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Abstract
Genomic selection (GS) can improve genetic gain of complex traits in plant breed-

ing. Phenotyping agronomic traits of winter wheat (Triticum aestivum L.) for dual-

purpose use is expensive and time-consuming. In this study, we compared the predic-

tion accuracies of four GS models (RR-BLUP, GBLUP, GAUSS, and BL) for forage

yield (FY), plant height (PH) and heading date (HD) of the hard winter wheat diver-

sity panel (n = 298) using random and stratified sampling methods. In addition, we

determined the appropriate training population (TP) size and marker density for GS

of the traits. Moderate to high prediction accuracies ranging from 0.66 to 0.69 for

FY, 0.46 to 0.49 for PH, and 0.71 to 0.74 for HD were observed for the GS models.

However, the sampling method had little or no impact on prediction accuracy. The

RR-BLUP, GBLUP, and GAUSS models produced slightly greater prediction accu-

racies than BL for all traits studied. Prediction accuracies increased with increasing

TP size and marker density in all the GS models tested. However, increase of predic-

tion accuracy started to plateau at nTP = 180 lines and 1,000; 1,500; or 3,000 SNPs

suggesting that the minimum TP size and marker density were about 180 lines and

1,000 or more SNPs, depending on the model and trait. The impact of TP size on

prediction accuracy was greater for RR-BLUP, GAUSS, and GBLUP than for BL

model. This study suggests that RR-BLUP, GBLUP, and GAUSS are viable models

for selecting the forage agronomic traits during dual-purpose wheat breeding.

Abbreviations: BL, Bayesian least absolute shrinkage and selection operator; ESM, even sampling method; FY, forage yield; GAUSS, Gaussian kernel;

GEBV, genomic estimated breeding value; GS, genomic selection; H2, broad-sense heritability; h2, narrow-sense heritability; HD, heading date; LD, linkage

disequilibrium; MAF, minor allele frequency; MAS, marker-assisted selection; NJ, neighbor-joining; PEBV, phenotypically estimated breeding value; PH,

plant height; PS, phenotypic selection; QTL, quantitative trait locus/loci; RR-BLUP, ridge regression best linear unbiased prediction; RSM, random sampling

method; SNP, single nucleotide polymorphism; SSM, stratified sampling method; TCAP, Triticeae Coordinated Agricultural Project; TP, training population;

VP, validation population.
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1 INTRODUCTION

Winter wheat (Triticum aestivum L.) is an important cereal

crop grown worldwide. In the southern Great Plains of the

United States, winter wheat is the largest crop not only grown

for grain, but also for cattle grazing during the autumn and

winter seasons when other forage species are dormant or

not productive due to cold temperatures (Hossain, Epplin,

& Krenzer, 2003; Kim et al., 2016; MacKown, Carver, &

Edwards, 2011). When winter wheat is grazed over winter, it

is often managed as a dual-purpose crop in which grain is har-

vested by the end of the season (Maulana, Anderson, Butler,

& Ma, 2019a). Although phenotyping forage and other agro-

nomic traits during wheat breeding has been accomplished by

using phenotypic selection (PS) over the years, our experi-

ence has shown that conventional PS is expensive, tedious,

and time consuming. In general, phenotyping forage traits,

such as forage yield, is done by growing plant materials in

replicated field trials in multiple environments, and then for-

age samples are manually harvested, dried, and weighed to

estimate biomass yield. This phenotypic selection method is

a costly activity. Therefore, an efficient selection method is

needed during dual-purpose wheat breeding.

Genomic selection (GS) has been shown to be a promis-

ing complementary approach to traditional marker-assisted

selection (MAS) and conventional PS. Marker-assisted selec-

tion is effective for selecting qualitative traits that are gov-

erned by major genes, however, most important agronomic

traits are polygenic in nature, thus, they are controlled by

minor genes with small effects spanning across the genome

(Kumar et al., 2019; Riedelsheimer et al., 2012). In general,

only the most significant markers explaining large trait phe-

notypic variance are used with MAS; and as a result, only a

small portion of the genetic variance accounting for a com-

plex trait can be captured (Bernardo, 2010). In contrast, with

GS genome-wide markers, irrespective of their effects on the

phenotype, are included in the prediction model for accuracy

prediction (Goddard, 2009). Genomic selection is more effec-

tive for complex traits controlled by genes with minor effects

that cumulatively contribute to the phenotypic expression of

the trait, such as grain yield (Crossa et al., 2010; González-

Camacho et al., 2012; Jannink, Lorenz, & Iwata, 2010).

