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ABSTRACT 

Biometrical Study of Morphology and Development of 

the Pennsylvanian Trilobite Ameura sangamonensis 

(Meek and Worthen) from Nebraska 

ROGER K. p ABIAN J. A. FAGERSTROM 

Biometrical study of morphology and development in a sample of 100 
cranidia, 94 pygidia, 26 free cheeks, and 9 complete specimens of the trilobite 
Ameura sangamonensis (Meek and Worthen) from the Bonner Springs Shale 
(Pennsylvanian; Missouri Series) in eastern Nebraska indicates that the dominant 
growth pattern was isometric. Evidence supporting this conclusion consists of 
rectilinear size relations among eight pairs of cranidial dimensions, three pairs 
of pygidial dimensions, and three pairs of dimensions of the free cheeks. Quali
tative changes in pygidial morphology during development include a progressive 
decrease in prominence of the border, increasing width of the posterior border 
relative to the lateral borders, and a progressive change in outline from a 
smoothly rounded semi-circular margin to one that is subtriangular or sub
parabolic. 

All the complete specimens in the sample are holaspides. There is some 
indication of point clustering on scatter diagrams among the smallest cranidia 
which suggests that the sample may contain a few late meraspides. However, if 
meraspid cranidia and free cheeks are present, they are morphologically very 
similar to the small holaspides. 
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Biometrical Study of Morphology and Development of 

the Pennsylvanian Trilobite Ameura sangamonensis 

(Meek and Worthen) from Nebraska 

INTRODUCTION 

Although trilobites are not abundant in the rocks of the Penn
sylvanian System in eastern Nebraska, they are not so rare as has 
been commonly assumed. During the summer of 1962, an unusually 
rich fossil population of the trilobite species Arneura sangamonensis 
(Meek and Worthen) was collected from the Bonner Springs Forma
tion (Upper Pennsylvanian, Missouri Series; see Condra and Reed, 
1959, p. 51) exposed in an abandoned quarry near the center of the 
SE¼, SE¼, Sec. 7, Tl2N, Rl2E, Cass County, Nebraska, about l½ 
miles southwest of the village of Cedar Creek. The trilobites are 
associated with at least sixteen other species of fossil invertebrates 
(Fagerstrom and Boellstorff, 1964; Fagerstrom, 1965) in a one foot 
thick layer of interbedded yellowish brown shale and light gray 
crystalline limestone located between one and two feet below the 
upper contact of the Bonner Springs Formation. The larger speci
mens were collected loose on the surface of the outcrop or on the 
bedding surfaces of the limestone layers; the small specimens were 
picked from boiled and washed bulk samples of the shale which 
were examined for microfossils under a binocular microscope. 

The exuviae of A. sangamonensis have been altered by minor 
pre-burial currents, scavengers, etc., and by post-burial crushing 
from the weight of the overlying rocks (Fagerstrom, 1965). As a re
sult, the fossil trilobite population consists largely of disarticulated 
and broken parts. Only nine complete specimens were collected 
and four of these were too poorly preserved for biometrical study. 
All of the specimens (229) have been deposited in the invertebrate 
paleontological collection of the University of Nebraska State 
Museum (UNSM) and are numbered UNSM 5201-5429. 

1 Department of Geology, University of Nebraska, Lincoln. 
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BIOMETRICAL DATA 

UNIVARIATE ANALYSIS 

Some of the more important univariate measures which were 
computed from the sample are given in Table I; the dimensions 
measured are illustrated in Fig. l. One of the most interesting fea
tures of the sample is the very great range in size of the individuals 
(observed range, Table 1 ). The very small size of many of the 

B 

C 

A 

FIG. 1. Outline drawings showing dimensions measured on cranidia (A), free 
cheeks (B), and pygidia (C) of Ameura sangamonensis (Meek and Worthen). 

fragments suggests that some may represent larval stages. Review of 
the literature on the ontogeny of North American Carboniferous 
trilobites indicates that larvae are rare and wherever present are 
very thin and fragile. \!\Teller (1935) has described the "adolescent" 
development of species of Ditomopyge and Whittington (1954) has 
described very small specimens (presumably late meraspides; see p. 
4) of two species of Paladin. No descriptions of Carboniferous pro
taspides are known to the present authors. 

