
Platinum: Reusing Constraint Solutions in Bounded
Analysis of Relational Logic

Guolong Zheng1, Hamid Bagheri1, Gregg Rothermel2, and Jianghao Wang1

1 Department of Computer Science and Engineering, University of Nebraska-Lincoln,
Lincoln, NE, USA

2 Department of Computer Science, North Carolina State University, Raleigh, NC, USA
gzheng@cse.unl.edu, bagheri@unl.edu, gerother@ncsu.edu, jianghaow@cse.unl.edu

Abstract. Alloy is a lightweight specification language based on relational logic,
with an analysis engine that relies on SAT solvers to automate bounded verifica-
tion of specifications. In spite of its strengths, the reliance of the Alloy Analyzer
on computationally heavy solvers means that it can take a significant amount of
time to verify software properties, even within limited bounds. This challenge
is exacerbated by the ever-evolving nature of complex software systems. This
paper presents PLATINUM, a technique for efficient analysis of evolving Alloy
specifications, that recognizes opportunities for constraint reduction and reuse of
previously identified constraint solutions. The insight behind PLATINUM is that
formula constraints recur often during the analysis of a single specification and
across its revisions, and constraint solutions can be reused over sequences of anal-
yses performed on evolving specifications. Our empirical results show that PLAT-
INUM substantially reduces (by 66.4% on average) the analysis time required on
specifications extracted from real-world software systems.

1 Introduction
The growing reliance of society on software and software-intensive systems drives
a continued demand for increased software dependability. Software verification pro-
vides the highest degree of software assurance, with its strengths residing in the math-
ematical concepts that can be leveraged to prove correctness with respect to specific
properties. Most notably, bounded verification techniques, such as Alloy [28], have
recently received a great deal of attention in the software engineering community
(e.g., [8, 9, 11, 13, 14, 16, 20, 26, 34, 35, 38, 43, 46, 48, 52, 54, 55, 61, 63, 66]),
due to the strength of their automated, yet formally precise, analysis capabilities. The
basic idea behind these techniques is to construct a formula that encodes the behavior
of a system and examine it up to a user-specified bound. They thus enable analyses of
partial models that represent key aspects of a system.

Bounded verification techniques often transform a software specification to be an-
alyzed into a satisfiability problem, and delegate the task of solving this to a con-
straint solver. In the past decade, constraint solving technologies have made spectacular
progress (e.g., [19, 22, 42]). Despite these advances, however, constraint solving con-
tinues to be a bottleneck in analyses that rely on it [58]. This is because the magnitude
of formulas tends to increase exponentially with the size of the system being analyzed,
making it impractical to employ constraint solving on complex systems. Further, de-
spite the many optimizations applied to constraint solvers, they are still unable to detect
many instances of subformula recurrence that are generated by Alloy.

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 29–52, 2020.
https://doi.org/10.1007/978-3-030-45234-6_2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/395012904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_2&domain=pdf

The foregoing challenges are exacerbated when considering the ever-evolving na-
ture of complex software systems and their corresponding specifications. Formal speci-
fications are developed iteratively, and each iteration involves repeated runs of the ana-
lyzer for assessment of their semantics [31, 36]. In online analyses, where specifications
are kept in sync with the evolving software and analyses are performed at runtime, the
time required to verify the properties of software is of even greater significance. This
calls for techniques that assist constraint solvers in dealing with large corpora of for-
mulas, many of which contain tens of thousands of clauses.

In this paper, we introduce PLATINUM, an extension of the Alloy Analyzer that sup-
ports efficient analysis of evolving Alloy specifications, by recognizing opportunities
for constraint reduction and reuse of previously identified constraint solutions. Unlike
the Alloy Analyzer and its other variants, e.g., Aluminum [45], that dispose of prior
results in response to changes in the system specification, PLATINUM stores solved
constraints incrementally, and retrieves them when they are needed again within the
analysis of the revised specification. PLATINUM further improves analysis efficiency by
omitting redundant constraints from a specification before translating them into propo-
sitional formulas to be solved by expensive constraint solvers, thereby greatly reducing
the required computational effort. Although techniques for storing the results of satisfi-
ability checking and reusing them later have been considered in the context of symbolic
execution [6, 7, 29, 49, 62], these techniques cannot be directly applied to Alloy due
to the specifics of its core logic, which consolidates the quantifiers of first-order logic
with the operators of the relational calculus [28]. (Section 5 provides details.)

We evaluate the performance of PLATINUM in several scenarios. First, we apply
PLATINUM to several pairs of specifications in which the second contains a small but
non-trivial set of changes relative to the first. Second, we apply PLATINUM to several
sequences of specifications that model evolution scenarios. Our empirical results show
that PLATINUM is able to support reuse of constraint solutions both within a single
analysis run and across a sequence of analyses of evolving specifications, while achiev-
ing speed-up over the Alloy Analyzer. Third, we show that as the scope of the analysis
increases, PLATINUM achieves even greater improvements. Fourth, we show that the
overhead associated with PLATINUM is a fraction of that required by the Alloy An-
alyzer. Finally, we show that PLATINUM substantially reduces (by 66.4% on average)
the analysis time required on specifications extracted from real-world software systems.

This paper makes the following contributions:

– Efficient analysis of evolving relational logic specifications. We present a novel ap-
proach to improve the bounded analysis of relational logic specifications by trans-
forming constraints into more concise forms and enabling substantial reuse of so-
lutions, which in turn substantially reduces analysis costs.

– Tool implementation. We implement PLATINUM as an extension to Alloy and its
underlying relational logic analyzer, Kodkod [57]. We make PLATINUM available
to the research and education community [5].

– Empirical evaluation. We evaluate PLATINUM in the context of Alloy specifications
found in prior work and specifications automatically extracted from real-world sys-
tems, corroborating PLATINUM’s ability to substantially outperform the Alloy An-
alyzer without sacrificing soundness or completeness.

30 G. Zheng et al.

2 Illustrative Example

To motivate this research and illustrate our approach, we provide a simple Alloy spec-
ification and describe the analysis process followed by the Alloy Analyzer and PLAT-
INUM.

1 // (a) a simple customer-order class diagram
2 one sig Customer extends Class{}{
3 a t t r S e t = customerID +customerName
4 i d =customerID
5 i s A b s t r a c t = No
6 no parent
7 }
8 one sig customerID extends I n t ege r{}
9 one sig customerName extends s t r i n g{}

10 one sig Order extends Class{}{
11 a t t r S e t = order ID + orderValue
12 i d =order ID
13 i s A b s t r a c t = No
14 no parent
15 }
16 one sig order ID extends I n t ege r{}
17 one sig orderValue extends Real{}
18 one sig CustOrder extends Assoc ia t ion{}{
19 src = Customer
20 dst = Order
21 }
22 fact a s s o c i a t i o n M u l t i p l i c i t y{
23 one CustOrder . s rc and some CustOrder . ds t
24 }

1 // (b) new constructs added to the revised specification
2 one sig PreferredCustomer extends Class{}{
3 a t t r S e t = d iscount
4 one parent
5 parent in Customer
6 i s A b s t r a c t = No
7 i d =customerID
8 }
9 one sig d iscount extends I n t ege r{}

Listing 1.1: (a) a specification describing
a simple customer order class diagram;
(b) new constructs added to a revised
version of that specification.

Consider snippets of the Alloy speci-
fication for a simple customer-order class
diagram, shown in Listing 1.1 (adapted
from [15]). Each Alloy specification con-
sists of data types and formulas that de-
fine constraints over those data types. A
signature (sig) paragraph introduces a ba-
sic data type and a set of its relations,
called fields, accompanied by the type
of each field. The running example de-
fines seven signatures (Lines 2–21). The
Customer class (Lines 2–7) has two at-
tributes, customerID and customerName,
that are assigned to the attrSet field of the
Customer class. The id field specifies that
customerID is the identifier of this class.
The last two lines of the Customer signa-
ture specification indicate that Customer
is not an abstract class and that it has no
parent. Similarly, the code in Lines 10–
15 represents the Order signature spec-
ification, and CustOrder (Lines 18–21)
specifies an association relationship be-
tween Customer and Order.

