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Abstract
Ammonia (NH3) volatilization loss adversely affects N availability in soil-plant sys-

tems, reduces crop yield, and negatively impacts environment. Char (coal combus-

tion residue), which contains up to 293 g kg−1 total C by weight, has been shown

to reduce NH3 volatilization due to its considerably high surface area and cation

exchange capacity. The NH3 loss can be greatly affected by a shift in soil pH or urea

hydrolysis. A 21-d laboratory study was conducted to evaluate the effects of char

on soil pH, N transformations, and subsequent NH3 volatilization in sandy loam soil.

Two char rates (0 and 13.4 Mg C ha−1) and two urea rates (0 and 200 kg N ha−1) were

mixed in soil in four 2-way combinations with four replications of each. There were

11 sets of all treatment combinations and each set was analyzed for soil moisture, pH,

NH3 volatilization, and residual N (urea, NH4, and NO3) every other day for 3 wk.

Char application reduced cumulative NH3 loss in the fertilized treatment. Reduction

in NH3 loss due to char addition was evidenced by greater residual NH4–N on cer-

tain days in treatments with char compared to treatments without char. Char did not

affect urea hydrolysis process but it lowered soil pH in the fertilized treatments in the

first week. This study supported our hypothesis that char altered soil pH and thereby

reduced NH3 volatilization loss from the fertilized soil.

1 INTRODUCTION

A global meta-analysis of 824 observations revealed that up to

64% of surface-applied N fertilizer could volatilize as ammo-

nia (NH3) and be lost from the soils to the atmosphere (Pan,

Lam, Mosier, Luo, & Chen, 2016). The volatilized NH3 from

fertilized agricultural land has adverse ecological impacts

on environmental quality. In addition, NH3 loss reduces N

available for crop production (Shang et al., 2014; Zaman,

Saggar, Blennerhassett, & Singh, 2009) and negatively influ-

ences crop N use efficiency. Upon depositing to ground, NH3

Abbreviations: CEC, cation exchange capacity.
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can cause soil acidification, can be a secondary source of N2O

emissions, and promote eutrophication of surface water bod-

ies (Sutton, Erisman, Dentener, & Möller, 2008).

Among all N fertilization type, urea accounted for nearly

56% of global fertilizer N consumption, as it contains com-

paratively high N content, safe to handle, and readily available

in granular or liquid form (IFA, 2017). Ammonia volatiliza-

tion accrues as the urea is applied to the soil surface through

urea hydrolysis under favorable conditions (high soil pH and

adequate moisture) and this process may continue up to 2 wk

(Sommer, Schjoerring, & Denmead, 2004). Several modifi-

cations are applied to urea fertilizers such as adding urease

inhibitor [e.g., N-(n-butyl) thiophosphoric triamide (NBPT)]
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to slow the urea hydrolysis (Nascimento, Vitti, Faria, Luz,

& Mendes, 2013; Silva, Sequeira, Sermarini, & Otto, 2017;

Trenkel, 2010). High cation exchange capacity (CEC) of zeo-

lite (aluminosilicate mineral) when mixed with urea is also

reported to reduce NH3 loss through volatilization (Palaniv-

ell, Ahmed, Susilawati, & Ab Majid, 2015). Biochar can retain

NH4 during soil N transformation and possibly reduce NH3

emissions due to biochar high surface area (DeLuca, Gundale,

MacKenzie, & Jones, 2015; Steiner, Das, Melear, & Lakly,

2010). Panday et al. (2020) reported that the addition of coal

char up to 13.4 Mg C ha−1 in a loam soil and 10.1 Mg C ha−1

in a sandy loam soils decreased NH3 volatilization loss by 24

and 26–37%, respectively. They also reported that the reduc-

tion in NH3 volatilization was related to increased ammonium

(NH4–N) sorption and retention during soil N transforma-

tion due to char high surface area (0.08 m2 kg−1) and high

CEC (46.9 cmolc kg−1). Previous research documented that

the soil with low H+ buffering capacities has a potential for

NH3 volatilization as the soil pH increases when added dry

urea dissolves and hydrolyzes (Ferguson, Kissel, Koelliker,

& Basel, 1984). In addition, NH3 volatilization is enhanced in

soil with pH above 7.5 (Fan & Machenzie, 1993; Kissel, Cabr-

era, & Paramasivam, 2008). The addition of coal char that has

pH lower than a calcareous soil could potentially reduce soil

pH and NH3 volatilization during urea hydrolysis.