In GS, a training population (TP), composed of lines with

both marker and phenotypic information, is used to train the

prediction model, which is then used to calculate genomic

estimated breeding values (GEBVs) of the selection candi-

dates that have only been genotyped (Meuwissen, Hayes, &

Goddard, 2001). In this regard, selection of high-performing

individuals is done solely based on GEBVs and the selected

individuals are advanced to the next selection cycle, mak-

ing it less expensive than extensive field phenotyping of a

large number of lines, most of which will not be selected

in future generations. The prediction accuracy is calculated

Core Ideas
∙ Genomic selection models were compared for for-

age agronomic traits of winter wheat.

∙ Prediction accuracies were estimated by varying

TP sizes and marker densities.

∙ Moderate accuracies were observed for models

trained with limited phenotypic data.

based on the correlation between the predicted phenotypic

value (GEBV) and the observed phenotypic value (also known

as phenotypically estimated breeding value, PEBV).

Studies conducted in the past have shown that GS can com-

plement the conventional PS method (Bernardo & Yu, 2007;

Heffner, Sorrells, & Jannink, 2009; Jannink et al., 2010). As

a result, GS has attracted attention in both animal and plant

breeding programs in recent years because of its potential of

increasing genetic gain over time (Beyene et al., 2015; Lorenz

& Smith, 2015; Massman, Jung, & Bernardo, 2013; Poland

et al., 2012). For example, a previous study done in maize

(Zea mays L.) showed increased genetic gain for stover yield

with GS compared to MAS (Massman et al., 2013). Genomic

selection can also increase selection accuracy, reduce pheno-

typing costs during complex-trait evaluation, and speed up the

development of new cultivars (Heffner et al., 2009; Heffner,

Lorenz, Jannink, & Sorrells, 2010). In addition, GS can be

applied at an early stage of crop growth, or when phenotyp-

ing is not feasible, resulting in reduced duration of selection

(Rutkoski, Poland, Jannink, & Sorrells, 2013). To date, GS

studies have been conducted in a number of crops, such as

wheat (Battenfield et al., 2016), maize (Shikha et al., 2017),

alfalfa (Medicago sativa L.) (Li et al., 2015), oat (Avena sativa
L.) (Asoro, Newell, Beavis, Scott, & Jannink, 2011), and rice

(Oryza sativa L.) (Spindel et al., 2015); and these studies have

reported different levels of prediction accuracies for agro-

nomic and end-use quality traits.

However, GS studies conducted in different crop species

have highlighted factors, such as GS model (Rutkoski et al.,

2012), marker-density (Heffner et al., 2009), and TP size

(Norman, Taylor, Edwards, & Kuchel, 2018), that affect pre-

diction accuracy. Prediction models of GS influence pre-

diction accuracies because in each model marker effects

are estimated under different assumptions. For example, the

ridge regression best linear unbiased prediction (RR-BLUP)

model assumes that the marker effects have a normal distri-

bution with a common variance (Endelman, 2011; Meuwis-

sen et al., 2001), while genomic best linear unbiased predic-

tion (GBLUP) considers the contribution of markers based

on the genomic relationship matrix (VanRaden, 2008). For

Bayesian models, such as Bayesian LASSO (BL, where
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LASSO stands for least absolute shrinkage and selection oper-

ator), the marker effects are assumed not to have a common

variance and it also uses a variable selection criterion during

analysis (Daetwyler, Pong-Wong, Villanueva, & Woolliams,

2010; Park & Casella, 2008). Increased marker density and

TP size can produce greater prediction accuracy than lower

densities and TP sizes because of increased chance of cap-

turing larger genetic variance with higher marker density, and

improved marker effect estimation with larger TP size (Arruda

et al., 2015; Norman et al., 2018). Therefore, these factors

need to be considered for cost-efficient, successful implemen-

tation of GS in a breeding program.