190 



Pennsylvanian Trilobite Ameura sangamonensis 

Table 1. Univariate measures computed from samples of cranidia, free cheeks, 

pygidia, and complete specimens of Ameura sangamonensis (Meek and Worthen). 

All measurements in mm. Symbols for dimensions mostly after Shaw (1957). 

Dimension 

CRAN ID I A (see Fig. IA) ( N = 100) 

Total cranidial length, A1 
Occipital intra-marginal cephalic 

length, A2 
Preoccipital cranidial length, A3 
Occipital mid-palpebral distance, D 

Anterior cranidial mid-palpebral 
distance, o2 

Maximum width, frontal area, J2 
Palpebral cranidial width, J 

Total glabellar length, B 

FREE CHEEKS (see Fig. 18) (N = 26) 

Total length, free cheek plus 
genal spine, M 

Vertex of genal angle mid-eye 
lobe distance, M1 

Anterior free cheek mid-eye lobe 
distance, M2 

PYGIDIA (see Fig. IC) (N = 94) 

Total pygidial length, Z 

Intra-articulating rhachis length, Y 1 
Maximum pygidial width, W 

Maximum intra-marginal pygidial 
width, wl 

COMPLETE SPECIMENS (N = 5) 

Total exoskeletal length, P 

Observed 
Range 

3. 0 - 10. 7 

2. 6 - 9. 7 

2.3-9.0 

1.0 - 4. 2 

1.7 - 8.0 

2. 2 - 9. 2 

2. 2 - 9. 6 

1.9-8.7 

2. 5 - 16. 7 

1.8-10.8 

0. 7 - 5. 8 

1.7-11.5 

1.5 - 9. 8 

2. 4 - 13. 7 

2. 0 - 11. 2 

Mean 

7. 05 

6. 30 

5.95 

2. 22 

4. 82 

5. 80 

5. 96 

5. 20 

9.80 

6. 29 

3. 60 

6. 51 

5. 56 

8.05 

7.02 

15. 9 - 28. 8 21. 50 

Standard 
Deviation 

2.10 

1. 90 

1. 81 

0.22 

1.51 

1.88 

1.92 

1. 62 

3. 34 

4. 72 

1. 89 

2. 88 

2. 57 

3.33 

2. 95 

5. 31 
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During the "meraspid" development of pygidia of Ditomopyge 
olsoni (Weller, 1935, p. 506-509, Text-figs. 4-8) there is a progressive 
decrease in the relative size of the pair of posterior spines and in 
the width of the posterior border. By definition, holaspid develop
ment in this species begins with those stages lacking spines (Weller, 
1935, p. 506). Small specimens of Paladin and Ameura sangamonen
sis lack pygidial spines but there is a progressive reduction in the 
relative width of the border in A. sangamonensis that is similar to 
the meraspid development of D. olsoni as noted above. However, 
despite this similarity in the development of A. sangamonensis and 
meraspides of D. olsoni it is impossible to determine whether the 
small pygidia in the present sample actually are larval stages. If 
they are larvae, their morphology is essentially the same as the 
morphology of the adults, except for smaller size. The smallest 
complete early holaspid specimen, with nine thoracic segments 
(UNSM 5201), is morphologically similar to cranidial and pygidial 
fragments of the same and smaller sizes. A few of the important 
dimensions (in mm.) of this specimen are as follows (see Fig. I for 
the dimensions indicated): total cranidial length (A1)=4.9; anterior 
cranidial mid-palpebral distance (D2)=3.2; occipital mid-palpebral 
distance (D)=l.7; total glabellar length (B)=3.9; maximum width, 
frontal area Q2)=4.2; palpebral cranidial width 0)=4.2; preoccipi
tal cranidial length (A3)=4.3; occipital intra-marginal cephalic 
length (A2)=4.5. 

