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ABSTRACT

Over decades of active research, MPC has grown into a rich and complex topic, with many
incomparable flavors and numerous protocols and techniques. The diversity of models and
questions forms a wide spectrum of possible tradeoffs between functionality, security, and
efficiency, which partially explains the massive amount of research in the area. Meanwhile,
several important results actually rely on “protocol transformations,” whereby protocols
from one model of MPC are transformed to protocols from another model.
Motivated by simplifying and unifying results in the area of MPC, our first goal is to

formalize a general notion of black-box protocol transformations that captures previous
transformations from the literature as special cases, and present several new transformations.
In addition to the simplification of known feasibility results, we then push our study of
protocol transformations by presenting several results regarding security augmentation and
efficiency leveraging. On the other hand, we prove the impossibility of two simple types of
black-box protocol transformations.
Next, we initiate the study of bottleneck complexity as a new communication efficiency

measure for secure multiparty computation (MPC). Roughly, the bottleneck complexity of
an MPC protocol is defined as the maximum communication complexity required by any
party within the protocol execution. While achieving O(n) bottleneck complexity (where n
is the number of parties) is straightforward, we show that: (1) achieving sublinear bottleneck
complexity is not always possible, even when no security is required. (2) On the other hand,
several useful classes of functions do have o(n) bottleneck complexity, when no security is
required.
Then our main positive result regarding bottleneck complexity is a compiler that transforms

any (possibly insecure) efficient protocol with fixed communication-pattern for computing
any functionality into a secure MPC protocol while preserving the bottleneck complexity of
the underlying protocol (up to security parameter overhead). Given our compiler, an efficient
protocol for any function f with sublinear bottleneck complexity can be transformed into
an MPC protocol for f with the same bottleneck complexity.
Along the way, we build cryptographic primitives – incremental fully-homomorphic

encryption, succinct non-interactive arguments of knowledge with ID-based simulation-
extractability property and verifiable protocol execution – that may be of independent
interest.
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CHAPTER 1: INTRODUCTION

Secure multi-party computation (MPC) is one of the central topics around which modern
cryptography has been shaped. Research in MPC has led to major innovations in
cryptography, including effective definitional approaches (e.g., simulation-based security
[1, 2]), powerful and vastly applicable algorithmic techniques (starting with secret-
sharing [3] and garbling schemes [4]), sharp impossibility results (e.g., [5]) and even
several cryptographic concepts ahead of their time (like fully-homomorphic encryption [6]).
Significantly, in recent years, some of these results have started moving from theory to
practice, spurring significant further theoretical and engineering effort to optimize their
performance and usability.
Over 35 years of active research, MPC has grown into a rich and complex topic, with many

incomparable flavors and numerous protocols and techniques. Indeed, just cataloguing the
state of the art results is a non-trivial research project in itself, as exemplified by the recent
work of Perry et al. [7], which proposes classifying the existing protocols using 22 dimensions.

1.1 TRANSFORMATION OF MPC MODELS

The diversity of MPC models and questions forms a wide spectrum of possible tradeoffs
between functionality, security, and efficiency, which partially explains the massive amount
of research in the area. But this diversity also poses the risk of misdirected research efforts.
For instance, if a new technique is introduced in order to obtain an efficiency improvement
in one model, it is not clear a-priori to which other models the same technique may apply;
and even when the same technique directly applies to other models, one typically needs to
manually modify protocols and their analysis to ensure it.
While developing and maintaining a systematic database like the one in [7] is certainly

helpful, we propose a complementary approach to taming the complex landscape of MPC
protocols. Our approach is to relate the various flavors of MPC problems to each other by
means of general protocol transformations. More concretely, our work studies the following
high level question:

To what extent can results in one MPC model be “automatically” transformed to
other models?

This question is motivated by the following goals.
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• Simplicity. The current proofs of the main feasibility results in the area of MPC
are quite involved, and results for different models share few common ingredients. We
would like to obtain a simpler and more modular joint derivation of different feasibility
results from the 1980s [2, 8, 9, 10, 11, 12], which were originally proved using very
different techniques.

• Efficiency. Despite a lot of progress on the efficiency of MPC, there are still
significant gaps between the efficiency of the best known protocols in different models.
For instance, viewing the number of parties n as a constant, n-party protocols
that offer full-security (with guaranteed output delivery) against t < n/2 malicious
parties [11, 13] are asymptotically less efficient compared to similar protocols with
security against t < n/3 parties [9], or even to protocols that offer “security with
abort” against t < n malicious parties [14].

A classical example of a general protocol transformation is the well known “GMW
compiler,” [2], which transforms any MPC protocol that offers security against passive
corruptions into one that offers security against active corruptions, with the help of zero-
knowledge proofs. Considering that this transformation has been behind several subsequent
feasibility results, one may legitimately consider that the GMW transformation is as
important as – if not more important than – the GMW protocol itself is, as an object of study.
More recent examples include the IKOS transformation using “MPC-in-the-head” [15] and
the IPS transformation that combines player-virtualization with “watchlists” [14]. Common
to all these techniques is the idea that they generically transform any set of protocols that
are secure for some (“easier”) flavors of MPC into a protocol that is secure for another
(“harder”) flavor.
While these previous results demonstrate the plausibility of general MPC protocol

transformations in some interesting cases, they are still far from covering the space of all
desirable transformations between different MPC models and leave open several natural
questions.
In this work, we initiate a systematic study of such MPC protocol transformations. We

define a framework to formalize these transformations, and present a few positive and
negative results. We are interested in obtaining conceptually simpler alternative proofs
for known feasibility results by means of new transformations, as well as in obtaining new
results. We now discuss the goals of this research in more detail.
The main theoretical motivation for studying protocol transformations is that they

highlight the essential new challenges presented in a harder flavor of MPC compared to an
easier flavor. For instance, the GMW-transformation distilled out verifying claims in zero-
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knowledge as the essential challenge in moving from semi-honest security to security against
active corruption. As another example, in this work, we present a new transformation, that
can recover the classical feasibility result of Rabin and Ben-Or [11] regarding security with
guaranteed output delivery with an honest majority, from two simpler feasibility results
(both of which were solved in [9, 10]): (i) security against passive corruption with an honest
majority and (ii) security with guaranteed output delivery but only with an arbitrarily large
fraction of honest parties. We identify achieving an intermediate security notion – security
with partially identifiable abort – as the key challenge in this transformation.
As noted above, another important motivation behind studying protocol transformations

is the possibility of efficiency improvements. On the face of it, protocol transformations
are not ideal for obtaining efficient protocols, as one can hope to obtain extra efficiency by
engineering fine details of the protocols as applicable to the specific flavor of MPC. While
that may indeed be true, a protocol transformation can leverage advances in one flavor of
MPC to obtain efficiency improvements in another flavor. As it turns out, this lets us obtain
several new asymptotic efficiency results based on a single new transformation. Considering
that efficiency of MPC is a well-studied area, obtaining several new result at once illustrates
the power of such transformations.
There are other practical and theoretical motivations that led to this work, which we

mention below.
• From a pragmatic point of view, understanding the connections across flavors of

MPC will help in modular implementations of protocols. Indeed, the implementation of
a transformation from one flavor to another would tend to be significantly simpler than an
entire protocol in the latter flavor, specified and implemented from scratch.
• Roles of important techniques can often be encapsulated as transformations among

appropriate intermediate security notions (e.g., “player elimination” can be encapsulated
as implementing a transformation from “identifiable-abort-security” to full-security). In
the absence of such abstraction, these techniques remain enmeshed within more complex
protocols, and may not benefit from research focus that a transformation can attract.
• More generally, transformations are important in reducing duplicated research effort.

For instance, if a new technique is introduced in order to obtain an efficiency improvement
in one model, it is not clear a priori to which other models the same technique may apply;
and even when the same technique directly applies to other models, one typically needs to
manually modify protocols and their analysis to ensure it. On the other hand, if generic
transformations are available across models, techniques can be easily adapted across models.
• Finally, a theoretical framework is necessary to understand the limitations of protocol

transformations, via formal impossibility theorems. Indeed, without a rigorous notion
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of “black-box” transformations, it is not clear how to rule out the possibility of a
“transformation” which simply discards the protocol it is given and builds one from
scratch. This is especially the case for unconditional security, where the standard notions
of black-box use of computational assumptions are not helpful in differentiating a legitimate
transformation from one which builds its own (unconditionally secure) protocol from scratch.
A Motivating Example. As an illustration of the use of protocol transformations
in simplifying the landscape of MPC protocols, we consider two protocol schemes from
Goldreich’s book [16, Chapter 7]. The first one obtains (stand-alone) security-with-abort
against arbitrary number of corruptions by an active, probabilistic polynomial time (PPT)
adversary1 (under standard cryptographic assumptions), for general function evaluation, in
a model with broadcast channels only. The second one obtains full-security (i.e., guaranteed
output delivery) in the same setting, but restricting the adversary to corrupt less than half
the parties. Both these protocol schemes are obtained using the GMW transformation.
However, the latter feasibility result does not take advantage of the former, but instead uses
verifiable secret-sharing (VSS) and several other techniques to achieve full-security, while
retaining certain elements from the previous construction.
We point out that in fact, one could avoid the duplicated effort by giving a protocol

transformation from the former flavor to the latter flavor of MPC. For this, we abstract
out a slightly stronger security guarantee provided by the first protocol: while it allows
an adversary to abort the protocol after learning its own input, aborting always leads to
identification of at least one party that is corrupted by the adversary. This notion of security
is often referred to as security with identifiable-abort [17]. In Section 3.3.1, we show that
one can easily transform such a protocol into a protocol with full-security.
Security Augmentation and Efficiency Leveraging. Typically, an MPC protocol
transformation falls into one of two broad (informally defined) classes: security augmentation
and efficiency leveraging. Security augmentation refers to building MPC protocols with
strong security guarantees by transforming MPC protocols with weaker security guarantees.
The IPS compiler is an instance of security augmentation. Efficiency leveraging, on the
other hand, aims to improve the efficiency of MPC protocols, without necessarily increasing
their security guarantee. In such a transformation, the original (inefficient) protocol will
typically be used on a “small” sub-computation task, in combination with other cheaper
(but less secure) protocols applied to the original “large” computation task. The goal of the
sub-computation task is usually to ensure that the strong attacks on the final protocol has
the effect of weak attacks on an execution of the cheaper, less secure protocol. An instance

1One may consider static or adaptive corruption here. By default, we shall consider adaptive adversaries
in all constructions in this paper.
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of efficiency leveraging is given by Bracha’s transformation [18], in which the strength of the
security guarantee corresponds to the corruption-threshold (i.e., what fraction of parties are
corrupted) that can be tolerated.

1.2 A NEW MEASURE OF COMMUNICATION EFFICIENCY

Next, we initiate the study of bottleneck complexity as a new communication efficiency
measure for secure multiparty computation (MPC). Roughly, the bottleneck complexity of
an MPC protocol is defined as the maximum communication complexity required by any
party within the protocol execution.
We observe that even without security, bottleneck communication complexity is an

interesting measure of communication complexity for (distributed) functions and propose
it as a fundamental area to explore. While achieving O(n) bottleneck complexity (where n
is the number of parties) is straightforward, we show that: (1) achieving sublinear bottleneck
complexity is not always possible, even when no security is required. (2) On the other hand,
several useful classes of functions do have o(n) bottleneck complexity, when no security is
required.
Our main positive result is a compiler that transforms any (possibly insecure) efficient

protocol with fixed communication-pattern for computing any functionality into a secure
MPC protocol while preserving the bottleneck complexity of the underlying protocol (up to
security parameter overhead). Given our compiler, an efficient protocol for any function f
with sublinear bottleneck complexity can be transformed into an MPC protocol for f with
the same bottleneck complexity.
Along the way, we build cryptographic primitives – incremental fully-homomorphic

encryption, succinct non-interactive arguments of knowledge with ID-based simulation-
extractability property and verifiable protocol execution – that may be of independent
interest.
Following these lines, the content of this thesis divide into the following parts. In Chapter

2, we review the background of MPC involving some existing techniques that will be used
in the remaining chapters. In Chpater 3, we propose a black-box transformation (BBT)
framework of MPC protocols. In Chpater 4, we provide new BBT results involving security
augmentation and efficiency leveraging. In Chapter 5, we model bottleneck communication
complexity as a new efficiency measurement. In Chpater 6, we develop secure transformation
that preserves bottleneck communication complexity. Finally in Chapter 7, we summarize
the results and discuss future works.
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CHAPTER 2: MPC BACKGROUND

We review the background of secure multiparty computation as well as some cryptographic
techniques that will be used later in the remaining chapters. Particularly, the definition and
background described in Section 2.1, 2.2, 2.3, 2.4 and 2.5 will be used in Chapter 3 and 4,
and those in Section 2.6 will be used in Chapter 5 and 6.

2.1 PROTOCOL AND FUNCTIONALITY

Communication Model. We consider a synchronous network among n parties,
P1, · · · , Pn, that allows secure communication between (some) pairs of parties; the channels
are authenticated and leak nothing except the number of bits in each message.
Protocols. We consider a protocol to be defined by a single program: the role of the party
will be part of its input. More formally, we define a state space Σ and a message space M of
a protocol, with the following conventions. Each state σ ∈ Σ includes information about the
party (i.e., a serial number), a security parameter, and arbitrary other information. Each
element µ ∈ M is a set of individual “messages;” a message includes information about the
sender (if an incoming message) or the intended receiver (if an outgoing message). If the
sender of an incoming message is a special party called the environment (say, serial number
0), then it is an “input” to the protocol, and an outgoing message with the receiver being
environment is an “output” from the protocol.

Definition 2.1 (Protocol). A protocol π is a probabilistic Turing Machine that maps a pair
in (σ, µ) ∈ Σ×M to a pair (σ′, µ′) ∈ Σ×M , such that σ′ has the same party-ID and security
parameter as σ. Π denotes the set of all protocols.

By itself, a protocol does not define a multi-party process. Interpreting a protocol as a
process involving a certain number of parties (typically specified as part of the initial state
of each honest party), a communication network connecting them, an adversary and an
environment is left to be part of the security definition (see below).
Also, typically, we shall require a protocol to have additional structure. For example, we

typically require that the protocol be efficient: i.e., there is a polynomial p such that on any
input (σ, µ), π terminates in p(k) time steps, where k is the security parameter recorded in
σ; further, when executed as a multi-party process, the protocol as a whole should produce
a “halting” state for each honest party within a polynomial number of rounds. However, we
do not make these requirements part of the definition of a protocol (but again, leave it to
the individual security definitions to make any such requirements).
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We shall follow the convention that various parameters of a protocol (e.g., an upperbound
on the running time) can be learnt from the protocol in a black-box manner (e.g., it outputs
the parameters on a special input).
Functionality. Following the “real/ideal” paradigm, the intended functionality of a
protocol can be quite generally defined in terms of another protocol. Indeed, an n-party
functionality is simply a protocol involving n+1 parties, in which the additional party plays
the role of a special (trusted) party (and the other n parties are dummies that behave as
routers copying messages back and forth between the environment and the special party).
For conceptual clarity, we shall differentiate between “real” protocols (not involving trusted

parties) – which we refer to simply as protocols – and functionalities. We shall often refer
to a functionality family F , which is simply a set of functionalities, i.e., F ⊆ Π. We
denote the family of all probabilistic polynomial time computable secure function evaluation
functionalities by F∗.
The protocols in a typical functionality family consist of several dummy parties and a

(trusted) party carrying out the functionality. For example, the functionality of the secure
evaluation of a function f(x1, ...,xn) is a protocol in the ideal world, where the parties P1,...,
Pn copy and send their inputs x1, ...,xn from the environment to P0 (the trusted party), and
receive and pass the outputs of f from P0 to the environment. We call such a functionality
an n-party functionality (though, as a protocol, there are n+ 1 parties involved).
Parametrized Protocols. A parametrized protocol (or functionality) is used to succinctly
represent a family of different protocols (or functionalities). Formally, a parameter is simply
a common input to the protocol from all the honest parties. One typical parameter to a
protocol is the number of parties. Parameters may also include partial specification of the
function being evaluated in a secure function evaluation functionality.
We write π[n] to denote a protocol π instantiated with a parameter n.

Normal Form Functionality. A normal form functionality f involves two phases for the
trusted party. In the first phase (computation phase), the trusted party arbitrarily interacts
with the parties, but at every round maintains a vector of “outputs” (y1, · · · , yn) (n being
the number of parties other than the trusted party). This output vector can change from
round to round. When the first phase terminates,1 the trusted party enters the second phase
(output delivery phase) and delivers yi to party Pi, for each i.
As an example, in a secure function evaluation (SFE) functionality, in the first round, the

trusted party accepts xi from Pi for each i, replacing any missing inputs with a default value
sets the output (y1, ..., yn) = f(x1, ..., xn), and leaves the computation phase.

1It is not important for the computation phase to ever terminate. This is because we will typically be
interested not in a normal form functionality f itself, but in a round-restricted version f 〈r〉 as defined below.
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Functionality f 〈r〉. For any function r : Z+×Z+ → Z+, and any normal form functionality
f , we define a functionality f 〈r〉 as follows. All parties in f 〈r〉 behave exactly as f during
the computation phase. In particular, at the end of every round, the trusted party has a
well-defined vector of “outputs” for all the other parties. However, the trusted party does
not enter the output delivery phase at the end of the computation phase. Instead, on round
r(|f |, k), where |f | is a size parameter of f (typically, its input size) and k is the security
parameter, it delivers the current outputs to the respective parties (along with any other
message in that round). This is carried out irrespective of whether the computation phase
has terminated or not.

2.2 SECURITY

ΛFsecure
(f, π) s.t. f ∈ F and π meets the definition secure (for a polynomial-round
version of f). If F = F∗, the family of all probabilistic polynomial time function
evaluation functionalities, we simply write Λsecure.

α-secure
secure, restricted to corruption of
strictly less than α fraction of the
parties.

secure/F
protocol is in the F-hybrid model.
e.g., secure/BC denotes protocols
using broadcast channels.

sa
standalone security (default is UC
security). ppt

adversary is PPT (default is
unbounded adversary).

sh
semi-honest adversary.

full
active adversary (with guaranteed
output delivery).

abort
adversary may learn its output and
then decide which honest parties
get their outputs and which do not.

idθ
same as abort, but on abort, honest
parties agree on a non-empty set
of parties, at least a θ fraction
of which is corrupt. We shall
abbreviate α-idα as α-id.

Table 2.1: Terminology used for guarantees from protocols.

Security Definitions. Technically, a security definition for a functionality family F is
formalized as a relation Λ̂ ⊆ F × Π. The intention is that (f, π) ∈ Λ̂ iff π is a secure
protocol for f . For a security notion named secure, the corresponding relation will typically
be written as Λ̂secure.
We use a synchronous model of communication (with rushing adversaries), so that all

parties in a protocol proceed in a round-by-round fashion. Note that this is applicable
to ideal functionalities too. However, typically we are not interested in the exact number
of rounds in the ideal functionality, as long as it finishes within a polynomial number of
rounds. Formally, we define f 〈r〉 as an r(|f |, k)-round versionAlso, let the functionality class
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F+ = {f 〈r〉|f ∈ F and r polynomial }. Then, for a security notion secure, we define

ΛFsecure = {(f, π) | (f 〈r〉, π) ∈ Λ̂F
+

secure for some polynomial r}. (2.1)

In this case, we shall say π is a secure-protocol for f .
In Table 2.1 we name some of the main security definitions considered in our results. For

instance, ΛFα-full includes all pairs (f, π) such that f is a functionality in the family F , and
π is a UC-secure protocol with guaranteed output delivery (within a polynomial number
of rounds), against computationally unbounded adversaries who may adaptively corrupt
strictly less than α fraction of the parties.
When the functionality class is F∗, the family of all polynomial time computable secure

function evaluation functionalities, we write ΛF
∗

secure as simply Λsecure.
We follow the convention that by default a functionality guarantees output delivery, and

aborting behavior should be explicitly specified as part of the functionality. Towards this,
given f in normal form, we define another normal form functionality f 〈abort〉 in which the
trusted party delivers outputs to honest parties only if the adversary explicitly asks it do
so. (Formally, in f 〈abort〉, during the computation phase, the trusted party sends the corrupt
parties’ outputs to the adversary, and may overwrite the output of any subset of the honest
parties by ⊥ as directed by the adversary.) Then, we define the set Λα-abort as

Λα-abort = {(f, π) | (f 〈abort〉, π) ∈ Λα-full}. (2.2)

Stand-Alone Security. This is essentially the model of [19], but we present it as a
restriction to the UC security definition. Specifically, we define a standalone environment
to be one which initiates a single session (of Π of F), and does not communicate with the
adversary until all the honest parties terminate. That is, a standalone environment can only
interact with the adversary prior to the start of the protocol, and after it terminates.
We say that a protocol Π is a standalone-secure protocol for a functionality F if it UC-

securely realizes F (with selective abort) when restricted to standalone environments. Here,
in the ideal model, the adversary is allowed to cause individual honest parties to abort,
after obtaining the outputs for the corrupt parties. We point out that the definition of
UC-security allows a non-black-box simulator that depends on the adversary. (Unlike in
UC-security, existence of a simulator in the standalone setting does not imply the existence
of a black-box simulator. In UC-security, one may replace the adversary with a dummy
adversary which interacts with the actual adversary which is kept inside the environment; in
the standalone setting the dummy adversary cannot interact with the environment during
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the protocol execution.)
Also, as an intermediate security notion we shall define Λα-id which guarantees that

on abortion, corruption can be somewhat localized (within two parties, one of whom is
guaranteed to be corrupt). This notion of security generalizing the notion of security with
identifiable abort and will be defined in detail later.
All the security definitions require the protocol to be efficient, and non-erasing (i.e., the

new state σ′ produced by the protocol retains all the information from the given state σ).
As mentioned above, the exact specification of the (real and ideal) interactive processes, as
well as the conditions on the protocol under which it is considered to be secure are part of
these definitions.

2.3 PROTOCOL SCHEME AND COMPLEXITY

A protocol scheme maps a functionality to a protocol (with a desired security property).

Definition 2.2 (Λ-scheme). P : F → Π is said to be a Λ-scheme if F is a functionality
family such that Λ ⊆ F × Π, and for every f ∈ F , (f,P(f)) ∈ Λ.

For example, the semi-honest BGW-protocol scheme is a ΛFα-sh-scheme where F is the
family of all circuit-evaluation functionalities and α = 1

2 . Typical protocol schemes are
uniform, in that there is a Turing Machine which, on input a standardized description of f ,
for f ∈ F , outputs the code of P(f).

