
Proceedings of the Society for Computation in Linguistics Proceedings of the Society for Computation in Linguistics 

Volume 4 Article 22 

2021 

Strong Generative Capacity of Morphological Processes Strong Generative Capacity of Morphological Processes 

Hossep Dolatian 
Stony Brook University, hossep.dolatian@alumni.stonybrook.edu 

Jonathan Rawski 
Stony Brook University, jonathan.rawski@stonybrook.edu 

Jeffrey Heinz 
Stony Brook University, jeffrey.heinz@stonybrook.edu 

Follow this and additional works at: https://scholarworks.umass.edu/scil 

 Part of the Computational Linguistics Commons 

Recommended Citation Recommended Citation 
Dolatian, Hossep; Rawski, Jonathan; and Heinz, Jeffrey (2021) "Strong Generative Capacity of 
Morphological Processes," Proceedings of the Society for Computation in Linguistics: Vol. 4 , Article 22. 
DOI: https://doi.org/10.7275/sckf-8f46 
Available at: https://scholarworks.umass.edu/scil/vol4/iss1/22 

This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for 
inclusion in Proceedings of the Society for Computation in Linguistics by an authorized editor of 
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/395013334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/scil
https://scholarworks.umass.edu/scil/vol4
https://scholarworks.umass.edu/scil/vol4/iss1/22
https://scholarworks.umass.edu/scil?utm_source=scholarworks.umass.edu%2Fscil%2Fvol4%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/375?utm_source=scholarworks.umass.edu%2Fscil%2Fvol4%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/scil/vol4/iss1/22?utm_source=scholarworks.umass.edu%2Fscil%2Fvol4%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Strong generative capacity of morphological processes

Hossep Dolatian, Jonathan Rawski, and Jeffrey Heinz
Department of Linguistics & Institute for Advanced Computational Science

Stony Brook University
{hossep.dolatian,jeffrey.heinz,jonathan.rawski}@stonybrook.edu

Abstract

Morphological processes are generally com-
putable with 1-way finite-state transducers.
However, we show that 1-way transducers do
not capture the strong generative capacity of
certain morphological analyses for more com-
plex processes, including mobile affixation, in-
fixation, and partial reduplication. As diagnos-
tics for strong generative capacity, we use ori-
gin semantics and order-preservation. These
analyze the input-output correspondences gen-
erated by finite-state transducers and their cor-
responding logical transductions. For some
linguistic analyses of these complex processes,
their strong generative capacity is matched by
more expressive grammars, such as non-order-
preserving transductions and their correspond-
ing 2-way finite-state transducers.

1 Introduction

A central goal of computational morphology is
to define the minimally sufficient and restrictive
classes of grammars which can compute attested
morphological processes. Virtually all of morphol-
ogy is sufficiently computable with 1-way finite-
state transducers (FSTs) (Roark and Sproat, 2007).
Furthermore, most of morphology can be computed
with restricted subclasses of these finite-state gram-
mars (Chandlee, 2017). Thus, 1-way FSTs are
adequate in weak generative capacity (WGC).

This paper examines the strong generative ca-
pacity (SGC) of 1-way FSTs when computing mor-
phological functions. For a given theory, we find a
divergence between the WGC and SGC of different
morphological processes, including infixation, mo-
bile affixation, and partial reduplication. There is a
longstanding controversy around defining adequate
diagnostics for the SGC of linguistic structures
(Manaster-Ramer, 1987a; Miller, 1991, 1999). For
our purposes, we use two diagnostics which are
well-defined in theoretical computer science, but

have not been previously applied to computational
morphology: origin semantics (Bojańczyk, 2014)
and order-preservation (Filiot, 2015). They provide
a unique lens for examining the input-output cor-
respondences created by different classes of finite-
state grammars and their corresponding logical
transductions (Engelfriet and Hoogeboom, 2001).

We use these diagnostics to show that simple
affixation is definable with 1-way FSTs both in
terms of WGC and SGC. However, depending on
the specific morphological theory, these diagnostics
indicate that 1-way FSTs do not match the SGC
of more complex processes. Instead, some mor-
phological analyses are more faithfully computed
with more expressive non-order-preserving trans-
ductions which themselves are computed by 2-way
FSTs. These results do not argue against the prac-
ticality or efficiency of 1-way FSTs. Instead, they
are scientific results about the computational and
mathematical properties of morphology.

This paper is organized as follows. We review
mathematical results on generative capacity in lin-
guistics in §2. In §3, we define origin semantics and
order-preservation as diagnostics for SGC. We use
these diagnostics in §4 to show how 1-way FSTs
capture the SGC of simple affixation. In §5, we
show how 1-way FSTs do not capture the theory-
dependent SGC for other morphological processes,
while 2-way FSTs do. We conclude in §6. We
provide an appendix §A of some illustrative 2-way
FSTs which do capture the SGC of these analyses.

