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Process-structure relationship in the directed energy deposition of
cobalt-chromium alloy (Stellite 21) coatings
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a Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
b Center for Advanced Manufacturing, Navajo Technical University, Crownpoint, NM, United States of America

H I G H L I G H T S

• Stellite 21 coatings deposited using DED
are susceptible to cracking along the
inter-dendritic regions.

• Crack-free DED of Stellite 21 on Inconel
718 is accomplished by localized laser-
based preheating and moderate energy
density (~ 200 J·mm-3).

• Higher levels of energy density facilitate
elemental segregation of Crand Mo that
form hard and brittle phases in the
inter-dendritic regions.

• Cracking of DED-processed Stellite
21 coating along the inter-dendritic
regions is caused by residual stresses
resulting from the steep thermal
gradients.

• A relationship between process pa-
rameters, microstructure, and micro-
hardness is established.
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In this work, we accomplished the crack-free directed energy deposition (DED) of a multi-layer Cobalt-
Chromium alloy coating (Stellite 21) on Inconel 718 substrate. Stellite alloys are used as coating materials
given their resistance to wear, corrosion, and high temperature. The main challenge in DED of Stellite coatings
is the proclivity for crack formation during printing. The objective of this work is to characterize the effect of
the input energy density and localized laser-based preheating on the characteristics of the deposited coating,
namely, crack formation, microstructural evolution, dilution of the coating composition due to diffusion of iron
and nickel from the substrate, andmicrohardness. It is observed that cracking is alleviated on preheating the sub-
strate and depositing the coating at amoderate energy density (~200 J·mm−3). Themain finding is that cracking
of DED-processed Stellite 21 coating at higher levels of energy density is linked to the elemental segregation of
chromium and molybdenum, which form hard and brittle phases in the inter-dendritic regions. Cracking in the
inter-dendritic regions is caused by residual stresses resulting from the steep thermal gradients at higher input
energy. Localized laser-based preheating and moderate energy density mitigate steep temperature gradients
and thereby avoid thermally induced cracking of the Stellite coating along the inter-dendritic regions.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stellite alloys (a tradename of Kennametal) are used as corrosion-,
wear-, and temperature-resistant coatings on automotive valve seating
surfaces, tools, gun barrels, steam turbines, among others [1–5]. A re-
cent trend is to use powder-based directed energy deposition (DED) ad-
ditive manufacturing to deposit Stellite coatings [6–8]. In the DED
process, illustrated in Fig. 1, material in the form of powder is sprayed
onto a substrate through nozzles and fused (melted) using a laser. The
part is built in three dimensions by relative movement of the nozzle
and part [9].

DED is an attractive approach for depositing Stellite coatings com-
pared to weld overlay-based coatings because the microstructure
evolved is finer and has higher hardness [10–13]. In both the DED and
welding processes the coating forms a fusion zone with the substrate
[14]. Consequently, the coating and the substrate elements intermix,
which tends to reduce the hardness, and wear and corrosion resistance
of the coating [15].

However, compared to weld overlay approaches, the degree of
intermixing in DED is limited because the input energy density is
lower, and key process parameters, such as laser power can be precisely
controlled [11,12]. For example, in tungsten inert gas welding the input
energy per unit length is typically about 5 times more than that of DED
[12]. Despite these advantages, the main challenge in DED of Stellite
coatings is the propensity for crack formation [11,16]. Hence, from a
practical perspective, if crack-free deposition of Stellite coatings can be
realized using DED, it will substantially improve the life of engineering
components.

Accordingly, the objective of thiswork in the context of DED of a spe-
cific grade of Stellite (Stellite 21) coatings on Inconel 718 substrate is to
explain and quantify the effect of input energy used for deposition and
preheating of the substrate on crack formation, microstructural evolu-
tion, dilution and the microhardness of the coating. Preheating was
achieved by traversing the laser on the substrate prior to deposition,
termed localized laser-based preheating [14,15]. Realizing this objective
results in the identification of a processing strategy for crack-free depo-
sition of Stellite 21 coatings. Furthermore, we correlate the temperature
trends symptomatic of crack formation in Stellite 21 coatings by acquir-
ing in-situ temperature signatures using thermocouples.

In summarizing the literature, we note that the effect of process con-
ditions, including preheating, on the microstructure evolved of DED-
processed Stellite 6 coatings have been extensively studied compared
to fewer studies for Stellite 21 [8,17]. Stellite 6 contains tungsten

(~ 4.5 wt%) as an alloying element, whereas, in Stellite 21 tungsten is
replaced by molybdenum. Furthermore, Stellite 6 has a higher carbon
content (> 0.8%, compared to < 0.4% for Stellite 21) [18].

The difference in alloying elements between Stellite 6 and Stellite 21
results in distinctive solidification characteristics, susceptibility to
cracking, and functional properties [19–22]. The higher carbon content
in Stellite 6 decreases the solidification temperature. The increased car-
bon content and presence ofW also results in the formation of tungsten
carbide (WC) phases in Stellite 6, which is ideal for metal cutting tools
given its hardness [18,23]. In contrast, the presence of Mo in Stellite
21 induces formation ofMo-rich intermetallic compoundswhich are re-
sistant to corrosion and creep [23]. In other words, from functional
properties perspective, Stellite 6 has superiorwear resistance compared
to Stellite 21, while the latter is more corrosion and creep resistant.

Recently, the feasibility of Stellite 6 as a cutting tool coating was in-
vestigated by Traxel and Bandyopadhyay [6]. They demonstrated the
DED of Stellite 6 coatings on tool steel coupons and compared the
wear resistance of Stellite coated tools to Blackalloy-coated tools used
in metal cutting. In some of their samples, they also remelted the top
layer of the coating by an additional pass by the laser. An important
finding by Bandyopadhyay and Traxel is the formation of Co-rich den-
dritic regions and Cr-rich inter-dendritic regions in the Stellite 6 coating.