2.3.1 Complexity Notation

To discuss asymptotic efficiency guarantees of protocol schemes, we augment the notation
for security definitions to include protocols’ communication (and sometimes, computational)
cost. Typically, a protocol’s complexity is measured as a function of some complexity
measure of the functionality f that it is realizing, as well as the number of parties n and
the security parameter k of the protocol execution. For each functionality family, we shall
require a cost measure size : F → Z+, that maps f ∈ F to a positive integer. We stress
that a functionality f denotes a specific implementation (of a trusted party in a protocol),
and so there can be different f ∈ F which are all functionally equivalent, but with differing
values of size(f).
To capture the typical efficiency guarantees in the literature, we define a p -ΛFsecure scheme

as a ΛFsecure scheme P such that for any f ∈ F , P(f) is a protocol whose communication cost
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(for n parties, and security parameter k) is

O(p(n, k) · size(f) + poly(n, k)). (2.3)

For typical functionality families F , a functionality f ∈ F is represented as a circuit Cf , and
size(f) is the size of Cf . The function p(n, k) reflects the multiplicative overhead of secure
computation, on top of the size of the (insecure) computation.
Often, protocol schemes which offer a smaller value for p(n, k) incur additive costs.

To denote protocol schemes with such complexities, we use a more detailed notation:
(p, q, r; D) -ΛFsecure schemes are ΛFsecure schemes P such that for all f ∈ F , the communication
cost of P(f) is O(p(n, k) · size(f) + poly(n, k) · D(f)), its computation cost is O(q(n, k) ·
size(f) + poly(n, k) ·D(f)), and its randomness cost is O(r(n, k) · size(f) + poly(n, k) ·D(f)).
Here D is a secondary cost measure – typically the depth of the circuit Cf – which is often
much smaller than size(f). We omit D to indicate that D(f) is a constant and omit q and/or
r to leave them as unspecified poly(n, k) functions. We omit F if it equals F∗, the family of
all probabilistic polynomial time function evaluation functionalities.
For functionality families using circuit representation, a traditional choice for D is depth:

depth(f) denotes the depth of the circuit Cf representing f . We shall find it useful to define
another function width, defined as follows. For any topological sorting of the gates in the
circuit, define a sorted-cut as a partition of the gates into two sets so that all the gates
in one part appear before any gate in the other part, in the topologically sorted order;
the max-sorted-cut for a sort order is the maximum number of wires crossing a sorted-cut.
width(f) is the value of the max-sorted-cut of Cf minimized over all topological sorts of Cf .
(Alternately, we could require the topological sort to be part of the circuit specification.
In this case, an appropriate model of computation would be a linear bijection straight-line
program [20], and width would correspond to the number of “registers” in the program.)
For protocol schemes providing partially-identifiable security, like α-id-schemes, we

sometimes want to distinguish the cost of an execution without an abort event and that
with an abort event (and identification): a 〈γ, δ〉 -Λα-id scheme denotes a Λα-id scheme P
such that the communication cost of P(f) is O(γ(n, k) · size(f) + poly(n, k)) without abort
events and O(δ(n, k) · size(f) + poly(n, k)) with abort.
Finally, we write (p, q, r; D)~ΛFsecure instead of (p, q, r; D) -ΛFsecure and so on, if we intend to

use Õ(·) instead of O(·) in the above costs.2 The notation is summarized in Table 2.2.
2Õ(h) denotes O(h · polylogh).
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(p, q, r; D) -Λsecure Λsecure scheme P s.t. the communication cost of P(f) is
O(p(n, k) · size(f) + poly(n, k) · D(f)), the computation cost is
O(q(n, k) · size(f) + poly(n, k) · D(f)) and randomness cost is
O(r(n, k) · size(f) + poly(n, k) · D(f)).

(p, q;D) -Λsecure (p, q, r; D) -Λsecure, where r(n, k) is poly(n, k).
(p, q) -Λsecure (p, q; D) -Λsecure, where D(f) is a constant
(p;D) -Λsecure (p, q; D) -Λsecure, where q(f) is poly(n, k)
p -Λsecure (p, q; D) -Λsecure, where D(f) is a constant and q(f) is poly(n, k)
〈γ, δ〉 -Λα-id Λsecure scheme P s.t. the communication cost of P(f) is

O(γ(n, k) · size(f) + poly(n, k)) without abort events and
O(δ(n, k) · size(f) + poly(n, k)) with abort.

(params)~Λsecure Similar to (params) -Λsecure scheme, but with Õ(·) instead of O(·).

Table 2.2: Additional notation for protocol schemes (for n parties, and security parameter
k).

2.4 SECRET SHARING

2.4.1 Additive Secret Sharing

By x ∈R Znq we denote that x is uniformly sampled from Znq , and by x← D we denote that
x is sampled from a distribution D. By

c
u we denote computational indistinguishability. We

denote an N -party additive secret sharing of x ∈ Zq by [x]Nq . That is, each Pi owns xi ∈ Zq
such that x = ∑

i∈[N ] xi. When it is clear, we write [x] for brevity.

2.4.2 Error-Correcting Secret-Sharing

Some of our transformations rely on a simple variant of secret-sharing that has been
referred to as robust secret-sharing or as honest-dealer VSS [11, 21, 22]. To clarify the
nature of this primitive, we shall call it Error-Correcting Secret-Sharing (ECSS), and define
it formally below. For the sake of completeness, an elementary construction of an ECSS
scheme is given below.

Definition 2.3 (Error-Correcting Secret Sharing). A pair of algorithms (share, reconstruct)
is said to be an (n, t)-Error-Correcting Secret Sharing (ECSS) scheme over a message space
M if the following hold:

1. Secrecy: For all s ∈ M and Nc ⊆ [n], |Nc| < t, the distribution of {σi}i∈Nc is
independent of s, where (σ1, ..., σn)← share(s).

2. Reconstruction from upto t erroneous shares: For all s ∈M, and all (σ1, ..., σn)
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and (σ′1, ..., σ′n) such that Pr[(σ1, ..., σn)← share(s)] > 0 and |{i | σ′i = σi}| ≥ n− t, it
holds that reconstruct(σ′1, ..., σ′n) = s.

2.5 A SIMPLE ERROR CORRECTING SECRET-SHARING SCHEME

We defined ECSS in Section 2.4.2. For the sake of completeness, below we include an
elementary (n, t)-ECSS scheme for any t ≤ n/2. A more efficient scheme was given by [22]
improving on previous schemes [11, 21].
ECSS− Share[t, n](x) (where t ≤ n/2):

1. (ρ1, ...ρn)← share[t, n](x)

2. Pick n(n− 1) one-time MAC keys: {Ki,j}i,j∈[n],i 6=j

3. Let τi,j = macKi,j(ρj)∀i, j ∈ [n], i 6= j

4. For all i, set σi = (ρi, {Ki,j|j 6= i}, {τj,i|j 6= i})

5. Output (σ1, ..., σn)

ECSS− Reconstruct[t, n](σ1, ..., σn):

1. Define consistent(σi, σj) = True iff τi,j = macKi,j(ρj) and τj,i = macKj,i(ρi).

2. Find a subset S ⊆ [n], |S| > n− t such that ∀(i, j) ∈ S, consistent(σi, σj). If no such S
exists, output a default value; otherwise, let S∗ ⊆ S, |S∗| = t be the lexical smallest t
indices in S and output Reconstruct{ρi}i∈S∗ where ρ is part of σi.

2.6 CRYPTOGRAPHIC PRIMITIVES

2.6.1 Multisignatures

In a multisignature scheme, a single short object—the multisignature—can take the place
of n signatures by n signers, all on the same message.3 The first formal treatment of
multisignatures was given by Micali, Ohta, and Reyzin [24]. We consider a variant of the
Micali-Ohta-Reyzin model due to Boldyreva [25], as presented in [26]. In this model, the
adversary is given a single challenge verification key vk, and a signing oracle for that key.

3Note that multisignatures are a special case of aggregate signatures [23], which in contrast allow
combining signatures from n different parties on n different messages.
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His goal is to output a forged multisignature σ∗ on a message m∗ under keys vk1, ...,vk`,
where at least one of these keys is a challenge verification key (wlog, vk1). For the forgery
to be nontrivial, the adversary must not have queried the signing oracle at m∗.
For simplicity, we present a slightly weaker version of the security definition achieved by

[26], which suffices for our application.4

Definition 2.4. A multisignature scheme is a tuple of algorithms

KeyGen(1k): Key generation algorithm. Outputs a secret signing key sk together with
corresponding public verification key vk.

Sign(sk,m): Standard signing algorithm, with respect to message m and single signing key
sk.

Combine({vki, σi}`i=1,m): Takes as input a collection of signatures (or multisignatures) and
outputs a combined multisignature, with respect to the union of verification keys.

MultiVer({vki}`i=1,m, σ): Verifies multisignature σ with respect to the collection of
verification keys {vki}`i=1. Outputs 0 or 1.

that satisfies the following properties:

Correctness: For any message m, any collection of honestly generated signatures {σi ←
Signski(m)}i∈I on m (for I ⊂ [n]), the combined multisignature formed by σ̄ ←
Combine({vki, σi}i∈I ,m) will properly verify with overwhelming probability: Pr[1 ←
MultiVer({vki}i∈I ,m, σ̄)] ≥ 1− negl(k).

Unforgeability: For any PPT adversary A, the probability that the challenger outputs 1
when interacting with A in the following game is negligible in the security parameter
k:

Setup. The challenger samples n pulic key-secret key pairs, (vki, ski)← KeyGen(1k)
for each i ∈ [n], and gives A all verification keys {vki}i∈[n]. A selects a
proper subset M ⊂ [n] (corresponding to parties to corrupt) and receives the
corresponding set of secret signing keys {ski}i∈M .

Signing queries. A may make polynomially many adaptive signature queries, of the
form (m,vki). For each such query, the challenger responds with a signature
σ ← Signski(m) on message m with respect to the corresponding signing key ski.

4The security game in [26] also allows the adversary the power to choose verification keys on behalf of
corrupted parties, as long as he also provides certification that the keys were properly generated.
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Output. A outputs a triple (σ̄∗,m∗, {vki}i∈S), where σ̄∗ is an alleged forgery
multisignature on messagem∗ with respect to a subset of verification keys S ⊂ [n].
The challenger outputs 1 if at least one of the provided verification keys vki
corresponds to a challenge (honest party) key, the message m∗ was not queried to
the signature oracle with this verification key vki, and the provided forgery σ∗ is
a valid multisignature: i.e., 1← MultiVer({vki}i∈S,m∗, σ∗).

The following theorem follows from a combination of the (standard) signature scheme of
Waters [27] together with a transformation from this scheme to a multisignature scheme due
to Lu et. al. [26].

Theorem 2.1 ([26]). There exists a secure multisignature scheme with signature size poly(k)
(independent of message length and number of potential signers), based on the Bilinear
Computational Diffie-Hellman assumption.

For convenience of notation, we shall use a multisignature scheme also as a
normal signature scheme. In that case, we shall write MS.Verify(vki,m, σ) instead of
MS.MultiVer({vki},m, σ) to indicate that the set of keys involved is singleton.

Remark 2.1. We note that in our constructions, we can instantiate a multisignature scheme
with a simulation-extractable zero-knowledge SNARK with additive overhead (defined
below) and standard signatures.

2.6.2 Succinct Non-Interactive Arguments of Knowledge

We consider succinct non-interactive arguments of knowledge (SNARKs) with adaptive
soundness. Our treatment follows that of Bitansky et al. [28]. We focus attention to publicly
verifiable succinct arguments. Due to recent results demonstrating implausibility of SNARKs
with respect to arbitrary worst-case auxiliary input (e.g., [29, 30]), we consider a definition
parameterized with respect to a particular auxiliary input distribution Z.

Definition 2.5 (Z-auxiliary input SNARK). A triple of algorithms (crsGen,Prove,Verify)
is a publicly verifiable, adaptively sound succinct non-interactive argument of knowledge
(SNARK) for the relation R with respect to auxiliary input distribution Z if the following
conditions are satisfied for security parameter λ:

• Completeness: For any (x,w) ∈ R,

Pr[crs← crsGen(1λ);π ← Prove(x,w, crs) : Verify(x, π, crs) = 1] = 1. (2.4)
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In addition, Prove(x,w, crs) runs in time poly(λ, |x|, t).

• Succinctness: The length of the proof π output by Prove(x,w, crs), as well as
the running time of Verify(x, π, crs), is bounded by p(λ, |X|), where p is a universal
polynomial that does not depend on R. In addition, crsGen(1λ) runs in time poly(λ):
in particular, crs is of length poly(λ).

• Adaptive Argument of Knowledge: For any non-uniform polynomial-size prover
P ∗ there exists a polynomial-size extractor EP ∗ , such that for all sufficiently large λ ∈ N
and auxiliary input z ← Z, it holds that

Pr[z ← Z; crs← crsGen(1λ); (x, π)← P ∗(z, crs); (x, π, w)← EP ∗(z, crs) :

Verify(x, π, crs) = 1 ∧ w /∈ R(x)] ≤ negl(λ). (2.5)

Extraction with Additive Overhead. We also consider SNARKs where the extractor
incurs only an additive overhead in the running time of the adversarial prover. A Z-auxiliary-
input SNARK is said to satisfy the additive overhead extraction property if there exists a
polynomial p such that for all polynomial time P ∗, there exists an EP ∗ as in Definition 2.5,
such that for all z in the support of Z and all crs in the support of crsGen,

RT(EP ∗(z, crs)) ≤ p(λ) + RT(P ∗(z, crs)), (2.6)

where RT(A) denotes the running time of an algorithm A.

2.6.3 GSW FHE Scheme

We follow the notation of [31] throughout this section. We start by recalling some
preliminary definitions and then present the FHE scheme of Gentry, Sahai and Waters [32].
We use their FHE scheme as a key building block in our IFHE scheme.
LWE assumption. We first recall the learning with errors assumption [33].

Definition 2.6 (LWE Hardness Assumption). Let λ be a security parameter, χ = χ(λ)
be a distribution of small values over Z, n = n(λ) and q = q(λ) be polynomials of λ,
and m = O(n log q). Let s $← Zn−1

q , B $← Z(n−1)×m
q , e ← χ, and b = sB + e. Then

(B,b)
c
u (B′,b′), where (B′,b′) $← Zn×mq .

Public Short Preimage Matrix. We state a useful fact from [34] that is used in the
GSW FHE scheme.

16



Lemma 2.1 ([34]). For any m ≥ n(blog qc + 1), there is a gadget matrix G ∈ Zn×mq and
an efficient deterministic function G−1(·) such that for any m′, any M ∈ Zn×m′q , G−1(M) ∈
{0, 1}m×m′ , and GG−1(M) = M.

In the GSW scheme, the function G−1(·) is called BitDecomp and multiplication by G is
the BitDecomp−1 operation. For our purposes, we do not need their implementation details.
GSW Construction. We now proceed to describe the GSW FHE scheme.

• Setup: (params)← GSW.Setup(1λ, 1d)
Choose a lattice with dimension parameters n = n(λ, d), Bχ-bounded error distribution
χ = χ(λ, d) and a modulus q such that LWEn−1,q,χ,Bχ holds. Choose m = O(n log q).
Finally, choose a random matrix B ∈ Zn−1×m

q . Output params = (q, n,m, χ,Bχ,B).

• Key Generation: (pk, sk)← GSW.Keygen(params)
We separately describe two sub-algorithms to compute secret-key and public-key
respectively:

– GSW.SKGen(params): Sample s $← Zn−1
q . Set t = (−s, 1) ∈ Znq and output sk = t.

– GSW.PKGen(params, sk): Parse sk = (−s, 1) ∈ Znq . Sample e ← χm. Set b =

sB + e ∈ Zmq and A =
B

b

 ∈ Zn×mq . Output pk = A.

• Encryption: C ← GSW.Encrypt(pk, x)
On input a message x ∈ {0, 1}, choose a short random matrix R $← {0, 1}m×m and
compute C = AR + xG ∈ Zn×mq . Output C as the ciphertext.

• Decryption: x′ ← GSW.Decrypt(sk,C)
On input a ciphertext C ∈ Zn×m and secret key sk = t, compute v = tCG−1(wT ),
where w = [0, . . . , dq/2e] ∈ Zn. Output x′ =

∣∣∣⌊ v
q/2

⌉∣∣∣.
• On input two ciphertexts C1, C2 ∈ Zn×mq , we define homomorphic addition and

multiplication:

– GSW.Add(C1,C2): Output C1 + C2 ∈ Zn×mq .

– Output the matrix product C1G−1(C2) ∈ Zn×mq .

This allows computation of a NAND gate homomorphically by outputting G −
C1G−1(C2).

The following theorem is proved in [32].
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Theorem 2.2. The scheme described above is a secure (leveled) FHE scheme under the
LWEn−1,q,χ,Bχ assumption.

Note that tA = e ≈ 0 since e is a small error. For correctness, v = t(AR+xG)G−1(wT ) ≈
xtwT = xdq/2e since R and G−1wT are composed of 0, 1 values. Hence by checking whether
v is closer to 0 or dq/2e, we can recover x ∈ {0, 1}. Let C1 and C2 be encryptions of x1 and
x2 respectively. Then, C+ = C1 + C2 is such that tC+ ≈ (x1 +x2)tG and C× = C1G−1(C2)
is such that tC× ≈ (x1x2)tG.
For security, since A is uniformly random over Zn×mq , by leftover hash lemma, for a suitable

m = O(n log q), AR is statistically uniform, so as C = AR + xG.
Key Homomorphic Properties of GSW Scheme. We now show that the GSW
scheme satisfies a useful key-homomorphic property, which makes it particularly amendable
to convert into a threshold scheme. In particular, we keep the matrix B fixed, then the sum
of two key pairs (computed using B) gives a new valid key pair.

Claim 2.1. Let t1 = (−s1, 1) and t2 = (−s2, 1) be two secret keys. Let B ∈ Zn−1×m
q

be a random matrix and let e1 and e2 be two error vectors. Further, let A1 =
B
b1

 =

GSW.PKGen(t1; B; e1) and A2 =
B
b2

 = GSW.PKGen(t2; B; e2). Then, A =
 B
b1 + b2

 =

GSW.PKGen(t1 + t2; B; e1 + e2).

Proof. We have:

A1 = GSW.PKGen(t1; B; e1) =
 B
s1B + e1

 (2.7)

and

A2 = GSW.PKGen(t2; B; e2) =
 B
s2B + e2

 . (2.8)

Hence,

A =
 B
b1 + b2

 =
 B

(s1 + s2) ·B + (e1 + e2)

 = GSW.PKGen(t1 + t2,B, e1 + e2) (2.9)

QED.
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CHAPTER 3: A FRAMEWORK OF BLACK-BOX TRANSFORMATION
FOR MPC PROTOCOLS

3.1 CHAPTER OVERVIEW

Black-Box Transformations. We make precise a notion of a black-box transformation
among protocol schemes. Given a functionality f , a black-box transformation can define new
functionalities (which are syntactically just programs) that access f in a black-box manner.
Then, it can invoke a given protocol scheme on any such functionality, to obtain a protocol
(which is, again, a program). The transformation can repeat these steps of defining new
functionalities in terms of programs it already has, and of invoking given protocol schemes
on such functionalities any number of times. At the end, it outputs one of the programs as
its protocol.
Example: IPS Transformation. An example of a black-box transformation (that we shall
build on later) is the IPS transformation [14]. We shall graphically represent a transformation
using a circuit diagram like the one in Figure 3.1.

T IPS
0 Λβ-full T IPS

1 Λsh/OT T IPS
2

f fout πout fin πin/OT πIPS/OT

Figure 3.1: Black-Box Transformation in the IPS compiler

Here, each rectangular node (labeled T IPS
0 , T IPS

1 and T IPS
2 ) outputs a program which makes

black-box access to one or more programs input to that node. T IPS
0 converts an n-party

functionality f into a functionality fout involving n “clients” and N “servers”. T IPS
1 defines

fin to be an n-party functionality in which the trusted party carries out the program of a
server in the protocol πout. The bulk of the compiler is part of the transformation T IPS

2 ,
which combines the programs of two protocols πout and πin in a black-box way to define the
final protocol.
The diagram also shows two other nodes, labeled Λβ-full and Λsh/OT, each of which take

as input a functionality (fout and fin resp.) and produces a protocol (πout and πin resp.).
The labels on the nodes indicate the security guarantees required of these protocols (security
against active corruption of strictly less than a β > 0 fraction of the parties, and security
against semi-honest corruption, in the OT hybrid model resp.). [14] show that irrespective of
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what protocol schemes are used to define the protocols produced by these nodes, as long as
those schemes meet the required security conditions, the resulting protocol will be a protocol
for f with security against active corruption of any number of parties.
Negative Results. We prove two negative results. Firstly, we show that there is a function
family F such that there is no “functionally blackbox” protocol scheme [35] for F (even for
semi-honest security). The family F consists of boolean functions of the form fα, where
α ∈ {0, 1}k and fα(x, y) = 1 if and only if x⊕ y = α.
Our second negative result shows a function family G such that semi-honest secure protocol

schemes for G cannot be converted in a blackbox manner to protocols with active security
(with abort). We choose G to be the family of zero-knowledge proofs for a class of relations.
Then, there is a semi-honest secure protocol for G which only accesses the given functionality
f ∈ G in a blackbox manner. Hence, a blackbox transformation from semi-honest secure
protocol schemes to schemes with active security translates to a functionally blackbox
protocol scheme for G with active security.
To complete the proof, we show how to define G (assuming the existence of a pseudorandom

function) such that there is no active secure, functionally blackbox protocol scheme for G.

3.2 DEFINING BLACK-BOX TRANSFORMATIONS

In this section, we present our framework of black-box transformations, which operates
on protocol schemes (Definition 2.2). More specifically, a black-box transformation defines
a Λ-scheme in terms of Λ′-schemes, for one or more other security notions Λ′. We present
our definition in two parts – first the syntax of a transformation, followed by its security
requirements.

Definition 3.1 (Black-Box Transformation (BBT): Syntax). A BBT for a functionality
family F is defined as a circuit C with

• a single input wire taking a functionality f ∈ F ,

• a single output wire outputting a protocol π ∈ Π,

• one or more black-box nodes labeled with oracle TMs T1, · · · , Ts,

• one or more protocol nodes labeled with relations Λ1, · · · ,Λt where Λi ⊆ Fi × Π for
some functionality family Fi.
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For a black-box node labeled with Ti we require that the number of oracles accessed by Ti is
equal to the number of input wires to that node. For a protocol node, we require that there
is only one input wire.

Given such a circuit C and protocol schemes P1, · · · ,Pt such that each Pi is a Λi-scheme,
we define CP1,...,Pt(f) ∈ Π as follows. We shall set the value on each wire in C to be a
protocol in Π (possibly a functionality), starting with the input wire and ending with the
output wire, which is taken as the value CP1,...,Pt(f). First, set the value on the input wire
to be f . Then, for any black-box node with all its input wires’ values already set to values
π1, · · · , πd, set its output wire’s value to T π1,··· ,πd

i , where Ti is the label on the node. For any
protocol node with its input wire’s value set to π, set its output wire’s value to Pi(π), where
i is the index of the protocol node in C (if Pi(π) is undefined, then CP1,...,Pt(f) is undefined).

