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ABSTRACT 

DIGITAL CONVERSION OF 

NONLINEAR COMPENSATORS WITH 

ANTIRESET-WINDUP COMPENSATION: 

STUDIES, ANALYSIS AND DESIGN 

FEBRUARY 1992 

RICHARD J. SPANGENBERGER, B.E.T., UNIVERSITY OF DAYTON 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS 

Directed by: Professor Douglas P. Looze 

All physically realizable systems are subject to saturations of one form or another. 

Control systems having saturations are susceptible to the nonlinear problem of reset- 

windup if the controllers within those systems contain one or more integrators. Reset- 

windup is a condition whereby the integrator continues to integrate the feedback error and 

add to the control signal, even in the presence of a decreasing error signal. This 

phenomenon can lead to excessive overshoot in the system in response to large setpoint 

changes. 

This paper discusses the problem of reset-windup in detail and presents several 

methods for correcting this problem in continuous-time systems as discussed in existing 

controls literature. Two approaches to the elimination of reset-windup are discussed in 

detail: the conventional antireset-windup (CAW) scheme and the override signal (OS) 

scheme. The application of these methods to continuous-time systems is reviewed for 

simple example systems. The paper then proposes implementations of these methods for 

discrete-time systems, discusses problems associated with these implementations, 
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including the phenomenon of "chatter", and presents design criteria to make these 

implementations useful. Finally, the practical application of antireset-windup compensation 

is discussed through the design of a digital controller for an existing system. 
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CHAPTER 1 

INTRODUCTION AND HISTORICAL REVIEW 

The control of physical systems by utilizing a computer is becoming more 

commonplace. The desirability to use digital electronics in control systems has been 

influenced by the continuing decrease in the cost of microprocessor, single-board 

computer, and other digital elements - coupled with the weight advantages and increased 

reliability that digital electronics offers. The advantages of digital logic for control are 

numerous: the flexibility of the control mechanisms is increased, and the control functions 

can be integrated with other digital or computing elements within the system. Additionally, 

the total system cost (including built-in-test capability, expandability, flexibility, etc.) of 

using a digital implementation is often cheaper, even though the analog control elements 

themselves may be less expensive than a microprocessor. 

All physically realizable systems are subject to saturations of one form or another. 

Most controllers, whether they are digital or analog, contain one or more integrators, and 

control systems having saturations are susceptible to the nonlinear problem of reset-windup 

if the controllers within those systems contain integrators. Reset-windup is a condition 

where the integrator continues to integrate the feedback error and add to the control signal, 

even in the presence of a decreasing error signal. This phenomenon can lead to excessive 

overshoot in the system in response to large setpoint changes. 

This paper discusses the problem of reset-windup in detail and presents 

several methods for correcting this problem in continuous-time systems as discussed in 

existing controls literature. Chapter 2 introduces the problem of reset-windup and explains 

the phenomenon in continuous-time systems along with the consequences of reset-windup 

including excessive overshoot and settling time. Chapter 3 presents two approaches to the 

elimination of reset-windup which are discussed in detail: the conventional antireset- 
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windup (CAW) scheme and the override signal (OS) scheme. The application of these 

methods to continuous-time systems is reviewed for simple example systems. The paper 

then proposes implementations of these methods for discrete-time systems. The paper 

discusses problems associated with these implementations and introduces the phenomenon 

of "chatter". The paper then proposes design criteria for making these digital 

implementations useful. Finally, the paper shows how to apply the antireset-windup 

compensation to practical problems through the design of a digital controller for an existing 

system. Chapter 4 summarizes the conclusions of the paper. 



CHAPTER 2 

TECHNICAL BACKGROUND 

2.1 | Reset-Windup in Continuous Systems 

All simple control systems, whether analog or digital, consist of a plant and a 

controller. Figure 1 depicts a simple analog control system. The plant is that which is to 

be controlled and may be a motor for positioning of a radar antenna, an aircraft control 

surface actuator, a chemical process flow control valve, or countless other mechanisms. 

The controller accepts the commands for controlling the plant and generates control signals 

that make the plant behave dynamically in some desired manner with a desired level of 

performance. In most analog control systems, this controller is a compensation network, 

or compensator, designed with op-amps and discrete components; in a digital control 

system, this compensator is a control algorithm which determines a command to be applied 

to the plant at discrete intervals (every sample time). This paper will use the term 

compensator to refer to this element in analog (continuous-time) systems, and the term 

controller in reference to digital (discrete-time) systems. 

Figure 1. Simple Control System 



Figure 1 is a block diagram model of the plant and compensator consisting of linear 

elements only. Most control system analysis uses linear models since there is a larger body 

of knowledge associated with linear analysis techniques whereas nonlinear analysis 

techniques are few and usually limited in their ability to predict overall system performance. 

However, no physically realizable plant or controller is purely linear. All physically 

realizable systems have limits to their performance: no physical systems can accelerate 

instantaneously; no systems have infinite linearity. Most mechanical systems have 

nonlinearities associated with them such as deadband, friction, and backlash. 

System nonlinearities occur in two ways: some are inherent in the plant model, and 

some can be added by the designer [1]. Saturation is one of the most common 

nonlinearities present in almost all systems. Nearly all plants have some type of control 

input saturation and, often, it is the dominant nonlinearity [2]. In the case of a motor, the 

current that the motor can effectively handle is limited to some value and, as such, the 

maximum torque that the motor can deliver is limited. In the case of a position servo for 

controlling a track antenna, the angular excursion of the antenna is often limited to some 

predefined field of view. In the case of a hydraulic or pneumatic servo, there is always a 

limit to the pressure that can be applied within the system due to the design of the fluidic 

lines. All of these plants contain saturations. These saturations put limits on the ability of 

the controller to develop a certain performance from the system. Therefore, most systems 

are better modeled as shown in Figure 2. 

Compensator Plant 

Figure 2. Simple Control System with Plant Saturation 
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In this model, an otherwise linear system contains an input magnitude saturation. The 

saturation block represents a saturation of the control signal that is applied to the the plant. 

The output of the saturation block is equal to the input (transfer function of 1) until the 

positive or negative saturation limit is reached, after which the output is held at the limit 

regardless of the input until the input returns to the linear region. 

As previously stated, this ultimately limits the performance which can be derived 

from the system by restricting the response of the plant to a subset of controller commands; 

furthermore, the controller itself will contain saturations as well. In a continuous system, 

the output of the operational amplifiers will be limited by their rail voltage and current- 

limiting capability. In discrete systems, the controller will be limited by the computational 

limits of the computer (number of bits of computation), and A/D and D/A converter 

accuracies. For the sake of simplicity, all saturations affecting the control signal will be 

represented as the most restrictive saturation present to the plant input as shown in 

Figure 3. 

Compensator Saturation Plant 

Figure 3. Control System with Saturation 

Saturation within the system, in many cases, leads to the nonlinear phenomenon 

known as integrator reset-windup. Reset-windup occurs within compensators containing 

integrators. If a linear single-loop control system, such as Figure 3, is submitted to large 



deviations (e.g., during start up), the control variable may saturate. If there is still an error 

signal, it will be integrated and the integral term may become very large if the saturation 

lasts for an extended time period. This is called "reset-windup" because integral action is 

often called reset in instrumentation literature. Windup may lead to a large overshoot in the 

system response [3]. 

A more precise definition of reset-windup is given by Buckley [4]: Reset-windup is 

the nonlinear behavior of a controller when saturated by a large error signal, such that the 

integrator within the controller continues to add to the saturated value even after the error is 

reduced and approaches zero. The integrator cannot begin to "discharge" until the sign of 

the error changes. In other words, the control signal overshoots due to the continual 

charging of the integrator. This effect is highly nonlinear and does not appear in the usual 

linear equations for a controller or a plant. 

In continuous systems, this windup is usually realized by the charging of a capacitor 

within the compensator. The effect is best illustrated by an example: assume a continuous 

system exists such as that in Figure 4. 

Figure 4. Example System for Windup 

The system contains a plant, P(s), and a compensator, K(s). Unless otherwise stated, it 

will be assumed throughout this paper that the saturation block represents 



aid Cr> 1 
Sat(i) = Fok | (1) 

- itc 

It is also assumed that the output of the saturation is available as a measurement and 

that there is no uncertainty in the saturation itself. This can be easily justified. Assuming 

that the saturation limits within the plant are known, the saturation can then be easily 

imposed on the compensator as part of the compensator design, thereby making such 

measurements available. For simplicity of example, assume that the plant dynamics for 

Figure 4 are described by 

P(s) = + (2) 

and that the compensator is a simple proportional-integral (PI) controller described by 

K 
K(s) = Ky + re (3) 

where K, = 4 and K> = 16. If the saturation is removed from the system temporarily, 

the linear open loop transfer function of the system is 

ao oe a ate (4) 

The linear closed loop transfer function of this system, with no saturation, is 

P*K K 1s + Ko 

clea inPAK OS 2UK 16th Ky 2 



Assume that the system is in steady-state and that the output, y, of the plant is at a value of 

y =2. Further assume that a step input to zero is applied at time t= 0. The response of the 

output y , the controller output signal c, and the plant input i is shown in Figure 5. 

Control Signal - c(t), Plant Input - i(t), Plant Output - y(t) 0E+0 2 4 6 8 10 12 
Time (sec) 

Figure 5. Linear Response of Simple System 

Now observe the response of the system (Figure 6) under the same conditions but 

with the saturation included and described by equation (1). A fourth order Runge-Kutta 

simulation was developed to model the results discussed in Appendix B. Notice the very 

nonlinear effect on the output y due to this simple saturation. The output y exhibits classic 

windup. The large overshoot of the output is an example of the disadvantages of the 

windup phenomenon. Figure 7 shows the output along with the control signal c . Note 

that the large overshoot of the output is due to the large overshooting of the control signal. 



Notice also that the control signal cannot begin to "discharge", as stated by the definition, 

until the error signal crosses zero and becomes negative. Finally, note that the windup 

phenomenon leads to a very long settling time due to the inability of the controller to "catch 

up” to the error signal. 

0E+0 

Plant Outpu - y(t) 

0E+0 2 4 6 8 10 12 
Time (sec) 

Figure 6. Response of Simple System with Saturation -y(t) 



Control Signal - c(t), Plant Input - i(t), Plant Output - y(t) 0E+0 2 4 6 8 10 12 
Time (sec) 

Figure 7. Response of Simple System with Saturation - c(t), i(t), y(t) 

2.2 Antireset-Windup (ARW) Configurations in Continuous Systems 

Several solutions to the problem of reset-windup have been proposed in the literature 

for continuous systems. All of these systems fall into the class of systems known as 

antireset-windup, or ARW, systems. There are two basic categories of ARW systems: 

conventional antireset-windup (CAW) configurations and override signal (OS) 

configurations. There are several ways to implement each configuration within each 

category. Some of the more common are discussed here. 

10 



2.2.1 Conventional Antireset-Windup Configurations 

The first class of ARW configurations is the conventional antireset-windup or CAW 

configurations. Most are very similar and are designed around the premise of measuring 

the difference between the control signal and the output of the saturation, and modifying the 

input to the controller so as to keep the output of the controller at, or below, saturation. 

This has the effect of smoothing the response of the system near, or at, the saturation limits 

and keeping the system within the linear range of operation. This configuration is 

presented in Doyle and Smith [5], and Glattfelder and Schaufelberger [6]. The basic 

configuration of the CAW is shown below. 

Figure 8. Conventional Antireset-Windup Configuration 

In the CAW configuration, the input c to the saturation block and the output i of the 

saturation block are measured and the difference between the controller output and the plant 

input is fed back through a gain, X, to the controller. Windup will be prevented if the 

associated loop transfer function L(s), = K(s)*X has a gain and a bandwidth much higher 

than that of L(s), which is equal to the forward path transfer function L(s) = K(s)*P(s). It 

is suggested that the bandwidth of L(s)y be at least ten times that of L(s). As discussed in 
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Glattfelder [6], the actual implementation of the CAW can take many forms depending 

upon the design of the controller and the performance desired. For a generalized controller 

which has proportional, integral, and differential elements (a PID controller), the CAW can 

be implemented with the feedback around the entire controller, around the proportional and 

integral parts, or around just the integral portion of the controller as shown respectively in 

Figures 9a, 9b, and 9c. 

Figure 9a. CAW Configuration #1 
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Figure 9b. CAW Configuration #2 

Figure 9c. CAW Configuration #3 

2.2.2 Override Signal Configurations 

The second class of ARW configurations is the override signal (OS) configuration. 

This type of configuration is presented by Glattfelder [7] and Buckley [8]. Rather than 
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continuously adjusting the antireset compensation, as the CAW configurations do, the 

OS configurations switch-in the ARW compensation when needed and the normal 

compensation signal is switched-out. One such implementation given by Glattfelder [7] is 

shown in Figure 10. The controller output is compared to upper and lower limit setpoints, 

Up; and u;,, using a minimum and a maximum selector and high-gain amplifiers with gain 

Ko. 

The upper and lower limit setpoints are set to the system saturation values. If c is 

driven towards either limit by the main error signal e, the corresponding high-gain feedback 

is then selected ("overriding" e) and adjusts c(t) continuously in such a way that c(t) never 

saturates. This is achieved by a proper selection of uj,, up;, k2. The actuator will, 

therefore, be assumed linear because it is used only in its linear range. uj,, Uj; must be 

chosen to allow steady-state operation in the linear domain at the actuator [7]. 

Figure 10. Override Signal Configuration by Glattfelder 

Another configuration of the OS category of CAW systems is given by Buckley [8] and is 

shown in Figure 11. In this configuration, the override signals are switched-in discretely 

by operator control based on knowledge of the system performance under given conditions 
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and on measurements of the system states as given to the operator. This configuration is 

generally used in systems that are slow and require an amount of operator intervention such 

as nuclear plants or chemical processing plants. 

Override Signals 

Figure 11. Override Signal Configuration by Buckley 

2.3 _ Discrete Antireset-Windup (ARW) Configurations 

The previous configurations, designed to solve the problem of ARW, are 

commonplace among the existing approaches used in continuous or analog controls design. 

However, very little has been written in the controls literature about the application of 

these, or similar techniques, to the problem of reset-windup in discrete systems. A 

discussion of a modified CAW system is described for discrete systems by Glattfelder [6]; 

however, the high gain feedback (X) is not included in that configuration. In Chapter 3, 

this paper will describe discrete implementations of the CAW configuration using a case 

study of a system presented by Doyle and Smith [9], and the OS configuration using a case 

study of a system presented by Glattfelder [7]. Discrete versions of each of these systems 

will be designed and the performance of the discrete designs will be analyzed in order to 

determine the important design criteria. The design methods derived for these simple 

systems will then be applied to a practical industrial application for a system. 
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CHAPTER 3 

TECHNICAL DISCUSSION 

3.1 Simple ARW Systems 

3.1.1 CAW System 

Doyle and Smith [9] describe an ARW system of the CAW type. Their paper 

describes a continuous system and its susceptibility to reset-windup caused by nonlinear 

saturation within the system. A CAW modification to the system is then made and the 

elimination of the reset-windup is shown. A brief review of Doyle and Smith's results will 

be described in this section; a discrete design of the system will be presented, aspects of the 

discrete design will be discussed, and an analysis of the design criteria will be provided. 

