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Immune classification of clear cell 
renal cell carcinoma
Sumeyye Su, Shaya Akbarinejad & Leili Shahriyari*

Since the outcome of treatments, particularly immunotherapeutic interventions, depends on the 
tumor immune micro-environment (TIM), several experimental and computational tools such as 
flow cytometry, immunohistochemistry, and digital cytometry have been developed and utilized to 
classify TIM variations. In this project, we identify immune pattern of clear cell renal cell carcinomas 
(ccRCC) by estimating the percentage of each immune cell type in 526 renal tumors using the new 
powerful technique of digital cytometry. The results, which are in agreement with the results of 
a large-scale mass cytometry analysis, show that the most frequent immune cell types in ccRCC 
tumors are CD8+ T-cells, macrophages, and CD4+ T-cells. Saliently, unsupervised clustering of ccRCC 
primary tumors based on their relative number of immune cells indicates the existence of four distinct 
groups of ccRCC tumors. Tumors in the first group consist of approximately the same numbers of 
macrophages and CD8+ T-cells and and a slightly smaller number of CD4+ T cells than CD8+ T cells, 
while tumors in the second group have a significantly high number of macrophages compared to 
any other immune cell type (P-value < 0.01 ). The third group of ccRCC tumors have a significantly 
higher number of CD8+ T-cells than any other immune cell type (P-value < 0.01 ), while tumors in the 
group 4 have approximately the same numbers of macrophages and CD4+ T-cells and a significantly 
smaller number of CD8+ T-cells than CD4+ T-cells (P-value < 0.01 ). Moreover, there is a high positive 
correlation between the expression levels of IFNG and PDCD1 and the percentage of CD8+ T-cells, and 
higher stage and grade of tumors have a substantially higher percentage of CD8+ T-cells. Furthermore, 
the primary tumors of patients, who are tumor free at the last time of follow up, have a significantly 
higher percentage of mast cells (P-value < 0.01 ) compared to the patients with tumors for all groups of 
tumors except group 3.

Clear cell renal cell carcinoma (ccRCC) is the most frequently diagnosed malignant tumor type in the adult 
kidneys consisting of approximately 85% of kidney cancer  cases1, and surgical resection is the common therapy 
type for ccRCC. However, it is not effective for patients with advance or metastatic ccRCC 2. Several immuno-
therapeutic approaches have been recently used for treating patients with ccRCC 3,4, which is considered a mor-
phologically and genetically immunogenic  tumor5. However, many patients do not respond to these treatments 
and develop adaptive or intrinsic resistance. We can increase the response rate to these treatments by identifying 
types of tumors that would respond to them.

Several studies show that cancer cells and tumor infiltrating immune cells (TIICs), which have important roles 
in both regulation of cancer progression and promotion of tumor  development6,7, play an important role in the 
determination of malignant tumor  types8,9. Tumor-infiltrating lymphocytes (TILs), which include T-cells and 
B cells, are an important category of TICCs. CD4+ helper T-cells and cytotoxic CD8+ T-cells play a significant 
role in preventing tumor by targeting antigenic tumor  cells10, and CD8+ T-cells are linked with better clinical 
outcomes and reaction to immunotherapy in many  cancers11,12. Furthermore, it has been recently observed 
that tumor associated B cells, which have significant roles in the immune system by producing antibodies and 
presenting antigens, could be predictors of survival and response to immune checkpoint blockade  therapy13. 
Additionally, a relationship between TIICs gene signatures and lower survival rates has been observed in ccRCC 
patients, and tumor-associated macrophages (TAM) and 22 T cell phenotypes are found to be correlated with 
clinical  outcomes14,15. These observations emphasize on importance of analyzing the cellular heterogeneity of 
tumors, including immune cell variations, to identify target tumors for each specific treatment and design new 
effective cancer  treatments16.

There are some experimental approaches such as single cell analysis tools, including immunohistochemis-
try and flow cytometry to observe tumor immune infiltrates, however these methods are expensive and time 
consuming, and they are limited to analyzing a few immune cell types  simultaneously17. For this reason, several 
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computational methods have been recently developed to provide us with much less expensive and fast alterna-
tive ways to estimate the relative amount of each cell type from gene expression profiles of bulk tumors. In this 
study, we applied a powerful “digital cytometry” method called  CIBERSORTx18 to determine immune patterns 
of tumors (Fig. 1A) and investigate the association of these patterns with clinical features.

