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Use of Multiple Environment Variety Trials Data to Simulate Maize Yields in the Ogallala

Aquifer Region: A Two Model Approach

Vaishali Sharda, Mesfin M. Mekonnen, Chittaranjan Ray, and Prasanna H. Gowda

Research Impact Statement: DSSAT and AquaCrop models were calibrated using variety trial data to demon-
strate their use for simulating maize production at regional scale when detailed in season crop growth data are
not available.

ABSTRACT: With a long-term goal to optimize use of groundwater in the Ogallala Aquifer Region (OAR) to sus-
tain food production systems, this study was conducted to calibrate Decision Support System for Agrotechnology
Transfer (DSSAT) and AquaCrop crop modeling platforms to simulate maize production at a regional scale using
historic datasets. Calibration of the models with local crop growth data and crop management practices is impor-
tant, but usually this in-season crop growth information is not available. This study determined the possibility
of using maize variety trial data for the evaluation of the CSM-Crop Estimation through Resources and Environ-
mental Synthesis-Maize and AquaCrop models in the OAR. The models were calibrated and tested in three
counties in Nebraska. Both the models were then used to simulate irrigated maize yield during 1988 to 2015 for
all three counties. The criteria for evaluating the performance of these crop models included statistical parame-
ters and graphical analysis. The performance of both models were then compared with the observed yield from
field variety test results and historic National Agricultural Statistical Service yields. The results indicated that
difference between yield of calibrated DSSAT model and observed yield was less than 10% and AquaCrop root
mean square error ranged from 740 to 1,820 kg/ha. Long-term comparison between observed and simulated
Nebraska county yields also indicated confidence in calibrating crop models with typical end of season yield data
and using these models for studying crop production at regional scales when detailed in-season crop growth
observed data are not available.

(KEYWORDS: crop simulation; DSSAT; AquaCrop; cultivar coefficients; calibration; long term.)

INTRODUCTION

As the population of the world soars, the agricul-
tural production and scientific communities are faced
with the challenge of increasing food production and
adapting the agricultural systems to changing cli-
mate while sustaining the environment. Policy mak-
ers and researchers need more accurate prediction of

food production at large spatial scales (Huang et al.
2017). Several crop models like Decision Support Sys-
tem for Agrotechnology Transfer (DSSAT), (Jones
et al. 2003); EPIC, (Williams et al. 1989); AquaCrop,
(Vanuytrecht et al. 2014); SALUS, (Basso et al.
2006); APSIM, (Keating et al. 2003), etc. have been
around for several decades. These models are tools
that incorporate several guiding principles and meth-
ods of crop physiology, agronomy, agro meteorology,
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soil mechanics, soil water, and economics, among
others (Hoogenboom 2000); and have been extensively
used to analyze and evaluate the impacts of climate
change and environmental factors on crop production
systems (Rosenzweig and Iglesias 1998; Hermans
et al. 2010; Nelson et al. 2010; Semenov and Shewry
2011).

Several studies have used crop models in conjunc-
tion with climate projections of Global Climate Models
around the world (Basak et al. 2010; Dias et al. 2016)
and in the United States (U.S.) (Rao 2002). The analy-
ses have included yield risk assessment (Challinor
et al. 2018); impact of change in temperature and pre-
cipitation changes in yields (Alexandrov and Hoogen-
boom 2000); economic analyses (Nelson et al. 2014)
among others. During the course of conducting
research and reporting results of the studies men-
tioned earlier, scientists have evaluated different crop
management strategies like planting dates, fertilizer,
and irrigation applications as well as selecting culti-
vars or hybrids that might help to mitigate the impact
of climate change on agricultural production systems.

The process of adjusting cultivar specific parame-
ters so that simulated values mimic the observed field
data is called calibration (Hoogenboom et al. 2015).
Crop models, when locally calibrated and validated,
can be effectively used as decision support tools in
different environments (Kisekka et al. 2016). These
models rely on detailed in-season crop growth and
end of season yield data over several crop production
cycles to effectively calibrate the models. To apply a
model to a new location, or use it with new varieties,
it is important to calibrate and evaluate it extensively
(Bao et al. 2017). Given the personnel cost associated
with data collection, these data are costly to obtain
and hence are not readily collected during field exper-
iments. The scarcity or even absence of these data is
a serious limitation to use of tools like crop models to
study crop productivity, productivity gaps, and under-
stand why these gaps exist (Burke and Lobell 2017).
In most of the studies conducted, the crop cultivars
are generally chosen from the default values provided
with the crop model or obtained from literature. This
overlooking of the calibration and evaluation proce-
dures introduces additional errors and noise in the
model simulations. Therefore, selection of cultivars
and crop hybrids for climate change studies remains
a challenge. Improper calibration of the crop model or
failure to validate the model over a temporal scale
could result in uncertainties and errors in the simula-
tions effecting the output of impact studies.

