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Polyacetylenes (PAs) are bioactive, specialized plant defense compounds produced by some species in the eudicot clade
campanulids. Early steps of PA biosynthesis are catalyzed by Fatty Acid Desaturase 2 (FAD2). Canonical FAD2s catalyze
desaturation, but divergent forms can catalyze hydroxylation, conjugation, acetylenation, and epoxygenation. These alternate
reactions give rise to valuable unusual fatty acids, including the precursors to PAs. The extreme functional diversity of FAD2
enzymes and the origin of PA biosynthesis are poorly understood from an evolutionary perspective. We focus here on the
evolution of the FAD2 gene family. We uncovered a core eudicot-wide gene duplication event giving rise to two lineages: FAD2-
a and FAD2-b. Independent neofunctionalizations in both lineages have resulted in functionally diverse FAD2-LIKEs involved in
unusual fatty acid biosynthesis. We found significantly accelerated rates of molecular evolution in FAD2-LIKEs and use this
metric to provide a list of uncharacterized candidates for further exploration of FAD2 functional diversity. FAD2-a has expanded
extensively in Asterales and Apiales, two main clades of campanulids, by ancient gene duplications. Here, we detected positive
selection in both Asterales and Apiales lineages, which may have enabled the evolution of PA metabolism in campanulids.
Together, these findings also imply that yet uncharacterized FAD2-a copies are involved in later steps of PA biosynthesis. This
work establishes a robust phylogenetic framework in which to interpret functional data and to direct future research into the
origin and evolution of PA metabolism.

Plant metabolism, known to produce large amounts
of diverse molecules, provides striking examples of
biological complexity that have intrigued biologists for
decades (Pichersky and Gang, 2000; Weng et al., 2012).

When compared with relatively highly conserved
plant primary metabolism, plant specialized metab-
olism is more diverse, and generates numerous
lineage-specific specialized metabolite classes (Milo
and Last, 2012), such as glucosinolates in Brassicales
(Halkier and Gershenzon, 2006), betalains in Car-
yophyllales (Brockington et al., 2015), and acylsugars
in Solanaceae (Moghe et al., 2017). Many specialized
metabolites are essential in responding to biotic
stress (e.g. herbivory defense), attracting pollinators,
and communicating with other species (e.g. allelopa-
thy; Arimura and Maffei, 2017). Specialized metabo-
lism is often found in a lineage-specific pattern (Moghe
and Kruse, 2018), which enables using comparative
approaches to aid biosynthetic pathway discovery and
the study of pathway evolution in a phylogenetic
framework. With the recent advances in functional
and comparative genetics, new approaches integrat-
ing functional and genomic studies in the context of
phylogenetic frameworks have made fundamental
advances in understanding evolution of plant spe-
cialized metabolites (e.g. Brockington et al., 2015;
Moghe et al., 2017; Lopez-Nieves et al., 2018). Previous
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studies exploring the occurrence of lineage-specific
metabolites have revealed that gene duplication fol-
lowed by functional diversification is of central im-
portance to this process. An example of this is the
duplication followed by neofunctionalization of both
DODA and CYP76AD genes in the origin of betalain
biosynthesis (Brockington et al., 2015).
Plant polyacetylenes (PAs) are a class of compounds

characterized by multiple alkynyl groups in their car-
bon skeleton (Bu’Lock and Smith, 1967; Boll and
Hansen, 1987). PAs exhibit a wide range of bioactiv-
ities including allergenic, antibacterial, and antifungal
activities and are also known as natural pesticides
(Minto and Blacklock, 2008). PAs have been detected in
24 plant families, but seem to occur in a substantial
number of species in only seven plant families (Bu’Lock
and Smith, 1967; Negri, 2015). The Asterales family
Asteraceae contains the most structurally diverse PAs,
with more than 1100 out of about 2000 PAs that have
been identified in plants so far (Konovalov, 2014). A
second hotspot of PA diversity is found in the Apiales
families Apiaceae and Araliaceae, which contain most
of the C17-PAs, for example, falcarinol and falcarindiol
(Bohlmann et al., 1974; Hansen and Boll, 1986). In ad-
dition, PAs also widely occur in species of Pittospor-
aceae (Apiales) and Campanulaceae (Asterales). Both of
these families, together with Asteraceae, Apiales, and
Araliaceae, all belong to the eudicot clade campanulids,
making campanulids the center of diversity for PAs
(Fig. 1). Outside campanulids, PAs have also been
detected sporadically in a few species in, for example,
Olacaceae and Santalaceae (Negri, 2015).
Although PAs are extremely diverse in their chemical

structures, the core acetylenic molecules are derived
from unsaturated fatty acids, which are intermediates
in plant lipid biosynthesis (Fig. 1). In plants, three bio-
synthetic pathways for PAs have been proposed (Minto
and Blacklock, 2008; Negri, 2015): the crepenynate
pathway, the steariolate pathway, and the tarirate
pathway. Each of these pathways starts with acetyle-
nation of different intermediates of the fatty acid me-
tabolism (Fig. 1). Little is known about the steariolate
and tarirate pathways, and the downstream PAs are
only sporadically found in distantly related species
(Negri, 2015). In this study, we focus on the better
characterized crepenynate pathway, which in plants
has only been found in campanulids, and gives rise to
the majority of the known PAs (Fig. 1). Early interme-
diates of this pathway have been identified by radio-
chemical studies (Barley et al., 1988; Knispel et al.,
2013), and the pathway has been examined in diverse
campanulid lineages (Lee et al., 1998; Cahoon et al.,
2003; Carlsson et al., 2004; Nam and Kappock, 2007;
Busta et al., 2018). Linoleic acid is converted to crepe-
nynic acid by installing the first acetylenic bond in the
D12 position (the 12th carbon relative to the fatty acid
head group; this notation is used consistently
throughout). The enzyme (D12-acetylenase) catalyzing
the first committed step in the crepenynate pathway
was characterized in the Asteraceae plant Crepis alpina

