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Abstract——The emerging field of plasmonics can lead to 
enhanced light-matter interactions at extremely nanoscale 
regions. Plasmonic (metallic) devices promise to efficiently control 
both classical and quantum properties of light. Plasmonic 
waveguides are usually used to excite confined electromagnetic 
modes at the nanoscale that can strongly interact with matter. The 
analysis of these nanowaveguides exhibits similarities with their 
low frequency microwave counterparts. In this article, we review 
ways to study plasmonic nanostructures coupled to quantum 
optical emitters from a classical electromagnetic perspective. 
These quantum emitters are mainly used to generate single-photon 
quantum light that can be employed as a quantum bit or “qubit’’ 
in the envisioned quantum information technologies. We 
demonstrate different ways to enhance a diverse range of quantum 
electrodynamic phenomena based on plasmonic configurations by 
using the classical dyadic tensor Green’s function formalism. 
More specifically, spontaneous emission and superradiance are 
analyzed by using the Green’s function-based field quantization. 
The exciting new field of quantum plasmonics will lead to a 
plethora of novel optical devices for communications and 
computing applications operating in the quantum realm, such as 
efficient single-photon sources, quantum sensors, and compact on-
chip nanophotonic circuits. 

Index Terms——Quantum electrodynamics, Green’s function, 
superradiance, spontaneous emission, waveguide, plasmonics 

I. INTRODUCTION  
Light can couple to metal electrons along a metal-dielectric 
interface to form a surface wave. This wave is based on the 
collective electron oscillation and is called surface plasmon 
polariton (SPP) [1]–[3]. It is characterized by intense 
electromagnetic fields confined in a subwavelength region that 
decay quickly away from the interface. Due to their unique 
properties, SPPs have found a broad range of applications in 
various areas of science, including light harvesting, energy 
transfer, biochemical sensing, medical science, and high-
resolution imaging [4]–[7]. Surface plasmon waves can also 
serve as an additional energy decay channel for quantum optical 

emitters located at their near field, leading to more efficient 
generation of quantum light or, equivalently, single-photon 
stream radiation [8]–[11]. They promise to open new routes 
towards the manipulation and boosting of several inherently 
weak quantum electrodynamic phenomena [12], [13].  

Quantum electrodynamics is the study of quantized optical 
radiation and its statistical properties and interaction with 
materials [14]. It is mainly dedicated to the generation, 
manipulation, control, and entanglement of photons that are 
envisioned to serve as quantum bits or “qubits’’ in quantum 
information processes. Photons are ideal carriers of information 
because they are fast, robust, and capable of long-distance 
travel. They can also have different polarization states 
providing an additional degree of freedom in the efficient 
transfer of information and its computation. Integrated optical 
components operating with photons based on plasmonic 
(metallic) nanostructures are expected to have a compact 
footprint with nanometer dimensions combined with extremely 
low power consumption. The ultrafast and coherent nature of 
plasmonic-based light-matter interactions promises to 
overcome the quantum decoherence problem [15] that consists 
the major concern towards the practical application of several 
important quantum technologies. 

The electrodynamics of dissipative (lossy) media, such as 
metals at optical frequencies, can be described by the widely 
used in electromagnetic engineering Green’s tensor formalism 
which satisfies Maxwell’s equations [16], [17]. The Green’s 
function is a 3-by-3 dyadic tensor quantity that characterizes the 
impulse response of an electromagnetic system, where each 
column of the tensor is the induced electric field produced by 
an electric dipole polarized along the corresponding coordinate 
system axis. The quantization of the radiation field is based on 
the classical Green’s function representation of the vector 
potential, identifying the external sources as noise that are 
usually associated with the loss of the dissipative medium [18]–
[22].  

In the quantum realm, spontaneous decay is generated by 
both vacuum fluctuations of the field and radiation reaction. 
This quantity can be drastically modified by shaping the 
material properties of the surrounding environment and the 
resulted phenomenon is called Purcell effect [23]–[25]. For 
example, plasmonic waveguides or nanoantennas can 
efficiently tailor the spontaneous emission properties of an 
emitter with respect to free space due to their ability to improve 
photon collection efficiencies [26]–[29]. The relevant quantity 
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here is the local density of states (LDOS), a proportionality 
constant that characterizes the light-matter interaction strength 
and the modification in the resulting emission rates.  

Even though many coherent light-matter interaction 
processes, such as spontaneous decay, are essentially non-
classical, thus requiring a full quantum description, the media 
the quantum emitter is coupled to can be rigorously 
incorporated into the quantum formalism through the classical 
Green’s function 𝐆𝐆� [24], [30]. Indeed, the entire information 
required to characterize several quantum electrodynamic 
processes can be encapsulated in the classical electromagnetic 
Green’s function formalism [31]. More specifically, 𝐆𝐆� 
imaginary part can describe the LDOS [32], resulting in the 
spontaneous emission rate calculation [27], [33], while 𝐆𝐆� real 
part is capable to describe the photonic Lamb shift, a resonant 
frequency shift effect caused by the coupling of the emitter’s 
bound electrons to vacuum modes [34], [35]. Furthermore, the 
two-point Green’s function (also called mutual density of states) 
hold the information of the signal’s propagation response from 
an emitting to a detection point [36]–[38].  

All these quantum optical quantities are directly 
correspondent to the classical electromagnetic theory widely 
used by the electromagnetic engineering community [39]. 
Therefore, the emerging field of quantum plasmonics has 
attracted and will continue to attract considerable interest in the 
electromagnetics and quantum optics research communities 
[40]–[43]. The existing development of plasmonic 
nanostructures has been found to considerably boost many 
fundamental quantum electrodynamic phenomena mainly 
based on dipole-dipole interactions, such as van der Waals 
forces and vacuum friction [44], Förster energy transfer [19], 
[45], individual or collective spontaneous emission [46]–[48], 
and quantum information protocols like the realization of 
quantum phase gates [17], [49] and quantum entanglement 
[50]–[53].  