All models are considered imperfect representa-
tions of complicated, real-world biological processes,
with their precision restricted by their design and
structure (Watson and Challinor 2013; Huang et al.
2017). Calibration procedures have been developed

for several crops like maize, soybean, winter wheat,
grain sorghum, etc., when limited experimental data
are available (Soler et al. 2007; Gaiser et al. 2010).
New and improved cultivars and hybrids are continu-
ously developed, but these are not updated or param-
eterized regularly in the crop models (Holzworth
et al. 2015). Due to inherent differences between the
working of different models, there have been discus-
sions on the uncertainties that crop models could
introduce in environmental impact studies (R€otter
et al. 2012). In spite of the model improvements,
structural ambiguity remains an unavoidable concern
for model simulations. The use of multimodel ensem-
bles (Rosenzweig et al. 2013) to minimize uncertain-
ties are becoming an accepted approach to improve
forecast by correcting different biases and making
use of strengths of individual models (Gupta et al.
2012). Martre et al. (2015) compared several crop
models with an ensemble of their results and found
that multimodel forecasts were more precise than
their individual runs. Several other studies have also
indicated that use of multiple models vs. individual
models offer more robust information (Iocola et al.
2017; Yin et al. 2017).

R€otter et al. (2012), Bassu et al. (2014), and Asseng
et al. (2013) have compared multiple models for bar-
ley, maize, and wheat, respectively. However, com-
parison of multiple models at a regional scale for
crops like maize and soybean remains to be seen
when detailed experimental data are not available to
calibrate the model. Also, a gap exists in reporting of
data about calibration in crop modeling studies at a
regional scale when using experimental data (Grass-
ini et al. 2015a, b). One approach under this scenario
could be to use multiyear crop variety trial data from
different locations. Crop variety trials are aimed at
evaluation of improved varieties or hybrids of crops
using the data generated by multienvironmental tri-
als (MET) (Smith et al. 2001; Smith et al. 2005). Bao
et al. (2017) studied the feasibility of using maize
variety trial data for evaluation and comparison of
DSSAT and EPIC models in the state of Georgia,
U.S. We selected DSSAT and AquaCrop models to
study and compare the performance of these two
models in simulating yields of maize in the Northern
High Plains (NHP) region of the Ogallala aquifer.
DSSAT and AquaCrop are two of the most commonly
and widely used crop models around the region as
well as around the world. These two models were
intentionally chosen so as to compare the perfor-
mance of a detailed, process-based crop model
(DSSAT) and a simpler model (AquaCrop) for field
variety trials for maize in NHP when detailed crop
phenological data are unavailable.

The DSSAT (Jones et al. 2003; Hoogenboom et al.
2015) has been extensively used (Tsuji et al. 1998;
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Thorp et al. 2008) for assessing agricultural manage-
ment options. DSSAT version 4.7 comprises models
for more than 28 crops that simulate crop growth,
development, and yield along with management
strategies that involve irrigation, fertilizer applica-
tion, crop rotations, and others (Sharda et al. 2017).
DSSAT is used to simulate crop water use and pro-
duction along with the evaluation of management
strategies under different environmental conditions
(Liu et al. 2011; Soler et al. 2011; McNider et al.
2015). DSSAT has also been employed at various
temporal and spatial scales to model climate change
impacts on crop production (Tubiello et al. 2002; Car-
bone et al. 2003) and to forecast yield (Bannayan
et al. 2003; Soler et al. 2007). DSSAT’s Crop Estima-
tion through Resources and Environmental Synthesis
(CERES) Maize (Ritchie et al. 1998) calculates crop
growth and simulates water and nitrogen balance at
a daily time step by simulating processes of soil
water, nutrient, and plant growth, along with devel-
opmental processes for the formation of final crop
yield and yield components. The model simulates six
phenological stages for a maize plant. Each phenolog-
ical stage is controlled by environmental factors such
as water, sunlight, atmospheric gases, etc., in addi-
tion to weather factors and plant genetics.