Definition 3.2 (Black-Box Transformation (BBT)). We say that a BBT C, for a
functionality family F , is a BBT from {Λ1, · · · ,Λt} to Λ, if C has t protocol nodes labeled
with (Λ1, · · · ,Λt) and, for all f ∈ F and all (P1, · · · ,Pt) such that each Pi is a Λi-scheme,
we have (f, CP1,...,Pt(f)) ∈ Λ.

3.3 EXAMPLES OF BLACK-BOX TRANSFORMATIONS

We illustrate how several important constructions from the literature are in fact BBTs
from simpler security notions or simpler function families, to more demanding ones. This list
includes Bracha’s compiler [18] (from high-threshold (and low-efficiency) security and low-
threshold (and high-efficiency) security to a high-threshold (and high-efficiency) security),
the IKOS compiler [15] (from semi-honest secure MPC and and honest-majority secure MPC
to active security for Zero-Knowledge proofs) and the IPS compiler [14] (as above, but for
arbitrary MPC). The GMW compiler [2] could also be viewed as a BBT (from semi-honest
security and active security specialized to zero-knowledge functionality, to active security).
It is helpful to visualize these transformations using “circuit diagrams.” An example of

the IPS transformation was given in Figure 3.1. Similar diagrams for the other examples
are given below.
GMW compiler The GMW compiler can be illustrated as a BBT circuit as follows.
The first node is a protocol node of a (ΛFsh-ppt)-scheme, which compiles an input

functionality f ∈ F into a sh-ppt-secure protocol π for f . The second node is a black-
box generator, which converts the protocol π to a “zero-knowledge functionality” fRπZK for a
relationship Rπ. Here, Rπ is defined in terms of the transcripts in a modified protocol π∗,
which carries out a coin-tossing-in-the-well step to generate private random tapes for each
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ΛFsh-ppt T1 ΛFZK
abort-ppt-sa T2

f π fRπZK πZK πGMW

Figure 3.2: BBT from {Λsh-ppt,Λ
FZK
abort-ppt-sa} to Λabort-ppt-sa in the GMW compiler

party, and then runs π using those random tapes. Rπ holds between a partial transcript τ
of π∗ and the next message m if there exists an initial state s0 such that by running π∗ on
the given transcripts will result in the next message to be m.
Next, the third node is a protocol node of ΛFZK

abort-ppt-sa-scheme which compiles the input
functionality fRπZK ∈ FZK into a ZKP protocol πZK . Note that again, πZK is an abort-ppt-sa-
secure protocol for fRπZK . Finally, a black-box node uses π and πZK to define a protocol πGMW,
an abort-ppt-sa protocol for F .
The above transformation is against computationally bounded adversaries, and it uses a

one-way function. It is possible to reformulate this result as an unconditional transformation
that yields a protocol in the commitment hybrid model. For this, we rely on the IKOS
compiler (see below).
Bracha’s Transformation. Bracha’s compiler [18], originally proposed in the context
of Byzantine agreement, and later generalized to MPC protocols (see, e.g., [36]), is a
transformation from {Λα-full,Λβ-full} to Λ(1−ε)α-full, with the efficiency guarantees of the Λβ-full-
scheme translating to the efficiency of the resulting protocol. (A more precise statement,
using additional notation, appears in Proposition 4.1.)

ΛFβ-full T1 ΛF
∗

α-full T2
f πout fin πin πBracha

Figure 3.3: Black-Box Transformation in the Bracha compiler

The first node is a protocol node of a ΛFβ-full-scheme, which compiles an input functionality
f in F into a so-called outer protocol πout, which is an N -party β-full-secure protocol for
f , where α is a small constant, and N = poly(n, k) depends on the number of parties n of
f , the security parameter k and ε. Typically, this node will be instantiated with a highly
scalable protocol scheme, but with a possibly low threshold β.
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The second node is a black-box node, which converts the protocol πout to an d-party
functionality (for a small d, typically d = O( 1

ε2
)), in which the trusted party carries out the

execution of a party in πout (with all incoming and outgoing messages to it secret-shared
among the d other parties in the functionality, using, say, an ECSS scheme). The third node
transforms this into a secure protocol πin for this functionality (where, typically this node
is instantiated with a protocol scheme that may not well with the number of parties n′, but
has the desired threshold α).
Finally, a black-box node combines πin and πout together and transforms them into a

protocol πBracha, which is a (α− ε)-full secure protocol for f .
IPS compiler [14] The IPS compiler shares a similar structure with the Bracha compiler.
Figure 3.1 depicts this transformation. In this figure, T IPS

0 converts an n-party functionality
into a functionality involving n “clients” and N “servers” (originally N = O(n2k) servers
in the setting of [14]). T IPS

1 defines fin to be an n-party functionality in which the trusted
party carries out the program of a server in the protocol πout. (We remark that for some
efficiency results, it is desirable to depend on the server’s program having further structure
– in particular, that parts of its computation are “known” to different clients. In this case,
fin carries out only the other parts of the computation. We refer the reader to the discussion
on “Type I” and “Type II” computations in [14].)
Finally, the bulk of the compiler is part of the transformation T IPS

2 . In Figure 4.1 (above),
we show the structure of the compiler. IPScore combines πout and πin in such a way that
the parties play the role of the clients in πout and each server in it is executed using the
protocol πin. In addition, at each round, each party Pj is required to send its view in the
`th session of πin to each other party Pi through a watchlist channel W i→j

` . Each honest
Pj can read the messages on watchlist channels for only a small fraction (typically, k/N)
of the inner-protocol sessions. The channel is implemented using one-time pads, which are
distributed using a watchlist setup functionality W ,which is in turn implemented using a
protocol wIPS/OT.
The execution is aborted if any party detects an inconsistency among all the views reported

on the watchlist for that server (including its own view) and the protocol πin.
[14] show that for appropriate choice of parameters, the resulting protocol scheme is a

Λabort/OT-scheme.
IKOS compiler [15]. The IKOS compiler transforms honest-majority MPC protocols to
zero-knowledge protocols. It can be illustrated as a BBT circuit, as follows:
First, T1 transforms an NP-relation R(x,w) into an n-party functionality f(x,w1, ..., w2) =

R(x,w1⊕ ...⊕wn), where ⊕ denotes bitwise exclusive-or of strings. Second, a protocol node
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T1 ΛFα-sh∗ T2
R f πf πZK/COM

Figure 3.4: A schematic diagram of the IKOS transformation.

of ΛFα-sh∗-scheme compiles f into a semi-honest and perfectly correct protocol πf .1 Then, T2

converts πf into a protocol in the commitment hybrid model, in which the prover commits
to the views of all parties in an execution of πf (that it “runs in its head”), and the verifier
requests it to open a pair of views and verifies their consistency.
To achieve a positive soundness, the above version depends on πf being at least a 2-private

protocol. An alternate version of the IKOS compiler obtains positive soundness with a 1-
private protocol πf : here the prover commits to the views of all parties, as well as to the
communication on each edge; the verifier picks a single party and gets to see its view as well
as the communication on all edges incident on it, and again verifies consistency. This is the
version used in the transformation below.
Improving Over [37]. Recently, Hazay and Venkitasubramaniam [37], presented an
IKOS-like transformation that starts from any (semi-honest) two-party protocol in the OT-
hybrid model and gives a zero-knowledge proof system in the commitment-hybrid model. We
present a different transformation that has several advantages over [37]: our transformation
may start with a two-party protocol in the OLE-hybrid model,2 whereas the one from [37]
seems inherently restricted to the OT-hybrid model. Perhaps more importantly, to achieve a
constant level of soundness our transformation uses only a constant number of commitments
(to long strings), compared to the protocol in [37] that uses as many commitments as the
number of OT calls. For the simplest case of the GMW protocol applied to a boolean
circuit of size s, our protocol requires only 6 commitments whose total length is O(|C|)
whereas the protocol from [37] requires O(|C|) separate bit-commitments. These features
of our transformation make it appealing for the design of practical ZK protocols based on
OT-hybrid and OLE-hybrid protocols such as GMW.
At a high-level, we give a simple BBT from a 2-party semi-honest MPC protocol scheme

in the OLE-hybrid model to a 3-party 1-private MPC protocol scheme in the plain model;
this transformation is then readily composed with the IKOS transformation (which can be

1As stated in [15], to improve the efficiency of the whole protocol, this protocol node can be replaced by
an actively secure protocol with a (lower) constant threshold.

2OLE stands for Oblivious Linear function Evaluation. It is a generalization of Oblivious Transfer where
a sender has (a, b) in a field F and the receiver has x ∈ F. At the end of the protocol, the receiver will learn
ax + b while the sender learns nothing. OLE-based protocols are useful for arithmetic computation. Such
protocols are obtained in [38] by generalizing the OT-based GMW protocol [2].
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applied to a 1-private protocol) to obtain our full transformation.

T1 ΛFsh∗/OLE[2] T ′1 T ′2 T2
R f π0/OLE π1/OLE π2 πZK/COM

Figure 3.5: A schematic diagram of the new transformation that improves on a result of [37].
T1 and T2 are identical to those in Figure 3.4. The shaded components constitue a BBT
from 2-party, perfectly correct, semi-honest MPC in the OLE-hybrid to a 3-party, perfectly
correct, 1-private MPC in the plain model.

Our transformation, shown in Figure 3.5, follows the IKOS-compiler closely (compare with
Figure 3.4 above). The difference is in the introduction of two intermediate transformations
(T ′1 and T ′2) to the (semi-honest) 2-party protocol π0 for computing f in the OLE-hybrid
model, before applying the transformation T2 from above.

1. Transformation T ′1: Convert π0 into a 2-party protocol π1 in the OLE-hybrid model,
where all OLE calls are made on random inputs at the beginning of the protocol. Then,
whenever π0 needs to use an OLE-call with inputs ((a, b), x) (with the two parties one
being the sender and the other being the receiver), we use the following (perfectly
secure) reduction of OLE to random-OLE. Given a random-OLE instance between the
sender and receiver with inputs ((ra, rb), rx), where the receiver got v = rarx + rb, they
do the following: the receiver first sends ∆ = x− rx (since rx is random this gives no
information about x). Then, the sender replies with two messages: m1 = a−ra (which,
even conditioned on v, rx and a, b, x, is random) and m2 = ∆ra + (b − rb) (which, as
we shall see, can be solved from ax + b and the other values above). Hence (m1,m2)
(along with v, rx) can be perfectly simulated based on x, ax + b. Finally the receiver
computes m1x + m2 + v = (a − ra)x + (x − rx)ra + (b − rb) + rarx + rb = ax + b, as
needed. (This also shows that m2 can be derived from m1, x, v and ax+ b.)

2. Transformation T ′2: Convert π1 into a 1-private 3-party protocol π2 over secure point-to-
point channels by just using the third party to implement the OLEs (namely, whenever
in π2 parties P1, P2 invoke the OLE with inputs ((ra, rb), rx), they now send their inputs
to P3 who evaluates the outcome of this OLE and sends it to the receiver). Note that
the views of P1, P2 are identical to what their views were in π2 and that the messages
sent to P3 are completely random and independent of the actual inputs of the OLE.
Hence, π2 is also 1-private.
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3. Finally, apply step T2 of the (1-private variant of the) IKOS transformation to π2. This
gives, a ZK protocol with six string commitments (a view for each of the 3 parties and
the communication transcript for each of the 3 channels).

We remark that the above transformation could be seen as a composition of two BBTs.
The first two of the three steps above describe a simple BBT from a 2-party semi-honest
MPC protocol scheme in the OLE-hybrid to a 3-party 1-private MPC protocol scheme in
the plain model (shown shaded in Figure 3.5). Replacing the 1-private semi-honest protocol
in the IKOS BBT of Figure 3.4 with this transformation yields the full BBT in Figure 3.5.

3.3.1 A Pedagogical Application

One of the results from Goldreich’s textbook [16] can be simplified using a BBT.
In [16], two separate protocols for Λabort-ppt-sa-id (i.e., security-with-identifiable-abort) and
Λ1/2−full-ppt-sa (i.e., security with guaranteed output delivery, with an honest majority) are
presented, with the latter relying on VSS. Below, we give a BBT from Λabort-ppt-sa-id to
Λ1/2−full-ppt-sa, that uses ECSS (see Section 2.4.2) instead of VSS.
To evaluate an n-party function f , each party shares its input using an dn/2e-out-of-n

error-correcting secret-sharing (ECSS) scheme (see Section 2.4.2), and sends the resulting
shares to the n parties. We remark that an ECSS is much simpler than, say, a VSS protocol,
and can be constructed readily by adding message authentication code (MAC) tags to the
shares of any threshold secret sharing scheme (such as Shamir’s scheme). Then, the parties
use a protocol π from the protocol scheme with security-with-identifiable-abort to evaluate a
function f ′, which takes shares as its inputs, reconstructs them to get inputs for f , evaluates
f and reshares the outputs among all parties, again using ECSS. If the shares given as
inputs have fewer than n/2 errors, f ′ can error-correct and recover the original input being
shared; otherwise it defines the reconstructed value to be a default value (this corresponds
to the shares not being generated correctly in the first place). If the protocol π for f ′ does
not abort, then all the parties are expected to redistribute the shares they received from
π, so that each party gets all the shares of its output; due to the error-correcting property,
and since the adversary can corrupt less than n/2 of the shares received by each honest
party, every honest party will be able to correctly recover its output. On the other hand,
if the protocol π aborts, due to the identifiable-abort security guarantee, all honest parties
will agree on the identity of one corrupt party. Note that at this point, even though the
adversary may learn its outputs from π (i.e., outputs of f ′), these carry no information and
can be efficiently simulated (by a simulator running the protocol with arbitrary inputs for
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the honest parties). Hence, the parties can simply eliminate the identified party (and still
retain honest majority), and restart the entire protocol on a smaller functionality in which
the eliminated party’s input is replaced by a default value. This process must eventually
terminate, after at most dn/2e attempts, guaranteeing output for all honest parties.
An ad-hoc use of the above “player elimination” technique was made in several previous

MPC protocols (see, e.g., [39] and references therein). In contrast, our use of this technique
yields a completely general transformation from a weaker flavor of MPC to a stronger one.

3.4 IMPOSSIBILITY OF BLACK-BOX TRANSFORMATIONS

In this section, we present some impossibility results for BBT. Before proceeding, we
emphasize that in the definition of BBT, we do not require the security proofs to be black-
box in any form. In particular, the simulators used to define security can arbitrarily depend
on the functionality in a non-black-box manner. As such, the impossibility results on BBT
are of a rather strong nature.
Our first impossibility results relates to an interesting special case of a BBT, namely, BBT

from ∅ to Λ. This corresponds to the notion of a functionally-black-box protocol introduced
by Rosulek [35], wherein there is an oracle TM such that for all f ∈ F , T f is a secure
protocol (according to Λ) for f . Rosulek demontrated a two-party functionality family
for which there is no functionally black-box protocol, assuming the existence of one-way
functions. We present an unconditional version of this result.

Theorem 3.1. There exists a two-party functionality family F such that there is no BBT
from ∅ to ΛFsh. In particular, there is no BBT from ∅ to ΛF

∗
sh .

Proof. Firstly, note that the second part of the theorem statement follows from the first part,
since a BBT from Λ to ΛF

∗
secure is also a BBT from Λ to ΛFsecure for any Λ and any F ⊆ F∗.

To prove the first part, for α ∈ {0, 1}k, let the function fα : {0, 1}k × {0, 1}k → {0, 1} be
defined as fα(x, y) = 1 iff x⊕ y = α. Then we define the functionality family F = {fα|α ∈
{0, 1}k} (where k is the security parameter).
We claim that there is no BBT from ∅ to ΛFsh. Suppose for the sake of contradiction π is

such a transformation. That is, πfα is a semi-honest secure protocol for fα, for all α ∈ {0, 1}k.
Then first we consider the following experiment. Pick x, y, α uniformly and independently
at random from {0, 1}k, and then let two parties P1 and P2 execute the protocol πfα with
inputs x and y respectively, and random tapes r = (r1, r2) for P1 and P2. We define the
following two events.

(A) Either party queries their oracle with (p, q) such that p⊕ q = α.
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(B) Either party queries their oracle with (p, q) such that p⊕ q = x⊕ y.

It is not hard to see that the probability of both these events should be negligible. The
probability of event A is negligible since α is chosen uniformly at random, and the parties
make only a polynomial number of queries. The reason for the probability of event B being
negligible is the security of the protocol. Suppose, w.l.o.g, that the probability that party P1

makes a query (p, q) such that p⊕ q = x⊕ y is non-negligible. Then, consider an adversary
who corrupts P1 and outputs the list of values p⊕ q ⊕ x for every pair (p, q) queried by P1.
By assumption, the probability that this list contains y is non-negligible. However, in the
execution of the functionality (ideal world), since f(x, y) = 0, an adversary who corrupts
only one party has negligible probability of outputting a list of values containing the other
party’s input (even if it is given α). That is, a simulator (even though it may depend on α)
cannot produce such a list. This implies that the adversary in the real execution that we
defined above cannot be simulated, contradicting the security of the protocol.
Let R denote the set of all (r, x, y, α) such that in the above experiment, neither event A

nor B occurs. Then, as argued above, Pr[(r, x, y, α) ∈ R] > 1− negl(k).
Now, consider a second coupled experiment in which we use the same r, x, y as in the first

experiment, but run πfα∗ , where α∗ = x ⊕ y. We claim that for every (r, x, y, α) ∈ R, the
new experiment proceeds identically as the original one. Indeed, it is easily seen using an
inductive argument that in both experiments – which differ only in the oracle used – all the
oracle queries will be answered by 0. In particular, the output of the protocol, denoted by
z, will be identical in both the experiments if (r, x, y, α) ∈ R.
Since Pr[(r, x, y, α) ∈ R] > 1 − negl(k), the distributions of z in the two experiments are

at most negligibly apart. However, the correctness of the protocol requires that Pr[z = 1] =
negl(k) in the first experiment and Pr[z = 1] = 1−negl(k) in the second experiment, leading
to a contradiction. QED.

Also, we consider the question of showing impossibility of BBT from semi-honest security
to active security. We present such a result conditioned on the existence of one-way functions.

Theorem 3.2. Assuming the existence of one-way functions, there exists a two-party
functionality family G such that there is no BBT from {ΛGsh} to ΛGabort.

Proof. The functionality family G that we use to prove Theorem 3.2 corresponds to Zero-
Knowledge Proofs. In a functionality fR ∈ G, where R is a predicate, the trusted party
accepts a pair of inputs (x,w) from P1 (prover) and sends (x,R(x,w)) to P2 (receiver).
We note that there is a trivial BBT from ∅ to ΛGsh: consider a protocol in which, on input

(x,w), the prover accesses the program of the functionality to compute R(x,w) and sends
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(x,R(x,w)) to the verifier. (Indeed, this is true for all deterministic functionalities in which
at most one party has any input.)
So, to prove our theorem, we need to only show that there is no BBT from ∅ to ΛGabort.

This is because, if there were a BBT from ΛGsh to ΛGabort, then we can replace all its protocol
nodes (all labeled with ΛGsh) with the BBT from ∅ to ΛGsh, and obtain a BBT with no protocol
nodes – i.e., a BBT from ∅ to ΛGabort.
Now, to prove that there is no BBT from ∅ to ΛGabort, we consider G0 ⊆ G as follows. For

the sake of exposure, first we define G0 as a family of inefficient functionalities, and later use
our cryptographic assumption to replace it with an efficient verion.
For every (possibly inefficient) function O : {0, 1}k → {0, 1}2k, let RO(·, ·) be a relationship

such that

RO(x,w) =

1 if O(w) = x

0 otherwise.
(3.1)

For the sake of contradiction, suppose there is a BBT transformation from ∅ to ΛGabort.
That is, let T be an oracle TM such that for all RO ∈ G0, TRO is a zero-knowledge protocol
for the relation RO. Let (T1, T2) denote the programs obtained by specializing T for the
prover (P1) and the verifier (P2) respectively (so that the protocol consists of the pair of
programs (TRO1 , TRO2 )).
We shall argue that if this protocol is complete and zero-knowledge, then it is not sound.

To show this, we define a cheating prover P̂RO , which on input x′, picks w′ ← {0, 1}k and

runs T
Z
RO
(x′,w′)

1 , where the oracle TM Z(x′,w′) is defined as follows:

ZR
(x′,w′)(x,w) =


1 if (x,w) = (x′, w′)

0 if w = w′, x 6= x′

R(x,w) otherwise.

(3.2)

We claim that if the original protocol is zero-knowledge, then the probabilities of the verifier
accepting in the following two experiments differ by at most a negligible quantity:

E1. Let O : {0, 1}k → {0, 1}2k be a random function. Sample w ← {0, 1}k, and let
x = O(w). P1 runs TRO1 with input (x,w), against P2 running TRO2 .

E2. Let O : {0, 1}k → {0, 1}2k be a random function. Sample x ← {0, 1}2k. P1 runs P̂RO

with input x, against P2 running TRO2 .

To see this, we consider modifying experiment E1 as follows:
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H1. Let O : {0, 1}k → {0, 1}2k be a random function. Sample w ← {0, 1}k, and let
x = O(w). Further, sample x′ ← {0, 1}2k, and define O′ to be the same as O, except
O(w) = x′. P1 runs TRO1 with input (x,w), against P2 running TRO′2 .

H2. Let O′ : {0, 1}k → {0, 1}2k be a random function. Sample x← {0, 1}2k. P1 runs P̂RO′

with input x, against P2 running TRO′2 .

