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Abstract
In addition to soil health and conservation benefits, cover crops (CCs) may offer
weed control in themidwesternUnited States, but individual studies report vary-
ing effects. We conducted a meta-analysis of studies measuring weed biomass
(WBIO) or density (WDEN) in paired CC and no-cover treatments in corn (Zea
mays L.)–soybean [Glycine max (L.) Merr] rotations in the U.S. Midwest. Fifteen
studies provided 123 paired comparisons of WBIO and 119 of WDEN. Only grass
CCs significantly reducedWBIO, while no CC reducedWDEN.We found no evi-
dence CC management factors (e.g., termination method) directly affected out-
comes. Our dataset showed that a 75% reduction in WBIO requires at least 5 Mg
ha−1 of CC. Simulations from a process-based model (SALUS) indicated achiev-
ing 5 Mg ha−1 requires substantially earlier fall planting and later spring termi-
nation in most years, conflicting with typical cash-crop planting and harvesting.
We conclude CCs significantly reduce WBIO, but current CC management con-
straints render these reductions variable and uncertain.

Abbreviation: CC, cover crop; CCBIO, cover crop biomass; CI,
confidence interval; SALUS, System Approach to Land Use
Sustainability; WBIO, weed biomass; WDEN, weed density.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Agricultural & Environmental Letters published byWiley Periodicals, Inc. on behalf of American Society of Agronomy, Crop Science Society of America,
and Soil Science Society of America

1 INTRODUCTION

Winter annual cover crops (CCs) have been heavily pro-
moted in the midwestern Corn Belt region of the United
States due to an increasing need for practices that enhance
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soil health and water quality. Despite clear environmental
benefits (Daryanto, Fu,Wang, Jacinthe, & Zhao, 2018; Kas-
par & Singer, 2011), less than 10% of midwestern cropland
is currently managed with CCs (Seifert, Azzari, & Lobell,
2018). The lack of short-term economic returns from grow-
ing CCs overwhelms long-term environmental benefits,
creating a major barrier to wide adoption (Plastina, Liu,
Miguez, & Carlson, 2018; Roesch-Mcnally et al., 2018). If
CCs can reduce weed management costs, this could pro-
vide immediate monetary incentives for adoption. Pre-
vious literature syntheses have found CCs reduce weed
pressure across various cropping systems, but the direc-
tion and magnitude of effects are context-specific (Osip-
itan, Dille, Assefa, & Knezevic, 2018). Given its ubiquity
and significance in the U.S. Midwest, the corn (Zea mays
L.)–soybean [Glycine max (L.) Merr] production system
merits explicit examination. Unfavorable fall–winter cli-
matic conditions in the Midwest are known to limit CC
establishment and growth (Baker & Griffis, 2009; Strock,
Porter, & Russelle, 2004), which in turn may affect factors
governing CC performance relative to weed management.
Region-specific analyses can also provide more precise CC
biomass (CCBIO) production targets for weed suppression
(Baraibar et al., 2018; Mirsky et al., 2013) and explore how
planting or termination timing affects the feasibility of
achieving those targets.
To address these gaps, we synthesized data from pub-

lished field studies measuring weed responses to CCs in
corn–soybean systems in theMidwest. Our objectives were
(a) to quantify how environmental conditions and man-
agement practices affect weed responses to CCs, (b) to
identify Midwest-specific CCBIO targets for providing sig-
nificant weed suppression, and (c) to evaluate the feasibil-
ity of achieving these targets under different CC planting
and termination scenarios.

2 METHODS

2.1 Meta-analysis of weed-responses to
cover crops

We conducted a systematic search of the literature using
Web of Science Core Collection (Clarivate Analytics) and
CAB Direct (CAB International) databases. Search details,
including a PRISMA diagram and list of included publi-
cations, are in the supplementary material (Supplemental
Material S1). In our database, we included weed biomass
(WBIO), weed density (WDEN), and cash-crop yield as
response variables. We recorded values in a paired for-
mat, requiring each pair of response variables to be mea-
sured in the same crop at the same time with all aspects
of management held constant except for a treatment of a

Core Ideas

∙ Cover crops reduce weed biomass but not weed
density.

∙ Grass monoculture cover crops offer the most
consistent weed suppression.

∙ At least 5 Mg ha−1 of cover crop is required to
reduce weed biomass 75%.

∙ Producing 5Mgha−1 of cover crop requires early
planting and late spring termination.

∙ Managing cover crops for weed suppression will
require changes in policy and agronomy.

fall-planted CC. Ancillary data included geographical loca-
tion, climate, and soil characteristics of the study site; cash-
crop and CC management including species, tillage sys-
tem, planting and termination methods and dates; and
experimental information such as timing of weed mea-
surements and type of weed (Supplemental Material S1).
The complete database is published and available on Iowa
State University’s DataShare platform (Nichols, Basche, &
Weisberger, 2020).
All data manipulation and statistical modelling were

done in R version 3.6.1 (R Core Team, 2019) using the tidy-
verse meta-package (Wickham, Averick, Bryan, Chang, &
McGowan, 2019) and others (Firke, 2019; Grolemund &
Wickham, 2011). A detailed account of statistical meth-
ods is presented in Supplemental Material S2, and all R
code is available on github (https://github.com/vanichols/
ccweedmeta-analysis). In brief, all statistical models used
the log-transformed response ratio (measurement in the
CC treatment over measurement in the no-cover treat-
ment) as the response variable (Gurevitch,Koricheva,Nak-
agawa, & Stewart, 2018). Mixed-effect models were used
with the modifier of interest as a fixed effect and a ran-
dom intercept for each study using nonparametric weight-
ing based on the number of replicates (Adams, Gurevitch,
& Rosenberg, 1997). All linear models were fit using the
lme4 package (Bates, Mächler, Bolker, & Walker, 2015),
and results were analyzed using lmerTest (Kuznetsova,
Brockhoff, & Christensen, 2017) and emmeans (Lenth,
Singmann,&Love, 2018).Means and 95% confidence inter-
vals were back-transformed for reporting purposes. To
identify suites of practices predictive of achieving both
a reduction in weeds and an increase in cash-crop yield
with CCs, we fit random forest models (Kuhn & John-
son, 2013) using several R packages (Hothorn, Hornik, &
Zeileis, 2006). All statistical results are in Supplemental
Material S3.

https://github.com/vanichols/ccweedmeta-analysis
https://github.com/vanichols/ccweedmeta-analysis
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2.2 Simulation of cover crop biomass

To investigate the feasibility of growing CCs for effec-
tive weed control in the Midwest, we used the System
Approach to Land Use Sustainability (SALUS) model
(Basso&Ritchie, 2015) to simulate winter rye (Secale cereal
L.) biomass across a range of soils and weather condi-
tions of the Midwest. Rye is the most prevalent CC species
used in the Midwest (Singer, 2008) and represents the best
choice for maximizing CCBIO production in this region
(Appelgate, Lenssen, Wiedenhoeft, & Kaspar, 2017; Ruis
et al., 2019). Specific simulation details are provided in
Supplemental Material S4. Three CC planting dates were
explored: 15 September (optimistic), 7 October (realistic),
and 1 November (late).