3.1.1.1 Continuous CAW System 

The continuous system presented by Doyle and Smith is shown in Figure 12. For 

this system, the transfer function of the controller, K(s), is given as 

2 
K(s) = s+0.1 (6) 

and of the plant, P(s), as 

+ 0.1 RO) Si Gere (7) 
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The system is drawn somewhat differently in Doyle and Smith than in Figure 12 which 

presents an equivalent system consistent with the nomenclature of this paper. 

Controller Saturation 

Figure 12. Continuous System by Doyle and Smith 

The linear open-loop transfer function (without saturation) is 

1 Beka (8) 

while the linear closed-loop transfer function of this system is 

P*K 1 
PeeigeiP*K. | Soha © (9) 

The forced response of y(t) and c(t) to a unit step input, r(t), with all states set to initial 

values of zero is shown in Figure 13. 

ti 
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Figure 13. Linear Step Response of Doyle System 

The response of the system with the saturation included, is shown in Figure 14. A fourth 

order Runge-Kutta simulation was developed to model the results and is discussed in 

Appendix B. Notice the nonlinear effect on the output y(t) due to this simple saturation. 

The output exhibits a classic symptom of reset-windup: large overshoot of the output 

caused by the large overshoot of the control signal. Note that K(s) need not contain pure 

integrators to produce windup, only relatively slow dynamics that are driven by the error 

when the system is in saturation [5]. 
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Figure 14. Step Response of Doyle System with Saturation 

In order to eliminate windup, improve system performance and reduce overshoot, 

Doyle and Smith propose an ARW modification based on the CAW configuration 

discussed in Section 2.2.1. This configuration (Figure 15) uses high-gain feedback to 

modify the error signal. 

Figure 15. Doyle ARW Configuration for Simple System 
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The operation of the CAW compensation is fairly straightforward. The difference between 

the input to the plant, i(t), and the output of the controller, c(t), is measured and fed back 

through a gain, X, into the compensator, K(s). Windup is prevented if the associated loop 

transfer function Ly(s) = K(s)*X(s) has a gain and bandwidth much higher (> 10) than that 

of L(s), the forward loop transfer function L(s) = K(s)*P(s). The effect of the CAW 

compensation is to smooth the input to the controller when the system goes into saturation 

and the system is maintained within the linear region of operation (thus preventing 

windup). 

The effectiveness of Doyle and Smith's CAW modification is demonstrated by a 

specific example. Ifa gain of 10 is chosen for X, the loop transfer function Ly is 

20 
Exon sce" O01. (10) 

The response of the system with the CAW modification is shown in Figure 16. The 

Runge-Kutta simulation which produced these results is discussed in Appendix B. 

The performance improvement resulting from the ARW modification is evident. The 

ARW reduces the overshoot from 35% to 0%, thus eliminating overshoot from the output 

y(t). This also reduces the settling time from three times that of the system without 

saturation to only two times that of the system without saturation. As can be seen, it is the 

CAW's effect on the control signal that improves the plant performance. The CAW 

compensation keeps the control signal at, or very close to, the saturation limit thus keeping 

it from "winding up". Another significant advantage to the CAW, which will be discussed 

in more detail in Section 3.2, is that the CAW produces system performance which is very 

well behaved with regard to overshoot. The system will exhibit a consistent overshoot 

despite the magnitude of the step change to the system. 
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Figure 16. Step Response of Doyle System with Saturation 
and CAW Compensation 

3.1.1.2 Design of a Discrete CAW System 

There are many ways to approach the design of a discrete or digital controller, 

ranging from direct filter design in the z-domain to state-space methods. Design of a digital 

control system using transform techniques (design by discrete equivalent) is a viable and 

popular technique. Various methods exist for design by discrete equivalent and some are 

discussed in Appendix A. The technique is used here to design a discrete controller for the 

Doyle and Smith system and has been used to create a discrete model of the plant for 

simulation and analysis purposes. 

The bilinear transform was used to design the discrete controller using the Doyle 

and Smith analog controller. The hold-equivalence transform method was used to create a 
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discrete model of the plant using the original Doyle and Smith plant as a baseline. Other 

techniques such as the pole-zero mapping method were also used, yielding similar results, 

but are not discussed here. The discrete design of the system is shown in Figure 17. 

Figure 17. Discrete Design for CAW System 

The compensator K(s) has been replaced with an equivalent discrete controller Kp(z). 

The plant has been replaced with an equivalent discrete plant model P-(z). The high-gain 

feedback element, X, is retained. The controller Kp(z) has been designed by applying the 

bilinear transform to the transfer function of the original compensator. In the 

compensator's continuous-time transfer function, written in terms of s, the substitution 

_ 2@l) 
= Tz+l) Sie 

is made for each s found in the equation. Given that the Doyle and Smith controller is 

stable and has the transfer function 

K(s) = (12) Ste? Sas 
s+0.1 ’ 

ea) 



the discrete controller is then found from the bilinear transform to be 

1+z71 = * Kp@) = Ki * (13) 

where 

et 20) 
Kl= 9 iT+2 ° (14) 

and 

_ (0.1T-2) 
= O11 * (15) 

A discrete model of the plant was developed for simulation purposes using the hold 

equivalence (step-invariance) transform method as discussed in Appendix A. Given that 

the original Doyle and Smith plant model is 

P(s) = ae (16) 

the discrete plant model is then determined from the original transfer function of the plant as 

Pp) = (1-27!) z{s YH, 

1 + bz-1 
NG Siete (17) 

l°=Z 

where 

K2= 0.5, (18) 
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and 

_ (0.05T-0.5) 
b G4 eaic (19) 

With Kp(z) and Pp(z) now determined, the complete design for the discrete CAW system 

is shown in Figure 18. 

R[kT] @ © K2*(14bz") Y[kT] 

(1-271) 

Figure 18. Discrete Design for Doyle CAW System 

A discrete simulation of the above system was developed to analyze and compare 

the performance of the discrete and continuous systems. The details of this simulation are 

discussed in Appendix B. Step responses were used as a measure of the accuracy of the 

design and to determine system behavior, as system characteristics were varied. 
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3.1.1.3. Comparison of Continuous and Discrete CAW Designs 

System performance was analyzed using the simulation developed without 

changing the design of the controller or plant. The only parameter within the continuous- 

time system that can be varied is the feedback gain X. The only parameters within the 

discrete-time system that can be varied are the feedback gain X and the sample time T. A 

study of system step response versus X and T was conducted on the discrete simulation in 

order to establish design criteria for these parameters. An interesting phenomenon was 

discovered during this study which was evident in the discrete system but did not occur in 

the continuous system. This phenomenon is referred to as "chatter", a high-frequency/low- 

amplitude (small signal) oscillation of the output. 

With constant sample time, examinations of step responses for varied values of X 

revealed a threshold value at which chatter occurred in the output. A specific example with 

X = 10 and T=0.01 is provided to illustrate this phenomenon. The step response of the 

discrete system is shown in Figure 19. Notice that this closely matches that of the 

continuous system with the same gain in Figure 16. Comparison of this step response to 

that of the discrete system with X = 500 and T = 0.01 in Figure 20 shows the chatter 

phenomenon. Notice that the output signal "chatters" between the original trajectory of the 

Output and some other amplitude. It will be shown that the frequency and amplitude of this 

chatter is a function of the values of T and X for a given system. 

In order to show that the original continuous system is not susceptible to this chatter, 

observe the step response of the continuous system with a gain, X = 500, in Figure 21 

Simulation runs with values of X as high as 100,000 were run and there was no evidence 

of chatter in the continuous system for any of these values. This is shown in Figures 22 

and 23 which are plots of chatter amplitude versus gain X for the discrete and continuous 

designs respectively. 
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Figure 19. Step Response of Discrete CAW System (X=10, T=0.01) 

Output (y) 
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Figure 20. Step Response of Discrete CAW System (X=500, T=0.01) 

26 



0 2 4 6 8 10 12 14 16 18 20 
Time (sec) 

Figure 21. Step Response of Continuous CAW System (X=500) 
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Figure 22. Chatter Amplitude vs. Gain X - Continuous CAW System 
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for X<10 
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Figure 23. Chatter Amplitude vs. Gain X - Discrete CAW System (T=0.01) 

The chatter appeared for values of X above a threshold value (with fixed T). The 

chatter point and the amplitude of the chatter increased linearly with X above that threshold. 

The value of the threshold was found to be related to X and T: the chatter point decreased 

as either X or T was decreased. For instance, the chatter point for T=0.05 seconds is about 

X=21 while for T=0.01 seconds, it is about X=100 . The next section describes the 

analysis performed in order to determine the cause of the chatter, and to quantify the chatter 

threshold in terms of X and T. 

3.1.1.4 Analysis of Chatter versus Feedback Gain and Sample Period 

It can be seen from the system block diagram (Figure 17) that the system consists 

of two closed loops: the outer closed loop that controls the plant itself, and the inner loop 
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consisting of the CAW loop around the controller. Careful examination of the output 

waveform shown in Figure 20 divides the response into three sections, as shown in 

Figure 24. Chatter is present only in Section II which corresponds to the time when 

antireset-windup compensation is present. The chatter is thus connected with either the 

inner loop or a combination of the inner and outer loops, and is not a phenomenon of the 

outer loop itself. 

Several analysis techniques were used to determine the source of the chatter 

including the Circle Criteria by Zames [10], root locus, and bode diagrams. Through the 

use of these techniques, it was determined that the chatter was connected with the inner 

loop only and not a combination of the inner and outer loops. This conclusion is explained 

through an nAbee of the design of the inner loop when the system is in saturation as 

shown in Figure 25. 

The block diagram of the inner loop can be rearranged using a technique first 

described by Zames [10] for use with the Circle Criteria. A nonlinear system is first 

separated into its linear and nonlinear parts. The linear portion of the inner loop is shown 

in Figure 26, within the shaded box, while the nonlinear element is shown as a feedback 

element around the linear portion. During saturation, the contribution to i/kT] from the 

nonlinearity block is constant. The response of the inner loop during this time can thus 

be analyzed by looking only at the linear portion of the inner loop. The transfer function 

from/ to C, T]c, is derived to be 

K1*X*z71(14+z7}) T 7 AREY cee, Pee 1c(Z) 1 + z7!(a+K1*X) + 2°2(K1*X) 
(20) 
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Figure 24. Step Response of Discrete CAW System (X=500, T=0.01) 

Kz) 

Figure 25. Inner Loop of Discrete CAW System 
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K1*(1+z7') 
r (14+az"") 

Figure 26. Inner Loop of Discrete CAW System - Zames Form 

The inner loop, as described in Zames' form, lends itself to analysis by the root locus 

technique for discrete systems. The response of the closed inner loop can be described in 

terms of the closed loop poles and zeros by plotting the open loop forward transfer function 

and varying the forward path gain, X. The root locus of equation (20) is shown in Figure 

27. Stability is maintained in a discrete system as long as the poles of the closed loop 

remain within the unit circle. The response is shown normalized to T because different 

values of X and T do not change the shape of the root locus but only the actual roots at a 

given position along the locus in this particular system. The curve could just have easily 

been normalized to X. The root locus shows that the inner loop will become unstable for 

values of X and T, placing the poles of the closed loop transfer function Tjc outside the unit 

circle. This is the cause of the chatter in the overall system. When the gain X of the inner 

loop becomes large enough for a given T, the phase difference between / and C becomes 

greater than 180 degrees. The inner loop no longer operates with negative feedback but, 

instead, has positive feedback. Normal operation of the loop is such that the feedback 

signal C minus / fed back through the gain X modifies E] in such a way as to hold the 

output of the compensator just at the level of saturation. 
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Figure 27. Root Locus of Discrete CAW Inner Loop 

When X gets too large, however, the controlling signal E3 becomes unstable, 

overshooting the desired control value, and the inner loop causes the compensator output to 

return to the linear, unsaturated region. At the next sample time, the inner loop is not in the 

system and the compensator realizes that the trajectory of the control signal is in the wrong 

direction for the error signal present. The compensator then issues a control signal which 

drives the system back into saturation. The inner loop once again becomes part of the 

system, overcompensates, and the process continues. This is the chatter phenomenon 

being observed. The overcompensating aspect of the CAW signal is what leads to chatter 

in the system. The chatter is characterized by an oscillating turn-on and turn-off of the 
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CAW compensation signal. This chatter is seen by examining unit step responses of the 

inner loop for various values of X as shown in Figures 28 through 32. 

The step response of the inner loop corresponds to the response of the CAW 

compensation signal e2/kT] in Figure 18. Figures 31 through 35 show the simulation run 

outputs for the signals e2/kT] and y[kT] for the same values of X and T as in Figures 

28-32. The time scales are shown enlarged so that the response of e2/kT] for each sample 

period can be seen. 

The root locus predicts that the chatter point should be at approximately 106 for 

T =0.01. This matches the simulation values previously obtained (chatter point at about 

100-110) and confirms that the chatter is caused by instability of the inner loop which 

results in a overshooting of the compensation signal. 

Inner Loop Output (C) 

sses 
oo ClO ClO 0.05 

06 
0.07 0.08 0.09 0.1 

Time (sec) 

Figure 28. Step Response of Discrete CAW Inner Loop (X=10, T=0.01) 
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Figure 29. Step Response of Discrete CAW Inner Loop (X=40, T=0.01) 
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Figure 30. Step Response of Discrete CAW Inner Loop (X=70, T=0.01) 
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Step Response of Discrete CAW Inner Loop (K=100, T=0.01) Figure 31. 
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Figure 32. Step Response of Discrete CAW Inner Loop (X=110, T=0.01) 
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Figure 33. Step Response of Discrete CAW System (X=10, T=0.01) 
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Figure 34. Step Response of Discrete CAW System (X=40, T=0.01) 
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Figure 35. Step Response of Discrete CAW System (X=70, T=0.01) 
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Figure 36. Step Response of Discrete CAW System (X=100, T=0.01) 
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Figure 37. Step Response of Discrete CAW System (X=110, T=0.01) 



continuous system remains stable, i.e. the poles remain in the left-half side of the s-plane 

and the control signal can never overshoot. Thus, chatter can never be realized with the 

original continuous system. 
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Figure 38. Root Locus of Doyle Continuous CAW Inner Loop 

The reason for chatter appearing in the discrete system is examined in more depth 

by comparing the inner loops of the discrete and continuous designs and the associated 

closed loop transfer functions. The block diagram for the inner loop of the continuous 

design is shown in Figure 39. The block diagram for the inner loop of the discrete design 

is redrawn in Figure 40. 
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Figure 39. Inner Loop of Continuous CAW System 

E2[(k-1)T] 

K1*(14+z7!) 