In the present study, we compared prediction accuracies of

four GS models for three key forage agronomic traits of winter

wheat. The objectives of the study were to (a) compare predic-

tion accuracies of four GS models using two genotype sam-

pling methods, (b) determine the appropriate TP size, and (c)

investigate the appropriate number of single nucleotide poly-

morphism (SNP) markers to use for predicting forage-related

agronomic traits in dual-purpose wheat breeding.

2 MATERIALS AND METHODS

2.1 Phenotyping and genotyping

This study used 298 lines of the hard winter wheat diversity

panel established by the Triticeae Coordinated Agricultural

Project (TCAP) (Guttieri et al., 2015; Guttieri, Frels, Regassa,

Waters, & Baenziger, 2017). We used this panel because about

150 lines of the panel are founders of our existing breeding

populations. Forage agronomic data of the panel was reported

previously (Kim et al., 2016). Phenotypic data used in this

study include forage yield (FY) on dry matter basis, plant

height (PH), and heading date (HD). Briefly, forage sam-

ples were collected during Feekes stage 4–5 or Zadoks 30

as reported previously (Kim et al., 2016). Forage yield was

recorded as the weight of samples dried in a forced air oven

at 60 ˚C for at least 72 h. Plant height was measured on a plot

basis as the average distance from the soil surface to the tip

of the main stem. Heading date was scored on a plot basis

using a scale of 1–5, corresponding to heading on 98–102,

103–108, 109–114, 115–120, and 121–127 d after planting,

respectively. Phenotypic analysis was done using PROC GLM

procedure in SAS. Variance components, including genetic,

genotype × environment interaction and residual variances

were estimated from the ANOVA.

Broad-sense heritability (H2) and narrow-sense heritability

(h2) for each trait was estimated on an entry-mean basis across

the two environments (Hallauer, Miranda Filho, & Carena,

2010) using the following formulas: H2 = σ2
g/(σ2

g + σ2
ge/e +

σ2
e/er) and h2 = σA

2/(σ2
g + σ2

ge/e + σ2
e/er); where σA

2, σ2
g,

σ2
ge and σ2

e are the additive, genetic, genotype × environ-

ment interaction and residual variance components, respec-

tively, while r and e are numbers of replications and environ-

ments, respectively. The h2 was considered as the expected

accuracy of the phenotypic selection, and thus a reference for

evaluating GS accuracies.

Genotyping of the panel was performed using the wheat

90K SNP array (Wang et al., 2014) and the marker data

was archived in the Triticeae Toolbox (Genotyping experi-

ment TCAP90K_HWWAMP) (Guttieri et al., 2015). Before

GS analysis, we filtered out SNP markers with <5% minor

allele frequency (MAF) and more than 10% missing data.

We removed all monomorphic markers and SNP marker pairs

with linkage disequilibrium (LD) > 0.85 using SNPRelate R

package (Zheng, 2013) in order to reduce SNP redundancy

and computational time. After applying all filtering criteria, a

total of 3,484 SNPs remained for GS analysis.

2.2 Genetic diversity and genomic selection
models

Genetic structuring of the panel was performed using a

neighbor-joining (NJ) tree with TASSEL 5.14 (Bradbury

et al., 2007) and principal component analysis (PCA) in the

R program. We compared the performance of four GS mod-

els, including RR-BLUP, Gaussian kernel (GAUSS), GBLUP,

and BL (De Los Campos et al., 2009; Endelman, 2011;

Habier, Fernando, & Dekkers, 2007; Park & Casella, 2008;

VanRaden, 2008) on mean values of raw phenotypic data

of the three forage agronomic traits. We used mean values

instead of best linear unbiased predictions (BLUPs) because

the two values were perfectly correlated (r = 1.0) for all the

three traits. We applied a fivefold cross-validation procedure

assigning lines to either a TP or a validation population (VP)

using two genotype sampling methods. For cross-validation,

the TP was sampled from 298 lines evaluated at two environ-

ments and used to predict the GEBVs of the remaining lines

evaluated in the same environments. We used genome-wide

marker effects estimated from the TP to calculate the GEBVs

of the lines assigned to the VP. All R scripts of GS analyses

are provided in the Supplemental Material file.