and was found to be similar to Fatty Acid Desaturase
2 (FAD2; Lee et al., 1998). Additional D12-acetylenases
have subsequently been isolated and characterized
from other PA-producing plants in campanulids, such
as parsley (Petroselinum crispum), English ivy (Hedera
helix), and carrot (Daucus carota; Cahoon et al., 2003;
Busta et al., 2018). All these enzymes were found to
be encoded by FAD2 family members, which were
traditionally known as D12-desaturases (Higashi and
Murata, 1993; Okuley et al., 1994b), indicating that
these acetylenases are FAD2s with diverged function.
Further stepwise desaturation and acetylenation at D14

and D16 positions generate the core acetylenic mole-
cules, each of which is further modified in a lineage-
specific manner, giving rise to diverse PAs across
campanulids (Christensen and Brandt, 2006; Minto and
Blacklock, 2008; Konovalov, 2014). Recently, Busta et al.
(2018) identified two D14-desaturases (catalyzing the
second step of crepenynate pathway) in carrot, which
are also encoded by FAD2 genes. These studies imply
that FAD2 plays important roles in the initiation of PA
biosynthesis in all lineages investigated so far.
FAD2 is a member of the fatty acids desaturases

family, which introduce double bonds into monoun-
saturated fatty acids, producing polyunsaturated fatty
acids (Harwood, 1980; Sperling et al., 2003). The FAD2
gene was first characterized in Arabidopsis (Arabidopsis
thaliana), which has a single copy (Okuley et al., 1994b).
Subsequent studies identified multiple copies from a
variety of oil crops, for example, canola (Brassica napus;
Jung et al., 2011), olive (Olea europaea; Hernández et al.,
2005), soybean (Glycine max; Damude et al., 2006),
sunflower (Helianthus annuus; Martínez-Rivas et al.,
2001), and cotton (Gossypium hirsutum; Zhang et al.,
2009). These studies indicated that FAD2 specifically
acts on the D12 position of the oleic acid, introducing a
second double bond into the chain, thus producing the
polyunsaturated linoleic acid. However, a number of
FAD2-LIKEs have been characterized from distantly
related plants that exhibit diverse functions, for exam-
ple, hydroxylation (van de Loo et al., 1995; Broun and
Somerville, 1997), conjugation (Cahoon et al., 1999,
2001; Hornung et al., 2002), and epoxidation and ace-
tylenation (Lee et al., 1998; Cahoon et al., 2003). In
contrast with the canonical FAD2s that perform D12

desaturation reactions, the FAD2-LIKEs are versatile in
their substrate specificities, regioselectivities, and cata-
lytic activities, resulting in the formation of diverse
unusual fatty acids, including crepenynic acid, the
precursor to PAs. Plant oils rich in unusual fatty acids
are of high value in human nutrition and/or in indus-
trial utilization (Biermann et al., 2011), and there are
increasing interests to genetically engineer the synthesis
of unusual fatty acids in crops (Napier, 2007). Studies
using domain swapping, site-directed mutagenesis,
and in vitro directed evolution have progressed in
identifying key residues that exert control over reaction
partitioning between the “unusual” catalytic activities
and canonical desaturase activity (Broun et al., 1998;
Lee et al., 1998; Rawat et al., 2012). Taken together,
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these studies suggest that plant FAD2 genes have un-
dergone extensive diversification and are involved in
many plant specialized metabolic processes, including
the biosynthesis of plant defense-related PAs. Despite
these interesting and important aspects of FAD2s, there
lacks a robust phylogenetic framework in which to in-
terpret existing functional data from diverse lineages.

In this study we reconstruct the phylogeny of the
FAD2 gene family across green plants to explore the
origin and evolution of unusual fatty acids synthesis,
with emphasis on crepenynic acid, a precursor to many
PAs. We sought to understand the extreme functional
diversity of FAD2 from an evolutionary perspective. We
provide a robust phylogenetic framework to facilitate

Figure 1. The proposed biosynthesis pathways of PAs and the distribution of PAs in seed plants. Enzyme abbreviations: FAD, fat
acid desaturase; FAS, fatty acid synthase; KAS, 3-ketoacyl-ACP synthase; SACP, stearoyl-ACP desaturase. The distribution of the
crepenynate pathway, steariolate pathway, and tarirate pathways are indicated by red, black, and brown circles, respectively. The
distribution data are summarized from literature and also PlantFAdb (https://plantfadb.org/), Crepenynate: Apiaceae, Araliaceae,
Pittosporaceae, Asteraceae and Campanulaceae; Steariolate: Asteraceae, Lamiaceae, Olacaceae, Opiliaceae, Santalaceae, and
Fabaceae; Tarirate: Picramniaceae and Lamiaceae. The tree topology is modified from Magallón et al. (2015), which included
87% families of angiosperm and was based on five plastid and nuclear markers.
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the future deciphering the remaining steps of the
crepenynate-derived PA biosynthesis pathway, and to
understand the genetic mechanisms underlying the ori-
gin and evolution of PA metabolism in campanulids.