3 RESULTS

3.1 Meta-analysis results

Fifteen articles fit our criteria, producing 123 response
ratios forWBIOand 119 response ratios forWDEN (Nichols
et al., 2020). The studies include a range of site characteris-
tics and management representative of midwestern corn–
soybean production systems (Supplemental Material S1).
Overall, CCs significantly reduced WBIO (p = .02), which
was robust against publication bias (>3,000 unpublished
null studies needed; Rosenthal, 1979) and the removal of
individual studies (p values ranged from .01 to .04). There
was no evidence CCs reduced WDEN (p = .98). Neither
WBIO nor WDEN responses were affected by the subse-
quent cash crop (corn or soybean), meaning the response
ofweeds toCCswas not confounded by differences in cash-
crop competition with weeds.
The following categorical modifiers had levels with sig-

nificantly different effects on WBIO (Figure 1): CC type
(after controlling for CCBIO production; grass, nongrass),
measurement in reference to cash-crop planting (before,
after), and weed growth habit (winter annual, summer
annual, perennial). WDEN had no significant modifiers.
For WBIO, grass monoculture CCs reduced WBIO by 68%
(confidence interval [CI] :41–82%) compared with a non-
significant reduction of 33% for mixtures and other types
of CCs (p < .01; Figure 1). Measurements taken before
cash-crop planting showed a 74% (CI: 51–85%) reduction
in WBIO, compared with only 44% (CI: 12–64%) in mea-
surements taken after planting (p < .01). Winter annual
weeds showed the largest reductions (65%; CI: 27–83%), fol-
lowed by summer annuals (47%; CI: 10–68%), with peren-
nial weeds being unaffected by CCs.
Weed suppression was significantly affected by CCBIO

for both WBIO (p = .03) and WDEN (p < .01). We found

an estimated 5 Mg ha−1 of CCBIO at termination reduced
WBIO by 75% for grass CCs but only 40% for other CCs
(Figure 1).
The response of WBIO or WDEN to CC did not depend

on any other modifiers tested. A full list of nonsignificant
modifiers can be found in Supplemental Material S3 and
included production system tillage regime; CC planting
and termination method; termination–planting gap; and
study-site latitude, aridity, and soil type.
In our database only 23% of the comparisons exhibited a

“win-win” situation, with a concomitant increase in cash-
crop yield and decrease in weed pressure (Figure 1). Using
a random forest model, we found no scenarios that were
strong predictors of whether an observation would fall in
the win-win category, suggesting maximizing cash-crop
yields and weed suppressionmay not have overlapping CC
management strategies.

3.2 Simulation model results

For the “realistic” planting date (7 Oct.), 2% of counties
achieved 5Mg ha−1 by 1May in≥80% of the weather-years,
increasing to only 30% under an “optimistic” CC-planting
scenario (15 Sept.; Figure 2). With “late” planting (1 Nov.),
none of the counties reached the threshold by 1 May, and
only half did so by 1 July. Aggregated on a state level, Illi-
nois, Missouri, and Kansas were the only states that could
consistently achieve 5 Mg ha−1 of biomass before typical
cash-crop planting dates of early May with optimistic CC
planting dates (Figure 2).

4 DISCUSSION

Cover crops affect weeds through interference mecha-
nisms of resource competition and allelopathy (Teasdale
& Mohler, 1993), delaying weed germination and develop-
ment thatmanifests as lowerWBIO.Management that dis-
rupts rather than interferes with weed trajectories, such as
crop rotation, may be more effective at reducing WDEN
(Weisberger, Nichols, & Liebman, 2019). However, given
that reductions inWBIO can increase susceptibility to her-
bicides (Wallace, Curran, & Mortensen, 2019) and weed
size is directly related to seed output (Thompson, Weiner,
& Warwick, 1991), reductions in WDEN may be possible
with long-term CC use. More long term (>5 yr) work is
needed to answer this question.
Monocultures of grass CCs significantly reduced WBIO

(by 68%), while other CCs did not (Figure 1), consis-
tent with recent studies (MacLaren, Swanepoel, Ben-
nett, Wright, & Dehnen-Schmutz, 2019; Smith, Warren,
& Cordeau, 2020). Cover crops interfere with weeds via
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F IGURE 1 (Top) Factors with significantly different effects by level; values <0 (dotted vertical line) indicate cover crop reduced weeds,
large red points indicate significant effects (p < .05) with estimates transformed to percentage change, and n values indicate number of obser-
vations for the estimate, error bars are 95% confidence intervals. (Bottom left) Linear regressions of weed biomass response to grass (yellow
solid line) and other (dotted purple) cover crop biomass production. (Bottom right) Comparisons where cover crops increased cash-crop yields
and reduced weed biomass (circles) or density (triangles) made up 23% of the points (gray quadrant)

physical and chemical means, and grasses such as rye
may be more effective than legumes and brassicas at
both (Creamer, Bennett, Stinner, Cardina, & Regnier,
1996; Smith et al., 2020). Furthermore, higher carbon-
to-nitrogen ratios of grass CCs (Martinez-Feria, Nichols,
Basso, & Archontoulis, 2019; Quemada & Cabrera, 1995)
potentially increase residence time of residue and thus sup-
press weeds longer after CC termination (Ruffo & Bollero,
2003; Teasdale & Mohler, 1993).
While CCs had a stronger effect on weeds before cash-

crop planting (Figure 1), weedsmeasured after planting are
likely of more interest to producers, as they directly repre-
sent resource competition with the cash crop. The stronger
reduction in winter annual weeds is not surprising, given
the winter growth period of the CC.
The environmental context of the studies had

no significant effect on the weed responses or on

CCBIO. This could simply reflect the lack of plot-
specific information (Eagle et al., 2017; Gerstner
et al., 2017), but it does suggest environmental con-
text has only an indirect effect on CC-mediated weed
suppression.
To prevent an increase in weed seedbanks, reductions in