Results
To estimate the percentage of each cell type in ccRCC tumors, we apply the “digital cytometry” method of CIB-
ERSORTx, which has a good  performance19, on TCGA gene expression profiles of ccRCC primary tumors. We 
compare the results of our “digital cytometry” analysis with the results of an experimental study of a large-scale 
mass cytometry-based immune cells analysis of 73 ccRCC  patients14. Immune cells, which have been character-
ized in this experimental study done by Chevrier et al.14 are macrophages, CD8+ T-cells, CD4+ T-cells, NK cells, 
B cells, plasma cells, dendritic cells (DC), CD45+ T-cells, double positive T-cells (DP_T-cells), double negative 
T-cells (DN_T-cells). To be able to compare our results, which includes 22 immune cell types given in LM22 
signature matrix of CIBERSORTx, we combine cells that belong to the same family. For instance, since CD4+ 
naive T-cell, CD4+ memory resting T-cells, CD4+ memory activated T-cells, follicular helper T-cells, and regula-
tory T-cells are sub-types of CD4+ T-cells, we sum their numbers to estimate the total number of CD4+ T-cells. 
We do similar calculation for B cells, NK cells, DC cells, macrophages, and mast cells.

The most frequent immune cells in ccRCC tumors are macrophages, CD4+ T-cells, and CD8+ 
T-cells. It has been found in the experimental studies that T cells (CD4+ T-cells and CD8+ T-cells) are the 
main immune cell population in the ccRCC  tumors14,20. Results of experimental study done by Chevrier et al.14 
show that macrophages are the most frequent immune cells in most ccRCC tumors with a mean of 31% followed 
by CD8+ T-cells and CD4+ T-cells, respectively (H), which are in agreement with the results of CIBERSORTx 
applied on TCGA data set (Fig. 1C,I).

There is a negative correlation between the number of macrophages and CD8+ T-cells. The 
results of mass cytometry analysis indicate a negative correlation between CD8+ T-cells and macrophages with 
Pearson correlation coefficients of − 0.67 . Importantly, the digital cytometry applied on TCGA data set confirms 
this negative correlation between the number of CD8+ T-cells and macrophages in ccRCC with a correlation 
coefficient of −0.46 (Fig. 1D,E).

Figure 1.  Immune pattern of ccRCC. Sub-figure (A) (created using PowerPoint v16.44) represents the 
algorithm of digital cytometry and clustering applied on TCGA data. Sub-figures (B) and (C), respectively 
show the estimated percentage of each immune cell by mass cytometry analysis of 73 ccRCC patients done by 
Chevrier et al.14 (B) and digital cytometry on 526 TCGA ccRCC tumors (C). Sub-figures (D) and (E) indicate 
the correlation map of estimated immune cell frequencies in 73 ccRCC tumors (D) and TCGA ccRCC tumors 
(E), respectively. Sub-figures (F) and (G) show the cluster heat map of immune cell frequencies in 73 ccRCC 
tumors (F) and TCGA ccRCC tumors (G). Sub-figures (H) and (I) respectively show a box plot format of the 
immune cell percentages in 73 ccRCC tumors (H) and TCGA ccRCC tumors (I). Sub-figure (J) shows 4 distinct 
immune patterns of ccRCC tumors obtained by K-mean clustering of cell frequencies of TCGA ccRCC tumors. 
Sub-figures (B)–(I) have been created using  TumorDecon19 (https ://pypi.org/proje ct/Tumor Decon /).

https://pypi.org/project/TumorDecon/
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Variations of ccRCC tumors are mainly in the percentage of macrophages, CD8+ T-cells, and 
CD4+ T-cells compared to the other immune cell types. Figure 1 shows high variations among the 
percentage of CD8+ and CD4+ T-cells and macrophages across ccRCC tumors, while there is a slight variation 
in the percentage of other immune cell types. Unsupervised hierarchical clustering of cell frequencies show that 
CD8+ T-cells and CD4+ T-cells are clustered together in the experimental results, and then they group with 
macrophages and other cells (Fig. 1F). The result of digital cytometry on TCGA data shows a kind of similar 
trend: CD4+ T-cells first clustered with macrophages, then they clustered with CD8+ T-cells and other cells 
(Fig. 1G).