Mitigation of crack formation in DED of Stellite alloys is an active re-
search area. D'Oliveira et al. [24] studied the microstructural evolution
and residual stresses involved in the deposition of Stellite 6 on 304
stainless steel and reported the cracking of the Stellite 6 coating surface
on account of thermally induced residual stresses. Preheating the sub-
strate has been shown to reduce crack formation in the DED of Stellite
6 coatings [25–28]. For example, Jendrzejewski et al. [25] reported
that a crack-free Stellite 6 coating was achieved by preheating the
substrate to a temperature above 650 °C.

The effect of localized laser-based preheating of the substrate on
crack formation and microstructure evolution in Stellite 1 was studied
by Khajepour and co-workers [26,28]. Through experimental and nu-
merical simulations, they explain that laser-based preheating of the
substrates leads to relatively lower cooling rates throughout the deposi-
tion process, which in turn mitigates cracking. Furthermore, preheating
the samplewas correlated to amore uniform surface hardness and even
distribution of a dendritic morphology. The link between formation of
Cr- and Mo-rich inter-dendritic regions and crack formation in Stellite
21 is demonstrated in the work of Ganesh et al. [17] who investigated
the fracture behavior of laser-clad Stellite 21 on AISI 316 L stainless
steel. They correlated the occurrence of brittle inter-dendritic fracture
with the formation of columnar dendrites with Cr- and Mo- rich fine
carbide phases in the inter-dendritic region. These brittle carbide phases
in the inter-dendritic region of Stellite 21 provided low energy paths for
crack propagation under tensile loading [17].

In a similar vein, Bartkowski et al. [29] reported results from themi-
crostructural analysis, and electrochemical corrosion studies of Stellite 6
coatings deposited on stainless steel coupons. Their work demonstrated
that higher laser power is linked to the increased intermixing of sub-
strate materials into the coating which reduces the microhardness. For
example, the surface microhardness of the coating increased from
550 HV0.5 to 680 HV0.5 when the laser power was increased from
400 W to 550 W; on increasing the laser power to 700 W, the micro-
hardness decreased to 550 HV0.5.

This paper provides deeper understanding of the microstructure of
DED-processed Stellite 21 coating by measuring the segregation of
Cr- and Mo in the inter-dendritic regions as a function of input energy
density used for deposition. The effect of preheating the substrate and
deposition energy density on crack formation is studied by measuring
penetration and density of cracks using X-ray computed tomo-
graphy (XCT). The severity of cracking is correlated to the substrate
temperature during deposition using contact-based thermocouples
embedded in a custom-made fixture used for holding the samples.
Furthermore, this study provides a detailed analysis of the surface and

Fig. 1. Schematic of the DED process. Metal powder is sprayed from the sides and fused by
using energy from a laser beam.
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cross-sectional microhardness and quantifies the degree of intermixing
in substrate and coating elements using energy-dispersive X-ray spec-
troscopy (EDS).

2. Materials and methods

2.1. Materials

Powderwas supplied byOerlikonMetco and is listed under the trade
name MetcoClad 21 [30], which is similar in chemistry to Kennametal's
Stellite 21 powder material. Here, we refer to the material by its more
popular tradename Stellite 21 [30]. The powderwas produced by gas at-
omization and has an average particle size of 145 μm (50 μm standard
deviation). The substrate was a 38 mm × 38 mm × 5.5 mm Inconel
718 alloy test coupon. The nominal chemical compositions of both the
powder and substrate materials are listed in Table 1.

2.2. Experimental setup

Prior to deposition, the surface of the substrate was sandblasted to
facilitate the adhering of the coating to the surface and tomake the sur-
face less reflective. After sandblasting the samples were cleaned with
acetone to remove contaminants. A new substrate coupon was used
for each experimental condition tested in this work. The test coupon
was secured in a custom-built fixture; Fig. 2(a) shows the fixture set
up inside the machine. To prevent oxidation of the coating during DED
processing, the chamber was maintained under an argon atmosphere
with the oxygen concentration kept below 15 ppm.

Three contact-based K-type sheathed thermocouple probes (Omega
TJ 24-CA-IN-18-G-3-CC-OSTW-M)were extended through holes drilled
in the fixture. The configuration of thermocouples with respect to the
Inconel 718 coupon inside the fixture is shown in Fig. 2(b). The particu-
lar model of thermocouples used in this work is manufactured within a
sheath of Inconel 718 tominimize errorswhichmaybe introduced if the
cladding material of the thermocouple is different than the substrate.

Two thermocouples contact the sides of the substrate, and a third re-
sides in the fixture. In Fig. 2(b) the thermocouples in contact with the
substrate are labeled as Near TC and Far TC, the third thermocouple in-
side the fixture is labeled as Substrate TC. The label Near TC demarcates
that the thermocouple is nearest to the door of themachine (i.e., closest
to the operator), likewise, the thermocouple farthest from the door is
referred to as the Far TC. A hexagonal-shaped nut on the far side applies
lateral clamping force against the coupon to ensure secure contact with
the thermocouples. Thermally conductive paste was applied to the
bottom of the coupon to ensure good contact with the substrate and
eliminate air gaps. The thermocouples acquired temperature data at a
rate of 50 Hz.

2.3. Experiments

Stellite 21 powder was deposited on the Inconel 718 substrate cou-
pons using an Optomec LENS MTS 500 controlled atmosphere hybrid
DED system. The powder was fed through four nozzles coaxial with a
1 kW Ytterbium infrared fiber laser (IPG) with Argon as the carrier gas.
Two process parameters were varied, the preheat laser power (Ph) and

deposition laser power (Pd). The process settings are summarized in
Table 2.