The GS analyses for RR-BLUP, GBLUP, and GAUSS mod-

els were performed in R package rrBLUP (Endelman, 2011)

with 2,000 iterations and the BL model was implemented with

the R package BGLR (Pérez & de Los Campos, 2014). The

equations of RR-BLUP, GAUSS, and BL were detailed pre-

viously by Maulana et al. (2019b) for forage quality traits of

the same population. For GBLUP, the following equation was

used (Habier et al., 2007; VanRaden, 2008): Y = Xβ + Zβo+
ε; where Y is the vector of the phenotypic data for each trait, β
is the vector of fixed effects (mean), βo is the vector of random

effects and ε is the vector of residual effects, which is assumed

to follow a normal distribution as var (ε) ∼ N (0, Iσ2
ε), where
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σ2
ε is the residual variance and I is the identity matrix. X and

Z are the incident matrices of β and βo.

2.3 Genomic selection model comparison

The GS model comparison analysis was conducted using a

fivefold cross-validation procedure with 238 and 60 lines as

the TP and the VP, respectively. The relative performance in

prediction accuracies of the GS models was compared in rela-

tion to two genotype sampling methods used to assign lines to

TP and VP. We tested two genotype sampling methods includ-

ing random sampling method (RSM) and stratified sampling

method (SSM) to assess whether sampling method had effect

on predictive ability and prediction accuracy. For RSM, we

randomly selected lines from the entire panel without replace-

ment and assigned them to the TP and VP. For SSM, we first

clustered the lines into subgroups based on genetic diversities,

and from each subgroup we proportionately selected lines and

assigned them to the TP and VP.

Predictive ability, r(ŷ, g), of the GS model was estimated

as the Pearson correlation between the PEBV and the GEBV,

r(ŷ, g) = r(GEBV:PEBV), where r is the Pearson correlation

coefficient between GEBV and PEBV of the VP. Prediction

accuracy, r(ĝ, g), was estimated by dividing the r(ŷ, g) by

the square root of H2 as follows (Dekkers, 2007): r(ĝ, g) = r
(GEBV:PEBV)/√H2. To account for sampling error, the GS

analysis procedure was repeated 2,000 times.

2.4 Determination of appropriate training
population size and marker density of the traits
studied

We determined the appropriate TP size for predicting for-

age agronomic traits of the panel by varying the TP sizes

(nTP = 60, 120, 180, and 238), whereby the wheat lines were

assigned to the TP and VP using SSM, when all 3,484 mark-

ers were used. On the other hand, the number of SNP mark-

ers (marker density) required for optimal prediction accuracy

was evaluated by varying marker densities (nSNP= 500, 1,000;

1,500; 3,000; 3,484) for training the GS models.

The SNP marker subsets were selected using two marker

sampling strategies (random sampling and even sampling

methods). For the random sampling method (RSM), genome-

wide SNP markers were selected randomly without replace-

ment to form different SNP marker subsets. With this sam-

pling strategy, the subsets were comprised of markers that

were selected without considering the locations of the markers

on the chromosomes across the genome. For the even sam-

pling method (ESM), marker subsets were proportionately

selected from all the 21 chromosomes across the genome after

some SNP markers were filtered out based on LD. To account
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F I G U R E 1 Frequency distribution of the three traits in the wheat

diversity population. (a) FY, forage yield (kg ha−1); (b) PH, plant height

(cm); (c) HD, heading date. The heading dates were recorded on a

scale of 1−5, corresponding to heading on 98−102, 103−108, 109−114,

115−120, and 121−127 d after planting, respectively

for sampling error, we repeated the sampling of the markers

2,000 times. We also used 238 and 60 lines as the TP and the

VP, respectively, using a fivefold cross-validation scheme.

3 RESULTS

3.1 Heritability estimates

Phenotypic variation of the three traits (FY, PH, and HD) was

reported previously (Kim et al., 2016), and frequency distribu-

tions of the traits are shown in Figure 1. The broad-sense and

narrow-sense heritability estimates of the agronomic traits
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studied are presented in Table 1. Broad-sense heritability esti-

mates (H2) of the three agronomic traits ranged from 0.57 for

FY to 0.82 for HD, while the narrow-sense heritability esti-

mates (h2) ranged from 0.19 for FY to 0.56 for HD.