Note that we have changed the oracle for P2 to be RO′ . But we claim that the outcome
of this experiment remains close to the original one, due to the zero-knowledge property.
Indeed, RO′ and RO are identical on all queries of the form (a, b) as long as b 6= w. By the
zero-knowledge property and the nature of the ideal functionality, in experiment E1, the
probability that an (honest-but-curious) adversary corrupting P2 can output a polynomial
sized list containing w is negligible. That is, except with negligible probability, in experiment
E1, P2 never queries its oracle on an input of the form (·, w). Hence it follows (from an
inductive argument similar to that in the previous proof) that the outcome of E1 remains
indistinguishable from that of H1.
Next, we note that the experiments H1 and H2 are in fact identical. To see this, note

that P̂RO′ on input x provides T1 with access to the oracle RO where O and O′ are identical,
except that for a randomly sampled w, O(w) = x whereas O′(w) = x′ for independently
sampled x, x′, and (x,w) is the input to T1.
Finally, H2 and E2 are identical (except for renaming O to O′). This shows that the

probabilities of P2 accepting in E1 and E2 are negligibly different. By completeness, the
first probability should be close to 1, and hence so is the second probability. However,
the statement being proven in E2 is false (except with negligible probability), because it
is extremely unlikely that x falls in the image of O. Hence this violates the soundness
requirement.
This concludes the argument that there is no BBT from ∅ to ΛG0

abort. However, the
functionality class G0 as defined above is not a valid (efficient) functionality, since not all
functions O : {0, 1}k → {0, 1}2k are efficiently realizable. We can easily resolve this by
considering the set of functions defined by a pseudorandom function F : {0, 1}k ×{0, 1}k →
{0, 1}2k with k-bit seeds, k-bit inputs and 2k-bit outputs. Then, in the above proof, the
experiments E1 and E2 remain indistinguishable if the random function O is replaced by
F (s, ·) where s← {0, 1}k. QED.
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CHAPTER 4: NEW BBT CONSTRUCTIONS

4.1 CHAPTER OVERVIEW

New Transformations. We present several new transformations, some of which are
summarized in Table 4.1. In particular, we show how to transform a low-threshold fully-
secure protocol scheme and a high/optimal-threshold semi-honest secure protocol scheme to
a high/optimal-threshold protocol with full-security (presented as Corollary 4.1). The main
step is to achieve a weaker notion of security (called “security with partially-identifiable-
abort”) against the same high fraction of corruption. Then, we show how a protocol with
partially-identifiable-abort security can be transformed to one with full-security.
The second of these two transformations turns out to be easy, using “Error-Correcting

Secret-Sharing” or ECSS (also known as robust secret-sharing) [22], which can be realized
easily using ordinary Secret-Sharing and one-time message authentication codes (MAC)
(see Section 2.5). Partially-identifiable-abort-security allows us to perform, in case of
an abort, a player elimination process, so that an honest majority is maintained. By
carrying this out not on the original function, but on a function which accepts ECSS-
shared inputs and produces ECSS-shared outputs, we show how to obtain full-security. The
more challenging transformations is obtaining partially-identifiable-abort-security in the first
place, as discussed below.
Obtaining Partially-Identifiable-Abort Security. This transformation is based on the
IPS transformation [14] which, however, was not designed for the setting with an honest
majority. Hence, it relied on an OT-hybrid model, and could obtain only “security with
abort.” We modify this transformation in a couple of ways to obtain partially-identifiable-
abort security in the honest-majority setting, in the plain model (with a broadcast channel).
There are two major modifications we introduce, summarized below.

Watchlist Channels in the Plain Model. An important aspect of the IPS transformation is a
collection of “watchlist channels” used by each party to monitor secretly chosen instances
of a semi-honest secure inner protocol. In the IPS transformation, Rabin OT is used to
implement the watchlist channel. Instead, we rely on a weaker variant, ÕT, which we can
directly implement in the honest-majority setting (without even broadcast channels), using

1Note that a naïve protocol which runs π1 first and in the event of an abort, runs π2 for the same
functionality does not work. If π1 aborting is considered as an abort event, then it gives the same efficiency
guarantee, but is not an idα-secure scheme, because if π2 completes without an abort, the protocol fails to
identify an α-corrupt set. If π1 aborting is not considered an abort event, the protocol fails to meet the
efficiency guarantee.
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From To Theorem Notes
idα-security, t < αn full, t <

αn
Theorem 4.1,
Theorem 4.2

Using player-elimination. Theorem 4.2
relies on a non-blackbox decomposition
of the function, and yields efficiency
close to the non-abort-case efficiency of
the given protocol.

(sh-security, t < αn) and
(full-security, t < βn)

idα, t <
αn

Theorem 4.3,
Theorem 4.4

An honest-majority version of the
IPS transformation. Any β > 0
suffices. Theorem 4.4 saves a factor
of n using an expander graph-based
watchlist scheme.

(sh-security, t < αn) and
(full-security, t < βn)

full, t <
αn

Corollary 4.1 Combining the above two.

(abort-secure π1, t < αn) and
(idα-secure π2, t < αn)

idα, t <
αn

Theorem 4.5 Efficiency Leveraging: resulting
protocol almost as efficient as π1 when
there is no abort.1

(abort-secure π1, t < αn) and
(full-secure π2, t < αn)

full, t <
αn

Theorem 4.6 Efficiency Leveraging: resulting
protocol is almost as efficient as π1.
From Theorem 4.5 and Theorem 4.2.
Relies on a non-blackbox decomposition
of the function.

Table 4.1: A summary of the main black-box transformations in this paper. The first
column lists the protocol scheme(s) given, and the second column lists the protocol scheme
obtained. t stands for the number of parties that can be corrupted. idα-security denotes
partially-identifiable-abort security, in which, in the event of an abort, a set of parties, at
least α fraction of which are corrupt, is identified by all honest parties. sh-security stands
for security against semi-honest corruption, abort and full-security stand for security against
active corruption, with the latter having guaranteed output delivery.

Shamir’s secret-sharing. ÕT allows an adversary to selectively cause aborts when there is no
erasure. The reason this suffices for building a watchlist channel is that this functionality
will be applied to random inputs, and when an abort occurs, we can safely identify a pair
of inconsistent parties – at least one of which is corrupt – by having all parties reveal their
views in the protocol (over a broadcast channel).2

Obtaining Partially-Identifiable Abort Instead of Abort. In the original IPS transformation,
even if the outer protocol has security with guaranteed output delivery, the final protocol
offers only security with abort (without any identification of the corrupt parties). This is
due to the fact that when a party detects an inconsistency, it simply aborts the protocol. In
the setting with honest majority, we show how to modify the IPS transformation, so as to

2When no abort occurs, the adversary can indeed learn some information (i.e., that an erasure occurred),
but this can happen only in a small number of instances before an abort occurs.
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obtain partially-identifiable abort, such that a set of two parties can be identified of which
at least one is guaranteed to be corrupt.
Consider when Pi detects an inconsistency in the messages reported over a watchlist

channel that it has access to, in an inner protocol session. In this case, Pi cannot exactly
identify the source of inconsistency, but only localize it to a pair of parties Pi1 , Pi2 , one of
which is corrupt. However, since Pi itself could be a corrupt party, at this point the honest
parties can agree on one of (Pi, Pi1 , Pi2) being corrupt. But being able to identify a set in
which only 1/3 fraction is guaranteed to be corrupt falls below our required guarantee of 1
out of 2 being corrupt.
To further localize corruption, we require all the parties to broadcast their views in

the inner-protocol session in which an inconsistency was detected, as they had earlier
communicated over the watchlist channel to Pi. If an inconsistency is detected among the
broadcast views, then all parties can identify a pair (Pi1 , Pi2) which are inconsistent with
each other. On the other hand, if all the views that are broadcast are consistent with each
other, then, if Pi had indeed observed an inconsistency earlier, it can point out one party
Pi1 which reported a view over the watchlist channel different from the one it reported over
the broadcast channel. Then Pi is required to broadcast this party’s identity, and all parties
agree on the pair (Pi, Pi1).
To see that this transformation retains security, note that by causing an abort, the

adversary can cause at most one server’s computation to be revealed over the broadcast
channel. This corresponds to the adversary corrupting one extra server in the outer protocol.
Since the choice of parameters in the IPS compiler leaves a comfortable margin for the
number of server corruptions, this does not affect the overall security.
Efficiency Improvements. When considering a non-constant number of parties, there are
a couple of major sources of inefficiency in the transformation above, which we can address.
Firstly, in the transformation from partially-identifiable-abort security to full security, the

protocol could be restarted Θ(n) times. To avoid this overhead, we require the function to
be given in the form of a composition of Θ(n) functions (for instance, a layered circuit with
Θ(n) layers), each one of approximately the same size complexity. Then, one can restrict
the duplicated effort for each restart to correspond to a single component, and can ensure
that overall O(n) restarts can only about double the cost.
Secondly, in the IPS compiler, every party can potentially watch every inner protocol

session. This requires that all the communication in each inner-protocol session is sent
out (encrypted with one-time pads) to all the n parties. To avoid this overhead, we can
use an expander graph to define which parties may watch the execution of which servers.
Specifically, we can use an expander graph between the set of parties and the set of servers
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in the outer protocol, in which the degree of each server is a constant, but any subset of n/2
parties has in its neighborhood (i.e., will potentially watch) almost all of the servers. Thus,
the communication in each inner-protocol session (corresponding to the servers in the outer
protocol) is sent out to only a constant number of parties.
Efficiency Leveraging: Transformations for Improving Efficiency. We present a
new instance of efficiency leveraging, in which an MPC protocol scheme with full-security is
“extended” by leveraging the efficiency of cheaper MPC protocols which only offer security
with abort. Specifically, we show how to combine a protocol which guarantees only security
with abort given an honest majority (e.g., from [40]) and a protocol with full-security given
honest majority (like the one we constructed above) to obtain one which approaches the
efficiency of the former protocol while enjoying full-security like the latter.
The basic idea is simple. We can obtain a protocol with 1/2-identifiable-abort security as

follows: given a functionality, we will run a protocol with security-with-abort to compute it; if
the protocol terminates without aborting (as confirmed with the help of broadcast messages),
then our protocol terminates successfully. If it aborts, then we run an (inefficient) MPC
protocol with full-security for a functionality which accepts the views in the first protocol
and detects a pair of parties with conflicting views, at least one of which is corrupt (if
no conflict is detected, then a party who aborted in the first place can be identified as a
corrupt party, since, as part of the security guarantees, we shall require zero probability
for abort if all parties run honestly). To make this idea work, we need to ensure that the
inefficient MPC is called only on a small piece of computation. With appropriate parameters
for decomposition of the function, this indeed gives new asymptotic results (for relatively
“narrow” circuits).
Security with θ-Identifiable Abort. As an intermediate security notion we shall define
Λα-id which guarantees that on abortion, corruption can be somewhat localized (within two
parties, one of whom is guaranteed to be corrupt). The notion generalizes the notion of
security with identifiable abort.
Given a normal form functionality f (see Section 2.1), functionality f 〈idθ〉 is a normal form
functionality which internally runs f and interacts with Adv as follows.

1. Accept the inputs from all parties (including honest parties and parties corrupted by
Adv) and forward to f . (If there is no input from Pi, substitute it with a dummy
input.) Set the output vector as set by f .

2. If Adv sends getoutput, then send the corrupted parties’ outputs to Adv.

3. If Adv sends (corrupt, T ) s.t. T is a subset of parties in which at least a θ fraction are
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corrupt, then change the output of all honest parties to be (corrupt, T ).

4. Output phase: Deliver the (current) output to all parties.

4.2 A BBT FROM PARTIALLY-IDENTIFIABLE-ABORT TO FULL SECURITY

We present a simple black-box transformation from partially-identifiable abort security
(formalized using Λα-id below) to full security. This will be an important ingredient in
our applications in Section 4.5. First, we present a simple but general version of this
transformation (which suffices for feasibility results); in Theorem 4.2, we shall present a
more efficient variant.

Theorem 4.1. For any 0 ≤ α ≤ 1/2, there exists a BBT from Λα-id/BC to Λα-full/BC.
Specifically, there is a BBT from p -Λα-id/BC to (np; D) -Λα-full/BC, where D(f) is the input
plus output size of f .

Our tools behind this construction are relatively simple. In particular, we do not use
verifiable secret-sharing (VSS), but instead use the much simpler primitive Error-Correcting
Secret-Sharing (ECSS) (see Section 2.4.2), which can be realized easily using ordinary Secret-
Sharing and one-time message authentication codes (MAC) (see Section 2.5).
Here we give a high level overview of the construction, with a complete description defered

to Section 4.6.1. The idea behind this BBT is that if we have a protocol which either
completes the computation or identifies a set of parties such that at least α fraction of which
are corrupt, then, in the event of an abort, we can remove the identified set of parties from
active computation and restart the computation. Note that this preserves the corruption
threshold of α (i.e., strictly less than α fraction remains corrupt) among the set of “active”
parties.
For this idea to work, we need to keep the outputs secret-shared (so that by aborting, the

adversary does not learn any useful information, even though it receives its outputs from
the computation), and after the computation finishes, guarantee reconstruction. Further,
we need to use secret-sharing to let all the parties deliver their inputs to the set of active
parties. All this will be achieved using ECSS in a straightforward manner, for α ≤ 1/2.
A More Efficient Variant. In the above BBT, we restarted the entire computation in the
event of an abort. To avoid this, we rely on having access to a “layered representation” of
the function. Formally, consider a parametrized functionality f̂ , parametrized by an index
i ∈ {1, · · · , d}, such that f = f̂ [d] ◦ ... ◦ f̂ [1], such that size(f̂ [i]) = O(size(f)/d), for all i.
We define widthd(f) to be the smallest number w such that there exists a decomposition of
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f into d layers, each of size O(size(f)/d), such that the number of output wires from any
layer is at most w. We shall typically take d to be a polynomial d(n, k). Note that width(f)
defined in Section 2.3.1 is an upper-bound on widthd(f) for all d.
Since decomposing f into f̂ is not a black-box operation, we require a “protocol scheme”

that carries out this decomposition. For this we define a Λlayer[d] scheme to be one which
maps f to a parametrized function f̂ such that

f = f̂ [d] ◦ · · · ◦ f̂ [1], (4.1)

and ∀i ∈ [d], size(f̂ [i]) = O(size(f)/d) and the number of bits output by f̂ [i] ≤ widthd(f).
Then, as shown in Section 4.6.2, we obtain the following efficiency improvement over

Theorem 4.1.

Theorem 4.2. For any 0 < α ≤ 1/2, there exists a BBT from {Λlayer[d], 〈γ, δ〉 -Λα-id} to
(γ; D) -Λα-full, where d(n, k) = n · δ(n,k)

γ(n,k) and D(f) = widthd(f).

4.3 A BBT FROM {Λα-SH,Λβ-FULL} TO Λα-ID

Our goal in this section is to obtain a BBT that increases the corruption threshold of a fully
secure protocol, by combining it with a semi-honest protocol which has the higher threshold.
Given Theorem 4.1, it suffices to obtain a protocol with partially-identifiable-abort against
the higher corruption threshold. Formally, we shall prove the following theorem, which is
interesting when β < α

Theorem 4.3. For any 0 < α, β ≤ 1/2, there exists a BBT from {Λα-sh,Λβ-full} to Λα-id/BC.

The BBT from (Λβ-full,Λα-sh) to Λα-id/BC, shown in Figure 4.3(b), resembles the IPS
compiler. The main difference is that here we require an honest-majority protocol to
implement the watchlist mechanism, and we need to achieve Λα-id/BC instead of Λα-abort/OT.
Nevertheless, the black-box transformation T1 is identical to that in IPS, T IPS

1 .3

T2 is obtained by some easy modifications to the corresponding transformation in the
IPS compiler, T IPS

2 . First, we recall the structure of T IPS
2 , in Figure 4.1. We can interpret

it as consisting of a “core” compiler IPScore, which produces a protocol in a “watchlist-
channel hybrid” model (also using OT if it is needed by the inner protocol). Separately, the
watchlist-channel functionality W (see Section 4.7.1) was realized using a protocol wIPS in

3See Figure 3.1. The functionality fin is a functionality whose trusted party implements the “servers” in
the protocol πout.
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the OT-hybrid model. Finally, the former was composed with the latter to obtain a protocol
in the OT-hybrid model.
In our case, we modify the protocol generated by IPScore and the watchlist protocol,

before composing them. In particular, the watchlist protocol is modified so that it realizes
a functionality W∗ (described below) which facilitates 1/2-identification in case of abort.
Further, the modified protocol does not rely on an OT-hybrid model (but on a functionality
ÕT that is readily realized in the honest-majority setting using a protocol πÕT). Similarly,
the protocol generated by IPScore is modified also to facilitate 1/2-identification, and to be
in the W∗-hybrid than in the W-hybrid. Figure 4.1 shows the new components in our
construction, namely the protocol πÕT, and two transformations Tid and T ∗id.

IPScore

ComposeIPSWL

πsh/OT

πβ-full π/W,OT

wIPS/OT πabort/OT

IPScore Tid

IPSWL Compose

TOT

Compose T ∗id

πα-sh
πβ-full π/W π∗/W∗

wIPS/ÕT

πÕT/BC

w/BC w∗/BC πα-id/BC

Figure 4.1: T IPS
2 and T2. The shaded region shows the new components in T2. Note that T2

retains IPScore and IPSWL from T IPS
2 as it is.

FunctionalityW∗. We shall require a watchlist setup functionality with a form of partially-
identifiable abort security. Recall that we can define a normal form functionality W〈id1/2〉

from the normal form functionality W . W∗ is a weaker functionality obtained by modifying
W〈id1/2〉 so that when it aborts (and identifies a set of parties), the adversary is given the
inputs of all the parties in the protocol. (Since the inputs to W will be random strings in
our construction, it will be safe to use W∗ instead of W〈id1/2〉.) A formal description of W∗

is given in Section 4.7.1, where we shall also describe the (simple) transformation T ∗id as well
as the protocol πÕT.
Transformation Tid. The goal of the transformation Tid, shown in Figure 4.1, is to give a
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1/2-identification protocol that the honest parties can carry out if an abort happens in the
IPS-compiled protocol. This transformation follows the outline sketched in Section 4.1 (see
paragraph Obtaining Partially-Identifiable-Abort Security). A formal description is given in
Section 4.7.2.

4.3.1 Using a Sparse Watchlist

The BBT in Theorem 4.3 is in fact a BBT from {(pin, qin, rin) -Λα-sh, (pout, qout) -Λβ-full} to
p -Λα-id/BC, where p = n2 · (pin +rin) · (qout +n ·pout) (see Section 4.7.3). But by exploiting the
honest majority guarantee which was absent in the setting of [14], we can state the following
version.

Theorem 4.4. For any 0 < α, β ≤ 1/2, and polynomials pin, qin, rin, pout, qout, there exists a
BBT from {(pin, qin, rin) -Λα-sh, (pout, qout) -Λβ-full} to p -Λα-id/BC, where p = n · (pin + rin) ·
(qout + n · pout).

The above result saves a factor of n compared to the previous transformation. The
efficiency improvement comes from a sparser watchlist mechanism (using an expander
graph to define which parties may watch the execution of which servers) in the BBT from
(Λβ-full,Λα-sh) to Λα-id/BC. We present the details in Section 4.8.

4.4 EFFICIENCY LEVERAGING

Bracha’s transformation is a classical example of efficiency leveraging. It was originally
proposed in the context of byzantine agreement [18], and later applied to MPC protocols
(see, e.g., [36]). Below, we record a version of this result that is sufficient for our applications

Proposition 4.1 (Bracha’s Transformation [18]). Let 0 < ε, β ≤ α ≤ 1/2, and let p′(n, k) =
cn be independent of k. Then, for each secure ∈ {sh, abort, full} and any function D, there
exists a BBT from {(p, q; D) -ΛFβ-secure, p′ -Λα-secure} to (p′′; D) -ΛF(α−ε)-secure, where p′′(n, k) =
p(n, k) + q(n, k).

In this section, we present a new instance of efficiency leveraging for full-security: a simple
BBT from {Λα-abort,Λα-full} to Λα-full, in which the resulting protocol’s efficiency is comparable
to that of the protocol in Λα-abort.
First we present a efficiency leveraging transformation for Λα-id which can then be

combined with Theorem 4.2 to obtain efficiency leveraging for Λα-full. In our efficiency
leveraging transformation for Λα-id the efficiency of the resulting protocol, when there is
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no abort event, is comparable to that of a cheaper Λα-abort protocol. Formally, we have the
following theorem.

Theorem 4.5. For any 0 ≤ α ≤ 1/2, and functions p, q, p′ ∈ poly(n, k), there exists a BBT
from {(p, q) -Λα-abort, p

′ -Λα-id} to 〈γ, δ〉 -Λα-id, where γ = p and δ = p′ · (p+ q).

(p, q) -Λα-abort T1 〈γ, δ〉 -Λα-id T2
f πabort f ∗ πid π

Figure 4.2: Black-Box Transformation from {(p, q) -Λα-abort, p
′ -Λα-id} to 〈γ, δ〉 -Λα-id, where

γ = p and δ = p′ · (p+ q).

The protocol scheme claimed in Theorem 4.5 is shown in Figure 4.2. The first node is a
protocol node of p -Λα-abort, which converts a functionality f into a protocol πabort.
The second node is a black-box node T1, which converts the protocol πabort to an (n-party)

functionality f ∗, in which the trusted party takes the view of each party in an execution of
πabort as the input, carries out the execution of πabort, and identifies a set of two parties which
have inconsistent views, if it exists.4 When there is none, it outputs ∅. The third node Λα-id

compiles f ∗ into a protocol πid.
Finally, a black-box node T2 combines πabort and πid together and transforms them into a

protocol π, which works as follows: initially the parties execute πabort on the given input, and
on finishing this execution successfully, each party broadcasts “done.” If all parties broadcast
“done,” then each party outputs the output from the execution of πabort and terminates. If
not, they execute πid with their views in the execution of πabort as input. If this latter
execution itself aborts, πid identifies a set of parties S at least an α fraction of which is
corrupt (where α ≤ 1/2). otherwise (i.e., if πid finishes without an abort event), then all
parties agree on the output of f ∗, namely a set S of two parties at least one of which is
corrupt, or the emptyset ∅; if the output is ∅, the parties set S to be the singleton set
consisting of the lexicographically smallest party who did not broadcast “done” after the
execution of πabort. In all cases, if πabort resulted in an abort, the honest parties agree on a
set of parties S of which at least an α fraction is corrupt.
We verify that the complexity of π is as claimed in the theorem. When there is no

abort event, the communication cost is essentially the same as that of πabort, namely p(n, k);
4Recall that the view of a party involves its initial input, the randomness, and all the received messages.
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otherwise, there is an additional the cost from πid, which is Õ(p(n, k) + p′(n, k) · size(f ∗)),
where size(f ∗) = Õ((p(n, k) + q(n, k)) · size(f)). Hence the whole scheme is in 〈γ, δ〉 -Λα-id

with γ = p and δ′ = p′ · (p+ q).
Combining Theorem 4.5 with Theorem 4.2 we get the following result. Here we state

it as efficiency leveraging for full-security; however, the result holds as a BBT from
{Λlayer[d], (p, q) -Λα-abort, p

′ -Λα-id} as well.

Theorem 4.6. For all 0 ≤ α ≤ 1/2, and for all functions p, q, p′ ∈ poly(n, k), there exists
a BBT from {Λlayer[d], (p, q) -Λα-abort, p

′ -Λα-full} to (p; D) -Λα-full, where d = n·p′·(p+q)
p

and
D(f) = widthd(f).

4.5 APPLICATIONS

In Section 3.3.1, we already saw a pedagogical application of BBT, in simplifying the
exposition of security with guaranteed output delivery (with computationally bounded
adversaries). In this section, we give several interesting examples regarding how to use
the BBTs in the previous sections for deriving both feasibility and efficiency results.

◦ Rabin-Ben Or without honest-majority VSS. As our first example, we reproduce the
classic feasibility result of Rabin and Ben-Or [11] for fully secure MPC for corruption against
t < n/2 parties. The core new tool developed in this paper (and used in subsequent results
in this regime of corruption) was Verifiable Secret-Sharing (VSS) that is secure against
corruption of t < n/2 parties. Interestingly, our construction by-passes the need for an
explicit VSS protocol for this corruption regime, instead showing that one can directly use
fully secure MPC from prior work [9, 10]. Our construction is based on the following direct
corollary of Theorem 4.3 and Theorem 4.1.