WDEN of 90% (comparable to herbicide effectiveness) are
needed (Liebman & Nichols, 2020); our study shows that
even with 5 Mg ha−1 of CCBIO, producers are unlikely to
achieve this level of weed control, consistent with studies
from other areas (Baraibar et al., 2018; Mirsky et al., 2013).
Moreover, our SALUS simulations indicate achieving 5
Mg ha−1 of rye CCBIO regularly under typical Midwest
production scenarios and climates would be challenging
(Figure 2). Even with optimistic CC planting dates (15
Sept.), achieving 5 Mg ha−1 of CCBIO would require a
mid-May or later termination date most years (≥80%)
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F IGURE 2 Earliest termination datewith rye biomass in excess of 5Mg ha−1 as predicted by the SALUS cropmodel using 30 yr of historical
weather for three rye planting date scenarios (15 Sept., 7 Oct., 1 Nov.). (Left) Results summarized by state at 80% probability levels. In Iowa, for
example, rye biomass was >5 Mg ha−1 in 80% of the years if planted on 7 Oct. and terminated on or after 17 June (highlighted in red). (Right)
Results corresponding to the 7 Oct. planting scenario, summarized by county at the 80% probability level

in the majority of counties, well after typical cash-crop
planting dates. It should be noted our simulations
assumed direct CC seeding with uniform germination
(Supplemental Material S4) and are therefore not to be
extrapolated to other planting methods. While aerial- or
interseeding can be used to establish CCs into standing
crops, these methods are often unreliable (Wilson, Allan,
& Baker, 2014), and standing crops prevent full sunlight
penetration for CC growth well into October. Delayed
corn and soybean planting consistently reduces yields
(Baum, Archontoulis, & Licht, 2019; De Bruin & Pedersen,
2008), and delayed CC termination could be hindered by
concerns over crop insurance eligibility (USDA-NRCS,
2019). High CCBIO production could increase other
ecosystem services (Blanco-Canqui et al., 2015; Thapa,
Mirsky, & Tully, 2018) but may also introduce issues with
nitrogen immobilization and CC termination (Whalen
et al., 2020). Other studies examined the effects of CCs on
subsequent cash-crop yields (Marcillo & Miguez, 2017),
showing no yield benefit from grass CCs. Choosing a
CC species to maximize cash-crop yields may be at odds
with choosing one for maximizing weed suppression,
and while no-till may amplify yield responses (Marcillo
& Miguez, 2017), it may not enhance weed control from
CCs. The existence of these trade-offs is supported by the

low percentage of observations with a “win-win” scenario
(Figure 1) in our database.

5 CONCLUSIONS

Our study, which synthesized work from the Corn Belt
region of theU.S.Midwest, shows that grassCCs effectively
reduce WBIO. We estimated 5 Mg ha−1 of grass CCBIO
decreases WBIO by 75%, a threshold at which reduction
of herbicide use is possible, but not always advisable. Fur-
thermore, consistently achieving that level of CCBIO in
the Midwest may not be feasible within the traditional
corn–soybean fallow season. In our dataset, concomitant
increases in yields and decreases in weeds with the use
of CCs were minimal, highlighting the need to evaluate
CC practices using multiple metrics. Therefore, we con-
clude that although CCs significantly reduceWBIO, which
may render other weedmanagement strategiesmore effec-
tive and reduce WDEN in the long-term, current CC man-
agement does not consistently suppress weeds. Optimiz-
ing CCs for weed suppression will entail both agronomic
(e.g., use of different cash-crop maturity groups) and pol-
icy (change in insurance structure around CC termination
requirements) changes at a broad scale.
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S1. Literature search methodology and results 

The methodology for this research sought to follow best-practices for agronomic meta-analyses 

(Philibert et al., 2012).  

Literature search 

A search was conducted in October 2018 using the following Boolean string: (weed* AND 

("cover crop*" OR "green manure" OR "catch crop*") AND ("corn" OR "maize" OR 

"soybean*")) using the Web of Science (WoS) and CAB abstract databases. This resulted in a 

total of 676 studies that were screened for eligibility based on the following three criteria:  

(1) Studies must have been conducted in a US ‘Corn Belt’ state, defined as a state in the 

contiguous Midwestern region with the largest acreages of maize acres harvested in the most 

recent five years of available data (US Department of Agriculture National Agricultural Statistics 

Service) including: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, 

North Dakota, Ohio, South Dakota, and Wisconsin 

(2) Studies must have measured weed biomass and/or weed density 

(3) Studies must have included a treatment that tested the effects of a fall-planted cover-crop 

(CC) followed by either maize or soybean against a treatment that included no CC holding all 

other factors constant. From this search, we screened the full text of 220 articles for inclusion in 

the database, with an additional screening of literature cited by selected articles. From this, 15 

articles met our three criteria (Fig. S1.1).  
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Figure S1.1. PRISMA diagram (Moher et al., 2009) for the literature search 
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The 15 publications included in the database are listed below in alphabetical order: 

 

1. Bernstein ER, Posner JL, Stoltenberg DE, Hedtcke JL (2011) Organically managed no-tillage 

rye-soybean systems: Agronomic, economic, and environmental assessment. Agron J 103:1169–

1179. doi: 10.2134/agronj2010.0498 

2. Cornelius CD, Bradley KW (2017) Influence of Various Cover Crop Species on Winter and 

Summer Annual Weed Emergence in Soybean. Weed Technol 31:503–513. doi: 

10.1017/wet.2017.23 

3. Crawford LE, Williams MM, Wortman SE (2018) An early-killed rye (Secale cereale) cover crop 

has potential for weed management in edamame (Glycine max). Weed Sci 66:502–507. doi: 

10.1017/wsc.2018.5 

4. Currie RS, Klocke NL (2005) Impact of a terminated wheat cover crop in irrigated corn on 

atrazine rates and water use efficiency. Weed Sci 53:709–716. doi: 10.1614/ws04-170r1.1 