3.2 Genomic selection model comparison

Predictive abilities, r(ŷ, g), and prediction accuracies, r(ĝ, g),

of the four GS models are presented in Table 1. We have

included both predictive abilities and prediction accuracies of

the models for facilitating comparison with other GS publi-

cations reported with either r(ŷ, g) or r(ĝ, g). The predictive

abilities of the GS models ranged from 0.37 to 0.67 with RSM,

while it ranged from 0.37 to 0.66 with SSM (Table 1). How-

ever, throughout the paper, we will only present prediction

accuracies results in detail.

For all GS models and the two genotype sampling methods

(RSM and SSM) tested, prediction accuracies ranged from

moderate to high, depending on the trait and model (Table 1).

For the RR-BLUP model, prediction accuracies were 0.47 for

PH, 0.69 for FY, and 0.73 for HD with RSM, while it was

0.47 for PH, 0.68 for FY, and 0.73 for HD when using SSM.

Therefore, the genotype sampling method of assigning lines

to TP and VP for cross-validation had little or no effect on

prediction accuracies for the RR-BLUP model.

The results of the other three models (GBLUP, GAUSS,

and BL) are similar to the RR-BLUP model, but the BL model

produced the lowest prediction accuracies in general, with

only one exception, for all three traits when using either RSM

or SSM. The two genotype sampling methods also had little

or no effect on prediction accuracies of these three models.

However, regardless of model and genotype sampling method

used, all models had the greatest prediction accuracies for HD,

followed by FY (Table 1). The PH had consistently the lowest

prediction accuracy regardless of the model used. As no dif-

ference was seen between the two genotype sampling methods

(RSM and SSM), only SSM was used for the rest of the study.

3.3 Effects of training population size in the
traits studied

Prediction accuracies of four GS models for the three

agronomic traits (FY, PH, and HD) affected by TP size

were estimated by varying TP sizes using SSM according

to genetic diversities of the lines when all 3,484 markers

were used (Figure 2). In general, an increase in prediction

accuracies of the GS models was observed as the number

of lines assigned to the TP increased from 60 to 238. For

example, prediction accuracy of FY increased from 0.61

(nTP = 60) to 0.73 (nTP = 238) for RR-BLUP, GAUSS,

and GBLUP models, and from 0.60 (nTP = 60) to 0.69 T
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F I G U R E 2 Genomic prediction accuracies of the three traits as

affected by the training population size. (a) FY, forage yield (kg ha−1);

(b) PH, plant height (cm); (c) HD, heading date. RR-BLUP, ridge regres-

sion best linear unbiased prediction; GAUSS, Gaussian kernel; GBLUP,

genomic best linear unbiased prediction model; BL, Bayesian LASSO,

where LASSO stands for least absolute shrinkage and selection operator;

Stratified sampling method (SSM) was used to assign genotypes to the

TP and the VP in all analyses. Genotype sampling was repeated 2,000

times, and the average prediction accuracy was recorded. All GS analy-

ses were conducted using 3,484 SNP markers

(nTP = 238) for the BL model. Prediction accuracy of PH

increased from 0.34 (nTP = 60) to 0.47 (nTP = 238) for the

RR-BLUP model, and similar increases were seen for other

models tested. Prediction accuracy of HD increased from

0.64 to 0.74 for RR-BLUP, GAUSS, and GBLUP models,

and 0.62 to 0.71 for the BL model when increasing the TP

size from 60 to 238 lines. Generally, the largest increase

in prediction accuracy was observed when the TP size was

increased from 60 to 120 or 180, then the increase tended to

have less improvement when TP size was further increased

to 238 for the three agronomic traits. This result suggests

that the effect of TP size on prediction accuracy for the three

traits was greater for RR-BLUP, GBLUP, and GAUSS than

for the BL model. Furthermore, the difference in prediction

accuracy between traits was more pronounced at smaller TP

sizes. For example, the prediction accuracy of GAUSS at

nTP = 60 was 0.61 vs. 0.65 for FY vs. HD, representing a

6.6% difference in accuracy, while at nTP = 180, prediction

accuracy was 0.71 vs. 0.73 for FY vs. HD, representing only

a 2.8% difference in accuracy (Figure 2).