II. DYADIC GREEN’S FUNCTION 

A. Derivation of dyadic Green’s function 
To determine the dyadic Green’s function of the electric field, 
we start with the wave equation in a homogeneous medium: 
 ( ) ( ) ( )2

0k iωµ µ∇×∇× − =E r E r j r , (1) 
where 𝐣𝐣(𝐫𝐫) is an arbitrary current source distribution that can be 
viewed as a superposition of multiple point current sources. We 
replace the source term 𝐣𝐣(𝐫𝐫)  in Eq. (1) by the Dirac-delta 
function representing a point source 𝛿𝛿(𝐫𝐫 − 𝐫𝐫′) and define for 
each direction a corresponding Green function. For example, 
Eq. (1) becomes in the x- direction: 
 ( ) ( ) ( )2, ,k δ′ ′ ′∇×∇× − = −x x xG r r G r r r r n ,  (2) 
where nx represents the unit vector along the x-direction and 
𝛿𝛿(𝐫𝐫 − 𝐫𝐫′) is the Dirac-delta function representing a single point 
current source. As can be seen by Eq. (2), the Green’s function 
is the induced field resulted from a delta function excitation. 
Similarly, we can formulate other two equations for a point 
source polarized along the remaining y-direction and z- 
direction. After accounting for all orientations, we can express 
the general electric dyadic Green’s function as: 

 ( ) ( ) ( )2, ,k δ′ ′ ′∇×∇× − = −G r r G r r I r r ,  (3) 
where 𝐈̅𝐈  denotes the unit dyadic and 𝐆𝐆�  is a dyadic Green’s 
tensor whose ith column represents the electric field because of 
an arbitrary source polarized along the ith direction. It is worth 
mentioning that, in quantum optics, sometimes different 
constants are introduced on the right-hand side of Eq. (2) by 
convention, leading to different constant coefficients in the 
dyadic Green’s function shown in Eq. (3). However, the electric 
field remains the same in both notations. 

As shown in Fig. 1, once we know the dyadic Green’s 
function 𝐆𝐆� of the electromagnetic system under study, we can 
find the electric field by the integration of the product of Green’s 
function 𝐆𝐆� and source term 𝐣𝐣(𝐫𝐫) over a volume V and using the 
wave equation (1): 

 ( ) ( ) ( ) ( )0 ,
V

i dVωµ µ′ ′ ′ ′= ∫E r G r r r j r .  (4) 

where 𝐫𝐫 represents the position of the evaluated field point and  
𝐫𝐫′  designates the location of the point source (see Fig. 1). 
However, we know that the general solution of the 
inhomogeneous wave equation (1) consists of a homogeneous 
solution (𝐣𝐣(𝐫𝐫) = 0)  and a specific inhomogeneous solution 
given by Eq. (4). Therefore, we need to add the homogeneous 
solution 𝐄𝐄𝟎𝟎  in Eq. (4) and the resulted general electric field 
solution will have the final form: 

 ( ) ( ) ( ) ( )0 ,
V

i dVωµ µ′ ′ ′ ′= + ∫0E r E G r r r j r ,  (5) 

while the corresponding magnetic field will be: 

 ( ) ( ) ( ),
V

dV ′ ′ ′= + ∇× ∫0H r H G r r j r ,  (6) 

where 𝐄𝐄𝟎𝟎 and 𝐇𝐇𝟎𝟎 are the electric and magnetic fields in the 
absence of the current j . The above two equations are called 
volume-integral equations [24]. They are very important in 
electromagnetic field theory because they form the basis of 
various widely used theoretical and numerical modeling 
techniques, such as the method of moments and the coupled 
dipole method [1], [3]. Note that the following two relations are 
always valid for Green’s functions applied to reciprocal 
systems: 

 
( ) ( )

( ) ( )
, , , , ,

, , , , ,

ω ω

ω ω

∗
′ ′= −

′ ′=

G r r G r r

G r r G r r
 (7) 

where  𝐆𝐆�(𝐫𝐫, 𝐫𝐫′,𝜔𝜔)  represents the classical Green’s function 
when the field propagates from a dipole source 𝐫𝐫′ to 𝐫𝐫. 
 



 
  

 
Fig. 1. Illustration of the dyadic Green’s function 𝐆𝐆�(𝐫𝐫, 𝐫𝐫′), where the electric 
field 𝐄𝐄(𝐫𝐫) in one arbitrary point can be determined through the integration of 
𝐆𝐆�(𝐫𝐫, 𝐫𝐫′) and a distributed source. Reproduced from [24]. 

B. Electric and magnetic fields computed by Green’s function 
We compute first the electromagnetic fields induced by an 
electric dipole source embedded inside a homogeneous, local, 
linear, and isotropic medium. The current density j in the wave 
equation (1) can be regarded as an oscillating electric dipole 
located at the charge current center 𝐫𝐫0:  
 ( ) ( )iω δ= − − 0j r p r r ,  (8) 
where p is the electrical dipole moment of the dipole source. 
Therefore, after introducing the dipole current density of Eq. (8) 
into the volume-integral equations (5)-(6) and assuming that all 
the electromagnetic fields are produced from the electric dipole 
source (i.e., 𝐄𝐄𝟎𝟎 = 𝐇𝐇𝟎𝟎 = 0), we get the simplified relations: 

 
( ) ( )
( ) ( )
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0 0
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E r G r r p

H r G r r p
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Hence, the fields introduced by any arbitrarily polarized dipole 
source p placed at 𝐫𝐫0 can be determined by the dyadic Green 
function 𝐆𝐆�(𝐫𝐫, 𝐫𝐫0). For example, the Green function in free space 
(vacuum) can be derived by using Eq. (3) and is equal to: 
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 (10) 
where = − 0R r r  and ⊗R R is the outer product of the distance 
vector R . The imaginary part of the vacuum dyadic Green’s 
function at the dipole source point 𝐫𝐫 = 𝐫𝐫0 is Im[𝐆𝐆�0(𝐫𝐫𝟎𝟎, 𝐫𝐫0, ω)] =
𝑘𝑘 6𝜋𝜋⁄ , representing purely radiative losses, since free space is 
lossless. The real part of the dyadic Green’s function (i.e., 
Re[𝐆𝐆�0(𝐫𝐫𝟎𝟎, 𝐫𝐫0, ω)]) is infinite at the same point, because of the 
divergent nature of the homogeneous Green’s function in 
vacuum. 