2 Weak vs. strong generative capacity

Given a grammar, its WGC defines the set of forms
which it can generate, usually stringsets. In con-
trast, its SGC defines the type of hidden structure
that it posits during the derivation. It is generally
harder to determine the SGC of a grammar than its
WGC. Informally there are two issues:
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1. Fundamental issues in SGC

(a) Grounding: basis for interpretations
(b) Diagnostic: formal tools for evaluations

The grounding for SGC is the external basis
assumed when evaluating grammars. For syntax,
the external basis for evaluating SGC is semantic
interpretation and constituency, i.e., if a grammar’s
phrase structure tree is similar to the semantic inter-
pretation. The diagnostic for SGC is simply the set
of formal tools used to determine ‘similarity’. The
simplest diagnostic is to require, for example, that
the tree and semantics are identical. More elabo-
rate diagnostics utilize nuanced interpretations and
deductions from tree geometry (Miller, 1999).

In syntax, WGC and SGC often converge. Most
context-free (CF) phenomena are CF in both WGC
and SGC (Chomsky, 1956; Pullum and Gazdar,
1982; Gazdar and Pullum, 1985), while most non-
CF phenomena are non-CF in both WGC and SGC
(Culy, 1985; Radzinski, 1991; Stabler, 2004; Ko-
bele, 2006; Clark and Yoshinaka, 2014). But, WGC
and SGC can diverge when the overt syntax is CF,
but the associated semantics is non-CF (Radzinski,
1990). For example, both Dutch and Swiss German
have cross-serial clause constructions where the
languages contain a sequence of noun phrases, fol-
lowed by a sequence of verbs which subcategorize
for these nouns: N1N2N3V1V2V3. In terms of their
semantics, such constructions are non-CF in both
languages (Bresnan et al., 1982; Shieber, 1985),
and thus non-CF in SGC. But in Dutch, these se-
quences are CF in terms of WGC because there is
no overt morphological marking for subcategoriza-
tion between verbs and nouns. In contrast, Swiss
German nouns show different case marking based
on the verbs which subcategorize for them. Thus,
these constructions are non-CF in both WGC and
SGC in Swiss German, but only in SGC in Dutch.1

In morphology and phonology, there are fewer
debates on generative capacity. We speculate that
this is due to two issues. First, morphology and
phonology have comparatively restrictive WGC.
Second, it is unclear what external basis (ground-

1A more elaborate example is total reduplication (copy-
ing), which is multi-CF in its WGC but debatably parallel
multi-CF in its SGC (Stabler, 2004; Clark and Yoshinaka,
2014). A controversial example is the respectively construc-
tion which seems non-CF in syntax (Kac et al., 1987; Kac,
1987; Manaster-Ramer, 1987b), but is potentially due to prag-
matic factors (Pullum and Gazdar, 1982). An entertaining
example are buffalo sentences which are the regular language
buffalo* in WGC, but CF in their semantics (SGC).

ing) should be used for SGC, and thus what diag-
nostics or metrics to use.

In terms of WGC, virtually all attested morpho-
logical and phonological processes are sufficiently
characterized by the class of Regular languages
and functions (Johnson, 1972; Koskenniemi, 1983;
Sproat, 1992; Ritchie, 1992; Kaplan and Kay, 1994;
Beesley and Karttunen, 2003; Roark and Sproat,
2007). In fact, most of these processes only require
less expressive subclasses of subregular languages
and rational functions (Rogers and Pullum, 2011;
Rogers et al., 2013; Heinz and Idsardi, 2013; Chan-
dlee, 2014, 2017; Aksënova et al., 2016; Chandlee
and Heinz, 2018; Chandlee et al., 2018; Heinz,
2018). The exception is total reduplication which
is not definable with FSAs (Culy, 1985) or 1-way
FSTs (Chandlee, 2017). Furthermore, many the-
ories of phonology are computationally proven
to be notationally equivalent and thus equivalent
in WGC. This includes theories for phonotactics
(Graf, 2010a,b), vowel harmony (Andersson et al.,
2020), syllabification (Strother-Garcia, 2019), and
tone (Danis and Jardine, 2019; Jardine et al., 2020;
Oakden, 2020).2 For morphology, many theories
are likewise finite-state definable and thus equiva-
lent in WGC (Karttunen, 2003; Roark and Sproat,
2007; Ermolaeva and Edmiston, 2018).

There are few debates on the SGC of phonol-
ogy and morphology. For phonology, the proper
grounding for SGC is unclear. For morphology, the
grounding of SGC is often treated as the semantic
constituency of words. Due to prefix-suffix depen-
dencies, the semantic constituency of words (SGC)
is context-free (Langendoen, 1981; Selkirk, 1982;
Carden, 1983; Oseki, 2018; Oseki et al., 2019; Os-
eki and Marantz, 2020); but in practice, the mor-
photactics of words (WGC) are regular (Hammond,
1993; Bjorkman and Dunbar, 2016; Aksënova and
De Santo, 2019).3 Furthermore, although partial

2There is debate on the WGC of constraint-interaction
grammars like Optimality-Theory (Prince and Smolensky,
2004). There are many finite-state approximations (Eis-
ner, 1997, 2000a,b; Karttunen, 1998; Frank and Satta, 1998;
Riggle, 2004; Gerdemann and Van Noord, 2000; Gerde-
mann and Hulden, 2012) of varying computational tractabil-
ity (Idsardi, 2006; Heinz et al., 2009). But in principle,
constraint-interaction can express non-regular functions (La-
mont, 2019a,b, prep; Hao, 2019) and is Turing-complete
(Smolensky, 1993).