3.4 Effects of marker density in the traits
studied

Results of marker density impact on prediction accuracy of

the three forage agronomic traits are presented in Figure 3.

We compared prediction accuracies of the four GS models

as affected by marker densities selected using two marker

sampling methods (RSM and ESM). As expected, prediction

accuracy tended to increase with increasing marker density

in all models evaluated. Prediction accuracy of FY increased

with increasing marker density up to 1,000 SNPs for RR-

BLUP model; 3,000 SNPs for GAUSS and GBLUP; and 1,500

SNPs for BL model with both marker sampling methods,

RSM and ESM. Prediction accuracy of PH increased with

increasing marker densities up to 3,000 SNPs for the four GS

models tested except for the GAUSS model. Prediction accu-

racies of HD for RR-BLUP and GAUSS models increased

with increasing marker densities up to 3,000 and 1,500 SNPs,

respectively (Figure 3). The greatest prediction accuracy was

observed for HD and the lowest for PH, in all four GS mod-

els evaluated. The RR-BLUP, GAUSS, and GBLUP models

had the same or similar prediction accuracy, and in general,

these three models had greater prediction accuracies than the

BL model in the three traits with similar marker densities.

Overall, prediction accuracies increased up to 1,000; 1,500;

or 3,000 SNPs, depending on the model and trait. However,

marker sampling method had little or no influence on predic-

tion accuracy in the different models evaluated.

4 DISCUSSION

Genomic selection is an alternative selection method to PS

and MAS, and it can reduce phenotyping costs, increase

genetic gain, and accelerate breeding cycle. Genotyping

and sequencing costs have been decreasing over the years,

however, field phenotyping remains a bottleneck in plant-

breeding programs. A more efficient selection method

would help to reduce expenses associated with field phe-

notyping. Genomic selection provides an opportunity to

address this limitation, and it can facilitate the selection
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F I G U R E 3 Genomic prediction accuracies of the three traits as affected by the marker density. (a) FY, forage yield (kg ha−1); (b) PH, plant

height (cm); (c) HD, heading date. RR-BLUP, ridge regression best linear unbiased prediction; GAUSS, Gaussian kernel; GBLUP, genomic best

linear unbiased prediction model; BL, Bayesian LASSO, where LASSO stands for least absolute shrinkage and selection operator. RSM, random

sampling method; ESM, even sampling method. Sampling of the markers was repeated 2,000 times using 238 lines as a training population and 60

lines as a validation population

of agronomic traits in dual-purpose or forage wheat

breeding.

There have been many GS studies conducted for various

traits of wheat mainly focusing on grain production (Haile

et al., 2018; Saint Pierre et al., 2016; Thavamanikumar,

Dolferus, & Thumma, 2015). However, there are few reports

to assess the efficacy of deploying GS in forage species

including wheat (Arojju, Cao, Zulfi Jahufer, Barrett, & Fav-

ille, 2020; Biazzi et al., 2017; Grinberg et al., 2016; Jia et al.,

2018; Maulana et al., 2019b). Successful implementation of

GS in plant-breeding programs depends on accurate pheno-

typing of TP and understanding factors that affect predic-

tion accuracy (Norman et al., 2018; Zhong, Dekkers, Fer-

nando, & Jannink, 2009). Accurate phenotyping of TP for
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use in training the prediction model in GS studies can result

in producing GEBVs that would be as good as PEBVs. In

addition, understanding to what extent those factors such as

TP size and marker density affect prediction accuracies helps

to determine the appropriate TP size and marker density in

practice.