There are four immune patterns of ccRCCs. K-mean clustering of ccRCC tumors based on their 
immune cells’ frequencies shows that there are four different immune classes: Cluster 1 ( CD4 < CD8 ≈ M� ), 
in which the numbers of macrophages and CD8+ T-cells are approximately the same, and the number of CD4+ 
T-cells is slightly less than the number of CD8+ T-cells; Cluster 2 called ( CD8 < CD4 < M� ), in which the 
number of macrophages is significantly higher than the number of CD4+ and CD8+ T-cells (P-value < 0.01 ); 
Cluster 3 ( CD4 < M� < CD8 ), in which the number of CD8+ T-cells is significantly higher than the number 
of macrophages and CD4+ T-cells (P-value < 0.01 ); and Cluster 4 called ( CD8 < CD4 ≈ M� ) in which the 
numbers of macrophages and CD4+ T-cells are approximately the same, and the number of CD8+ T-cells is 
significantly less than CD4+ T-cells (P-value < 0.01 ) (Fig. 1J).

Cluster ( CD8 < CD4 ≈ M� ) has the highest percentage of grade 1–2 and stage T1–T2 
tumors. Comparing clinical features of clusters show that Cluster ( CD8 < CD4 ≈ M� ) includes the high-
est percentage of grade 1 and grade 2 tumors and the lowest percentage of grade 4 tumors with the chi-squared 
test’s P-value < 0.05 ,where the grade of tumor is defined as a numeric value to express the degree of abnor-
mality of cancer  cells21, and there is a similar trend for the stage of tumors (Fig. 2A,B). Importantly, clusters 
( CD8 < CD4 ≈ M� ) and ( CD8 < CD4 < M� ) have the highest proportion of patients who were tumor free 
and smallest percentage of the diseased patients at the last time of follow up among all other clusters (Fig. 2C,D). 
Furthermore, this cluster has the highest frequency of mast cells, monocytes and B cells compared the other 
clusters (Fig. 1J). These results might imply that non-aggressive tumors include an approximately equal number 
of each immune cell type.

Cluster ( CD4 < M� < CD8 ) has the highest percentage of grade 4 and stage T4 tumors com-
pared to the other clusters. The result of chi-squared test shows that the percentages of grade 3–4 and 
stage T3–T4 tumors are significantly higher in Cluster ( CD4 < M� < CD8 ) compared to the other clusters 
(Fig. 2A,B, P-value < 0.05 ). Furthermore, this cluster includes the highest number of deceased patients (chi-
squared test’s P-value < 0.05 ) and patients who had a tumor at the last time of follow up compared to the other 
clusters (Fig. 2C,D). Note, patients are categorized as ‘tumor free’ if they did not have any tumor, and as ‘with 
tumor’ if they had any tumor at the last time of follow  up21. There is a noticeable difference among overall sur-
vival months of female and male patients in this cluster, female patients in the cluster ( CD4 < M� < CD8 ) have 
the highest overall survival months compared to the other clusters (Fig. 2H). These results indicate that male 
patients’ ccRCC tumors consisting of a significantly higher number of CD8+ T-cells than any other immune cell 
types might be aggressive.

There is no significant differences in overall survival months or age at diagnosis between 
clusters. Figure  2 indicates no significant differences in the overall survival of patients between any of 
these clusters; this figure also reveals some other interesting observations. For example, patients in Cluster 
CD4 < CD8 ≈ M� with and without tumors at the last time of follow up have a similar overall survival months 
while in all other clusters patients with tumor have a substantially lower survival months than patients without 
tumors at the last time of follow up (Fig. 2G). Moreover, patients with tumor in this cluster have a remarkably 
higher age at diagnosis compared to the patients with no tumors in this cluster (Fig. 2J). Furthermore, female 
patients in this cluster have a noticeably higher age at diagnosis but the same survival as male patients in this 
cluster (Fig. 2H,K). Additionally, female patients in Cluster CD4 < M� < CD8 have a substantially higher over-
all survival months than male patients in this cluster, while females have a slightly higher age at diagnosis than 
males in this cluster. Importantly, there is no significant differences in the age at diagnosis and survival months 
of patients in each cluster based on the location of their primary tumors, left and right kidneys (Fig. 2I,L).