~ (44az71) 

Figure 40. Inner Loop of Discrete CAW System 

The transfer function for the continuous system is 

ey ga se oe 
TiclS) = 54 (@X+0.1) ° _ 

and for the discrete system it is 
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The characteristic equation for Tjc in the continuous system is of order one, whereas it is of 

second order for the discrete system. A second order system (discrete inner loop) has the 

potential of becoming unstable, while a first order system (continuous inner loop) does not. 

Both inner loops are identical in order for the controllers because the bilinear transform of a 

continuous filter results in a discrete filter of the same order in the denominator. The extra 

pole in the discrete system results from the additional delay in the feedback path of the inner 

loop shown in Figure 18. 

This delay is necessary in the discrete design because the controller cannot have a 

priori knowledge of the output state of the controller. A unit delay is therefore placed 

between the output of the controller and the input of the inner loop summing junction. The 

extra delay makes the chatter possible in the discrete design. This does not mean, 

however, that only discrete designs which implement the CAW modifi-cation are 

susceptible to chatter. A higher order compensator in a continuous system would show 

chatter as well under the proper conditions. 

It is possible to demonstrate a continuous CAW system with chatter by redesigning 

the compensator in the original Doyle system to be of second order. Assume that K(s) in 

Figure 15 is given by 

2. 20 \ Vv-l a reais «hel 
Mate) = s+0.1 aa $ (23) 

Assume that the plant is described by equation (7). The root locus for the inner loop of this 

continuous system is shown in Figure 41. 
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Figure 41. Root Locus of Complex Doyle Continuous CAW Inner Loop 

The inner loop is stable up to a gain of X = 20. The system should, therefore, show no 

chatter below a value of 20 and should show chatter at values above 20. This result was 

confirmed using a Runge-Kutta simulation similar to the one used above (discussed in 

Appendix B). The step response for various values of X using this simulation is shown in 

Figure 42. 
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Figure 42. Step Responses of Continuous CAW System (Complex Compensator) 
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It is important to recognize that the chatter results when the control signal overshoots 

past zero when the inner loop is first activated into the system. This causes the inner loop 

to then turn off and the process of chatter is created. For the Doyle and Smith system, this 

occurs at instability of the inner loop. However, it need not necessarily be so: chatter can 

be seen in a system which is below instability for different controllers. To demonstrate 

this, assume that (in the discrete design of the CAW shown in Figure 18) the controller and 

plant are discrete versions of those used in the example in Chapter 2, 

K K(s) = Ky + (24) 

and 

Ps) = 5 (25) 

where Kj = 4 and K2 = 16. Applying the bilinear transform to K(s) and the step-invariant 

transform to P(s) yields 

K5*T -1 
Kp@) = Ky + —3—*-227 (26) 

and 
T*z-l 

AU (27) 

Figure 43 illustrates the design if the CAW is implemented around the integral portion of 

the controller only. 
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Figure 43. Discrete CAW Design for Example Controller and Plant 

The inner loop for this system is shown in Figure 44 and its roots locus plot for 

sample period T = 0.001 is shown in Figure 45. 

Figure 44. Inner Loop of Example System 
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Figure 45. Root Locus Plot for Inner Loop of Example System 

Although the discrete root locus shows that the inner loop of this system is stable, for 

T=0.001 until X = 124, the system begins to show chatter as low as X=30 as shown in 

Figure 46. The reason for this being that the inner loop of this design is second order as 

well. In this case, however, the control signal operates very close to zero as a result of the 

controller design and, as the gain X is increased, even small amounts of overshoot in the 

control signal, e2/kT], cause it to go below zero thereby turning off the inner loop and 

causing chatter. This can be seen by looking at the control signal for X=20, 25, and 30 in 

Figures 47, 48, and 49. There is no overshoot below zero of the control signal for X=25 

(and below). However, when X=30, the control signal overshoots the desired value and 

dips below zero. This shuts off the inner loop for a period of time, thus causing chatter. 

Although it is not as noticeable as it is with the previous controller and plant, and does not 

last as long, it is still chatter and should be avoided. 
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Figure 46. Step Response of Example System - Plant Input and 
Output Gain X = 30 
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Figure 47. Step Response of Example System - CAW Signal e2[kT] 
Gain X = 20 
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3.1.1.5 Avoiding Chatter by Bounding Sample Period and Feedback Gain 

Chatter, and its associated problems, are avoided by designing the inner loop of the 

CAW system so that the overshoot of the control signal is zero or minimal. For discrete 

systems where the inner loop is of second order, this is achieved through a judicious 

selection of the feedback gain X and the sample time T. For a continuous system, this is 

achieved through selection of only the feedback gain X. Depending upon the design of the 

controller itself, the degree of overshoot causing chatter will vary. As a design criteria, 

however, it is suggested for systems where the inner loop is of second order (such as those 

discussed here) that X and T be chosen such that the damping ratio of the closed loop 

equation for the inner loop is between 0.9 and 1.0. This will keep the response of the inner 

loop fast; the overshoot small or zero; avoid chatter for all such controllers; and behave 

with performance similar to the continuous design. Adjusting the inner loop so that the 

denominator in the closed loop transfer function Tjc has a damping ratio of 0.9 or 1.0 is 

suggested as a design criteria. Using this criteria for the discrete CAW design of Figure 18 

and a damping ratio of 0.9 results in an X = 21 fora T=0.01. The step response of the 

design for these values of X and T is shown below in Figure 50. 
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Figure 50. Step Response of Optimized Discrete CAW System 
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3.1.2 OS System 

Glattfelder and Schaufelberger [11] describe an ARW system of the OS type. Their 

paper describes a continuous system without ARW and shows that it is susceptible to reset- 

windup caused by saturation within the plant. The OS modification to the system is 

described along with the improvement in system response. A brief review of these results 

will be described, followed by a presentation of a discrete design of the system and an 

analysis of the design criteria. 

3.1.2.1 Continuous OS System 

The continuous system presented by Glattfelder and Schaufelberger [11] is shown in 

Figure 51. For this system, the compensator, K(s), a proportional-integral controller and 

is given as 

K; 
Kio K,+ > (28) 

where Kp is the proportional gain and is equal to 2 and K,; is the integral gain and is equal 

to 4. The plant P is given as 

P(s) = 2. (29) 

Note that the system depicted in Figure 51 appears somewhat different in the original paper 

since it been changed to be consistent with the nomenclature of this paper. 
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Figure 51. Continuous System by Glattfelder and Schaufelberger 

If the saturation is temporarily removed from the system, the linear loop transfer 

function is 

K.s + K; 
Lol = P*K = ao sk : (30) 

The linear closed loop transfer function of this system with no saturation is 

P*K s+K./K 
ee ie il aes eto) SE | Lee 

Meal = T+ P*K = "S?4K s+ K, es 

The response of y and c toa unit step input at with all states set to initial values of zero 

is shown in Figure 52. 

Observe the response of the system with the saturation included and described by 

equation (1). This response is shown in Figure 53. A fourth order Runge-Kutta 

simulation was developed to model the results and is discussed in Appendix B. The large 

overshoot due to reset-windup is apparent. The overshoot in the system with saturation is 

over twice that of the system without saturation. 

In order to eliminate the windup, improve system performance and reduce 

overshoot, Glattfelder and Schaufelberger propose an ARW configuration based on the OS 

configuration shown in Section 2.2.2. The configuration (Figure 54) switches in another 

signal to override the present error signal (which is input to the controller) when the plant 

input becomes saturated. 
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Figure 52. Linear Step Response of Glattfelder and Schaufelberger System 
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Figure 53. Step Response of Glattfelder System with Saturation 
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Figure 54. Glattfelder OS Configuration for Continuous System 

In Figure 54, the compensator output c is compared to the upper (u,,;) and lower (u,,) limit 

setpoints using a minimum and a maximum selector and high-gain amplifiers K, [7]. If c 

is driven towards either limit by the main error signal e, the corresponding high-gain 

feedback is selected ("overriding e ") and adjusts ej(t) continuously in such a way that c(t) 

never saturates. This is achieved by a proper selection of u,,, u,;, and K>. The 

compensator will, therefore, be assumed linear because it is used only in its linear range 

[7]. Note that, in this implementation, Glattfelder and Schaufelberger choose to operate the 

ARW on the integrator portion of the controller only. This is similar to implementation 9c 

discussed in Section 2.2.1. 

The response of the continuous system with the OS modification (Figure 55) shows the 

effectiveness of this configuration (the Runge-Kutta simulation which produced these 

results is discussed in Appendix B). 
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Figure 55. Step Response of Glattfelder OS System with Saturation 

The performance improvement resulting from the ARW modification is obvious: the ARW 

reduces the overshoot by 91% and decreases the overall settling time by about 50%. 

3.1.2.2 OS System with Doyle Plant and Compensator 

In order to compare the performance of the Doyle and Smith CAW to the Glattfelder 

and Schaufelberger OS implementations, assume that the compensator and plant used to 

analyze the CAW system is introduced into the OS System. Assume that for Figure 54, the 

controller K(s) is 

KO = FF 01 G2) 
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and the plant P(s) is 

P(s) = $39) | (33) 

The nonlinear response of the system with saturation would be identical to that in Figure 14 

showing the classical overshoot problem associated with the windup. The OS 

implementation is added to the system (Figure 56) to solve the reset-windup problem. 

Figure 56. Continuous OS System #2 

Inclusion of the OS compensation to the system eliminates the effect of the reset-windup as 

demonstrated by the simulation results to a step response (Figure 57). 

Note that the response of the system using the OS compensation is very similar to that 

of the system using the CAW compensation. This leads to the conclusion that the OS 

approach and the CAW approach, while appearing to be quite different, operate in a similar 

fashion. This conclusion is true and will be investigated later in more detail. 
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Figure 57. Step Response of Continuous OS System #2 

3.1.2.3. Design of a Discrete OS System 

Design by discrete equivalent has been used here, as with the CAW System, to 

develop a discrete design for the Glattfelder and Schaufelberger OS system. The bilinear 

transform was used to design the discrete controller, and the hold-equivalence transform 

was used to design a discrete model of the plant. This results in a Kp(z) and Pp(z) 

identical to equations (13) and (17): 

ae car Ae 

1 +az-! Rel Kp(z) = Ka * 

where K4 and a are described by equations (14) and (15), (with Ka replacing Kj) and 
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, 1 +bz7!l Pp() = Kp * =~ (35) 

where Kg and b are described by equations (18) and (19) respectively (with Kg replacing 

K2). The discrete design of the system is shown in Figure 58. 

R[kT] KB*(14bz1) | YIKT] 
(1-271) 

Figure 58. Discrete Design of OS System 

Again note that a discrete delay of one (z7!) is necessary in each feedback because the 

controller cannot have prior knowledge of the output states before they are computed. 

To analyze the performance of the discrete model and compare it to the original 

continuous system, a discrete simulation of this design was developed (Appendix B). 

Responses to step inputs were used as a measure of the accuracy of the design and were 

used to determine system behavior as various characteristics of the system were varied. 



3.1.2.4. Comparison of Continuous and Discrete OS Designs 

System performance was analyzed using the simulation developed. If the design of 

the plant and controller is unchanged, the only parameter within the continuous system that 

can be varied is the override signal gain K2. Both the gain K2 and the sample time T can 

be varied within the discrete system. A study of system step response versus K2 and T 

was conducted on the discrete simulation to discover whether chatter could be achieved in 

the OS system as well. It was found that chatter could also be present in the discrete OS 

system as shown in Figures 59-61 but, as before, not in the continuous design. It was also 

discovered that the chatter occurred at values of K2 which were close to those for X in the 

CAW system for the same value of T. Analyzing the OS design proved why this should be 

So. 

Output (y) 

SN wr Oo CoO OO NN 
- =_ 14 6 18 20 

Time (sec) 

Figure 59. Step Response of Discrete OS System (X=10, T=0.01) 
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Figure 60. Step Response of Discrete OS System (X=500, T=0.01) 
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Figure 61. Step Response of Continuous CAW System (X=500, T=0.01) 
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In the OS design it was found, as with the CAW system, that the chatter appeared 

when the value of K2 exceeded a certain threshold (with a fixed T) and the amplitude of the 

chatter increased linearly with K2 above that threshold. Given the same plant and 

compensator as the CAW example, the chatter was found to appear at a value of K2 which 

was equal to that for X (given the same T). Given a sample time T = 0.01 seconds, for 

example, the chatter began to appear in the system at K2 of approximately 100-110. The 

next section describes the analysis done in order to determine the cause of the chatter in the 

OS system and how to quantify the chatter threshold in terms of K2 and T. 

3.1.2.5 Avoiding Chatter by Bounding Sample Period and Feedback Gain 

Close examination of the OS system led to the conclusion that the operation of the 

OS compensation is, in a certain sense, similar to that of the CAW even though the 

implementation appears quite different. The OS system operates on the principle of an 

inner loop which modifies the error signal input to the compensator when the output of the 

compensator is above the saturation values of the saturation block. The CAW differs from 

the OS in that its inner compensation signal is added (negatively) to the original error signal 

in order to reduce the input error signal to the controller. In the OS system, the inner 

compensation signal is switched in and the original error signal is switched out such that 

the inner compensation signal becomes the new error signal to the controller. 

It was suspected that the operation of the inner loop was the cause of the chatter in 

the OS system just as in the inner loop of the CAW. Because the Min and Max selectors of 

the OS system are nonlinear and difficult to analyze, the inner loop of the OS system is 

difficult to analyze as well. Glattfelder and Schaufelberger [11], however, provide a 

means of replacing the Min and Max selectors with an equivalent nonlinear representation 
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which makes the system easier to visualize and analyze. The Min-Max selector pair can be 

replaced by a nonlinear equivalent shown in Figure 62. 

Placing the equivalent representation into the OS system of Figure 58 gives an 

equivalent representation of the system (Figure 63) which will allow easier analysis of the 

operation of the inner loop. 

E1(z) E(z) 

c(z) c(Z) 

Figure 62. Equivalent Representations of the Nonlinear Feedback 

C[kT] _ {kT] 
E1[kT] 
0 Ker(tebz") | VES 

(1-271) 

Figure 63. Equivalent Discrete OS Design 
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When the control signal c is not above the saturation values and the saturation block is not 

in saturation, the override signal es from the OS compensation is zero. When the control 

signal drives the saturation block into negative or positive saturation, however, the 

nonlinear block from the equivalence will be in the linear region and will be equal to a 

constant value, K2. Also, the contribution from the path e through //K2 through the 

nonlinear equivalence block will be a constant. The inner loop of the OS system, therefore, 

consists only of the path from c through discrete delay, through the gain K2 and through 

the controller Kp(z). The inner loop can therefore be reduced to the representation shown 

in Figure 64. 