Char is one of the C-rich organic amendments that make it

a suitable material to enhance or recover soil C and it con-

tains nutrients that are essential for plant growth. Adding

organic C-rich materials can have a positive effect on increas-

ing soil organic C, improving soil properties, and enhancing

crop yields (Blanco-Canqui et al., 2020). Previous research

documented a reduction in NH3 volatilization due to the sorp-

tion properties of char (Panday et al., 2020). The effect of char

on urea hydrolysis and soil pH would provide an understand-

ing on how char is affecting soil processes that lead to reduced

NH3 volatilization. Hence, the objective of this study was to

determine the effects of char addition on soil pH, urea-N trans-

formation, and NH3 emissions over a 21-d laboratory incuba-

tion under adequate environmental conditions. It is hypothe-

sized that char would affect soil pH and processes that control

urea hydrolysis and NH3 volatilization and conserve soil N

from loss to the atmosphere.

2 MATERIALS AND METHODS

A 21-d laboratory study was conducted on the soil that was

collected from 0-to-20-m depth from a farm field at the

Panhandle Research and Extension Center, Scottsbluff, NE,

at the University of Nebraska-Lincoln. The soil was Tripp

fine sandy loam soil (coarse-silty, mixed, superactive, mesic

Aridic Haplustolls) and had a 7.9 pH, 19 g kg−1 organic mat-

ter, 15.0 mg kg−1 initial extractable inorganic N (NH4−N and

Core Ideas
∙ Coal char application did not affect urea hydrolysis.

∙ Coal char application reduced soil pH in fertilized

treatments in the first week.

∙ Coal char is a potential soil amendment particu-

larly in high pH and low C soil.

NO3−N) and 12.8 cmolc kg−1 CEC. Soil was air-dried for a

week and sieved through a 2-mm mesh size before the initia-

tion of study.

A 10 g air-dried soil was added into multiple 250-ml glass

beakers and was brought to 12% gravimetric water content

(GWC) by adding deionized water and mixing thoroughly.

The amount of water sprayed corresponded to 35% water-

filled pore space for this soil. Char was mixed properly with

soil, then urea-N was applied to the soil surface and left there

in each beaker. Urea granules were ground to match the tar-

geted N rate for each beaker content. Char properties used in

this study was previously reported in Panday et al. (2020).

The study was arranged in a randomized complete block

design with four replications (replication was considered as

a block factor). The char was added at two rates that corre-

sponded to 0 and 13.4 Mg C ha−1 (equivalent to 0 and 44.6 Mg

char ha−1). The urea was also added at two rates that corre-

sponded to 0 and 200 kg N ha−1. The actual amounts of char

and urea added were 0.2 g and 2.0 mg, respectively. The two

rates each of char and urea generated four treatment combina-

tions as follows: control with no char or urea (C0N0), urea fer-

tilizer at 200 kg N ha−1 with no char (C0N1), char at 13.4 Mg

C ha−1 with no fertilizer (C1N0) and char at 13.4 Mg C ha−1

with urea at 200 kg N ha−1 (C1N1).

The beakers containing soil and different treatments were

closed with lids and the 1st day of the experiment was con-

sidered as Day 0. The beakers were placed in a constant room

temperature (25 ˚C) which was maintained during the entire

21-d experiment. Every other day, beakers lids were opened

for 15 min for air circulation and to avoid CO2 gas accumu-

lation inside the beakers. There were 11 sets of all treatment

combinations and one set each was analyzed for moisture con-

tent, pH, NH3 volatilization, and residual mineral N (urea,

NH4, and NO3) at each sampling event which was on every

other day (Day 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20).

