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Science & Society

Embracing Dynamic
Models for Gene Drive
Management
Andrew J. Golnar ,1,*
Emily Ruell ,1

Alun L. Lloyd ,2 and
Kim M. Pepin 1,3

Robust methods of predicting how
gene drive systems will interact with
ecosystems is essential for safe de-
ployment of gene drive technology.
We describe how quantitative tools
can reduce risk uncertainty, stream-
line empirical research, guide risk
management, and promote cross-
sector collaboration throughout the
process of gene drive technology de-
velopment and implementation.

Management under Uncertainty
Gene drive technologies, although diverse
in design and mode of action, are molecu-
lar architectures that promote the trans-
mission of genetic information between
generations. In theory, the release of one
gene-drive-modified organism (GDMO)
has the potential to irreversibly alter species,
ecosystems, and environmental processes
at a global scale (although in practice numer-
ous mechanisms can limit invasiveness) [1].
This alarming and tremendous potential is
an unprecedented challenge to biotechnol-
ogy management that demands a different
scope of oversight and coordination between
public stakeholders, developers, and regula-
tors [2,3]. Responsible management of
GDMOs needs robust methods of risk as-
sessment that account for and reduce uncer-
tainties across different geographic and
ecological contexts [1–3].

Dynamic Models for Guidance
Models are important tools for understand-
ing how complex systems work and are

widely utilized to inform regulatory decisions
[4]. They provide a framework for integrating
multiple data inputs to discover patterns and
processes that are difficult to intuit. Their ac-
curacy can be improved through an iterative
process of model-driven data collection and
data-drivenmodel prediction, a practice that
identifies and actively reduces important
sources of uncertainty [5]. With the capacity
to explore large regions of parameter space,
models can help elucidate system drivers
and behaviors that could take decades to
reveal through empirical research, thus
accelerating the cycle of hypothesis genera-
tion and testing during product develop-
ment phases and for product evaluation
prior to and during release phases. There
are many different types of models that can
be used to predict outcomes from data,
but process-based models (e.g., how pop-
ulations and allele frequencies change over
time) are particularly useful for evaluating
our understanding of the role of different
processes (e.g., birth rates, homing rates,
etc.) in predicting outcomes (e.g., invasion
rates, and risk to non-target populations)
[5–7]. Dynamic population genetic models
(DPGMs) incorporate both the processes
that lead to changes in population abun-
dance and distribution over time (demogra-
phy) and those that determine changes in
allele frequencies (population genetics),
allowing for prediction of GDMO propaga-
tion in space and time (Box 1). By specifying

how GDMOs interact with complex ecolog-
ical factors, DPGMs provide a tool for inves-
tigating the impact of GDMOs at population
and ecosystem-scales that can be too un-
certain or logistically challenging to safely
study empirically.

Challenges of Model-Guided
Regulation
Integrating new methods of quantitative
analysis, such asDPGMs, into the regulation
of biotechnology faces logistical and institu-
tional challenges. Considering models are
an imperfect reflection of reality and can be
difficult to communicate, concerns that
they misrepresent system properties or
bias outcomes of interest can make new
methods of modeling difficult to trust. Fur-
thermore, regulatory structures are fre-
quently criticized as an encumbrance to
innovation, and therefore, any alteration to
the status quo may elicit resistance from
regulators and developers that are not
equipped with the technical knowledge to
engage in new methods of analysis or the
resource capacity to implement new proce-
dures [8].

To implement quantitative tools, regulatory
agencies generally depend on standardized
modeling practices to streamline the poten-
tially challenging and time-consuming task
of continuously validating new evaluation
approaches – an essential prerequisite for

Box 1. Model Structures throughout the Phased Pathway (Figure 1A)