Figure 64. Inner Loop of Discrete OS System 

The signal d(k) , and the summing junction at c(k) and d(k) , has been added to the loop so 

that the effect of step responses into the inner loop can be analyzed. As in the CAW 

system, when the OS compensation is switched into the system, the effect is that of a step 

function into the inner loop at the point c. To link the chatter within the system to the 

behavior of the inner loop, the step response of the inner loop shown in Figure 65 was 

analyzed for values of K2 and T. The transfer function from d toc (Tdc) is 
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Ka*K*z7!(142z71) 
T = SOT S eh ie ea, Perr de(Z) we: z1(a+Ka*K>) + z7*(Ka*K9) 

(36) 

This is exactly the same as the transfer function of the inner loop for the discrete 

CAW system with K2 replacing X and with the exception of the negative sign. The step 

response of the inner loop to values of K2 for T=0.01 are shown in Figure 65-69. This 

exactly matches Figures 28-32 with the exception of the polarity. Therefore it was 

determined that the operation of the OS compensation and the CAW is the same. 

OS Compensation Signal Eh[{kT] 

Figure 65. 

OS Compensation Signal Eh{kT] 
S&S 
+ 
Lu 
S&S 

Figure 66. Step Response of Discrete OS Inner Loop (X=40, T=0.01) 
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Figure 67. Step Response of Discrete OS Inner Loop (X=70, T=0.01) 
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Figure 69. Step Response of Discrete OS Inner Loop (X=110, T=0.01) 
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The cause of the chatter in the OS system is similar to that in the CAW system. If eh 

becomes less than e , the OS compensation will then be shut off and the error signal e/, 

which was equal to eh, will be replaced with e. This should happen normally when the 

plant's response causes e to reduce below the value of eh . The signal eh responds in the 

same way as that predicted by the output of the inner loop in Figure 64. 

If the overshoot is too much however, as it is if the inner loop becomes unstable, then 

eh will overshoot below e and the inner loop will shut off momentarily. The system 

dynamics will then realize that the trajectory of the control signal is in incorrect for the 

desired response, and on the next sample time, will begin driving back toward saturation. 

When saturation is reached, the process begins again. 

It is therefore apparent that the behavior of the OS design is identical to that of the 

CAW design. Its performance with other controllers such as the PI controller used for the 

second CAW example will also be the same as for the CAW design. It is recommended, 

therefore, that values of T and K2 are chosen such that the overshoot is kept at a minimum 

while the response of the inner loop is kept at least ten times faster than the outer loop. 

The recommended design criteria for a second order inner loop is to adjust the inner 

loop for a damping ratio of 0.9 to 1.0. Using this criteria for the discrete OS design of 

Figure 58 gives a K2 of 21 fora T =0.01. The step response of the design for these 

values of T and K2 is shown in Figure 70 . 
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Figure 70. Step Response of Optimized Discrete OS System 
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3.2 Application of ARW to Track Radar Control System 

3.2.1 Existing Continuous Track Radar Control System 

This section discusses the application of a CAW to a practical application. Figure 71 

depicts an existing track radar antenna system used for tracking aircraft. 

Figure 71. Aircraft Track Radar Antenna System 

This system's tracking rate and position are controlled by two rate servos. The desired rate, 

ia 

to slew the platform at the desired rate. The antenna platform is gimballed in two-axes: 

is commanded by a control computer and the closed-loop servo commands the motor 

elevation and traverse, with one control loop for each axis. A block diagram of the servo 

control system is shown in Figure 72. Both axes have a similar design with the difference 
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being the actual values within the blocks. The discussion in this section will be limited to 

only the traverse axis since the design process and the results will be similar for either axis: 

thus, the transfer functions shown are for the traverse axis. The transfer functions for each 

block are: 

Kec = 5.11 volts/(rad/sec), (37) 

10.50*1 ‘ 10.74 10.74 
Gi(s) = : volts/volt, (38) 

Gc(s) = aot polavolt: (39) 
{1 : 1024.55 

GM(s) = ———_— s$—____ (rad/sec)/amp, (40) 

{ 113} ’ { ‘ 801 

GG(s) = 

6.406611384e12 
{ s2+766.41s+681377.11 } * { s2+2668.20s+3046393.90 } 

volts/(rad/sec) , (41) 

1.66 
volts/volt, (42) 

S 
{1 v 48.27 

GF(s) = 

GpA(s) = 1 amps/volt. (43) 
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The commanded rate, @p> is compared with the actual platform rate measured by 

a rate gyro in the feedback loop. The feedback gyro measures the actual platform rate, 

including platform disturbances such as base motion, and generates a voltage proportional 

to the instantaneous platform rate. This rate is filtered and summed in with the amplified 

command to generate an error signal at the summing junction which is input to the 

integrator/filter and then to the compensator which generates the current command to the 

power amplifier. The power amplifier converts the commanded control signal, a voltage, 

to a current command and that command drives the motor. The current command to the 

motor generates a torque on the motor shaft which then moves the platform at the 

commanded rate. The motor is connected directly to the platform, without gearing, and 

the transfer function for the motor contains the inertia of the antenna platform. 

All of the blocks located in the shaded area contribute to the control signal that 

controls the plant. The existing servo system implements analog compensation elements. 

These elements are mechanized with analog op-amps and discrete components. It is 

desired to replace the existing analog control system with a digital one in order to reduce 

the production cost of the system and to increase the system reliability and maintainability. 

The elements shown within the shaded area, therefore, will be replaced with software 

algorithms running in a computer. In order to accomplish this, it is necessary to develop 

discrete versions of the elements which can be implemented in the computer. 

The analog design in Figure 72 contains two nonlinear elements of importance. 

The output of the power amplifier for the motor is limited to 10 amperes in order to protect 

the motor from being damaged by a current command that would exceed the current 

carrying ability of the motor's primary windings (20 amperes). Figure 73 shows the linear 

step response of the system (no saturation in the power amplifier); the output of the 

integrator/filter is shown in Figure 74; and the output of the power amplifier is shown in 

Figure 75. 
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Figure 73. Linear Step Response Output (y) - Track Rate System 
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Figure 74. Linear Step Response Control (cj) - Track Rate System 
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Figure 75. Step Response Power Amplifier (cpa) - Linear System 

Figure 75 illustrates that, without the limiting in the power amplifier, the current 

commands would far exceed the motor's limits. This is prevented by the saturation in 

the power amplifier. However, a problem introduced by this protection can be seen in 

Figures 76 and 77. The step response of the system with saturation in the power amplifier 

causes the system to exhibit classic reset-windup. The control signal clearly shows the 

classic windup phenomenon with the resulting large overshoot (66.1%) and long settling 

time (1.0 seconds) in the output. 

To eliminate the problem of reset-windup in the analog system, the original design 

includes a clamp on the integrator/filter. This clamp limits the output of the filter to 0.6 

Volts. The clamp is mechanized with diodes across the filter elements within this block 

and will be discussed in more detail in Section 3.2.3. To show the affect of this ARW 

compensation in the original system, observe the step response of the system with this 

clamp included. Figures 78 and 79 illustrate the step response of the system with the 

existing windup compensation. 
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Figure 76. Step Response Output (y) - System with Saturation in Power Amp 
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Figure 77. Step Response Control (cj) - System with Saturation in Power Amp 
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Figure 78. Step Response Output (y) - System with ARW in Integrator/Filter 
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Figure 79. Step Response Control (cj) - System with ARW in Integrator/Filter 
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3.2.2 Discrete Design of Track Radar Control System 

As previously stated, it is desired to design a digital control system to replace the 

existing analog system shown in Figure 72. The approach chosen for the design was to 

replace the integrator/filter Gy, the compensator Gc, and the filter Gp with discrete designs 

developed using the method of design by discrete equivalent. The blocks within the shaded 

region are considered the controller for the digital system and each block was replaced with 

an equivalent discrete design developed using the bilinear transform as discussed in 

Appendix B. 

Discrete models of the plant (motor Gy), and the feedback sensor (gyro GG), were 

designed in order to model the discrete design, determine the system performance, and 

compare it to the performance of the existing system. These designs utilized the step 

invariant transform (also discussed in Appendix B). The discrete design for the track rate 

servo control system is shown in Figure 80. 
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The transfer functions for each of the blocks are: 

Kec = 5.11 

Ky * 41+ Ayz-! 

Ky _ 10.5 * (10.74T + 2) 
a a: 21.48 

10.74T - 2 
Al= 10.74T + 2 

_ Ke*d¢z) 
ISR 1+Acz-! 

Re 2 34846.30T 
On1024.591 +2 

Ane OzaisoT = 2 
C~ 1024.59T +2 

GM() x 1+ Kmyp*z7! r Kme*z-2 

KmMa = K, - K; + K2 

Kaa + Kmp*z7! + Kmc*z-2 

volts/(rad/sec), (44) 

volts/volt, (45) 

volts/volt, (46) 

(rad/sec)/amp, (47) 

Kup = (-K,*exp(-K,*T)) - (-Ka*exp(-Kp*T)) + (Ky) + 

(Ki*exp(-K,*T)) - (K2) - (-K2*exp(-K,*T)) 

Koc = (Ka*exp(-Kp*T-K-*T)) - (Ki*exp(-K,*T)) + 

(K2*exp(-K,*T)) 
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(-exp(-K,*T)) 

(exp(-Kp*T-K,*T)) 

Kmp 

KmeE 

K, = 0.28222 

KRye= 181 

K, = 98.91 

Ky = 0.2856304 

K2 = 3.41047e-3 

GG(z) = 

KGa + Kgpz7! + Kgcz2 + Kgpz-3 + Kggz-4 

volts/(rad/sec) , (48) 

Koa = Kgi*Ko4 

Kop = (Kai*Kos)+(Ke2*Koa) 

Kec = (Kgi*Kg6)+(Kg2*Kas)+(Kg3*Koa) 

Kgp = (Kg2*Kgo)+(Ka3*Kos) 

Kcge = Kai 

Koi =4 + (2*Kgp*T) + (T?*Kge) 

Kg2 = -8+ (2*T2*Kg,) 

Kg3 = 4 - (2*Kgp*T) + (T2*Kgc) 
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Kg4 = 4+ (2*Kga*T) + (T2*Kge) 

Kgs = -8+ (2*T?*Kee) 

Kaeo = 4 - (2*Kga*T) + (T?*Ke) 

Kga = 6.406611384e12 

Kop = 766.41 

Kgc = 681377.11 

Kga = 2668.20 

Kce = 3046393.90 

ie z-t 
GF(z) = (eRAGS:| volts/volt, (49) 

Kn = 245:68T 
Pola ly +12 

Nie LE a 
EAS 27 e+ 

Gpa(z) =1 amps/volt. (50) 
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3.2.3. Application of ARW to Discrete System 

To complete the digital design it was necessary to replace the existing analog ARW 

with a discrete design. Observe the design of the existing analog filter/integrator and 

summing amplifier shown in Figure 81 (to understand the operation of the analog ARW 

design more fully). Table 1 delineates the values of the components in the schematic. 

The operational amplifier has three functions. It conditions the feedback signal from the 

rate gyro to filter out noise which may exist in the sensor and to filter out high frequency 

noise from the antenna platform. It sums the amplified command with the feedback signal 

to generate the error signal. Lastly, it provides an initial compensation signal using a 

proportional and integral controller. 

The diodes clamp the output to 0.6 Volts and effectively cause the capacitor to hold 

its charge if the output exceeds 0.6 Volts. It is these diodes that perform the ARW 

function. A model of the design (shown in Figure 82) reduces to the model shown in 

Figure 83. This matches the block diagram of 72. 

In the discrete design, a CAW implementation (as discussed in Section 3.1.1) was 

chosen to perform the ARW compensation. The integrator/filter is a proportional-integral 

controller; thus, there are three variations on using the CAW. The ARW compensation 

can be implemented around the entire controller including both the proportional and integral 

portion, around the integrator and its gain, or only around the integrator itself. Figures 

84 - 86 illustrate each of these approaches respectively. 
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ci 

Figure 81. Track Radar Rate Servo Integrator/Filter/Summing Amp 
Schematic Design 

Table 1. Component Values for Integrator/Filter 

COMPONENT 

84 

28.7K 

28.7K 

DSK. 

93.1K 

28.7K 

47uF 

47uF 

Vb = 0.6 volts 

Vb = 0.6 volts 



RaCos+1 %5 
R 
& R3C2s 

Ci(s) 
-0.6 

E1(s) 

Figure 82. Track Radar Rate Servo Integrator/Filter/Summing Amp 
Block Diagram 

E1(s) 

Figure 83. Track Radar Rate Servo Integrator/Filter/Summing Amp Model 
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E(z) 

Figure 86. Discrete Design of Integrator/Filter (CAW around integrator only) 
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The design of Figure 84 was chosen, for a first attempt, with the CAW implemented 

around all of Gy] (both the integral and proportional portions). The transfer function of the 

inner loop, Tic, using this implementation is 

Ky*X(1+Aqz7!) 
Reh <-- ee 1 
ic) 1+ 271(Ky*X-1) + 2°2(Ky*X*Ap) ©L 

where 

_ 10.5*(10.74*T+2) , zt+At 
Bima GhONa sen? ae? 

_ (10.74*T-2) 
Cia 0 MART) - SEL 

Although this approach is proposed by Glattfelder [3], as discussed in section 2, 

it proved unworkable for this application. The problem is the same as that discussed in 

the simple examples of Sections 3.1.1 and 3.1.2: the additional delay within the feedback 

makes the closed-loop transfer function of the inner loop of second order. For all values 

of X>0 and 0<T<1, there is at least one root z= +1. It is not possible, therefore, to create 

a stable inner loop design using this implementation. 

The next attempt incorporated the design of Figure 85 with the CAW implemented 

around the integrator portion of Gy along with its gain. The transfer function of the inner 

loop, Tic, using this implementation is 

Kt*T*X(1+z7!) ene wal Se Ce BO ea 54 
ic) = KAT X-1) + 22K T*X) 64) 

where 

* 

Kr = 3. (55) 
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This approach was found to be stable for reasonable values of X and T, and root 

locus plots of Tjc(z) were plotted for values T and X. The maximum value of X possible 

before loop instability is plotted for values of T in Figure 87. Also plotted is the value of X 

vs. T for an inner loop response damping ratio of 0.9. This curve will be used in the next 

section to choose values of X and T for the final design. Note that a gain of at least ten is 

desirable in order for the loop to function correctly and this dictates a sample frequency of 

at least 180 Hz. This bounds the lower limit of the sample period T. The final system 

sample period chosen later will be based on this and other factors. 

® 100 
(=) 

i] . : 5 

2 20 Instability 
c 80 

5 a 70 
o 

oO 60 
i) 
<x 50 
= 
B 40 ee 
2 30 : Constant 
o : Damping 

2 20 
a 
x 10 

$4 
oe & S&S oe & ae & S&S S S&S 

"RSSSSES SE 5 
Sample Frequency (Hz) 

Figure 87. Maximum Gain X (to ensure Inner Loop Stability) and 
Gain X (for damping = 0.9) vs. Sample Frequency 
(integrator and its gain) 

It is also possible to implement the CAW around only the integrator portion and not 

its gain as shown in Figure 86. For this implementation, the transfer function of the inner 

loop, Tic, is 
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Kt*T*X(1+z71) a oe a a EE 
ic) = Ty z-1(Ky*T*#X-1) + z°2(Kt*T*X) (56) 

where 

Kt = (57) T 
2 ° 

The maximum value of X possible before loop instability is plotted for values of T in 

Figure 88 along with X vs. T for an inner loop response damping ratio of 0.9. In this 

case, gain of at least ten requires a sample frequency of at least 10 Hz. 