In the general case of inhomogeneous and lossy media, the 
dyadic Green’s function, i.e. the solution of Eq. (3), can be 
represented as [30], [54]: 
 ( ) ( ) ( )hom sc

0 0 0, , , , , , ,ω ω ω= +G r r G r r G r r   (11) 
where the first term 𝐆𝐆�hom(𝐫𝐫, 𝐫𝐫0,𝜔𝜔) is the analytically known 
expression in homogeneous and infinite media (for example, 

free-space 𝐆𝐆�0(𝐫𝐫, 𝐫𝐫0,𝜔𝜔) with expression given by Eq. (10), while 
the second term 𝐆𝐆�sc(𝐫𝐫, 𝐫𝐫0,𝜔𝜔) accounts the contribution from the 
radiative process of scattering due to the inhomogeneous 
scenarios, such as plasmonic waveguides, nanoparticles or other 
nanostructures [17], [30], [34]. 

III. QUANTUM PHENOMENA ANALYZED BY GREEN’S FUNCTION 
The quantization scheme [18] of the dyadic Green function-
based electric field can be employed to analyze a diverse range 
of quantum electrodynamic phenomena, such as spontaneous 
emission, collective spontaneous emission or superradiance, and 
other effects based on coherent dipole-dipole interactions of 
quantum dipole emitters coupled to any electromagnetic system. 
One of the remarkable properties of the dyadic Green’s function 
is that it can be directly related to the LDOS, the spontaneous 
decay rate and the Lamb shift, as well as the spectrum of a 
quantum emitter observed at a detector. This scheme is widely 
used in the literature because it is semi-classical, simple to 
implement, and was found to accurately describe the response 
of quantum emitters when they are coupled to a dispersive and 
lossy environment. In quantum optics, the quantum emitters are 
always surrounded by an omnipresent fluctuating 
electromagnetic field, also known as vacuum state fluctuations 
(more details can be found in a relevant review paper [14]). This 
field is always there and fluctuates, even when the surrounding 
space is in its lowest energy state, called vacuum state, where no 
photons are present, and no light can be detected. These vacuum 
state fluctuations lead an emitter to decay “spontaneously” to a 
lower state, an effect also known as spontaneous emission [55]. 
The quantum emitter can be excited optically from the ground 
to the excited state leading to a spontaneous single-photon 
emission [56]. One of the most widely used electric field 
quantization approaches is based on the Green’s functions 
Langevin local quantization [14], [57], which is extremely 
useful for calculating the lifetime and Purcell factor by adopting 
the Fermi’s golden rule [24]. The quantum operator of the 
electromagnetic field in the presence of the plasmonic reservoir 
by using the Schrödinger equation approach is given by [13], 
[17]: 

( )( ) ( ) ( )
2

2
0 0

ˆˆ i Im , ,E(r) r G r,r , r , rd f d
c
ωω ε ω ω ω

πε

∞

′ ′ ′ ′= ∫ ∫
  

 (12) 
where ( )ˆ ,f ωr  is the bosonic field operator that plays the role 
of the local annihilation operator of the field excitation. 
Moreover, ( ),ε ω′r  is the complex permittivity of the 
surrounding space. Although the spontaneous emission process 
is in principle a non-classical procedure and requires the 
quantum operator description to compute its quantities, the 
coupling between emitter and medium can be rigorously 
characterized by the dyadic Green function formalism. Under 
the point-dipole approximation [58], which assumes that the 
quantum emitter can be modelled as a point dipole source, the 
local density of states (LDOS) of the electromagnetic modes is 
directly proportional to the imaginary part of the corresponding 
Green’s function, and the resulted individual spontaneous decay 
rate can be computed by [24], [59]:  



 
  

 ( )20
0

0

, ,
3sp
πω

γ ρ ω
ε

= 0p r


  (13) 

 ( ) ( ){ }0
0 0 0 02

6
, Im , ,

c
ω

ρ ω ω
π

 = ⋅ ⋅ 0 p pr n G r r n ,  (14) 

where 𝜌𝜌(𝐫𝐫0,𝜔𝜔0)is the LDOS of the two-level system depending 
only on the position 𝐫𝐫0 of the dipole source, 𝐧𝐧𝐩𝐩 is an unit vector 
directed to the electrical dipole moment 𝐩𝐩 ( 𝐩𝐩 = |𝐩𝐩|𝐧𝐧𝐩𝐩  ), ℏ is 
the reduced Planck’s constant, and 𝜔𝜔0 is the atomic transition 
frequency of the quantum emitter. The spontaneous decay 
definition given by Eq. (13) is based on Fermi’s golden rule 
which is valid in the weak coupling regime [12], [13], [24]. 
While the strong coupling analysis requires more sophisticated 
approaches involving the solution of time-dependent equations 
of motion [57], [60]. Note that the total spontaneous decay rate 
for plasmonic (lossy) systems needs to be divided into radiative 
𝛾𝛾𝑟𝑟 and nonradiative 𝛾𝛾𝑛𝑛𝑛𝑛 contributions [59]: 𝛾𝛾𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑛𝑛𝑛𝑛. The 
radiative and nonradiative rates characterize the radiation and 
dissipation, respectively, processes of the generated photons by 
a quantum emitter. The ratio between the radiative decay 𝛾𝛾𝑟𝑟 and 
the total decay 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑛𝑛𝑛𝑛 is defined by the quantum efficiency QY 
of radiative decay (also known as quantum yield):  

 r r

sp nr r

QY γ γ
γ γ γ

= =
+

.  (15) 

Hence, the quantum efficiency provides a metric of the radiation 
performance of a plasmonic system combined with a quantum 
emitter, similar to the antenna efficiency metric widely used in 
microwave frequencies [39]. More details about how to enhance 
the spontaneous emission with plasmonic structures are 
provided later in Section V.A of this review paper. Note that by 
inserting the dyadic Green’s function in free space with 
expression (10) into Eq. (14), the well-known value of an 
emitter’s LDOS in free space can be derived to be [24]: 