Facts (fact) are formulas that take
no arguments, and define constraints that
each instance of a specification must sat-
isfy, restricting the specification’s solu-
tion space. The formulas can be further structured using predicates (pred) and functions
(fun), which are parameterized formulas that can be invoked. The associationMultiplicity
fact paragraph (Lines 22–24) states multiplicities of source and destination classes in
the CustOrder association relationship.

1 {C1,O1}
2
3 Customer : (1 ,1) ::[{<C1>},{<C1>}]
4 Order : (1 ,1) ::[{<O1>},{<O1>}]
5 parent : (0 ,4) : : [{} ,
6 {<C1, C1>,<C1,O1>,<O1, C1>,<O1,O1>}]
7
8 (no Customer . parent) && (no Order . parent) . . .

Listing 1.2: Kodkod representation of the Alloy
specification of Listing 1.1 (partially elided for
space and readability).

To analyze such a relational
specification, both the Alloy An-
alyzer and PLATINUM translate it
into a corresponding finite rela-
tional model in a language called
Kodkod [56]. Listing 1.2 shows a
partial Kodkod translation of List-
ing 1.1(a). A specification in Kod-
kod’s relational logic is a triple

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 31

consisting of a universe of elements (a.k.a. atoms), a set of relation declarations in-
cluding lower and upper bounds specified over the model’s universe, and a relational
formula in which the declared relations appear as free variables [56].

The first line of Listing 1.2 declares a universe of two uninterpreted atoms. (Due to
space limitations, the listing omits some of the relations and atoms.) While in Kodkod
all relations are untyped, in the interest of readability we assume an interpretation of
atoms in which C1 represents a Customer element and O1 represents an Order element.

Lines 3–6 of Listing 1.2 declare relational variables. Similar to Alloy, formulas in
Kodkod are constraints defined over relational variables. Whereas in Alloy these rela-
tional variables are separated into signatures that represent unary relations establishing
a type system, and fields that represent non-unary relations, in Kodkod all relations are
untyped, with no difference made between unary and non-unary variables.

1 (! (v1 | v2)) & (! v2 | ! v1) & (! (v3 | v4)) & (! v4 | ! v3)
2
3 Slices:
4 (! (v1 | v2)) & (! v2 | ! v1)
5 (! (v3 | v4)) & (! v4 | ! v3)
6
7 Canonical form:
8 (! (1 | 2) & (! 2 | ! 1))

Listing 1.3: Excerpt of the boolean
encoding for the Kodkod specification
shown in Listing 1.2.

Kodkod also allows scope to be
specified from above and below each
relational variable by two relational
constants; these sets are called upper
and lower bounds, respectively. In prin-
ciple, a relational constant is a pre-
specified set of tuples drawn from a
universe of atoms. Each relation in a
specification solution must contain all
tuples that appear in the lower bound,
and no tuple that does not appear in the upper bound. That is, the upper bound repre-
sents the entire set of tuples that a relational variable may contain, and the lower bound
represents a partial solution for a specification.

Consider the Customer declaration (Listing 1.2, Line 3). Both its upper and lower
bounds contain just one atom, C1, given that it is defined as a singleton set in List-
ing 1.1. The upper bound for the variable parent ⊆Class×Class (Lines 5–6) is a prod-
uct of the upper bound set for its corresponding domain and co-domain relations, here
(Customer∪Order)→ (Customer∪Order), taking every combination of an element
from both and concatenating them.

To transform such a finite relational model into a boolean logic formula, Kodkod
renders each relation as a boolean matrix, in which any tuple in the upper bound of
the given relation that is not in the lower bound maps to a unique boolean vari-
able [56]. Relational constraints are then captured as boolean constraints over the trans-
lated boolean variables.

To render this idea concrete, consider the parent relation along with the next con-
straint defined over it (Listing 1.2, Lines 5–8). Each of the four tuples in the upper bound
of the parent relation is allocated a fresh boolean variable (v1 to v4) in the boolean en-
coding. The relational constraint (no Customer.parent) && (no Order.parent) is then
translated as a boolean constraint over those boolean variables, as shown in List-
ing 1.3, Line 1.

Expressions and constraints in relational specifications typically contain equivalent
slices in their boolean representations. PLATINUM detects such semantically redundant
slices by refining the specification in its boolean logic form into its essential, indepen-

32 G. Zheng et al.

dently analyzable slices, and then rendering them in a canonical form. The boolean
encoding of the constraints defined over the parent relation, for example, embodies two
slices with equivalent but syntactically distinct formulas (Listing 1.3, Lines 4–5). Line 8
represents the result of restructuring the slices into a canonical form, suggesting that the
two slices are in fact equivalent. The slicing technique we use to determine the sets of
clauses, the satisfiability of which can be analyzed independent of other clauses in the
formula, is presented in Section 3.

PLATINUM prevents redundant slices from being propagated to the CNF formula to
be solved by the underlying SAT solver, substantially reducing computational effort. In
the case of our example specification (Listing 1.1(a)), PLATINUM partitions the original
relational specification into 30 slices, with only seven distinct canonical slices. As such,
PLATINUM is faster at finding a solution instance, requiring 19 ms to do so compared
to the 26 ms that the Alloy Analyzer requires to produce the first solution instance. The
time required to compute the entire instance set also improves, from 6481 ms to 246
ms, in this simple example.

PLATINUM also reuses results produced for specification slices to further improve
the analysis of evolving specifications. Consider Listing 1.1(b), for example, in which
two new signature paragraphs are added, stating that the PreferredCustomer class in-
herits from the Customer class. Given the updated specification, PLATINUM reuses
the results from the prior run and solves a smaller problem. Specifically, after slicing
and canonicalizing the formula, the results for 29 slices, out of the total of 30 slices,
are already available. As a result, PLATINUM requires only one millisecond to find
the first solution for the revised specification, whereas the Alloy Analyzer requires
27 milliseconds to produce the first solution. PLATINUM also produces speed-ups in
computing the whole solution space. In the case of this particular example, PLAT-
INUM reduces the time required to produce the entire solution set from 768 millisec-
onds to two milliseconds.

3 Approach

Fig. 1 provides an architectural overview that shows how PLATINUM fits in with Al-
loy. As the figure shows (left), the Alloy Analyzer reads in an Alloy specification and
translates it into a relational model, then passes that to Kodkod. Kodkod translates the
relational model into a boolean formula, then to CNF, and passes the CNF to off-the-
shelf SAT solvers to obtain a solution. Last, the Alloy interpreter translates the SAT
result into a solution instance.

PLATINUM is inserted between Kodkod and the Alloy interpreter, as shown in the
figure. At the highest level, PLATINUM takes in the boolean formula from Kodkod and
outputs SAT results to the Alloy interpreter. The box at right shows the steps PLATINUM
follows to do this. PLATINUM first decomposes the boolean formula into independent
slices. Then, for each slice, PLATINUM canonicalizes it into a normalized format and
searches the storage for a previously existing equivalent slice. If such a slice exists, the
previous results will be reused. Otherwise, the slice is translated to CNF and assigned to
an independent SAT solver for processing. Both the slice and the results of processing it

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 33

Fig. 1: Overview of Alloy and PLATINUM

are then stored. Finally, PLATINUM combines the results for each slice and passes them
to the Alloy interpreter.

Next, we describe each step taken by PLATINUM in detail.