Corollary 4.1. For any 0 < α, β ≤ 1/2, there exists a BBT from {Λα-sh,Λβ-full} to Λα-full/BC.

To obtain the result of [11] we simply apply Corollary 4.1 to the protocols in [9, 10].

◦ Constant-Rate MPC with Full-Security for Small Number of Parties. Our
first quantitative result is a “constant-rate” honest-majority MPC protocol with guaranteed
output delivery, when the number of parties involved is constant. That is, as the size of the
function grows, the communication complexity of the protocol grows linearly at a rate that
is independent of the security parameter. For MPC of large circuits, against the optimal
corruption threshold n/2, this gives an amortized complexity of O(1) per gate, compared to
O(k) per gate in the previously best result from [41].
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Corollary 4.2. There exists a p -Λ1/2-full/BC-scheme, where p(n, k) = cn is independent of k.

This result is obtained as a corollary of Theorem 4.45 and Theorem 4.1. First we obtain
a p -Λ1/2-id/BC scheme by applying the BBT from Theorem 4.4 to the Λ1/2-sh-scheme from [9]
and the constant rate Λβ-full-scheme (for some β > 0) that is obtained by instantiating the
protocol scheme from [42] using the constant-rate ramp scheme of [43]. (The same “outer
protocol” was used in [14] to obtain a constant-rate Λabort/OT-scheme.) Then by further
applying the BBT fromTheorem 4.1, we obtain the p -Λ1/2-full/BC protocol as claimed.

◦ Scalable MPC with Full-Security, Optimal Threshold. Our next result is a
“scalable” honest-majority MPC protocol with guaranteed output delivery. We define the
function class Farith of functions represented as arithmetic circuits over a field F such that
log |F| > k. For f ∈ Farith, size(f) refers to log |F| · |Cf |, where |Cf | is the number of gates
in the circuit Cf representing f . Equivalently, size(f) measures the number of binary wires
in the circuit Cf ; similarly width(f) measures the width of Cf in bits.

Corollary 4.3. There exists a (p; D) -ΛFarith
1
2 -full/BC-scheme, where p(n, k) = n and D = width(f).

That is, for MPC of large arithmetic circuits over a large field, with security against the
optimal corruption threshold n/2, we get an amortized communication cost of O(n) bits
per binary wire in the circuit. This result is obtained as a corollary of Theorem 4.5 and
Theorem 4.2, by applying the BBTs to the ΛFarith

1/2-abort-scheme from [40] and the p -Λ1/2-id-scheme
from Corollary 4.2. Note that we have used width(f) as an upper-bound on widthd(f) over
all d.
Our result complements a similar result of Ben-Sasson et al. [41] in which the secondary

complexity measure is depth, instead of width. We remark that a natural regime for scalable
MPC involves long sequential computations (carried out by a small or moderate number of
parties), so that a circuit for the computation would be deep and narrow. In such a regime,
the above result, which yields a cost of O(n · size(f) + poly(n, k)), compares favorably to the
protocols of [41] which yield a cost of Ω̃(n · size(f) + n2 · depth(f) + poly(n, k)).

◦ Highly Scalable MPC with Full-Security, Near Optimal Threshold. Our final
application considers the problem of relaxing the corruption threshold from the optimal
α = 1/2 to α = 1/2− ε, for any constant ε.

Corollary 4.4. For every ε > 0, there exists a (pε; D) -Λ( 1
2−ε)-full/BC-scheme, where pε(n, k) =

cε is independent of n and k and D(f) = depth(f).
5The construction leading to Theorem 4.3 also suffices here. We point to Theorem 4.4 only because it

makes the parameters explicit; the optimization in Section 4.3.1 is not important for this result.
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This generalizes a result in [36], which obtained a similar result (without using a broadcast
channel) for the threshold 1

3−ε. We obtain this result by applying Proposition 4.1 (Bracha’s
efficiency leveraging transformation) to our cn -Λ 1

2 -full/BC scheme from Corollary 4.2 and the
(c1, c2; depth) -Λβ-full scheme from [36] (for, say, β = 1/6 and c1, c2 being constants), with
α = 1/2.

4.6 DETAILS OMITTED FROM SECTION 4.2

4.6.1 Details of the Construction in Theorem 4.1

In this section we present the details behind Theorem 4.1. The outline of our BBT is
illustrated in Figure 4.3(a).

(a) T0 Λα-id/BC T3
f f ′ π′/BC πα-full/BC

(b) Λβ-full T1 Λα-sh T2
f ′ πβ-full f ′′ πα-sh π′/BC

Figure 4.3: (a) BBT from {Λα-id/BC} to Λα-full/BC. (b) BBT from {Λβ-full,Λα-sh} to Λα-id 1
2

/BC.
(a) and (b) together they yield a BBT from {Λβ-full,Λα-sh} to Λα-full/BC for any α ≤ 1

2 .

First, we define the transformation T0, which essentially wraps f between a layer of
reconstruct and a layer of share. More precisely, T0 transforms f into a parametrized
functionality f ′ = T f0 which accepts shares of f ’s inputs and outputs shares of f ’s output.
To define f ′[n′], where the parameter n′ is the number of parties in f ′, fix an (n′, n′/2)-ECSS
scheme (sharen′ , reconstructn′). Also, let (sharenn′ , reconstructnn′) denote n parallel instances of
these algorithms, where sharenn′ takes n secrets and produces n′ n-dimensional share vectors,
and reconstructnn′ takes n′ such vectors and outputs n secrets. In f ′, for each j ∈ [n′], the
input of the jth party is parsed as Σj = (σ1

j , · · · , σnj ); then

f ′(Σ1, · · · ,Σn′) = sharenn′(f(reconstructnn′(Σ1, · · · ,Σn′))). (4.2)
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Note that f ′ is defined using f in a blackbox manner, and hence can indeed be implemented
as T f0 .
Next we describe the transformation T3 which defines the final protocol in terms of a

protocol πα-id/BC for f 〈idα〉. A formal description of T3 is as follows.
Transformation T3: Given a protocol πα-id (parametrized by number of parties) and a
collection of (n′, αn′)-ECSS schemes (sharen′ , reconstructn′) for all values of n′:

1. Set the set of active parties T ∗ = [n] and done = false

2. While done is false

(a) ∀i ∈ [n], Pi shares its input xi as (σij1 , · · · , σ
i
jn′

) ← sharen′(xi) where T ∗ =
{j1, · · · , jn′}; it sends σij to Pj, for all j ∈ T ∗.

(b) Parties in T ∗ run the protocol πα-id[n′], with Pj’s input being (σ1
j , ..., σ

n
j ) (using

⊥ for any σij that was not received).

(c) For each j ∈ T ∗, if Pj receives the output (corrupt, `1, `2) from the above protocol,
then it lets T ∗ = T ∗ \ {`1, `2} and broadcasts T ∗; else Pj gets output (δ1

j , ..., δ
n
j )

and broadcasts “done.”

(d) For each i ∈ [n], on receiving “done” from n′/2 or more parties in T ∗, Pi sets done
= true; else it sets T ∗ to be what was broadcast by a majority of parties in T ∗.

3. For each i ∈ [n], j ∈ T ∗, Pj sends δij to Pi.

4. For each i ∈ [n], Pi receives (δi1, ..., δ
j
n′) and outputs reconstructn′(δi1, ..., δin′).

Conceptually, T3 is quite simple: it maintains a set of “active parties” T ∗ ⊆ [n], such
that more than (1 − α) fraction in this set is honest. Initially, T ∗ is the set of all parties,
and the protocol goes through one or more iterations of the execution of πα-id/BC among the
active parties. Since πα-id/BC UC-securely realizes the functionality f ′〈idα〉, we can consider
these executions of the latter. In each iteration, all parties freshly share their inputs for f to
the active parties using an (n′, αn′)-ECSS scheme, where |T ∗| = n′, which they use as their
inputs to f ′〈idα〉. If f ′〈idα〉 aborts, then the adversary does learn the outputs of f ′; however,
these outputs, being less than αn shares of the f -output of each party, are independent of
the inputs of the honest parties to f . Further, since each time an abort happens T ∗ shrinks
by at least one party, this can happen at most O(n) times. Also, note that removing the set
of parties identified by f ′〈idα〉 can only increase the fraction of honest parties in T ∗, and hence
maintains the invariant that less than αn′ of the n′ active parties are corrupt, as required for
the next iteration. Eventually, an execution of f ′〈idα〉 completes without aborting. Note that
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in this execution, f ′ correctly reconstructs the inputs of all honest parties, due to the error-
correcting nature of the ECSS scheme. Thus the honest active parties will receive ECSS
shares of the correct outputs for all the n parties. They send the shares to the respective
parties, who can correctly reconstruct their outputs (since they would have received more
than (1− α)n′ shares from the honest parties.

4.6.2 Details of the Construction in Theorem 4.2

The new transformation, which is similar to that in Section 4.6.1 is shown in Figure 4.4
(compare with Figure 4.3(a)).

Λlayer[d] T0 〈γ, δ〉 -Λα-id/BC T ′3
f f̂ f̂ ′ π′ πα-full/BC

Figure 4.4: A Streamlined version of the BBT in Figure 4.3(a), using layered circuits.

The transformation T0 here is identical to that in Figure 4.3(a). T ′3 is obtained by
modifying T3 so that it carries out the evaluation of one layer at a time, using the outputs
from one layer as the inputs to the next. Furthermore the set of active parties are maintained
across all the executions.
The security of this BBT follows along the same lines as the one in Section 4.6.1. Below we

verify the complexity of this transformation. Let f̂ ′[i] denote the analog of f ′ in Equation 4.2.
Then, size(f̂ ′[i]) = O(size(f)/d +e(n, k)·widthd(f)), where e(n, k) denotes the computational
overhead for implementing ECSS, per bit of input (e(n, k) = O(n2k) from Section 2.4.2).
Now, if there is no abort event, by the definition of 〈γ, δ〉 -Λα-id, the communication cost

is O(∑d
i=1 γ(n, k) · size(f̂ ′[i]) +poly(n, k)), which is

O(γ(n, k) · size(f) + d(n, k) · γ(n, k) · e(n, k) · widthd(f) + poly(n, k)). (4.3)

Each time an abort happens at level i, it results in an additional cost of O(δ(n, k)·size(f̂ ′[i])+
poly(n, k)). But, the number of times an abort event can occur is O(n) (since in each abort
a non-empty set of players are eliminated from the set of active parties). Thus the additional
cost due to all aborts is O(n · δ(n, k) · size(f)/d +n · δ(n, k) · e(n, k) ·widthd(f) +poly(n, k)).
Substituting d, this cost matches that of the cost without abort events. Hence, the total cost
also matches this expression. Finally, noting that γ(n, k), d(n, k), e(n, k) are all poly(n, k)
we get the claimed complexity.

44



Remark. We note that above, if d(n, k) · e(n, k) · widthd(f) ≤ size(f), then the
communication complexity becomes

O(γ(n, k) · size(f) + poly(n, k)). (4.4)

In this case, the above BBT yields a γ -Λα-full protocol scheme.

4.7 DETAILS OF THE CONSTRUCTION IN THEOREM 4.3

4.7.1 Watchlist Setup

Implementing the Watchlist Functionality W∗. We need to define a protocol w∗ that
UC-securely implementsW∗ in the honest majority setting (in the broadcast-hybrid model).
We do this in a few steps: first, we adapt the protocol wIPS/OT for W from [14] to use a
weak form of OT that we denote by ÕT so that wIPS/ÕT still remains a secure protocol for
W . Next we build a protocol πÕT that securely realizes ÕT (in the broadcast-hybrid model)
given an honest majority, and then compose it with the above protocol to obtain a protocol
w (in the broadcast-hybrid model). Finally, we carry out a simple generic transformation to
convert w to w∗. We start by describing this step.
T ∗id: from a Protocol for W to one for W∗. We shall require a “well-behaved protocol”
w forW : that is, a party aborts in w only if its view is inconsistent with an honest execution
of w. Then, one can generically transform such a protocol to a protocol for W∗ as defined
above: simply run w, and if it aborts, all parties must broadcast their views in w (including
their inputs). Since w is well-behaved, if a party initiating the abort is honest, then it is
guaranteed that there will be an inconsistency in the views revealed. Then all the parties
would identify the lexicographically first pair of inconsistent parties (i, j) and output it. If
no inconsistency is discovered, the pair (i, j) is taken to be the lexicographically first pair in
which i is a party initiating the abort.
Protocol w for W. Given the above, we need only build a well-behaved protocol w
for W . As mentioned above, our implementation of w involves composing wIPS with an
implementation of ÕT. First, we formally define the functionality ÕT.
Functionality ÕT. An n-party functionality (parametrized by a probability γ ∈ [0, 1] and
a positive integer ` and a field F), which interacts with only two parties – a sender S, receiver
R – and the adversary Adv as follows.

1. Accepts m ∈ F`. Also, accepts c ∈ {0, 1} from Adv.
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2. Sample b ∈ {0, 1} according to p(b = 1) = γ.

3. If b = 0, then send erased to R.

4. If b = 1 and c = 0, then send m to R, else send abort to R.

In analyzing w, its main difference from wIPS is that, since w is in the ÕT-hybrid model,
the adversary may choose to try and learn if some of the pads were delivered to the honest
party or not. However, for each such pad, the adversary has a probability γ of causing
abort. Note that W does allow the adversary to learn the above information for up to δN
servers. To show that the protocol remains secure despite using ÕT instead of OT, we need
to argue that the the probability of adversary learning this information about more than
δN servers without causing an abort is exponentially small in k. Indeed, this probability is
O(1− γ)δN . For an appropriate choice of parameters, this probability is exponentially small
in k. Specifically, we choose γ = Θ(k/N) as in [14], and set δ = Θ(1).
To complete our construction, we present a protocol πÕT that UC-securely realizes ÕT

against an adversary who corrupts strictly less than n/2 parties. The protocol uses a simple
Oblivious Linear Function Evaluation protocol in which the sender sends out Shamir shares
of two vectors a, b ∈ FL to all n parties, and the receiver sends out Shamir shares of a
scalar x ∈ F (chosen from a small range of d elements), so that each of the n parties can
locally compute a share of the vector ax + b. The degrees of the Shamir shares are chosen
appropriately (say, dn−1

2 e for a, b
n−1

2 c for x, and n − 1 for b), so that corrupting strictly
less than n/2 parties reveals no information about any of these values, but ax + b can
be reconstructed from the n shares locally computed by the n parties. The n parties are
expected to send their shares to the receiver so that it can reconstruct the vector ax + b;
then the sender picks β randomly from the same domain as x is chosen from, and sends
(β, aβ + b + v) to the receiver. If β = x (which happens with probability 1/d), the receiver
can recover v and otherwise, it receives no information about v.
However, in the form described above, this protocol is not a secure Rabin OT protocol

since the adversary can easily alter the value being reconstructed by changing its own shares
that it sends to the receiver. But the only way the adversary can alter the vector v is to add
an independent vector δ to it. To protect against this, we let v be an encoding of the actual
message which can detect additive attacks. Such a code is called an algebraic manipulation
detection (AMD) code [44]; elementary constructions of AMD codes exist and will suffice
for us.6 Thus, if the adversary alters the shares in any way, and if β = x, then this will

6 For the sake of completeness, we point out a simple construction AMDlite due to Cabello et al. [45],
that predates the definition of AMD codes: each element m ∈ F, where F is an exponentially large field, is
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be detected and the protocol will abort. However, if β 6= x, the protocol does not abort,
and the adversary can learn this fact. This matches the security guarantee offered by the
functionality ÕT. Indeed, it can be shown that this protocol is a UC secure protocol for ÕT,
against active corruption of less than α fraction of the parties, for any α ≤ 1/2.
Listing of Functionalities and Protocols for Watchlist Setup. We present a
slightly modified version of the watchlist functionality used in the IPS compiler [14]. The
modification is the addition of the starred item in the description below, which allows the
adversary to learn if any of the honest parties are watching a server in the set S that the
adversary has gained (possibly partial) access to. While this was not possible in the OT-
based construction in [14], the analysis there allows for this (all servers in the set S are
considered to be actively corrupted).
IPS Watchlist Setup Functionality W. An n-party functionality W [K, d, δ,N ] is
parametrized by the length of pads (communication cost of the watched protocol) K, d ∈ [n]
such that γ = 1

d
is the expected fraction of pads to be delivered (i.e., fraction of servers to be

watched by an honest party), 0 ≤ δ < 1 being the fraction of server for which the adversary
can learn if a pad corresponding to it was delivered to any honest party or not, and the
number of servers N , which interacts with the honest parties, the corrupted parties, and the
adversary Adv as follows.

1. For each honest party Pi, for ` ∈ [N ], j ∈ [n], pick a random K-bit string Padi→j` and
give it to Pi.

2. For each honest party Pj, pick random Lj ⊆ [N ], |Lj| = γN , and send {Padi→j` |` ∈
Lj, i ∈ [n]{j} to Pj.

3. From each corrupted party Pi, for each ` ∈ [N ], j ∈ [n], accept a K-bit string Padi→j` .

4. From each corrupted party Pj, accept a set of pairs Sj ⊆ {(i, `)|i ∈ [n], ` ∈ [N ]} such
that ∀i ∈ [n], Sji = {`|(i, `) ∈ Sj} is of size |Sji | ≤ 2γN . Send {Padi→ji |(i, `) ∈ Sj} to
Pj for each corrupted Pj.

? Also, accept a set S ⊆ [n], |S| ≤ δN from the adversary. For each honest party
Pi, reveal S ∩ Li to the adversary.

5. At any point Adv can ask W to send abort to any (honest) party.

Watchlist Setup Functionality with 1/2-id abort, W∗. With same parameters as W .

encoded as a triplet (m, s,ms), where s← F is uniformly randomly chosen; vectors are encoded by encoding
each coordinate independently.
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1. Run W〈id1/2〉.

2. If W〈id1/2〉 outputs (corrupt, i, j) to the honest parties, then send all the parties’ inputs
to Adv.

Protocol w∗ securely realizing W∗:

1. Run a well-behaved protocol w securely realizing W .

2. If a party gets output abort from w, it broadcasts abort to everyone.

3. On receiving a broadcast of abort, all parties reveal their views (randomness, input,
and messages received) in w through the broadcast channel.

4. Each party runs a consistency check on the views broadcast and (the lexicographically
first) pair of inconsistent parties (i, j) are identified. Each party outputs (corrupt, i, j).

Watchlist Protocol w for W, in ÕT-hybrid. w is parametrized by K, d,N , where K
the length of pads (communication cost of the watched protocol), d ∈ [n] corresponds to a
probability γ = 1

d
, which is the expected fraction of pads to be delivered (i.e., fraction of

servers to be watched by an honest party), and N is the number of servers.

1. Each party Pj picks random Lj ⊆ [N ], |Lj| = γN .

2. For each i ∈ [n], ` ∈ [N ], j ∈ [n], Pi picks a random K-bit string Padi→j` and sends it
to Pj using ÕT[K, 2γ].

3. For each j ∈ [n], i ∈ [n], if Pj receives less than γN pads, it aborts; else, it picks γN
of them and set L̃ji ∈ {˜̀|Pad

i→j
˜̀ received} s.t. |L̃ji | = |Lj|.

4. For each j ∈ [n], i ∈ [n], Pj picks a random permutation πji s.t. π
j
i (L̃

j
i ) = Lj and sends

πji to Pi.

5. Then each party Pj uses Padi→j(πji )−1(`) for W
i→j
` .

Protocol πÕT that securely realizes ÕT. πÕT is parametrized by p, `, d, n where p is a
prime, ` is a positive integer such that the message space is Z`p, d is an integer number which
implies a 1/d probability for transmission (non-erasure), and n is the number of parties.
Ingredients include Shamir secret-sharing and a simple AMD code AMDlite (see Footnote 6)
that encodes vectors in Z`p into vectors in Z3`

p .

Stage 1: Oblivious Linear Function Evaluation

48



1. Sender generates random vectors a, b ∈ Z3`
p and (using Shamir’s secret sharing

scheme) distributes [a](n−1)/2
p , which are shares of a (n− 1)/2-degree polynomial

and [b](n−1)
p , which are shares of a (n−1)-degree polynomial to n-parties (including

Sender and Receiver).

2. Receiver generates random x ∈ {0, · · · , d − 1} and (by Shamir’s secret sharing
scheme) distributes [x](n−1)/2

p , which are shares of (n − 1)-degree polynomial, to
n-parties (including Sender and Receiver).

3. n parties compute [φ]p, where φ = ax+ b (treating x as a scalar from Zp), which
are shares of a (n−1)-degree polynomial, locally and send the shares to Receiver.

4. After collecting n shares, Receiver restores the secret value φ as the output. If
Receiver cannot collect shares from some parties, it aborts.

Stage 2: Convert to Rabin-OT

1. Sender picks random β ∈ {0, · · · , d− 1} and calculates m̂ = m′ + aβ + b, where
m′ = AMDlite(m), and m ∈ Z`p is its input. It sends (m̂, β) to Receiver.

2. If β = x, Receiver applies AMDlite decoding to m̃ = m̂− φ; if there is no error it
outputs the decoded message as the received message; otherwise, Receiver aborts.
On the other hand, if β 6= x, Receiver outputs ⊥ to indicate erasure.

4.7.2 Formal Description of Tid

The components of the transformation T2 were illustrated in Figure 4.1. In this section
we formally describe a part of this transformation that adds 1/2-identifiability, namely Tid.
Partial-identification Transformation. From π from the IPS core in the W-hybrid to
π∗ in theW∗-hybrid and the broadcast channel, where on abort, π∗ will output (corrupt, i, j)
such that either Pi or Pj is corrupt:

1. Replace access to W with access to W∗.

2. If W∗ outputs (corrupt, i, j) at any round, π∗ outputs (corrupt, i, j).

3. If an abort occurs, let Pi be the lexicographically smallest party that requested to
abort in π. Then:

(a) If abort because Pi′ sent an inconsistent message, Pi broadcasts (corrupt, i′). All
parties output (corrupt, i, i′).
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(b) If abort because Pi detected inconsistency in an inner protocol session j:

i. Pi broadcasts (corruptsession, j).
ii. All parties broadcast their views in session j.
iii. If there exists inconsistency in the views, everyone identifies the

lexicographically smallest pair {Pi1 , Pi2} with inconsistency and outputs
(corrupt, i1, i2)

iv. Else, Pi detects a party Pi′ whose view as revealed now is different from
its view as revealed over the watch-list channel and broadcasts (corrupt, i′);
everyone outputs (corrupt, i, i′).

(c) If Pi does not carry out either of the above steps, everyone outputs (corrupt, i, i′),
where i′ is the lexicographically smallest active party other than i.