BIVARIATE ANALYSIS 

The chief disadvantage of univariate analysis is that it gives no 
information concerning morphological change during growth. This 
study of the development of A. sangamonensis is based largely upon 
bivariate measures for the paired dimensions indicated in Table 2. 
The choice of paired dimensions for bivariate analysis of cranidia 
and pygidia is largely based upon the suggestions of Shaw (1957, p. 
193). Bivariate analysis of the development of free cheeks has not 
been undertaken by previous workers so the dimensions selected 
for measurement and the terminology and symbols (Table 1 and 
Fig. lB) are used for the first time in the present paper. The use of 
Bartlett's "best fit" lines in Table 2 rather than reduced major axes 
follows the recommendations of Simpson, Roe, and Lewontin (1960, 
p. 401-402). 

Scatter diagrams were prepared for each pair of dimensions listed 
in Table 2 and in all cases the general trend of points was recti
linear (see Text-figs. 2-7). Therefore, the dominant growth pattern 
for cranidia, free cheeks, and pygidia was isometric. Isometric pat-
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Table 2. Bivariate measures computed from samples of cranidia, pygidia and 

free cheeks of Ameura sangamonensis (Meek and Worthen). .!: = total correlation 

coefficient; "Best Fit" lines after Simpson, Roe, and Lewontin (1960). Symbols 

for paired dimensions as in Fig. 1 and Table 1. 

Paired 
Dimensions 

(Y, X) 

CRANIDIA 

J, Al 

B, Al 
B, A2 

Jz, Al 

J' J2 
D, Dz 

Dz, Al 

A3, Al 

(N = 100) 

.98 

.98 

. 99 

. 99 

.98 

. 84 

. 98 

. 99 

FREE CHEEKS (N = 26) 

M2, M .91 

Ml' fy1. .98 

M2, Ml • 83 

PYGIDIA (N = 94) 

z, w . 96 

Z, w1 . 96 

yl' z • 9.6 

J 

B 

B 

J2 
J 

D 

D2 

A3 

M2 

Ml 

"Best 
Fit" 
Line 

~ . 894A1 
. 741A1 
• 840A2 
. 854A1 

= 1. 020J2 

- . 338 

- . 033 

- .096 

- . 235 

+ • 032 

= . 384D2 - • 393 

= • 708A1 - .174 

= . 850A1 - .046 

= .402M - . 340 

= .631M t .llO 

M2 = • 637M1 - . 407 

z = 1.131W + . 692 

z = l.008W1 + . 462 

yl = • 859Z - . 025 

95% Confidence 
Intervals 

(for slope) (for Y-intercept) 

. 888 - . 910 .:t .025 

. 739 - . 751 ±. 039 

. 811 - . 857 .! . 080 

. 784 - . 928 ±. 031 

. 879 -1. 240 .:t .004 

. 348 - . 415 ! .124 

. 690 - . 726 .:t .014 

. 840 - . 860 ± .108 

. 359 - . 438 .:t. 061 

. 502 - . 737 .:!: .023 

. 585 - . 683 ±.049 

1. 103 - 1. 157 .:t .062 

. 992 - 1. 022 .:t .034 

.821 - .893 ±. 095 

terns indicate that the dimensions being compared were increasing 
at the same relative rate, even though their absolute sizes may have 
been considerably different. 

There is some evidence of clustering of points among the small
est cranidia on the scatter diagrams (Text-figs. 2~5). This clustering 
may be indicative of individual molt stages (see Whittington, 1957, 
p. 449). Since, in many trilobite species, clustering is more prevalent 
among larval forms than among holaspides (e.g. Hunt, 1967, p. 204-
206), the suggested clustering in the present sample of A. sanga
monensis indicates that the smallest individuals may be late mera-
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spides. The absence of point clustering among the larger cranidia, 
and all of the free cheeks and pygidia (Text-figs. 6, 7) simply means 
that there is some overlap in size between large individuals in 
earlier molt stages and small individuals in later stages. 