RESULTS AND DISCUSSION

The Evolutionary History of FAD2 in Green Plants

BLAST search and phylogenetic analysis revealed
that FAD2 is present in all major plant lineages, in-
cluding green algae, indicating an origin predating the
common ancestor of green plants. Phylogenetic recon-
struction produced a gene tree that was concordant
with the relationships among major lineages of green
plants (Bowe et al., 2000; Puttick et al., 2018). For ex-
ample, gymnosperms, ferns, and mosses 1 liverworts
were resolved as paraphyletic and successively sister to
flowering plants (Fig. 2; Supplemental Fig. S1). The
liverworts and mosses were sister to each other with a
bootstrap percentage (BS) of 79, which corresponds to
the recently defined “Setaphyta” clade (Puttick et al.,
2018). Topologywithin the angiospermswas congruent
with accepted phylogenywithAmborella resolved as the

earliest diverging lineage and Aquilegia 1 Papaver
placed as sister to all other eudicots (The Angiosperm
Phylogeny Group, 2016). Within the angiosperms, the
evolution of FAD2 was characterized by a gene dupli-
cation event at the base of core eudicots (Fig. 2). Fol-
lowing the divergence of Ranunculales (represented by
Aquilegia and Papaver in this study), a gene duplication
event yielded two subclades, here termed as FAD2-a
(BS 5 65) and FAD2-b (BS 5 63), respectively (Fig. 2).
This duplication event is likely associated with the
Arabidopsis Gamma whole genome duplication event
(At-g) that occurred at ;135 Ma, shared by all core
eudicots (Bowers et al., 2003; Tang et al., 2008). Most
notably, FAD2-a experienced multiple gene duplica-
tion events in campanulids (Fig. 2, gray circles),
resulting in a large number of FAD2 homologs in
Asterales and Apiales.

Neofunctionalization Events Occurred Independently in
Eudicot FAD2 Lineages

FAD2 is the key enzyme responsible for biosynthesis
of polyunsaturated fatty acids by desaturating the
monounsaturated fatty acids (Okuley et al., 1994a).

Figure 2. Maximum likelihood (ML) gene tree of FAD2 sequences in green plants. Core eudicot homologs are indicated in gray.
The gene duplication event shared byall sampled eudicots and campanulids-specific gene duplication events are indicated on the
tree as gray circles. Previously characterized enzymes are labeledwith different symbols after tips, and their catalytic activities are
shown in the diagram of fatty acid biosynthesis pathway on the right.
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Divergent forms of FAD2 associated with activi-
ties other than desaturation, such as conjugation, hy-
droxylation, acetylenation, and epoxygenation, have
been identified across eudicots in, for example, Brassi-
caceae, Euphorbiaceae, Cucurbitaceae, and Punicoi-
deae (Supplemental Table S1). These FAD2-LIKE
enzymes redirect metabolic flux from primary fatty
acid modification and ubiquitous lipid biosynthesis
into specialized biosynthesis pathways, generating di-
verse biologically important molecules. Previous phy-
logenetic analyses, conducted with only a few
characterized genes to infer relationships between
FAD2 and FAD2-LIKEs, were unable to resolve the
phylogenetic origins of the latter (Cahoon et al., 2003;
Iwabuchi et al., 2003; Cao et al., 2013; Lakhssassi et al.,
2017). This was partially because FAD2-LIKEs were al-
ways subtended by longer branches than canonical
FAD2 members, making FAD2-LIKEs cluster together
in neighbor-joining analyses, likely due to long branch
attraction. With a much denser sampling across green
plants, our maximum likelihood phylogenetic analysis
revealed that FAD2-LIKEs are polyphyletic and the
encoded enzymes have arisen independently many
times in eudicots from ancestral desaturases (Fig. 2).

Accelerated Molecular Evolution Rate in FAD2-LIKEs

Visual examination of the green plant FAD2 gene tree
reconstructed from amino acids (Fig. 2) revealed that
the branches associated with FAD2-LIKEs are sub-
stantially longer than those associated with the FAD2.
To test the hypothesis that nonsynonymous substitu-
tions were significantly higher in FAD2-LIKEs com-
pared with canonical FAD2, we calculated the
nonsynonymous substitutions (dN), synonymous
substitutions (dS), and their ratio (v) using the free

ratio model as implemented in codeml. We defined
dS or dN for a gene as the total substitutions from
the eudicot most recent common ancestor node to the
terminal tip of that gene. We examined branches
leading to the 43 genes (Supplemental Table S1) that
had been experimentally characterized and assigned
to either FAD2 or FAD2-LIKEs. The dN values of FAD2
genes ranged from 0.08 to 0.22 (mean 0.16), whereas
that of FAD2-LIKEs ranged from 0.18 to 0.57 (mean
0.36). The dS values for FAD2-LIKEs (median 6 SD

2.31 6 0.32) were generally higher than that for FAD2
(1.68 6 0.92). Welch’s t test indicated that the differ-
ence of dN and dS between FAD2 and FAD2-LIKEs
were significant (Fig. 3; Supplemental Table S2), with
P 5 3.2e-08 and 1.9e-04 for dN and dS, respectively.

Despite the caveats that the tested branches are par-
tially shared and are therefore not completely inde-
pendent, and mutations observed at terminal branches
may not be fixed substitutions, our results suggest ac-
celerated rates of molecular evolution in FAD2-LIKEs.
The ratios of dN/dS (v) were also significantly higher
among the FAD2-LIKEs (0.16 6 0.05) than that among
FAD2 (0.09 6 0.08; Fig. 3). Together, these results sug-
gest multiple shifts to significantly higher rates of
nonsynonymous substitutions in FAD2-LIKEs than in
FAD2, and that such can be used as a molecular sig-
nature for detecting potential FAD2-LIKEs that are yet
uncharacterized.