3Some work adds refinements to finite-state systems in or-
der to provide easier-to-design grammars for prefix-suffix dep-
nedencies, such as flag-diacritics (Beesley, 1998; Saléschus,
2008; Saléschus and Hautli, 2008), registers (Cohen-Sygal
and Wintner, 2006), feature unification (Trost, 1990, 1991;
Krieger and Pirker, 1993; Zajac, 1998; Amtrup, 2003, 2004),
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reduplication is a rational function in its WGC,
there is some debate on its SGC (Dolatian and
Heinz, 2018b, 2020).

Root-and-pattern morphology is likewise prob-
lematic over FSTs with a single input tape (Kay,
1987; Kiraz, 2001; Dolatian and Rawski, 2020);
though easier to use once combined with feature-
unification (Gasser, 2009). As a language, it is
regular in WGC, but more intuitively expressed
with context-sensitive grammars (Botha and Blun-
som, 2013). An interesting demonstration for SGC
comes from prefix-suffix dependencies. They can
be modeled by 2-headed FSAs which can express
linear CF languages (Creider et al., 1995). These
grammars can however be restricted enough to only
generate regular languages (Ramer and Savitch,
1997).

In this paper, we analyze the SGC of morphology
when computed over FSTs. We develop an alterna-
tive grounding in terms of the segmental correspon-
dence between the input and output representations.
Based off of Dolatian (2020), we formulate SGC
in terms of two mathematical properties: origin
semantics and order-preservation.

3 Preliminaries: Origin semantics and
order-preservation

Finite-state transducers (FSTs) are a common com-
putational model for morphology and phonology
(Roche and Schabes, 1997). Technically, the FSTs
used in computational linguistics and NLP are 1-
way FSTs. These are FSTs which process the input
in only one direction. 1-way FSTs compute ratio-
nal functions. In contrast, a 2-way FST is an FST
which processes the input in multiple directions by
going back and forth on the input (Savitch, 1982;
Engelfriet and Hoogeboom, 2001; Shallit, 2008).
2-way FSTs compute the more expressive regular
functions (Filiot and Reynier, 2016). 2-way FSTs
have recently been applied to model reduplication
(Dolatian and Heinz, 2020).

In order to probe the SGC of 1-way FSTs, we
use origin semantics and order-preserving logical
transductions. Given an FST, its origin semantics
(Bojańczyk, 2014) is the origin information of each
symbol on in the output string.4 This is the position
im of the read head on the input tape when the

and CF grammars (Ritchie et al., 1992). Except for CF gram-
mars, these refinements can be restricted enough to make them
regular in their WGC.

4Origin semantics has no relation to lexical semantics. It
concerns the correspondence information for output symbols.

FST had generated on. To illustrate, consider a
partial function fab = {(ab, ab)} which maps ab
to itself. This function can be modeled with at
least two different 1-way FSTs as in the top row
of Figure 1 which differ in when they output the
output symbols a,b. In the bottom row of Figure 1,
we use graphs called origin graphs (Bojańczyk
et al., 2017) to visualize the origin information
created by the two FSTs for the mapping (ab, ab).
The FSTs are equivalent in their WGC, but they
differ in their origin semantics (SGC).

Figure 1: Pair of 1-way FSTs for the function fab and
their origin information for the mapping ab→ ab.

q0start q1 q2
a:λ b:ab q0start q1 q2

a:a b:b

a b

a b

a b

a b

In terms of formal logic, FSTs correspond to
logical transductions which use Monadic Second
Order (MSO) logic (Courcelle, 1997; Engelfriet
and Hoogeboom, 2001). For logical transductions,
the input string is defined in terms of a word sig-
nature < D,R >. The segments are defined in
terms of a set of domain elements D taken from
the set of positive integers. The domain elements
satisfy a set of relations R which can be unary or
binary. Unary relations designate the labels L of
these domain elements, e.g., the label t(x) desig-
nates domain elements which are the segment /t/,
and the labels C(x),V(x) designate consonants and
vowels. Domain elements are connected via binary
relations such as immediate successor succ(x, y)
or non-immediate precedence prec(x, y). For ex-
ample, the word pat is defined with the following
logical formulas. Input relations use this font.

2. Word model for pat
Domain D: {1, 2, 3}
Unary relations or labels L ⊂ R:

• C(x) is TRUE for {1,3}
• V(x) is TRUE for {2}
• p(x) is TRUE for {1}
• a(x) is TRUE for {2}
• t(x) is TRUE for {3}

...
• z(x) is TRUE for none
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Binary relations in R:

• succ(x, y) is TRUE for {(1,2), (2,3)}
• prec(x, y) is TRUE for {(1,2),(2,3),(1,3)}

In order to transform input strings into output
strings, MSO logical transductions define a copy
set C of some fixed size k. The k members of
the copy set act as indexes for copies of the in-
put. Output functions define what output segments
can be defined in which copy. These functions use
this font. For example, to add a p at the end
of every word, we need a transduction with a copy
set of size 2 (3). Copy 1 is used to output the in-
put (3a-b), while Copy 2 is used for adding p as
another output correspondent of the final segment
(3d-e). We use the predicate in (3c) to find the
final segment. Predicates are just shorthand and
use this font. When defining output correspon-
dents, the output functions reference which copy
is being used in the form of a superscript, e.g., the
output function p(x2) generates the label p on the
output correspondent of x in Copy 2 based on the
properties of the input domain element x.