The AquaCrop model was developed by the Food
and Agricultural Organization (FAO) and evolves
from the concepts of yield response to crop water use
originally presented in the FAO Irrigation and Drai-
nage Paper No. 33 (Doorenbos and Kassam 1979) to a
concept of a normalized crop water productivity (Ste-
duto et al. 2009). The model separates the nonproduc-
tive soil evaporation from productive crop
transpiration and simulates crop biomass of herba-
ceous crops directly from actual crop transpiration
through a normalized water productivity parameter
under different biophysical and management condi-
tions (Raes et al. 2009; Steduto et al. 2009; Steduto
et al. 2012). The model maintains an optimal balance
between accuracy, robustness, and simplicity, by
requiring a relatively small number of model input
parameters but ensuring realistic simulation of crop
responses to environment through fundamental and
often complex biophysical processes. The AquaCrop
model has been validated and applied successfully for
several crops under different environmental and
agronomic settings (Hsiao et al. 2009; Todorovic et al.
2009; Araya and Stroosnijder 2010; Araya et al.
2010a, b; Stricevic et al. 2011; Abedinpour et al.
2012; Vanuytrecht et al. 2014).

In the absence of detailed in-season experimental
crop growth data, this study was undertaken to
explore the feasibility of using multienvironment
maize variety trial data for the evaluation of two
structurally different crop simulation models. Two

specific objectives of this study were to calibrate
DSSAT and AquaCrop models using multiple year
and multiple location maize variety trial data; and to
use the calibrated models in simulating long-term
historic yields and compare them with observed
yields to conclude whether the performance of the
two assessed models is comparable in predicting
maize yield in NHP.

METHODOLOGY

Data

University of Nebraska, Lincoln Extension’s Crop-
Watch portal provides information on the institute’s
variety testing program. Extensive hybrid and vari-
ety trials for maize, soybean and other crops are con-
ducted at various locations spread throughout the
state to help the producers, extension personnel, and
researchers identify the best performing varieties/hy-
brids according to their needs. For this study, yield
data from maize variety trials conducted from 2009
to 2015 were used (Regassa et al. 2009, 2010, 2011,
2012, 2013; Regassa and Shapiro 2014, 2015). Three
maize hybrids were selected for modeling, based on
the criterion that the varieties were grown in all
three counties from 2009 until 2015. Maize cultivars
selected were Pioneer 33D49, Nutech/G2Genetics
G5H513, and Nutech/G2Genetics G5X411. The loca-
tions selected were Clay, Phelps and Lincoln counties
in Nebraska (Figure 1). The locations were selected
based on availability of continuous weather data for
the location where the variety trials were conducted.
Irrigated trials designed to have no water stress and
pest and disease damage were selected.

The input data required to run the crop models
include daily air temperatures (maximum and mini-
mum), precipitation, and solar radiation, along with
soil properties, management information (e.g., date of
planting, row spacing, and plant population), and
hybrid-specific genetic coefficients that are required
by the models to simulate yield (Sharda et al. 2017).
Observed climate data for all the counties were
obtained from University of Nebraska High Plains
Regional Climate Center’s Automated Weather Data
Network (AWDN 2018). Twenty-eight years (1988–
2015) of climate data from three weather stations
located near the variety trial sites were downloaded.
The soil types varied with year for some of the vari-
ety trials (in which fields within a county were differ-
ent among some years) but for this analysis the most
common soil type was used for each location. The soil
type was Crete silt loam for Clay, Holdrege silt loam
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for Phelps, and Cozad silt loam for Lincoln. The Nat-
ural Resource Conservation Service National Cooper-
ative Soil Survey (NCSS 2013) Soil Survey
Geographic database that provides soil data for more
than 95% of the counties of the conterminous U.S.,
was used to download the soil profiles for study sites.
The soils data were then converted to DSSAT soil
profile using the methodology given in Sharda et al.
(2017). National Agricultural Statistical Service
(USDA NASS 2018) historic county yield data were
used to compare simulated maize yields with
observed county averages.

In DSSAT crop management details such as plant-
ing dates, plant population, row spacing, and fertil-
izer type and amount were set to what was reported
in irrigated variety trial reports. The plant popula-
tion was set to 6 plants/m2, row spacing of 30 cm and
planting depth of 7 cm was used. Irrigation amounts
and dates are not specified in the variety trials,
therefore, irrigation in the model was set to no water
stress or “irrigate when needed” setting. Under this
setting, DSSAT attempts to minimize water stress
throughout the growing season by applying irrigation
based on soil water content (McNider et al. 2015).
Similarly, for AquaCrop crop planting, harvesting
date and plant density as reported in crop variety
trial reports was used. The plant population was set
to 6 plants/m2 at a row spacing of 30 cm.