FAD2-LIKEs produce a variety of fatty acids that to-
gether are called “unusual fatty acids” and are indus-
trially valuable (Diedrich and Henschel, 1991; Napier,
2007). The hydroxylated fatty acid ricinoleic acid is a
precursor for chemical conversion to many industrial
products, such as emulsifiers, inks, and lubricants
(Jaworski and Cahoon, 2003). More than 450 different
unusual fatty acids have been detected in plants
(Ohlrogge et al., 2018); however, the biosynthetic

Figure 3. Boxplots of sequence varia-
tion. Shown are differences in dN, dS,
and v, among FAD2 (green) and FAD2-
LIKEs (red). Significance of the compar-
isons were determined by welch two-
sample t-test. The original estimated
parameters and details of the statistical
tests are shown in Supplemental Table
S2 and Supplemental Table S3.
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pathways of most of them are yet unknown. Previous
functional studies have identified members of FAD2
gene family as important players for their biosynthesis
[for review, see Napier (2007)]. To facilitate the identi-
fication of enzymes underlying the biosynthesis of
the fatty acids, we provided a list of FAD2 genes
(Supplemental Table S4) showing accelerated molecu-
lar evolution rates based on dN/dS estimations. These
genes will likely be good to include in future functional
characterization efforts aimed at discovering new
FAD2-LIKE genes. Integrating such functional analyses
in the robust phylogenetic framework described here
will significantly broaden our perspective on the func-
tional diversity of FAD2 enzymes.

FAD2-a Extensively Expanded in Campanulids

Initial BLAST search and phylogenetic analysis using
high-quality genomes identified elevated numbers of
FAD2 homologs in several plant species, namely sun-
flower (Asterales, 29 copies), ginseng (Panax ginseng,
Apiales, 52 copies), and carrot (Apiales, 24 copies), as
compared with the 1–5 copies in other plant species. To
trace the gene family expansion with a denser taxon
sampling, we reconstructed the evolutionary history of
FAD2 using three genomes (sunflower, carrot, and
ginseng) and 27 transcriptomes across the campa-
nulids. The resulted gene tree suggests that FAD2 ex-
pansion is not limited to sunflower, carrot, and ginseng,

Figure 4. ML gene tree of FAD2 sequences from campanulids. Asterales-Escalloniales lineages are in green, and Apiales lineages
in brown. Gene duplication events are indicated on the tree as gray circles with g indicating the Arabidopsis gamma genome
duplication, C indicating the campanulids-specific gene duplication, As representing Asterales-specific gene duplication, and Ap
representing the Apiales-specific gene duplication events.
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but is widespread in Asterales, Apiales, and Escallo-
niales (3 out of 7 orders in campanulids). In addition
to the FAD2-a and FAD2-b clades shared by core
eudicots, following the divergence of Aquifoliales
(Supplemental Fig. S2), FAD2-a splits into two sub-
clades, here termed as FAD2-a1 and FAD2-a2, respec-
tively (Fig. 4). Under FAD2-a2, four and three
subclades of Asterales-Escalloniales and Apiales ho-
mologs are further recovered, respectively (Fig. 4;
Supplemental Fig. S2). At the species level, most rep-
resentatives examined in this study harbor multiple
highly similar homologs that are likely resulted from
tandem duplication (Supplemental Fig. S2). This as-
sumption is supported by the localization of the FAD2
homologs in carrot genomes (Busta et al., 2018). These
duplications have resulted in 20–60 copies in the species
of Asterales, Escalloniales, and Apiales, whereas only a
few copies (1–5) are typically found in other lineages.

Comparison of the gene tree with the phylogeny of
campanulids (Tank and Donoghue, 2010; Magallón
et al., 2015; Stull et al., 2018) indicates a total of eight
gene duplication events at the family level or above in
campanulids. These include a duplication event that
occurred in the common ancestor of core campanulids
(Fig. 5). In addition, at least two and three gene

duplication events occurred in the common ancestor of
Apiales and the common ancestor of Asterales-
Escalloniales, respectively (Fig. 5; As1-3, Ap1-2), and
two more happened before the divergence of Apiaceae
and Araliaceae (Fig. 5; Ap3-4).

Ancestral Sequence Reconstruction Shows Shifts of
Functionally Important Residues in FAD2-a2 Proteins
Subsequent to Gene Duplication

Previous functional studies using site-directed mu-
tagenesis have identified five residues that are impor-
tant for the function of FAD2 enzymes (Cahoon and
Kinney, 2005; Meesapyodsuk et al., 2007; Rawat et al.,
2012). To test whether there are shifts in these five res-
idues following gene duplication, we carried out an-
cestral sequence reconstruction using both amino acid
sequences and coding sequences. Subsequent to the
campanulids-specific gene duplication C, a shift ofM322

to I322 was observed in FAD2-a2 clade (Fig. 6). M322 was
suggested to be the diagnostic residues for canonical
D12-desaturase (Cahoon and Kinney, 2005), and its re-
placement by I322 may enable noncanonical functions
evolved. Further substitutions of A102 by G102 and V154

Figure 5. The phylogeny of campanulids. Gene duplication events are indicatedwith gray circles. The duplication events labeled
here correspond to the ones labeled in Figure 4, and their locations in the phylogeny of campanulids are based on their phy-
logenetic placements in the gene tree. Polyacetylene-producing lineages are in red, and nonpolyacetylene lineages are in black.
The tree topology and diversification dating are based on Magallón et al. (2015) and Stull et al. (2018).
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by N154, S154, or A154 were observed during the evolu-
tion of FAD2-a2, whereas both residues were con-
served in FAD2-a2 and FAD2-b (Fig. 6). The residue in
position 154 defines the regioselectivity of the Claviceps
purpurea FAD2 desaturase, which is primarily a D12-
desaturase and has traces of D15-desaturase activity. A
single mutation of Val to Ala at this position signifi-
cantly increases the D15-desaturase activity from 0.37%
to 11.57% (Meesapyodsuk et al., 2007). It is likely that
the substitution of V154 by N154, S154, or A154 observed
in FAD2-a2 would lead to diversification of the regio-
selectivity of FAD2-a2 proteins. Taken together, these
observations suggest that the FAD2-a2 clade includes
many members with divergent function.
In fact, all members of FAD2-a2 characterized so far

encode enzymes that catalyze reactions other than de-
saturation (Supplemental Table S1). Several previously
characterized genes fall in the FAD2-a2 clade (Fig. 6),
and they perform D12-epoxidation (Lee et al., 1998;
Hatanaka et al., 2004) or D12-acetylenation reactions