3. Logical transduction for adding a final p

(a) ∀label ∈ L: label(x1)
def
= label(x)

(b) succ(x1, y1)
def
= succ(x, y)

(c) final(x)
def
= ¬∃y[succ(x, y)]

(d) p(x2)
def
= final(x)

(e) succ(x1, y2)
def
= final(x) ∧ final(y)

We visualize this transduction for the input-
output pair (pat,patp) in Figure 2. The index of
the domain elements in the input is shown via a
subscript 0.i where i is an element ofD. For output
nodes, their index is a subscript c.i where c is an
element of the copy set C. The immediate succes-
sor relation is shown as �-labeled edges. We do
not show the precedence relation.

Figure 2: Applying the transduction (3) on pat

p0.1 a0.2 t0.3

p1.1 a1.2 t1.3

p2.3

� �

�

� �

1-way FSTs compute rational functions which
are computed by order-preserving MSO transduc-
tion (Bojańczyk, 2014; Filiot, 2015; Filiot and

Reynier, 2016). A transduction is order-preserving
if the indexing and linearization of output nodes
satisfy the following criteria in (4) (Chandlee and
Jardine, 2019). If a transduction does not satisfy
these criteria, then it is non-order-preserving. It
cannot be modeled by a 1-way FST, but instead
requires a 2-way FST.

4. Criteria for order-preservation
(a) For a domain element x and for any pair

of its output correspondents yc, zd, if
c < d, then yc is ordered before yd.

(b) For two domain elements x, y, if x pre-
cedes y in the input, then the output cor-
respondents of x precede the output cor-
respondent of y.

The transduction in (3) satisfies these criteria as
visualized in Figure 2. Visually, the first criterion
means that we can’t have any upwards-going edges
that are vertical, while the second criterion means
we can’t have any right-to-left edges. In this paper,
we use origin semantics and order-preservation as
diagnostics for the SGC of morphology, while the
grounding of SGC is segmental correspondence.

4 Convergence of weak and strong
generative capacity in simple affixation

Simple affixation processes like suffixation and
prefixation are rational functions in their WGC. We
show they are also rational functions in their SGC.

Suffixes are added at the end of input, while pre-
fixes are added at the beginning, e.g., the English
suffix -ed and prefix re-. In terms of grounding,
the desired segmental correspondences are that the
suffix (prefix) is in correspondence with the right
(left) edge of the input. With this grounding, 1-way
FSTs capture these correspondences. In Figure 3,
we show the FSTs and their semantics. Throughout
this paper, we illustrate these functions with nonce
words like at, tra, pa.

The suffix is generated if we reached the end of
the input string and can no longer read in more sym-
bols.5 In terms of origin semantics, the FST treats
the suffix segments as output correspondents of the
final segment. For prefixation, the results are anal-
ogous. The prefix re- is generated at the beginning
of the word with transparent origin semantics.

Similar properties hold for the logical transduc-
tions that correspond to these FSTs. For suffixation,

5The suffixation FST uses a final outgoing transition arc
that outputs ed once no more input symbols are read.
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Figure 3: 1-way FSTs for suffixing -ed (a), prefixing
re- (b), and their origin information (c,d) for input at.

a. b.

q0start

Σ:Σ

ed q0start q1
Σ:reΣ

Σ:Σ

c. d.
a t

a t e d

a t

r e a t

the transduction uses a copy set of size 3 (5). Copy
1 is reserved for outputting the base (5a). The suf-
fix segments are defined in Copies 2-3 as output
correspondents of the final segment (5b-c).6 As
for prefixation, the transduction uses a copy set
of size 3 (6). In Copies 1-2, the prefix segments
are defined as output correspondents of the initial
segment (6b-c). The base is defined in Copy 3 (5d).

5. Order-preserving transduction for suffixation

(a) ∀label ∈ L: label(x1)
def
= label(x)

(b) e(x2)
def
= final(x)

(c) d(x3)
def
= final(x)

(d) succ(x1, y1)
def
= succ(x, y)

(e) succ(x1, y2)
def
= final(x) ∧ final(y)

(f) succ(x2, y3)
def
= final(x) ∧ final(y)

6. Order-preserving transduction for prefixation

(a) init(x)
def
= ¬∃y[succ(y, x)]

(b) r(x1)
def
= init(x)

(c) e(x2)
def
= init(x)

(d) ∀label ∈ L: label(x3)
def
= label(x)

(e) succ(x1, y2)
def
= init(x) ∧ init(y)

(f) succ(x2, y3)
def
= init(x) ∧ init(y)

(g) succ(x3, y3)
def
= succ(x, y)

Based on these correspondences, all segments
are linearized in a way that satisfies order-
preservation (5d-f, 6e-g). The transductions are
order-preserving because they satisfy the criteria
in (4). Visually, we can see these correspondences
based on the indexing of the input and output in
Figure 4. For suffixation, the output correspondents
of the final segment t0.2 form a chain of immediate

6We cannot use a copy set of size 2. Although we only
add a single substring -ed to the base, the elements of the
affix -ed must each occupy a unique copy in order to ensure
order-preservation.