3.1 Slicing

Algorithm 1 Slicing
Require: f : original Boolean Formula root
Ensure: Slices: Set of Independent Slices
1: procedure SLICE(f)
2: Slices← null
3: for each variable v ∈ f do
4: parent[v]← v
5: rank[v]← v
6: end for
7: DECOMPOSE(f)
8: end procedure

9: procedure DECOMPOSE(f)
10: if f .operator = AND then
11: for each subformula fi ∈ f do
12: DECOMPOSE(fi)
13: end for
14: else
15: UNION-FIND(f)
16: end if
17: end procedure

In PLATINUM, the slicing operation takes in the
boolean formula generated from Kodkod and decom-
poses it into a set of independently analyzable sub-
formulas. Formally, given a boolean formula ϕ, slic-
ing decomposes it into subformulas ϕ1,ϕ2, ...,ϕn, such
that the following equations hold:

– ϕ1∧ϕ2∧ ...∧ϕn = ϕ

– var(ϕ1)∪ var(ϕ2)∪ ...∪ var(ϕn) = var(ϕ)
– var(ϕi)∩ var(ϕ j) = /0, for each ϕi and ϕ j where

i 6= j
– var(ϕi) 6= /0, f or i = 1,2, ...,n

where var(ϕ) is the set of boolean variables of ϕ.
Subformulas ϕ1 to ϕn can be solved independently.
Thus, ϕ is satisfiable if and only if each slice ϕi is sat-
isfiable individually.

A boolean formula can be sliced either logically (based on semantics) or alge-
braically (based on syntax). In the interest of efficiency, PLATINUM applies a syn-
tactic slicing algorithm. There are two types of boolean formulas in Alloy: a propo-
sitional formula that Kodkod translates from the relational model and the conjunctive
normal form generated from the propositional formula. PLATINUM applies slicing on
the propositional formula level for two reasons. First, translating a propositional for-
mula to CNF introduces many auxiliary variables [21]. For example, when the Cus-
tomerOrder specification in Section 2, with 81 variables in its propositional formula, is
translated to a CNF formula containing 352 variables, 271 auxiliary variables are in-
troduced. The explosion in the number of variables affects the performance of slicing

34 G. Zheng et al.

and canonicalization. Second, in certain cases, auxiliary variables connect two inde-
pendent formulas together. Given the boolean formula v1&v2, its CNF translation is
(v1|!o)&(v2|!o)&(!v1|!v2|o), where o is the auxiliary variable. Even if v1 and v2 are
independent formulas, in the CNF, v1 and v2 are dependent on each other.

Algorithm 2 Union-Find
1: procedure UNION-FIND(f)
2: represent← null
3: for each variable v ∈ f do
4: if v has been visited then
5: if UnMeetState then
6: represent← FINDSLICE(v)
7: add f to Slices[represent]
8: change to MeetState
9: else
10: if FINDSLICE(v) != FINDSLICE(represent)

then
11: UNIONSLICES(Slices[represent],Slices[v])
12: end if
13: end if
14: else
15: UNIONVARS(v, represent)
16: v.visited← T RUE
17: end if
18: end for
19: end procedure

20: procedure UNIONVARS(v,represent)
21: if represent is null then
22: represent← FINDSLICE(v)
23: end if
24: Parent[represent]← FINDSLICE(v)
25: Rank[represent]← Rank[represent]+1
26: end procedure

27: procedure UNIONSLICES(represent,v)
28: v← FindSlice(v)
29: if Rank[represent] ≤ Rank[v] then
30: Slices[v].add(Slices[represent])
31: Parent[represent]← v
32: Rank[v]← Rank[represent]+Rank[v]
33: else
34: Slices[represent].add(Slices[v])
35: Parent[v]← represent
36: Rank[represent]← Rank[represent]+Rank[v]
37: end if
38: end procedure

39: procedure FINDSLICE(v)
40: while v != Parent[v] do
41: v← Parent[v]
42: Parent[v]← Parent[Parent[v]]
43: end whilereturn v
44: end procedure

Slicing can be viewed as iden-
tifying connected components in a
graph, where the vertices of the
graph are boolean variables and the
edges of the graph represent two
variables that appear within the same
clause. Each slice is thus one con-
nected component in the graph. The
conventional way to proceed with
this is to first build a graph for the
entire boolean formula, and then run
a depth-first-search (DFS) to iden-
tify each connected component [62].
For large specifications this can be
both time and memory intensive.
To improve performance, our algo-
rithm applies a modified UNION-
FIND algorithm [17], that traverses
the boolean formula only once to
identify connected components.

Algorithm 1 outlines the slic-
ing process. Given boolean formula
root, the algorithm first initializes a
data structure used by its subrou-
tine (Lines 2–6). Each slice is iden-
tified by a representative, which is
one variable within the slice. Array
Parent is used to find the represen-
tative variable. Array Rank is used
to construct a balanced parent ar-
ray. Array Slices maps a represen-
tative variable to its corresponding
slice; its size equals the number of
slices. The algorithm then calls sub-
routine DECOMPOSE to decompose
the root formula.

DECOMPOSE recursively partitions a boolean formula f into subformulas in such
a way that the conjunction of all subformulas equals f, and each subformula cannot be
decomposed into smaller subformulas.

The UNION-FIND procedure (Algorithm 2) takes a decomposed subformula and
finds a slice to which it belongs. The basic idea behind the algorithm is that each slice is

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 35

represented by one variable. UNION-FIND has two basic operators: UNION and FIND.
If UNION operates on two slices, it joins them into one slice (Lines 27–38). If UNION
operates on two variables, it assigns one variable to be the parent of the other (Lines 20–
26). The FINDSLICE operation determines the representative variable for the slice – the
variable to which the input variable belongs. It does so by traversing the Parent array
until it finds one variable vp whose parent is itself, i.e., parent[vp] = vp. All variables
along this path belong to the same slice and are represented by vp.

The input boolean formula has two states: UnMeetState, which indicates that f does
not belong to any slice yet, and MeetState, which indicates that f belongs to some slice
that is represented by represent. For each variable v of the input boolean formula f,
UnMeetState first obtains the representative variable for v (which could be itself if v
does not belong to any slice yet). If v has not been visited, the algorithm unions v and
the representative variable of the subformula (Lines 20–26). Otherwise, if v has been
visited (i.e., it belongs to some slice), and if f is in UnMeetState, then the algorithm
adds f to the slice represented by represent. Finally, if f is in MeetState, this means that
f belongs to one slice and v belongs to another and these need to be joined together
(Lines 27–38).

3.2 Canonicalization

Algorithm 3 Canonicalization
Require: f : boolean formulas
Ensure: f ′ : canonical boolean formula
1: procedure CANONICALIZE(f)
2: varSet← var o f f
3: varSet← sort(varSet)
4: for i in 0 to varSet.length do
5: labelMap.add(varSet[i].label, i)
6: varSet[i].label← i
7: end for
8: L← varSet.length
9: for each subformula sf ∈ f do
10: RENAME(sf)
11: end for
12: f ′ ← f
13: end procedure

14: procedure RENAME(f)
15: for each subformula sf ∈ f do
16: L← RENAME(s f)
17: end for
18: f .label←++L
19: returnL
20: end procedure

The time complexity of the UNION-
FIND algorithm is near linear [17]. With-
out this improvement and using the con-
ventional DFS-based approach taken by
Green [62] among others, in one case in
our empirical study, a few minutes were
required to produce independently ana-
lyzable slices. Using our algorithm, this
time was reduced to about 10 millisec-
onds – an order of magnitude speedup.
This speedup occurs for the following
reason. A graph is needed to start the
DFS. The graph contains information
about which variable belongs to which
clause and which clause contains which
variables, and a map-like data structure
is needed to store this information. When
the number of variables becomes huge—
typically hundreds of thousands in formulas produced for Alloy specifications of real-
world systems—it is time and memory consuming to obtain this information and store
it. It is also time consuming to retrieve the graph information during the DFS. Our
UNION-FIND based algorithm, in contrast, requires information only on the node’s
parents, and this can be placed in a static array that requires only linear time to store
and retrieve.