Instability 
Threshold 

Constant .. 
Damping 
Ratio = 0.9 -- 

Max X Before Instability/X for Damping Ratio = 0.9 
So cd ©& © @ & & & &S &S & 

opo qa a & cm o& & & & 
NN st OO DO ON te OO CO CO 

=—- |= —|—- —|— — WA 

Sample Frequency (Hz) 

Figure 88. Maximum Gain X (to ensure Inner Loop Stability) and 
Gain X (for damping = 0.9) vs. Sample Frequency 
(integrator only) 

The next section will discuss the process employed for selecting the system sample period 

and the use of the above plots to select the optimum feedback gain X. 
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3.2.4 Selecting Sample Period and Feedback Gain 

The process for selecting the inner loop feedback gain, X, is to determine the desired 

sample frequency from the closed-loop bandwidth and to then choose the X from the 

previous plots that meets a damping ratio of 0.9. This will allow the inner loop to respond 

fast enough to affect the CAW compensation properly but will limit the overshoot of the 

inner loop to avoid chatter. 

Figure 89 shows the linear open-loop frequency response for the original continuous 

system. The closed loop bandwidth is determined from the crossover point and is 

approximately 50 Hz. The sample rate for the digital design was chosen (using criteria 

proposed by Franklin, Powell, and Workman [12]) to be approximately 20 times the 

closed-loop bandwidth of the system. This establishes a sample frequency of 

approximately 1000 Hz and a sample period, T, of 0.001 seconds. 

Having established a sample frequency, T, the selection of the feedback gain for the 

CAW is made from Figures 87 and 88. For implementing the CAW around the integrator 

and its gain, the X gain along the 0.9 damping ratio curve is approximately 38. For 

implementing the CAW around the integrator only, the X gain is approximately 387. It is 

not surprising that these two numbers differ by a factor of about ten. The only difference 

in the two implementations is whether the integrator's gain of 10.5 is included in the inner 

loop as part of the controller, or included in the inner loop as part of the feedback gain. 

Either way, the final design of the inner loop is essentially identical. 

Given that both are viable approaches, the first approach was chosen (CAW around 

integrator and its gain) for the final design. A sample period of T = 0.001 and a feedback 

gain X = 38 was selected. The performance of the completed discrete design to a step input 

is shown in Figure 91. The output, y/kT], and the integrator/filter control signal, ci[kT] 

is shown. The design offers less that 1% overshoot and settles out in approximately 0.37 

seconds. 
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Figure 92 depicts the integrator/filter signal at a time scale to show the proper 

damping of the signal. Minimal overshoot is present and the signal does not go below 

zero, therefore, no chatter will result. 

The output and integrator/filter signals for damping ratios of 0.85 and 0.70 are shown 

in Figures 93-97. When the damping is below 0.85, chatter begins to shown in the 

system. The choice of the gain and sample period to yield a damping ratio of 0.9 is thus 

determined to be a good one. 

One of the significant advantages of the ARW compensation, as mentioned in 

Section 3.1.1 is that it creates a system that is very well behaved with regard to overshoot. 

The overshoot remains very consistent regardless of the magnitude of the step change 

commanded to the system. This is illustrated for this system in Figure 97 for step rate 

inputs of 0.3, 0.5, 0.8, 1.0 and 1.5 radians/second. 
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Figure 92. Integrator/Filter Signal for Optimized Discrete Track Rate Design 
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Figure 97. Track Rate Output, Steps of @=0.3, 0.5, 0.8, 1.0, 1.5 rad/sec 
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CHAPTER 4 

CONCLUSIONS 

Nearly all systems have some type of control input saturation, and often it is the 

dominant nonlinearity. The problem of plant input saturation has been considered via the 

study of three examples along with the associated consequence - reset-windup of the 

controller. Several schemes exist for enhancing the stability and performance of 

continuous-time systems subject to reset-windup. Two schemes were investigated in 

detail: the conventional antireset-windup (CAW) implementation and the override signal 

(OS) implementation. These schemes can have significant effect on reducing the overshoot 

and settling time in a continuous-time system with reset-windup caused by saturation. 

These schemes can also be applied to discrete systems but care must be taken in 

applying these schemes in order to avoid chatter in the system. Chatter results from 

overshoot in the antireset-windup compensation signal if the signal overshoots the control 

point and drives the system in and out of saturation. The paper discusses the development 

of discrete implementations of the CAW and the OS and establishes design criteria for 

avoiding chatter and developing a good discrete design. The criteria establishes a method 

of analyzing the system based on the discrete response of the inner loop (the CAW 

compensation loop). 

The criteria developed shows how to choose the sample period, T, and the feedback 

gain within the inner loop so that the overshoot of the CAW compensation signal is 

adjusted to be minimal. For a first order controller, the criteria developed is to adjust the 

response of the inner loop for a second order damping ratio of 0.9. This is done through 

judicious selection of T and the feedback gain. In theory, both the discrete CAW and OS 

should be applicable in systems with controllers of higher order; further effort could 

investigate the schemes for systems with more complex controllers. 
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It was also determined that the CAW and the OS implementations, while appearing to 

be different in their operation are, in fact, the same. Both operate on the method of an inner 

loop (the ARW compensation loop) which modifies the control signal to avoid saturation 

by adjusting the control signal to keep the input to the saturation at, or close to, the 

saturation point. The schemes do not allow the control signal to drive far into saturation 

which keeps the windup of the controller small. 

The design of an ARW compensation scheme using the CAW implementation was 

demonstrated for an existing analog control system for a tracking antenna. A controller 

was designed using "design by discrete equivalent” and the bilinear transform and the 

sample time and feedback gain values were determined to produce a usable design. 

The design demonstrates performance equal to, or better than, the original design. 
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APPENDIX A 

DESIGN BY DISCRETE EQUIVALENT 

The most basic of control systems consists of a plant and a controller. The plant is that 

which is controlled and may be a motor for positioning of a radar antenna; an aircraft 

control surface actuator; a chemical process flow-control valve, or countless other 

mechanisms. The controller is that which accepts the commands for controlling the plant 

and generates control signals which make the plant behave dynamically in some desired 

manner with a desired level of performance. In most analog control systems, this 

controller is a compensation network, or compensator, designed with op-amps and discrete 

components. In a digital control system, this compensator is a control algorithm which 

determines a command to be applied to the plant at discrete intervals (every sample time). 

There are many reasons why one might wish to transform or convert an analog, or 

continuous, compensator into a digital, or discrete, one. The first reason is that there are a 

number of design techniques which have been developed for design of control systems in 

the continuous, or s-plane; Bode, root locus, and Nyquist are three examples. These 

techniques are well established, many designers are comfortable using them, and many 

design tools have been developed around them. A designer, therefore, can design the 

compensator for a given system in the continuous plane and then convert it to a discrete 

controller for implementation in a digital computer. 

Secondly, there are many existing analog control systems which have been designed 

and in operation for a long time. This is particularly true in the military where a weapons 

systems is designed to be in service for as many as twenty or thirty years. As these 

systems are upgraded, or replaced, the existing analog control systems are often replaced 

with digital ones. Oftentimes, the performance need not be significantly changed: the basic 

theoretical design of the control system can be retained but must be modified for 

implementation with a computer. 

101 



The process of converting a system expressed as a set of transfer functions in the s- 

plane, to a system expressed as a set of transfer functions in the z-plane is "design-by- 

discrete equivalents", or "design-by-transform methods". Design by discrete equivalent is 

a viable and much used method. 

A number of techniques have been developed to transform a continuous system into a 

discrete one. These techniques are often referred to as discrete transform methods. Given a 

transfer function, H(s), (as shown in Figure 98) with an input signal e(s) and output signal 

u(s), the discrete equivalent of this transfer function can be realized by sampling the input 

signal e(t) to produce a signal e[/kT] and passing this sampled signal through a discrete 

version, H,(z), of the analog compensator. 

Figure 98. Continuous Transfer Function and Discrete Equivalent 

The control signal is then passed through a D/A converter to produce a new Uy (5). 

If the sample rate, T, is infinite (or sufficiently high) and the conversion technique used on 

the analog compensator yields a discrete compensator which asymptotically (in T) 

represents its analog counterpart, then uy (Ss) will equal u(s). Since it is impossible to 

make T infinite, and because all transform techniques convert the analog compensator to a 

digital one with varying degrees of accuracy, it is not possible to get uy (s) to be exactly 
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equal to u(s). It is therefore necessary to select a discrete filter Hp(Z) such that uy (s) 

approximates u/s) as closely as possible. Mathematically, the objective is to select Hp) 

such that 

Hp(@!) = KGa) (58) 

for @ <a where a >> @p, the bandwidth of the compensator. To achieve this, it is 

necessary that 

T 
T>> re (59) 

If both of these conditions are met, uj (t) will be approximately equal to u(t). Given that 

Uq (t) will be approximately equal to u(t) if conditions (58) and (59) are met, it is desirable 

to develop transform techniques to accomplish condition (58). 

Condition (59) is met by selecting a sufficiently high sample rate [13]. The selection of 

the sample rate is the result of a tradeoff of several factors. It is desirable to have T, the 

sample period, as small as possible to get the most accurate representation of the 

continuous filter. However, cost is the motivation to have the sample period large. The 

larger the sample time, the slower the sample rate and the slower the computer necessary 

for a given control function. Lower sample rates also require slower A/D and D/A 

converters which translates to lower cost. 

Several techniques exist to transform H(s) to Hp(z). Some of the more popular 

techniques are: 

¢ Step-Invariant method 

¢ Bilinear method 

¢ Bilinear with pre-warping method 

¢ Pole-Zero mapping method 

¢ Mapping differentials method 

¢ Impulse-Invariance method. 
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For the purpose of this thesis, the bilinear transform will be used to create a discrete 

design of the controller and the step-invariant transform will be used to create a discrete 

model of the plant. The pole-zero transform method was also investigated for the 

controllers with similar results. 

The Bilinear transform, known also as Tustin’s Method, approximates a given transfer 

function H(s) with a discrete equivalent Hp(z) by replacing each s in the transfer function 

by 

— sale z-1) 
T (z+ly (60) 

This approximation is a map from the s-plane to the z-plane. Tustin’s method exactly maps 

the stable region of the s-plane (the left-half of the plane) into the stable region of the z- 

plane (the interior of the unit circle). This substitution maps low analog frequencies into 

approximately the same digital frequencies but can produce a highly nonlinear mapping for 

the high frequencies [14]. Although some distortion results at higher frequencies since the 

entire j@-axis of the s-plane is mapped into the 27-length of the unit circle, it provides a 

close approximation to the analog compensator and is the most commonly used technique 

[15]. The bilinear method is often supplemented with a technique called prewarping 

which attempts to correct for this distortion at the critical frequency of the compensator. 

However, the bilinear transform without the prewarping was found to be sufficient for the 

designs within this thesis. An example of the bilinear transform is as follows. 
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Assume a first-order filter as before, where 

eels. H(s) = ros (61) 

Substitution of equation (60) into equation (61) gives the discrete equivalent of 

equation (61), 

a 
Hp(Z) = 2@-1) . (62) 

T(z+1) 

which reduces to 

ck 

Hp(z) = (63) 

This equivalent filter is, in most cases, a sufficient discrete representation of the original 

filter. 

Step-Invariant Method 

The Step-Invariant method, also known as the Hold-Equivalence method, 

approximates a given transfer function P(s) with a discrete equivalent Pp(z) by the 

transform 

Pp(z) = (1-27) zZ{s Heo ; (64) 

where Z is the Z-transform and 37! is the inverse-Laplace transform. This transform 

method is derived from the use of a zero-order hold to approximate a continuous input 

signal. An example of the Step-Invariant transform is as follows. Assume a first-order 

filter such as 
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= P(s) = aa (65) 

From equation (65) it can be seen that 

CD ee Pg ae ot aia 
s  s(sta) Ss sta‘ (66) 

The inverse-Laplace transform of equation (66) is 

-1JP(S)| _ @-1f1] © g-1f 1 SHS | Ssh - Seva 
=1]-e¢4, (67) 

The Z-transform of equation (67) is 

Z{1- eat} = A es ; 
1-z! j-eal- 

which results in 

“aloe l\e 73 <1 
Zia : eat} melee) (eZ) (68) 

~ (ee ha-e@tey 

Multiplying (68) by (1-271) yields the Step-Invariant equivalent of equation (65): 

Paee ee (69) 
z-e 4 
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APPENDIX B 

ANALYTICAL SIMULATIONS 

FOR CONTINUOUS AND DISCRETE SYSTEMS 

Eight simulations were developed to study the systems discussed in the thesis and 

to generate the results presented. The eight simulations fall into two categories; 

continuous-time simulations and discrete-time simulations and are as follows: 

ntin -Time Simulations 

e Simple Example (Section 2.1) 

¢ Doyle and Smith Continuous System (Section 3.1.1.1) 

¢ Complex Compensator Continuous System (Section 3.1.1.4) 

¢ Glattfelder and Schaufelberger Continuous System (Section 3.1.2.1) 

e Track Rate Servo Continuous System (Section 3.2.1) 

Discrete-Time Simulations 

e Doyle and Smith Discrete System (Section 3.1.1.2) 

¢ Glattfelder and Schaufelberger Discrete System (Section 3.1.2.3) 

¢ Track Rate Servo Discrete System (Section 3.2.2) 

All simulations with the exception of the Track Rate Servo Continuous System 

simulation, were written in THINK Pascal™ 3.0 using an Apple Macintosh IIsi. The first 

four continuous simulations use a state-space representation for the system blocks and the 

fourth order Runge-Kutta method for computation of the system states. The Track Rate 

fig ts? 
Servo Continuous System simulation was developed on a Sun Workstation™ using the 
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Matlab simulation tool Simulab™. The listings for all but the Track Rate Continuous 

System simulation are presented at the end of this appendix. The three discrete simulations 

were developed using standard difference equations for computation of the systems states 

at each sample time. The listing for all of the discrete simulations are presented at the end 

of this appendix. 
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program Simple_Example_of_Windup; 

4th Order Runga-Kutta Continuous Simulation 
of Simple Windup Example 

ecocnooaoeo@a@ooceae@e@ececeeeeaneoeoeeeceeoceoeooeoeeece 

{ 
{ 
{ 
{ 
{ 
{ 
{ 
{ 

{program constants} 
const 
runga_kutta_interval = 0.01; 
printing_interval = 1; 
run_time = 20; 
max_integrators = 4; 
limit = 1; 
X_gain = 10; 

{program type definitions} 
type 

mat = array(i..max_integrators}] of real; 