(Lee et al., 1998; Cahoon et al., 2003; Busta et al., 2018),
producing epoxy fatty acids and crepenynic acid, re-
spectively. Epoxy fatty acids are known as defensive
substances in vivo as they can strongly inhibit blast
fungus (Greene andHammock, 1999;Moran et al., 2000).
Crepenynic acid is the first step in the PA-generating
crepenynate pathway, and the derived PAs are known
as natural pesticides (Boll and Hansen, 1987; Minto
and Blacklock, 2008). Together, this evidence suggests
that FAD2-a2 genes acquired new functions in defense
against herbivores and pathogens. Further studies testing
the function of FAD2-a2 across campanulids families will
provide insights into the functional diversity of FAD2-a2.

Variation in Selective Pressures among Branches and
Positive Selection in FAD2-a2

Given the inferred neofunctionalizations, especially
in FAD2-a2, that follow gene duplication events, next

Figure 6. Reconstruction of five functionally important amino acids on the campanulids FAD2 phylogeny show shifts in key
residues in the FAD2-a2 lineages subsequent to gene duplications. A, Proportional logo plots (percent contribution of each base
at each position) of the five residues identified across functionally characterized canonical FAD2 (DES: desaturase) and divergent
FAD2 (ACET: acetylenase) homologs included in this study. B, Ancestral sequence reconstructions of amino acids by empirical
Bayesian inference on a maximum likelihood phylogeny of a reduced campanulids FAD2 sequence alignment. Logo plots at
nodes indicate the posterior probability of an amino acid at each of the five sites. Lineages that are known to be involved in
polyacetylene biosynthesis are labeled in pink.
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we tested the hypothesis that selective pressures varied
among branches leading to major clades in FAD2. We
chose sunflower and carrot as the representative of
Asterales and Apiales, respectively, because of the
availability of reference genomes and that several FAD2
genes from both species have been functionally char-
acterized (Supplemental Table S1). In addition, both
species, together with other members of Asteraceae and
Apiaceae, are the main sources of naturally occurring
PAs. We performed a series of nested hypotheses tests
(Table 1) to compare the selective pressures (v) among
branches leading to major clades of FAD2 (Supplemental
Fig. S3) using the branch model in software package
PAML v4.9 (Phylogenetic Analysis by Maximum Likeli-
hood; Yang, 2007). The results indicated that the free-ratio
model, H5, fits the data the best (Table 1). This model al-
lows the values of dN/dS to vary among all the tested
branches. The second-best hypothesis was H4, which
suggested shifts in selective pressure subsequent to gene
duplications (Table 1). This shift of selective pressures
resulted in the internal branches leading to FAD2-b,
FAD2-a1, FAD2-a2, FAD2-Asa2, and FAD2-Apa2 hav-
ing different dN/dS values. Likelihood ratio test were
significant forH5-H4 (P, 0.01) andH4-H3 (P, 0.01). The
other hypotheses, H1, H2, and H3, which also assume
different v values between FAD2-b and FAD2-a, were all
significantly better than one-ratio null hypothesis H0
(Table 1). Comparisons between all alternative hypothesis
(H1, H2, H3, H4, and H5) are also significant (Table 1).
Under all alternative hypotheses that allowed dN/dS to
vary across branches, we observed the highest v values in
FAD2-a2 subsequent to gene duplication events (Table 1).

To test whether there was positive selection acting on
FAD2 genes, we next implemented the adapted branch-
site model aBSREL (adaptive branch-site random ef-
fects likelihood; Smith et al., 2015). The full adaptive
hypothesis (vb

k . 1) identified that 15 branches out of
112 were under positive selection (Fig. 7). All these 15
branches were in the FAD2-a2 cladewith four in FAD2-
Ap-a2 and 11 in FAD2-Ap-a2 (Fig. 7). It is notable that
the ancestral branches b2, b5/b7 leading to the acety-
lenases that catalyze the first step of PA biosynthesis
were under positive selection (Fig. 7). Other previously
characterized genes (encoding conjugase, epoxygenase)
also experienced episodic positive selection during their
evolutionary history (b6, b8, b9 in Fig. 7). No positive
selection was detected in the FAD2-b or FAD2-a1 clade,
together with the observation that the v values for them
were relatively low (Table 1; Supplemental Fig. S3), in-
dicating that these lineages were under purifying selec-
tion. Consistent with this assumption, genes in FAD2-b
and FAD2-a1 maintained the ancestral desaturation
function (Supplemental Table S1).

Implications of the Phylogeny for the Origin and Evolution
of PA Metabolism

We have identified a FAD2 subclade in campanulids,
FAD2-a2, which has substitutions in key residues T
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Figure 7. Selection analyses of the campanulids FAD2 with aBSREL models. The branch is annotated according to the inferred
distribution ofv; the branch is partitioned according to the proportion of sites in a particular class (f bk ); and the color of the segment

depicts the magnitude of the corresponding vb
k . Branches that are identified as having experienced positive selection are labeled

as thicker lines (P , 0.05 with correction for multiple testing). Gene duplication events are indicated with gray circles. Char-
acterized genes are labeled as bold text. ACET, acetylenase; CONJ, conjugase; DES, desaturase; EPOX, epoxynase.
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contrasting to canonical FAD2 (desaturase) and has
undergone episodes of positive selection. The distinct
characteristics of the FAD2-a2 clade and its evolution-
ary diversification have not been recognized previously
and its role in producing valuable unusual fatty acids
remains to be explored.