The slices produced by the prior step are passed to this step, which transforms each
slice into a canonical format in order to capture the syntactic equivalence between dif-

36 G. Zheng et al.

ferent slices. For a slice ϕ, where ϕ = ϕ1∧ϕ2∧ ...∧ϕn, canonicalization generates one
boolean formula ϕ′, such that ϕ′ = ϕ′1∧ϕ′2∧ ...∧ϕ′n, where ϕ′ is the canonical format of
ϕ. The canonical form of the formulas is constructed by renaming variables and formula
labels. Algorithm 3 outlines this transformation.

Canonicalization first renames each boolean variable based on its weight (Lines 2–
7). For each variable v ∈V , where V = var(ϕ1)∪ var(ϕ2)∪ ...∪ var(ϕn), the weight of
v is calculated as the sum of the number of its occurrences and the number of operators
applied on v in all of the subformulas. To improve the performance of this step, the
weight for each variable is collected during the slicing phase; then, V is sorted based
on variable weight. If two variables have the same weight, their original labels are
used to sort them. Each variable is then renamed to their index in the sorted array.
The mapping relations from canonical variables to original variables for each slice are
stored in labelMap for use in assembling the solution for the original boolean formula.
Next, the label for each formula is renamed (Lines 8–20). The purpose of this step is
to maintain consistency with variables when translating to CNF. The labels of formulas
are used as auxiliary variables when they are translated to CNF.

3.3 Storing and Reuse

After slicing and canonicalization have been completed, each boolean formula is de-
composed into several independent formulas. For each canonicalized boolean formula,
PLATINUM checks its hash code in storage. If there is a hit, this boolean formula is
already solved, and the result will then be retrieved. If not, the boolean formula will be
translated into CNF and solved by the SAT solver independently. The result will then
be stored.

After solving all slices, using the labelMap (Algorithm 3) that maps canonical vari-
ables to original variables, PLATINUM obtains the solution for the original boolean
formula and passes it to Alloy to generate a solution instance.

4 Empirical Study

We empirically evaluated the performance of PLATINUM in relation to the following
research questions:
RQ1: How does the performance of PLATINUM compare to the performance of existing
approaches on specifications that have undergone relatively small amounts of change?
RQ2: How does the performance of PLATINUM compare to the performance of exist-
ing approaches on specifications that have gone through several successive rounds of
evolution?
RQ3: How does the performance of PLATINUM compare to the performance of existing
approaches on specifications that have run against higher scopes?
RQ4: What is the overhead of PLATINUM in restructuring a relational logic formula
into its canonical form?
RQ5: How does the performance of PLATINUM compare to the performance of Alloy
Analyzer in practice on specifications automatically extracted from real-world applica-
tions?

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 37

4.1 Objects of Analysis

Table 1: Objects of Analysis
Specification # Rels
Ecommerce 70
Decider 47
CSOS 64
Wordpress 54
Andr. Bundle 1 665
Andr. Bundle 2 558
Andr. Bundle 3 485
Andr. Bundle 4 569
Andr. Bundle 5 501
Andr. Bundle 6 456

Our objects of analysis are specifications drawn from
a variety of sources and problem domains. These spec-
ifications vary widely in terms of size and complexity.
Table 1 lists the specifications that we use, with statis-
tics on their size in terms of the numbers of relations in
their underlying logic. Note that this number, in turn,
represents the sum of the numbers of signatures and
fields, as both are indeed translated into relations in
the underlying relational logic.

Ecommerce is a model, adopted from Lau and
Czarnecki [30], that represents a common architecture
for open-source and commercial E-commerce sys-
tems. Decider [15] is a model of a system to support
design space exploration. CSOS is a model of a cyber-social operating system meant
to help coordinate people and tasks. WordPress is an object model obtained by reverse
engineering an open-source blog system [3]. Finally, the last six rows of the table cor-
respond to six large specifications intended for the analysis of security properties in
the context of the Android platform. Each consists of a bundle of Android applications
installed on a mobile device for detecting security vulnerabilities that may arise due to
inter-application communication, adopted from [12].

For the first four objects of analysis, we do not have access to actual, modified ver-
sions of their Alloy specifications, and even if we did, there would not likely be enough
versions to provide data sufficient to support quantitative analyses. Thus, instead, we
used a mutation-based approach to create modified versions of the specifications. We
used edit operations for Alloy specifications [10] and incorporated into the MuAlloy
mutation system [64] to derive a list of mutation operators. Table 2 provides a list of
these mutation operators, together with short descriptions.

Table 2: Mutation Operators

Description

ADS Add a new signature
DLS Delete a signature without children
CSM Change the signature multiplicity,3 i.e., to set,

one, lone or some (one that is different from
the multiplicity defined in the original specifi-
cation)

ABS Make an abstract signature non-abstract or vice
versa

MOV Move a sub-signature to a new parent signature
ADF Add a new field to a signature declaration
DLF Delete a field from a signature declaration
CFM Change a multiplicity constraint in a field dec-

laration

To investigate RQ1 we
wished to apply our mutation
operators to create 30 modified
versions of each of our objects
of study. Because prior work
by Li et al. [31] showed that
users tend to modify Alloy
specifications incrementally by
small amounts, we chose to
create versions of our object
specifications by mutating
between one and 10% of the
relations in the specifications.
Given object specification S, for
each modified specification S′

of S to be created, we randomly
chose a number N in this range;

38 G. Zheng et al.

N denotes the number of mutations to apply to S. We then began randomly choosing
relations L in S′, then randomly choosing a mutation operator M applicable to L, and
applied M to S′. We did not allow a given L to be utilized more than once in this
process. Following each operator application, we ran Alloy on the current version of
S′ to ensure that it is a valid specification. We repeated this process until N mutations
had been inserted into S′. Ultimately, this process produced 30 modified versions of
each object specification, wherein each version contained a randomly selected number
of randomly selected mutations – a number no greater than 10% of the number of
relations in the original specification.

To investigate RQ2 we used a similar process; however, in this case our goal was to
“evolve” each object specification S iteratively. Given the original version S, we created
a successor version S1 by repeating the process of inserting a randomly selected number
of randomly selected mutations (again, a number no greater than 10% of the number of
relations in S). However, our next iteration applied this same process to S1 (which now
contains a number of mutations) to produce a version S2 that potentially contains more
mutations. Here, we say “potentially” because we did not place any restrictions on the
re-use of mutation operators or mutation locations in subsequent versions Sk of S; thus,
conceivably, a mutation could be “undone” in a subsequent version. We repeated this
process 30 times on each specification, thereby obtaining a sequence of specifications
that have evolved iteratively.

It is common for users of bounded verification techniques such as Alloy to increase
the scope of the analysis, in order to obtain greater confidence in the validity of the
specification. As the scope of analysis increases, the space of cases that must be exam-
ined expands dramatically. To investigate RQ3, we increased the scope of analysis on
each of our object specifications. Note that the only change in the specification between
two successive runs of the analyzer in this case was the scope of analysis.

To investigate RQ4 we used the dataset created for RQ1. To investigate RQ5, we
created six different app bundles, each containing 20 Android apps drawn from public
app repositories such as Google Play [2]. We then used the COVERT tool [1] to auto-
matically extract Alloy specifications from the app bundles. Given an original bundle
B, we created a successor version B′ by adding a new app or removing an existing app
(randomly selected) to/from the given bundle. The specifications automatically derived
from app bundles tend to evolve as apps are added to, or removed from, the bundles.
The resulting app bundles thus provide us with an ideal suite of evolving specifications
that can be used for our evaluation. We repeated this process 30 times on each of the
app bundles to produce 30 modified versions of each bundle specification.

4.2 Variables and Measures

Independent Variables As independent variables we wished to utilize PLATINUM, as
well as baseline techniques representing state of the art approaches capable of perform-
ing the same function as PLATINUM.