We aggregate the processing parameters in terms of thewidely used
volumetric energy density (Ev), where Ev = Pd/(V‧T‧H) [J‧mm−3]. Pd is
the deposition laser power [W], V is the translational velocity of the noz-
zle [mm‧s−1], T is the height of each layer deposited [mm], and H is the
hatch spacing [mm], which is the distance between the centers of suc-
cessive laser passes. The use of the volumetric energy density (Ev) as
an aggregate parameter is advantageous as it facilitates the transferabil-
ity and generalizability of the proposed parameter window to different
DED equipment. For instance, if the laser power (P) is limited for a DED
system, the energy density levels recommended in this work can be
achieved by proportionally reducing either the translational velocity
(V), or hatch spacing (H) and layer height (T). Indeed, as we will sum-
marize shortly, the energy density-based process window recom-
mended in this work matches closely with prior investigations by
other researchers working on different DED systems [6,12,31].

There are many factors (> 30) in DED, such as the volumetric flow
rate of the powder, the distance between the nozzle and substrate
(standoff distance), dwell time between successive layers, deposition
pattern, among others, that determine the thermal profile, and conse-
quently, the coating characteristics [9]. Further, the thermal profile not
only depends on the process temperatures, but also the geometry of
the part [32]. Hence, using a purely experimental strategy to isolate
the effect of the great many DED factors on the coating characteristics
is tortuous. The main aim of this work is to understand and explain
the microstructural evolution and causal reasons for crack formation
in DED of Stellite 21.

Fig. 3 shows the experimental schema for preheat and deposition.
During the preheat and deposition processes, the substrate translates
in the X-Y directions as shown in Fig. 3(a), while the deposition head
traveled in the positive Z-direction at the end of each layer. The sub-
strate was preheated by scanning the laser in a rectilinear pattern, as
shown in Fig. 3(b). Three different laser power settings were used for
preheating (Ph=300, 350, 400W), and control sampleswere deposited
without preheating ( Ph= 0). The substrate temperature, as measured
by the Far TC, was ~20 °C, 150 °C, 165 °C, and 180–200 °C for the preheat
powers Ph=0, 300W, 350Wand400W, respectively. The effect of pre-
heat power on the temperature is shown in Fig. 16 of Sec. 3.4.

For the preheating passes, the laser scans starts with a counterclock-
wise contour from bottom left corner in Fig. 3(b)) and follows a rectilin-
ear pattern with no overlap between adjacent passes (tracks). The
scanning velocity for preheating was set at 5.1 mm·s−1. Two identical
passes of preheating were conducted starting and ending at the same
point with the laser turned off at the end of each pass during the pro-
cess. The aforementioned range of laser power for preheating was se-
lected through initial tests. The coupons warped excessively when the
preheat laser power (Ph) was in excess of 400 W; hence this value
was set as the upper limit.

The deposition process was carried out at four laser powers (Pd),
200W, 225W, 250W, and 275Was shown in Fig. 3(c) and (d). Thema-
chine manufacturer's recommendation is to set the layer height at T =
0.25 mm, and the hatch spacing H = 1.5 × T = 0.375 mm, resulting in
a 95% overlap between adjacent passes. The distance between the tip
of the laser processing head and the substrate (stand-off distance)
was 7.5 mm and the spot size of the laser was fixed at 0.7 mm
(diameter).

The scanning speed (10.6 mm·s−1) and powder flow rate
(0.03 g·s−1) were maintained constant throughout the experiments;
the powder flow rate is the minimum possible by the machine. The
mass flow rate exceeds the calculated minimum theoretical mass flow
rate of 0.008 g·s−1, estimated as V·T·H·ρ, where ρ is the mass density
of Stellite 21 (8.33× 10−3 g·mm−3). The large factor of safety applied to
the mass flow rate ensures that there are no lack-of-fill defects. The ap-
proximate deposition time for each sample was 60 min; 15 additional
minutes needed for samples that were preheated.

Table 1
The chemical Composition ofMetcoClad 21powder and as-received Inconel 718 substrate.

Alloying elements (wt%)

MetcoClad 21
Powder

Co Cr Mo Fe Ni Mn C Si
Base 27.0 5.5 ≤ 3.0 2.75 0.1–1 0.2 < 1.0

Inconel 718
Substrate

Ni Cr Mo Fe Ti Ta Al C Others
Base 19 3.05 18.5 0.9 5.13 0.5 0.04 B, Co, Cu,

Mn, Si

Z. Smoqi, J. Toddy, H.(S.) Halliday et al. Materials and Design 197 (2021) 109229
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The experimental plan used in this work is shown in Fig. 4. After each
test, the as-deposited coating was examined using optical microscopy; if
the coating surface had visible cracks further processing in the region (di-
rection) of the process variable was avoided. The settings of laser power
and scan velocity were selected by consulting the literature. The laser
power tested in this work results in volumetric energy densities ranging
from 200 to 277 J·mm−3, the upper limit of which is close to the energy
density (300 J·mm−3) reported by Traxel and Bandyopadhyay for
cladding Stellite 6 onto tool steel [6].

The range of energy density used in this work also agrees with a dif-
ferent study by Singh et al. [31] on coating Stellite 6 on Steel. Singh et al.
reported that an area-based energy density ranging from 32 J·mm−2 to
52 J·mm−2 resulted in a coating microhardness (HV100) of 550 to 700.
We note that the areal energy density in Singh et al.'s work is defined
as Ea= Pd/(V‧ d), where d is the laser spot size (=0.7mm),With depo-
sition powers used in our work, the corresponding energy density
ranges from 27 J·mm−2 to 37 J·mm−2 for Pd = 200 W and Pd =
275 W, respectively. The energy density values chosen for this work
also match closely with those suggested by Xu et al. [12].