{program variables} 
var 
rk_step_matrix: array(1..4] of real; 
Integrator_inputs, @, integrator_states, y: mat; 
system_input: real; 
tt real; 
outfile: text; 
ee, yy, ’, 02, @1, 63, a, u, C: real; 

function matrix_add (a, b: mat): mat; 
{ add matrices a and b } 
var 

I: Integer; 
begin 
for | = 1to max_integrators do 
matrix_add{i] := afi] + bf]; 

end; 

function matrix_multiply (a, b: mat): mat; 
{ multiply matrices a and b } 
var 

I: Integer; 
begin 
for | := 1 to max_integrators do 
matrix_multiply{i] := afi] ° dfi); 

end; 

function matrix_multiply_constant (a: mat; b: real): mat; 
{ multiply matrix a by the vaiue b } 
var 

I: Integer; 
begin 
for | = 1 to max_integrators do 
matrix_muitiply_constant{i] := afi] ° b; 

end; 

function matrix_divide_constant (a: mat; b: real): mat; 

{ divide matrix a by the value b } 
var 

I: Integer; 

begin 
for | = 1te max_integrators do 
matrix_divide_constant{i] := afi] / b; 

end; 
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{ time step for each runge-kutta interval } 
{ print out every printing interval computed state } 
{ run time of simulation in seconds } 
{ number of integrators in system } 
{ limit value of saturation block } 
{ gain of feedback in inner loop } 

{ matrix of integrators } 

{ four runge-kutta constants } 
{ Inputs, states and temporary variables } 
{ command into system } 
{ time (seconds) } 
{ output file for data } 
{ auxiliary variables } 



procedure set_rk_step_ matrix; 
{ Initialize runge-kutta step constants } 
begin 
rk_step_matrix(1] := 0.5; 
rk_step_matrix(2] := 0.5; 
rk_step_matrix(3] := 1; 
rk_step_mairix(4] := 2; 

end; 

procedure initialize integrator outputs; 
{ initialize the integrator states } 
var 

I: Integer; 
begin 

for | = 1 to max_integrators do 
Integrator_states(i] := 0; 

ee ‘= 0; 
@1 := 0; 
e2 := 0; 

@3 := 0; 
yy := 0; 
r c= 0; 

a@ := 0; 
U <= 0; 
C «= 0; 

end; 

function clamp (input, limit: real): real; 
{clamp output to limit} 
var 

output: real; 
begin 

if input > limk then 
Output := limit 

else if input < -limit then 

output := -limit 
alse 
Output ‘= input; 

Camp := output; 

end; 

function compute_system_input (t: real): real; 
{ compute input to system } 
begin 
compute_system_input := 1; 

end; 

procedure run_simulation (var t: real); 
{ run simulation from t = 0 to t = run_time } 
var 

I: Integer; 
Intermediate_value: mat; 
temp_value: real; 

begin 
forimito4do 
begin 
{ compute system command } 
system_input := compute_system_input(t); 

{compute auxiliary variables} 
@@ ‘= system_input + yy; 
U <= Integrator states(3); 
C ‘= Clamp(u, 100000); 

yy := (0.05 ° Integrator_states(4]) + (0.5 ° c); 

{compute Integrator inputs from states} 
Integrator_inputs{1] := (-800 ° ee) + (-40.1 ° Iintegrator_states(1]) + (-404 ° integrator_states(2]); 
Integrator_inputs(1] := Integrator _inputs(1] + (-40 ° Integrator_states(3]); 

Integrator_Inputs(2] := Iintegrator_states(1]; 
Integrator_inputs(3] := Iintegrator_states(2]; 

Integrator_inputs(4] := c; 
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{ update states through each runge-kutta minor step } 
case i of 

1: 
begin 
@ := Integrator_inputs; 
y ‘= Integrator_states; 

Intermediate_value := matrix_multiply_constant(integrator_inputs, runga_kutta_interval ° rk_step_matrix(lj); 
Integrator_states := matrix_add(y, intermediate_vaiue); 
t c= t + (runga_kutta_interval / 2); 

end; 
2: 
begin 

Integrator_states := matrix_multiply_constant(integrator_inputs, 2); 
@ ‘= matrix_add(e, integrator_states); 
intermediate_vaiue := matrix_multiply_constant(integrator_inputs, runga_kutta_interval ° rk_step_matrix(i}); 
Integrator_states := matrix_add(y, intermediate_vaiue); 

end; 
3: 
begin 
Integrator_states := matrix_multiply_constant(integrator_inputs, 2); 
@ ‘= matrix_add(e, integrator_states); 
Intermediate_value := matrix_multiply_constant(integrator_inputs, runga_kutita_interval ° rk_step_matrix(i)); 
integrator_states := matrix_add(y, intermediate_vaiue); 
t t= t + (runga_kutta_interval / 2); 

end; 
4: 

begin 
Integrator_states := matrix_add(e, Iintegrator_inputs); 
temp_vailue := runga_kutta_interval / 6; 
Integrator_states := matrix_muitiply_constant(integrator_states, temp_value); 

Iintegrator_states := matrix_add(y, integrator_states); 

end; 
end; {case} 

end; {for} 
end; 

{main program} 
begin 
{ open output file } 
rewrite(outfile, ‘Simple Example’); 

{ put header in output file } 
writeln(outfie,%? , rf ,@,uU,cCc, ¥); 

{ Initialize runge-kutta step consiants } 
set_rk_step_maitrix; 

{ sett=0} 

t = 0; 

{ Initialize states } 
initialize_integrator_outputs; 

{ run simulation } 
while not (t > run_time - (runga_kutta_interval / 2)) do 
begin 
compute_aux_variables(t); 

if (trunc(t / 0.01) mod 10) = 0 then 
writeln(outfile, t : 10: 6, °, ', system_input: 10: 6,',', ee :10:6,°,', yy : 10: 6); 

end; 

end. 
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program Doyle_CAW_Continuous; 

RJ Spangenberger 08 Aug 1991 

{ 
{ 

{ 4th Order Runga-Kutta Continuous Simulation 
{ of Doyle and Smith System with CAW 

{ 
{ @eeeaee@ooaoeoeaooeaeeeeceeoeaeeceaenceceaeoeooeaeoeoeeen eee 

} 
} 
} 
} 
} 
} 
} 
} 

{program constants} 
const 

max_integrators = 2; { number of integrators in system } 
limit = 1; { limit value of saturation block } 
X_gain = 10; { gain of feedback in inner loop } 

{program type definitions} 
type 

mat = array(1..max_integrators}] of real; { matrix of integrators } 

{program variables} 
var 
rk_step_matrix: array(1..4] of real; { four runge-kutta constants } 
Integrator_inputs, @, integrator_states, y: mat; { Inputs, states and temporary variables } 
system_input: real; { command into system } 
tt real; { time (seconds) } 
outfile: text; { output file for data } 
@0, yy, f, @2, @1, @3, a, u, Cc: real; { auxiliary variables } 

function matrix_add (a, b: mat): mat; 

{ add matrices a and b } 
var 

I: Integer; 
begin 
for |= 1to max_integrators do 

matrix_add{l] := afl] + bf]; 
end; 

function matrix_multiply (a, b: mat): mat; 
{ multiply mairices a and b } 
var 

I: Integer; 

begin 
for | = 1 to max_integrators do 

matrix_muitiply{i] := afi] ° d(I); 
end; 

function matrix_multiply_constant (a: mat; b: real): mai; 
{ multiply matrix a by the value b } 
var 

i: integer; 
begin 
for |= 1to max_integrators do 
matrix_multiply_constant{i] := af{i] ° b; 

end; 

function matrix_divide_constant (a: mat; b: real): mat; 
{ divide matrix a by the value b } 
var 

I: Integer; 
begin 
for | = 1to max_integrators do 
matrix_divide_constant{!] := afi] / b; 

end; 
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procedure set_rk_step_maitrix; 
{ initialize runge-kutta step constants } 
begin 
rk_stop_matrix(1) := 0.5; 
rk_step_matrix(2] := 0.5; 
rk_step_matrix(3] := 1; 
rk_step_matrix(4] := 2; 

procedure initialize_integrator_outputs; 
{ Initialize the integrator states } 
var 

I: Integer; 
begin 
tor | = 1 to max_integrators do 

integrator_states(i] := 0; 
ee := 0; 
@1 := 0; 
@2 := 0; 

@ ‘= 0; 
yy := 0; 
f = 0; 

@ <= 0; 
U := 0; 

C <= 0; 
end; 

function clamp (input, limit: real): real; 
{clamp output to limit} 
var 

Output: real; . 
begin 
i input > limit then 
Output := limit 

else it Input < -imit then 
Output := -limit 

else 
output := Input; 

clamp := output; 
end; 

function compute_system_input (t: real): real; 
{ compute input to system } 
begin 
compute_system_input := 1; { Input a step at t=0 } 

end; 

procedure run_simulation (var t: real); 
{ run simulation from t = 0 to t = run_time } 
var 

I: Integer; 
intermediate_vaiue: mat; 

temp_value: real; 
begin 
forim1ite4do 
begin 
{ compute system command } 
system_input := compute_system_input(t); { compute input to system } 

f := system_input; 

{compute auxillary variables} 
ee =f - yy; 
@2 ‘= @@; 
@1 := @2 - 63; 
u := Integrator_states(1); 

¢ «= damp(u, 1); 
Q@m=uU-C; 
@3 := X_gain ° a; 
yy := (0.05 ° Integrator_states(2}) + (0.5 ° c); 

{ compute integrator inputs from states } 
integrator_inputs(1] := (2 ° @1) - (0.1 ° Iintegrator_states(1}); 

Integrator_inputs(2] := c; 
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{ update states through each runge-kutta minor step } 
case | of 

1: 
begin 
@ := Integrator_inputs; 
y ‘= Integrator_states; 
Intermediate_value := matrix_multiply_constant(integrator_inputs, runge_kutta_interval ° rk_step_matrix(i]); 
Integrator_states := matrix_add(y, intermediate_vaiue): 
t c= t + (runge_kutta_interval / 2); 

end; 
2 
begin 
Integrator_states := maitrix_multiply_constant(integrator_inputs, 2); 
@ := matrix_add(e, integrator states); 
Intermediate_value := matrix_multiply_constant(integrator_inputs, runge_kutta_interval ° rk_step_matrix(l]); 
Integrator_stetes := matrix_add(y, intermediate_value); 

end; 
3: 
begin 
Integrator_states := matrix_muitiply_constant(integrator_inputs, 2); 
@ ‘= matrix_add(e, integrator_states); 
intermediate_value := matrix_multiply_constant(integrator_Inputs, runge_kutta_interval ° rk_step_matrix{i]); 
Integrator_states := matrix_add(y, intermediate_value); 
t := t + (runge_kutta_Iinterval / 2); 

end; 
4 

begin 
integrator_states := matrix_add(e, Iintegrator_inputs); 
temp_value := runge_kutia_interval / 6; 
Integrator_states := matrix_muitiply_constant(integrator_states, temp_value); 
Integrator_states := matrix_add(y, integrator_states); 

end; 
end; {case} 

end; {for} 
end; 

{ main program } 
begin 
{ open output file } 
rewrite(outfile, ‘Doyle CAW X=10'); 

{ put header in output file } 
writein(outfle,t , rf ,@ ,e2,03,e1, u, c,a, y’); 

{ Initialize runge-kutta step constants } 

set_rk_step_matrix; 

{ sett=0} 

t ‘= 0; 

{ Initialize states } 
initialize_integrator_outputs; 

{ run simulation } 
while not (t > run_time - (runge_kutta_interval / 2)) do 
begin 
run_simulation(t); 

if (trunc(t / 0.001) mod 100) = 0 then 
writein(outfile, t: 10:6,°,',r:10:6,°,',e@:10:6,°,.yy:10:6,°, ); 

end; 
end. 

115 



program Doyle_CAW_Compiex_Continuous; 

{ 
{ 

{ 4th Order Runga-Kutta Continuous Simulation 

{ 
{ 
{ 

{program constants} 
const 
runge_kutta_interval = 0.001; 
printing_interval = 1; 
run_time = 20; 
max_integrators = 4; 
lenit = 41; 

X_gain = 25; 

{program type definitions} 
type 
mat = array(1..max_integrators}] of real; 

{program variables} 
var 
rk_step_matrix: array(1..4] of real; 
Integrator_inputs, @, integrator_states, y: mat; 
system_input: real; 
t real; 
outfile: text; 
ee, yy. f, @2, 01, @3, a, U, C: real; 

function matrix_add (a, b: mat): mat; 

{ add matrices a and b } 
var 

I: Integer; 
begin 
for | = 1 to max_integrators do 

matrix_add{i] := afi] + bfij; 
end; 

function matrix_multiply (a, b: mat): mat; 
{ multiply matrices a and b } 
var 

I: Integer; 
begin 
for | = 1to max_integrators do 

matrix_multiply(i] := afi} ° dfi); 
end; 

e@eeeceaean ea ee eeeaeneaeaeneeaeneeaeeeaeeaeaeneeneeaeanese 

of Doyle and Smith System with Complex Compensator 

e@ooeoeeeaeeaeeoeoceeneeaeeceeceeeneeeeneeeeeaeneooe 

} 
} 
} 
} 
} 
} 
} 
} 

{ time step for each runge-kutta interval } 
{ print out every printing _interval computed state } 
{ run time of simulation in seconds } 
{ number of integrators in system } 
{ imit vaiue of saturation biock } 
{ gain of feedback in inner loop } 

{ matrix of integrators } 

{ four runge-kutta constants } 
{ Inputs, states, and temporary variables } 
{ command into system } 
{ time (seconds) } 
{ output file for data } 
{ auxiliary variables } 

function matrix_multiply_constant (a: mat; b: real): mat; 
{ multiply matrix a by the value b } 
var 

I: Integer; 
begin 
for | = 1to max_integrators do 
matrix_multipty_constant{i] := afi] ° b; 

end; 

function matrix_divide_constant (a: mat; b: real): mat; 

{ divide matrix a by the value b } 
var 

I: Integer; 
begin 
for | = 1to max_integrators do 
matrix_divide_consiant{i] := afi] / b; 

end; 
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procedure set_rk_step matrix; 

{ initialize runge-kutta step constants } 
begin 
rk_step_matrix(1) := 0.5; 
rk_step_mairix(2] := 0.5; 
rk_step_matrix(3] := 1; 
rk_step_matrix([4] := 2; 

procedure initialize_integrator_outputs; 
{ Initialize the integrator states } 
var 

I: Integer; 
begin 
for | = 1te max_integrators: do 

Iintegrator_states(i] := 0; 
ee := 0; 
@1 := 0; 
@2 := 0: 

@3 := 0; 

yy := 0; 

f c= 0; 
@ := 0; 
U ‘= 0; 
C ‘= 0; 

end; 

function clamp (input, limit: real): real: 

{clamp output to limit} 
var 
output: real; 

begin 
if input > limk then 
Output <= limit 

else if input < -limit then 

Output := -limit 

else 
Output := Input; 