4.1 Genomic selection model comparison in
the traits studied

In the present study, the four GS models (RR-BLUP, GAUSS,

GBLUP, and BL) performed similarly with regard to pre-

diction accuracies for the traits studied, except BL which

produced numerically lower prediction accuracies across the

three traits. These models differ in the way they handle marker

information with regard to assumptions related to variance

of marker effects. RR-BLUP, GBLUP, and GAUSS assume

that all markers have equal variance and all markers are kept

in the model, while the BL model uses unequal variance for

each marker and makes variable selection by keeping only

some markers in the model while assuming other markers

having no effect on the trait (Pérez, de los Campos, Crossa,

& Gianola, 2010). Therefore, it is not surprising that in our

study RR-BLUP performed similarly to GBLUP because both

models assume that all markers contribute to trait perfor-

mance (Habier et al., 2007). Previous simulation and empiri-

cal studies have shown that, depending on the genetic archi-

tecture of the trait, GS models tend to perform differently.

The RR-BLUP model has been shown to be insensitive to

the genetic architecture of the trait (i.e., the number of QTL

and the distribution of their effects), while the accuracy of BL

improves as the number of QTL decreases (Daetwyler et al.,

2010). The results observed in this study corroborate a pre-

vious study conducted in wheat where it was found that the

RR-BLUP outperformed BL for Fusarium head blight (FHB)

resistance (Arruda et al., 2016). In another study, BL out-

performed RR-BLUP especially for traits governed by fewer

genes such as disease resistance (Ornella et al., 2012). Other

GS studies have reported similar performance with regard to

prediction accuracies of RR-BLUP and BL (Lorenz, Smith, &

Jannink, 2012; Rutkoski et al., 2012; Rutkoski et al., 2014).

The GAUSS, a model which accounts for both additive and

non-additive effects, performed similarly to RR-BLUP, which

only accounts for additive effects. Generally, our results are

in agreement with the GS study in a barley (Hordeum vul-
gare L.)-breeding population, showing that the GAUSS and

the RR-BLUP models produced similar prediction accuracies

for Fusarium head blight resistance, yield, and plant height

(Sallam, Endelman, Jannink, & Smith, 2015). In another GS

wheat study, RR-BLUP was also consistently the best model

for processing and end-use quality traits of spring bread wheat

(Battenfield et al., 2016).

Overall, our study suggests that RR-BLUP, GAUSS, and

GBLUP models can be applied in GS to facilitate the selection

of FY, PH, and HD traits during dual-purpose wheat breeding.

However, we suggest using RR-BLUP because of its computa-

tional time advantage over the other models. Furthermore, we

did not see any significant differences in prediction accuracy

between the two genotype sampling methods (RSM and SSM)

for the traits studied; suggesting that the sampling method of

assigning lines to TP and VP had little or no influence on pre-

diction accuracies of all models for the agronomic traits in this

study. This result could be attributed to the fact that both sam-

pling methods might have selected representative TP and VP

because we used a large number (2,000) of iterations during

the GS analysis; hence sampling error was taken into account.

4.2 Appropriate training population size
for genomic selection of the traits studied

Training population size is an important factor that has been

shown to influence prediction accuracy and, therefore, over

the years its effect has been assessed in many crop species,

such as wheat (Arruda et al., 2015; Norman et al., 2018),

maize (Crossa et al., 2014), oat (Asoro et al., 2011), and

barley (Lorenz et al., 2011). In this study, we compared TP

sizes for GS prediction accuracies of forage wheat agronomic

traits. With GS, the most costly activity is to develop a TP

because it requires both genotyping and phenotyping of the

lines contained in the TP. Therefore, the appropriate TP size

that can produce high prediction accuracy is important. Our

results suggest that phenotyping more than 180 lines of this

panel for training the GS model would be unnecessary. These

results corroborate findings reported in previous GS studies

that found there is a point at which prediction accuracy begins

to decline or plateau with increased TP size (Heffner, Jannink,

Iwata, Souza, & Sorrells, 2011; Isidro et al., 2015; Norman

et al., 2018). Although prediction accuracies of the GS mod-

els for various traits were different, the response to TP size

was similar in all traits despite their expected differences in

genetic complexity. This finding suggests that genetic archi-

tecture and complexity of a trait have minor influence on the

response of its prediction accuracy to TP size. It also suggests

that how representative of the TP in relative to VP is crucial

for prediction accuracies of the models. This result corrob-

orates previous GS studies in wheat (Maulana et al., 2019b;

Norman et al., 2018).