Model Calibration

DSSAT. Yield and phenology in CERES-Maize
are determined by six genetic coefficients, and the
purpose of calibration is to obtain reasonable esti-
mates of these coefficients by comparing simulated
yield data with observed data. These genetic coeffi-
cients are thermal time from seedling emergence to
the end of the juvenile phase (P1), extent to which
development is delayed for each hour increase in pho-
toperiod above the longest photoperiod at which
development proceeds at a maximum rate (P2), ther-
mal time from silking to physiological maturity (P5),
maximum possible number of kernels per plant (G2),
kernel filling rate during the linear grain filling state
and under optimum conditions (G3), and the interval
in thermal time (degree days) between successive leaf
tip appearances (PHINT) (Table 1).

The first step of calibration included adjusting Soil
Fertility Factor (SLPF) as it is one of the most impor-
tant factors that impact simulated yield (total bio-
mass) (Guerra et al. 2008) and is accredited with
impacting soil fertility and soil-based pests (Bao et al.
2017). Due to lack of observations of biomass, SLPF
was manually adjusted to minimize root mean square
error (RMSE) between observed and initial simulated
yield. Adjustment of SLPF was followed by use of
GENCALC (Hunt et al. 1993) to calibrate the genetic

FIGURE 1. Irrigated maize variety trial sites selected for this study: Clay, Phelps, and Lincoln Counties in Nebraska (Adapted from
Regassa et al., 2012).
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coefficients. GENCALC uses genetic coefficients of
the default cultivar selected and iterates to a best
value of the coefficient by lowering the RMSE
between observed and simulated variables. Since only
observed yield was available for calibration, the rule
for calibration in GENCALC was set to only yield.
Using this rule, the genetic coefficients G2 and G3
were automatically calibrated using GENCALC.
Remaining cultivar coefficients P1, P2, P5, and
PHINT were manually adjusted to further diminish
the difference between observed and simulated yields.
The cultivars Pioneer 3394, H512, and 2600–2650
GDD, available in DSSAT databases were used as
base cultivars to calibrate the cultivars Pioneer
33D49, Nutech/G2Genetics G5H513, and Nutech/
G2Genetics G5X411, respectively.

AquaCrop. In AquaCrop, crop biomass is directly
related to crop transpiration, which is directly influ-
enced by the canopy cover (CC). Therefore, calibra-
tion of AquaCrop was done by adjusting the crop
parameters to determine the development of CC. The
canopy growth coefficient, canopy decline coefficient,
maximum CC, days to emergence, days to senescence,
and days to full maturity are the main parameters
that determine the development of CC (Steduto et al.
2009). These parameters were iteratively adjusted
until the RMSE between the simulated yields and
field level measured yields are minimized.

Maize Yield Simulation

Following calibration and statistical evaluation,
both DSSAT and AquaCrop models were used to sim-
ulate yield under irrigated conditions for Clay, Lin-
coln, and Phelps counties using long-term historical
weather data from 1988 to 2015. The simulated
results from both the models were analyzed to assess
the differences between end of season yield simula-
tions between the two models for different environ-
ments, but using the same crop management as was
used in the variety trial data. The methods used in

DSSAT to simulate various processes in the model
include the FAO 56 (Allen et al. 1998) and the Sulei-
man-Ritchie (Suleiman and Ritchie 2003) options for
estimating reference evapotranspiration and soil
evaporation, respectively, and the Soil Conservation
Service option for estimating infiltration. The simu-
lated yields averaged over the cultivars for each loca-
tion were compared with NASS (USDA NASS 2018)
historic county averages.

Statistical Analysis

Statistical criteria commonly used for evaluating
crop models (Anothai et al. 2008; Bao et al. 2017)
were selected for this study. These include RMSE
and index of agreement (d) or d-stat (Willmott et al.
2012), given by Equations (1 and 2), respectively:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Pi �Oið Þ2
n

s
; ð1Þ

d ¼ 1�
Pn

i¼1 Pi �Oið Þ2Pn
i¼1 P0

i

�� ��þ O0
i

�� ��� �2
" #

; ð2Þ

where n is the number of observations, Pi is the
simulated value for the ith measurement, Oi is the
observed value for the ith measurement, and
P0
i ¼ Pi �O and O0

i ¼ Oi �O, where O is the mean
of all observations. “d” measures the relative error-
ing model estimates and indicates the degree to
which simulated and observed values show similar
variation from the observed averages (Zeleke et al.
2011). The closer the value of d-stat is to 1, the
better the simulation with a value of 0 indicating
complete disagreement (Greaves and Wang 2016).
The smaller the RMSE value is, the better the sim-
ulation fit. The calibrated values for the three
maize cultivars were copied into DSSAT cultivar
(CUL) file to further simulate maize yields and
evaluate the results.