Ammonia volatilization loss was measured using the acid

trap method. A sponge of 2 cm diam. and 1.3 cm thickness

was used as an acid trap with 2 ml of H3PO4–glycerol solu-

tion (40 ml glycerol, 50 ml H3PO4 acid, and 910 ml deionized

water) and placed inside the mouth of beaker. The first set of

acid traps was installed on Day 0 and removed from beakers

on Day 2. Such collected traps were rinsed with a 2 M KCl
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solution and squeezed multiple times to extract the solution

which was frozen until analyzed for NH4.

After removing the acid traps, deionized water was added

to soil in beakers to adjust for any water losses and maintain

the 12% gravimetric water content (GWC) during the exper-

iment. At each sampling date, soil pH was determined by a

glass electrode (soil/water ratio, 1:1). The urea-N, NH4–N,

and NO3–N were evaluated by extraction using 2 M KCl-

potassium chloride-phenyl mercuric acetate (PMA) solution

prepared by mixing 149.1 g KCl in 900 ml deionized water

and 5 mg PMA in 100 ml deionized water. The addition of

PMA was to inhibit urease activity during extraction of soil

with 2 M KCl (Douglas & Bremner, 1970). Each beaker con-

taining soil suspension (10 g soil) was placed in a shaker for

15 min at a speed of 250 rpm. The resulting suspension was

filtered through Whatman no. 42 filter paper and analyzed for

urea-N, NH4–N, and NO3–N. The urea-N was determined by

using a colorimetric diacetyl monoxime method (Chen, Ma,

Huang, Dai, & Li, 2015). Ammonia (NH3) trapped in acid

trap solution, and NH4–N and NO3–N present in soil solutions

were determined by using a flow analyzer (SEAL Analytical).

Cumulative NH3 loss for each treatment was calculated by

adding up NH3 loss across all sampling dates. To estimate

the cumulative NH3 volatilization loss per applied N for each

treatment, cumulative NH3 volatilization loss in fertilized soil

with char or no char was subtracted from control treatment

(C0N0) and divided by the amount of urea-N applied. Total

inorganic N was estimated by summing NH3 loss, residual

urea-N, residual NO3–N, and residual NH4–N on each sam-

pling date.

The effect of treatments on cumulative NH3 loss was tested

using the PROC MIXED procedure in SAS software v. 9.4

(SAS Institute, 2003) with treatment as fixed effect and repli-

cation as random effect. The ANOVA was used to evaluate

the influence of the sampling dates on the measured parame-

ters (pH, NH3 volatilization, residual N [urea, NH4 and NO3]

and total N). Statistical difference of P < .05 was considered

significant unless otherwise indicated.

3 RESULTS

3.1 Ammonia volatilization

About 70% of total NH3 volatilization in the fertilized treat-

ment that received 200 kg N ha−1 occurred within the 1st week

of the experiment (Figure 1). The highest peak of daily NH3

volatilization loss was observed on Day 4 for the fertilized

treatments following treatment application. There was a sig-

nificant effect of treatment on NH3 volatilization loss up to

Day 8 (Figure 1). The daily NH3 volatilization loss in the treat-

ment C0N1 was greater than C1N1 on Day 6. Both fertilized

treatments (with and without char) had greater daily NH3 loss

F I G U R E 1 Daily NH3 volatilization losses under different treat-

ments. Treatments included control with no char or urea (C0N0), urea

fertilizer at 200 kg N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1

with no fertilizer (C1N0) and char at 13.4 Mg C ha−1 with urea at 200 kg

N ha−1 (C1N1). Means with different letters across treatments on a given

sampling day are significantly different at P < .05

T A B L E 1 Mean cumulative NH3 volatilized as affected

by treatment

Treatmenta Cumulative NH3 volatilized
g N kg−1

C0N0 0.012 cb

C0N1 0.039 a

C1N0 0.010 c

C1N1 0.033 b

aTreatments included control with no char or urea (C0N0), urea fertilizer at 200 kg