4.3 Appropriate marker density for
genomic selection of the traits studied

Previous GS studies conducted in different crop species have

shown that the number of markers used to train the GS model
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has a great impact on prediction accuracy regardless of the

model and trait evaluated (Arruda et al., 2015; Lorenzana &

Bernardo, 2009; Norman et al., 2018; Zhang et al., 2017). In

the present study, the appropriate marker density for predict-

ing forage agronomic traits was assessed by using different

marker density subsets with the goal of determining the low-

est number of SNP markers that could be used to obtain sig-

nificant prediction accuracies for each model and trait. Two

marker sampling methods (random vs. even sampling) were

used to select markers across the genome to form each sub-

set and assess the impact on prediction accuracy. Generally,

irrespective of the model used, all traits studied showed some

response in prediction accuracy with increasing marker den-

sity. Overall, greater prediction accuracies were observed with

increasing marker densities in all GS models tested. However,

in most cases, prediction accuracy increased with increasing

marker density up to a certain point after which diminishing

gains were observed due to overfitting the GS models with

increased marker density (Heslot, Yang, Sorrells, & Jannink,

2012). Linear increase in prediction accuracy with increasing

marker density has been observed in several previous studies

conducted in different crops (Arruda et al., 2015; Asoro et al.,

2011; Heffner et al., 2011; Lorenzana & Bernardo, 2009; Nor-

man et al., 2018), but upon reaching a certain marker density,

diminishing gains in accuracy were observed with no further

significant increase.

In this study, it appears that the marker density could be

reduced to 1,000; 1,500; or 3,000 genome-wide SNP markers

without significantly compromising the prediction accuracy

of the wheat agronomic traits depending on the GS model

and trait evaluated. These results indicate that at these marker

densities (i.e., n = 1,000, 1,500 and 3,000 SNPs) most of

the genetic variance accounting for the traits was captured

resulting in no significant accuracy increase upon adding

more markers. To get high prediction accuracy it is impor-

tant to sample the markers across the entire genome in order

to increase the chance of capturing the markers that are in

tight linkage with QTL for the traits of interest (Goddard &

Hayes, 2007; Meuwissen et al., 2001). Prediction accuracy,

among other factors, is driven by the linkage disequilibrium

(LD) between the markers and the quantitative trait loci (QTL)

associated with the traits of interest. In our study, markers

included in training the GS models should cover most genetic

loci contributing to the forage agronomic traits within LD dis-

tances because of genome-wide coverage of the SNPs.

4.4 Prediction of the traits studied

According to the above discussion, we predicted the three

traits using a combination of recommended model condi-

tions. We used the RR-BLUP model trained with 180 lines

and 3,000 well-distributed SNPs. The scatterplots in Figure 4

F I G U R E 4 Scatterplots showing correlations between the

observed values and the predicted values of the three traits when using

the RR-BLUP model trained with 180 lines and 3,000 SNPs. (a) FY,

forage yield (kg ha−1); (b) PH, plant height (cm); (c) HD, heading date.

The heading dates were recorded on a scale of 1−5, corresponding to

heading on 98−102, 103−108, 109−114, 115−120, and 121−127 d

after planting, respectively

show correlations between GEBVs and PEBVs of the three

traits predicted for the remaining 118 lines of the panel. The

results indicated that the three forage agronomic traits could

be predicted using GS. It is expected that GS predicted the

traits with deviation along the trend lines. Since there are only

2 yr of phenotypic data used for training the model, we are

encouraged that the predictive abilities of the traits could be

further increased if the traits are evaluated in more environ-

mental conditions in practice. This result again suggests that

FY, PH, and HD can be predicted using GS in dual-purpose

wheat breeding.

5 CONCLUSION

In this study, moderate-to-high prediction accuracies of

four GS models for three agronomic traits were observed.
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Generally, RR-BLUP, GBLUP, and GAUSS models slightly

outperformed the BL model for most traits studied. The results

obtained in this study suggest the potential application of GS

for forage agronomic traits in dual-purpose wheat breeding

in order to increase genetic gain, reduce phenotyping costs,

and more importantly to speed up forage wheat cultivar devel-

opment. We have shown that greater prediction accuracies of

forage agronomic traits of winter wheat can be obtained with

small TP sizes and low marker densities depending on the

model and trait.
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