5. Davis AS (2010) Cover-Crop Roller–Crimper Contributes to Weed Management in No-Till 

Soybean. Weed Sci 58:300–309. doi: 10.1614/ws-d-09-00040.1 

6. De Bruin JL, Porter PM, Jordan NR (2005) Use of a rye cover crop following corn in rotation 

with soybean in the upper Midwest. Agron J 97:587–598. doi: 10.2134/agronj2005.0587 

7. Delate K, Cwach D, Chase C (2012) Organic no-tillage system effects on soybean, corn and 

irrigated tomato production and economic performance in Iowa, USA. Renew Agric Food Syst 

27:49–59. doi: 10.1017/S1742170511000524 

8. Fisk JW, Hesterman OB, Shrestha A, et al (2001) Weed suppression by annual legume cover 

crops in no-tillage corn. Agron J 93:319–325. doi: 10.2134/agronj2001.932319x 

9. Forcella F (2014) Short- and full-season soybean in stale seedbeds versus rolled-crimped winter 

rye mulch. Renew Agric Food Syst 29:92–99. doi: 10.1017/S1742170512000373 

10. Gallagher RS, Cardina J, Loux M (2003) Integration of cover crops with postemergence 

herbicides in no-till corn and soybean. Weed Sci 51:995–1001. doi: 10.1614/p2002-062 

11. Gieske MF, Wyse DL, Durgan BR (2016) Spring- and Fall-Seeded Radish Cover-Crop Effects on 

Weed Management in Corn. Weed Technol 30:559–572. doi: 10.1614/wt-d-15-00023.1 

12. Hoffman ML, Regnier EE, Cardina J (1993) Weed and corn (Zea mays) responses to a hairy 

vetch (Vicia villosa) cover crop. Weed Technol 7: 594-599. Doi:10.1017/S0890037X00037398 

13. Mock VA, Creech JE, Ferris VR, et al (2012) Influence of Winter Annual Weed Management and 

Crop Rotation on Soybean Cyst Nematode ( Heterodera glycines ) and Winter Annual Weeds: 

Years Four and Five . Weed Sci 60:634–640. doi: 10.1614/ws-d-11-00192.1 

14. Werle R, Burr C, Blanco-Canqui H (2017) Cereal rye cover crop suppresses winter annual weeds. 

Can J Plant Sci 98:498–500. doi: 10.1139/CJPS-2017-0267 

15. Williams MM, Mortensen DA, Doran JW (1998) Assessment of weed and crop fitness in cover 

crop residues for integrated weed management. Weed Sci 46:595–603. doi: 

10.1017/s0043174500091153 
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Data were recorded as reported (each site-year separately or averaged). No zero values were 

reported. When available, we sought to extract ancillary information (Table S1.1) from each 

study to accompany each paired observation.  

 

Table S1.1 Summary of factors recorded in database accompanying weed responses to cover cropping.  

Category Variable 

Management 

System tillage; time between cover-crop 

termination and cash crop planting; cover 

crop species, planting date, planting method, 

planting density, termination date, termination 

method, biomass at termination, subsequent 

crop; cash crop planting date, yield 

Environment 
State, latitude, longitude, soil type, organic 

matter content, aridity index* 

Experiment 

Publication year, number of replicates, type of 

weed(s) measured, duration of experiment, 

timing of weed measurement with respect to 

crop planting, season of weed measurement** 

*an integrated measure of temperature, precipitation and potential evapotranspiration were derived from 

location coordinates using the CGIAR-CSI Global-Aridity and Global-PET databases (Zomer et al., 

2008) 

** Spring: January-June; Summer: June-September; Fall : September – December 

 

Over 95% of comparisons were done in treatments imposed the same or previous calendar year; 

we were therefore unable to include the duration of the experiment as an explanatory variable. 

The subsequent cash-crop’s planting density can affect a CC’s weed suppression effectiveness 

(Ryan et al., 2011), but that was also not included due to paucity of such data reporting. One 

comparison resulted in an extremely low LRR due to a CC treatment weed biomass of 1 g m-2 

(SE = 1 g m-2) corresponding to a 99.9% reduction in weed biomass (Forcella 2013). This 

comparison was found to disproportionately influence results of the statistical models, and was 

therefore adjusted to equal the next highest reduction (97%) in weed biomass observed in the 

database.  

 

Database description 

These 15 published studies done in one of the 12 Midwest states measured weed biomass or 

weed density in a winter cover-cropped and no-cover treatment of maize or soybean (Fig. S1.2) 
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Figure S1.2 The 12 contiguous US states with the highest maize production with published studies 

concerning cover-cropping effects on weed biomass and density; point shape indicates the weed 

response reported, point size the number of comparisons extracted from the study location, and point 

color the tillage classification of the study. No studies from North and South Dakota met our selection 

criteria. 

 

The studies represented a range of management, environmental, and experimental contexts 

representative of the region (Table S1.2).  
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Table S1.2 Management, environment, and experimental characteristics were extracted from each 

publication; weed biomass and weed density responses were separated into two datasets.  

 

Category Factor Biomass (n = 123) Density (n = 119) 

Management 

System Tillage Tilled (n=30)  

Zero-till (n=93) 

Tilled (n=31)  

Zero-till (n=88) 

 Time between cover crop 

termination and cash crop 

planting 

-31 – 29 days -31 – 13 days 

Cover 

Crop 

Type 

 

Grass (n=46) 

Non-grass (n=77) 

Non-grass category 

includes brassicas 

(3), legumes (74) 

Grass (n=31) 

Non-grass (n=88) 

Non-grass category includes 

brassicas (9), legumes (73), 

mixtures (6) 

 Planting date Aug 15 – Oct 18 Aug 15 – Oct 31 

 Planting density 13.4 – 180 kg seed 

ha-1 

9 – 135 kg seed ha-1 

 Termination date April 18 – June 18 April 18 – June 18 

 Termination method Several methods (n = 

3) 

herbicides (n = 54) 

mechanical (roller 

crimper, mowing; n 

= 29) 

winterkill (n = 37) 

Several methods (n = 3) 

herbicides (n = 53) 

mechanical (roller crimper, 

mowing; n = 22) 

winterkill (n = 37) 

none (n = 4) 

 Cover crop biomass at 

termination 

130 – 9003 kg ha-1 0 – 9003 kg ha-1 

Cash crop Subsequent crop Maize (n=78) 