TABLE 1. Cultivar coefficients for the Crop Estimation through Resources and Environmental Synthesis (CERES)-Maize model.

Coefficient Definition Units Min. Max.

P1 Thermal time from seedling emergence to end of juvenile phase °C days 110 458
P2 Extent to which development is delayed for each

hour increase in photoperiod above the longest
photoperiod at which development proceeds at a maximum rate

day/h 0 3

P5 Thermal time from silking to physiological maturity °C days 390 1,000
G2 Maximum possible number of kernels per plant kernel/plant 248 990
G3 Kernel filling rate during the linear grain filling

state and under optimum conditions
mg/day 4.4 16.5

PHINT Interval in thermal time between successive leaf tip appearances °C days 30 75
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RESULTS AND DISCUSSION

Model Calibration

As the first step of cultivar calibration in DSSAT,
the soil fertility factor, SLPF were determined to be
0.9, 0.82, and 0.75 for Clay, Lincoln, and Phelps
counties, respectively (Table 2). Values of observed
and simulated yields averaged over the cultivars
along with RMSE and d stat for calibrated SLPF val-
ues are given in Table 2. The average percentage dif-
ference between observed and simulated yields was
<7% in all the counties. RMSE value was the lowest
for Clay county (1,388 kg/ha), whereas it was approx-
imately 1,865 kg/ha for both Lincoln and Phelps
county. Phelps County had the lowest average d-stat
value of 0.29 among the three counties. Low value of
d-stat in Phelps County can be attributed to the fact
that d-stat is overly sensitive to extreme values due
to the squared differences and any large deviations in
values can strongly influence it (Yang et al. 2014).
RMSE values for Phelps County are comparable to
both Clay and Lincoln Counties.

The calibration of cultivars Pioneer 3394, H512,
and 2600–2650 GDD based on cultivars Pioneer
33D49, Nutech/G2Genetics G5H513, and Nutech/
G2Genetics G5X411, respectively, involved calibrat-
ing growth and phenology coefficients. The values of
the cultivar coefficients are given in Table 3. These
values of GENCALC calibrated coefficients G2 and
G3 ranged from 526 to 903 kernel/plant and 9 to
15.5 mg/day, respectively. The calibrated values of
G3 were higher than the base cultivars in case of
all three cultivars indicating a higher grain filling
rate for Pioneer 33D49, Nutech/G2Genetics G5H513,
and Nutech/G2Genetics G5X411 as compared to the
base cultivars selected for calibration. The higher
value of G3 for G5X411 among the calibrated culti-
vars indicated that it is a higher yielding cultivar as
compared to the other two. The values for other cul-
tivar coefficients that were manually adjusted to
match observed yields include P1, that ranged from
185°C to 237°C days; P2 from 0.3 to 0.75 day/h; P5,

from 850°C to 878°C days; and PHINT, that varied
between 40°C and 49°C days. In case of Nutech/
G2Genetics G5H513, the value of PHINT was same
as that of the base cultivar selected for calibration.

AquaCrop was also satisfactorily calibrated and
validated in this study. During calibration, parame-
ters were adjusted until they provided a better index
of agreement and lower RMSE values. The calibrated
values of AquaCrop adjusted parameters are given in
Table 3. For other parameters, we have adopted the
standard AquaCrop values for maize.