In closing this section, we note that it is vital to consider the effect of
individual processing parameterswhen choosing a range of energy den-
sity [33]. For instance, the impact of processing parameters, such as laser
power and scanning velocity on porosity formation and other defects
could be very deleterious for the same optimal range of energy density,
if they are not balanced contingent on the material deposited. An inor-
dinately large scanning velocity will induce flow- and surface-tension-
related instability in the meltpool.

2.4. Sample characterization

For microstructural characterization, small samples (10 mm ×
10 mm × 6.5 mm) were cut by wire electro-discharge machining

along the cross-section of the Stellite 21 coating. Samples were me-
chanically ground using progressively finer grit SiC sandpaper
(400, 600, 800, and 1200 grit) and polished using diamond paste
(3 μm, 1 μm, and 0.5 μm). Finally, the samples were etched with
aqua regia (hydrochloric acid-to-nitric acid was 3:1 by volume).
The coating was analyzed using scanning electron microscopy
(SEM), optical microscopy, and X-ray computed tomography
(XCT).

Microhardness measurements (Vickers, Hv) were performed on
polished surfaces under a load of 500 g and dwell time of 10 s, and
along the coating cross-section under a load of 100 g and dwell
time of 15 s using a Tukon 2500 Hardness Tester. Microhardness
testing was performed in accordance with ASTM E384. A distance
of at least 3 times the pyramidal diagonal of the Vickers indenter
was maintained between a crack and location of micro inden-
tation to avoid the effect of the cracks on the microhardness
measurements.

The microstructure of the coating was characterized by a dual-beam
SEM workstation (Helios 660 NanoLab, FEI). The microstructural com-
position was analyzed by Energy Dispersive X-ray Spectroscopy (EDS)
(Octane Super, EDAX) integratedwith the Helios 660. The crack density
as a function of depth below the coating surfacewas analyzed usingXCT
(NorthStar Imaging) prior to polishing and etching.

3. Results and discussion

3.1. Process-induced cracking and warping

3.1.1. Surface cracking
Fig. 5 shows the SEM micrographs of as-deposited coating surfaces.

Cracking is exacerbated at high deposition power (Pd). This is exempli-
fied by comparing samples F ( Ph= 0 W; Pd = 275 W) and sample P

Fig. 2. Photograph of (a) build plate inside the Optomec LENS machine, and (b) three Inconel 718 clad K-type thermocouples used for measuring in-situ temperature.

Table 2
Fixed and varied process parameters used in DED of Stellite 21 on Inconel 718.

Process step Laser power Deposition pattern Scan
velocity

Hatch spacing Layer
thickness

P [W] V[mm/s] H [mm] T [mm]

Preheat (2 layers) Varied at 4 levels Ph = 0, 300, 350, 400 Rectilinear, 0.70 mm distance between hatches 5.1 0.7 (= laser spot size (d)) N/A
Deposition (12 layers) Varied at 4 levels Pd = 200, 225, 250, 275 Rectilinear, 95% overlap between hatches 10.6 0.375 (1.5 × T) 0.25

Z. Smoqi, J. Toddy, H.(S.) Halliday et al. Materials and Design 197 (2021) 109229
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Fig. 3. Experimental setup and schematic of the coupon (substrate) used for deposition. (a) dimensions of the substrate, and the coating region (b) scanning pattern for preheating. (c) and
(d) scanning pattern for the deposition,which follows a 90–0° alternating hatch patternwith overlap between adjacent passes. A separate coupon is used for each experimental treatment
condition.

Fig. 4. The experimental test plan used in conducting the experiments.
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(Ph= 0W; Pd= 225W). The highest density of crackswas observed in
the coating deposited at the extreme laser power (Pd=275W), regard-
less of whether the substrate was preheated.

A noticeable reduction in the number of cracks was observed be-
tween sample P (Ph= 0W; Pd= 225W) and sample Q ( Ph= 400W;
Pd = 225 W) which implies that preheating of the substrate miti-
gates cracking. However, it was observed that a preheat power of
400 W caused the substrate to warp. The reduction of preheating

power, exemplified in Sample B (Ph = 300 W Pd = 225 W), led to a
further reduction in surface cracks compared to sample Q.

The crack density under different processing conditions is quan-
tified in Fig. 6. The crack density (η) is determined from the SEM

images as η ¼ 8
π3 Ml2, where M is the total number of cracks per unit

area in an SEM image, and l the average length of the cracks [34].
Crack density was measured from 38 SEM images of dimensions
~2 mm × 2 mm.

Fig. 5. SEM images of as-deposited Stellite 21 coatings under different preheat and deposition power settings. Arrows indicate cracks.
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3.1.2. Crack depth
Fig. 7 shows the optical micrographs of surface, longitudinal and

transverse cross-sections for five samples, namely, F, O, P, Q, and N
after polishing and etching. Longitudinal cross-sections aremade paral-
lel to the scan direction of the first deposited layer; transverse cross-
sections are perpendicular to the scan direction of the first layer. A
prominent inference from Fig. 7 is that the crack density decreases sig-
nificantlywhen the substrate is preheated and the laser power for depo-
sition is reduced to a moderate or low level.

From Fig. 7, we observe that samples deposited at relatively higher
laser power, such as samples F (Pd = 275 W, Ph = 0 W) and O (Pd =
275 W, Ph = 400 W) have prominent cracks. For instance, in the case
of sample F, which is not preheated ( Ph= 0), and the coating is depos-
ited at the highest power setting (Pd=275W); the depth of a represen-
tative crack is ~350 μm.Moreover, on comparing sample P (Pd=225W,
Ph = 0W) and Q (Pd = 225W, Ph= 400W) it is evident that the crack
density decreases significantly when the substrate is preheated and the
laser power for deposition is reduced to a moderate level.