N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1 with no fertilizer (C1N0) and

char at 13.4 Mg C ha−1 with urea at 200 kg N ha−1 (C1N1).
bMeans in a column followed by same lowercase letter are not significantly differ-

ent.

than the unfertilized on Days 2, 4, and 6. The C0N1 treatment

had the highest total NH3 volatilization than any other treat-

ment. Cumulative NH3 volatilization loss across treatments

ranged from 0.006 to 0.042 g kg−1 N in this 21-d laboratory

study. There was a significant treatment effect on cumulative

NH3 volatilization loss (Table 1). Both fertilized treatments

(C1N1 and C0N1) had a greater cumulative NH3 loss than the

unfertilized. Between the fertilized treatments, char applica-

tion reduced cumulative NH3 loss by 15.3% (C1N1 < C0N1).

However, NH3 volatilization did not differ by char addition in

the unfertilized treatments (C0N0 = C1N0).
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3.2 Soil pH

There was a significant effect of treatment on soil pH through-

out the study period (Figure 2). At the beginning of experi-

ment, soil pH increased to around 8.0 in the treatment C0N1

(Figure 2). The same treatment continued to have the high-

est soil pH among all treatments until Day 6 and then the

pH dropped by 0.5 units. Soil pH was consistently lower

in the treatment C1N1 than C0N1 until Day 10, except on

Day 8. During and after Day 10, soil pH with the C0N1

was ≤7.1 and with the C1N1 was between 7.1 and 7.3.

In the unfertilized treatments, soil pH was around 7.8 in

the beginning of the study, but on Day 8 and forward,

the pH dropped to 7.7 for C0N0 and around 7.5 for the

treatment C1N0.

3.3 Soil residual nitrogen (urea,
ammonium, and nitrate)

Soil residual urea-N was not influenced by char addition to

the fertilized treatments (Figure 3). Soil residual NH4–N were

greater with char added fertilized treatments than no char

(C1N1 > C0N1) on Days 4 and 6 (Figure 4). Soil residual

urea-N and NH4–N in the fertilized treatments were greater

than in the unfertilized treatments up to Day 6 and Day 10,

respectively. The addition of char did not influence soil resid-

ual urea-N or NH4–N in the unfertilized treatments. There was

a significant treatment effect on soil residual NO3–N through-

out the study period (Figure 5). Both fertilized treatments had

higher soil residual NO3–N compared to the unfertilized treat-

ments from Day 6 to the end of the study period. Soil residual

NO3–N in the C1N1 was higher than C0N1 on Days 8, 10, 14,

16, and 18.

3.4 Soil total inorganic nitrogen

Soil used in the study had 0.015 g kg−1 residual inor-

ganic N (NH4−N and NO3−N) and 0.1 g kg−1 urea-

N was added to fertilized treatments. Total inorganic

N (NH4−N and NO3−N) in glass beaker ranged from

0.013 to 0.022 g kg−1 N in the unfertilized treatments

and 0.703 to 0.122 g kg−1 N in the fertilized treat-

ments (Figure 6). Total inorganic N was always greater

in the fertilized than in the unfertilized treatments (Fig-

ure 2–6). Both fertilized treatments had 0.075 g kg−1 N on

Day 0 compared to other days which had a total N of >

0.10 g kg−1.

F I G U R E 2 Daily soil pH under different treatments. Treatments

included control with no char or urea (C0N0), urea fertilizer at 200 kg

N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1 with no fertilizer

(C1N0) and char at 13.4 Mg C ha−1 with urea at 200 kg N ha−1 (C1N1).