Higher grade and stage of ccRCC tumors have higher percentage of CD8+ T-cells and lower 
percentages of mast cells and monocytes. A study of 87 ccRCC patients indicates that the percentage 
of tumor infiltrating CD8+ T-cells co-expressing PD-1 and Tim-3 is correlated with an aggressive phenotype 
and a larger tumor size at  diagnosis22. In another study, it has been found that the grade of ccRCC tumors is an 
increasing function of CD8+ T  cells20. Figure 3 also indicates that the grade 3–4 and stage T3–T4 ccRCC tumors 
have a significantly higher percentage of CD8+ T-cells compared to the stage T1–T2 and grade 1–2 tumors 
(P-value < 0.01 ), which is consistent with the observations of Fig. 2.

Figure 3 also indicates that the percentages of mast cells and monocytes in ccRCC tumors significantly 
decrease when the grade and stage of tumors increase (P-value < 0.01 ). Note, Clusters ( CD8 < CD4 < M� ) 
and ( CD8 < CD4 ≈ M� ) that have higher frequency of mast cells and monocytes and lower frequency of CD8+ 
T-cells have the least percentage of grade three and four tumors (Figs. 1J and 2). Some studies have reported a 
correlation between a high density of CD8+ T-cells in RCC patients and shorter overall  survival23 and worse 
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treatment  response24. Similarly, we observe that patients in Cluster ( CD4 < M� < CD8 ), which has the highest 
amount of CD8+ T cells, have the worst survival outcome among all clusters (Fig. 2).

Tumor free patients have a significantly higher percentages of mast cells in their primary 
tumors. NK cells are known for their roles in immune surveillance and destruction of tumor  cells25,26. More-
over, flow cytometric and immunohistochemistry analyses show that a high number of NK cells is associated 
with improved  survival23 and negatively correlated with the grade of  tumor20. Also, Fig. 4A shows that primary 
tumors of patients who are tumor free at the last time of follow up has a significantly higher level of NK cells 
compared to the patients with tumor (P-value < 0.01 ). However, a closer look in clusters reveal that the signifi-
cant difference (P-value < 0.01 ) in percentage of NK cells between tumor free and with tumor patients corre-
sponds to the patients in Cluster ( CD4 < CD8 ≈ M� ) (Fig. 4B).

In a recent study, 259 ccRCC patients have been clustered into two groups based on their immunohistochem-
istry profiles, and it has been observed that patients in the cluster with a high mast cells infiltration have a better 
response to treatments and a higher  survival24. In our results, the percentage of mast cells is higher in primary 
tumors of tumor free patients versus with tumor patients at the last time of follow up in all cluster. Importantly, 
Cluster ( CD8 < CD4 ≈ M� ) has the highest percentage of mast cells and NK cells compared to the other clusters 
(Figs. 1J and 4). Note, this cluster has the highest percentage of grade and stage 1 and 2 tumors. Additionally, 
ccRCC tumors in Cluster ( CD4 < M� < CD8 ), which has the highest percentage of grade and stage 4 tumors, 
have the lowest amount of mast cells.

Genes expression levels of PDCD1 and INFG are significantly positively correlated with the 
percentage of CD8+ T-cells in ccRCC tumors. Programmed cell death protein 1 (PD-1) is a type of 
protein that found on T-cells and it prevents T-cells from killing cancer cells when it binds to PD-1 ligand (PD-

Figure 2.  Clinical features of each ccRCC tumor cluster. Sub-figures (A)–(F) show the percentage of patients 
with grade 1–4 (A), stage T1–T4 (B), with tumors or without tumors (C), alive or dead at the last time of follow 
up (D), female or male (E), and primary tumors in left or right kidney (F) for each cluster of ccRCC tumors. 
Sub-figures (G)–(I) and (J)–(L) respectively show the overall survival months and age of diagnosis of the 
patients in each cluster as a function of tumor status (G,J), gender (H,K), and the location of the primary tumor 
(I,L); the size of markers indicates the grade of tumors.
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L1) and PD-2 ligand (PD-L2) on cancer cells. PDCD1 gene, which encodes PD-1 protein, and CD8+ T-cells are 
highly positively correlated, with correlation coefficient of 0.85. Also, expression level of PDCD1 is the highest 
in the cluster ( CD4 < M� < CD8 ) and the lowest in the cluster ( CD8 < CD4 ≈ M� ) as a result of positive 
correlation with CD8+ T-cells (Fig. 5C,E).