Camp := output; 
end; 

function compute_system_input (t: real): real; 
{ compute input to system } 
begin 
compute_system_input := 1; 

end; 

procedure run_simulation (var t: real); 

{ run simulation from t = 0 to t = run_time } 
var 

I: Integer; 
intermediate_vaiue: mat; 
temp_value: real; 

begin 
foriwito4do 
begin 

{ compute system command } 
system_input := compute_system_input(t); 

{compute auxiliary variables} 
f t= system_input; 

ee =f - yy; 
2 := 60; 
@1 := 62 - 63; 
u := Integrator_states(3); 

¢ := clamp(u, 1); 
@=U-C; 
@3 := X_gain ° a; 
yy ‘= (0.05 ° Integrator_states(4}) + (0.5 ° c); 

{compute Integrator inputs from states} 
Integrator_inputs(1] := (800 ° @1) + (-40.1 ° Integrator_states(1]) + (~404 * integrator_states(2]); 
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Integrator_inputs(1] := integrator_inputs(1) + (-40 ° Integrator_states(3)); 
integrator_inputs(2] := Integrator_states(1]; 
integrator_inputs(3] := integrator_states(2); 

Integrator_inputs(4) := c; 

{ update states through each runge-kutta minor step } 
case i of 

UE 
begin 
@ := integrator_inputs; 
y := Integrator_states; 

Intermediate_value := matrix_multiply_constant(integrator_inputs, runga_kutta_interval 
integrator_states := matrix_add(y, intermediate_vaiue); 
t := t + (runga_kutta_interval / 2); 

end; 
2: 
begin 
Integrator_states := matrix_multiply_constant(integrator_Inputs, 2); 
@ ‘= matrix_add(e, integrator_states); 
Intermediate_vaiue := matrix_multiply_constant(integrator_inputs, runga_kutta_interval 

Iintegrator_states := matrix_add(y, intermediate_vaiue); 
end; 

3: 
begin 
Integrator_states ‘= matrix_multiply_constant(integrator_inputs, 2); 

@ := matrix_add(e, integrator_states); 
Intermediate_value := matrix_multiply_constant(integrator_inputs, runga_kutta_interval 

Integrator_states := matrix_add(y, intermediate_value); 
t := t + (runga_kutta_interval / 2); 

end; 
4: 

begin 
Integrator_states := matrix_add(e, Integrator_inputs); 

temp_vailue := runga_kutia_interval / 6; 
Integrator_states := matrix_multiply_constant(integrator_states, temp_value); 

integrator_states := matrix_add(y, Integrator states); 

end; 
end; {case} 

end; {for} 
end; 

{main program} 
begin 
{ open output file } 
rewrite(outfile, ‘Complex Compensator); 

{ put header in output file } 
writeinoutfie,7 ,.r,@,u,c, y); 

{ initialize runge-kutta step constants } 
set_rk_step_mairix; 

{ sett=0} 

t = 0; 

{ Initialize the states } 
initialize_integrator_outputs; 

{ run simulation } 
while not (t > run_time - (runga_kutta_ interval / 2)) do 

begin 
compute_aux_variables(t); 

Wf (trunc(t / 0.001) mod 100) = 0 then 

writein(outfile, t : 10: 6,‘ , *, system_input: 10: 6,', ‘, e@ : 10: 6,',', yy: 10: 6); 

end; 
end. 
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program Glattfeider_OS_ Continuous; 

FL. Spangenberger 08 Aug 1991 

4th Order Runga-Kutta Continuous Simulation 

{ 
{ 
{ 

{ of Glattlelder and Schaufelberger OS System 

{ 
{ 

{program constants} 
const 
runga_kutta_interval = 0.001; 
printing_interval = 1; 
run_time = 20; 
max_integrators = 2; 
limit = 1; 

K2_gain = 10; 

STANDARD_LIMIT = 1.0; 
yo = 0; 

{program type definitions} 
type 
mat = array(1..max_integrators}] of real; 

{program variables} 
var 
rk_step_matrix: array(1..4] of real; 
integrator_Inputs, @, integrator_siates, y: mat; 
system_input: real; 

t: real; 
outfile: text; 
rf, @@, @1, up, ul, temp, c, li, yy: real; 

uhi, ulo: real; 

function max (a, b: real): real; 

{ retum maximum of a@ or b } 
begin 

MH as= b then 

max ‘= @ 

else 
max := D; 

end; 

function min (a, b: real): real; 

{ return minimum of a or b } 

begin 
Hf (a <= b) then 

min := @ 
else 
min := b; 

end; 

function matrix_add (a, b: mat): mat; 

{ add matrices a and b } 
var 

I: Integer; 

begin 
for | := 1 to max_integrators do 

matrix_add{i] := afi] + d{l]; 
end; 

function matrix_multiply (a, b: mat): mat; 

eeeaeocoeaeeaeaoneaeseeaeaeeeaeneeneneneecnceeeooe oo eeocece } 
} 
} 
} 
} 
} 
} 
} 

{ time step for each runge-kutta interval } 
{ print out every printing interval computed state } 

{ run time of simulation in seconds } 

{ number of integrators in system } 
{ limit vaiue of saturation biock } 
{ gain of feedback in inner loop } 

{ value for uhi, ulo inputs } 
{ initial value of selected states } 

{ matrix of integrators } 

{ four runge-kutta constants } 
{ Inputs, states and temporary variables } 
{ command into system } 
{ time (seconds) } 
{ output file for data } 
{ auxiliary variables } 

{ uhi, ulo variables } 
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{ multiply matrices a and b } 
var 

I: Integer; 
begin 
for |= 1 to max_integrators do 

matrix_muitiply{i] := afi) ° d{I]; 
end; 

function matrix_multipty_constant (a: mat; b: real): mat; 
{ multiply matrix a by the vaiue b } 
var 

I: integer; 
begin 
for | = 1 to max_integrators do 
matrix_multiply_constant{i] := afi] ° b; 

end; 

function matrix_divide_constant (a: mat; b: real): mat; 
{ divide matrix a by the value b } 
var 

I: Integer; 
begin 
for |= 1to max_integrators do 
matrix_divide_constant{l] := afl] / b; 

end; 

procedure set_rk_step_matrix; 
{ Initialize runge-kutta step constants } 
begin 
rk_step_matrix(1] := 0.5; 
rk_step_matrix(2] := 0.5; 
rk_step_matrix(3] := 1; 
rk_step_matrix[4] := 2; 

procedure initialize_integrator_outputs; 
{ Initialize the integrator states } 

var 
I: integer; 

begin 
Integrator_states{1}] := 0; 
Integrator_states(2] := -yo; 
r = 0; 
ee := 0; 

@1 ‘= 0; 

up := 0; 
ul := yo; 
temp := 0; 
C ‘= yo; 
a c= 0; 
yy ‘= -yo; 

end; 

function clamp (input, limit: real): real; 

{clamp output to limit} 
var 

output: real; 
begin 

if input > limit then 

output ‘= limit 

else if Input < -limit then 
Output := -limit 

else 
output := Input; 

Clamp := output; 

end; 

function compute_system_input (t: real): real; 

{ compute input to sysiem } 
begin 
compute_system_input := 1; 

end; 
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procedure run_simulation (var t: real); 
{ run simulation from t = 0 to t = run_time } 
var 

I: Integer; 
Iintermediate_vaiue: mat; 
temp_value: real; 

begin 
uhi «= STANDARD_LIMIT; { set uhi and ulo } 
ulo := -STANDARD_LIMIT; 
fori=1to4do 
begin 
sysiem_input := compute_system_Iinput(t); { compute input to system } 
f := system_input; 

{ compute auxillary variables } 
ee =f - yy; 
temp := max(((-c + ulo) ° K2_gain), ee); 
@1 ‘= min(((-c + uhi) ° K2_gain), temp); 
Cc := Integrator_states(1]; 
il := clamp(c, 1); 
yy := (0.05 ° Integrator_states(2]) + (0.5 ° Il); 

{ compute integrator states } 
integrator_Inputs(1] := (2 ° @1) - (0.1 ° Integrator_states(1}); 
Integrator_inputs(2] := Il; 

{ update states through each runge-kutta minor step } 
case i of 

1: 
begin 
@ := Integrator_inputs; 
y ‘= Integrator_states; 
intermediate_vaiue := matrix_multiply_constant(integrator_inputs, runga_kutta_interval ° rk_step_matrix(i]); 
Integrator_states := matrix_add(y, intermediate_vaiue); 
t := t + (runga_kutia_interval / 2); 

end; 
2: 
begin 
Integrator_states := matrix_multiply_constant(integrator_Inputs, 2); 

@ := matrix_add(e, integrator_states); 
Intermediate_value := matrix_multiply_constant(integrator_inputs, runga_kutta_interval ° rk_step_matrix(i]); 

Integrator_states := matrix_add(y, intermediate_vaiue); 

end; 
3: 
begin 
Integrator_states := matrix_multiply_constant(integrator_inputs, 2); 

@ := matrix_add(e, integrator_states); 
Intermediate_value := matrix_multiply_constant(integrator_inputs, runga_kutta_interval ° rk_step_matrix(i]); 
integrator_states := matrix_add(y, intermediate_value); 

{ ‘= t + (runga_kutta_interval / 2); 

end; 
4: 

begin 
Integrator_states := matrix_add(e, integrator_inputs); 
temp_vaiue := runga_kutta_ interval / 6; 
integrator_states := maitrix_multiply_constant(integrator_states, temp_value); 
integrator_states := matrix_add(y, integrator states); 

end; 
end; (case} 

end; {for} 
end; 

{main program} 
begin 
{ open output file } 
rewrite(outfile, ‘Glattfelder CAW K2=10"); 

{ put header in output file } 
writeln(outfle, ‘t , f ,@ ,e1,c,l,y’); 

{ Initialize runge-kutta step constants } 
set_rk_step_matrix; 

{ sett=0} 
t := 0; 
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{ Initialize states } 
initiallze_integrator_outputs; 

{ run simulation } 
while not (t > run_time - (runga_kutta_interval / 2)) do 
begin 
compute_aux_variabies(t); 

W (trunc(t / 0.001) mod 100) = 0 then 

writein(outfiie, 1: 10:6,',°,r:10:6,°,°, e@@: 10 
end; 

end. 
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program Doyie_CAW_Discrete (input, output); 

@eeaeeneneoeaeveaeneeneeeeeneneeeen eee ecaeee ee eeeoee 

{ 
{ 
{ 

{ of Doyle and Smith System with CAW 
{ 
{ 

} 
} 

Discrete Time Simulation } 

} 
} 
} 

const 
MAXX = 20000; { max number of time steps } 

INFINITY = 99999990; { constant for infinity } 
TO_FILE = 1; { 2=write to nowhere, 1=write to file, O=write to screen } 

type 
real_type = array(0..MAXX] of real; { states and auxiliary variables } 
pir_type = “real_type; { pointers to states and auxiliary variables } 

var 
f, ¥, @, @1, @2, @3, a, c, I: ptr_type; { system states and auxiliary variables } 
limit: real; { limit value of saturation block } 
X_gain: real; { gain of Inner feedback loop } 

start_time: real; { simulation start time } 
stop_time: real; { simulation stop time } 

T: real; { sample time } 
number_of_iterations: integer; { total number of iterations } 

outfile: text; { output file for data } 
filename: string([80]; { output file name } 

procedure Initialize; 
{ Initialize Variables } 
var 

k: Integer; 
begin 

{open file} 
4 TO_FILE = 1 then 
begin 
rewrite(outfile, filename); 

writein(outfile, "k,kT, 7, @ , @2,e3,e1,¢c,J,a,y'); 
end 

elise if TO_FILE = 0 then 
writein(k,kT, r, @ , @2,e3,e1,c,i,a,y') 

else 
begin 

{nothing} 
end; 

{new dynamic variables} 

new(r); 

new(e); 

new(e1); 

new(e2); 
new(e3); 
new(c); 
new(I); 
new(a); 

new(y); 

{Initialize variables} 
for k := 0 to MAXX do 
begin 
r(k] c= 1; 
@*(k) ‘= 0; 
@1*{k] := 0; 
@2*(k] := 0; 
@3*(k) := 0; 
CA(k] := 0; 
4(k] := 0; 
a*(k] := 0; 

y*(k] := 0; 
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{set saturation Umit} 
limit := 1.0; 

{set stop time} 
stop_time := 20; 

{compute number of erations} 
number_of_iterations := round(stop_time / T); 

{4 number of iterations exceeds allocation, indicate error} 
if ((stop_time / MAXX) > T) then 
begin 

sysbeep(200); 
writein(ERROR ... TOO MANY ITERATIONS); 

end; 

end; 

procedure ClearSpace; 
{dispose of dynamic variables} 
begin 

dispose(r); 
dispose(e); 
dispose(e1); 
dispose(e2); 
dispose(e3); 
dispose(c); 

dispose(i); 

dispose(a); 
dispose(y); 

end; 

procedure Run_Simulation; 
{Run simulation from 1 to MAXX iterations} 
var 

k: Integer; 

begin 
{compute iterations} 

for k := 1 to number_of_iterations do 
begin 

@*(k] := r*[k] - y“[k - 1]; 
@2*(k) := o*(k); 
@1%(k] := @2*(k] - e3*{k - 1]; 
Ak] sm ((2 / (0.1 + (2 / T))) ° (@14(k})) + ((2 / (0.1 + (2 / T))) ° (@14[k - 1])); 
CA(k) sm cA(k] - ((0.1 - (2 / T)) / (0.1 + (2 / T)) ° CAfk - 1); 

if C*(k] > limk then 
{k] := limit 

else if c*{k] < -limit then 
i(k) := -limit 

else 
i(k) := cA[k]; 

ark] = c*(k] - {ki}; 
©3*(k] -= a*[k] ° X_gain; 

{Step invariant Plant Equation} 

y“{k] := (0.5 ° Wfk}) + (((0.05 ° T) - 0.5) ° Mk - 1]) + y*[k - 1]; 

Hf TO_FILE = 1 then 
writein(outfile, kK: 5,°,',k°7T:10:6,°,°, fk}: 10: 6,°,*, ek]: 10: 6,°, °, y*{k] : 10 : 6) 

elee H TO FILE = 0 then 
writein(k : 5, k ° T : 10: 6, m{k] : 10: 6, efk] : 10 : 6, y“[k] : 10 : 6) 

else 
begin 

{nothing} 
end; 

end; 
end; 

begin 
{ set xgain value } 
X_gain := 10; 
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{ set sample time } 
T «= 0.001; 

{ Initialize output file name } 
filename := ‘Doyle CAW X=10’; 

{ set initial conditions and initialize variables } 
Initialize; 

{ run simulation } 
Run_Simulation; 

{ Close output file } 
close(ouifile); 

{ dispose of dynamic storage space } 
ClearSpace; 

end. 
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program Glattfeider_OS Discrete (input, output); 

FLL Spangenberger 08 Aug 1991 

{ 
{ 

{ Discrete Time Simulation 

{ 
{ 
{ 

eonst 

MAXX = 2000; 
INFINITY = 9969990; 