The maize yield simulated by DSSAT CERES-
Maize during calibration period strongly agreed with
the observed values (Table 4). A comparison of simu-
lated and observed yields for each county and cultivar
combination with the lowest RMSE are shown in Fig-
ure 2. For Lincoln County, different cultivars had the
lowest RMSEs for DSSAT and Aquacrop so two data-
sets are presented in Figure 2c, DSSAT — G25H513
and Aquacrop — Pioneer 33D49. The lowest RMSE
during calibration was 920 kg/ha in Clay county for
the Cultivar G25X411, 1,305 kg/ha in Clay county for
Pioneer 33D49, and 1,315 kg/ha in Lincoln county
for G25H513. The deviation of the simulated yield
from observed yield for maize ranged between <1%
and 7%. It is important to note that the performance
of DSSAT varied between locations and among culti-
vars. For most of the simulations, the model overesti-
mate yield, which is expected since the model does
not consider limitations like pests, weeds, etc. During
certain years (e.g., 2014), maize yield was underesti-
mated, but since the deviation of yield was in the
range of less than 10%, it was not considered to be

TABLE 2. Soil fertility factor (SLPF) for three counties and
observed (Obs.) and simulated (Sim.) maize yield. Statistics include
root mean square error (RMSE); and index of agreement (d-stat)

between simulated and observed yield.

Location SLPF
Obs. yield
(kg/ha)

Sim. yield
(kg/ha) RMSE d-stat

Clay 0.9 16,250 15,299 1,388 0.78
Lincoln 0.82 14,451 14,573 1,865 0.68
Phelps 0.75 15,484 14,794 1,863 0.29

TABLE 3. Calibrated values of cultivar coefficients for Pioneer
33D49, Nutech/G2Genetics G5H513, and Nutech/G2Genetics

G5X411for Decision Support System for Agrotechnology Transfer
(DSSAT) and AquaCrop.

Parameter
Pioneer
33D49 G25H513 G25X411

DSSAT, CERES-Maize
P1 236.8 185.0 215.0
P2 0.31 0.75 0.35
P5 878 850.0 875.0
G2 840 902.9 526.1
G3 9.25 12.58 15.40
PHINT 42.88 49.0 40.00
AquaCrop
Canopy growth
coefficient (%/day)

14.5 15.2 14.5

Maximum canopy
cover (CCx, %)

95 99 95

Canopy decline
coefficient (%/day)

9.0 7.4 8.7

Upper threshold
for stomatal closure

0.65 0.69 0.69
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an issue with the calibration of the model (Bao et al.
2017; Araya et al. 2017a, b, c).

The d-stat mostly ranged between 0.6 and 0.9 indi-
cating that the model simulated the observed values
adequately during calibration. Overall, the statistical
evaluation of the model indicated that simulated the
maize yield satisfactorily. There have been several
studies in the past in the NHP region where crop
simulation models have been found to satisfactorily
simulate grain yield for different environments
(Saseendran et al. 2013; Liu et al. 2015; Araya et al.
2017a, b, c). To summarize, DSSAT simulated maize
yield for the dataset evaluated demonstrated a fair
agreement with observed yield and was comparable
to the calibration dataset.

AquaCrop simulated maize yield well during the
calibration period with RMSE ranging from 740 to
1,820 kg/ha between cultivars and locations. The
relationship between the measured and simulated
yield was fair. Index of agreement obtained was com-
paratively lower as compared to some of the other
similar simulations carried out in the region (Araya
et al. 2017a, b, c) and other places (Heng et al. 2009;
Hsiao et al. 2009).

Performances indices of DSSAT were better than
AquaCrop for most of the location and cultivar com-
binations. This was expected due to simplification
of complex processes in AquaCrop (Araya et al.
2017a, b, c) as compared to DSSAT. The perfor-
mance of AquaCrop during calibration period was
better in Phelps county for cultivar G25X411 where
the index of agreement and RMSE for AquaCrop
were 0.6 and 740 kg/ha, respectively, as compared
to 0.2 and 1,216 kg/ha in case of DSSAT. However,
there is overestimation and underestimation in
some counties for all the cultivars calibrated. When
compared with observed yields, the percentage dif-
ference between Aquacrop simulated yields ranged
between 0.6% and 11% among locations and
hybrids.