In the transverse cross-section micrographs in Fig. 7, it is observed
that those samples (O, Q, and N) whose substrates have been preheated
show troughs and peaks corresponding to passesmade by the laser dur-
ing preheating. The presence of troughs and peaks, demarcated as A in
Fig. 7, indicates that the material was melted during preheating. The
melting of the substrate implies that the local temperature exceeds
1250 °C, viz., the lower bound of the melting temperature for Inconel
718. Peaks and troughs, indicative of remelting of the substrate, were
also observed in sampleswhichwere not preheated butwere processed
at high deposition power, such as sample F. However, the remelting
depth of the substrate in sample F was measured to be in the range of
50 μm and is not as prominent as in Sample O.

A consequential observation in Fig. 7 is that cracking is restricted to
only the topmost layers and not near the substrate; both longitudinal
and transverse cross-sections confirm that the cracks do not extend be-
yond 350 μm in the worst-case scenario (sample F). More pertinently,
no cracks were evident in the interface region, which implies a strong
adhesion between the substrate and coating. An explanation for the ob-
servation that cracks are only present in the topmost layers is tendered
as follows. Cracks are initiated from the layer being currently processed
and propagate towards the interface. However, when the next layer is

deposited on top, the layers at the bottom are re-melted, and themolten
material from remelting heals the cracks.

The remelting of material is advantageous from a practical perspec-
tive; if cracking is detected in a timelymanner using in-situ sensors they
can be readily corrected by making an additional pass by the laser,
which will remelt and heal (refill) the cracks. The remelting of layers
at the bottom was also reported by Sun et al [35].

Next, the samples were subjected to X-ray computed tomography
(XCT) analysis to understand the three-dimensional nature of crack for-
mation. The crack density was characterized at different depths below
the coating surface through XCT scanning. Fig. 8 shows the XCT of two
representative samples at voxel size of 15 μm, F ( Ph= 0 W, Pd =
275 W) and G (Ph = 300 W, Pd = 275 W) at similar locations beneath
the surface of as-deposited coatings. We observe that at depth of
300–350 μm from the top surface of the coating, the number of cracks
was reduced by ~50% in comparison with crack density observed at
depths of 150–300 μm. Moreover, no cracks are evident at a depth of
350 μm and beyond.

Thus, from XCT analysis we conclude that the crack density de-
creases with depth below the surface and that the substrate-coating in-
terface is free from cracks. This observation indicates that the cracks
were initiated at the layer being deposited and propagated towards
the interface. Apart from the observation that cracks are only restricted
to the topmost layers, the XCT analysis attests to the observation that
remelting of prior layers can result in the healing of cracks and is a viable
mechanism for mitigating crack formation.

3.1.3. Warping
During DED the substrate tends to warp due to the residual thermal

stresses. It was observed that warping of the substrate was a function of
the preheat and deposition laser powers. Fig. 9(a) shows an actual sam-
ple warping after preheating the Inconel 718 substrate at Ph = 400 W
and deposition of the Stellite coating at Pd = 225W. The sample tends
to warp in a concave up manner.

The procedure used for themeasurement ofwarping is encapsulated
in Fig. 9(b). The intent is to ascertain the flatness of the coupon, by av-
eraging the deviation of edges from the ideal plane. From the results
depicted in Fig. 10 it is observed that the laser power applied during
preheating (Ph), and not the deposition power (Pd), has a significant ef-
fect onwarping. Excessive preheat tends towarp the sample by asmuch
as 0.5 mm. Hence, it is necessary to balance the beneficial effects of
preheating in reducing cracking with the deleterious side-effect of
warping; the optimal choice identified is sample N.

3.2. Microstructure characterization

3.2.1. Morphology and composition
The SEM images of the etched and polished sample surfaces are

shown in Fig. 11. The observation of a dendritic microstructure, contin-
gent on the laser power and preheating conditions in Stellite is consis-
tent with the findings in the literature [6,24,28,29,36–38]. More
pertinently, we observed that cracks occurred without exception
along the inter-dendritic regions. The proclivity of the crack formation
along the inter-dendritic regions is evident in sample P, shown in
Fig. 11 (bottom left).

To explain the reason for crack formation along the inter-dendritic
regions, we conducted energy-dispersive X-ray spectroscopy (EDS)
point analysis at the representative spots in Fig. 11. Spot 1 represents
an EDS reading taken at the dendritic region, whilst Spot 2 represents
the inter-dendritic region. The EDS analysis, reported in Table 3,
shows that in samples with predominant cracking, namely, F, O and P,
the difference in the concentration of Cr and Mo between dendritic
and inter-dendritic regions is consistently higher than that in the nom-
inally crack-free sample (N). In other words, a large difference in Cr and

Fig. 6. Crack density extracted from the SEM images as a function of preheating and
deposition laser powers. Crack density was measured from 38 SEM images of
dimensions ~2 mm × 2 mm.
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Mo concentrations between the inter-dendritic and dendritic regions
are correlated to crack formation.

To further substantiate this finding, the EDS line analysis was per-
formed in the vicinity of a crack as shown in Fig. 12(a). The plot in
Fig. 12(b) shows that the concentration of Cr and Mo increases sharply
near the edge of the crack, while the Co content decreases.

These observations suggest the formation of a brittle Cr-rich carbide
phase and Co3Mo in the inter-dendritic regions, which is susceptible to
cracking under thermally induced stresses [17,20]. The cracking of
Stellite 21 in the inter-dendritic regions on account of formation of Cr
and Mo-rich phases was also observed by Lai et al. [39].