DPGMswith parameters such as drive efficiency, resistance, and relative fitness can help inform GDMOdesign and
evaluation at phase 1. For example, Nash and colleagues compare different molecular architectures and specifically
outline individual traits that could be engineered into a GDMO during phase 1 [6]. DPGMs that integrate additional
factors, such as age, sex, density, carrying capacity, genetic structure, and reproductive strategies can help under-
stand how engineered GDMOs spread and impact population-level processes during phase 1 research (e.g., inva-
sion thresholds, allele fixation, resistance dynamics, and demographic structure). For example, Walker and
colleagues fit an age-structured DPGM to cage trial data to evaluate the performance of a dengue-blocking
Wolbachia strain in populations of A. aegypti [13]. Research at phases 2 and 3 benefit from additional landscape-
level extensions, such as social structure, spatial structure, habitat heterogeneity, and dispersal which help inform
how GDMOs function over space and time (e.g., invasion kinetics, persistence, and nontarget impacts). Facchinelli
and colleagues demonstrate how population-level DPGMs can be integrated into large-cage trials to validate that
transgenic mosquito behaviors can be predicted in semirealistic conditions [14]. These extensions highlight the im-
pact different ecological contexts might have on the rate that a particular GDMO spreads in a population. Validated
model structures from phase 2 and 3 can then be leveraged to optimize and assess deployment, monitoring, and
remediation strategies at phase 4 – like the DPGM Hancock and colleagues used to capture the metapopulation
dynamics of Wolbachia spread in A. aegypti [15].
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appropriate model application and interpre-
tation. Typically, the risk assessment pro-
cess for genetically modified organisms
(GMOs) relies on empirical data obtained
from one or several standardized experi-
mental protocols, depending on the path-
way to risk. Regulatory agencies then
compare empirical results to similar prod-
ucts of known risks to streamline decisions
based on precedence, or integrate the
data into agency-vetted models to quantita-
tively characterize risks [9]. Current agency-
vetted models are designed to evaluate
risks from a given dataset and are not de-
signed to make predictions in other settings
or to predict the dynamics of ecological sys-
tems. Fundamentally, gene drive products
may challenge this process because they
could impact socioecological endpoints at
scales that are unrealistic to study empiri-
cally, and because uncertainty about their
risks to ecosystems remains too great cur-
rently for data collection that would enable
risk assessment by agency-vetted models.

Embracing DPGMs throughout the risk as-
sessment process will enhance GDMO risk
management by helping scientists and reg-
ulators account for uncertainties and out-
comes that are difficult to study or verify
empirically [4,7]. However, the integration
of new quantitative tools, such as DPGMs,
throughout the regulatory process will re-
quire two key developments: first, establish-
ing a protocol that outlines how to evaluate
and use novel quantitative tools for GDMO
regulation, and second, increasing quantita-
tive expertise in regulatory agencies, espe-
cially within multinational organizations,

such as the Organization for Economic Co-
operation and Development (OECD), which
can provide support to nations that are first
time users or lack regulatory infrastructures
[1,3]. Together, these developments will
ease institutional and logistical challenges
that may prevent the adoption and effective
implementation of novel quantitative tools
by providing regulators with opportunities
to learn and participate in the discussion of
best practices [10]. In the following sections
we expand upon model-guided develop-
ment and regulation of GDMOswith recom-
mendations and a discussion of benefits.

Model-Guided Advancement of
Gene Drive Technology
A conditional approach to discovery re-
search and product evaluation (phased
pathway) that builds from our baseline un-
derstanding of a target organism, and their
role in the ecosystem, towards the strategic
deployment of a GDMO is frequently cited
as a practical method for managing gene
drive technology (Figure 1A) [1,2]. In Figure
1A, we present a five-phased process previ-
ously outlined by NASEM 2016 modified to
emphasize how the biological scope of re-
search increases in successive phases to
simulate realistic ecological systems while
biocontainment decreases. Should the
GDMO fail to meet predefined safety and ef-
ficacy standards sufficient to graduate into
the next phase, such as cage trials, field-
based research, or staged environmental
release (i.e., deemed too high risk), the prod-
uct is terminated. By integrating a four-step
modeling process throughout the phased
pathway we can strategically improve our

understanding of gene drive systems
(Figure 1B).

Prior to initiating the modeling process, it is
important to define goals and metrics of
success with input from stakeholders [11].
At each phase, the first action of the model-
ing process is to formulate a mathematical
model that mechanistically defines how
gene drive systems propagate in popula-
tions (Figure 1B). The second action is to ex-
ploremodel input and output over a range of
values to understand the role of different
processes in driving outcomes of interest (i.
e., sensitivity analyses) [5]. The third action
is to design studies that collect data that
will inform themost important sources of un-
certainty [5]. The fourth action is to evaluate
how well the model predicts outcomes
using the newly collected data and to refine
the model to reduce its predictive uncer-
tainty. Models can generate a range of out-
puts (Figure 1C) that help define and
communicate desired products, optimize
data collection, evaluate efficacy and risk,
and optimize GDMO remediation, deploy-
ment, and surveillance strategies [1–3]. Al-
though there are no prescriptive criteria to
determine when a GDMO product can
move between research phases, models
with increasing levels of complexity can be
used to assess efficacy and risk as product
evaluations successively build towards real-
istic ecological arenas (Box 1).