Figure 4: Applying the transductions (5,6) for suffixa-
tion (a) and prefixation (b) on the input at.

a. b.
a0.1 t0.2

a1.1 t1.2

e2.2

d3.2

�

�

�

�
a0.1 t0.2

r1.1

e2.1

a3.1 t3.2

�

�

�

�

successor from Copy 1 to Copy 3. Visually, they
form a falling line instead of a rising line. Likewise
for prefixation, the output correspondents of the
initial segment form a similar chain.

Thus in terms of WGC, suffixation and prefix-
ation are computable as order-preserving rational
functions in the form of 1-way FSTs. In terms of
SGC, these functions capture the desired segmental
correspondences based on origin semantics.

5 Divergence between weak and strong
generative capacity

Unlike in simple affixation, we argue that WGC
and SGC do diverge for more complicated cases
of morphology, including infixation (§5.1), mobile
affixation (§5.2), and partial reduplication (§5.3).

5.1 Infixation

Unlike simple affixation, the location of an infix
is inside the input. For example in Chamorro, the
infix <um> is before the first vowel, after any
consonants (Yu, 2007, 89).7

7. epanglo <um>epanglo
hup g<um>upu
tristi tr<um>isti

There are two camps of generative theories for
infixation: Phonological Subcategorization and
Phonological Readjustment (Yu, 2007). These
camps differ in terms of what they propose is the
underlying location of the infix. In Phonologi-
cal Subcategorization, surface infixes are treated
as ‘underlying infixes’. The input is scanned for
the infix’s surface location (the pivot) and the in-
fix is added directly into this location (McCarthy

7Glossing is ‘hunt crabs’, ‘to look for crabs’; ‘to fly’, ‘the
bird flew’; ‘sad’, ‘becomes sad’.
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and Prince, 1990; Blevins, 1999; Nevins and Vaux,
2003; Fitzpatrick, 2004; Yu, 2007; Samuels, 2010).
In contrast in Prosodic Readjustment, infixes are
treated as underlyingly prefixes or suffixes which
get displaced. For Chamorro, the infix would first
get added as a prefix, and then it is moved to its sur-
face location. The shift is triggered by the need to
optimize syllable structure (McCarthy and Prince,
1993). Though some Readjustment theories assume
the shift is triggered by a morphological operation
(Embick, 2010; Kalin, 2019, In prep).

Both theories have the same WGC: They gen-
erate the same infixed languages. But, they have
different SGC when grounded in terms of segmen-
tal correspondence. Subcategorization theories are
computable with 1-way FSTs where the origin se-
mantics treats the infix as the output correspondent
of the infixed location (the pivot).8

Figure 5: 1-way FST for infixation with subcategoriza-
tion (a), and its origin information (b) for an input tra.

a. b.

q0start q1

C:C

V:umV

Σ:Σ

t r a

t r u m a

The rational function that is computed by the 1-
way FST thus matches the intensional description
of subcategorization theories. This is further veri-
fied by the order-preserving transduction (8) that’s
computed by this FST. This transduction uses a
predicate V1(x) (8a) to find the pivot. The predi-
cate finds the first vowel in the input, i.e., a vowel
which is not preceded by any other vowels. With
this predicate, the base (minus the pivot) is gener-
ated in Copy 1 (8b), the infix in Copies 1-2 (8c-d),
and the pivot vowel in Copy 3 (8e). We visualize
its correspondences in Figure 6a.

8. Order-preserving transduction for infixation

(a) V1
def
= V(x) ∧ ¬∃y[V(x) ∧ prec(y, x)]

(b) ∀label ∈ L− u(x):

label(x1)
def
= label(x) ∧ ¬V1

(c) u(x1)
def
= V1(x) ∨ u(x)

(d) m(x2)
def
= V1(x)

(e) ∀label ∈ L:

label(x3)
def
= label(x) ∧V1

8In fact, most computational models of infixation exploit
the use of pivots in order to make them easier to design (Roark
and Sproat, 2007; Wilson, 2018).

(f) succ(x1, y1)
def
= succ(x, y) ∧ ¬V1(x)

(g) succ(x1, y2)
def
= V1(x) ∧V1(y)

(h) succ(x2, y3)
def
= V1(x) ∧V1(y)

(i) succ(x3, y1)
def
= V1(y) ∧ succ(x, y)

Figure 6: For infixation, applying the order-preserving
transduction (8) (a) and the non-order-preserving trans-
duction (9) (b) for an input tra.

a. b.
t0.1 r0.2 a0.3

u1.3

m2.3

a3.3

r1.2t1.1

� �

�
�

�

�

t0.1 r0.2 a0.3

t1.1 r1.2 a1.3

u2.1

m3.1

� �

�

�

�

�

In contrast, the Readjustment theories faith-
fully match a non-order-preserving transduction
(9). Here, the infix is defined as the output cor-
respondent of the initial segment (9b-c), but it is
linearized with respect to an internal segment (9e-
g). The base is in Copy 1 (9a). This transduction
is visualized in Figure 6b. The transduction is not
order-preserving because it violates both criteria in
(4). It violates the second criterion because there’s
a right-to-left edge between r1.2 and u2.1.