In contrast to the relatively great variation in size among indi
viduals of the same molt stage, there is relatively little variation 
in general morphology during development, i.e. small cranidia, free 
cheeks, and pygidia have essentially the same shape as large ones 
(cf. Robison, 1967, p. 215-216). Evidence for this in the present 
sample consists of the generally high values for all the correlation 
coefficients (r, Table 2) and the isometric growth patterns for all 
pairs of dimensions studied (Text-figs. 2-7). The absence of distinct 
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FIG. 7. Scatter diagrams for paired pygidial dimensions of A. sangamonensis. 
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shape differences between small and large specimens suggests that 
the sample includes only holaspides. 

COMPARISON OF SAMPLES 

Future workers may wish to compare other samples of A. sanga
monensis with the present sample. For such comparisons it is sug
gested that t-tests for the significance of the difference between two 
values of slope and Y-intercept described by Simpson, Roe, and 
Lewontin (1960, p. 237) be used except sB2 is given by 

(i) sE2 = sx2 - 2Bsxy + B2sy2 
or 

(ii) sB,2 = s/ - 2Bsxy + B2sx2 

Table 3. Data for use in comparing other samples of f2:. sangamonens is with 

the sample described herein. (See Simpson, Roe, and Lewontin, 1960, p. 237). 

Paired 
s 2 Dimensions X3 - Xl B A 

(Y, X) 
b 

CRANIDIA (N = 100) 

Al' J 4. 780 . 032 . 894 - . 338 

B, Al 4. 780 .049 . 742 - . 033 

B, A2 4.062 .024 . 840 -. 096 

J2' Al 4. 780 . 001 . 856 - . 235 

J' J2 4. 182 . 001 1. 020 +. 032 

D, D2 3. 612 .194 . 814 - . 212 

D2, Al 4. 780 .112 .708 - .174 

A3' A1 4. 780 . 021 .850 - .046 

FREE CHEEKS (N = 26) 

Ml' M 6.930 . 901 . 402 - . 340 

M2' M 6.930 1. 438 . 631 + .110 

M2' Ml 4.380 . 504 . 637 - . 407 

PYGIDIA (N = 94) 

z, w 7. 519 1. 250 l. 131 +.692 

z, Wl 6. 703 .034 1.008 +. 462 

yl' z 6.646 .077 . 859 - . 025 
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where the unprimed symbols refer to one sample and the primed 
symbols refer to the other sample. The quantity (a-b)(a-b) is 
a2-2ab+b2 when x and y are a and b respectively. In equation (i), 
x=a and y=b; in equation (ii) x=b and y=a. 

The data of Table 3 are presented for making these compari
sons of samples. 

RATIOS BETWEEN VARIATES 

The use of the ratio between two dimensions has been a com
mon practice in trilobite taxonomy for many years. However, evi
dence from the present study indicates that some ratios may be 
rather unsatisfactory taxonomic criteri2. and that their continued 
use should be critically reviewed for each species. 

The standard form for an equation in two unknowns (x and y) 
is given by 

(iii) y = b x + a 

The equations for Bartlett's "best fit lines" in Table 2 are given 
in this same form: x and y in equation (iii) are two different dimen
sions of the dorsal carapace, b is the growth rate, or slope of the 
growth line, and a is the initial growth index, or the value of y 
when x equals zero. 

The relations between these same four variables may be ex
pressed in the form 

( i V) ~ = b 
X 

As the value of a approaches zero, the ratio y /x approximates b 
and is relatively constant regardless of the absolute values of y, x, 
and b. Conversely, the greater the difference between a and zero, 
the greater the difference between the ratio y/x and b. Thus, if the 
values of a and b remain constant, the value of the ratio y /x de
pends upon the absolute values of y and x and is not constant. 

These mathematical concepts can be expressed in terms of their 
biological significance as follows: 

1. If growth is isometric; the greater the difference in the value 
of the initial growth index (a) and zero, the more the value of the 
ratio between the dimensions (Y and x) will change during ontogeny. 