4.7.3 Communication Cost Analysis

Here we analyze the cost of the protocol obtained from the simpler BBT used to prove
Theorem 4.3. For this, we consider the communication and randomness cost of all the
sessions of the inner protocol (i.e., the cost in the protocol generated by IPScore) and the
communication cost of the watchlist setup separately.
The communication and randomness costs in all the inner protocol sessions together is

similar to that in the IPS transformation. If the outer protocol scheme is a (pout, qout) -Λβ-full

scheme then, referring to the notation in Table 2.2, the communication cost of the outer
protocol would be O(pout(n, k) · size(f) + poly(n, k)). the computation cost would be
O(qout(n, k) · size(f) + poly(n, k)). Since the IPS compiler uses an additive secret-sharing
to encode the communication between the servers and share it among the n clients, the
total computation that is implemented by the inner protocol sessions is O(q′(n, k) · size(f) +
poly(n, k)), where q′ = qout + n · pout. If the inner protocol scheme is a (pin, qin, rin) -Λα-sh

scheme, then this translates to a total communication plus randomness cost in inner protocol
sessions of O((pin(n, k) + rin(n, k)) · q′(n, k) · size(f) + poly(n, k)).
On top of this, the watchlist mechanism using w∗ imposes a O(n2) factor communication

cost. This is because, each bit of randomness and communication in the inner protocol
sessions need to be transmitted to all n parties over the watchlist channel,7 and each bit
communicated between a pair of parties over the watchlist channel corresponds to O(n) bits

7The motivation for the streamlined protocol in Theorem 4.4 is to save this factor of n in setting up the
watchlists, by exploiting an honest-majority.
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of communication in the protocol πÕT. Thus, the overall communication cost is O(p(n, k) ·
size(f) + poly(n, k)), where p = (pin + rin)(qout + n · pout).
There is an additional communication cost introduced by Tid, due to all parties

broadcasting their view of one inner protocol session during the identification procedure.
But this added cost cannot be larger than the communication and randomness cost of a
single session of the inner protocol. Hence this transformation does not alter the asymptotic
cost.

4.8 ANALYSIS FOR THEOREM 4.4

Recall that in the BBT from {Λβ-full,Λα-sh} to Λα-id/BC, we use the same watchlist setup
functionality W as in the IPS transformation (but further modified to W∗ to enforce
partially-identifiable abort). In W (and hence in W∗), each server’s execution (carried out
by a session of the inner protocol) can be “potentially watched” by every party Pi. Thus,
each party taking part in an inner protocol session will have to send its view to all the other
parties over the watchlist channels, leading to a multiplicative overhead of n. However, we
note that it is sufficient to have each server potentially watched by at least one honest party.
(Indeed, in the analysis in [14], the number of parties could just be 2, and if one of them
is corrupt, then each server is watched by only one honest party.) Given that we have a
guarantee that at most αn ≤ n/2 parties are corrupted, we can use a much sparser graph
(rather than the complete bipartite graph) to define which parties watch can potentially
watch which servers’ executions.
Towards this, we use an expander graph between the set of parties and the set of servers

in the outer protocol, in which the degree of each server is a constant, but any subset of
n/2 parties will potentially watch almost all of the servers. For our purposes, we define an
expander graph as follows.

Definition 4.1 ((n, n′;N,N ′;Ph.D.)-Expander). Let G ⊆ [n] × [N ] and for every j ∈ [n],
let Γ(j) = {` ∈ [N ]|(j, `) ∈ G}. We say that G is an (n, n′;N,N ′;Ph.D.)-Expander if
for every j ∈ [n], we have |Γ(j)| ≤ Ph.D., and for every S ⊆ [n] with |S| = n′, we have
|⋃j∈S Γ(j)| ≥ N ′.

It follows from standard results (see, e.g., [46]), that there are explicit constructions with
the following parameters.

Lemma 4.1. For all 0 < δ < 1, there is a constant cδ such that for all but finitely integers
n > 0, N ≥ n, there is an (explicit) (n, n/2;N, (1−δ/2)N ;Ph.D.)-expander, where Ph.D. =
cδN/n.
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From the above lemma we can obtain an (n, n/2;N, (1− β/2)N ;Ph.D.)-expander Gn,k,β

where N = kn2 and Ph.D. = cN/n (for some constant c and sufficiently large n).
To use the sparse watchlists in our transformation modularly, we modify the functionality
W to be parametrized by a graph G which it uses to define the set of one-time pads needed.
For the sake of completeness, this modified functionality, W+ is shown in Section 4.8.1.
Now we analyze the communication complexity of the protocol scheme obtained using

this modified transformation. The dominant cost is that of the watchlist setup protocol.
Note that the communication plus randomness complexity of all the inner protocol sessions
together, K∗ = Õ((pin+rin)(qout+n·pout)) (ignoring lower-order terms). The total size of the
one-time pads generated byW+ is∑N

`=1 Kd`, whereK is the communication plus randomness
cost for one inner-protocol session and d` is the degree of the `th server’s vertex in the
expander graph G.8 But ∑` d` = cN , and since K∗ = NK, we have that the total size of the
one-time pads is O(K∗) = Õ((pin+rin)(qout+n·pout)). Hence the dominating communication
cost in the protocol, which results from the invocations of πÕT is Õ(n·(pin+rin)(qout+n·pout)).
We point out that the choice N = k2n and the transmission probablity γ = β/(cn) can

meet the security except an exponentially low probability. This follows by relating to the
analysis in [14] as follows. If the adversary who corrupts n/2 − 1 parties corrupts (deviate
in or attempt to “watch” the inner-protocol execution of) up to (n/2)2γPh.D. < βN servers
so the information is protected by the outer protocol. If she actively corrupts more than β
fraction of the servers, then by the expansion property of the graph G, at least (β/2)kn2

of them are potentially watched by at least one honest client. Hence the corruption will be
identified by at least one honest client, with probability at least 1− exp(−Ω(kn)).

4.8.1 Formal Description of T ′3 and W+

Transformation T ′3: Given a set of protocols πtα-idt∈[n] (each of which parametrized by
number of parties) and an ECSS scheme (share, reconstruct):

1. Set the set of active parties T ∗ = [n].

(a) Set done = false.

(b) While done is false

8For simplicity, here, as in [14], we consider all server executions to have the same complexity. But even
if there is no load-balancing, we can obtain an efficient construction by assigning lower degree vertices in the
expander to servers with higher complexity. Indeed, even if the complexity changes dynamically, one can
adapt the watchlist setup protocol to adaptively extend the one-time pads. We describe these generalizations
in the full version.
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i. ∀i ∈ [n],Pi shares its input xi as (σij1 , · · · , σ
i
jn′

) ← share(xi, n′) where T ∗ =
{j1, · · · , jn′}; it sends σij to Pj, for all j ∈ T ∗.

ii. Parties in T ∗ run the protocol πα-id[n′], with Pj’s input being (σ1
j , ..., σ

n
j )

(using ⊥ for any σij that was not received).
iii. For each j ∈ T ∗, if Pj receives the output (corrupt, `1, `2) from the above

protocol, then it lets T ∗ = T ∗ \ {`1, `2} and broadcasts T ∗; else Pj gets
output (δ1

j , ..., δ
n
j ) and broadcasts “done.”

iv. For each i ∈ [n], on receiving “done” from n′/2 or more parties in T ∗, Pi
sets done = true; else it sets T ∗ to be what was broadcast by a majority of
parties in T ∗.

(c) For each i ∈ [n], j ∈ T ∗, Pj sends δij to Pi.

(d) For each i ∈ [n], Pi receives (δi1, ..., δ
j
n′) and sets xi = reconstruct(δi1, ..., δin′).

2. For each i ∈ [n], Pi outputs xi.

Sparse Watchlist Setup Functionality W+. An n-party functionality W+[K, d, δ,N,G]
parametrized by the length of pads (communication complexity of the watched protocol)
K, d ∈ [n] such that γ = 1

d
is the expected fraction of pads to be delivered (i.e., fraction

of servers to be watched by an honest party), 0 ≤ δ < 1 being the fraction of servers for
which the adversary can learn if a pad corresponding to it was delivered to any honest party
or not, the number of servers N , and G ⊆ [n] × [N ] (denoting the edges of a bipartite
graph with partite sets L = [n] and R = [N ]). The trusted party interacts with the honest
parties, the corrupted parties, and the adversary Adv as follows. Below, for j ∈ [n], let
Γ(j) = {` ∈ [N ] : (j, `) ∈ G}.

1. For each honest party Pi, for each (j, `) ∈ G , pick a random K-bit string Padi→j` and
give it to Pi.

2. For each honest party Pj, pick random Lj ⊆ Γ(j) , |Lj| = γN , and send {Padi→j` |` ∈
Lj, i ∈ [n]{j} to Pj.

3. From each corrupted party Pi, for each ` ∈ Γ(i) and j ∈ [n], accept a K-bit string
Padi→j` .

4. From each corrupted party Pj, accept a set of pairs Sj ⊆ {(i, `)|i ∈ [n], ` ∈ [N ]} such
that ∀i ∈ [n], Sji = {`|(i, `) ∈ Sj} is of size |Sji | ≤ 2γN . Send {Padi→ji |(i, `) ∈ Sj} to
Pj for each corrupted Pj.
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? Also, accept a set S ⊆ [n], |S| ≤ δN from the adversary. For each honest party
Pi, reveal S ∩ Li to the adversary.

5. At any point Adv can ask the trusted party to send abort to any (honest) party.
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CHAPTER 5: BOTTLENECK COMMUNICATION COMPLEXITY

5.1 CHAPTER OVERVIEW

In this work, we study one fundamental metric of MPC efficiency: the required
communication between parties. In particular, we focus on the communication complexity
of MPC in large-scale settings, where the number of participants is significant.
In nearly all existing works in MPC literature, the communication complexity goal has

been to minimize the total communication of the protocol across all n parties. However,
for many important applications, such as peer-to-peer computations between lightweight
devices,1 total costs (such as total communication) are only secondarily indicative of the
feasibility of the computation, as opposed to the primary issue of per-party cost. Indeed,
while a total communication bound L implies average per-party communication of the
protocol is L/n, the computation may demand a subset of the parties to each communicate
as much as Θ(L). When all parties contribute input to the computation, then L ≥ n,
meaning these parties must bear communication proportional to the total number of parties.
In large-scale distributed settings, or when the protocol participants are lightweight devices,
such a requirement could be prohibitive.
New efficiency measure: (MPC) Bottleneck Complexity. To address these concerns,
we initiate the study of bottleneck complexity of MPC. The bottleneck complexity of
a protocol Π is defined as the maximum communication required by any party within
the protocol execution. One may further specialize this to incoming versus outgoing
communication. The MPC bottleneck complexity of a (distributed) function is the minimum
possible bottleneck complexity of a secure MPC protocol for the function. In this work, our
goal is to explore this notion as a complexity measure for distributed computations, and to
develop secure protocols with low bottleneck complexity.
Bottleneck complexity addresses certain (practically important) aspects ignored by

standard communication complexity. For instance, if two messages are transmitted in two
different parts of a network, say A → B and C → D, they would be delivered faster than
two messages sent to/from the same party, say A→ B and C → B. While both have same
total communication, the latter has higher bottleneck communication.
Bottleneck Complexity without Security. Before studying bottleneck communication
complexity for secure protocols, we first consider this measure for arbitrary protocols without

1For example, optimizing navigation routes based on traffic information contributed by the cell phones
of drivers on the road, without revealing the locations of individual users.
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any security considerations. Indeed, this already forms an interesting measure of complexity
for (distributed) functions, and we propose it as a fundamental area to explore. As in the
case of total communication complexity (which coincides with bottleneck complexity for the
case of 2 parties), there is a trivial upper bound of O(n) bottleneck complexity for any
n-party functionality (with boolean inputs), where all parties simply send their input to
a central party who computes the functionality. On the other hand, in many functions,
bottleneck complexity brings out structures that total communication complexity overlooks.
For instance, in computing say the XOR or AND of n bits, total communication complexity is
Θ(n), but the bottleneck complexity is O(1). These functions naturally allow for incremental
computation along a chain, in which each party receives and sends a single bit. Indeed, there
is a large class of useful functions which have protocols with low bottleneck complexity, as
discussed below.
However, a priori it is not clear whether all functions can be computed in a similar manner.

This brings us to the first question considered in this work:

Can all functions be computed (without security)
with sublinear bottleneck complexity?

For concreteness, we may consider n-party functions, with n inputs (one for each party)
each k bits long, and a single-bit output. Because of the trivial O(nk) upper bound on total
communication complexity for any such function (as discussed above), each party on average
needs only to communicate O(k) bits. But in this protocol, the communication complexity
of the central party—and thus bottleneck complexity of the protocol—is (n − 1)k bits.
Surprisingly, we show that this is the best one can ask for, for general functions. That is,
there exist n-party functionalities with k-bit inputs for which the bottleneck complexity is
Ω(nk).

Theorem 5.1. (Informal.) There exist n-party functions with k-bit input for each party
that have bottleneck complexity close to that in the trivial upperbound, namely (n− 1)k.

Our proof is based on a counting argument, and quantifies over possibly inefficient functions
too. Interestingly, giving an explicit efficient function f with such a lower bound will require
a breakthrough in complexity theory, as it would imply an Ω(n2) lower bound on the circuit
size of computing f . (We discuss this connection below.)
Functions with Low Bottleneck Complexity. Despite the above lower bound, there is a
large class of interesting functions which do have sublinear bottleneck complexity. One simple
but widely applicable example is addition in a finite group: the sum of n group elements
distributed among n parties can be aggregated bottom-up (and then disseminated top-down)
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using a constant-degree tree, with every party communicating O(d) group elements, where
d is its degree in the tree.2

A wider class of functions are obtained from the literature on streaming algorithms [47,
48]. Indeed, any streaming algorithm with a small memory and a small number of passes
corresponds to a low bottleneck complexity function. (Here, we refer to the actual function
that the streaming algorithm computes, which may in fact be an approximation to some
other desired function.) This is because we can design a protocol which passes around the
state of the streaming algorithm from one party to the next, in the order in which their
inputs are to be presented to the algorithm.
On the other hand, low bottleneck complexity protocols appear to be much more general

than streaming algorithms. Indeed, observe that the low bottleneck complexity protocol
described above has a very special communication structure of a chain (or multi-pass cycle).
We leave it as an open problem to separate these two notions – i.e., find functions which have
low bottleneck complexity protocols, but do not have low-memory streaming algorithms.
Finally, we note that, any n-input function with a constant fan-in circuit of subquadratic

size (i.e., o(n2) gates) has a sublinear bottleneck complexity protocol. To see this, first we
note that such a circuit can be made to have constant fan-out as well, by increasing the
circuit size by a constant factor.3 Then, a sublinear bottleneck complexity protocol can be
obtained from the circuit by partitioning all the o(n2) gates roughly equally among the n
parties, and letting the parties evaluate the gates assigned to them, communicating with
each other when wires cross party boundaries. The communication incurred by each party
is bounded by the number of wires incident on all the gates it is assigned, which is o(n).
In Section 5.2, we review the related communication compleixty models and lowerbounds

from the literature. In Section 5.3, we introduce a new measure of per-party communication
complexity for (distibuted) functions, called bottleneck complexity as well as a semi-
malicious security for MPC. In Section 5.4, we demonstrate the existence of n-party functions
with k bits of input for each party, that have bottleneck complexity Θ(nk). Showing an
explicit function with Ω(n) bottleneck complexity will require showing an explicit function
with Ω(n2) circuit size complexity. On the other hand, we observe that many useful classes
of functions do have o(n) bottleneck complexity.

2If the group is not abelian, the tree used should be such that its in-order traversal should result in the
parties to be ordered in the same way their inputs are ordered in the sum being computed.

3Given a gate with fan-out d > 2, consider the depth-1 tree T rooted that gate with d leaves being the
gates to which its outputs are connected. T can be replaced by an equivalent binary tree T ′ with the same
root and leaves, and d− 2 new internal nodes. The new internal nodes of T ′ can be “charged” to the leaves
of T . On doing this for all gates in the circuit, each gate gets charged at most as many times as its fan-in.
Since each gate in the original circuit has constant fan-in, this transformation increases the circuit size by
at most a constant factor.
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5.2 RELATED WORK

Communication complexity models. The vast majority of study in communication
complexity (c.f. [49]) focuses on the setting of only two parties, in which case the total
and bottleneck complexities of protocols align (asymptotically). In the multi-party setting,
several models are considered regarding how the input to f begins initially distributed among
the players. The most common such models are the “number-on-forehead” model, in which
parties begin holding all inputs except their own, and the model considered in this work (as
is standard in MPC), frequently known as the “number in hand” model, where each party
begins with his own input. In all cases, the “communication complexity” within the given
model refers to the total communication of all parties.
Communication complexity of MPC. Communication complexity of secure multiparty
computation (MPC) has been extensively studied over the years. Communication complexity
preserving compilers from insecure to secure protocols were introduced in the 2-party setting
by [50]. The setting of MPC with many parties was first predominantly considered in the
line of work on scalable MPC [51, 52]. Here the focus was on optimizing the complexity
as a function of the circuit size |C|, and the resulting n-party protocols have per-party
communication Õ(|C|/n) + poly(n). Some of these works explicitly achieve load-balancing
(e.g., [53, 54]), a goal similar in spirit to bottleneck complexity, where the complexity of the
protocol is evenly distributed across the parties. To the best of our knowledge, however, the
poly(n) term in the per-party communication complexity is Ω(n) in all works aside from [55],
which achieves Õ(|C|/n) amortized per-party communication but Õ(|C|/n + n) bottleneck
complexity (due to its dependence on [56]).
Communication Locality. A related notion to bottleneck complexity is communication
locality [57]. The locality of a party is the number of total other parties it must communicate
with throughout the protocol, and the locality of the protocol is the worst case locality of
any party. In [57], Boyle et al. studied locality in secure MPC and showed (based on various
computational assumptions) that any efficiently computable function has a polylog(n)-
locality secure MPC protocol.
Lower bounds on MPC communication complexity. As discussed, lower bounds
on standard multi-party communication complexity cannot directly imply meaningful lower
bounds on bottleneck complexity, as no such bound can exceed Ω(n) (attainable by all
parties sending their input to a single party), but this implies only a bound of Ω(1) bottleneck
complexity. For secure computation, in [58], Damgård et al. showed that securely evaluating
a circuit of m multiplication gates requires Ω(n2m) total communication in the information-
theoretic security setting. This implies a super-linear lower bound for bottleneck complexity
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in their setting. We note, however, that their lower bound does not apply to us, as we consider
computational security, and further, their lower bound does not apply to the setting where
the number of parties is larger than the security parameter.

5.3 OUR MODEL DEFINITION

5.3.1 Bottleneck Complexity

We introduce a new per-party communication metric for distributed computations.

Definition 5.1 (Bottleneck Complexity of Protocol). The individual communication
complexity of a party Pi in an n-party protocol π, denoted as CCi(π), is the expected number
of bits sent or received by Pi in an execution of π, with worst-case inputs.
The bottleneck complexity (BC) of an n-party protocol π is the worst-case communication

complexity of any party. That is, BC(π) = maxi∈[n] CCi(π).

Definition 5.2 (Bottleneck Complexity of Function). The bottleneck complexity of an n-
input function f is the minimum value of BC(π) when quantified over all n-party distributed
protocols π which correctly evaluate f .
Analogously, we define the MPC bottleneck complexity of f as the minimum BC(π)

quantified over all n-party protocols π which securely evaluate f .

Admissible Protocols. We will show techniques that transform general (insecure)
protocols to secure ones. Here we define the required minimal assumption of the original
protocols, which we refer to as admissibility. Roughly, a protocol is admissible if its next-
message function is polynomial-time computable and it has a fixed communication pattern.
Below Z+ denotes the set of non-negative integers.

Definition 5.3 (Admissible Protocol). Let f be a polynomial function, k be a security
parameter, and let π = {π1, ..., πn} be a possibly randomized n-party protocol, where πi is
a next message function of Pi. Let x = {x1, ..., xn} and r = {r1, ..., rn} be the input set
and the random string set respectively. Denote

{
mt
i,j(x, r)

}t∈[T ]

i,j∈[n]
as the set of the messages

generated by π(x, r), and let |mt
i,j(x, r)| ∈ [0, f(k)] be the length of message from Pi to Pj

at time t.4 We say π is admissible if it satisfies the following two conditions:

- Polynomial-Time Computable: For each i, next-message function πi is expressed by
a circuit of fixed polynomial-size in |xi|+ |ri|, with a universally bounded depth.

4Precisely, for each i ∈ [n], t ∈ [T ], {mi,j(x, r)}tj∈[n] ← πi

(
xi, ri, {mj,i(x, r)}t∈[t−1]

j∈[n]

)
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- Fixed Communication Pattern: A protocol π is said to have a fixed communication
pattern if, irrespective of the input and random-tapes of the parties, the total number
of rounds tmax is fixed and there is a function len : [tmax]× [n]× [n] → Z+ that maps
(t, i, j) to the length of message (possibly 0) from Pi to Pj at round t as determined
by π for any view of Pi.

Note that above we allow randomized protocols, as some interesting low bottleneck
complexity protocols (e.g., those derived from streaming algorithms) tend to be randomized.

5.3.2 Semi-Malicious Security for MPC

Intuitively, a semi-malicious adversary is one who follows the protocol specification
(similar to a semi-honest adversary), but who may choose its input and “random” coins for
the protocol following any arbitrary PPT strategy. These values may depend (efficiently)
on any public setup information such as a CRS or PKI, but must be chosen before the
protocol execution begins. Once it has chosen these values, it must follow the protocol as
specified, given the chosen input, and using the chosen coins in place of the random coins.
We allow the adversary to also abort communication with individual parties at any point in
the protocol (which, in our protocols, will invariably result in the honest party aborting).
We remark that a collection of similar but non-identical notions of semi-malicious

adversaries have been considered in prior works (e.g., [59, 60]), but with varied requirements
on when the adversary must commit to his choice of input/random. We observe that the
notion we consider is relatively weak, where all such information is chosen before protocol
execution.
More formally, a semi-malicious adversary Adv is modeled as an interactive Turing machine

(ITM) which, in addition to the standard tapes, has a special auxiliary tape. At the start of
the protocol, A selects for each corrupted party Pi an input xi and randomness ri (which may
depend on the original inputs of corrupted parties and public setup information), and writes
xi, ri to its special input auxiliary tape. Adv then honestly follows the protocol specification
for the corrupt parties given this input and random tape. At each round, it can also choose
any honest party to abort the execution.
We say that a protocol Π evaluating a function f is semi-malicious secure if it is a

standalone secure protocol, but restricted to PPT semi-malicious adversaries.
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5.4 LOWERBOUND ON BOTTLENECK COMPLEXITY OF DISTRIBUTED
FUNCTIONS

In this section we show that for most functions f on n inputs (each input could be as
short as 1 bit, and the output a single bit delivered to a single party), for any distributed
computation protocol π that implements f , the (incoming) bottleneck complexity BC(π) is
at least n − O(log n) bits. In fact, this holds true even without any security requirement.
This is tight in the sense that, even with a security requirement, there is a protocol in
which only one party has individual communication complexity Ω(n), and all others have
communication proportional to their inputs and outputs (with a multiplicative overhead
independent of the number of parties).
This is somewhat surprising since many interesting functions do have protocols with

constant communication complexity. As mentioned before, any (possibly randomized)
function which has a streaming algorithm or a sub-quadratic sized circuit (with small fan-in
gates) gives rise to low botteleneck complexity protocols.
To show our lower-bound, we need to therefore rely on functions with roughly a quadratic

lower-bound on circuit size. Given the current lack of explicit examples of such functions, we
present an existential result, and leave it as a conjecture that there are n-bit input boolean
functions with polynomial sized circuits with bottleneck communication complexity of Ω̃(n).
For simplicity, we discuss the case of perfectly correct protocols, but as we shall point out, a
small constant probability of error does not change the result significantly. This result says
that there is a function (in fact, most functions) such that the best bottleneck complexity
is almost achieved by the trivial protocol, in which one party receives the inputs of all the
other n− 1 parties and carries out the computation locally.