Maize Yield Simulation

Comparison of long-term historic DSSAT yield sim-
ulations with NASS yields (years 1988–2015) aver-
aged over cultivars for all the locations are given in
Figure 3a. The model was able to capture the yield
variability over the time of simulation, which is most
likely attributed to environmental factors. It was
found that the difference between simulated and
measured yield was higher in the early 1990s and
the simulated and observed maize yields converged in
the year 2001 onwards. This trend is expected since
the present day cultivars are improved, high yielding
varieties as compare to the cultivars that existed
nearly 30 years ago (Richards 2006; Grassini et al.
2015a, b; Qian and Zhao 2017). The crop manage-
ment factors remained same over the simulation per-
iod and actual historic weather data were used, so
the yield variation in Figure 3 could be the explained
by the use of genetically improved cultivars (e.g.
drought tolerant hybrids) as well as variation in crop
management practices over time. Some of the other
factors not considered in this study that could attri-
bute to the yield difference between observations and
simulations could include factors like introduction of
conservation tillage as well as transgenic pest control
(Edgerton 2009). Since irrigated yields remove the
impact of rainfall variability on yield (Bao et al.
2017), this variation in yield indicates that environ-
mental conditions and weather play a significant role
in the yield variability from year to year and from
one location to another. For AquaCrop (Figure 3b),
the simulated yield follows a similar trend of converg-
ing to NASS observed yields year 2000 onward. In
contrast to DSSAT simulations, these simulated
yields, however, show smaller variability over time
and remain in the same range from 1988 to 2015.

The variation in simulated maize yield for 28 years
(1988–2015) for both models at each location are pre-
sented in Figure 4. The average simulated yields for

TABLE 4. The average simulated maize yield for DSSAT and AquaCrop calibration of the three cultivars. Statistics include index of agree-
ment (d); and RMSE of simulated and observed yield.

County

Pioneer 33D49 G25H513 G25X411

Yield, kg/ha d RMSE Yield, kg/ha d RMSE Yield, kg/ha d RMSE

DSSAT
Clay 15,472 0.7 1,305 16,601 0.7 1,939 16,270 0.9 920
Lincoln 14,850 0.6 2,865 14,892 0.7 1,315 16,233 0.6 1,414
Phelps 15,186 0.2 2,557 16,088 0.4 1,816 16,291 0.2 1,216
AquaCrop
Clay 14,941 0.5 1,323 16,360 0.6 1,481 16,165 0.8 1,216
Lincoln 13,752 0.3 1,606 13,752 0.4 1,887 14,547 0.5 1,821
Phelps 13,709 0.3 1,726 16,014 0.3 2,064 14,781 0.6 740
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FIGURE 2. A comparison of observed yields with DSSAT and Aquacrop simulated yields for different cultivar and locations (a) Clay County
(b) Lincoln County and (c) Phelps County. *For Lincoln County, different cultivars had the lowest RMSEs for DSSAT and Aquacrop so two

datasets are presented in this figure, DSSAT — G25H513 and Aquacrop — Pioneer 33D49.
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DSSAT ranged from 11.4 to 17 Mg/ha with a median
yield of 14.25 Mg/ha at the three locations. DSSAT
yields from Phelps County had the most variation
and Lincoln County had the least. Simulations of
AquaCrop were similar to DSSAT in Lincoln County
with maximum yield about 50 kg/ha more than
DSSAT. AquaCrop, overall, had less variability than
DSSAT simulations, which is also evident from the
time series analysis of averaged yields (Figure 3).
The minimum yields simulated with AquaCrop were
higher than DSSAT simulated yields in both Clay

and Phelps counties. AquaCrop yields ranged from
about 13.5 to 16.65 Mg/ha over the three locations.
Simulated yields averaged over year 2000 onwards
(2000–2015) and three different cultivars indicate
that both DSSAT and AquaCrop overestimated yields
at all three locations (Figure 5) as compared to
observed county yields with the difference between
simulated and observed yield ranging from 0.3% to
19%. DSSAT yields were found to be closer to be
observed yields as compared to AquaCrop yields at
all locations with the variation in <0.3% to 12%. This
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FIGURE 3. Comparison of observed historic National Agricultural Statistical Service (NASS) County yields for years 1988–2015 with
simulated DSSAT (a) and AquaCrop (b) yields. Lines represent observed NASS yields and dots represent simulated yields. Simulated yields

are averaged over the cultivars.
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overestimation, although high, is close to the calibra-
tion period (0.6%–11%) and is in agreement with sev-
eral studies that have adopted similar approach for
calibrating the models (Klein et al. 2012; Bao et al.
2017; Adnan et al. 2019) There are several factors
that are not accounted for in the models used and
could have attributed toward the overestimation of
crop yield. These factors include, but are not limited
to, several biotic and abiotic stresses (Garibay et al.
2019) as well as pedo-climatic conditions (Brilli et al.
2017).