2. The greater the variation in the value of the ratio between 
two dimensions (y/x), the less suitable it is as a taxonomic criterion 
(Shaw, 1956, p. 1212-1213). 

3. The greatest variation in the value of the ratio occurs when 
the dimensions (y and x) are small. Thus, the ratio between two 
dimensions may change considerably during early ontogenetic stages 
and have only limited taxonomic significance, whereas the ratio 
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between the same two dimensions may be relatively constant during 
later ontogeny and therefore become a useful taxonomic criterion. 

These generalizations can be applied rather easily to the taxo
nomic understanding of A. sangamonensis. The values of a for the 
Ai-B and J-J2 paired dimensions (Table 2) most closely approach 
zero of all the pairs investigated. Therefore, the ratios B/A1 -and 
J/J2 are nearly constant throughout development (Figs. 8 and 9B) 

1.0 

.9 

W; z .8 
and 

B; 
A1 .7 

.6 

.5 

0 

0 2 4 6 8 10 12 

Length of Z and A 1 ( mm.) 

FIG. 8. Graph showing relatively great change in the ratio W /Z for values of Z 
less than about 5 mm. and relatively constant values for the ratio B/ A1 for 
all values of A1 for cranidia and pygidia of A. sangamonensis. 

and are useful taxonomic criteria in the identification of cranidia 
of all sizes. 

The ratio J / A1 varies significantly among small specimens but 
is relatively constant for specimens in which A1 is greater than 
about 4 mm. (Fig. 9A). 

Although the value of a for the Z-W paired dimensions appears 
relatively large (Table 2), study of the change in the W /Z ratio (Fig. 
8) during development indicates that even this ratio has taxonomic 
significance for pygidia longer than about 5mm. Thus, on the basis 
of the present investigation it appears as though the ratios between 
all the paired dimensions of cranidia, free cheeks, and pygidia of 
A. sangamonensis are ~seful taxonomic criteria in the identification 
of large specimens. 

QUALITATIVE MORPHOLOGY 

In addition to the quantitative aspects of morphology and devel
opment described above, there are some features of the dorsal cara
pace of A. sangamonensis that are not amenable to measurement 
and so must be qualitatively described. 
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Frc. 9. Ameura sangamonensis (Meek and Worthen). 9A. Graph showing rela
tively great change in ratio J / A1 for values of A1 less than about 4mm. 
9B. Graph showing relatively constant values for the ratio J IJ2 for all values 
of J2 • 

The prominence of the glabellar furrows is highly variable and 
independent of the size or convexity of the glabella. In some speci
mens the glabellar furrows are deeply incised whereas in others the 
furrows are shallow and broad or entirely absent. The ventral sur
faces of some glabellae are furrowed and yet the dorsal surfaces of 
the same specimens are smooth. 

An important qualitative aspect of the pygidium is the progres
sive decrease in the prominence of the border from early to late 
molt stages. On small specimens the border is well-defined whereas 
on larger specimens the border becomes increasingly indistinct (see 
Fig. IO). 
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FIG. 10. Ameura sangamonensis (Meek and Worthen). A sequence of pygidia showing changes in morphology during ontogeny. The most 
significant changes are: (1) decreasing prominence of the pygidial border due largely to a merging of the inner margin of the border with 
the outer margin of the pleural lobes, (2) increasing width of the posterior portion of the pygidial border in relation to the posterolateral 
and anterolateral portions, and (3) a progressive change in the outline of the pygidium from smoothly rounded lateral and posterior 
margins in very small individuals to a subtriangular to subparabolic outline in large individuals. Fig. lOA, UNSM 5202, X 10; fig. l0B, 
UNSM 5203, X 10; fig. lOC, UNSM 5204, X 10; fig. 10D, UNSM 5205, X 5; fig. l0E, UNSM 5206, X 5; fig. lOF, UNSM 5207, X 5. 