Soybean (n=45) 

 

Maize (n=73) 

Soybean (n=42) 

Averaged over maize and 

soybean phases† (n=4)  

 Cash crop planting date April 20 – June 30 April 27 – June 18 

 Corn yield 40-13500 kg ha-1 40-11200 kg ha-1 

 Soybean yield 300-3618 300-3310 kg ha-1 

Environment 

 State Illinois (17) 

Kansas (9) 

Michigan (44) 

Minnesota (12) 

Nebraska (11) 

Ohio (25) 

Wisconsin (5) 

Iowa (4) 

Illinois (5) 

Indiana (4) 

Michigan (45) 

Minnesota (16) 

Missouri (18) 

Nebraska (6) 
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Ohio (21) 

 Latitude 38.0 - 45.7N 38.7 - 45.7N 

 Longitude 81.9 – 101W 83.0 – 101W 

 Soil type Loam (n = 46) 

Sandy loam (n = 1) 

Silt Loam (n = 67) 

Silty Clay Loam (n = 

9) 

Loam (n = 59) 

Silt Loam (n = 61) 

Silty Clay Loam (n = 9) 

 Organic matter content 

 

1.5 - 4.15% 1 – 3.4% 

 Aridity index* 

 

0.37 – 0.94 0.44 – 0.96 

 Publication year 1993 - 2018 1993 - 2018 

Experiment 

Design Number of replicates 3 - 5 3 – 6 

 Type of weed(s) measured Summer annual (86) 

Winter annual (17) 

Perennial (15) 

Unknown (5) 

Summer annual (75) 

Winter annual (29) 

Perennial (15) 

 Duration of experiment 1-3 years (n=123) 

4-5 years (n=0) 

1-3 years (n=115) 

4-5 years (n=4) 

Timing Timing of weed measurement 

with respect to cash crop 

planting 

Before (38) 

After (119) 

Before (38) 

After (119) 

 Season of weed 

measurement** 

Spring (January-

June; n = 19) 

Summer (June-

September; n = 104) 

Fall‡ (October – 

December; n = 4) 

Spring (n = 36) 

Summer (n = 79) 

†The study (Mock et al. 2012) reported weed densities averaged over both phases, but did not report crop yields 

‡This category was removed from analyses testing the significance of this modifier due to the small number of 

points representing the category 

*an integrated measure of temperature, precipitation and potential evapotranspiration were derived from location 

coordinates using the CGIAR-CSI Global-Aridity and Global-PET databases (Zomer et al. 2008). 

** Spring: January-June; Summer: June-September; Fall : September – December 
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S2. Fitting statistical models 

Note that all R code for statistical analyses is available in the github repository 

https://github.com/vanichols/Nichols_et_al_2020. The response (y) variable in all statistical 

analyses was the response ratio, defined as the value of the response in the CC treatment divided 

by the value in the no-cover treatment (Gurevitch et al., 2018). The ratios exhibited a log-normal 

distribution and were therefore log-transformed (log-response-ratio, LRR) for all statistical 

analyses. Values were back-transformed and presented as a percent change for interpretation 

purposes and reported as geometric means. To estimate over-all effect sizes, we fit a linear 

mixed-model using the lmer4 package (Bates et al. 2015) using the LRR as the response variable 

and a random intercept for each study with non-parametric weighting based on sample sizes 

(Adams et al., 1997) because only three of the 15 studies reported variances on weed 

measurements. Results were analyzed using the lmerTest (Kuznetsova et al., 2017) and emmeans 

(Lenth et al., 2018) packages.  

For all linear mixed models subsequently described, a random intercept for each study and non-

parametric weighting was used.  Cover crop biomass is known to have a strong effect on weed 

suppression (Mirsky et al., 2013; Wallace et al., 2018; Baraibar et al., 2018). To assess an 

individual modifiers’ effect on weed responses, we first assessed whether the CC biomass 

produced at each modifier level was significantly different by fitting a mixed linear model with 

CC biomass as the response and an individual modifier as a predictor. Because these analyses 

showed CC type (grass and non-grass) significantly affected CC biomass production (p=0.01), 

we included CC biomass as a covariate when testing for the effect of CC type on weed 

suppression to control for these differences. This was done by including CC type (grass and non-

grass), CC biomass at termination, and their interaction as fixed effects (plus the random 

intercept for study as previously described). The interaction was not significant based on nested 

model comparison, so the interaction was not included in the final model. For all other modifiers, 

they were assessed individually using a linear mixed model as described above with only one 

fixed effect modifier included at a time. 

 

Significance was assigned at a p-value <0.05, but intermediate p-values (0.05-0.10) and effect 

sizes were investigated (Ho et al., 2019). The robustness of our results was assessed by removing 

one study at a time from the dataset and fitting the statistical model for each dataset individually 

(Philibert et al., 2012). Additionally, select individual points were assessed for disproportionately 

influencing results in the same manner.  For significant results, robustness against possibly un-

published non-significant results was assessed using a fail-safe number (Rosenthal, 1979). 

 

In the weed biomass (WBIO) database, the CC type significantly affected the amount of CC 

biomass (CCBIO) produced (p = 0.01), with grass CCs producing an estimated 3.95 Mg ha-1 of 

biomass, compared to 2.56 Mg ha-1 in non-grass. Therefore, CCBIO was used as a covariate in 

the statistical model testing for differences in CC type. 
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To estimate the amount of grass CCBIO needed at termination to achieve a 75% reduction in 

weed biomass, we fit a linear mixed model with CC type and CCBIO at termination as predictors 

(with study as a random intercept). The unconditioned fitted parameters were used to back-

calculate the grass CC biomass at a CC-induced 75% reduction in weed biomass. The 

uncertainty around this value was estimated using the delta method (Ver Hoef, 2012). Each point 

was categorized based on cash-crop yield and weed pressure responses; if the comparison 

exhibited both an increase in cash-crop yield and a decrease in weed pressure it was assigned 

‘win-win’, otherwise it was assigned a value of ‘other’. To explore possible predictor 

combinations for win-win scenarios, we fit random forest models (Kuhn and Johnson, 2013) 

using several R packages (Hothorn et al., 2006).    

 

 

S3. Results from statistical model-fitting 

Effect sizes for individual study model fits 

Individual study effect sizes are presented in Figure S3.1.  