Benefit to Public and Private
Interests
The release of GDMOs into the environment
will require input from public stakeholders,

Figure 1. A Schematic Outlining How DPGMs Inform the GDMO Phased Pathway. (A) At phase 0, ecological and genetic knowledge of the target organism
informs management objectives and GDMO design. Phases 1–3 are characterized by research of increasing biological scope (individual, population, and landscape)
and decreasing containment (laboratory, field-based research, or staged environmental release). At stage 4, GDMOs are intentionally released into the environment,
monitored, and managed to improve ongoing and future applications of gene drive technology. (B) Research throughout the phased pathway can benefit from an
iterative, four-step modeling process. The first action is to establish a well-defined modeling structure. The second action is to explore how the model behaves under a
wide range of parameter values and assumptions that are checked against data, expert opinion, and intuitive plausibility. The third action is to inform study design by
ensuring data collection focuses on key parameters that drive model output. The fourth action is to evaluate the predictive value of the model with goodness-of-fit
metrics (such as r2 or root-mean-square error metrics) and update model performance with newly collected data, which starts a new iteration. (C). DPGMs can be
used throughout the phased pathway to (i) predict invasion dynamics of different GDMOs; (ii) estimate impacts on community dynamics; (iii) assess risk to nontarget
populations; (iv) estimate the importance of different ecological and genetic processes in determining invasion dynamics; (v) quantify uncertainty in invasion dynamics
due to chance events; and (vi) quantify uncertainty in system dynamics due to data and knowledge limitations. Abbreviations: DPGM, dynamic population genetic
model; GDMO, gene-drive-modified organism.
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developers, and regulators [1–3]. Each
group will have distinct criteria for success.
The public will want assurances that
GDMO release strategies will not adversely
impact health or environmental services. De-
veloperswill want to knowhowefficiently the
drivewill function andwhether resistancewill
emerge quickly. Regulators will want to en-
sure that the release of a GDMO complies
with all applicable laws and the amount of
uncertainty in their evaluation is acceptable.
Outputs from DPGMs can inform all three
groups in a consistent manner and provide
real time projections of ongoing GDMO
management strategies. With an iterative
process of stakeholder input and model-
guided inference throughout the phased
pathway, we can ensure transparency and
that the diverse concerns of public stake-
holders, developers, and regulators are inte-
grated into GDMO management.

Recommendations
Quantitative tools can help public stake-
holders, developers, and regulators un-
derstand, predict, and manage GDMO
development and release [4,7]. However,
in the absence of widespread training,
quantitative tools are likely underutilized
and sometimes resisted throughout the
process of biotechnology development
and regulation [5]. To maximize their use
within regulatory infrastructures there is a
need to invest in specialized personnel
that can evaluate models and facilitate
their full potential within regulatory agen-
cies. This type of expertise can also help
optimize data collection designs that re-
duce decision risk. Additionally, there is a
need to establish guidelines on how to uti-
lize quantitative tools, such as DPGMs, to
characterize the risk and efficacy of
GDMOs [1,2]. Transparent standards can
communicate to developers, consumers,
and public stakeholders how regulators
are characterizing risk and clarify what the-
oretical and empirical research is neces-
sary to demonstrate product safety
[4,12]. Using DPGMs to help reduce un-
certainty in our understanding of GDMO

risk and efficacy is an important step to-
wards the cross-sector management of
gene drive technology.

Acknowledgments
We thank Justin Overcash and Lisa Knolhoff for their

critical review and consultation throughout the devel-

opment of this publication. We thank Magdeline

Golnar Hall for her help in graphic design. KP, ER

and AJGwere supported by the United States Depart-

ment of Agriculture (USDA), Animal and Plant Health

Inspection Service’s Science Fellowship. KMP and

ER were supported by the USDA, Animal and Plant

Health Inspection Service. ALL was supported by

NIH-NIAID 1R01AI139085-01. The opinions and rec-

ommendations of this publication are those of the au-

thors and should not be construed to represent any

policy or position of the USDA or United States Federal

Government.