Pennsylvanian Trilobite Ameura sangamonensis 

SYSTEMATIC DESCRIPTION 

Phylum Arthropoda 
Class Trilobita 

Order Ptychopariida 
Suborder Illanenina 

Superfamily Proetacea 
Family Phillipsiidae, Oehlert, 1886 

Genus Ameura Weller, 1936, p. 713-714 

Type species.-Phillipsia sangamonensis Meek and Worthen, 1865, 
p. 271-272. Other species included.---'-Phillipsia major and P. mis
souriensis Shumard, 1858. Diagnosis.-See Harrington, H. J., et al., 
1959, p. 0401, fig. 308. 

Remarks. The Pennsylvanian rocks in eastern Nebraska contain 
specimens of two rather similar genera of phillipsiid trilobites: 
Ameura and Ditomopyge. Cranidia can be easily distinguished by 
the presence of a median preoccipital lobe in Ditomopyge. How
ever, isolated holaspid pygidia are somewhat more difficult to sepa
rate. Generally, the pygidial border in Ameura becomes progres
sively broader posteriorly whereas the border in Ditomopyge is of 
relatively uniform width around the entire margin. In addition, the 
axial lobe in Ditomopyge is broad and flattened on top (Harring
ton, et al., 1959, p. 040 I). 

In our experience in eastern Nebraska, species of these two 
phillipsiid genera do not normally occur together (Fagerstrom, 
1964, p. 1198). Thus, at the Cedar Creek locality no specimens of 
Ditomopyge were collected from the Bonner Springs Shale during 
the present investigation. 

Ameura sangamonensis (Meek and Worthen) 

Phillipsia sangamonensis, Meek and Worthen, 1865, p. 271-272. 
Ameura sangamonensis, Weller, 1936, p. 713-714; Shimer and 

Shrock, 1944, pl. 275, figs. 25-27. 
Revised description. Frontal area of cranidium crescentic, ex

tending posteriorly to merge with narrow fixed cheeks. Palpebral 
cranidial width and maximum width of frontal area approximately 
equal (J/]2""1.0); palpebral lobes crescentic. Glabella widest be
tween palpebral lobes; glabella oblate and highly inflated, rising 
sharply from frontal area and reaching its maximum height at 
position of maximum width of frontal area. Total glabellar length 
approximately ¼ total cranidial length (B/A1""0.75) and approxi
mately ½ occipital intra-marginal cephalic length (B/ A2eeee0,8). Gla
bella may be smooth or contain as many as four pairs of glabellar 
furrows; glabellar furrows vary considerably in depth and promi
nence. Occipital lobes nearly oval and located between occipital 
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ring and palpebral lobes. Occipitai furrow deep and narrow. Occipi
tal ring wide. Median pre-occipital lobe absent. Maximum width of 
frontal area and palpebral cranidial width about ½ total cranidial 
length CT2/A1e=0,8; J/A1e=0.8) on specimens where total cranidial 
length is greater than about 4 mm. Ornamentation absent. No ap
parent muscle scars on ventral surface of cranidium. 

Free cheeks nearly flat toward anterior and lateral margins, 
rising sharply at the multifaceted eye and tapering posteriorly to a 
narrow, elongate, genal spine which terminates at the sixth or 
seventh thoracic segment. In some specimens there is a hook-shaped 
depression behind the eye that points posteriorly. 

Thorax with nine articulating segments. Muscle scars appar
ently absent from ventral surface and ornamentation absent from 
dorsal surface. 

Pygidium subtriangular to subparabolic. Maximum pygidial 
length slightly greater than total pygidial width (W /Z=='0.85) where 
total pygidial length is greater than about 5 mm. Pygidial border 
well-defined on small specimens, becoming progressively less well
defined on larger ones. Pleural lobes rise sharply (about 45°) from 
the pygidial margin and then level off sharply toward the axial 
lobe. Axial lobe wide and highly arched. Pleural lobes with 11 to 
18 segments; axial lobe with 14 to 23 segments. Intra-articulating 
rhachis length about 9 /10 total pygidial length (Y 1/Z=='0.9). Orna
mentation absent. Pygidial doublure prominent, moderately thick
ened. Muscle scars variably developed; arranged in a single row on 
each side of the plane of symmetry inside the lateral margins of 
the axial lobe with one pair of scars per segment. 