 
Figure S3.1 Effect sizes (ln(Rcctreatment/Rcotnrol)) for the 15 individual studies for the two response 

variables (weed biomass, weed density) represented by points; line-ranges represent 95% confidence 

intervals.  

 

 

Overall model fits 
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There was no evidence CCs reduced weed density (p=0.98; Table S3.1), but the sensitivity 

analysis identified one study (Gieske et al. 2016) using a radish (Raphanus sativus) CC whose 

removal drastically lowered the non-significance of the p-value (lowered from 0.98 to 0.26). 

 

Table S3.1 Overall model results with leave-one-study-out sensitivities 

Weed Response p-value Estimate 

Lower 

95% CI 

Bound 

Upper 

95% CI 

Bound 

Study Left Out 

Density 

0.98 0.01 -0.72 0.74 NA 

0.95 -0.02 -0.86 0.82 3 

0.83 0.08 -0.73 0.88 4 

0.76 0.1 -0.66 0.87 5 

0.81 -0.09 -0.88 0.71 6 

0.94 -0.03 -0.85 0.8 8 

0.93 0.03 -0.8 0.86 9 

0.26 -0.19 -0.68 0.3 10 

0.64 0.14 -0.54 0.83 11 

0.93 0.03 -0.79 0.85 12 

0.91 0.04 -0.78 0.86 13 

0.97 -0.01 -0.84 0.81 15 

Biomass 

0.02 -0.72 -1.27 -0.17 NA 

0.03 -0.76 -1.39 -0.12 1 

0.04 -0.65 -1.25 -0.04 2 

0.01 -0.82 -1.39 -0.25 3 

0.03 -0.73 -1.36 -0.1 4 

0.03 -0.66 -1.23 -0.08 5 

0.01 -0.8 -1.37 -0.23 7 

0.02 -0.81 -1.44 -0.18 9 

0.02 -0.59 -1.06 -0.11 11 

0.04 -0.67 -1.28 -0.06 12 

0.02 -0.79 -1.4 -0.19 14 

0.04 -0.66 -1.28 -0.05 15 
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Table S3.2 Overall model results for models assessing differences in cash crop yields under cover-

cropping versus no-cover treatments 

Database p-value Estimate 

Lower 

95% CI 

Bound 

Upper 

95% CI 

Bound 

Weed 

Biomass 
0.147 -0.461 -1.329 0.406 

Weed 

Density 
0.117 -0.262 -0.607 0.084 

 

Table S3.2 Weed biomass categorical modifier level contrasts 

Modifier Level 1 Level 2 Estimate 
Standard 

Error 

Degrees 

of 

Freedom 

Statistic 
p-

value 

msmt_season spring summer -0.75 0.26 395.41 -2.82 0.01 

msmt_planting after before 0.75 0.26 395.41 2.82 0.01 

weed_group perennial 
winter 

annual 
1.03 0.33 432.46 3.14 0.01 

cc_type2 grass non-grass 0.44 0.17 80.66 2.50 0.01 

cropsys_tillage N Y 0.82 0.51 13.52 1.61 0.13 

weed_group perennial 
summer 

annual 
0.60 0.33 379.78 1.81 0.17 

ccterm_meth H M 0.52 0.31 194.51 1.67 0.34 

weed_group 
summer 

annual 

winter 

annual 
0.43 0.32 324.47 1.35 0.37 

crop_follow corn soybean 0.38 0.47 16.53 0.82 0.42 

cc_type2 grass non-grass 0.11 0.14 24.96 0.81 0.43 

ccterm_meth M W -0.64 0.45 160.63 -1.42 0.49 

ccterm_meth D W -0.88 0.70 393.73 -1.25 0.59 

ccterm_meth D H -0.76 0.62 443.61 -1.23 0.61 

ccterm_meth H W -0.12 0.33 273.22 -0.35 0.99 

ccterm_meth D M -0.24 0.69 369.01 -0.35 0.99 
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Table S3.3 Weed density categorical modifier level contrasts 

Modifier Level 1 Level 2 Estimate 
Standard 

Error 

Degrees 

of 

Freedom 

Statistic 
p-

value 

msmt_planting after before 0.39 0.26 336.64 1.49 0.14 

weed_group perennial 
winter 

annual 
0.52 0.29 435.50 1.77 0.18 

msmt_season spring summer -0.40 0.22 79.59 -1.77 0.19 

weed_group 
summer 

annual 

winter 

annual 
0.25 0.24 420.34 1.02 0.56 

weed_group perennial 
summer 

annual 
0.28 0.29 439.41 0.94 0.61 

crop_follow corn soybean 0.08 0.36 10.28 0.24 0.97 

ccterm_meth D H -0.31 0.60 435.98 -0.52 0.99 

ccterm_meth D none -0.60 1.35 18.43 -0.45 0.99 

ccterm_meth D M -0.31 0.72 358.66 -0.43 0.99 

ccterm_meth H W 0.11 0.31 399.01 0.34 1.00 

ccterm_meth none W 0.40 1.25 13.53 0.32 1.00 

ccterm_meth D W -0.21 0.67 428.18 -0.31 1.00 

ccterm_meth H none -0.29 1.22 12.51 -0.24 1.00 

ccterm_meth M none -0.30 1.25 13.59 -0.24 1.00 

ccterm_meth M W 0.10 0.51 213.45 0.20 1.00 

ccterm_meth H M 0.00 0.41 185.11 0.01 1.00 

 

Table S3.4 Continuous modifier regression results 

resp mod n sumsq meansq NumDF DenDF statistic p.value 

den aridity_index 110 3.736053 3.736053 1 28.01681 2.424336 0.130689 

den om_pct 32 6.839874 6.839874 1 28.23631 9.650271 0.004285 

den cc_bm_Mgha 102 28.71745 28.71745 1 64.75331 23.2525 8.97E-06 

bio aridity_index 123 1.587642 1.587642 1 7.586298 0.957572 0.357968 

bio om_pct 44 3.344446 3.344446 1 3.332166 3.221653 0.161314 

bio cc_bm_Mgha 113 11.46623 11.46623 1 104.6375 6.852609 0.010163 
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S4. SALUS model calibration  