Previous functional studies (Supplemental Table S1)
showed that FAD2 genes encode enzymes that are di-
versified in catalytic activity (desaturation, hydroxyla-
tion, and acetylation) aswell as regioselectivity (D12,D14

position of the fatty acid carbon chain). Several FAD2
homologs from Asteraceae and Apiaceae have been
shown involved in the first catalytic step of PA bio-
synthesis (Lee et al., 1998; Cahoon et al., 2003; Busta
et al., 2018). Our phylogenetic analyses indicate that
there are divergent FAD2s with unknown functions,
particularly within the FAD2-a2 lineage. It seems likely
that these uncharacterized FAD2-a2 lineages may be
involved in the further oxidation reactions in the cre-
penynate pathway, namely the stepwise desaturation
and acetylenation at D14 and D16 positions (Fig. 2). This
in turn suggests that many, if not all, of the central en-
zymatic steps in the crepenynate pathway may have
arisen via duplication and neofunctionalization of
FAD2 (the FAD2-a2 lineage in particular) in campa-
nulids. Such cumulative processes, by which enzymes
catalyzing earlier steps of a pathway emerge first, and
duplication of the gene encoding the first enzyme cre-
ates enzymes catalyzing later reactions, have been ob-
served for core fatty acid biosynthesis (Li-Beisson et al.,
2013). Functional characterization of the homologs in
the FAD2-a2 clade from plant species that produce
PAs, for example sunflower and carrot, will help to
determinewhether this samemechanism prevails in the
evolution of the PA biosynthesis pathway.

The distribution of PAs and patterns of FAD2 du-
plication in the campanulids (Fig. 5) raises questions
about whether PA biosynthesis arose independently in
Asterales and Apiales. Presumably, the Asterales and
Apiales–specific duplications would have facilitated

the evolution of acetylenase activity, the first step in the
crepenynate pathway, which would support the notion
of independent evolution of PA biosynthesis in these
two lineages. Interestingly, Dipsacales did not undergo
further FAD2 duplication except for the core campa-
nulids shared duplication C (Fig. 5), meaning that this
lineage should be a target of future PA analyses to shed
light on whether acetylenase activity may have arisen
after the divergence of Apiales and Dipsacales (Fig. 5).
Overall, the phylogenetic framework provided here
will be an excellent resource with which to further ex-
plore questions surrounding independent evolution. In
any event, it is interesting to consider what evolution-
ary advantages may have led to the invention of PAs in
campanulids. Fatty acid-derived PAs, such as falcarinol
and falcarindiol, have been identified as antifungal
molecules, which can inhibit germination of spore in
different fungi (Bu’Lock and Smith, 1967). Consistent
with the antipathogen properties of PAs, expression of
the related genes is strongly induced by fungal elicita-
tion (Kirsch et al., 2000; Cahoon et al., 2003; Busta et al.,
2018). Our analyses detected positive selections in
multiple FAD2-a2 lineages, including the acetylenases
that are known to be involved in PA biosynthesis
(Fig. 7). Together, these observations imply that plant-
pathogen interaction may have stimulated the evolu-
tion of PAs in Asterales and Apiales. Further studies to
test the functions of FAD2-a2 genes across the phy-
logeny of campanulids would help to further clarify the
evolution of PA biosynthesis pathways.

CONCLUSION

We provide a comprehensive phylogeny for FAD2
genes across green plants.We also characterize in detail
the molecular evolution of FAD2 within campanulids.
By establishing the comparative framework, we (1) re-
veal a complex evolutionary history of FAD2 genes,
which is characterized by gene duplication and

Table 2. Parameter estimates of branches on which positive selection are detected under the adaptive aBSREL model compared with the null
MG943REV model.

Significance of the comparison (P , 0.05) was determined by likelihood ratio test (LRT). Branch labels refer to Figure 7.

Branch LRT P v Distribution Over Sites (%)

b1 11.4731 0.0011 v1 5 0.00 (99.03); v2 5 214 (0.97)
b2 20.4477 0.0000 v1 5 0.135 (82); v2 5 8.65 (18)
b3 15.0688 0.0002 v1 5 0.00 (95.8); v2 5 3090 (4.2)
b4 5.8009 0.0197 v1 5 0.00 (87); v2 5 2690 (13)
b5 4.3683 0.0411 v1 5 0.00 (80); v2 5 4.53 (20)
b6 4.7515 0.0337 v1 5 0.167 (86); v2 5 24.3 (14)
b7 5.0482 0.0290 v1 5 0.0806 (96.4); v2 5 302 (3.8)
b8 11.8177 0.0009 v1 5 0.00 (97.3); v2 5 166 (2.7)
b9 5.1270 0.0278 v1 5 0.133 (96.6); v2 5 10.8 (3.4)
Daucus_carot_011708 6.2793 0.0154 v1 5 0.00 (99.03); v2 5 14.2 (0.97)
Helianthus_annuus_05g0134141 4.5004 0.0384 v1 5 0.00 (74); v2 5 2.25 (26)
Helianthus_annuus_05g0134031 6.4991 0.0138 v1 5 0.00 (75); v2 5 3.55 (25)
Helianthus_annuus_13g0387011 4.5101 0.0382 v1 5 0.00 (94); v2 5 3.86 (6.3)
Crepis_palaestina_Y16283 6.9848 0.0108 v1 5 0.562 (97.6); v2 5 27.5 (2.4)
Helianthus_annuus_13g0387031 5.8543 0.0192 v1 5 0.00 (87); v2 5 2.47 (13)
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functional diversification; (2) describe an approach to
distinguish canonical FAD2 from functionally diver-
gent FAD2-LIKEs using both the molecular evolution
rate and the phylogenetic relationships to other FAD2
genes; and (3) identify a unique FAD2-a2 clade in
campanulids with implications for future functional
studies aimed at characterizing further enzymes in-
volved in PA biosynthesis. Ultimately, this improved
understanding of diversity among FAD2 genes will
facilitate ongoing research into the biosynthesis of un-
usual fatty acids and fatty acid-derived natural pro-
ducts and the origin and evolution of PA metabolism,
and may serve as a model for studies of tarirate and
steariolate pathway evolution when those pathways
are characterized in the future.