Remarks. Previous workers (Weller, 1936, p. 714; Whittington, 
1954, p. 6; Chamberlain, 1964, p. 234) have described the glabella 
as widest between the eyes. Such conclusions are probably based 
upon visual estimation because the boundary between the glabella 
and the palpebral lobes is not always sharp and well-defined and so 
the width of the glabella at this position cannot always be measured 
with consistent results. Nonetheless, we agree with these authors 
that in most specimens the glabella appears widest between the 
palpebral lobes. However, measurements of the maximum width of 
the frontal area 02) and of the palpebral cranidial width (J) are 
consistently reproducible and also are nearly equal (12 ==' J). There
fore, these features of cranidial morphology appear to be more 
satisfactory taxonomic criteria than the position of maximum gla
bellar width. 

206 



Pennsylvanian Trilobite Ameura sangamonensis 

References 

Condra, G. E., and Reed, E. C., 1959. The geological section of 
Nebraska. Neb. Geol. Surv., 14A, 82p. 

Chamberlain, C. K., 1964. A preliminary study of Upper Paleozoic 
trilobites of central Utah. The Compass 41, 227-239. 

Fagerstrom, J. A., 1965. Fossil communities in paleoecology: their 
recognition and significance. Bull. Geol. Soc. Amer. 75, 1197-
1216. 

-----, and Boellstorff, John D., 1964. Taxonomic criteria in the 
classification of the Pennsylvanian productoid Juresania nebras
censis. Palaeontology 7, 23-28, pl. 2. 

Harrington, H. J. et al. 1959. Trilobita. Treatise on Invertebrate 
Paleontology. Univ. Kansas Press and Geol. Soc. America, pt. 0: 
028-0540. 

Hunt, A. S., 1967. Growth, variation, and instar development of an 
agnostid trilobite.]. Paleont. 41, 203-208, pl. 22. 

Meek, F. B. and \,Vorthen, A. H., 1865. Contributions to the paleon
tology of Illinois and other western states. Proc. Acad. Nat. Sci. 
Philadelphia, 245-273. 

Robison, R. A., 1967. Ontogeny of Bathyuriscus fimbriatus and its 
bearing on affinities of corynexochid trilobites. ]. Paleont., 41, 
213-221, I pl. 24. 

Shaw, Alan B., 1956. Quantitative trilobite studies I. The statistical 
description of trilobites.]. Paleont. 30, 1209-1224. 

-----. 1957. Quantitative trilobite studies II. Measurement of 
the dorsal shell of non-agnostidean trilobites. Ibid. 31, 193-207. 

Shimer, H. W. and Shrock, R. R., 1944. Index fossils of North 
America. John Wiley and Sons, New York: 1-837, 303 pls. 

Shumard, B. F., 1858. in Shumard, B. F. and Swallow, G. C. De
scriptions of new fossils from the Coal Measures of Missouri and 
Kansas. Trans. Acad. Sci. St. Louis, I, 198-227. 

Simpson, G. G., Roe, A., and Lewontin, R. 1960. Quantitative 
zoology, 1-440. New York. Revised ed. 

Weller, J. Marvin. 1935. Adolescent development of Ditomopyge. 
]. Paleont. 9, 503-513. 

-----. 1936. Carboniferous trilobite genera. Ibid. IO, 704-714. 
\,Vhittington, Harry B., 1954. Two silicified Carboniferous trilobites 

from west Texas. Smithsonian Misc. Coll. 122 (10), 1-16, 3 pls. 

-----. 1957. The ontogeny of trilobites. Biol. Reviews 32, 421-
469. 