Theorem 5.2. ∃f : {0, 1}k×n → {0, 1} such that any n-party, each with k bits input,
distributed computation protocol that computes f correctly will have at least one party
receiving at least (n− 1)k −O(log nk) bits in the worst-case.

Proof. We establish our lower bound using a counting argument. Consider any (possibly
randomized) protocol for computing f . Since we assume perfect correctness, we can fix
the random-tapes to yield the smallest bottle-neck communication complexity, and derive a
deterministic protocol.
Consider the “input transcript” of a party to include all the messages it received from all

the parties, through out the protocol. Given our requirement that the messages in each link
is encoded using prefix-free codes, such an input transcript can be parsed into the sequence
of messages mt

i,j received by Pj (for all t, j). The same holds for the output transcript for
each party.
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Now, the behavior of each party Pi is fully specified as a function of its input and its
input transcript. That is, the protocol π is completely specified by the set of functions
{πi}i∈[n] each of which maps an input xi and an input transcript to an output transcripts
(not all such functions may correspond to valid protocols, as they may violate causality and
let outgoing messages depend on future incoming messages; but all protocols yield such a
set of functions).
Suppose the incoming communication foe each party for the protocol is d bits. Then the

outgoing communication for each party is at most nd bits. Thus, each πi can be written as
a function from {0, 1}d+k to {0, 1}nd. There are 22d+k×nd such functions. Since a protocol is
a combination of n such functions, we have:

Number of protocols with bottle-neck at most d ≤ 22d+k×nd×n. (5.1)

On the other hand, the total number of boolean functions from nk is 22nk . Hence,

22d+k×nd×n ≥ 22nk ⇒ d+ k + log(n2d) ≥ nk (5.2)

⇒ d+ k + log(n3k) ≥ nk assuming d ≤ nk (5.3)

⇒ d ≥ (n− 1)k − 3 log(nk) (5.4)

Thus, if d ≤ nk, then d ≥ (n− 1)k − 3 log(nk). That is, d ≥ (n− 1)k −O(log nk). QED.

Remark 5.1. If we allow a small constant probability of error, by an averaging argument
we can fix the randomness of the parties so that the resulting deterministic protocol will
evaluate the function correctly in most of the domain. That is, it evaluates a function whose
truth table has a small hamming distance from the original function. The calculation above
can be repeated with each protocol accounting for at most 2c2nk functions for a constant
c < 1, leading to d ≥ (n− 1)k −O(log(nk − log( 1

1−c))).
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CHAPTER 6: SECURE TRANSFORMATIONS PRESERVING
BOTTLENECK COMPLEXITY

6.1 OVERVIEW

We next turn our attention to achieving low bottleneck complexity for secure computation
of functionalities. We focus on the general setting where up to n− 1 out of n parties can be
corrupted. As a baseline, we observe that the MPC protocol of Dodis et al. [61] based on
“additive-spooky encryption” can be easily adapted to obtain generic secure computation
with O(n) bottleneck complexity (where O(n) hides factors of the security parameter).
Therefore, as in the insecure setting, we focus on constructing MPC protocols with sublinear
o(n) bottleneck complexity.
Specifically, we ask the question:

If a function f can be computed with bottleneck complexity L,
can it be computed securely with the same bottleneck complexity,

up to a multiplicative overhead of the security parameter?

We note that the goal of sublinear bottleneck complexity is strictly stronger than the
recently studied problem of MPC with sublinear communication locality [57]. The locality
of a protocol is the maximum number of other parties that any party must communicate
with during the course of the protocol. It is easy to see that sublinear bottleneck complexity
directly implies sublinear locality (since sending/receiving o(n) bits means that a party can
only communicate with o(n) neighbors); however, as locality does not place any requirements
on the number of bits communicated by a party, the converse is not true. Indeed, without
security requirements, every function has an O(1)-local protocol, which is not the case for
bottleneck complexity.
We show a general compiler which transforms any (possibly insecure) efficient multi-

party protocol Π for computing a function f into a protocol Π′ for securely computing f ,
preserving the per-party communication and computation requirements up to O(λc) factors
in the security parameter λ for small constant c. The original protocol Π can have an
arbitrary communication pattern; however, we require that this pattern must be fixed a
priori (independent of inputs) and known to all parties. Our compiler additionally preserves
the topology of communication graph of Π (and in particular, preserves locality).

Theorem 6.1. (Informal.) There is a transformation which maps any (possibly insecure)
efficient protocol with fixed-communication-pattern for an n-party distributed function f into
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a secure MPC protocol for f with asymptotically (as a function of n) the same communication
and computational requirements per party, and using the same communication graph as the
original protocol.

The main tools underlying the result include a new notion of incremental fully
homomorphic encryption, which we show can be instantiated from the Learning With Errors
(LWE) assumption via [32], as well as zero-knowledge succinct non-interactive arguments of
knowledge (ZK-SNARK) [28] with a “ID-based” simulation-extractability property [62, 63].
We rely on a setup that includes a common random string and a (bare) public-key
infrastructure, where all the n parties have deposited keys for themselves, and which all
the parties can access for free. The setup can be reused for any number of executions.

6.1.1 Our Techniques

We describe the main ideas underlying our positive result: the bottleneck-complexity-
preserving transformation from arbitrary protocols to secure ones.
At a high-level, we follow an intuitive outline for our compiler: (1) We first compile

an insecure protocol into a protocol that is secure against semi-honest (or honest-but-
curious) adversaries using fully homomorphic encryption (FHE). (2) We then use zero-
knowledge succinct arguments of knowledge (ZK-SNARKs) to compile it into a protocol
that is (standalone) secure against malicious adversaries. However, we run into several
technical challenges along the way, requiring us to develop stronger guarantees for FHE
and SNARKs, as well as some other new ideas. We elaborate on these challenges and our
solutions below.
Semi-honest Security. A natural starting idea to obtain semi-honest security is to execute
an “encrypted” version of the underlying (insecure) protocol by using FHE. Once the parties
have the encrypted output, they execute the FHE decryption process to learn the output.
The immediate problem with implementing this idea in the multiparty setting is which key
must we use for encryption and decryption. If a single party knows the (entire) decryption
key, then we cannot guarantee security.
To address this problem, two approaches have been developed in the literature: threshold

FHE [60], where the parties jointly generate a public key for an FHE scheme such that each
party only knows a share of the decryption key, and multi-key FHE [64], where each party
has its own public and secret key pair and FHE evaluation can be performed over ciphertexts
computed w.r.t. different public keys.
While these approaches have been shown to suffice for constructing round-efficient MPC
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protocols, they are not directly applicable to our setting. This is for two reasons:

• Threshold FHE and multi-key FHE systems are defined in the broadcast model of
communication where each party gets to see the messages sent by all the other parties.
In contrast, our setting is inherently point-to-point, where a party only communicates
with its neighbors in the communication graph of the underlying insecure protocol.
Indeed, in order to maintain sublinear bottleneck complexity, we cannot afford each
party to communicate with all the other parties.

• Further, in all known solutions for threshold FHE [60] and multi-key FHE [31, 64, 65,
66, 67], the size of one or more protocol messages of each party grows at least linearly
with the number of parties. This directly violates our sublinear bottleneck complexity
requirement.

To address these issues, we define and implement a new notion of incremental FHE
(IFHE). Roughly, an IFHE scheme is defined similarly to threshold FHE, with the following
key strengthened requirements: a “joint” public key can be computed by incrementally
combining shares provided by different parties in an arbitrary order. Similarly, a ciphertext
w.r.t. the joint public key can be decrypted by incrementally combining partial decryption
shares provided by parties in an arbitrary order. Crucially, the intermediate keys and partial
decryption values must be succinct.
We construct an IFHE scheme with appropriate security guarantees based on the Gentry-

Sahai-Waters FHE scheme [32]. Using IFHE, we are able to directly compile an insecure
protocol into a semi-honest secure protocol. In fact, this protocol can withstand a slightly
stronger adversary – called a semi-malicious adversary [60] – which is allowed to maliciously
choose its random tape. This will be crucially exploited in the next step, because without it,
one will need to enforce honest random-tapes for all the parties (using n-way coin-tossing-
in-the-well) which would incur Ω(n) communication already.
From Semi-Malicious to Malicious Security. A natural approach to achieve security
against malicious adversaries is to use the GMW paradigm [19]. Roughly, in the GMW
compiler, each party first commits to its input and random tape. Later, whenever a party
sends a message of a semi-malicious protocol,1 it also proves in ZK to all the other parties
that it is behaving correctly w.r.t. the committed input and random tape.
The GMW commit-and-prove methodology is problematic in our setting since we cannot

allow a party to talk to all other parties (directly or indirectly through the other nodes).
1The standard GMW compiler is defined for semi-honest protocols and also involves a coin-tossing step.

Here, we consider a natural variant that works for semi-malicious protocols.
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Yet, in order to achieve security, each honest party must verify not just that its neighbors
behave correctly, but that all corrupt parties (many of whom may not directly interact with
any honest party) behaved honestly. A priori, these may seem to be contradictory goals.
We address all of these challenges by presenting a new generic compiler for Verifiable

Protocol Execution (VPE), modeled as a functionality Fvpe. Our protocol Πvpe for
implementing Fvpe asymptotically preserves the per-party communication and computational
complexity (up to a multiplicative factor polynomial in the security parameter) of the
underlying semi-malicious protocol. We construct Πvpe from two main ingredients: (1)
a new commitment protocol that allows the parties to compute a succinct “aggregate”
commitment over the inputs and randomness of all of the parties. (2) ZK-SNARKs with a
strong extraction property as well as simulation-soundness to ensure that adversary cannot
prove false statements even upon receiving simulated proofs. We refer the reader to technical
sections for details on our commitment protocol. Here, we discuss our use of ZK-SNARKs.
ID-Based Simulation-Extractable ZK-SNARKs. We rely on ZK-SNARKs to let
parties provide not just proofs of correctly computing their own messages, but also of having
verified previous proofs recursively. This use of SNARKs for recursive verification resembles
prior work on proof-carrying data [68, 69]. The key difference is that proof-carrying data
only addresses correctness of computation, whereas in our setting, we are also concerned
with privacy. In particular, in order to argue security, we also require these proofs to be
simulation-sound with extractability (or simply simulation-extractable), which presents a
significant additional challenge.
The core challenge in constructing simulation-extractable ZK-SNARKs (SE-ZK-SNARKs)

arises from the inherent limitation that extraction from the adversary must be non-black-
box (since the size of the extracted witness is larger than the proof itself), but the adversary
receives simulated proofs which he cannot directly produce on his own. Indeed, for this
reason SE-ZK-SNARKs are impossible to achieve with strong universal composability (UC)
security [70]. To reduce the security of an SE-ZK-SNARK construction to an underlying
knowledge assumption (such as standard SNARKs), one must thus either (a) start with
an assumption that guarantees non-black-box extraction even in the presence of an oracle
(which can be problematic [71]), or (b) somehow in the reduction be able to provide the
code to answer the adversary’s simulated proof queries, without voiding the reduction by
including the simulation trapdoor itself.
Two recent works have presented constructions of SE-ZK-SNARKs, each adopting a

different approach. Groth and Maller [72] embody approach (a), constructing full SE-ZK-
SNARKs from a new specific pairing-based knowledge assumption which assumes extraction
in the presence of black-box access to an oracle with the trapdoor. Alternatively, Garman
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et al. [73] take approach (b), basing their construction on standard SNARKs; however,
their construction is only applicable to a restricted security model where the statements on
which the adversarial prover requests simulated proofs are fixed in advance (in which case
these proofs can be hardcoded in the reduction). The case where the adversary’s queries
are chosen adaptively as a function of previously simulated proofs (which we need for our
transformation) is not currently addressed in this setting.
We provide a new solution for handling adaptive queries, without relying upon oracle-

based assumptions as in [72]. We consider an ID-based notion of SE-ZK-SNARK, where each
proof is generated with respect to an identity (chosen from a set of identities that are fixed in
advance). In our definition, the adversary must fix a set ID∗ of “honest” identities in advance
and can then receive simulated proofs on adaptively chosen statements w.r.t. identities from
this set. It must then come up with an accepting proof for a new statement w.r.t. an identity
id /∈ ID∗.
We show how to transform any SNARK argument system into an ID-based SE-ZK-SNARK

by relying on only standard cryptographic assumptions. Very roughly, in our construction,
it is possible to “puncture” the trapdoor trap for the CRS w.r.t. an identity set ID∗. A
punctured trapdoor trapID∗ can only be used to simulate the proofs w.r.t. identities id ∈ ID∗,
but cannot be used to simulate proofs w.r.t. identities id /∈ ID∗. Using such a punctured
trapdoor, we are able to successfully implement approach (b) in the adaptive setting. We
implement this idea by using identity-based signatures, which can be readily constructed
using certificate chains from a standard signature scheme.
Ultimately, we obtain recursively verifiable ID-based SE-SNARKs generically from

signatures and (standard) SNARKs with an “additive extraction overhead.” While the latter
is a relatively strong requirement, such primitives have been considered in prior work [69, 74]
and appears to be as justified as the standard SNARK assumption.

6.2 INCREMENTAL FHE

We define and implement a new notion of incremental FHE (IFHE), which is used within
our main positive result. We start by providing syntax and security definitions for IFHE in
Section 6.2.1. Next, we describe our construction of IFHE in Section 6.2.2. We refer the
readers to Section 2.6.3 for some preliminaries and the Gentry-Sahai-Waters (GSW) FHE
scheme [32].
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6.2.1 Definitions

(Leveled) Fully Homomorphic Encryption. A fully homomorphic encryption (FHE)
scheme consists of algorithms (Keygen,Encrypt,Eval,Decrypt), where (Keygen,
Encrypt,Decrypt) constitute a semantically secure public-key encryption scheme, and
Eval refers to the homomorphic evaluation algorithm on ciphertexts. An `-leveled FHE
scheme supports homomorphic evaluation of circuits of depth at most `.
Incremental FHE. An IFHE scheme is defined similarly to threshold FHE [60], with
the following key modifications: a “joint” public key can be computed by incrementally
combining shares provided by different parties in an arbitrary order. Similarly, a ciphertext
w.r.t. the joint public key can be decrypted by incrementally combining partial decryption
shares provided by parties in an arbitrary order. Crucially, the intermediate keys and partial
decryption values must be succinct.
For technical reasons, it is convenient to describe the joint decryption procedure via three

sub-algorithms: A procedure PreDec which pre-processes a homomorphically evaluated
ciphertext to be safe for joint decryption; PartDec run by each individual party on
a ciphertext (with his share of the secret key) to generate his contribution toward the
decryption; and CombineDec which combines the outputs of PartDec from each party
for a given ciphertext to reconstruct the final decrypted output. In addition to standard
semantic security, we also require the output of PartDec to hide information about the
secret key share that was used; this is captured by the Simulatability of Partial Decryption
property below.
We proceed to give a formal definition.

Definition 6.1 (Incremental FHE). An incremental fully homomorphic encryption
(IFHE) scheme is an FHE scheme with an additional algorithm IFHE.CombineKeys
and with Decrypt replaced by three algorithms IFHE.PreDec, IFHE.PartDec and
IFHE.CombineDec. By pkS we denote a combined public key of a subset S ⊆ [n] of
parties. Particularly, pk{i} = pki is generated by Pi using the algorithm Keygen, and
pk = pk[n] is the final public key. Similarly, by vS we denote a combined decryption, and by
vi when S = {i}. For the completeness of notations, let pkS and vS be empty strings when
S = ∅. We describe the syntax of the four algorithms as follows:

• IFHE.CombineKeys(pkS,pkT ): On input 2 combined public keys pkS,pkT , where
S ∩ T = ∅, output a combined public key pkS∪T .

• IFHE.PreDec(pk,C): On input a final public key pk and a ciphertext C, sample a
public random R, and output a re-randomized ciphertext C′ of the same plaintext.
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• IFHE.PartDec(pk, ski,C): On input a final public key pk, ith secret key ski,
ciphertext C, output a partial decryption vi.

• IFHE.CombineDec(vS, vT ): On input 2 partial decryptions vS, vT , where S ∩ T = ∅,
if |S ∪T | < n, output a partial decryption vS∪T ; otherwise, output a plaintext y as the
final decryption.

Also, we require the following additional properties:

Efficiency: There are polynomials poly1(·), poly2(·) such that for any security parameter λ
and any S ⊆ [n], S 6= ∅, |pkS| = poly1(λ) and |vS| = poly2(λ).

Correctness: Given a set of plaintexts and a circuit to evaluate, the correctness of IFHE says
that the FHE evaluation of the circuit over the ciphertexts can always be decrypted
to the correct value, where the ciphertexts are encryption of plaintexts using a single
combined public key.

Furthermore, by “Incremental” FHE, we mean that the final combined public key
as well as the final combined decryption can be formed in an arbitrary incremental
manner. That is, a pki can first combine with any other pkj to form a combined
key pk{i,j}, and pk{i,j} can then combine with any other pkk to form pk{i,j,k} or with
pk{k,`} to form pk{i,j,k,`}. The final pk[n] should work for all possible combining orders
as long as it collects pk1, ...,pkn, and it is similar for the combining decryption. We
will use a binary tree to describe the combining order and particularly use tree0 to
describe the combing public key and tree0 the combing decryption. For b = 0 and 1,
treeb contains N b nodes {Sbi }i∈[Nb], including a root Sb1. Because the number of leaves
equals n, we have N b = O(n). For brevity, we will name a node by its index, and
denote the parent of the i-th node by parent(i). Also, w.l.o.g., assume each node i has
two children, and particularly parent(2) = parent(3) = 1.

Definition 6.2 (Correctness). For any sequence of plaintexts x1, . . . , xn and circuit
f of depth bounded by d, and for all b = 0, 1, and for any Sb1, ...SbNb ∈ 2[n] such that
Sb1 = [n], for all j ∈ leavesb, |Sbj | = 1, and for all i, j, k with i 6= j and k = parent(i) =
parent(j), Sbi ∩Sbj = ∅ and Sbi ∪Sbj = Sbk, let EXP.IFHE be the following experiment of
an IFHE scheme:

1. params← IFHE.Setup(1λ, 1d).

2. ∀i ∈ [n], (pki, ski)← IFHE.Keygen(params).
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3. ∀i, j, k ∈ N0 with i 6= j and k = parent(i) = parent(j),
pkS0

i
← IFHE.CombineKeys(pkS0

2i
,pkS0

2i+1
).

4. ∀i ∈ [n],Ci ← IFHE.Encrypt(pk, xi).

5. C← IFHE.Eval(C1, . . . ,Cn, f).

6. C ′ ← IFHE.PreDec(pk,C).

7. ∀i ∈ [n], vi ← IFHE.PartDec(pk,C′, ski).

8. ∀i, j, k ∈ N1 with i 6= j and parent(i) = parent(j) = k 6= 1,
vS1

k
← IFHE.CombineDec(vS1

i
, vS1

j
).

9. Output y ← IFHE.CombineDec(vS1
2
, vS1

3
).

Then the correctness for the scheme holds if and only if

Pr[EXP.IFHE({xi}i∈[n]]; f ; {Sbi }i∈[Nb], b ∈ {0, 1}) = f(x1, ..., xn)] = 1. (6.1)

Semantic security under Combined Keys (against Semi-Malicious Adversary):
Given the parameters prepared in the initial setup, the (corrupted) parties {Pj}j 6=i,
instead of using random strings to compute {pki, ski}j 6=i, can use an arbitrary string
to generate {pki, ski}j 6=i. Then as long as an honest party generates (pki, ski)
independently, the encryption using the final combined public key (pk[n], sk[n]) is
semantically secure.

Formally, consider the following experiment:

1. (params)← Setup(1λ, 1d)

2. ∀j 6= i, Adv computes (pkj, skj) according to Keygen(params) but replaces the
randomly sampled string by a chosen one. Then Adv computes a combined key
pk[n]\{i} according to CombineKeys, picks x ∈ {0, 1} and sends (pk[n]\{i}, x) to
the challenger.

3. The challenger computes (pki, ski)← Keygen(params), pk← CombineKeys(
pki,pk[n]\{i}), and chooses a random bit β $← {0, 1}.

• If β = 0, it computes C = Encrypt(pk, 0).
• Else, it computes C = Encrypt(pk, x).

And it sends C to Adv.

4. Finally Adv outputs a bit β′.
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We say that the IFHE scheme has semantic security under combined keys if the
advantage Pr[β′ = β]− 1/2 is negligible in the security parameter λ.

Simulatability of Partial Decryption: Let x ∈ {0, 1} be an input plaintext and C′ be
an IFHE encryption of x. There exists a PPT simulator Sim which, given the combined
public key pk, ciphertext C′, a plaintext output y, an index i ∈ [n] and all but the i-th
key {skj}j∈[n]\{i}, produces a simulated partial decryption v′i computationally close to
the honestly generated value vi:{

pk,C′, v′i
}

c≈
{

pk,C′, vi
}
, (6.2)

where vi ← IFHE.PartDec(pk, ski,C′) and v′i ← Sim(pk, {skj}j∈[n]\{i}, y,C′).

6.2.2 Construction of IFHE

We present an IFHE scheme building on the FHE scheme of Gentry et al. [32]. The Setup,
Keygen, Encrypt, and Eval parts are the same as those of [32], while CombineKeys,
PreDec, PartDec and CombineDec parts are new. The algorithms are described as
follows:
An IFHE scheme.

• Setup: (params) ← IFHE.Setup(1λ, 1d). Same as GSW, where params =
(q, n,m, χ,Bχ,B).

• Key Generation: (pki, ski)← IFHE.Keygen(params). Same as GSW, where pki =
(B,bi) and ski = ti ≡ (−si, 1).

• Combining Keys: pkS∪T ← IFHE.CombineKeys(pkS,pkT )
On input pkS = (B,bS) and pkS = (B,bT ), output pkS∪T = (B,bS + bT ).
Particularly pk[n] is abbreviated as pk or a matrix A.