9. Non-order-preserving transduction for infixa-
tion
(a) ∀label ∈ L: label(x1)

def
= label(x)

(b) u(x2)
def
= init(x)

(c) m(x3)
def
= init(x)

(d) succ(x1, y1)
def
= succ(x, y) ∧ ¬V1(y)

(e) succ(x1, y2)
def
= init(y) ∧ ∃z[V1(z) ∧

succ(x, z)]

(f) succ(x2, y3)
def
= init(x) ∧ init(y)

(g) succ(x3, y1)
def
= init(x) ∧V1

In terms of finite-state calculus, this non-order-
preserving transduction cannot be defined by a 1-
way FST. It instead needs a more expressive 2-way
FST, as illustrated in the appendix. Thus, the two
infixation theories diverge in their SGC.

5.2 Mobile affixation
A similar divergence is found in mobile affixation.
Here the affix surfaces in different positions based
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on the morphological or phonological properties
of the input. This is typologically rare but attested
(Fulmer, 1991, 1997; Noyer, 1994; Paster, 2006;
Kim, 2010, 2015; Jenks and Rose, 2015). For ex-
ample in Hamshen Armenian (Vaux, 1998, 2007;
Bezrukov and Dolatian, 2020), the indicative is a
prefix g- for vowel-initial verbs, but a suffix -gu for
consonant-initial verbs.

10. (a) g-arne ‘INDC-takes’
(b) kale-gu ‘walks-INDC’

Similar to infixation, there are roughly two the-
oretical strategies for mobile affixation, which we
call ‘floating’ and ‘shifting’. The floating analy-
sis posits that the mobile affix consists of morphs
which aren’t specified as being prefixes or suffixes
g,gu (cf. Noyer, 1994). The correct morph is cho-
sen based on the phonological properties of the
base. In contrast, the shifting analysis posits that
the mobile affix consists of a single morph which
is underlyingly a prefix g(u)- (cf. Kim, 2010). The
prefix will shift or move to the right-edge for V-
initial bases.9

As with infixation, these two theories are
grounded in different segmental correspondences.
We show that they differ in SGC. First, the floating
analysis matches the computation of a 1-way FST.
Over a 1-way FST, mobile affixation requires first
checking if the input is V-initial or C-initial. If
V-initial, then we generate the prefix g-. Otherwise,
we move to the end of the string and output the
suffix -gu.10 This is shown in Figure 7.

The correspondences generated by this 1-way
FST are visible in the corresponding order-
preserving transduction (11). This transduction
is order-preserving and uses a copy set of size 4.
We generate the prefix g- in Copy 1 as an output
correspondent of the initial segment (11a), while
we generate the suffix -gu in Copies 3-4 as the out-
put correspondents of the final segment (11c-d).
The base is generated in Copy 2 (11b). This is
visualized in Figure 8a,b. These correspondences
match the ones desired for the floating analysis.

9For Armenian, the morphs g- and -gu are segmentally non-
identical; but most cases of mobile affixation involve identical
morphs. A third approach is suppletive subcategorization
whereby the affix has two allomorphs g- and -gu which are
specified as a prefix and suffix respectively (cf. Paster, 2006,
2009; Kim, 2015). This is equivalent in SGC to the floating
analysis.

10As with suffixation, this FST outputs gu when no more
input symbols are read at state q2.

Figure 7: 1-way FST for mobile affixation (a), and its
origin information (b,c) for inputs ap, pa.

a.

q0start q1
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V:gV

C:C

Σ:Σ
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a p

g a p

p a

p a g u

11. Order-preserving transduction for mobile af-
fixation

(a) g(x1)
def
= init(x) ∧ V(x)

(b) ∀label ∈ L: label(x2)
def
= label(x)

(c) g(x3)
def
= final(x) ∧ ∃y[init(y) ∧ C(y)]

(d) u(x4)
def
= final(x) ∧ ∃y[init(y) ∧ C(y)]

(e) succ(x1, y2)
def
= init(x) ∧ init(y)

(f) succ(x2, y2)
def
= succ(x, y)

(g) succ(x2, y3)
def
= final(x) ∧ final(y)

(h) succ(x3, y4) = final(x) ∧ final(y)

Figure 8: For mobile affixation, applying the order-
preserving transduction (11) on input ap (a), pa (b), and
applying the non-order-preserving transduction (12) on
input pa (c).

a. b. c.

a0.1 p0.2

g1.1

a2.1 p2.2

�

�

�

p0.1 a0.2

p2.1 a2.2

g3.2

u4.2

�

�

�

�

p0.1 a0.2

p2.1 a2.2

g3.1

u4.1

�

�

�

�

In contrast, the shifting analysis is matched by a
non-order-preserving function. For example, the 1-
way FST in Figure 7 computes an order-preserving
transduction (11) which defines the suffix in terms
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of the final segment. But if we sacrifice order-
preservation (12), we can alternatively define the
suffix segments g3.1,u4.1 as output correspondents
to the initial segment p0.1 (12c-d). This transduc-
tion is not order-preserving as shown in Figure 8c.
It violates the second criterion in (4) because there
is a right-to-left edge from a2.2 to g3.1. Such a non-
order-preserving function cannot be computed by
a 1-way FST, but would need a more expressive
2-way FST, as illustrated in the appendix.