1NationalWildlife ResearchCenter, United States Department of
Agriculture, Animal and Plant Health Inspection Service, Wildlife
Services, 4101 Laporte Ave., Fort Collins, CO 80521, USA
2Biomathematics Graduate Program and Department of
Mathematics, North Carolina State University, Raleigh, NC
27695, USA
3https://www.aphis.usda.gov/aphis/ourfocus/wildlifedamage/
programs/nwrc/sa_research/sa_scientists/ct-research-
scientist-by-id?p=Pepin_K

*Correspondence:
andrew.golnar@usda.gov (A.J. Golnar).

https://doi.org/10.1016/j.tibtech.2020.08.011

Crown Copyright © 2020 Published by Elsevier Ltd. All rights
reserved.

References
1. National Academies of Sciences, Engineering, and

Medicine (2016) Gene Drives on the Horizon: Advancing
Science, Navigating Uncertainty, and Aligning Research
with Public Values, National Academies Press

2. James, S. et al. (2018) Pathway to deployment of gene drive
mosquitoes as a potential biocontrol tool for elimination of ma-
laria in sub-Saharan Africa: recommendations of a scientific
working group. Am. J. Trop. Med. Hyg. 98, 1–49

3. James, S.L. et al. (2020) Toward the definition of efficacy and
safety criteria for advancing gene drive-modified mosquitoes
to field testing. Vector Borne Zoonotic Dis. 20, 237–251

4. Environmental Protection Agency (2009) Guidance on the
Development, Evaluation, and Application of Environmen-
tal Models. EPA/100/K-09/003, EPA

5. Restif, O. et al. (2012) Model-guided fieldwork: practical
guidelines for multidisciplinary research on wildlife ecological
and epidemiological dynamics. Ecol. Lett. 15, 1083–1094

6. Nash, A. et al. (2019) Integral gene drives for population
replacement. Biol. Open 8, 1–11

7. Xu, C. et al. (2010) Understanding uncertainties in model-
based predictions of Aedes aegypti population dynamics.
PLoS Negl. Trop. Dis. 4, e830

8. Newman, J. et al. (2017) Policy capacity and evidence-based
policy in the public service. Public Manag. Rev. 19, 157–174

9. Hilbeck, A. et al. (2020) GMO regulations and their inter-
pretation: how EFSA’s guidance on risk assessments of
GMOs is bound to fail. Environ. Sci. Eur. 32, 1–15

10. MacVaugh, J. and Schiavone, F. (2010) Limits to the diffu-
sion of innovation. Eur. J. Innov. Manag. 13, 197–221

11. Runge, M.C. et al. (2011) Which uncertainty? Using expert
elicitation and expected value of information to design an
adaptive program. Biol. Conserv. 144, 1214–1223

12. Kuzma, J. (2019) Procedurally robust risk assessment
framework for novel genetically engineered organisms
and gene drives. Regul. Gov. Published online March 8,
2019. https://doi.org/10.1111/rego.12245

13. Walker, T. et al. (2011) The w Mel Wolbachia strain blocks
dengue and invades caged Aedes aegypti populations.
Nature 476, 450–453

14. Facchinelli, L. et al. (2019) Large-cage assessment of a
transgenic sex-ratio distortion strain on populations of an
African malaria vector. Parasit. Vectors 12, 1–14

15. Hancock, P.A. et al. (2019) Predicting the spatial dynamics
of Wolbachia infections in Aedes aegypti arbovirus vector
populations in heterogeneous landscapes. J. Appl. Ecol.
56, 1674–1686

Science & Society

A Shift Towards
Biotechnology: Social
Opinion in the EU
E. Woźniak ,1,2,*
A. Tyczewska ,1,3 and
T. Twardowski 1,2

Consumers’ attitude to genetic
engineering provides information
to stakeholders who are interested
in its adoption, which is essential
considering the emerging growth
of new breeding techniques. This
short article analyses, compares,
and describes the knowledge,
doubts, and concerns of Europeans
about biotechnology and genetic
engineering over the past 20 years.

Current global challenges such as climate
change, ecosystem degradation, and
growing human population, have neces-
sitated seeking new methods of produc-
tion and consumption that respect the
ecological boundaries of our planet. Pub-
lic opinion is one of the core elements in
the development of the broad discipline
of biotechnology, especially because the
application of genetic engineering
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