 
2
0

0 2 3c
ω

ρ
π

= ,  (16) 

and the spontaneous decay rate in free space is equal to: 
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00
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 Apart from LDOS, which can be used to compute the 
spontaneous decay rate of a single isolated quantum emitter, the 
non-local density of states (NLDOS) can also be calculated to 
evaluate the resultant density of states caused by interference 
phenomena and coherent dipole-dipole interactions between two 
emitters. The total collective spontaneous emission rate can be 
computed by the NLDOS as [36], [50]: 

 ( ) ( )2 2
0 0 02 Im[ , , ].ij i i j jcγ ω ε ω∗= ⋅ ⋅p G r r p   (18) 

For emitter i, 𝐩𝐩𝑖𝑖∗  represents the complex conjugate of the 
electrical dipole moment. Equation (18) is a more general 
version of Eq. (13), since it provides a more convenient way to 
calculate the emission decay caused by both self-interactions 
(𝛾𝛾𝑖𝑖𝑖𝑖) and mutual-interactions �𝛾𝛾𝑖𝑖𝑖𝑖�, where 𝛾𝛾𝑖𝑖𝑖𝑖 is also known as 
the spontaneous decay rate given before by expression (13). As 
an example, 𝛾𝛾12 represents the collective contributions to the 
emission decay originating from the interference of emitter 1 

placed at position 𝒓𝒓1 with emitter 2 placed at position 𝒓𝒓2. These 
mutual interactions are used to compute the effect of collective 
spontaneous emission or superradiance, as it will be 
demonstrated later in Section V.B of this review paper.  

On a relevant context, the discovery [61] and explanation [62] 
of the vacuum Lamb shift lies at the foundation of modern 
quantum electrodynamics. The Lamb shift 𝑔𝑔𝑖𝑖𝑖𝑖 is manifested as a 
resonant frequency shift in the emitter’s atomic transition 
frequency caused by the coupling of its bound electrons to the 
surrounding vacuum state fluctuations [34]. The Lamb shift 
induced by a homogeneous medium can be incorporated in the 
definition of the emitter’s resonant frequency. It is calculated by 
using the scattering or real part of the Green’s function given by 
the formula [34]: 
  ( ) ( )2 2

0 0 0Re[ , , ].ij i i j jg cω ε ω∗= ⋅ ⋅p G r r p   (19) 

Hence, 𝑔𝑔𝑖𝑖𝑖𝑖 represents the photonic Lamb shift due to the self-
interaction of each quantum emitter (qubit) with the 
environment. Note that this coherent quantity is proportional to 
the real part of the dyadic Green’s function and is different 
compared to the decay rates 𝛾𝛾  presented before, which are 
mainly based on incoherent processes. The coherent dipole-
dipole interactions are characterized by 𝑔𝑔𝑖𝑖𝑖𝑖 , a property 
analogous to the real part of the Green function The 𝑔𝑔𝑖𝑖𝑖𝑖 
coefficient represents the coupling between emitters placed in 
spatial points 𝒓𝒓𝑗𝑗  and 𝒓𝒓𝑖𝑖  and can compute other interesting 
coherent emitter interaction processes, such as the Förster 
resonance energy transfer and quantum entanglement [53].  The 
dyadic Green function  𝐆𝐆��𝐫𝐫𝑖𝑖 , 𝐫𝐫𝑗𝑗 ,𝜔𝜔0�  satisfies the classical 
Maxwell’s equations, as was shown in Section II  [24]. 
Therefore, both Eqs. (18) and (19) can be calculated either 
analytically [17] or numerically [30] through solving classical 
Maxwell’s equations. From the computational 
electromagnetics viewpoint, various numerical methods exist to 
calculate the Green’s function in the case of inhomogeneous 
environment. Differential-equation-based methods [63], such 
as finite difference [64] and finite element [65], can be 
implemented but require to precisely discretize the scatterers 
and background, resulting in a large computational domain [66]. 
Integral-equation-based methods [67], such as the surface 
integral equation technique, also known as boundary element 
method, only discretize the scatterers and, thus, do not require 
any additional domain truncation or absorbing boundary 
conditions to achieve more accurate results [68]. In the case of 
numerical modeling, the derived by full-wave simulations 
electric fields can be used to calculate both real and imaginary 
parts of the dyadic Green’s function by using Eqs. (9).  

IV. QUANTUM EMITTERS 
As structures become smaller and smaller and reach 

nanoscale dimensions, their quantum behavior becomes 
apparent. The discrete nature of atomic states dominates in 
resonant light-matter interactions at the nanoscale. In atoms, 
molecules, and nanoparticles, these resonant interactions occur 
when the photon’s energy matches the energy difference 
between their electronic energy levels. Due to the resonant 
character of these interactions, various quantum emitters can be 



 
  

approximated as effective two-level atomic systems where only 
two electric energy levels are considered whose energy 
difference is near the radiating photon energy. Two-level 
emitters can be used as photonic qubits, which are the main 
building blocks of quantum optical technologies. They consist 
an ideal system for the exploration of quantum optical 
phenomena in solid state physics [24], especially when used as 
indistinguishable single photon sources due to their on-demand 
and high-rate single photon generation capabilities [69]. The 
indistinguishability of these solid-state emitters is largely 
limited by dephasing that can be mitigated by using an optical 
cavity in both photonic and plasmonic systems [15], [70], [71]. 

Mainly, three types of quantum emitters exist: i) fluorescent 
organic dye molecules, ii) semiconductor quantum dots, and iii) 
impurity centers (a.k.a., color centers) in wide-bandgap 
semiconductors, such as diamond. In the following, we present 
a brief overview of these different quantum emitter types.  