SUMMARY AND CONCLUSIONS

Before crop models can be used as tools to help in
agricultural management decision making, they need
to be tested extensively at regional levels (Asseng
et al. 2013). This process of calibrating different culti-
var coefficients is important to establish confidence in
model simulations. However, many times detailed in-
season crop growth data are unavailable to be used
in the calibration process. This study was designed to
demonstrate the use of regional variety trial data
from various locations in Nebraska to calibrate
DSSAT and AquaCrop crop models for maize in
absence of in-season crop growth data. The variety
trials data used in this study were obtained entirely
from a public source, so that this approach and
methodology could be easily reconducted in other
regions.

Both DSSAT (CERES-Maize) and AquaCrop mod-
els were calibrated for three popular cultivars grown

in NHP region using the University of Nebraska
CropWatch variety trial data from Clay, Lincoln and
Phelps counties during the years 2009–2015. The cali-
brated models were used to simulate maize yield
based on long-term historic weather data (1988–
2015). The simulated yields were then compared with
observed NASS yields.

The study demonstrated that the calibration per-
formance of both DSSAT and AquaCrop models was,
in general, representative of the observations for the
three cultivars calibrated at all the three locations.
The results indicated that both the models studied
have the capability of simulating maize yields at a
regional scale in absence of detailed in-season growth
data for calibration. The differences that exist
between the performance of the two models, despite
using the exactly same crop management, weather
and other input data, could be attributed to the fact
that both the models are structured differently. For
all the locations studied the median simulated maize
yield of AquaCrop was higher than that of DSSAT
and both the models overestimated yield as compared
to observed county averages. Overall, both the models
were able to simulate maize yield reasonably well as
compared to observed yields both during calibration
as well as historic time series.

Description of agricultural systems and their per-
formance through system analysis and understanding
the natural processes behind them is the core princi-
ple behind crop models and their use as decision sup-
port tools. As stated earlier, the calibration of these
crop growth and agricultural systems models requires
an integrated research approach between setting up
field experiments and recording intensive in season

FIGURE 4. Variation in simulated maize yields by DSSAT and
AquaCrop models.
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crop development data. This method presented in our
study of using multienvironment crop variety trial
data to estimate the cultivar coefficients of crop is a
good alternative when detailed crop growth data from
during the season are not available. Availability of
breeder/variety trial datasets from different locations
and over a range of crop management scenarios like
planting dates when combined with a systematic
approach can prove helpful in calibrating and using
crop models in data scarce environments (Adnan
et al. 2019). We found that a large number (multiple
years and multiple locations) of variety trials that
have only end of season yield data can be successfully
used to derive cultivar information to use in two dif-
ferent crop models. Although the long-term simula-
tions indicated some uncertainty in the model
behaviors, use of two different crop models that have
different descriptions for various crop growth and
other physical processes could be useful in generating
more reliable results than using averages. The
results also highlighted that there is a necessity for
adjusting model parameters for regional conditions.
This need could be discounted when using data from
locations with different climatic conditions within a
region (Klein et al. 2012) (e.g., variety trials).

As we move toward advanced application of crop
models to study impacts of changing climate and
improved hybrids, among others; use of multimethod
and multimodel ensembles will improve the risk
assessment and forecasts of crop production (Liu et al.
2016). While not always better, this approach of using
multimodels when detailed, in season crop growth
data are not available, could have a wide variety of
applications in both research and policy. Obtaining
end-of-season yield estimates at the field scale over a
region from inexpensive sources (e.g., field variety tri-
als conducted by Land-grant institutions) could
improve the ability to conduct evaluations of various
management interventions on our agricultural pro-
duction systems. Other applications of this approach
could be in studying and understanding yield gaps
and their sources in absence of extensive crop man-
agement data (Burke and Lobell 2017).

As discussed earlier, crop models have been exten-
sively utilized in yield impact studies under various
circumstances and environment. With integration of
various models (Haacker et al. 2019) becoming more
common, crop models can also play a significant role
in studying the overall sustainability of water
resources for crop production. Several recent studies
have utilized DSSAT, AquaCrop and other crop simu-
lation models to optimize the use of groundwater for
irrigation in the Ogallala Aquifer Region and NHP
(Rad et al. 2020; Xiang et al. 2020). Sustainability
studies of water resources in a changing environment
have also used crop models (Araya et al. 2017a, b, c;

Sharda et al. 2019) to understand the impact on crop
yields under different irrigation strategies.

It is important to note that although the results of
this study showed that variety trials data can be a valu-
able for crop model calibration for areas where detailed
in-season crop growth data from field experiments are
not available, calibration of crop models based on end of
season yield is not a replacement of calibration proce-
dure whenmore elaborate data are present.
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