12. Non-order-preserving transduction for mobile
affixation

(a) g(x1)
def
= init(x) ∧ V(x)

(b) ∀label ∈ L: label(x2)
def
= label(x)

(c) g(x3)
def
= init(x) ∧ C(x)

(d) u(x4)
def
= init(x) ∧ C(x)

(e) succ(x1, y2)
def
= init(x) ∧ init(y)

(f) succ(x2, y2)
def
= succ(x, y)

(g) succ(x2, y3)
def
= final(x) ∧ init(y)

(h) succ(x3, y4)
def
= init(x) ∧ init(y)

Thus, the floating and shifting analyses are both
rational functions in WGC, but the latter is not
rational in its SGC.

5.3 Reduplication
Reduplication shows the most drastic differences
between WGC and SGC. The typology of redu-
plication is roughly divided into partial and total
reduplication. Partial reduplication occurs when
there is a fixed bound on how many segments are
copied, while total reduplication occurs when there
is no bound (Moravcsik, 1978).

13. (a) Agta (Moravcsik, 1978, 311)
takki→tak∼takki ‘leg’→‘legs’

(b) Indonesian (Cohn, 1989, 308)
buku→buku∼buku ‘book’→‘books’

It is well-known that partial reduplication is de-
finable with 1-way FSTs while total reduplication
is not (Culy, 1985; Roark and Sproat, 2007; Chan-
dlee and Heinz, 2012; Chandlee, 2017). Instead,
total reduplication requires the more expressive
power of 2-way FSTs (Dolatian and Heinz, 2018b,
2020). We show that the divide between 1-way and
2-way FSTs likewise exists for the SGC of partial
reduplication.

Across different theories of reduplication, a
common assumption is that the reduplicated seg-
ments are directly derived from underlying seg-
ments, whether via prosodic associations (Marantz,

1982), correspondence (McCarthy and Prince,
1995, 1999), morpheme-repetition (Steriade, 1988;
Inkelas and Zoll, 2005), or lax precedence rela-
tions (Raimy, 2000). However, 1-way FSTs cannot
capture this (SGC) (Dolatian and Heinz, 2020).

Because partial reduplication has a bound on the
size of the reduplicant, we can always design a 1-
way FST for it. For example, the FST in Figure 9a
computes initial CV-copying for a small alphabet
{p,a,t}. After we read the vowel, the reduplicant
string is generated as pa if we are in state q1; other-
wise the string is generated as ta. But in terms of
origin semantics in Figure 9b, this 1-way FST treats
the repeated consonant as an output correspondent
of the input vowel.

Figure 9: 1-way FST for partial reduplication (a), and
its origin information (b) for an input pat.
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The divergence between theory (SGC) and com-
putation (WGC) is clearer for the corresponding
order-preserving transduction (14). This is visual-
ized in Figure 10a. The reduplicants are defined
in Copies 2-3 (14c-d) as the output correspondents
of the second segment, found via the predicate
2nd(x). The repeated consonant p2.2 is defined as
the output correspondent of a0.2 even though it gets
its segmental labels from the first segment p0.1.

14. Order-preserving transduction for partial
reduplication

(a) ∀label ∈ L: label(x1)
def
= label(x)

(b) 2nd(x)
def
= ∃y[succ(y, x) ∧ init(y)]

(c) p(x2)
def
= 2nd(x) ∧ ∃y[init(y) ∧ p(y)]

(d) t(x2)
def
= 2nd(x) ∧ ∃y[init(y) ∧ t(y)]

(e) a(x3)
def
= 2nd(x) ∧ a(x)

(f) succ(x1, y1)
def
= succ(x, y) ∧ ¬2nd(x)

(g) succ(x1, y2)
def
= 2nd(x) ∧ 2nd(y)
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Figure 10: For partial reduplication, applying the order-
preserving transduction (14 (a) and the non-order-
preserving transduction (15) (b) for an input pat.
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(h) succ(x3, y3)
def
= 2nd(x) ∧ 2nd(y)

(i) succ(x3, y1)
def
= 2nd(x) ∧ succ(x, y)

Thus, the 1-way FST and its order-preserving
transduction posit a hidden structure which does
not match linguistic analyses over the identity be-
tween the input consonant p and the two output
segments p (Wilbur, 1973). Based on identity, the
desired function is a non-order-preserving transduc-
tion (15) where the repeated consonants are defined
as output correspondents of the initial consonant
(15b-c). This transduction is visualized in Figure
10b. In terms of finite-state calculus, this non-order-
preserving transduction cannot be computed with
a 1-way FST but needs a more expressive 2-way
FST, as illustrated in the appendix.