A. Fluorescent organic dye molecules 
The lowest-energy electronic transition of an organic dye 
molecule occurs between the highest occupied and lowest 
unoccupied excited state molecular orbitals [72]. The radiative 
relaxation between these orbitals is called fluorescence and is 
one of the most widely used radiative process. Fluorescent 
molecules have two decay contributions to their spontaneous 
emission process: i) radiative (i.e., fluorescence) and ii) non-
radiative (through quenching or dissipation to heat) decay. 
Figure 2 schematically demonstrates the different processes and 
energy-level diagrams of an organic molecule, where the solid 
and dotted arrows represent radiative and non-radiative 
processes, respectively [72]. Since the electron is usually excited 
to a vibrational state, the fluorescence emission is redshifted to 
a lower energy level than the excitation (i.e., Stokes shift). In the 
case of organic dye molecules, the radiative decay dominates 
compared to nonradiative effects (such as quenching or 
dissipation), and the radiative lifetime is typically on the order 
of nanoseconds [24]. Aromatic or conjugated organic molecules 
exhibit particularly efficient fluorescence and are usually named 
as fluorophores (or dye molecules).  

 
Fig. 2. Energy level diagram showing fluorescence and other nonradiative 
relaxation processes in an organic dye molecule. Reproduced from [72]. 

B. Semiconductor quantum dots 
Semiconductor crystallites are more widely known as quantum 
dots (QDs). They have nanoscale sizes with a radius 
approximately equal to their excitons’ Bohr radius, which is the 
distance of an electron-hole pair. Their radius can be on the order 
of few to 10 nm mainly due to the small effective mass of their 
electrons and holes. Hence, notable quantum confinement can 
be achieved in QDs at length scales 10-100 times larger 
compared to other typical molecules [24]. As shown in Fig. 3, 
QDs have many remarkable quantum characteristics that 
distinguish them from bulk semiconductors, such as size and 
surface effects, strong quantum confinement, and macroscopic 
quantum tunneling. These effects lead to a splitting in energy 
levels from continuous (bulk semiconductor) to discrete (QDs), 
as depicted in Fig. 3. In the limit of extremely small dimensions, 
electron and hole pairs in QDs can be represented by a particle-
in-a-box intuitive model, leading to a discrete energy level that 
can shift into higher energies as the box dimensions become 
smaller. Therefore, the energy level gap can easily be tuned by 
adjusting the crystal’s size, which, subsequently, leads to the 
efficient control of the absorption and luminescence spectra. For 
instance, in the case of CdSe/ZnS QDs, a continuous change in 
the emission color is achieved just by decreasing the QD size 
[73]. In addition, the quantum efficiency of their radiative decay 
is rather high, mainly due to the strong confinement of both 
electrons and holes in a nanometer volume, making QDs 
extremely interesting for optoelectronic applications [74].  

 
Fig. 3. Energy levels of several semiconductor nanostructures with different 
dimensionalities. Reproduced from [75]. 

C. Color centers 
The third class of quantum emitters is the most recently 
investigated and is composed of fluorescent defect centers in 
wide-bandgap semiconductors. For instance, diamond offers the 
largest bandgap (5.5 eV) of all known materials and hosts more 
than a hundred known luminescent defect centers. As shown in 
Fig. 4(a), the prominent impurity-related defect center in 
diamond is the nitrogen-vacancy (NV) center, which consists of 
a substitutional nitrogen atom (N) and a vacancy (V) at a 
nearest-neighbor lattice position. Such NV centers can form 
naturally during diamond growth or artificially using a variety 
of implantation and annealing techniques [24]. The NV center 
contains two unbounded electrons originating from the 
substitutional nitrogen. In addition, there are three more 
unbounded carbon electrons, where two of them form a quasi-
bond and one remains unbounded. Therefore, the NV center can 



 
  

efficiently trap an additional electron, which turns into the 
negative NV— center as opposed to the neutral NV0 center. 
Figure 4(b) shows a simplistic energy-level diagram of the NV— 
center, where the NV— center is treated as a three-level 
electronic system having a ground |𝑔𝑔⟩ , excited |𝑒𝑒⟩ , and 
intermediate |𝑠𝑠⟩ state. The main transition (|𝑔𝑔⟩ to |𝑒𝑒⟩) exhibits a 
zero phonon line at 637 nm combined with vibrational side 
bands in the range of 630-800 nm [76]. The radiative lifetime is 
around 13 ns for NV centers in bulk diamond and around 25 ns 
for NV centers in nanodiamond due to their different refractive 
index [24]. Very recently, color centers have also been explored 
in ultrathin 2D materials with wide band gaps, such as hexagonal 
boron nitride (hBN) [77]. These 2D materials consist another 
exciting new quantum emitter platform that can be easily 
embedded in photonic structures [78]. 

 
Fig. 4. NV center in diamond. (a) Schematic of the NV— center in a diamond 
lattice showing the substitutional nitrogen atom (N) and the vacancy (V). (b) 
Energy level diagram of NV— center, where 𝑚𝑚𝑠𝑠 = 0, ±1 represents the number 
of allowable spin states. Reproduced from [79]. 

V. PLASMONIC QUANTUM ELECTRODYNAMICS 
As discussed in the previous Section III, the dyadic Green’s 
function, widely used to solve classical electromagnetic 
problems, can also be utilized to model various quantum 
electrodynamic effects. In the following, we present how several 
quantum electromagnetics phenomena will be boosted mainly 
by plasmonic nanowaveguides and their analysis by making use 
of the Green-function formalism presented before. 