Means with different letters across treatments on a given sampling day

are significantly different at P < .05

F I G U R E 3 Daily soil residual urea-N under different treatment.

Treatments included control with no char or urea (C0N0), urea fertilizer

at 200 kg N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1 with

no fertilizer (C1N0) and char at 13.4 Mg C ha−1 with urea at 200 kg

N ha−1 (C1N1). Means with different letters across treatments on a given

sampling day are significantly different at P < .05
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F I G U R E 4 Daily soil residual NH4–N under different treatment.

Treatments included control with no char or urea (C0N0), urea fertilizer

at 200 kg N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1 with

no fertilizer (C1N0) and char at 13.4 Mg C ha−1 with urea at 200 kg

N ha−1 (C1N1). Means with different letters across treatments on a given

sampling day are significantly different at P < .05

F I G U R E 5 Daily soil residual NO3–N under different treatment.

Treatments included control with no char or urea (C0N0), urea fertilizer

at 200 kg N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1 with

no fertilizer (C1N0) and char at 13.4 Mg C ha−1 with urea at 200 kg

N ha−1 (C1N1). Means with different letters across treatments on a given

sampling day are significantly different at P < .05

F I G U R E 6 Daily soil total-N under different treatment. Treat-

ments included control with no char or urea (C0N0), urea fertilizer at

200 kg N ha−1 with no char (C0N1), char at 13.4 Mg C ha−1 with no

fertilizer (C1N0) and char at 13.4 Mg C ha−1 with urea at 200 kg N ha−1

(C1N1). Means with different letters across treatments on a given sam-

pling day are significantly different at P < .05

4 DISCUSSION

Fertilizer is the primary source for NH3 volatilization which

can increase with increasing N application rate, especially

with surface broadcast compared to subsurface banding or

deep placement (Cai et al., 2002; Jantalia et al., 2012).

Sommer et al. (2004) and Reichmann, Sala, and Peters (2013)

demonstrated that NH3 volatilization is dependent on urea

hydrolysis as influenced by soil temperature and moisture

which may raise NH4/NO3 ratio in the application area.

Ammonia volatilization may reach up to 35% of applied N

over a week at 20−25 ˚C (Franzen et al., 2011). Maintain-

ing the incubation temperature (25 ˚C) and soil moisture con-

tent around 35% water-filled pore space throughout the exper-

iment period allowed for considerable NH3 volatilization loss

(up to 38% of applied N). These losses aligned with other

studies that reported NH3 loss of 15 to 64% of applied N

from a surface applied urea- N fertilizer (San Francisco, Urru-

tia, Martin, Peristeropoulos, & Garcia-Mina, 2011; Siddique

et al., 2020; Vaio et al., 2008).

Cation exchange capacity and N2 fixation capacity can

affect soil NH3 volatilization, likely because these soil prop-

erties control the amount of available total applied N near soil

surface (Ferguson et al., 1984). Clay minerals can fix total

applied N in soil, which can reduce the pool of available N for

NH3 volatilization (Pelster et al., 2018). The reduction in NH3
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volatilization in char added fertilized treatment by 15.3% com-

pared to no char treatment was due to increased N sorption due

to higher surface area and CEC associated with char compared

to soil (Panday et al., 2020). This observation agreed with pre-

vious research that documented a reduction in NH3 volatiliza-

tion with char addition to the fertilized treatment (Wang &

Alva, 2000).

Ammonium (NH4) is the predominant form at pH below

7.5 (Fan et al., 1993; Sherlock, Freney, Bacon, & Van der

Weerden, 1994). The NH3 forms quickly and becomes dom-

inant as soil pH increases above 7.5 and it becomes suscepti-

ble to loss via volatilization (Behera et al., 2013). The reduc-

tion in soil pH in fertilized soil is due to acidifying nature

associated with NH3–based fertilizer transformation (Stewart,

2008). Further reduction in soil pH observed due to char can

be attributed to dilution effect of adding char that has lower

pH (7.6) than soil (7.9). Similarly, the dilution effect of soil

pH associated with organic amendment, such as fly ash, has

been reported previously by Lai, Ye, and Wong (1999).