We consider the Alloy Analyzer (version 4.2) as a baseline technique to compare
against PLATINUM. The other potential baseline technique is Green [62], an optimiza-
tion technique that, during symbolic execution, memoizes and reuses the results of satis-
fiability checking. The current implementation of Green, however, has two fundamental

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 39

problems in the context of this study. First, while Green supports the use of Integer and
Real variables in expressions, it does not support the use of boolean variables, which
are widely used in the context of Alloy’s relational logic. We were able to work around
this challenge, however, by modeling boolean variables as Green’s Integers and limit-
ing their size to zero and one – an approach suggested by Green’s developers. A more
insidious problem, however, is that the Green framework does not currently support
constraints with the disjunction operator. Because Alloy specifications are in relational
logic, native support for the disjunction operator is essential to effectively analyze such
specifications. This issue has been reported to the Green repository [4], and we have
been in contact with the authors about it; however, to date, the issue has not been re-
solved and there are no workarounds for it. Thus, we were ultimately unable to use
Green as a baseline technique.

Additional independent variables used were (b) the size of specifications in terms
of relations in the relational logic, (c) the number of mutation operations, (d) the type
of mutation operations, and (e) the scope of the analysis.

Dependent Variables We measure several dependent variables. The first variable, anal-
ysis time, tracks performance directly. Here, we measure the wall clock time required
to run (1) a complete Alloy analysis and (2) a complete PLATINUM analysis on each
specification considered. The second variable is the number of unique, independently
analyzable slices produced by PLATINUM for each specification under analysis. The
third variable is the number of slices for which solutions are already available for each
specification under analysis. Finally, the fourth variable is the size of the generated CNF
formulas that must be solved by the underlying SAT solver. In the last case, we record
the number of CNF variables and clauses produced by each of the two techniques when
translating high-level Alloy specifications into SAT formulas.

4.3 Study Operation

For RQ1 and RQ3, for each of our specification pairs, we applied the Alloy Analyzer
and PLATINUM, measuring the time required by each approach, and the number of
variables and clauses at the SAT level produced by each tool.

For RQ2, for each of our specification sequences, we applied both the Alloy Ana-
lyzer and PLATINUM to each pair of successive specifications in the sequence, measur-
ing, for each iteration, the time required by each approach, the size of the SAT formula
produced by each tool, and the number of slices reused across sequences.

For RQ4, for each of our specification pairs, we applied PLATINUM, measuring the
time required for formula restructuring, including the slicing and canonicalization steps.

Finally, for RQ5, for each of the specification pairs extracted from app bundles, we
applied both the Alloy Analyzer and PLATINUM, measuring the time required by each
approach.

All of our runs of the Alloy Analyzer and PLATINUM were conducted on an 8-core
2.0 GHz AMD Opteron 6128 system with 40 GB of memory. Both techniques leveraged
SAT4J as the SAT solver across the entire study to keep extraneous variables constant.

40 G. Zheng et al.

4.4 Threats to Validity

External validity threats concern the generalization of our findings. We have studied
ten sets of Alloy specifications and cannot claim that they are representative of all
such specifications. Additionally, our modified specifications for the first four objects
of analysis were created via a mutation approach, and while this allows us to obtain
large amounts of data, these objects may not directly represent modified specifications
that exist in practice. To reduce this threat and help determine whether our results may
generalize, we conducted additional studies using real-world software systems, where
both the Alloy specifications and their revisions are automatically extracted from evolv-
ing bundles of real Android apps. Finally, different versions of the Alloy Analyzer may
leverage different translation algorithms to CNF, and this may affect the execution time
of the analyzer. To reduce this threat we used the latest stable release of the Alloy Ana-
lyzer, Alloy Analyzer 4.2, for all runs collected in the study.

Construct validity threats concern our metrics and measures; we are aware of no
such threats in this case.

4.5 Results for RQ1 (Small Changes)

(a)

(b)

Fig. 2: Sizes of generated CNF formulas in terms of
the number of (a) variables and (b) clauses produced
by the Alloy Analyzer and PLATINUM across muta-
tions for each object of study.

We first assess the effective-
ness of PLATINUM with respect
to the incremental changes de-
rived from our first four ob-
ject specifications. The boxplots
in Fig. 2 depict the size of
the generated CNF formulas,
given as the number of variables
(Fig. 2a) and clauses (Fig. 2b)
across mutations for each ob-
ject of study. The results show
that in comparison to the Alloy
Analyzer, PLATINUM’s transla-
tion of relational logic specifi-
cations results in much smaller
and simpler SAT formulas, and
the numbers of CNF variables
and clauses generated by PLAT-
INUM were smaller than the
numbers generated by Alloy.
Specifically, in the analyses
of the CSOS, Decider, Ecom-
merce, and Wordpress specifica-
tions, the numbers of variables
and the numbers of clauses in the formulas produced by PLATINUM on average were
4.5/2.6/5.1/3.5 and 2.1/1.4/2.0/1.7 times lower, respectively, than the numbers in the
formulas produced by the Alloy Analyzer. This is because already analyzed slices do

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 41

not need to be translated into SAT formulas, thus reducing the sizes of the generated
CNF formulas.

Table 3: Performance Statistics

Alloy PLATINUM

Analysis Analysis
% Improvement

Time (S) Time (S)
Ecommerce 280.92 49.69 82.31%
CSOS 120.64 56.71 52.99%
Wordpress 57.19 47.57 16.82%
Decider 27.38 5.69 79.21%
Average 121.53 39.91 67.16%

Table 3 shows the results
of a comparison of the aver-
age analysis times required by
the Alloy Analyzer and PLAT-
INUM across the four objects of
study. On average, PLATINUM
exhibited a 67.16% improve-
ment over the Alloy Analyzer,
with the average improvement
across objects of study ranging
from 16.82% to 82.31%.

These results demonstrate the potential effectiveness of our optimization technique,
because in every case, the analysis time required by PLATINUM to find solution in-
stances of mutated specifications was less than that required by the state of the art
analysis techniques.

4.6 Results for RQ2
(Successive Changes)

Fig. 3: Speedup and reuse during successive mu-
tation analyses across subject domains. The left
column represents scatter plots of time ratios
(Analysis time taken by PLATINUM / Analysis
time taken by Alloy), and the right column rep-
resents scatter plots of reuse ratios (#Variables
in the SAT formula transformed by PLATINUM
/ #Variables in the SAT formula transformed by
the Alloy Analyzer) across systems.

To assess the effectiveness of PLAT-
INUM in accelerating analysis in suc-
cessive runs on evolving specifica-
tions we use two performance met-
rics: time ratio (TR) and variable
ratio (VR). We define the time ra-
tio as tP

tA
, where tP is the analysis

time taken by PLATINUM and tA is
the analysis time taken by the Al-
loy Analyzer. Intuitively, lower val-
ues of TR imply greater speedup. A
TR of 0.5, for example, indicates that
PLATINUM is two times faster than
the Alloy analysis of the same spec-
ification, whereas a TR of 0.1 in-
dicates that PLATINUM is 10 times
faster. Similarly, we define the vari-
able ratio as varP

varA
, where varP is the

number of variables in a SAT for-
mula produced by PLATINUM and
varA is the number of variables in
a SAT formula produced by the Al-
loy Analyzer for the same specifica-
tion. Again, lower values of VR im-
ply that there are fewer variables in a

42 G. Zheng et al.

formula generated by PLATINUM than in a formula generated by the Alloy Analyzer.
We started PLATINUM with an empty cache, and then analyzed each mutation in turn,
continually populating the cache.

Fig. 3 presents a pair of diagrams for each of the four object specifications, demon-
strating speedup and reuse during successive mutation analyses. The left column repre-
sents scatter plots of time ratios across subject domains, and the right column represents
scatter plots of variable ratios. All four sets of experiments exhibit similar behavior: in
every case, and for every revision, the analysis time taken by PLATINUM is less than
that of using the Alloy Analyzer (values of TR are always less than 1), and the num-
ber of variables in formulas generated by PLATINUM is significantly less than those
generated by the Alloy Analyzer. The speedup, however, varies for different mutations.
Variation across mutations is expected, given that the size and complexity of the muta-
tions produced in successive runs differ greatly. In a few cases, the values for TR jump.
Investigation of the data shows that this occurred because the mutations present in those
cases contained several new slices not yet observed, which in turn reduced the amount
of reuse. Despite these few cases, the empirical results suggest that significant speedup
was possible in all cases.