A. Spontaneous emission rate enhancement 
The major drawbacks of the presented in Section IV quantum 
light emitters are their relatively long radiative lifetimes 
(around 10 ns) and non-directional radiation. These lead to slow 
light generation response accompanied by weak fluorescence 
power. Hence, the intrinsic optical properties of quantum 
emitters cannot satisfy several demands of nanophotonic 
quantum optical devices [80], such as ultrafast light-emitting 
diodes, plasmonic nanolasers, and single-photon sources. In 
1946, Purcell demonstrated that the spontaneous emission 
decay of a quantum source is not an intrinsic property but can 
be largely modified when the emitter is located inside a cavity 
due to the inhomogeneity induced by its interaction with the 
surrounding environment [23]. Therefore, many photonic 
resonance cavity systems, such as nanocavities [26], photonic 
crystals [81], nanostars [82], [83], plasmonic waveguides [34] 
and nanoantennas [69], [84], [85], were  successfully used to 
enhance the spontaneous decay rate with the goal to achieve 

ultrafast operation comparable to high-speed optical networks. 
As an example, Fig. 5(a) shows the fluorescence emission of a 
single molecule as a function of its distance to a gold 
nanoparticle [58]. Metallic nanoparticles or films usually 
exploit the large LDOS at their SPP resonance frequency to 
achieve strong emission enhancement. However, this resonant 
enhancement is in turn restricted by the narrow bandwidth and 
high ohmic losses at the plasmonic resonance frequency mainly 
leading to detrimental nonradiative decay effects. As shown in 
Fig. 5(a), by varying the distance between the molecule and 
plasmonic nanoparticle, a continuous transition from 
fluorescence enhancement to fluorescence quenching was 
observed due to competing effects between the increased 
excitation rate and the nonradiative energy loss.  

 
Fig. 5. (a) Total spontaneous emission (dashed) and radiative rate (solid) 
enhancement as a function of emitter-spherical gold nanoparticle separation 
distance. (b) Plasmon radiation rate (solid) and total nonradiative rate (dashed) 
of an emitter placed on top of a silver nanowire waveguide with different 
separation distance. (c) Spontaneous emission enhancement versus the 
wavelength for a metal-dielectric-metal parallel plate waveguide (dark solid 
line) and a metal-dielectric planar interface (gray solid line). (d) Map of 
computed spontaneous decay enhancement for a gap plasmon nanocavity 
loaded with an emitter. Figures reproduced from: a [58]; b [86]; c [87]; and d 
[69].  
 

In addition to the many studies of simple metallic 
nanoparticles, there have been several recent investigations on 
spontaneous emission in plasmonic waveguide and nanocavity 
systems. For instance, it was demonstrated that the spontaneous 
emission of a single emitter in the vicinity of a plasmonic 
nanowire can be enhanced at the surface plasmon resonance, 
enabling various quantum optical applications [17], [86]–[89]. 
Figure 5(b) shows the plasmonic radiative enhancement and 
total nonradiative rate for an emitter located on the top of a 
plasmonic cylindrical nanowire. The total spontaneous decay 
rate consists of radiative and nonradiative decay rates. Note that 
60-fold or even higher enhancement in the emitter spontaneous 
emission was achieved as the distance between the emitter and 
nanowire was decreased [86]. The emission enhancement of a 
point-like dipolar emitter was also investigated in a variety of 



 
  

plasmonic waveguide systems with arbitrary shapes [86]. To 
achieve an even tighter confinement of the plasmon waveguide 
modes, metal-dielectric-metal parallel plate waveguide 
structures were also explored [87]. As shown in Fig. 5(c), 
compared to a single metal-dielectric planar interface, there was 
stronger broadband nonresonant enhancement for an emitter 
placed inside the parallel plate plasmonic waveguide. Finally, 
Fig. 5(d) demonstrates that the spontaneous emission 
enhancement can approach very high values (4000) in the case 
of emitters coupled to the ultrathin metallic gap between a silver 
nanocube and a gold substrate [69]. 

Next, we consider an alternative design of an orthogonal 
plasmonic waveguide array operating near the cutoff frequency. 
One unit cell of the plasmonic waveguide geometry is shown in 
Figs. 6(a)-(b). The plasmonic grating consists of periodic slits 
with dimensions: width w = 200 nm, height t = 40 nm, and 
length l = 500 nm. These periodic nanowaveguides are made of 
silver (Ag) and are filled with a dielectric material (for example, 
glass). Each unit cell period is selected to be equal to 𝑎𝑎 = 𝑏𝑏 =
400nm. Quantum emitters, such as QDs or fluorescence dyes, 
are embedded inside the waveguide channels. The waveguide 
width is designed to achieve the cutoff frequency of the 
dominant quasi-TE10 mode along the nanochannel at 𝑓𝑓 ≈
295𝑇𝑇𝑇𝑇𝑇𝑇, where the real part of the wave number becomes zero 
(𝑅𝑅𝑅𝑅(𝛽𝛽) = 0) [90]. At this cutoff frequency (𝑓𝑓 ≈ 295𝑇𝑇𝑇𝑇𝑇𝑇), the 
plasmonic grating can be replaced by an effective epsilon-near-
zero (ENZ) material, as depicted in Fig. 6(c). Moreover, due to 
the inverse relation between guided wave number 𝛽𝛽  and 
impedance 𝑍𝑍, the corresponding characteristic impedance 𝑍𝑍 is 
also very large at the ENZ cutoff, resulting in anomalous 
impedance matching that produces counterintuitive 
transmission accompanied by almost infinite phase velocity and 
uniform field distributions inside the nanochannels [91], [92]. 
Figure 6(d) shows a uniformly enhanced electric field in the 
orthogonal nanochannel’s yz-cut at the ENZ frequency (𝑓𝑓 ≈
295𝑇𝑇𝑇𝑇𝑇𝑇) , indicating that largely enhanced coherent 
interactions between different emitters can be achieved when 
placed inside this ENZ plasmonic system. 

Assuming operation in the weak coupling (Markov 
approximation) regime, a single quantum emitter embedded 
inside the channel is regarded as a two-level dipole source 
satisfying the electric point-dipole approximation [58]. The 
emission frequency of the emitter is chosen to be almost equal 
to the ENZ cutoff frequency. The orientation of its dipole 
moment is along z-axis in order to guarantee the maximum 
coupling with the waveguide. Full-wave 3D simulations are 
used to calculate the Green’s function (Eq. (9)) and, as a result, 
the spontaneous decay rate and LDOS given by Eqs. (13) and 
(14), respectively. Based on these calculations, Fig. 6(e) plots 
the computed normalized spontaneous emission rate 𝛾𝛾𝑠𝑠𝑠𝑠 𝛾𝛾𝑠𝑠𝑠𝑠0⁄  
distribution at the ENZ resonance by changing the location of 
the emitter on a 4×50 grid inside the waveguide channel, where 
 𝛾𝛾𝑠𝑠𝑠𝑠0  corresponds to the free-space spontaneous emission given 
before by Eq. (17). Note that the spontaneous emission can 
reach high values up to 200 compared to an emitter placed in 
free space and shows a uniform distribution. 