TO_FKE = 1; 

type 
real_type = array(0..MAXX] of real; 
pir_type = “real_type; 

var 

fr, @, @1, @l, @2, c, |, y: ptrtype; 
eh, ol, et: ptrtype; 
8: Integer; 

limit: real; 
uhi, ulo: real; 
K2_gain: real; 

start_time: real; 
stop_time: real; 
T: real; 
number_of_iterations: integer; 

outfile: text; 
filename: string{80]; 

function max (a, b: real): real; 
{ return the max between a and b } 
begin 
# ase b then 

max := @ 
else 

max := b; 

end; 

function min (a, b: real): real; 
{ rewm the max between a and b } 
begin 

Hf (a <= b) then 
min := @ 

else 
min := b; 

end; 

procedure initialize; 
{ initialize Variables } 
var 

k: Integer; 
begin 

{open file} 
M TO_FLE = 1 then 
begin 
rewrite(outfile, filename); 

writein(outfile, "kK, kT , Fr, 
end 

else if TO_FLE = 0 then 
writein(outfile, k , 

@ , o1, oh, et 

@eeaeeeeeeeeeeecneeeeaeeaeeeeeeeaneeeneene eee en 

of Giattleider and Schaufelberger System with CAW 

@eeneeeneeneeceeeeaeneeeeeneceeeeeeecee eee eee 

} 
} 
} 
} 
} 
} 
} 
} 

{ max number of time steps } 
{ constant for infinity } 
{ 2=write to nowhere, 1=write to file, O=write to screen } 
{ value for uhi, ulo inputs } 
{ initial vaiue of selected states } 

{ states and auxiliary variables } 
{ pointers to states and auxiliary variables } 

{ system states and auxiliary variables } 

{ limit value of saturation block } 
{ uhi, ulo variables } 
{ gain of feedback in inner loop} 

{ simulation start time } 
{ simulation stop time } 
{ sample time } 
{ total number of iterations } 

{ output file for data } 
{ output file name } 

,a@,s, ei, c,t,@2, y): 

kT , fr, @,@1,eh,et,a@,s, of, c,1,02, y) 
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else 
begin 

{nothing} 
end; 

{ new dynamic veriabies } 
new(r); 
new(e); 
new(e1); 
new(el); 
new(e2); 

new(c); 
new(i); 

new(y); 

new(eh); 

new/(el); 

new/(et); 

{ Initialize variables } 
for k = 0 to MAXX do 
M(k] := 1; 

@(0] := 0; 
@14(0) := 0; 
et*(0] := 0; 
eh*(0] := 0; 
@l(0) := 0; 
@i(0] = yo; 
@2*(0] = 0; 
C(O] := yo; 

[0] := 0; 
y*(0] := -yo; 

{ set saturation values } 
limit := STANDARD_LIMIT; 
uhi := STANDARD_LIMIT; 
ulo := -STANDARD_LIMIT; 

{sample time} 
T := 0.01; 

{set stop time} 
stop_time := 10; 

{compute number of iterations} 
number_of_iterations := round(stop_time / T); 

{i number of iterations exceeds allocation, indicate error} 
Wt ((stop_time / MAXX) > T) then 
begin 
sysbeep(200); 

writein(ERROR ... TOO MANY ITERATIONS); 
end; 

end; 

procedure ClearSpace; 
{dispose of dynamic variables} 
begin 

dispose(r); 
dispose(e); 
dispose(et); 

dispose(ei); 
dispose(e2); 

dispose(c); 
dispose(!); 

dispose(y); 

dispose(eh); 
dispose(el); 

dispose(et); 

end; 

procedure Run_Simulation; 
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{ Run simuaition from 1 to MAXX iterations } 
var 

k: integer; 
begin 
{compute iterations} 
for k = 1 to MAXX do 
begin 

@*(k} := Mk] - yA*{k - 1); 
eh*[k] -= (uni - cA{k - 1]) ° K2_gain; 
e@l*(k] := (ulo - ck - 1]) ° K2_gain; 
@t*[k] := max(e(k], e(k)); 
@14[(k) = min(et*(k}, eh4(k]); 
it (014[k] = eh“[k}) then 
8 = 1 

else if (e1“[k] = e{k}) then 
8 -=1 

alee 
8 = 0; 

oi{k] 2m ((2 / (0.1 + (2 / T))) ° (1K) + ((2 / (0.1 + (2 / T))) ° (@1%k - 1); 
@i*[k] = OH [Kk] - ((0.1 - (2 / T)) / (0.1 + (2 / T)) ° OK - 1); 

c*(k] = of (k]; 

{Limit} 
if c[k] > limit then 
{k] := limit 

else if c*(k] < -limit then 
F(k] := -limit 

else 

M{k] 2= A{k); 
{End Limit} 

@2*(k] := c*{k] - A(k]; 

y*[k] -= (0.5 ° fk) + (((0.05 ° T) - 0.5) ° Mk - 1]) + y*[k - 1]; 

Hf TO_FILE = 1 then 
writein(outfile, kK: 5°,‘ k° T:10:6,°,', fk}: 10:6,'°,°, ek}: 10:6,", 

else 4 TO _ FILE = 0 then 

else 
begin 

{nothing} 
end; 

end; 

end; 

begin 
{ set K2 gain value } 
K2_gain := 10; 

{ set sample time } 
T := 0.001; 

{ Initialize output file name } 
filename := 'Giattfeider OS X=10’; 

{ set initial conditions and initialize variables } 
initialize; 

{ run simulation } 
Run_Simulation; 

{ Close output file } 
close(outfile); 

{ dispose of dynamic storage space } 
ClearSpace 
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program Track _Rate_Simuiation (input, output); 

@eeceeanneaeoeae eee eeeeeeneaeneeeeaeneeeeeeeaeeeee@ 

of Track Rate Servo - Traverse Axis with CAW 

{ 
{ 
{ 
{ 
{ 
{ 
{ 
{ 

} 
} 

Discrete Time Simulation } 

} 
} 
} 

SCREEN_OR_FLE = 1; 
NUM_BETWEEN_ PRINTS = 10; 
X_gain = 10; 

type 
data_type = array(0..MAXDATA] of real; 

ptrtype = _type; 

procedure Initialize; 
{ Initialize states and auxiliary variables } 
var 

I: integer; 
begin 

(set sample period} 
sample_period := 1 / SAMPLE_RATE; 

new(GC_OUT); 
new(GPA_IN); 
new(GPA_OUT); 
new(GMRATE_IN); 
new(GMRATE_OUT); 
new(GMPOS_IN); 

new(GMPOS_OUT); 
new(GG_IN); 

new(GG_OUT); 
{set system Initial conditions} 
for | := 1 to MAXDATA do 

begin 
KCC_IN‘(]] := 0.1; 
KCC_OUT*{]] := 0; 
GF_IN‘{]] := 0; 
GF_OUT*{I] := 0; 
GI_IN‘{]] := 0; 
Gl_OUT*{] := 0; 
GC_IN*{I] := 0; 
GC_OUT*{]] := 0; 
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{ maximum number of iterations } 
{ Infinity constant } 
{ simulation sample rate } 
{ 0 = write to screen, 1 = write to file } 
{ number of Iterations between output of data } 
{ gain of inner feedback loop } 

{ states and auxiliary variables } 
{ pointer to states and auxiliary variables } 

{ Iteration variable } 
{ sample period } 



GPA_IN‘[I] := 0; 
GPA_OUT‘{]] := 0; 
GMRATE_IN‘{]] := 0; 
GMRATE_OUT‘{]] := 0; 
GMPOS_IN‘{I] := 0; 
GMPOS_OUT‘{] := 0; 
GG_IN‘{]] := 0; 

GG_OUT*{I] := 0; 
end; 

{open output file} 
rewrite(outfle, Track Rate Servo CAW X = 52’); 

end; 

procedure KCC (var x, y: ptr_type; k: integer): 

{compute output of gain block} 
const 
KK = 5.1177; 

begin 

y*[k] -= x“{k] ° KK; 

procedure Gi (var x, y: ptr_type; k: integer); 

{compute output of integrator} 
var 

gain, a: real; 
begin 
gain := ((10.5) ° (10.74 ° sample_period + 2)) / (10.74 ° 2); 
@ := (10.74 ° sample_period - 2) / (10.74 ° sample period + 2); 

y*[k} -= (gain ° x*{k}) + (gain ° a ° x*[k - 1]) + (yk - 1)); 

procedure GC (var x, y: ptr_type; k: integer); 
{compute output of compensator} 
var 

gain, a: real; 
begin 
gain := (34.01 ° 1024.59 ° sample_period) / (1024.59 ° sample_period + 2); 
@ := (1024.59 ° sample_period - 2) / (1024.59 * sample_period + 2); 
y*{k] -= (gain ° x*(k]) + (gain ° x*fk - 1) - (a * y*{k - 1); 

procedure GPA (var x, y: ptr_type; k: integer); 
{compute output of power amplifier} 

const 

gain = 1; 
limit = 10; 

begin 

y*{k] := gain ° x*{k}; 
if y“{k] > limk then 
y“{k} := limit 

else if y*{k) < -imit then 
y“(k] := -limit; 

end; 

procedure GMRATE (var x, y: pt_type; k: Integer); 
{compute output rate of plant (motor) using step invariant transform} 

ver 
Ai, B1, AA, BB, CC, DD, EE, a, b, c, d, @, f: real; 

begin 
@ := 0.28222; 

b := 1.181; 

C := 96.91; 

Al := 0.2856304; 
B1 := 3.41047e-3; 

AA = @ - (A1) + (81); 
BB := (-a ° exp(-c ° sample_period)) - (a ° exp(-b ° sample_period)) + (A1); 
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BB := BB + (Al ° exp(-c ° sample_period)) - (B1) - (B1 ° exp(-b ° sample_period)); 
CC ‘= (a ° exp(-b * sample_period - c ° sample_period)) - (Al ° exp(-c ° sample _period)); 
CC := CC + (Bi ° exp(-b ° sample_period)); 
DO := (-exp(-c ° sample_period) - exp(-b ° sample_period)); 
EE := (exp(-b ° sample_period - c ° sample_period)); 

eee ee eee ere gee eh t7 0.” ye = 1D (EG y"~ 2s 
end; 

procedure GMPOS (var x, y: ptr_type; k: integer); 
{compute output position of plant (motor)} 
begin 

y*tk] := (x*[k]) + (y“{k - 1); 

procedure GG (var x, y: ptr_type; k: integer); 
{compute output of gyro} 
const 

@ = 6.406611384012; 
b = 766.40588; 
C = 681377.11; 

d = 2668.2030; 
@ = 3046393.9; 

AA «= 4 + (2 ° B® sample _period) + (sample_period ° sample_period ° c); 
BS := -8 + (2 ° sample_period ° sample_period ° c); 
CC = 4- (2° b ° sample period) + (sample_period ° sample_period ° c); 
DO := 4 + (2° d ° sample_period) + (sample_period ° sample_period ° @); 
EE := -8 + (2 ° sample_period ° sample period ° e); 
FF := 4 - (2° d ° sample_period) + (sample_period ° sample_period ° e); 
GG := sample_period ° sample_period ° sampie_period ° sample_period; 

DZ4 := (AA ° OD); 
OZ3 ‘= (AA ° EE) + (88 ° DD); 
DZ2 <= (AA ° FF) + (BB ° EE) + (CC ° DD); 
DZi := (BB ° FF) + (CC ° EE); 
DZO = (CC ° FF); 

NZ4 := (a ° GG); 
NZ3 := 4 ° (a ° GG); 
NZ2 := 6 ° (a ° GG); 
NZ1 := 4 ° (a ° GG); 
NZO := (a ° GG); 

temp! := (NZ4 / DZS ° x*{k]) + (NZ3 / DZS ° x“{k - 1]) + (NZ2 / DZS ° x*{k - 2); 
temp! := tempt + (NZ1 / DZS ° x“{k - 3]) + (NZO / DZ5 ° x*{k - 4)); 
temp2 := -(DZ3 / OZ5S ° y*{k - 1]) - (OZ2 / DZS * y*{k - 2); 
temp2 := temp2 - (DZ1 / DZ5 ° y*(k - 3]) - (DZO / DZ5 ° y*{k - 4)); 
y*{k] = temp1 + temp2; 

y*(k] := xk] ° 3.09; 

procedure GF (var x, y: ptr_type; k: Integer); 
{compute output of gyro feedback summer} 

var 

gain, a: real; 
begin 
gain := (245.68 ° sample_period) / (148 ° sample_period + 2); 
@ ‘= (148 * sample_period - 2) / (148 ° sample period + 2); 

y*{k] = (gain * x*(k]) + (gain * x4fk - 1]) - (a ° y“[k - 1); 
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procedure Run_Simuilation; 
{ Run simulation from 1 to MAXDATA hterations } 
var 

k, |: integer; 
tempi, delta: pir_type; 

begin 

new(temp1); 
new(delta); 
for | = 1 te MAXDATA do 
begin 
temp1“{I] := 0; 
delta“{i] := 0; 

end; 
for k := 5 te MAXDATA do 
begin 

{ compute kec block } 
KCC(KCC_IN, KCC_OUT, k); 

{ output of summer } 
temp1{k] :@ KCC_OUT*{k] - GF_OUT*{k - 1]; 

{ output of CAW summer } 
temp1“{k] := temp1“{k] - delta*(k - 1); 

{ output of integrator/filter } 
Gktemp1, Gi_OUT, k); 

{ output of compensator } 
GC(GI_OUT, GC_OUT, kj; 

{ output of motor power ampiifier } 

GPA(GC_OUT, GPA_OUT, k); 

{ compute CAW difference } 
delta*{k] = GC_OUT*[(k] - GPA_OUT*Ik); 

{ compute CAW feedbeck signal } 
Gelta*[k] := delta*(k] ° X_gain; 

{ compute motor rate } 
GMRATE(GPA_OUT, GMRATE_OUT, k); 

{ compute motor position } 

GMPOS(GMRATE_OUT, GMPOS_OUT, k); 

{ compute gyro output } 
GG(GMRATE_OUT, GG_OUT, k); 

{ compute filter output } 
GF(GG_OUT, GF_OUT, k}; 

{ write data to output file } 
M SCREEN OR_FILE = 1 then 
begin 
Mf (k mod NUM_BETWEEN_PRINTS) = 0 then 
writein(outfile, k : 10,‘ , ', ((k - 5) * sample_period) : 10 : 5,°, ', GMRATE_OUT*“(k] : 10 : 5); 

end 
else 

writein(k : 10, ((k - 5) ° sample_period) : 10:5,° ‘, GLOUT(k}:10:5,° °, GC_OUT*{k] : 10 : 5); 
end; 

end; 

begin 
{ Initalize system } 
writein("initializing . . . Please Wait’); 
initialize; 

{ run simulation } 
writein(Running ... Please Wait’); 
Run_Simulation; 

end. 
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