MATERIALS AND METHODS

Plant FAD2 Sequences

Genome annotation data including both amino acid and coding sequences
(CDS) were downloaded from public databases (Supplemental Table S5), in-
cluding 46 flowering plants representing all major clades of APG IV (The
Angiosperm Phylogeny Group, 2016), plus four gymnosperms, two mon-
ilophytes, one lycophytes, three bryophytes, and three green algae. All the
amino acid andCDSwere concatenated into a single FASTAfile, respectively. A
local BLAST database was generated using MAKEBLASTDB (-parse_seqids)
implemented in the BLAST1 package v2.2.31 (Camacho et al., 2009) for the
amino acid and coding sequence dataset, respectively. In addition, 44 previ-
ously characterized FAD2 CDS were retrieved from literature (Supplemental
Table S1). Arabidopsis (Arabidopsis thaliana) FAD2 protein sequence were used
as query to search against the protein and nucleotide BLAST databases using
BLASTp and tBLASTn with default settings, respectively. All positive hits were
retrieved from the datasets using the BLASTDBCMD in BLAST1.

To infer the origins of the D12-acetylenase, the first committing step of PA
biosynthesis via the crepenynate pathway, 27 publicly available transcriptomes
across the campanulids were included in this analysis (Supplemental Table S5),
representing five of the seven orders of campanulids according to APG IV (The
Angiosperm Phylogeny Group, 2016). At the moment no genome annotation or
transcriptome is available for the two remaining campanulids orders Bruniales
and Paracryphiales. The CDS from transcriptomes were concentrated into a
single FASTA file, and the BLAST database was generated as described above.
Arabidopsis thaliana FAD2 amino acid sequence was used to search against the
concentrated CDS dataset using SWIPE v2.1.0 (-p 3 -e 10; Rognes, 2011).

Alignment and Phylogeny Inference

Multiple-sequence alignment of the protein sequences was conducted in
MAFFT v7.402 (Katoh and Standley, 2013) using default settings. As FAD2
belongs to a large fatty acid desaturase gene family that share three Hxx(x)H
motifs, sequences without the conserved motifs or were unalienable were man-
ually removed from the initial alignment by visual examination. The remaining
sequences were realigned for a second time with MAFFT and a tree was inferred
using FastTree v2.1.5 (Price et al., 2010) with default settings. Previously charac-
terized desaturases were used to identify gene families, and three well-defined
clades corresponding to FAD2, FAD3 (including FAD7 and FAD8), and FAD6
subfamilies were recovered and sequences of the FAD2 family were extracted.

We then generated three datasets of FAD2 for subsequent analysis: (1) FAD2
gene lineage from 57 genomes across all green plants (from green algae to an-
giosperms), to reconstruct the broad-scale evolution history of FAD2; (2) FAD2
gene lineage from three genomes and 27 transcriptomes across campanulids, to
trace the origin of D12-acetylenase; and (3) FAD2 homologs from sunflower and
carrot, representatives of Asterales and Apiales, respectively, to explore the
signature of natural selection after gene duplication. Asterales and Apiales are
the two main clades of campanulids, and the main source of natural
occurring PAs.

To infer the phylogeny of FAD2 genes for all three datasets, we conducted an
iterative set of alignment and phylogenetic estimation steps. Initial alignments

were performed with MAFFT v7.407 (Katoh and Standley, 2013) using default
settings and trimmed with Trimal v1.2 (-gt 0.05 -st 0.0001; Capella-Gutiérrez
et al., 2009). Phylogenetic trees were estimated with FastTree v2.1.5 (Price et al.,
2010), and the alignments were then refinedwith PASTA (-iter-limit5 3, aligner
5 mafft; Mirarab et al., 2015). The resulted alignments were again trimmed
(trimal -gt 0.1), and trees were then inferred again using FastTree. Branches
longer than 2 (absolute cutoff) or 10 times greater than their sister branch
(relative cutoff) were most likely caused by distantly related homologs and/or
transcriptome assembly artifacts andwere removed using the script trim_tips.py
(Yang et al., 2015). Sequences were realigned using MAFFT by using a variable
scoring matrix (–ginsi,–allowshift–unalignlevel amax 5 0.8) to minimize the
overalign issues observed in previous MAFFT estimation (Katoh and Standley,
2016). Lower amax values (0.5–0.7) were also used to generate various align-
ments and to examine the consistence among the derived phylogenies. The best-
fit model was chosen according to the Bayesian Information Criterion (Schwarz,
1978) computed by modelFinder (Kalyaanamoorthy et al., 2017). Phylogenetic
analyses were carried out by RAxML-NG v0.7.0b (Kozlov et al., 2018) with 20
parsimony starting trees, and 200 bootstrap replicates (–bs-metric tbe) were
used to evaluate the variation in the dataset.