However, as was mentioned before, in metallic systems, the 
total spontaneous decay rate needs to be divided into radiative 
and nonradiative contributions [59]: 𝛾𝛾𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑛𝑛𝑛𝑛 . The 
nonradiative decay rate 𝛾𝛾𝑛𝑛𝑛𝑛  can be evaluated with numerical 
full-wave simulation by integrating the absorbed power of the 
metallic parts [59]. The calculated total spontaneous decay rate 
and nonradiative rate result in the computation of the quantum 
efficiency 𝑄𝑄𝑄𝑄, defined before by Eq. (15), which reflects the 
radiative emission efficiency, similar to the radiation efficiency 
of an RF antenna [39]. The development of future integrated 
quantum photonic circuitry will require efficient coupling 
between quantum emitters and nanophotonic materials.  The 
QY distribution is computed and shown in Fig. 6(f) and is found 
to have very high and constant values close to 0.7. Such large 
and uniform spontaneous emission rate enhancement and 
quantum efficiency makes the ENZ plasmonic waveguides 
excellent candidates for boosting the efficiency of various 
quantum electrodynamic effects [34], [48], [53]. Finally, it is 
worth mentioning that the aforementioned spontaneous 
emission effect for several quantum emitters is obtained in the 
weak coupling regime, where the currently used Markov 
approximation is valid. In the weak coupling regime, losses 
dominate, and the emission spectrum is directly related to the 
field confinement inside the plasmonic waveguide. On the 
contrary, in the strong coupling regime, the coupling 
outperforms the losses and the Markov approximation of 
spontaneous emission is expected to break down [12]. In this 
case, a double peak emerges in the emission spectrum because 
of the strong emitter-resonator interference. Strong coupling 
based on quantum emitters is one of the current hot topics in 
quantum plasmonics [43], where researchers strive to achieve 
the strong coupling regime by using plasmonic resonators [93].  

 
Fig. 6. (a-b) Unit cell geometry of an ENZ orthogonal plasmonic waveguide 
array. (c) The waveguide’s effective permittivity 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒 has a near-zero real part 
at the cutoff frequency. (d) Electric field enhancement distribution of ENZ 
plasmonic waveguides at the ENZ frequency. (e) Normalized spontaneous 



 
  

decay rate 𝛾𝛾𝑠𝑠𝑠𝑠 𝛾𝛾𝑠𝑠𝑠𝑠0⁄   and (f) quantum efficiency 𝑄𝑄𝑄𝑄 distributions of one emitter 
placed inside the ENZ plasmonic waveguide. Reproduced from [48]. 

B. Superradiance 
Superradiance is a fundamental quantum optical 

phenomenon relevant to the collective photon emission process 
by many similar quantum optical emitters. This process was first 
predicted by Robert Dicke [94] in 1954 in the context of 
collective spontaneous emission and reinforcement of 
correlations between initially independent atoms or molecules. 
As shown in Fig. 7(a), in a dilute atomic system, the photon 
emission by each atom can be considered as an independent 
spontaneous transition over the characteristic time 𝜏𝜏0 . In this 
case, the emission obeys an exponential decay law and the 
radiation pattern is essentially omnidirectional. The radiation 
intensity becomes proportional to the number of atoms 𝑁𝑁 . 
However, these features are notably different when the atomic 
ensemble becomes dense enough. When the wavelength of light 
is much greater than the separation of the emitting atoms, as 
depicted in Fig. 7(b), the atomic ensemble starts to radiate 
directional photons with much faster and stronger emission 
compared to independent atoms. This collective emission effect 
is called “superradiance” [95]. Essentially, this phenomenon is 
due to the indiscernibility of atoms with respect to the photon 
emission, which results in constructive interference in the 
photon emission by the ensemble. The collective radiation of 
superradiant light behaves as a high intensity pulse with rate 
proportional to 𝑁𝑁2 and short emission duration (𝜏𝜏𝑠𝑠) on the order 
of 𝜏𝜏0/𝑁𝑁, which is demonstrated in Fig. 7(b). The counterpart of 
this enhanced radiation mechanism is called subradiance, a 
destructive interference process leading to a reduced decay rate 
from a collection of quantum emitters [96].  
 

 
Fig. 7. Comparison between the general characteristics of ordinary spontaneous 
emission (fluorescence) and superradiance. (a) Ordinary spontaneous emission 
is essentially omnidirectional in space with exponential decaying intensity. (b) 
Superradiance is directional in space with an emission occurring in a short burst 
with duration 𝜏𝜏𝑠𝑠~𝜏𝜏0/𝑁𝑁. Reproduced from [95].  

Several recent papers exist where researchers propose to 
achieve superradiance effects and enhance the collective 
coupling and emission of quantum emitters by using plasmonic 
nanostructures [36], [48], [97]–[99]. The sub-diffraction 
confinement associated with plasmonic resonances can be 
utilized not only to enhance the coupling between a single 
quantum emitter and the SPP mode, but also to enhance 
interactions between several quantum emitters, leading to 

superradiant and subradiant collective emission states [41]. For 
instance, a collective radiative behavior of N emitters near a 
metal interface was theoretically analyzed in [98]. It was found 
that the phenomena of superradiance and surface plasmons can 
be combined to amplify the emitted radiation intensity 𝑆𝑆  to 
become 𝑆𝑆 = 𝑁𝑁2𝑆𝑆0, which is much higher compared to the single 
emitter’s radiation intensity 𝑆𝑆0 in free space. Furthermore, many 
emerging 2D plasmonic waveguide systems were used to study 
the quantum superradiant effect [36], [47], [48]. Figure 8(a) 
shows a metallic wedge plasmonic waveguide interacting with 
two quantum emitters. This interaction includes radiated 
photons by surface plasmons, and nonradiative excitations 
(heating) induced in the metal. In this instance, the total decay 
rate based on the NLDOS can be calculated by Eq. (18). Then a 
normalized decay rate 𝛾𝛾 is defined by the total decay rate of two 
interacting emitters divided by the sum of each single emitter 
decay rate in the same environment, and expressed as following: 

