted using a 
C18 column (Macro SpinColumn, Harvard Apparatus, Holliston, MA), dried in a centrifugal evaporator, then 
resuspended in 5% acetonitrile with 0.1% formic acid to a concentration of 0.2 μg/μL.

200 ng samples of peptides were separated in a HPLC system (1260 Infinity LC System, Agilent, Santa Clara, 
CA) and a C18 column (3.5 μm particle size, 150 mm length × 75 μm internal diam, Zorbax 300SB, Agilent) using 
a 60 min mobile phase gradient ranging from 5 to 85% organic (0.1% formic acid in water to 0.1% formic acid 
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in acetonitrile) at 250 nL/min flow rate for a total run time of 75 min. Following LC separation, peptides were 
ionized by nanoelectrospray with a spray voltage of 1.90 kV and 275 °C capillary temperature, then analyzed in a 
high resolution Orbitrap mass spectrometer (Orbitrap Velos Pro purchased in 2007, Thermo Scientific, Waltham, 
MA) with automatic gain control set at  106 ions and injection times of 1–200 ms. Full scan mass spectra from m/z 
400 to 2000 at 30,000 mass resolution were collected in data-dependent acquisition mode. Ten precursor ions 
were selected from each full mass scan for analysis by tandem mass spectrometry (MS/MS, using 30% energy 
in HCD mode for fragmentation).

Raw mass spectra data files were processed for protein identification using the MaxQuant software (v. 
1.5.3.30)100 with main search parameters of 4.5 ppm peptide tolerance, 20 ppm MS/MS match tolerance, 10 ppm 
MS/MS de novo tolerance, seven minimum peptide length, carbamidomethyl as fixed modification, 0.01 FDR, 
oxidation and acetylation variable modification, and enabled search for contaminants. Protein abundances were 
further data processed and normalized with log transformation (base 2) for data visualization and statistical 
analyses (ANOVA, p value < 0.05) using the Perseus software (v.1.5.4.0)101. The Search Tool for Retrieval of Inter-
acting Genes (STRING) database (v. 10.5)102 was used for protein–protein interactions amongst the statistically 
significant proteins, set at medium confidence of 0.4 and protein annotation (functional enrichment analyses).

In silico analysis of metabolism and resource allocation. A genome-scale, stoichiometric model of 
P. aeruginosa (iMO1086)40,41 was analyzed using flux balance analysis (FBA) via the COBRA Toolbox (https 
://openc obra.githu b.io/cobra toolb ox/stabl e/cite.html) in MATLAB using the Gurobi optimization program 
(http://www.gurob i.com) (supplementary material S12,S20). Carbon and  O2 limitations were modeled by set-
ting the carbon (5 mmol/g/h) or  O2 (20 mmol/g/h) uptake rates, respectively, for each of the examined carbon 
sources and maximizing the production of biomass or cellular energy (i.e. quantified as the number of ATP 
bonds hydrolyzed). Enzyme limitation was modeled by minimizing the number of participating reactions for 
specified substrate uptake rates while producing biomass or cellular energy. Suboptimal solutions between the 
minimal total flux and the maximum product yield (biomass or cellular energy) or the minimum proteome and 
the maximum product yield (biomass or cellular energy) were identified by minimizing an aggregate objective 
function. The aggregate objective function was the sum of either total flux or total proteome and a weighted flux 
through the substrate transport reaction of interest. Optimization between proteome investment and product 
yield was achieved by changing the weight of the flux through the carbon or oxygen transport reaction of inter-
est. The algorithms can be found in supplementary material S20.
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