Interferon γ ( INFγ ), encoded by INFG gene, is a cytokine that is essential for innate and adaptive immunity. 
It works as an activator of macrophages and stimulator of NK cells and  neutrophils27, and it is mostly produced 
by T-cells and NK cells as a reaction of a variety of inflammatory or immune  stimuli28. Saliently, expression 
level of INFG is significantly positively correlated with the percentage of CD8+ T-cells and the expression level 
of PDCD1 in ccRCC tumors, with correlation coefficients of 0.79 and 0.87, respectively. In addition, cluster 
( CD4 < M� < CD8 ) has the highest INFG expression level and cluster ( CD8 < CD4 ≈ M� ) has the lowest 
expression level of INFG as expected (Fig. 5).

In contrast, there is a slightly positive correlation between the expression levels of CD274 and PDCD1LG2 
genes, that encodes PD-L1 and PD-L2 respectively, with the expression levels of PDCD1 and INFG, and the 
percentage of CD8+ T-cells in ccRCC tumors (Fig. 5E). In addition, cluster ( CD8 < CD4 ≈ M� ) has the lowest 
levels of CD274 and PDCD1LG2 compared to the other clusters (Fig. 5B,D).

There is a significant association between RGS5 expression level and the percentages of NK 
cells, monocytes, and mast cells. RGS5 is a member of the regulators of G protein signaling (RGS) 
family, and they are known as signal transaction molecules that are associated with the arrangement of hetero-
trimetric G proteins by acting as GTPase activators. Moreover, RGS5 is a hypoxia-inducible factor-1 depend-
ent involved in the induction of endothelial apoptosis. In our previous study on TCGA data, we found that a 
high expression level of RGS5 in ccRCC primary tumors is associated with better survival months, and when 
the grade of ccRCC tumor increases, the RGS5 expression level significantly  decreases29. Interestingly, cluster 
( CD8 < CD4 ≈ M� ) has the highest RGS5 expression level compared to the other clusters, and tumor free 
patients have a higher level of RGS5 expression than patients with tumor (Fig. 6A). Saliently, ccRCC tumors 

Figure 3.  Percentage of mast cells, monocytes and CD8+ T-cells in ccRCC tumors as a function of grade and 
TNM staging. Sub-figures (A)–(C) show the percentages of mast cells (A), monocytes (B), and CD8+ T-cells (C) 
in primary tumors as a function of stage of tumors. Sub-figures (D)–(F) represent the percentage of mast cells 
(D), monocytes (E), and CD8+ T-cells (F) in primary tumors as functions of the grade of tumors.

Figure 4.  Frequency of NK cells and mast cells in ccRCC. Sub-figure (A) shows that patients who were tumor 
free at the last time of follow up have higher percentage of NK cells than patients with tumor at the last time. 
Sub-figures (B) and (C) respectively indicate the percentage of NK cells and mast cells in primary tumors in 
each cluster.
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with a high expression level of RGS5 have a significantly high percentages of NK cells, mast cells, and monocytes 
(P-value < 0.01 ) (Fig. 6B–D).

Discussion
Immune checkpoints are essential parts of immune system, and they are crucial to prevent autoimmune diseases. 
However, some tumors benefit from these checkpoints, because these checkpoints can prevent the immune sys-
tem from killing cancer cells. One such immune checkpoint is programmed cell death 1 (PD-1) protein, which 

Figure 5.  Expression levels of genes encoding PD-1, PD-L1, PD-L2, and IFNγ . Sub-figures (A)–(D) indicate 
the expression levels of INFG, PDCD1LG2, PDCD1 and CD274 in each cluster as a function of tumor status, 
respectively. Sub-figure (E) represents the correlations and distributions of INFG, PDCD1LG2, PDCD1, CD274 
expression levels and CD8+ T-cells; color coded based on the clusters.