3.2.2. Dilution of the coating
Energy dispersive X-ray Spectroscopy (EDS) elemental line scans

were conducted along the transverse cross-sections of three samples
(Fig. 13). These line scans quantify the effect of process conditions on
the dilution of the coating composition due to the diffusion of elements
from the substrate. The samples chosen were P ( Ph= 0, Pd = 225 W),
N ( Ph= 350 W, Pd = 200 W), and Q ( Ph= 400 W, Pd = 225 W).
These samples were selected because they had less severe cracking
compared to samples F and O (Fig. 7). Samples F and O were replete
with cracks as deep as 350 μm and therefore deemed infeasible condi-
tions for processing an effective coating.

Fig. 7. Optical micrographs of the etched and polished surfaces, longitudinal and transverse cross-sections of Stellite 21 coating under different preheat and deposition power settings.
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Fig. 13 shows the change in elemental concentration of five alloy
constituents, Co, Ni, Fe, Cr, and Mo as a function of distance from the
coating surface to the substrate. The greatest change is observed in Co,
Ni, and Fe along the EDS line scan; a steep change in elemental compo-
sition demarcates the interface between the coating and substrate. The
degree of coating dilution by the substrate material is ascertained on
comparison of the EDS line scan.

For example, tracking the composition in Samples P and Q revealed
that the Cr content ranges from 25% to 30% in the coating region. In con-
trast in sample N, the Cr content in the coating is in the range of 15% to
20%. Comparing the EDS line scanning for samples P (Ph = 0), N ( Ph=
350W), and Q (Ph= 400W) in Fig. 13(a), (b), and (c), respectively, we
observe that the compositional variation along the transverse cross-
section of sample Q was less abrupt and occurs over a longer distance
(~200 μm) in comparison with sample P. However, the line scan along

the transverse cross-section of sample N (moderate preheat, Ph =
350W), shows a steeper compositional variation over a shorter distance
(~40 μm) in comparison with sample Q ( Ph= 400; Pd = 225 W).

These changes in the composition in the coating implies that the
intermixing between the coating and substrate increases as the
preheating power (Ph) increases, consistent with the findings of
Zanzarin et al. [15]. Another observation is that preheating the substrate
prior to the deposition process generates a heat-affected zone (HAZ);
the depth of the HAZ increases with the preheat power and promotes
the diffusion of alloying elements. The characteristics of the HAZ is
discussed in depth in the forthcoming Section 3.3.

The variation of the composition over the interface when the pre-
heat power increases is explained as follows. Since the surface of the
substrate is melted during preheating, consequently, the high surface
temperature of the substrate before deposition of the coating facilitates

Fig. 8. X-ray Computed Tomography (XCT) investigation of Stellite 21 coating defects at different depths measured from the coating surface to the interface region.

Fig. 9. (a) Photograph of a warped sample of Stellite 21 coating deposited on Inconel 718 ( Ph=400W; Pd=225W). Square sides are 5mm; (b) Schematic representation and calculation
of the average relative sample warpage.
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intermixing and elemental diffusion of the substrate material into the
coating. Therefore, the dilution of the coating by the substrate material
is exacerbated by an increase in the preheat power (Ph) [15].

3.3. Microhardness

3.3.1. Surface microhardness
The surface microhardness HV0.5 of polished and etched samples is

reported in Table 4; measurements are taken at six random locations
on the surface. The surfacemicrohardness of the Stellite 21 coating, irre-
spective of the processing condition, was higher than the hardness of
the underlying substrate, Inconel 718 alloy, viz., HV0.5 = 320 (standard
deviation, 26). In the literature the higher hardness of the Stellite coat-
ing is attributed to the formation of Cr-rich carbides (Cr7C3 and Cr3C2)
and Mo-rich carbide (Co, Mo)3C in the Co matrix [10,23,40–42].

Statistical analysis revealed that the mean value of the surface mi-
crohardness for coatings deposited at laser power Pd = 225W is signif-
icantly higher than that for coating deposited at both 275W and 200W
(5% level of significance). A similar trend in microhardness values with
the deposition laser power was also reported by Bartkowski et al. [29].
The lowest mean value of microhardness was observed for sample N,
i.e., the nominally crack-free sample. The low hardness of sample N
stems from the lower concentration of Cr compared to other samples,
as was evident from the EDS point analysis in Table 3. The reduced Cr
concentration decreases the brittleness (at the cost of hardness), and
consequently mitigates crack formation due to thermally induced
stresses.

3.3.2. Microhardness across the cross-section of the coating
Fig. 14 shows the transverse cross-section microstructure and mi-

crohardness profiles for samples F, O, P, and Q. The microhardness in
Fig. 14(c) and (d) is measured at five random locations at a particular
depth. The microhardness readings correspond to their respective mi-
crographs in Fig. 14(a), (b), (e) and (f); the error bars are one standard
deviation wide.

Likewise, the microhardness for the nominally crack-free Sample N
as a function of its microstructure is characterized in Fig. 15. The de-
creasing trend in the microhardness observed in Figs. 14 and 15 with
the distance from the coating surface is consistentwith previous studies

on Co-based coatings [11,29,31,43–46]; the decrease in hardness is at-
tributed to the change in the microstructure, dilution of the coating
composition, and poor material consolidation.

Accordingly, referring to Figs. 14 and 15, the microhardness profile
along the cross-section can be demarcated into four regions: (i) the sur-
face coating region, which has the highest hardness; (ii) the intermixing
region which has a reduced hardness due to diffusion of Fe and Ni into
the coating from the substrate; (iii) the heat-affected zone (HAZ); and
(iv) the substrate.