4.7 Results for RQ3 (Scope Changes)

Alloy’s analysis is exhaustive, yet bounded, up to a user-specified scope on the size
of the domains. In cases in which the analyzer fails to produce a solution that satisfies
specification constraints within a given scope, a solution may be found in a larger scope.
In practice, Alloy users often conduct consecutive analysis runs of specifications, ap-
plying small increases in the analysis scope, in the hopes of gaining further confidence
in their results. It has been shown that 17.6% of consecutive Alloy analyses differ only
in terms of their analysis scopes [31].

To examine how our optimization approach responds to increases in analysis scope,
for each specification, we gradually increased the scope of the analysis. We set the
initial scope for the analysis of each specification to the scope that had already been
specified by its original modeler, reasoning that whoever had developed and analyzed
the specification is most likely the best judge of the scope that is needed. The initial
scopes for the CSOS, Decider, Ecommerce, and Wordpress specifications were 51, 27,
50, and 32, respectively. We started PLATINUM with an empty cache for the analysis of
each specification, and gradually populated it as the analysis scope increased.

Table 4: Analysis Time Improvements Over In-
creasing Sizes of Analysis Scope

Scope increase +1 +2 +3 +4 +5

CSOS 0.765 0.122 0.098 0.118 0.035
Decider 0.393 0.036 0.038 0.023 0.034
Ecommerce 0.727 0.234 0.413 0.049 0.031
Wordpress 0.486 0.107 0.079 0.053 0.079

Table 4 shows the time ratios (TRs)
measured as the analysis scope increased
for each of the objects of study. Re-
call that lower values for TR indicate
that greater acceleration was achieved
by our optimization technique. The data
shows that overall as scope increased, TR
tended to decrease. For example, for the
Ecommerce system, the lowest value for
TR occurred when the scope increased to
five, resulting in a 1 / 0.031 = 32 fold analysis speed acceleration.

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 43

4.8 Results for RQ4 (Overhead)

Table 5: Analysis Times With Respect to Over-
head Incurred Due to Restructuring of Formulas

Slicing Canon
%overhead

Time(ms) Time(ms)
CSOS 7 268 0.36%
Decider 3 41 0.63%
Ecommerce 10 116 1.01%
Wordpress 5 138 2.44%
Average 6.25 140.75 1.11%

We next evaluate the performance of
PLATINUM’s formula restructuring anal-
ysis. Table 5 shows the time required to
restructure relational logic formulas into
their canonical forms. The first column
represents the time spent decomposing
formulas into independent slices, and the
second column represents the time spent
canonicalizing them into normalized for-
mats.

As the data shows, the analysis time overhead incurred by these two steps is 1.11%
on average, and no greater than 2.44% in any case. This is negligible, particularly when
compared to the analysis time overhead incurred by the Alloy Analyzer (cf. Table 3).
While the restructuring steps introduce little overhead, they substantially enable reuse
of slice solutions, which in turn greatly reduces analysis costs.

Fig. 4: Analysis times for the Alloy Analyzer and PLATINUM across specifications from real-
world Android apps.

4.9 Results for RQ5 (Real-World Specifications)

Finally, to assess the improvements one could expect in practice using PLATINUM, we
used Alloy specifications that were automatically extracted from real-world software
systems and evolved versions thereof, as described in Section 4.1. Fig. 4 shows the re-
sults of a comparison of the analysis time required by each of the two techniques as
boxplots across the six bundle specifications. As the results show, PLATINUM exhibited
a 66.4% improvement, on average, over the Alloy Analyzer; the average improvement
across app bundles ranged from 44.2% to 78.4%, indicating relative stability across

44 G. Zheng et al.

bundles. These results further confirm those obtained through our mutation-based ex-
periments, corroborating the effectiveness of PLATINUM in improving the analysis time
required by the Alloy Analyzer to find solution instances of revised specifications.

5 Related Work

The literature contains a large body of research related to ours. Here, we provide an
overview of the most notable and closely related work and examine it in the light of our
research.

The widespread use of Alloy has prompted a number of extensions to the language
and its underlying automated analyzer [10, 23, 24, 25, 27, 32, 37, 39, 40, 41, 45, 53,
58, 59]. Among these, Titanium [10] presents an exploration space reduction strategy
that narrows the space of values to be explored by an underlying constraint solver. This
approach, however, requires an entire solution set to be produced for the original spec-
ification, to determine tighter bounds for certain relations in the revised specification.
Our work differs primarily in its emphasis on reducing constraints into a more concise
form at the level of relational logic abstractions, which in turn allows for substantial
reuse of analysis efforts in subsequent analyses. Research efforts on bound adjustment
and solution reuse are complementary in that, in spite of the adjustments made to the
analysis bounds, the solver still needs to solve for the shared constraints.

Uzuncaova and Khurshid [60] partition a specification into base and derived slices,
in which a solution to the base slice can be extended to produce a solution for the
entire specification. PLATINUM is fundamentally different from this work in that the
problem addressed by Uzuncaova and Khurshid assumes a fixed specification and does
not consider specification evolution. Further, their approach does not eliminate the need
to solve shared, canonicalized constraints across analyses.

Rosner et al. [51] present a technique, Ranger, that leverages a linear ordering of
the solution space to support parallel analysis of first-order logic specifications. While
the linear ordering enables partitioning of the solution space into ranges, there is no
clear way in which it can be extended with incremental analysis capabilities, which are
crucial for effective analysis of evolving specifications.

Several techniques attempt to explore specification instances derived from Alloy’s
relational logic constraints [18, 33, 44, 45, 56]. Macedo et al. [33] examine scenario ex-
plorations in the context of relational logic. Aluminum [45] extends the Alloy Analyzer
to generate minimal specification instances. Both of these efforts focus primarily on the
order in which solutions are produced, as opposed to facilitating analysis of evolving
specifications, which is our goal. Montaghami and Rayside [39] extend the Alloy lan-
guage to explicitly support partial modeling. Their work, however, does not consider
evolving specifications. In fact, it is widely recognized that efficient techniques for ana-
lyzing Alloy specifications are needed [58]. To the best of our knowledge, however, no
prior research has attempted to reduce the need to call a solver to improve the efficiency
of the analysis of evolving Alloy specifications.

The technique most closely related to ours is Green [62]; this technique has been
the subject of several more recent papers [6, 7, 29, 47, 49, 50, 65], that improve on its
algorithm. As noted in Section 1, Green and its offshoots also rely on back-end con-

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 45

straint solving engines. In contrast to all of this prior work, the problem we address
in this paper involves supporting the evolutionary analysis of relational logic. Among
other things, this requires the development of both original slicing and canonicalization
approaches appropriate for models specified in Alloy’s relational logic. Moreover, nei-
ther Green’s slicer nor its canonicalizer take into account the disjunction operator [4].
While the lack of support for the disjunction operator might be allowable in the con-
text of symbolic execution, that support is essential in the context of first-order logic
to allow an approach to effectively recognize opportunities for constraint reduction and
reuse. Further, while most of the prior techniques use a classic lexicographic order-
ing of the variables before transforming each slice into a canonical format, PLATINUM
leverages a reverse shortlex order, in which the variables are first sorted by their weight
and then sorted lexicographically. This choice improves the identification of syntactic
equivalence between different slices. To the best of our knowledge, PLATINUM is the
first technique for evolutionary analysis of relational logic specification that operates
without requiring an entire solution set for the original specification.

6 Conclusions

We have presented PLATINUM, a novel extension to the Alloy Analyzer that substan-
tially improves the process of analyzing evolving Alloy specifications. Our approach
proceeds by storing solved constraints incrementally, and reusing them within subse-
quent analysis of a revised specification. It also omits redundant constraints from spec-
ifications before translating them into formulas that will be sent to constraint solvers.
Our evaluation of PLATINUM shows that it is able to support substantial reuse of con-
straint solutions across analyses of evolving specifications. Our empirical results show
significant speedup over the Alloy Analyzer in various scenarios. Our evaluation also
shows that as the scope of analysis increases, PLATINUM achieves even further im-
provements, and that the overhead associated with the approach is negligible. Finally,
our evaluation shows that PLATINUM continues to result in savings on specifications
extracted from real-world software systems.