207 



THE UNIVERSITY OF NEBRASKA 

STATE MUSEUM 

STAFF 
C. BERTRAND SCHULTZ 

Director; 
WARREN T. ATYEO 

Curator, Entomology 
E. CHARLENE CALL 

Secretarial Asst. 
BELVA D. CLEMENT 

Curator, Vertebrate Paleontology 
GILBERT C. LUENINGHOENER 

Consultant, Planetarium 
HAROLD W. MANTER 

Curator, Parasitology 
DONALD C. MARTIN 

Asst. Curator, Geology 
LOWELL WADE Cox 

Artist 
JESSE CRUTCHFIELD 

Guard 
MARY L. CUTLER 

Asst., Educational Services; and 
Asst. Curator of Records 

JOHN F. DAVIDSON 
Assoc. Curator, Herbarium 

J. A. FAGERSTROM 
Curator, Invertebrate Paleontology 

ALLAN D. GRIESEMER 
Curator, Educational Services 

CARL W. GUGLER 
Asst. Curator, Zoology 

HARVEY L. GUNDERSON 
Assoc. Director 
Curator, Zoology 

ROSCOE E. HILL 
Assoc. Curator, Entomology 

PRESTON HOLDER 
Curator, Anthropology 

PAUL A. JOHNSGARD 
Asst. Curator, Zoology 

JANE HOLDEN KELLEY 
Assoc. Curator, Anthropology 

RUDY G. KOCH 
Asst. Curator, Herbarium 

Chief Preparator 
CHARLES L. MESSENGER 

Preparator 
NATHAN L. MOHLER 

Chief Artist 
ANNA E. MOYER 

Museum Assistant, Museum Shop 
BETSY H. NEUMEISTER 

Asst. Curator, Educational Services 
MARY L. PRITCHARD 

Assoc. Curator, Parasitology 
W. WINFIELD RAY 

Curator, Botany-Herbarium 
KENNETH D. ROSE 

Assoc. Curator, Health Sciences 
J. FRED SILLS 

Curator, Health Sciences 
THOMPSON M. STOUT 

Assoc. Curator, Geology 
LLOYD G. TANNER 

Assoc. Curator, Vertebrate 
Paleontology 

SAMUEL B. TREVES 
Curator, Geology 

NORMA D. WAGNER 
Secretary to Director 

H. LLOYD WEAVER 
Consultant, Botany 

DELIVEE L. WRIGHT 
Asst. Curator, Educational Services 

Research and Field Associates 
I. C. G. CAMPBELL 

Classical Archaeology 
E. MOTT DAVIS 

Archaeology 
W. D. FRANKFORTER 

Vertebrate Paleontology 
WILFRED J. HANSON 

Entomology 
JOHN A. HOWE 

Vert. Paleontology 
GEORGE E. JAKWAY 

Vert. Paleontology 

Museum 
VINCENT DREESZEN 
E. F. FROLIK 
S. I. FUENNING 
WENDELL L. GAUGER 
PRESTON HOLDER 
JAMES C. OLSON 

J. KNOX JONES, JR. 
Zoology 

w. E. LABERGE 
Entomology 

A. L. LUGN 
Geology 

T. C. MIDDLESWART 
Vert. Paleontology 

JOHN M. ROBERTS 
Anthropology 

CARL F. VONDRA 
Vert. Paleontology 

Consulting Committee 
EARLE S. RAUN 
C. BERTRAND SCHULTZ, 

Chairman 
THOMAS B. THORSON 
SAMUEL B. TREVES 


	Biometrical Study of Morphology and Development of the Pennsylvanian Trilobite Ameura sangamonensis (Meek and Worthen)
	Pabian001
	Pabian002
	Pabian003
	Pabian004
	Pabian005
	Pabian006
	Pabian007
	Pabian008
	Pabian009
	Pabian010
	Pabian011
	Pabian012
	Pabian013
	Pabian014
	Pabian015
	Pabian016
	Pabian017
	Pabian018
	Pabian019
	Pabian020
	Pabian021
	Pabian022
	Pabian023
	Pabian024