Rates of Sequence Divergence

To test whether there are significant differences in rates of molecular evo-
lution between canonical versus divergent FAD2 gene lineages, the number of
dN per site, dS per site, and their ratio (v, denoted by dN/dS) for each branch of
the phylogeny derived from the green plant dataset were calculated under the
free-ratios model (model 5 1, Nsite 5 0) using codeml (Yang, 2007). Branches
with dS or dN. 3, suggesting saturation of substitutions, were not included in
further analyses. The dS or dN for a gene is defined as total substitutions from
the eudicot most recent common ancestor node to the terminal tip of that gene.
The distance in terms of substitutions between the ancestor node and terminal
tip was calculated using the biopython module phylo (Talevich et al., 2012). We
categorized the 43 previously characterized genes (Table 2) into two groups
based on their function: canonical FAD2 (DES, short for desaturase) or diver-
gent FAD2 (ACHE, short for acetylenase, conjugase, hydroxylase, and epox-
ynase). The differences in dS, dN, and their ratio v between DES and ACHE
were evaluated using welch two-sample t-test in R.

Ancestral Sequence Reconstruction

Togenerate anumerically andcomputationally tractabledataset for ancestral
sequence reconstruction, we subsample the campanulids FAD2 gene tree
(Supplemental Fig. S2) using python scripts (github.com/NatJWalker-Hale/
DODA/tree/master/misc_scripts/python, accessed July 05, 2019). The strat-
egy is to break the tree into paralogs, and then to sample within each paralog so
that every genus had its longest sequence in the resulted alignment to minimize
missing data. The final dataset has 153 CDS, includes all functionally
characterized FAD2 genes, and maintains within-paralogue diversity. A
ML tree was inferred on amino acid sequences using the same procedure as
described above. After confirming that the topology was consistent with
the original tree (Supplemental Fig. S2), we performed marginal ancestral
sequence reconstructions on this tree for amino acids and codons using IQ-
TREE v1.6.8 (Nguyen et al., 2015; Kalyaanamoorthy et al., 2017). Proba-
bilities of ancestral states at each node were summarized using ggseqlogo
implemented in R (Wagih, 2017; R Core Team, 2019). Five functionally
important sites were visualized by summing over the probabilities of
amino acids.

Estimation of the Variation in Selective Pressures (v)
among Branches

FAD2 homologs from genome annotations of sunflower and carrot, repre-
sentatives of Asterales and Apiales, respectively, were used to explore the
variation in selective pressures among the FAD2 gene lineages. Five FAD2 se-
quences from sunflower that had premature stop codons resulting from non-
sense or frame shift mutation were removed. One FAD2 homolog with a 96-bp
deletion (encompassing the first His box) from carrot was also removed from
the datasets. In addition, five and three characterized FAD2 homologs from
Asteraceae and Apiaceae, respectively, were included in the analysis. Tandem
repeats sharing. 95% similarity in nucleotide sequence were removed to keep
only one of them, resulting in 57 CDS in the final datasets. The protein
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sequences were first aligned, and CDS alignment was generated by matching
with the amino acid alignment using phyx (Brown et al., 2017). Unaligned co-
dons were removed from the alignments, and topologies were estimated from
the amino acid and CDS alignment using RAxML-NG. Confirming that the
topologies are congruent, the amino acid trees were used in the codon model
analyses.

A series of tests (Table 1) comparing the dN/dS (v) for different clades or sets
of branches (Supplemental Fig. S3) were performed with the branch model
implemented in PAML v4.9 (Yang, 2007). The following nested hypotheses
were formulated: H0, homogeneous selective pressure in all lineages leading to
major FAD2 clades (v0, thick branches in Supplemental Fig. S3); H1, different
selective pressure between stem branches leading to FAD2-a and -b (v0, v1 5
v2–7); H2, different selective pressure among stem branches leading to FAD2-
a1, -a2, and -b (v0, v1 5 v3, v2 5 v4–7); H3, based on H2 but allow shift in
selective pressure after gene duplication events (v0, v1, v2, v3, v4 5 v5, v65
v7); H4, based onH3 but allowed v to vary among numbered branches (v0, v1,
v2, v3, v4, v5, v6, v7); H5, free-ratio model that allow all branches leading to
major lineages of FAD2 to vary (thick branches in Supplemental Fig. S3). Sig-
nificance of the comparisons between hypothesis (P, 0.05) was determined by
likelihood ration test (LRT).

Selection Analyses

Next, branch-site models aBSREL (Smith et al., 2015) were used to detect
episodic positive selection. The codon dataset and tree topology of campanulids
(represented by sunflower, carrot) used in the branch model test above were
used here to detect positive selection.We first set all branches as the foreground
branch and v distribution of each branch was inferred under null model MG94
(k 5 1; vk # 1) and the alternative model aBSREL (k $ 1; vk . 1). We then set
FAD2-a2 clade as foreground branch and infer the v along each branch fol-
lowing the same procedure. Significance of the comparison between null model
and alternative model was determined by x2 mixture distribution (Smith et al.,
2015), and p value was corrected by Bonferroni’s correction for multiple testing.
All calculations and significance test were performed using the HYPHY pack-
age v2.3.13 (Pond et al., 2005).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Maximum likelihood phylogeny of green
plant FAD2.

Supplemental Figure S2. Maximum likelihood phylogeny of
campanulids FAD2.

Supplemental Figure S3. Maximum likelihood phylogeny of FAD2 homo-
logs from sunflower and carrot, plus characterized FAD2 from close
related species.

Supplemental Table S1. Functionally characterized FAD2 genes used in
the study.

Supplemental Table S2. Welch t test comparing dN, dS and v between
DES and ACHE.

Supplemental Table S3. Parameter estimation for characterized FAD2
genes under free-ratio model using codeml. The genes are categorized
as either DES or ACHE.

Supplemental Table S4. Uncharacterized FAD2 genes that showed an ac-
celerated molecular evolution rate (v.0.16, the median of v for FAD2-
LIKEs).

Supplemental Table S5. Genome annotation data and transcriptomes used
for BLAST search in this study.
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