Figure 6.  RGS5 expression level in ccRCC tumors. Sub-figure (A) shows the expression level of RGS5 in ccRCC 
tumors in each cluster as a function of tumor status. Sub-figures (B), (C) and (D) indicate the relation between 
the level of RGS5 and the percentages of NK cells, monocytes, and mast cells in ccRCC tumors, respectively.
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binds to its ligand PD-L1 and inhibits immune cell activities, including T cell activities. One strategy for cancer 
immunotherapy is to block these checkpoints to promote anti-cancer T-cell  activities30–33. Immunotherapy such 
as targeting PD-1 pathway has improved overall survival months of several patients with metastatic cancers, 
including melanoma, head and neck cancer, renal cell carcinoma, non-small cell lung cancer (NSCLC), and 
colon cancer. However, there are many patients who do not respond to these treatments, and some patients who 
initially respond to the treatments, they might develop resistance or experience severe adverse  events34–38. For 
this reason, further biomarkers of tumor cells such as PD-1 and PD-L1 and of tumor infiltrating immune cells 
such as T-cells and macrophages need to be established to develop new treatment strategies and identify the 
patients who can be treated by each drug or treatment  strategy39.

In kidney cancer, common immunotherapy drugs such as nivolumab and avelumab target PD-1, PD-L1, and 
PD-L2  pathways40. Anti PD-1 drugs targets T-cells directly, while anti-PD-L1 drugs target tumor cells directly, 
and they may also target tumor associated macrophages that express PD-L1. Several studies indicate an increase 
of INFγ production in the PD-1 inhibitors and other immune checkpoint blockade therapies that resulted in 
destruction of cancer  cells41–43, and a relation between cancer immunotherapy improvement and an increase 
of INFγ expression has been  observed28. Moreover, a correlation observed between an increase in INFγ gene 
expression and better progression-free survival in NSCLC and urothelial cancer patients treated with a PD-L1 
 inhibitor44.

Note, tumors in cluster ( CD4 < M� < CD8 ) have a high expression levels of INFG, the gene encoding 
INFγ , and PDCD1, the gene encoding PD-1, compared to the other clusters, and the expression levels of these 
genes are significantly positively correlated with the percentage of CD8+ T-cells in tumors. Importantly, it has 
been shown that INFγ boosts the CD8+ T-cells  expansion45. Thus, patients in the cluster ( CD4 < M� < CD8 ) 
might respond to the PD-1 inhibitors. In addition, since there is not a strong correlation between PDCD1LG2 
and CD274 expression levels and levels of INFG and PDCD1 genes, PD-L1 and PD-L2 inhibitors might not be as 
effective treatments as the PD-1 inhibitors for the patients in this cluster. Although Cluster ( CD8 < CD4 ≈ M� ) 
includes a high number of patients with lower grade and without tumor in the last follow up time, tumors in this 
cluster have lower levels of INFG and PDCD1, therefore patients in this cluster may not be a good candidate 
for anti PD-1 therapies.

Anti-angiogenic agent (AA) is one of the main treatments in the aggressive ccRCC 1, because nutrients and 
oxygen are the main ingredients of the tumor growth which come from blood. Anti-angiogenics, also known 
angiogenesis inhibitors, are drugs that stop the growth of blood vessels (angiogenesis) that tumors need to  grow46. 
A study of in vitro cell lines and in vivo mouse models of ccRCC shows that the recruitment of mast cells is related 
with increased ccRCC angiogenesis by modulating PI3K → AKT → GSK3β → AM signaling  pathway47. Since 
Cluster ( CD8 < CD4 ≈ M� ) has the highest amount of mast cells compared to the other clusters, angiogenesis 
inhibitors might be a good treatment option for the patients in this cluster. Moreover, mast cells are suggested as 
an independent prognostic factor in some studies of ccRCC  patients48,49. It has been observed that the number 
of mast cells is negatively correlated with 5-year  survival49 and positively correlated with grade, pT stage, and 
 metastasis50. Contradicting these observations, a recent study of ccRCC patients shows that an increased mast 
cells infiltration is linked with better treatments’ responses and  survival24. We have similarly observed that the 
number of mast cells is inversely correlated with the grade of tumors (Fig. 3A,D), and the primary tumors of 
patients without tumors at the last time of follow up have higher percentages of mast cells than primary tumors 
of patients with tumor at the last time of follow up.