Our future work involves extending the optimization ideas presented here to lever-
age domain-specific knowledge. Specifically, we intend to explore the possibility of
driving the automated discovery of domain-specific optimizations, wherein each system
of interest can have bounded verification tailored to its specific characteristics. While
such optimizations historically have arisen from the insights of a few dozen experts in
software verification, we envision a bounded speculative analysis to identify how opera-
tions permissible within a certain domain may impact the exploration space of bounded
analyses, thereby facilitating efficient analysis of specifications in a given domain.

Acknowledgment

We would like to thank the anonymous reviewers for their valuable comments. This
work was supported in part by awards CCF-1755890 and CCF-1618132 from the Na-
tional Science Foundation.

46 G. Zheng et al.

References

[1] Covert analysis tool. http://www.sdalab.com/projects/covert (2017)
[2] Google play market. http://play.google.com/store/apps/ (2017)
[3] WordPress. http://codex.wordpress.org/Database Description/3.3 (2017)
[4] Green solver. https://github.com/green-solver/green-

solver/tree/master/green/test/za/ac/sun/cs/green/misc (2018)
[5] Platinum repository. https://sites.google.com/view/platinum-repository (2019)
[6] Aquino, A., Bianchi, F.A., Chen, M., Denaro, G., Pezzè, M.: Reusing constraint

proofs in program analysis. In: Proceedings of the International Symposium on
Software Testing and Analysis. pp. 305–315 (2015)

[7] Aquino, A., Denaro, G., Pezzè, M.: Heuristically Matching Solution Spaces of
Arithmetic Formulas to Efficiently Reuse Solutions. In: Proceedings of the 39th
International Conference on Software Engineering. pp. 427–437. ICSE ’17, IEEE
Press, Piscataway, NJ, USA (2017), https://doi.org/10.1109/ICSE.2017.46

[8] Bagheri, H., Kang, E., Malek, S., Jackson, D.: Detection of design flaws in the an-
droid permission protocol through bounded verification. In: Bjørner, N., de Boer,
F.S. (eds.) FM 2015: Formal Methods - 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9109, pp. 73–89. Springer (2015), https://doi.org/10.1007/978-3-319-19249-
9 6

[9] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for detection
of security flaws in the android permission system. Formal Asp. Comput. 30(5),
525–544 (2018), https://doi.org/10.1007/s00165-017-0445-z

[10] Bagheri, H., Malek, S.: Titanium: Efficient analysis of evolving alloy specifica-
tions. In: Proceedings of the International Symposium on the Foundations of Soft-
ware Engineering (2016)

[11] Bagheri, H., Sadeghi, A., Behrouz, R.J., Malek, S.: Practical, formal synthesis and
automatic enforcement of security policies for android. In: 46th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks, DSN 2016,
Toulouse, France, June 28 - July 1, 2016. pp. 514–525. IEEE Computer Society
(2016), https://doi.org/10.1109/DSN.2016.53

[12] Bagheri, H., Sadeghi, A., Garcia, J., Malek, S.: Covert: Compositional analysis of
android inter-app permission leakage. IEEE Transactions on Software Engineer-
ing (2015)

[13] Bagheri, H., Sullivan, K.J.: Model-driven synthesis of formally precise, styl-
ized software architectures. Formal Asp. Comput. 28(3), 441–467 (2016),
https://doi.org/10.1007/s00165-016-0360-8

[14] Bagheri, H., Tang, C., Sullivan, K.: Trademaker: Automated dynamic analysis
of synthesized tradespaces. In: Proceedings of the 36th International Conference
on Software Engineering. pp. 106–116. ICSE 2014, ACM, New York, NY, USA
(2014), http://doi.acm.org/10.1145/2568225.2568291

[15] Bagheri, H., Tang, C., Sullivan, K.: Automated synthesis and dynamic analysis
of tradeoff spaces for object-relational mapping. IEEE Transactions on Software
Engineering 43(2), 145–163 (2017)

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 47

[16] Bagheri, H., Wang, J., Aerts, J., Malek, S.: Efficient, evolutionary secu-
rity analysis of interacting android apps. In: 2018 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2018, Madrid,
Spain, September 23-29, 2018. pp. 357–368. IEEE Computer Society (2018),
https://doi.org/10.1109/ICSME.2018.00044

[17] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

[18] Cunha, A., Macedo, N., Guimaraes, T.: Target oriented relational model finding.
In: Proceedings of the International Conference on Fundamental Approaches to
Software Engineering. pp. 17–31 (2014)

[19] De Ita Luna, G., Marcial-Romero, J.R., Hernandez, J.: The Incremen-
tal Satisfiability Problem for a Two Conjunctive Normal Form. Elec-
tronic Notes in Theoretical Computer Science 328, 31–45 (Dec 2016),
http://www.sciencedirect.com/science/article/pii/S1571066116301013

[20] Devdatta Akhawe, Adam Barth, Peifung E. Lamy, John Mitchelly, Dawn Song:
Towards a Formal Foundation of Web Security. In: Proceedings of the 23rd Inter-
national Conference on Computer Security Foundations Symposium (CSF). pp.
290–304 (2010)

[21] Een, N., Sorensson, N.: Translating pseudo-boolean constraints into sat. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

[22] Egly, U., Lonsing, F., Oetsch, J.: Automated Benchmarking of Incremental SAT
and QBF Solvers. In: Logic for Programming, Artificial Intelligence, and Reason-
ing. pp. 178–186. Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg (Nov 2015)

[23] Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: Analysis of invariants for
efficient bounded verification. In: Proceedings of International Symposium on
Software Testing and Analysis. pp. 25–36 (2010)

[24] Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: Efficient SAT-based
bounded verification using symmetry breaking and tight bounds. IEEE Transac-
tions on Software Engineering 39(9), 1283–1307 (2013)

[25] Ganov, S., Khurshid, S., Perry, D.E.: Annotations for alloy: Automated incremen-
tal analysis using domain specific solvers. In: Proc. of ICFEM. pp. 414–429 (2012)

[26] Hao, J., Kang, E., Sun, J., Jackson, D.: Designing Minimal Effective Normative
Systems with the Help of Lightweight Formal Methods. In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. pp. 50–60. FSE 2016, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2950290.2950307

[27] Heaven, W., Russo, A.: Enhancing the alloy analyzer with patterns of analysis. In:
Workshop on Logic-based Methods in Programming Environments (2005)

[28] Jackson, D.: Software Abstractions. MIT Press, 2nd edn. (2012)
[29] Jia, X., Ghezzi, C., Ying, S.: Enhancing reuse of constraint solutions to improve

symbolic execution. In: Proceedings of the International Symposium on Software
Testing and Analysis. pp. 177–187 (2015)

[30] Lau, S.Q.: Domain Analysis of E-Commerce Systems Using Feature-Based
Model Templates. Master’s thesis, University of Waterloo, Canada (2006)

48 G. Zheng et al.

[31] Li, X., Shannon, D., Walker, J., Khurshid, S., Marinov, D.: Analyzing the
Uses of a Software Modeling Tool. Electronic Notes in Theoretical Computer
Science 164(2), 3–18 (Oct 2006). https://doi.org/10.1016/j.entcs.2006.10.001,
http://www.sciencedirect.com/science/article/pii/S1571066106004786

[32] Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight
Specification and Analysis of Dynamic Systems with Rich Configurations. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. pp. 373–383. FSE 2016, ACM, New York, NY,
USA (2016), http://doi.acm.org/10.1145/2950290.2950318

[33] Macedo, N., Cunha, A., Guimaraes, T.: Exploring scenario exploration. In: Pro-
ceedings of the International Conference on Fundamental Approaches to Software
Engineering. pp. 301–315 (2015)