In this work, we refer to the re-solidified region of the substrate
caused by laser melting and rapid solidification as HAZ. Intermixing,
on the other hand, is a region composed of a mixture of substrate and
coating materials, which forms on account of remelting of the HAZ.
The surface coating region, referring to Fig. 15, extends to a depth
≈ 100 μm from the surface (after polishing), and has a finer dendritic
microstructure relative to the other three regions of the coating. Consis-
tent with the hardness recorded on the surface (Table 4), the hardness
of the coating region is a function of the deposition power; the maxi-
mum hardness value was achieved at a moderate deposition power
(Pd = 225W) and not at the high deposition power (Pd = 275).

The surface coating region is followed by an intermixed region
where the hardness values tend to decrease precipitously due to dilu-
tion of the coating composition with Fe and Ni from the substrate.
Next is the HAZ, whose depth is proportional to the deposition laser
power (Pd) and preheat power (Ph). The effect of preheating the sub-
strate on the depth of the HAZ is estimated from Figs. 14 and 15 based
on visual inspection of the microstructure. The microstructure of the
HAZ is finer than that of the unaffected substrate, and it has a higher
hardness due to remelting and rapid solidification. For example, from
Fig. 14(a) and (b) for sample O and Q, respectively, with Ph = 400 W
the depth of the HAZ ~330 μm. Likewise, in Fig. 15(a) for sample N
(Ph = 350 W), the HAZ is approximately 280 μm deep. In comparison,
for sample F and P deposited at Ph = 0 W in Fig. 14(e) and (f), the
HAZ has a thickness of 25 μm to 50 μm.

The HAZ is large for samples deposited at high energy density
(> 200 J‧mm−3) due to melting of the substrate. High energy density
leads to an increase in the temperature, which in turn promotes the
intermixing of the coating and substrate elements. In other words, de-
position at a high laser power or preheating the substrate at high laser
power prior to the deposition process increases the depth of the HAZ
and intermixing.

3.4. Correlation of in-process temperature data to crack formation

In this section, we acquire in-situ temperature measurements to
substantiate that the cracking is linked to the thermal history of the
part during deposition, which in turn is a function of the input energy
density. We show that cracking is mitigated by minimizing steep tem-
perature gradients, through a pragmatic choice of laser power and
preheating.

In Fig. 16,we compare the temperature trends for the five samples, F,
O, P, Q, andNmeasured by a thermocouple in contactwith the substrate
(Far TC shown in Fig. 2(b)). Data from all the three thermocouples used
in this work show similar trends in the part temperature, hencewe only
show data from Far TC. There is a gradual increase in temperature as
scanning starts from the side of the coupon furthest from the thermo-
couple. The cyclical nature of the temperature trace observed at this
fixed measurement point is the salient aspect of these plots. The spikes
in theplot correspond to the 12 deposited layers and the twopreheating
passes where applicable (demarcated as h1 and h2, in samples O, Q, N).

The use of moderate energy density in Sample N reduces the
temperature variation within and between layers, which mitigates
thermally induced stresses, and consequently arrests cracking.

Table 5 summarizes in-process thermal data observed from temper-
ature graphs illustrated in Fig. 16 in terms of the average peak-to-valley
temperature along with the standard deviation over 12 layers. The first

Fig. 10. Effect of process parameters on thewarping of the substrate. The plot is a graphical
representation of the average relative warpage as a function of preheating and deposition
laser powers.
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Fig. 11. EDS point analysis of polished surfaces of Stellite 21 coating on Inconel 718 alloy under different preheat and deposition power settings, where EDS Spot 1 and Spot 2 represent
dendritic and inter-dendritic regions, respectively, and the results are presented in Table 3. The bottom left is an SEM image of cracking along an inter-dendritic region in sample P.

Table 3
Elemental concentration in wt% measurements from the dendritic (Spot 1) and inter-dendritic (Spot 2) regions. The number in the parenthesis is the standard deviation (n = 4).

Samples F O P Q N

Pd = 275 W Pd = 275 W Pd = 225 W Pd = 225 W Pd = 200 W

Ph = 0 W Ph = 400 W Ph = 0 W Ph = 400 W Ph = 350 W

Elements Spot 1 Spot 2 Spot 1 Spot 2 Spot 1 Spot 2 Spot 1 Spot 2 Spot 1 Spot 2
Chromium Content 28.33 30.74 28.17 30.64 28.12 30.29 28.74 30.04 26.9 28.07
Difference 2.41 (0.82) 2.48 (1.13) 2.17 (0.36) 1.30 (0.54) 1.18 (0.31)
Molybdenum Content 1.79 4.94 2.47 5.21 2.68 5.51 2.71 4.52 3.21 4.39
Difference 3.15 (0.57) 2.73 (0.77) 2.83 (1.02) 1.82 (0.08) 1.12 (0.03)
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Fig. 12. (a) SEM image of Stellite 21 coating in sampleO (Pd=275W). The red line denotes the EDS line scan. (b) Elemental concentrations along the EDS line scan shown in (a). The zero point
in the x-axis of the plot corresponds to the edge of the crack. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. EDS line scan of the transverse cross-section of Stellite 21 coating on Inconel 718 alloy at different preheat laser powers (a) Sample P ( Ph= 0; Pd = 225W); (b) Sample N ( Ph=
350W; Pd = 200 W); (c) Sample Q (Ph = 400 W; Pd = 225 W). It is observed that the width of the intermixing region increases as the preheat power (Ph) increases.
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pertinent observation from Fig. 16(a) is that the samples with predom-
inant cracking (sample F and O, Pd = 275W) have the highest average
peak-to-valley amplitude of nearly 30 °C, as well as large variability
(standard deviation, ~ 3.5 °C). When the laser power is reduced from
275 W (Fig. 16(a)) to 225 W (Fig. 16(b)) for samples P and Q (Pd =
225W), the amplitude drops by nearly 18% for samples depositedwith-
out preheating and more than 45% for samples deposited with
preheating the substrate.