Reduction in NH3 loss in the char-added fertilized treat-

ment coincided with greater residual NH4–N in that treat-

ment than in no char treatment on Days 4 and 6. Prolonged

and higher presence of NH4–N can eventually lead to a

greater NH3 emission (Peng et al., 2015; Zaman, Nguyen, &

Blennerhassett, 2008). However, it is important to note that

KCl-extractable NH4–N does not directly correlate with NH3

emissions because it includes the proportion of free NH4–N

in solution and bound NH4–N in CEC pools (Pelster et al.,

2018). Those NH4–N bound to CEC pools are only moder-

ately available and most of the NH3 volatilization loss would

derive from free NH4–N in soil solution (Pelster et al., 2018;

Witter et al., 1989). Therefore, a greater NH4–N in char treat-

ment in the current study suggests enhanced N retention in

that treatment and subsequently, reduced NH3 loss. Di and

Cameron (2004) also observed a negligible NH3 volatilization

loss once the pH was reduced to below 7.5 after 2 wk of urea

application despite the presence of KCl-extractable NH4–N

in soil.

The residual NH4–N was higher in char-added fertilized

treatment (C1N1) compared to no char treatment (C0N1)

on Days 4 and 6. In addition to char properties of increas-

ing N sorption, the addition of char with pH 7.6 reduced

soil pH from 7.9 to 7.3 compared to no char-treated soil of

pH = 7.8 on Day 6, thus reducing NH3 volatilization with the

char treatment. This explains why there was lower daily NH3

volatilization in the treatment C1N1 compared to C0N1 only

on Day 6. This observation is supported by previous research

that demonstrates an importance of soil pH in retaining or

releasing soil NH4/NH3 (Fan et al., 1993; Panday et al., 2020;

Sherlock et al., 1994). When comparing between char and no

char fertilized treatments, a reduction in NH3 loss with char

treatment also coincided with a trend for higher residual NH4–

N with that treatment than no char from Day 4 to 8. From

Day 8 and onward, soil pH in both C0N1 and C1N1 treat-

ments were similar and below 7.5 threshold and therefore no

differences in NH3 loss or residual NH4–N were observed in

fertilized treatments with or without char.

Total inorganic N in the fertilized treatments on Day 0

was much lower than on other days. Any increase in total

inorganic N during the experiment compared to that at the

onset of the experiment could be related to N added and to

soil N mineralization (Anderson, Hart, Christensen, Mellbye,

& Flowers, 2010; Robertson & Groffman, 2007). Maximum

N mineralization occurs when soil temperatures are between

25 and 35 ˚C (Stark & Firestone, 1996) and soil moisture

is near field capacity (Cassman & Munns, 1980; Stanford

& Epstein, 1974). After 28 d of laboratory study, Knoepp

and Swank, (2002) observed a 3.5 mg N kg−1 mineraliza-

tion in sandy loam soil. Another study reported an approxi-

mately 310 mg N kg−1 mineralization in a 312-d incubation

experiment under Waimea sandy loam soil (medial, amorphic,

isothermic Humic Haplustands) (Deenik, 2006).

5 CONCLUSION

Char rate at 13.4 Mg C ha−1 was effective in reducing NH3

volatilization from soil by lowering soil pH. In addition to

char properties of high surface area, CEC, and total C con-

tent, its effect on soil pH makes it a promising soil amend-

ment particularly in high pH and low C soil. As it improves

soil N retention, char may directly or indirectly affect soil N

cycle processes as well. This study supported our hypothesis

that char reduced soil pH and NH3 volatilization loss from the

soil. Further research is warranted to evaluate the potential use

of char in farmland to reduce NH3 losses and enhance N use

efficiency for crop production.
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