[34] Maldonado-Lopez, F.A., Chavarriaga, J., Donoso, Y.: Detecting Network Policy
Conflicts Using Alloy. In: Abstract State Machines, Alloy, B, TLA, VDM, and
Z. pp. 314–317. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(Jun 2014)

[35] Mansoor, N., Saddler, J.A., Silva, B., Bagheri, H., Cohen, M.B., Farritor, S.: Mod-
eling and testing a family of surgical robots: an experience report. In: Leav-
ens, G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018. pp. 785–790. ACM (2018),
https://doi.org/10.1145/3236024.3275534

[36] Marinov, D., Khurshid, S.: What will the user do (next) in the tool? In: Proceedings
of the ACM SIGSOFT First Alloy Workshop. pp. 98–99. ACM (2006)

[37] Milicevic, A., Rayside, D., Yessenov, K., Jackson, D.: Unifying execution of im-
perative and declarative code. In: Proceedings of the 33rd International Confer-
ence on Software Engineering. pp. 511–520. ICSE ’11, ACM, New York, NY,
USA (2011), http://doi.acm.org/10.1145/1985793.1985863

[38] Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S.: Reducing com-
binatorics in GUI testing of android applications. In: Dillon, L.K., Visser, W.,
Williams, L. (eds.) Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. pp. 559–570. ACM
(2016), https://doi.org/10.1145/2884781.2884853

[39] Montaghami, V., Rayside, D.: Extending Alloy with partial instances. In: Proceed-
ings of the International Conferece on Abstract State Machines, Alloy, B, VDM,
and Z. pp. 122–135 (2012)

[40] Montaghami, V., Rayside, D.: Staged evaluation of partial instances in a relational
model finder. In: Proceedings of the International Conferece on Abstract State
Machines, Alloy, B, VDM, and Z. pp. 318–323 (2014)

[41] Montaghami, V., Rayside, D.: Bordeaux: A tool for thinking outside the box. In:
Proceedings of the International Conference on Fundamental Approaches to Soft-
ware Engineering. pp. 22–39 (2017)

[42] Nadel, A., Ryvchin, V., Strichman, O.: Ultimately Incremental SAT. In: Theory
and Applications of Satisfiability Testing (SAT 2014). pp. 206–218. Lecture Notes
in Computer Science, Springer, Cham (Jul 2014)

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 49

[43] Near, J.P., Jackson, D.: Derailer: Interactive security analysis for web applications.
In: Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering. pp. 587–598. ASE ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2642937.2643012

[44] Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The Power of ”Why”
and ”Why Not”: Enriching Scenario Exploration with Provenance. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering. pp. 106–116. ESEC/FSE 2017, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3106237.3106272

[45] Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: Proceedings of the Inter-
national Conference on Software Engineering. pp. 232–241 (2013)

[46] Nijjar, J., Bultan, T.: Bounded verification of ruby on rails data models.
In: Proceedings of the 2011 International Symposium on Software Testing
and Analysis. pp. 67–77. ISSTA ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/2001420.2001429

[47] Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: Proceedings of the Conference on Programming Language Design
and Implementation. pp. 504–515 (2011)

[48] Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive Testing. In: Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. pp. 908–919. FSE 2016, ACM, New York, NY,
USA (2016), http://doi.acm.org/10.1145/2950290.2950336

[49] Qiu, R., Yang, G., Pasareanu, C.S., Khurshid, S.: Compositional symbolic exe-
cution with memoized replay. In: Proceedings of the International Conference on
Software Engineering (2015)

[50] Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification, Lec-
ture Notes in Computer Science, vol. 6806, pp. 669–685. Springer Berlin Heidel-
berg (2011), htt p : //dx.doi.org/10.1007/978−3−642−22110−155

[51] Rosner, N., Siddiqui, J.H., Aguirre, N., Khurshid, S., Frias, M.F.: Ranger: Parallel
analysis of Alloy models by range partitioning. In: Proceeding of the International
Conference on Automated Software Engineering. pp. 147–157 (2013)

[52] Ruchansky, N., Proserpio, D.: A (Not) NICE Way to Verify the Openflow
Switch Specification: Formal Modelling of the Openflow Switch Using Al-
loy. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM. pp. 527–528. SIGCOMM ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2486001.2491711

[53] Semerath, O., Varas, A., Varra, D.: Iterative and Incremental Model Generation
by Logic Solvers. In: Fundamental Approaches to Software Engineering. pp. 87–
103. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (Apr 2016),
htt ps : //link.springer.com/chapter/10.1007/978−3−662−49665−76

[54] Stevens, C., Bagheri, H.: Reducing run-time adaptation space via analysis of pos-
sible utility bounds. In: Proceedings of the 42nd International Conference on Soft-
ware Engineering. ICSE 2020, ACM (2020)

50 G. Zheng et al.

[55] Taghdiri, M.: Inferring specifications to detect errors in code. In: Proceedings
of the 19th IEEE International Conference on Automated Software Engineering.
pp. 144–153. ASE ’04, IEEE Computer Society, Washington, DC, USA (2004),
http://dx.doi.org/10.1109/ASE.2004.42

[56] Torlak, E.: A Constraint Solver for Software Engineering: Finding Models
and Cores of Large Relational Specifications. PhD thesis, MIT (Feb 2009),
http://alloy.mit.edu/kodkod/

[57] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Proceedings of the
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 632–647. TACAS’07, Springer-Verlag, Berlin, Heidel-
berg (2007), http://dl.acm.org/citation.cfm?id=1763507.1763571

[58] Torlak, E., Taghdiri, M., Dennis, G., Near, J.P.: Applications and extensions of Al-
loy: Past, present and future. Mathematical Structures in Computer Science 23(4),
915–933 (2013)

[59] Uzuncaova, E., Khurshid, S.: Kato: A program slicing tool for declarative specifi-
cations. In: Proceedings of the International Conference on Software Engineering.
pp. 767–770 (2007)

[60] Uzuncaova, E., Khurshid, S.: Constraint prioritization for efficient analysis of
declarative models. In: Proceedings of the International Symposium on Formal
Methods (2008)

[61] Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Trans. Software Eng. 36(3), 309–322 (2010)

[62] Visser, W., Geldenhuys, J., , Dwyer, M.B.: Green: Reducing, reusing and recy-
cling constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering. pp. 58:1–
58:11 (2012)

[63] Wang, J., Bagheri, H., Cohen, M.B.: An evolutionary approach for analyzing alloy
specifications. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018. pp. 820–825. ACM (2018),
https://doi.org/10.1145/3238147.3240468

[64] Wang, K.: MuAlloy : an automated mutation system for alloy. Thesis (May 2015),
https://repositories.lib.utexas.edu/handle/2152/31865

[65] Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: Pro-
ceedings of the International Symposium on Software Testing and Analysis. pp.
144–154 (2012)

[66] Zave, P.: Using Lightweight Modeling to Understand Chord.
SIGCOMM Comput. Commun. Rev. 42(2), 49–57 (Mar 2012),
http://doi.acm.org/10.1145/2185376.2185383

Reusing Constraint Solutions in Bounded Analysis of Relational Logic 51

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

52 G. Zheng et al.

	Platinum: Reusing Constraint Solutions in Bounded Analysis of Relational Logic
	1 Introduction
	2 Illustrative Example
	3 Approach
	3.1 Slicing
	3.2 Canonicalization
	3.3 Storing and Reuse

	4 Empirical Study
	4.1 Objects of Analysis
	4.2 Variables and Measures
	4.3 Study Operation
	4.4 Threats to Validity
	4.5 Results for RQ1 (Small Changes)
	4.6 Results for RQ2 (Successive Changes)
	4.7 Results for RQ3 (Scope Changes)
	4.8 Results for RQ4 (Overhead)
	4.9 Results for RQ5 (Real-World Specifications)

	5 Related Work
	6 Conclusions
	Acknowledgment
	References