Systems Approach to Land-Use Sustainability (SALUS) model overview 

SALUS (Basso and Ritchie, 2015) is a cropping systems simulation platform that allows 

estimating the impact of diverse agricultural management strategies on various processes within 

the soil–plant–atmosphere continuum. The platform contains a suite of interconnected processed-

based models derived from the well-validated CERES (Crop Estimation through Resource and 

Environment Synthesis) model, providing simulation of crop growth and development, and 

carbon, water, nitrogen, and phosphorus cycling dynamics on a daily time step. The model uses 

as input daily values of incoming solar radiation (MJ m−2), maximum and minimum air 

temperature (°C), and rainfall (mm), as well as information on soil characteristics and 

management. SALUS has been tested extensively for its ability to simulate various soil-crop 

processes including: soil carbon dynamics (Senthilkumar et al., 2009; Basso et al., 2018), crop 

yield (Basso et al., 2007), plant N uptake and phenology (Basso et al., 2010, 2011; Albarenque et 

al., 2016), nitrate leaching (Giola et al., 2012; Syswerda et al., 2012; Basso et al., 2016), water 

use efficiency (Ritchie and Basso, 2008) and transpiration efficiency (Basso and Ritchie, 2012). 

A general description on SALUS is provided by Basso and Ritchie (2015).  

In SALUS, crop growth can be simulated following a complex or a simple modeling approach. 

In this study, we used the simple modeling approach. The simple crop model (SALUS-Simple 

henceforth) represents a ‘generic’ crop model with 20-25 predefined crop parameters, which can 

be easily adapted to characterize growth of many annual crops. SALUS-Simple follows the same 

approach used by ALMANAC (Agricultural Land Management Alternatives with Numerical 

Assessment Criteria, Kiniry et al., 1992). Briefly, the model uses crop parameters to calculate 

potential leaf area index (LAI) and radiation use efficiency (RUE) curves as function of thermal 

time, which in turn are used to estimate daily crop resource acquisition and potential crop 

growth. When run with water and nutrient limitations, the model calculates water and nutrient 

stress factors based on a daily supply-demand balance, which then are applied to reduce the rate 

of potential biomass growth. For a detailed description of the SALUS-Simple crop model, we 

refer the reader to Dzotsi et al. (2013).  

Data sources and model set up 

We assembled a dataset of published literature studies conducted within the Corn Belt to set up 

and calibrate the SALUS-simple model. All of these studies reported measurements of winter rye 

cover crop biomass at termination, as well as cover crop planting and termination dates. This 

dataset contains observations from 12 studies, 6 of which also were included in our original 

meta-analysis dataset and the rest were available from a literature search from a previous study 

(Martinez-Feria et al., 2016). In total, the dataset included observations from 15 sites, amounting 

to 52 site-year combinations (Figure S4.1). We used 60% of the data for model training and 40% 

for model testing. The assembled dataset is shown in Table S4.1. 
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Figure S4.1. Geographical 

location of the experiments 

used for model calibration.  

 

For each of the 15 sites, we retrieved daily weather data from the North American Land Data 

Assimilation System project phase 2 (NLDAS-2) dataset (Xia et al., 2012) using the single-pixel 

(0.125° resolution) extraction tool and formatter for SALUS 

(https://salusmodel.ees.msu.edu/NLDAS/). Soil information for each site was retrieved from the 

Soil SURvey GeOgraphic database (SSURGO; Soil Survey Staff), from which we selected data 

for the predominant soil series (map unit key) at each location.  

Simulation for each experiment were run independently, from 1-Jan to 30-June of the following 

year, meaning that each simulation comprised a period of 18 months. We assumed both water- 

and N-limited rye cover crop growth. To provide for realistic initial conditions for soil water at 

cover crop planting, we simulated a maize crop, prior to cover crop planting. In the model, maize 

was planted in early May, fertilized with 150 kg N ha-1 at planting and harvested 10 days before 

the prescribed cover crop planting date. Planting density for rye cover crop was assumed at 300 

plants m-2, 1.0 cm depth and 20 cm row spacing. No fertilizer was applied to rye in the model. 

 

 

 

 

 

 

 

 

 

https://salusmodel.ees.msu.edu/NLDAS/
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Table S4.1. Dataset of published estimates of rye cover crop biomass at terminations which was used for 

model training and testing 

Obs. 

ID 
Used for Source Location Planting Termination 

Biomass 

(Mg ha-

1) 

1 Training Cornelius and 

Bradley, 2017 

 

Columbia, 

MO 

2012-9-11 2013-4-25 2.89 

2 2013-9-12 2014-5-2 2.19 

3 2014-9-10 2015-4-23 1.15 

4 Moberly, MO 2013-9-12 2014-5-2 1.39 

5 2014-9-10 2015-4-23 3.93 

6 Davis, 2010 Urbana, IL 2004-10-1 2005-5-13 7.10 

7 2005-10-1 2006-5-12 6.00 

8 2006-10-1 2007-5-11 6.00 

9 Bruin et al., 2005 Rosemont, 

MN 

2001-10-25 2002-5-1 0.49 

10 2001-10-25 2002-5-8 0.73 

11 2001-10-25 2002-5-15 1.03 

12 2001-10-25 2002-5-22 1.80 

13 2002-11-1 2003-5-13 0.15 

14 2002-11-1 2003-5-23 0.41 

15 2002-11-1 2003-6-2 1.42 

16 2002-11-1 2003-6-17 2.93 

17 Waseca, MN 2001-10-18 2002-5-1 0.38 

18 2001-10-18 2002-5-8 0.85 

19 2001-10-18 2002-5-20 2.19 

20 2001-10-18 2002-5-28 3.77 

21 2002-10-11 2003-5-1 0.15 

22 2002-10-11 2003-5-7 0.22 

23 2002-10-11 2003-5-14 0.52 

24 2002-10-11 2003-5-20 0.99 

25 
Feyereisen et al., 

2006 

St. Paul, MN 2000-9-18 2001-5-25 5.90 

26 Forcella, 2014 Stevens 

county, MN 

2009-9-2 2010-6-9 6.00 

27 2010-9-20 2011-6-14 6.00 

28 Kaspar et al., 

2007 

Ames, IA 2001-9-20 2002-4-17 2.43 

29 2002-9-10 2003-5-6 2.50 

30 2003-10-2 2004-4-16 1.48 

31 2004-10-6 2005-4-25 2.74 

32 Testing Kaspar et al., 

2012 

Ames, IA 2005-9-30 2006-4-21 2.44 

33 2006-10-24 2007-5-10 0.61 
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34 2007-9-28 2008-4-29 1.26 