15. Non-order-preserving transduction for partial
reduplication

(a) ∀label ∈ L: label(x1)
def
= label(x)

(b) p(x2)
def
= init(x ∧ p(x)

(c) t(x2)
def
= init(x) ∧ t(x)]

(d) a(x2)
def
= 2nd(x) ∧ a(x)]

(e) succ(x1, y1)
def
= succ(x, y) ∧ ¬2nd(x)

(f) succ(x1, y2)
def
= 2nd(x) ∧ init(y)

(g) succ(x2, y2)
def
= init(x) ∧ 2nd(x)

(h) succ(x2, y1)
def
= 2nd(x) ∧ succ(x, y)

In contrast to partial reduplication, total redu-
plication cannot be modeled with a 1-way FST
at all. Thus it cannot be computed with an order-
preserving MSO transduction. This is because in or-
der to make total reduplication be order-preserving,
we would need to have a copy set with a fixed
size k such that there would be a single copy-set
member for every repeated segment. But because

there is no bound on the number of repeated seg-
ments in total reduplication, then we cannot use an
order-preserving transduction with a fixed copy set.
Instead, total reduplication requires a non-order-
preserving MSO transduction which is computed
by a 2-way FST (Engelfriet and Hoogeboom, 2001).
As Dolatian and Heinz (2018b, 2020) show, a 2-
way FST provides the right WGC for total redu-
plication, and the right SGC in terms of origin
semantics. In this paper’s framework, their result
is replicated in terms of order-preservation.

In fact, based on the mismatch between the
WGC and SGC for partial reduplication, Dolatian
and Heinz (2018b, 2020) argue that the more mean-
ingful implementation is with a 2-way FST. Their
argument is based on the difference in origin seman-
tics. By defining partial reduplication with 2-way
FSTs, Dolatian and Heinz (2018b, 2020) are able
to unify both partial and total reduplication into the
same computational framework. Further evidence
for this unity between partial and total reduplica-
tion comes from learnability (Dolatian and Heinz,
2018a), Deep Learning (Nelson et al., 2020), and
the computational typology of reduplication (Dola-
tian and Heinz, 2019, 2020).

6 Conclusion

Weak and strong generative capacity are separate
measures for evaluating the correctness and com-
pleteness of formal grammars. 1-way FSTs are
adequate to model the weak generative capacity
of morphology, and virtually all theories of mor-
phology are finite-state in weak generative capac-
ity. However, in terms of strong generative capac-
ity, different morphological analyses posit different
hidden structures in terms of segmental correspon-
dence. Some of these analyses are definable with
1-way finite-state transducers, while some are not.
Thus, they differ in their strong generative capacity.
This result is surprising given the wide applicabil-
ity of 1-way FSTs to computational morphology.
We based our results on precise mathematically-
defined diagnostics that are independently used in
theoretical computer science. Our result provides a
concrete example of how weak and strong genera-
tive capacity may diverge.
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A 2-way FSTs for non-order-preserving
function

The main paper showed that the SGC for some the-
ories of infixation, mobile affixation, and partial
reduplication requires non-order-preserving MSO
transductions. These transductions cannot be com-
puted by 1-way FSTs, but require the more expres-
sive class of 2-way FSTs. We go over a definition
of 2-way FSTs and then show example 2-way FSTs
for these three morphological processes.

A 2-way FST differs from a 1-way FST in that it
uses a direction parameterD. For a given transition
arc, the read head can either advance (+1), retract
(-1), or stay put on the input tape. The formal
definition is shown below for a deterministic 2-
way FST. This definition is taken from Dolatian
and Heinz (2018b, 2020) who adapt it from other
definitions (Shallit, 2008; Filiot and Reynier, 2016).
We assume input strings are flanked by the start-
and end-boundaries o,n.

16) Definition: A 2-way, deterministic FST is a
six-tuple (Q,Σn,Γ, q0, F, δ) such that:

Q is a finite set of states,
Σn = Σ ∪ {o,n} is the input alphabet,
Γ is the output alphabet,
q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states,
δ:Q × Σ → Q × Γ∗ × D is the transi-
tion function where the direction D =
{−1, 0,+1}.

For Readjustment-based infixation, the non-
order-preserving transduction from §5.1 (9) is com-
puted by the 2-way in Figure 11a. The 2-way FST
uses 2 passes. In the first pass, we output all the
segments which will precede the infixed location.
After the first pass, we rewind the machine back to
the beginning of input (o) and start a second pass.
In the second pass, we output the infix as the out-
put correspondent of the initial segment, and then
output everything after the word-initial sequence
of consonants. The origin information in Figure
11b match that of Readjustment theories. We as-
sume that if the output segment is generated upon
reading the start boundary o, then it is treated as
an output correspondent of the initial segment.

For the shifting analysis of mobile affixation, the
non-order-preserving transduction from §5.2 (12)
is computed by the 2-way FST in Figure 12a. The
2-way FST uses two passes over the input. In the

first pass, we try to output the prefix and we output
the base. We output the prefix only if the initial
segment is V. We rewind the machine back to the
beginning of input (o) and start a second pass. We
read the initial segment again. If it is V, then we
output nothing. But if it is a C, then we output the
suffix. In terms of origin semantics in Figure 12b,
the suffix now acts as an output correspondent to
the initial segment.

Finally for partial reduplication, the non-order-
preserving transduction from §5.3 (15) is computed
by the 2-way FST in Figure 13a. The machines
reads the input in 2 passes. In the first pass, we
output the first CV substring. In the second pass,
we output the entire input. By using two passes,
we get the desired origin information. Both output
symbols p correspond to the input symbol p.
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Figure 11: 2-way FST for Readjustment-based infixation (a), and its origin information (b) for an input tra.

a. b.
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Figure 12: 2-way FST for mobile affixation (a), and its origin information (b,c) for inputs ap, pa.
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Figure 13: 2-way FST for partial reduplication (a), and its origin information (b) for an input pat.
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