Kruger et al.51 suggested RGS5 gene as a tumor associated antigenes (TAAs), and they observed over-expressed 
RGS5 level from a large scale analysis of ccRCC specimens. Another study found that RGS5 is strongly up-regu-
lated in a broad variety of malignant cells and showed that RGS5 peptides might be a good candidate for design-
ing cancer vaccines to target malignant cells and tumor  vessels52. We found that patients with higher RGS5 levels 
have significantly higher percentages of NK cells, mast cells, and monocytes in their primary tumors (P-value 
< 0.01 ). Moreover, patients in Cluster ( CD8 < CD4 ≈ M� ) have the highest amount of RGS5 expression in 
their primary tumor. With the help of further investigation, RGS5 gene might be a good target for patients in this 
cluster. Further clinical and biological studies are required to test and validate all above mentioned suggestions.

Materials and methods
We estimated the percentage of tumor infiltrating immune cells in ccRCC tumors using CIBERSORTx decon-
volution method that is based on the following linear model:

where b, which is called mixture data, is the gene expression profile of the bulk tumor, and X is unknown cell 
proportions in b. A, which is called signature matrix, is the gene expression profile of cells.

In the first version of CIBERSORT, a machine learning technique, Nu-Support Vector Regression ( ν-SVR), 
is used to solve the problem (1)53. Matrix A in Eq. (1) is determined by a hyperplane with capturing the data 
points inside an ε-tube that is determined by support vectors (genes in signature matrix). SVR penalizes the 
data points outside the ε-tube, and a small value is used for ν that determines the lower bound of support vectors 
and the upper bound of training errors. Regression coefficients of ν-SVR method are the values of the vector X. 
However, the proportions are non-negative values, and their sum must be one. Therefore, negative coefficients 
are set to 0, and they normalize the remaining coefficients to sum to  153. Newman et al.18 have recently improved 
their method by adding batch correction modes to remove possible cross-platform variations between signature 
matrix and mixture data.

To investigate the immune variations in renal cancer, we downloaded TCGA data  set54 of gene expression 
profiles of 607 ccRCC primary tumors from UCSC  Xena55 to use as a mixture data b. We used LM22 signature 

(1)AX = b,
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matrix, which includes normalized expression levels of 547 gene signatures that are filtered against other normal 
and cancer cell types to differentiate 22 cell types that are naive B cells, memory B cells, Plasma cells, CD8+ 
T-cells, CD4+ naive T-cells, CD4+ memory resting T-cells, CD4+ memory activated T-cells, follicular helper 
T-cells, regulatory T-cells (Tregs), γ δ T-cells, resting NK cells, activated NK cells, monocytes, M0 macrophages, 
M1 macrophages, M2 macrophages, resting dendritic cells, activated dendritic cells, resting mast cells, activated 
mast cells, eosinophils,  neutrophils53. We then estimated cell fractions in ccRCC tumors using CIBERSORTx 
B-mode to remove technical differences between LM22 signature matrix and TCGA RNA-seq data. Note, genes 
that are used to identify each type of immune cells in LM22 signature matrix can be found in the supplementary 
file of CIBERSORT  paper53.

After we estimated cell proportions, we included only cases with CIBERSORTx P-value < 0.05 . We then 
applied unsupervised K-mean clustering algorithm to cluster tumors based on their percentage of immune 
cells. The K-mean algorithm separates samples in k-group of equal variance by minimizing the inertia (distance 
between samples in the clusters and center of the clusters). To determine the optimal number of clusters (k-value), 
we used elbow method to find the best value for k56.

We also collected clinical information of patients from  cBioPortal57 and dropped some patients due to missing 
clinical information and continued our analysis with 526 patients. Patients’ characteristic are given in Table 1.

For statistical analyses, we used the non-parametric Mann–Whitney–Wilcoxon (MWW) test between groups 
of continuous variables, because values in the comparison groups are not normally distributed and there are dif-
ferent numbers of patients in the comparison groups. MWW tests whether the values in one of two comparison 
groups is significantly larger than the  other58. We also used chi-squared test to determine whether there is a 
statistically significant difference between the frequencies of the categorical variables. Stars in the figures show 
the significance levels where, ns: 0.05 < P ≤ 1 , *: 0.01 < P ≤ 0.05 , **: 0.001 < P ≤ 0.01 , ***: 0.0001 < P ≤ 0.001 , 
****:P ≤ 0.0001.

Ethics. No ethical approval was required for this study.

Data availability
The TCGA  data54 underlying this article are available at https ://www.cbiop ortal .org/datas ets57 and https ://xenab 
rowse r.net/datap ages/55.
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