35 2008-10-29 2009-5-21 0.50 

36 2009-9-28 2010-4-19 1.73 

37 Martinez-Feria et 

al., 2016 

Kelley, IA 2008-10-21 2009-5-6 0.37 

38 2009-11-6 2010-5-5 1.18 

39 2010-10-4 2011-5-10 1.53 

40 2011-10-10 2012-4-18 2.50 

41 2012-10-15 2013-5-11 0.50 

42 Ruffo and 

Bollero, 2003 

Brownstown, 

IL 

1998-10-3 1999-4-28 4.73 

43 1999-10-2 2000-4-29 2.92 

44 Urbana, IL 1998-10-1 1999-5-2 4.02 

45 1999-10-5 2000-5-4 3.16 

46 Strock et al., 2004 Lamberton, 

MN 

1998-10-1 1999-4-30 2.70 

47 1999-9-29 2000-4-11 1.00 

48 2000-10-4 2001-5-16 0.50 

49 Werle et al., 2018 North Platte, 

NE 

2016-9-20 2017-4-18 4.08 

50 2016-10-17 2017-4-18 3.77 

51 Williams et al., 

1998 

Ithaca, NE 1994-9-20 1995-6-6 6.31 

52 1995-9-20 1996-5-23 2.89 

Model calibration and performance 

To calibrate the SALUS-simple model for simulating rye cover crop biomass, we first compared 

simulated values to data from the testing dataset (Table S4.1). To quantify model fit to the 

observed data we computed the Nash-Sutcliffe model efficiency (NSE) and root-mean-squared 

error (RMSE).  The RMSE is a measure of model error (the closer to zero, the better), while NSE 

is a measure of model precision compared to an arithmetic mean (a value of 1 indicates perfect 

fit). The equation for these two measures can be seen in Archontoulis and Miguez (2013). Model 

fit was also evaluated visually by means of plotting the observed vs. simulated values, with the 

regression line as measure of model bias.  

We used as a starting point the rye crop species parameters available in the ALMANAC model 

(Kiniry and Spanel, 2009; Table S2.2). Using this parameterization, however, the model tended 

to overestimate fall growth, which resulted in premature senescence in the spring. Therefore, we 

evaluated increasing the length of the growth cycle (TTtoMatr from 1200 to 1800 °C-day) and 

adjusting phenology (relTT_P1, relTT_Sn) and LAI curve parameters (relLAI_P2). Additionally, 

because the model tended to overpredict biomass growth in the spring, we decreased maximum 

potential radiation use efficiency (RUEmax) from 3.0 to 2.0 g MJ (PAR)-1. A list of parameter 

values derived from the model training step are included in Table S4.2, and a model fit to the 

training data set is shown in Figures S4.2 and S4.3. 
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Table S4.2. Calibrated SALUS-simple parameters used to simulate winter rye cover crop 

growth. 

Paramete

r 
Description Units 

Value 

ALMA

NAC 

(original

) 

Calibrated* 

relTT_P1 
Relative development thermal time at 

point 1 

°C-day °C-

day-1 
0.3 

0.25 (0.05-

0.45) 

relLAI_P

1 
Relative LAI at point 1 m2 m-2 0.01 - 

relTT_P2 
Relative development thermal time at 

point 2 

°C-day °C-

day-1 
0.5 - 

relLAI_P

2 
Relative LAI at point 2 m2 m-2 0.95 

0.9 (0.9-

0.99) 

LAImax Maximum leaf area index m2 m-2 3 - 

RUEmax 
Maximum potential radiation use 

efficiency 

g MJ 

(PAR)-1 
3 2 (1-3.5) 

relTT_Sn 
Relative development thermal time at 

senescence 

°C-day °C-

day-1 
0.8 

0.5 (0.5-

0.85) 

SnParLA

I 

Parameter for RUE decline after 

senescence 
unitless 1 - 

SnParRU

E 

Parameter for RUE decline after 

senescence 
unitless 1 - 

TbaseDe

v 
Base temperature for development °C 0 - 

ToptDev Optimal temperature for development °C 15 - 

TTtoGer

m 
Development thermal time to germinate 

°C-day 
20 - 

TTtoMatr Development thermal time to mature 
°C-day 

1200 
1800 (1200-

2500) 

EmgInter Intercept of emergence time calculation leaf eq. 15 - 

EmgSlop

e 
Slope of emergence time calculation 

leaf eq. 

 cm-1 
6 - 

HrvIndex Harvest index Mg Mg-1 0.42 - 
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PlntN_E

m 
Optimal N in plant at emergence g g-1 0.0226 - 

PlntN_Hf Optimal N in plant halfway to maturity g g-1 0.018 - 

PlntN_M

t 
Optimal N in plant at maturity g g-1 0.014 - 

GrnN_Mt Optimal N in grain at maturity g g-1 0.023 - 

CHeight Approximate height of crop m 1.0 - 

*Values within parenthesis show the range explored in the calibration 

 

 
Figure S4.2. Example of rye cover crop spring growth as simulated by the SALUS-simple crop 

model. The data for the experiments shown here were obtained from Bruin et al. (2005). 

 

Having calibrated the SALUS-Simple crop model to simulate rye growth, the next step was to 

compare the simulated values to the independent measurement in the testing dataset. Considering 

that set-up and model training was largely based on limited (i.e. publicly available) data and 

literature values, the SALUS-simple model was able to satisfactorily reproduce the measured 

cover crop biomass at termination in the testing dataset. Biomass across all sites in the testing 

dataset were simulated with a RMSE of 1.2 Mg ha-1. This was about the same compared to the 

training dataset (1.1 Mg ha-1), which suggest no overfitting of the training data. The model did 

tend to overpredict the rye biomass in the testing dataset compared to the training, especially in 

the high yielding environments. This translated to lower NSE compared to the training data (0.74 

vs. 0.39), although it was still within acceptable ranges. Based on these results we deemed this 

model calibration appropriate for estimating rye biomass growth as a function of weather, soils 

and management across the US Corn Belt. 
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Figure S4.3.  SALUS simple 

model fit to the training and 

testing datasets. NSE = 

Nash-Sutcliffe model 

efficiency; RMSE = root 

mean squared error.   
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