Further evident in Fig. 16(b) is the beneficial effect of preheating in
reducing steep thermal gradients. The temperature during the

deposition of SampleQ (Pd=225W, Ph=400W) is consistent between
130 °C and 150 °C, and the average peak-to-valley temperature ampli-
tude is close to 17 °C. In comparison with Sample Q, the peak tem-
perature profile for Sample P (Pd = 225 W, Ph= 0 W) shows a
steady increase from 50 °C from layer 1 to 150 °C at layer 12, with the
peak-to-valley temperature amplitude as large as 28 °C.

To further accentuate the contrasting effect of laser power and
preheating, in Fig. 16(c) the sample with the highest crack density
(sample F) is compared with the nominally crack-free sample (sample
N). In the case of sample N, the peak-to-valley amplitude temperature
difference is largely steady from the start of deposition to the end of de-
position and is only ~18 °Cwith a standard deviation of less than 1 °C. In
contrast, the temperature gradually rises for sample F (which is not
preheated), and the peak-to-valley temperature difference reaches
nearly (40 °C) towards the end of the deposition.

The in-situ temperature profiles confirm that the large variation in
temperature across the entire deposition process, and between the
start and end of a layer in samples processed without preheating and
at high deposition power, (e.g., sample F) is the main cause of cracking.
Preheating arrests the continual rise in temperature across thewhole of
the deposition process, and a moderate deposition power prevents a
large variation in temperature between layers.

Table 4
Microhardness measurements (HV0.5) of polished surfaces of Stellite 21 coatings depos-
ited under different conditions of preheating (Ph) and deposition power (Pd) in Watts.
The number in the parenthesis is the standard deviation for six measurement points.

Sample HV0.5 mean (standard deviation, n = 6)

F (Ph = 0, Pd = 275) 379 (9)
O (Ph = 400, Pd = 275) 389 (12)
P (Ph = 0, Pd = 225) 400 (12)
Q (Ph= 400, Pd = 225) 399 (22)
N (Ph = 350, Pd = 200) 366 (11)

Fig. 14. The microstructure and microhardness measurements along the depth of Stellite 21 coating deposited on Inconel 718 under different preheat and deposition laser powers.
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4. Conclusions

This work investigates the effect of processing conditions, namely
laser power and preheating on the characteristics – crack formation,mi-
crostructural evolution, dilution and themicrohardness of the coating –
of Stellite 21 coatings deposited on Inconel 718 substrates using the
DED process. Specific conclusions are summarized hereunder.

Cracking of DED-processed Stellite 21 coatings is observed exclu-
sively along the inter-dendritic regions. The coating cracks when
inter-dendritic regions, which are rich in brittle Cr and Mo phases, ex-
posed to high thermally induced residual stresses. Furthermore, cracks

Fig. 15. (a) Cross-section of Sample (N), (b) microhardness measurements along the depth of sample N corresponding to the cross-section in (a) above, (c) and (d) optical images of two
locations marked 1 and 2, respectively in (a). The arrow indicates the direction of the top surface of the coating.

Fig. 16. Thermal phenomena acquiredduring preheat and deposition process for samples (a) F (Ph=0W;Pd=275W) versusO (Ph=400W; Pd=275W), (b) P ( Ph=0W;Pd=225W)
versus Q (Ph = 400 W; Pd = 225W), and (c) F (Ph = 400 W; Pd = 275 W) versus N (Ph= 350 W; Pd = 200 W).

Table 5
Average peak-to-valley temperature for the five selected samples. The number in the pa-
renthesis is the standard deviation over the 12 layers.

Sample Processing condition Average peak-to-
valley temperature [°C]
(std. deviation)

Crack
density [%]

F Ph = 0 W, Pd = 275 W 31.3 (3.33) 3.4
O Ph = 400 W, Pd = 275 W 32.5 (3.43) 3.3
P Ph = 0 W, Pd = 225 W 25.5 (2.06) 1.5
Q Ph = 400 W, Pd = 225 W 17.6 (4.36) 1.4
N Ph = 350 W, Pd = 200 W 18.7 (0.91) No cracks

detected
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were only restricted to the topmost layers and no cracks were observed
at the coating-substrate interface.

Cracking of Stellite 21 coatingswasmitigated by preheating the sub-
strate and regulating the energy density for deposition to a moderate
level (Ev = ~200 J·mm−3). Using moderate energy density has two ef-
fects. First, it mitigates segregation of Cr and Mo to the inter-dendritic
regions, which form brittle phases that are susceptible to thermally in-
duced cracking. Second, it reduces the variation in temperature be-
tween layers, which in turn arrests thermally induced residual
stresses. Localized preheating of the substrate with the laser further re-
duces the variation in temperature and leads to a stable temperature
trend over the entire deposition process.

The energy density used for deposition and preheating influences
the microstructure characteristics, chemistry (dilution), and properties
of the coating. Excessive preheating of the substrate increases the
depth of the heat-affected zone, sample warpage, and dilution of the
coating with the substrate material, mainly Ni and Fe, which decreases
its hardness. Microhardness profiles showed that the hardness is signif-
icantly higher at moderate deposition laser power and the hardness in-
creases with the distance from the interface to the coating surface.

Crack-free coatings are obtained at a volumetric energy density
Ev=Pd/(V‧T‧H)=200 [J‧mm−3]. In the context of thiswork, the recom-
mended process window translates to: deposition power Pd = 200 W
and preheat Ph = 350 W; velocity V = 10.6 mm·s−1; layer height
T = 0.25 mm; and hatch spacing H = 0.375 mm.
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