 11 12 22 21

11 22

.γ γ γ γ
γ

γ γ
+ + +

=
+

  (20) 

 

 
Fig. 8. (a) Schematic and field distribution of a plasmonic wedge waveguide 
loaded with two quantum emitters. (b) Normalized decay factor 𝛾𝛾  of two 
identical emitters as a function of inter-emitter separation distance 𝑑𝑑 shown in 
(a). This plot indicates that both superradiant and subradiant states can be 
achieved by this system. (c) Normalized decay factor γ versus the inter-emitter 
distance d at the ENZ resonance of the plasmonic waveguide (black line) and 
free space (blue line). (d) Normalized decay factor distribution (γ ) of 100 
emitters uniformly embedded inside the ENZ plasmonic waveguide shown 
before in Fig. 6(a). Each position on the 4×25 grid corresponds to one emitter. 
Figures reproduced from: a, b [36]; c, d [48]. 

Figure 8(b) shows the normalized decay factor 𝛾𝛾 
numerically calculated as a function of inter-emitter spacing 
distance 𝑑𝑑 . When 𝛾𝛾 > 1 (𝛾𝛾 < 1)  the system exhibits 
superradiant (subradiant) response. It can be seen from Fig. 8(b) 
that the plasmonic-mediated interaction can efficiently couple to 
two emitters, enabling the emergence of superradiant and 
subradiant collective states and leading to substantially modified 
decay rates [36]. Moreover, recent results demonstrated that 
both superradiant and subradiant radiation can be realized by 
using metallic core-shell nanoparticles or plasmonic gratings of 
paired silver nanostrips coated with dye molecules [99]. 



 
  

However, ideally, this collective coupling will need to be 
independent of the emitters’ locations. A major challenge will 
be to simultaneously maximize emitters’ coupling efficiency 
into photonic modes and increase their collective spontaneous 
emission. For example, in the scenario shown in Fig. 8(a), the 
cooperative behavior of two emitters (superradiance) is very 
sensitive to their spatial locations in the metallic waveguide 
system, as it is proven in Fig. 8(b). This directly limits the 
potential applications of superradiance achieved by plasmonic 
structures, particularly in the practical scenario of several 
quantum emitters randomly dispersed along these plasmonic 
channels. 

Recently, it was derived that the superradiance effect can be 
significantly boosted in ENZ environments compared to 
conventional materials [47], [100]. This is mainly due to the fact 
that the ENZ response extends the effective wavelength along 
the ENZ structure, such that all the emitters feel the same 
coherent and homogeneous field distribution, as was shown 
before in Fig. 6(d). For instance, we consider two quantum 
emitters embedded in the ENZ plasmonic waveguide shown in 
Fig. 6(a). The normalized total decay factor 𝛾𝛾 is computed by 
using the Eq. (20) and the corresponding results are plotted in 
Fig. 8(c) as a function of the inter-emitter  distance d, where the 
dashed green line represents the location of the channel’s end. 
Both emitters are assumed to operate at the same frequency 
close to the ENZ resonance. Interestingly, pure superradiant 
emission with 𝛾𝛾 = 2 is achieved from the emitters inside the 
waveguide that is independent of the inter-emitter distance along 
the entire channel. However, the dipole-dipole interactions 
diminish drastically for emitters placed in free space (blue curve 
in Fig. 8(c)) and the superradiant effect (𝛾𝛾 > 1) is only achieved 
when the inter-emitter distance is a few nanometers [101]. More 
importantly, a collection of multiple identical quantum emitters 
can be incorporated inside the ENZ waveguide, resulting in a 
significant boosting of the superradiance emission. Figure 8(d) 
demonstrates the collective distribution of the normalized decay 
factor 𝛾𝛾 when 100 identical emitters with the same frequency 
(ENZ resonance) are embedded in the waveguide. Note that the 
distribution of γ  is uniform with values very close to 100 along 
the entire nanochannel, indicating that all emitters 
constructively interact with each other leading to superradiant 
response that is independent to the emitters’ locations. 
Therefore,  a random arrangement of quantum emitters will 
exhibit superradiance when ENZ plasmonic waveguides are 
used, a very advantageous and unique feature that is expected to 
be very suitable in the practical implementation of 
superradiance. In addition, apart from the superradiant emission 
effect, many other widely investigated quantum optical coherent 
emitter interaction processes, such as the Förster resonance 
energy transfer and quantum entanglement will occur, when the 
distance between quantum emitters is very small [53]. These 
effects are related to the real part of the Green’s function and can 
be computed by using Eq. (19). Hence, ENZ mediated 
superradiance promises to have various applications ranging 
from quantum entanglement to quantum memory and 
communication systems on a chip. It will also lead to the design 
of efficient quantum optical memories [102], low-threshold 
nanolasers [103], coherent thermal sources [104], [105], and 
ultrasensitive optical sensors [97].  

VI. CONCLUSIONS 
In this article, we have reviewed several important aspects 
relevant to the emerging field of quantum plasmonics [40]. This 
new research area has attracted and will continue to attract 
considerable interest among the electromagnetics and quantum 
optics communities. The existing development of various 
plasmonic nanostructures, especially ENZ and other plasmonic 
waveguides, was demonstrated to considerably enhance many 
fundamental quantum electrodynamic phenomena, mainly 
based on dipole-dipole interactions. The role of the classical 
Green’s function formalism in quantum electrodynamics has 
been analyzed and applied to model a diverse range of quantum 
optical phenomena. The presented plasmonic waveguide 
designs are expected to lead to a plethora of new nanophotonic 
quantum optical technologies and devices, such as ultrafast 
light-emitting diodes, low power plasmonic nanolasers, and 
single and/or entangled photon sources. 
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