• Encryption: Ci ← IFHE.Encrypt(pk, xi). Same as GSW.

• Evaluation: C← IFHE.Eval(C1, ...,Cτ ; f). Same as GSW.

• Preparing Decryption: C′ ← IFHE.PreDec(pki,C)
On input pk = A and C ∈ Zn×mq , sample a public random matrix R in {0, 1}m×m and
output C′ = C + AR.
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• Partial Decryption: vi ← IFHE.PartDec(pki, ski,C′)
On input pk = A, ski ≡ ti ≡ (−si, 1), and C′ ∈ Zn×mq , sample e′i ← χm, set t′i = ti

if i = 1 and t′i = (−si, 0) if i > 1, and output vi = (t′iC′ − e′i)G−1(wT ), where
w = (0, ..., 0, dq/2e) ∈ Znq .

• Combining Decryption: IFHE.CombineDec(vS, vT )
On input two partial decryptions vS, vT with S ∩ T = ∅, compute a partial decryption
vS∪T = vS + vT . For |S ∪ T | < n, output vS∪T ; for |S ∪ T | = n, output a plaintext
y =

⌊
v
q/2

⌉
.

Below we show this scheme fullfils the required properties described in Section 6.2.1.

Lemma 6.1 (Efficiency). For the IFHE scheme, there are polynomial functions
poly1(·), poly2(·) such that for any security parameter λ and any S ⊆ [n], S 6= ∅, |pkS| =
poly1(λ) and |vS| = poly2(λ).

Proof sketch: This is ascribed to the key homomorphism property as in GSW. Specifically,
according to the scheme, for all S, T ⊂ [n], pkS∪T = (B,bS + bT ), where bS + bT is just
addition over Zq, so |pkS∪T | = |pkS| = |pkT |. Similarly, vS∪T = vS + vT is also addition
over Zq so |vS∪T | = |vS| = |vT |. Thus, for all S ⊆ [n], S 6= ∅, |pkS| = |pk1| = poly1(λ) and
|vS| = |v1| = poly2(λ) for some polynomial poly1 and poly2. QED.

Lemma 6.2 (Correctness). The IFHE scheme satisfies the correctness.

Proof sketch: Recall that A = pk[n], ti = ski = (−si, 1) and bi = siB + ei. Let t =
(−∑n

i=1 si, 1). First, for combining keys, because pkS∪T = (B,bS + bT ) for all disjoint S
and T , we have A = (B,∑n

i=1 b{i}). Thus, tA = ∑n
i=1 ei ≈ 0.

Second, suppose for now f(x) = x so the FHE evaluation is trivial.
Then in the decryption preparation, we re-randomize the ciphertext with a public random

R and so C′ = C + AR = AR′ + xG for some small matrix R′.
Finally for combining decryption, since vS∪T = vS + vT , vi = (t′iC + e′i)G−1(wT ) and∑n
i=1 t′i = (−∑n

1 si, 1) = t, we have:

v[n] + t′0CG−1(wT ) =
(

(
n∑
i=1

t′i)AR′ + x(
n∑
i=1

t′i)G + (
n∑
i=1

e′i)
)
G−1(wT ) ≈ xtwT = xdq/2e.

(6.3)
Hence by checking whether this value is close to 0 or dq/2e, we can recover x ∈ {0, 1} with
probability 1.
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For general circuit f , since the encryption is the same of GSW, by a similar demonstration
of the homomorphism for GSW, the homomorphism property also holds for the IFHE scheme.
Therefore putting them together, we have:

Pr[EXP.IFHE({xi}i∈[τ ]; f ; {Sbi }i∈[2n−1],b∈{0,1}) = f(x1, ..., xτ )] = 1. (6.4)

QED.

Lemma 6.3 (Semantic Security under Combined Keys). The IFHE scheme is secure under
combined keys.

Proof sketch: From Keygen, the joint distribution pki = (B,bi) is computationally
indistinguishable from a uniformly random matrix by the LWE hardness assumption and
so is pk = A = (B,bi + b′) for any b′ = ∑

j 6=i bj which is generated independently of bi.
Consequently C← GSW.Encrypt(pk, x) = AR+xG, where R $← {0, 1}m×m. By the leftover
hash lemma, AR is computationally indistinguishable from a uniformly random matrix, and
so is C (Otherwise there is a polynomial-time approach to distinguish (B,bi) from random.)
QED.

Lemma 6.4 (Simulatability of Partial Decryption). For the IFHE scheme, given the output
y, the ciphertext C′, all but the i-th key {skj}j∈[n]\{i}, the partial decryption yi is simulatable.

Proof sketch: According to the scheme, after PreDec, C′ = C+AR = AR′+yG for some
small matrix R′. Recall pk = A = (B,b), where b = ∑n

i=1 siB+ei, and ski = ti = (−si, 1).
Let t′0 = (0n−1, 1), and recall t′1 = t1 and t′i = (−si, 0) for i > 1.
First, for i > 1, vi = (t′iC′−e′i)G−1(wT ) = −(siBR′+ e′i)G−1(wT ), and for i = 1, consider

v1 − t′0C′G−1(wT ) = ((t′1 − t′0)C′ − e′1)G−1(wT ) = −(s1BR′ + e′1)G−1(wT ). Note that the
distribution (BR′, vi)

c∼= (B′,b′G−1(wT ))
c∼= (BR′, v1 − t′0C′G−1(wT )), where (B′,b′) $←

Zn×mq by the LWE assumption.
Let t−1 = (−∑j 6=1 sj, 0) and t−i = (−∑j 6=i sj, 1) for i 6= 1. Sample ẽ ← χm. Then we

construct v′i = y · q2 − (t−iC′ + ẽ)G−1(wT ) for all i.
Note that for i 6= 1, v′i = y · q2 − (siBR′ + ẽ + yt−iG)G−1(wT ), and for i = 1, v′i −

t′0C′G−1(wT ) = y · q2− (siBR′+ ẽ+yt′0G)G−1(wT ). Since yt−iGG−1(wT ) = yt′0wT = y · q2 , we
have v′i = −(siBR′ + ẽ)G−1(wT ) for i 6= 1 and v′1 − t′0C′G−1(wT ) = −(s1BR′ + ẽ)G−1(wT ).
By LWE assumption, the distribution

(BR′, v′i)
c∼= (B′′,b′′G−1(wT ))

c∼= (BR′, v′1 − t′0C′G−1(wT )), (6.5)

where (B′′,b′′) $← Zn×mq .
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Thus, for all i, vi
c∼= v′i, and

⌊
(vi+(

∑
j 6=i t′j)C

′G−1(wT )
q/2

⌉
= y =

⌊
(v′i+(

∑
j 6=i t′j)C

′G−1(wT )
q/2

⌉
, together

implying {A,C′,R, vi}
c∼= {A,C′,R, v′i}.

QED.

Syntax Extension. For ease of use, we extend the syntax of IFHE.JoinKeys for combining
several public keys and the syntax of IFHE.CombineDec for combining several partial
decryptions at one time.

• Combining Keys: pkS1∪,...,∪S` ← IFHE.CombineKeys(pkS1 , . . . ,pkS`)
On input pkS1 , . . . ,pkS` , where S1, . . . , S` ⊆ [n] are disjoint, compute pkS1∪S2 ,

pk(S1∪S2)∪S3 , . . . ,pk(S1∪,...,∪S`−1)∪S` incrementally and finally output pkS1∪,...,∪S` .

(Alternatively, in our scheme pkS1∪,...,∪S` = (B,∑`
i=1 bSi).)

• Combining Decryption: vS1∪,...,∪S` ← IFHE.CombineDec(vS1 , . . . , vS`)
On input partial decryptions vS1 , . . . , vS` , where S1, . . . , S` ⊆ [n] are disjoint„ compute
a partial decryption vS1∪S2 , v(S1∪S2)∪S3 , . . . , v(S1∪,...∪S`−1)∪S` , and finally if S1∪ . . .∪S` ⊂
[n] output vS1∪...∪S` ; otherwise, a plaintext.

(Alternatively in our scheme vS1∪,...∪S` = ∑`
i=1 vSi , and for S1 ∪ . . . ∪ S` ⊂ [n], output

vS1∪...∪S` ; otherwise, y =
⌊
v
q/2

⌉
.)

6.3 SEMI-MALICIOUS PROTOCOL

In this section, we demonstrate how to convert an arbitrary admissible multi-party
distributed protocol Π (as per Definition 5.3) for computing a function f to a protocol Πsm

for computing f secure against semi-malicious adversaries, while preserving the per-party
computation and communication requirements of Π up to poly(λ) multiplicative factors,
independent of the number of parties n. In fact, aside from two additional phases where
information is communicated along a spanning tree of the communication network induced
by Π, our protocol mimics the precise communication patterns of Π.
The communication pattern of the starting protocol Π can be arbitrary, but we require

that it be fixed and known a priori (i.e., not data dependent). The same assumption is made
for (a bound on) the message length on each active communication channel in each round.
We assume without loss of generality that the output of Π is precisely the evaluation of f
on parties’ inputs and no additional information.
For simplicity of exposition, we present the transformation for deterministic protocols Π;

however, as discussed below, our solution can be extended to handle randomized protocols via
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a simple coin tossing procedure, leveraging the fact that while the semi-malicious adversary
can arbitrarily choose his “randomness,” he must commit to these values before the protocol
begins.
Let Π be a protocol defined by deterministic next-message function with the following

syntax: (µi,1, . . . , µi,n) = NextMsg(i, t, xi,Transc(i, r − 1)), where: i is the relevant party id,
t is the present round number, xi is party i’s secret input (including secret randomness),
Transc(i, t− 1) denotes the entire transcript held by party i after the previous round t− 1,
and (µi,1, . . . , µi,n) denote the respective messages to be sent by party i to respective parties
1, . . . , n in this round (where µi,j = ∅ if no message is to be sent from i to j).
Assume a given spanning tree tree over the underlying network graph induced by Π. Let

depth(tree) = d. Denote P1 as the party at the root (level 0), chldrn(j) be the children set
of a party Pj, and parent(j) be the parent of Pj in tree. For i ∈ [n], let desc(i) denote the
set of all descendants of i in the tree.
The protocol Πsm takes place in three phases, as described below.

Semi-Malicious Pattern-Preserving Protocol Πsm

Let the underlying protocol Π be defined by next-message function NextMsg.

Setup

1. params← IFHE.Setup(1λ, 1d)

2. All parties receive params as a common random string.

Phase 1: Key setup

1. For ` = d, . . . , 0: For every i ∈ [n] for which Pi is at level ` of tree,

(a) Aggregate public keys:
i. Denote the received public keys (if any) as {pkdesc(j)}j∈chldrn(i).
ii. Generate a IFHE key pair: (pki, ski)← IFHE.Keygen(params).
iii. Combine keys: pkdesc(i) ← IFHE.CombineKeys(pki, {pkdesc(j)}j∈chldrn(i)).

(b) Aggregate randomness values (used to rerandomize output ciphertext):
i. Denote the received random strings (if any) as {randj}j∈chldrn(i).
ii. Sample a random string: randi ← {0, 1}λ.
iii. Combine random values: randdesc(i) = ⊕

j∈chldrn(i) randj.
(c) If ` = 0 (i.e., root node), let pk := pkdesc(i) and r := randdesc(i).
(d) Else, if ` 6= 0, send pkdesc(i) to parent node parent(i).

2. For ` = 0, . . . , d− 1: For every i ∈ [n] for which Pi is at level ` of tree,
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(a) Let pk be the key received from parent parent(i). Send pk to all children,
{Pj|j ∈ chldrn(i)}.

Phase 2: Computation Each party Pi performs the following.

1. Initialize T̂ransc(i, 0)← ∅.

2. Encrypt input under joint key: x̂i ← IFHE.Encrypt(pk, xi).

3. For each round t = 1, . . . , rounds of the original protocol, do:

(a) Update transcript: Let T̂ransc(i, t)← T̂ransc(i, t−1)∪{(j, t, µ̂j,i)}j∈[n], where
µ̂j,i denotes the (encrypted) message sent from Pj to Pi in the previous round
(empty if no such message exists).

(b) Homomorphically evaluate the next-message function:
(µ̂i,1, . . . , µ̂i,n)← IFHE.Eval(x̂i, T̂ransc(i, t); NextMsg(i, t, ·, ·, ·)).

(c) For each j ∈ [n] that Pi sends a message to in this round t

4. Let ŷ denote the final evaluated ciphertext held by the root party, corresponding
to an encryption of the desired evaluation output.
Root party rerandomizes using rand: i.e., ŷ ← IFHE.PreDec(pk,C; rand).

Phase 3: Decryption

1. For ` = 0, . . . , d− 1: For every i ∈ [n] for which Pi is at level ` of tree,

(a) Let ŷ be the ciphertext received from parent parent(i). Forward ŷ to all
children, {Pj|j ∈ chldrn(i)}.

2. For ` = d, . . . , 0: For every i ∈ [n] for which Pi is at level ` of tree,

(a) Denote the received partially decrypted ciphertexts as {ŷdesc(j)}j∈chldrn(i).
(b) Compute own contribution of decryption: ŷi ← IFHE.PartDec(pk, ski, ŷ).
(c) Combine decryptions: ŷdesc(i) ← IFHE.CombineDec(ŷi, {ŷdesc(j)}j∈chldrn(i)).
(d) If ` 6= 0 (i.e., not root node), send pkdesc(i) to parent node parent(i).

3. Root party P1: Output y := ŷdesc(0).

Theorem 6.2. Let IFHE be an incremental FHE scheme, and Π be an n-party protocol for
evaluating a function f with fixed communication pattern. Then the protocol Πsm securely
evaluates f against semi-malicious corruptions, preserving the per-party computation and
communication requirements of Π up to poly(λ) multiplicative factors (independent of the
number of parties n). Moreover, the communication pattern of Πsm is identical to that of Π
plus two additional traversals of a communication spanning tree of Π.

76



Remark 6.1 (Handling randomized protocols Π). Our transformation can be modified to
support randomized protocols Π while increasing per-party communication (additively) by
only poly(λ), by adding the following “coin tossing” procedure. At the conclusion of the key
setup phase, each party Pi samples and encrypts a random λ-bit string si under the joint
IFHE key. These values are incrementally aggregated up to the root of the communication
spanning tree to a ciphertext ŝ of s := ⊕

i∈[n] si, which is then communicated back along
the tree to all leaves. In each future round, parties homomorphically evaluate the NextMsg
function of Π, using (encrypted) randomness generated by homomorphically evaluating a
pseudo-random function on the (encrypted) seed ŝ.

We now proceed to prove the Theorem 6.2. The proof takes two main hybrid steps: First,
simulating the output computation by relying on the simulatability of partial secryption
property of the IFHE. Once this takes place, no knowledge of the honest parties’ secret key
shares is required. In the next step, we can thus replace the honest parties’ inputs with
encryptions of 0 by relying on the semantic security of the IFHE under combined keys.

6.3.1 Proof of Security of Semi-Malicious MPC Protocol

In this section, we prove Theorem 6.2.
The communication pattern of Πsm follows by inspection: Phases 1 and 3 each induce

a single traversal of the communication spanning tree; Phase 2 directly matches the
communication pattern of Π. The per-party computation and communication in Phases
1 and 3 are each poly(λ). The costs in Phase 2 correspond directly to those of Π, except
that all computation is performed via homomorphic evaluation, and all communication is
sent in encrypted form. Thus both metrics have multiplicative overhead poly(λ).
We proceed to prove semi-malicious security of Πsm. Let Adv be an arbitrary non-uniform

polynomial-time semi-malicious adversary corrupting a set of partiesM ⊆ {P1, . . . , Pn}. We
demonstrate the existence of an ideal-world simulator Sim corrupting the same set of parties
M , such that for any input vector ~x, for any auxiliary input z ∈ {0, 1}∗, it holds that:

{
idealfSim,M(1λ, ~x, z)

}
λ∈N
≈c

{
realΠ

Adv,M(1λ, ~x, z)
}
λ∈N

. (6.6)

Consider the following simulator Sim(1λ, {xi}Pi∈M , y, z), where y =f(x1, . . . , xn) is the
output received from the ideal functionality.

1. Setup: Sim generates honestly executes IFHE setup.

2. Phase 1 (Key Setup): Sim honestly emulates the actions of honest parties.
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3. Phase 2 (Computation): Sim honestly emulates the actions of honest parties, with the
following exception: In Step 2, for each honest party Pi /∈M , instead of encrypting the
(unknown) input and randomness of Pi, Sim instead generates encryptions x̂i, ̂randi ←
IFHE.Encrypt(pk, 0) of zero.

4. Phase 3 (Decryption): Sim honestly emulates the actions of honest parties, except that
the partial decryption values ŷi of honest parties are instead generated in the following
manner. For all but one honest party Pi∗ , evaluate the partial decryption ŷi of Pi
honestly. For Pi∗ , do the following. Let ŷ denote the final evaluated ciphertext (known
to Sim since it is sent to all parties). For each corrupt party Pj, determine his secret
key skj by reading off the appropriate region of Pj’s committed random tape. Then,
Sim simulates the partial decryption ŷi∗ of Pi∗ (see Definition 6.1), given the values of
(y, ŷ, {skj}j∈[n]\{i∗}).

We prove indistinguishability of the simulated experiment via the following sequence of
hybrids. For each hybrid ` ∈ {0, 1, 2}, denote by Hyb`Adv,M(1λ, ~x, z) the distribution on the
inputs and outputs of all parties within the Hybrid ` experiment.

Hybrid 0: Real World.

Hybrid 1: (Simulatability of partial decryption.) Same as Hybrid 0, except that the partial
decryption values ŷi of honest parties in Phase 3 are instead generated as done by Sim.

Claim 6.1. For every non-uniform polynomial-time Adv, input vector ~x, and auxiliary
input z, Hyb0

Adv,M(1λ, ~x, z)
c∼= Hyb1

Adv,M(1λ, ~x, z).

Proof. The values ŷi for honest parties i 6= i∗ are identically distributed. Note that
the evaluated ciphertext ŷ is rerandomized by the value rand = ⊕

j∈[n] randj. Since Adv
is semi-malicious, the choice of randj for corrupt parties Pj were made independently
of the honestly sampled randi∗ , meaning that rand is uniformly distributed. The claim
thus follows directly from IFHE simulatability of partial decryption. QED.

Hybrid 2: (Semantic security under combined keys.) Simulated experiment. Namely, same
as Hybrid 1, except that the encryptions generated in Step 2 on behalf of honest parties
are replaced by encryptions of zero.

Claim 6.2. For every non-uniform polynomial-time Adv, input vector ~x, and auxiliary
input z, Hyb1

Adv,M(1λ, ~x, z)
c∼= Hyb2

Adv,M(1λ, ~x, z).
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Proof. Note that already in Hybrid 1 all information about the contribution ski∗ of
party Pi∗ to the joint secret key sk is removed. The claim thus follows directly by
IFHE semantic security under combined keys. QED.

6.4 FROM SEMI-MALICIOUS TO MALICIOUS SECURITY

In this section we describe how to compile a semi-malicious secure protocol into an actively
secure protocol, with the same communication graph. Our compiler relies on common
reference string (CRS) and a (bare) public-key setup.
Building Blocks. We use the following cryptographic primitives in our compiler:

• A simulation-extractable succinct non-interactive zero-knowledge argument (SE-ZK-
SNARK) for a polynomial-time computable relation. Unlike recent works such as [72,
73], our notion of SE-ZK-SNARK is identity-based, where each proof is generated w.r.t.
an identity.

• A multisignature scheme (MS.KeyGen,MS.Sign,MS.Combine,MS.MultiVer) for
implementing the (bare) public-key setup in our construction. In our setting, we can
instantiate a multisignature scheme with a SE-ZK-SNARK with additive overhead
together with standard signatures.

• A non-interactive perfectly binding commitment scheme COM.

• A family of collision-resistant hash functions HashFamily.

We refer the reader to Section 2.6 for the definitions of SNARKs and multisignatures. Below,
we present our definition and construction of ID-based SE-ZK-SNARK.

6.4.1 ID-Based SE-ZK-SNARK

For reasons as discussed in Section 6.1.1, we consider an ID-based notion of SE-ZK-SNARK,
where each proof is generated with respect to an identity (chosen from a set of identities
that are fixed in advance). Proofs for multiple statements can be computed w.r.t. the same
identity. Crucially, in our definition of simulation-extractability, the adversary must fix a
set ID∗ of “honest” identities in advance and can then receive simulated proofs on adaptively
chosen statements w.r.t. identities from this set. It must then come up with an accepting
proof for a new statement x w.r.t. an identity id /∈ ID∗. We require the existence of a
non-black-box extractor who can extract a valid witness for x from such an adversary.
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We show how to transform any SNARK argument system into an ID-based SE-ZK-SNARK
by relying on only standard cryptographic assumptions. Very roughly, in our construction,
it is possible to “puncture” the trapdoor trap for the CRS w.r.t. an identity set ID∗. A
punctured trapdoor trapID∗ can only be used to simulate the proofs w.r.t. identities id ∈ ID∗,
but cannot be used to simulate proofs w.r.t. identities id /∈ ID∗. Using such a punctured
trapdoor, we are able to construct an extractor while still simulating proofs to the adversary.
Specifically, in order to extract from an adversarial prover P ∗, we consider an augmented code
M that consists of the simulator algorithm S with a punctured trapdoor trapID∗ hardwired
in its description, together with the code of prover P ∗. Any proof requested by the prover P ∗

w.r.t. an identity id ∈ ID∗ can be computed by S using the punctured trapdoor. However,
since the cheating prover must produce a proof w.r.t. an identity id /∈ ID∗, we can still
successfully extract from M by using the SNARK extractor.
Definition. We now present our definition of ID-based SE-ZK-SNARK. Our definition is
parametrized w.r.t. an identity set ID. For our application of SE-ZK-SNARK to actively
secure MPC, it suffices to work with polynomial-sized identity sets. Below, the prover and
verifier algorithms Prove and Verify are extended to receive an identity as an additional input.

Definition 6.3 (ID-Based SE-ZK-SNARK). A SNARK system (crsGen,Prove,Verify) for a
relation R with respect to auxiliary input distribution Z is said to be a SE-ZK-SNARK with
respect to identity set ID if there exists a PPT simulator S = (S1,S2,S3) such that the
following holds:

• Computational Zero-Knowledge: For every (x,w) ∈ R and every id ∈ ID,

(crs, id, x, π) c≈ (crs′, id, x, π′), (6.7)

where crs ← crsGen(1λ), π ← Prove(crs, x, w, id), (crs′, trap) ← S1(1λ), trapid ←
S2(trap, id) and π′ ← S3(crs′, id, trapid, x).

• Simulation-Sound Extractability: There is a negligible function negl such that, for
any non-uniform PPT prover P , there exists a polynomial-size extractor EP , such that
Pr[out = 0] ≤ negl(λ), where the random variable out is the output of the following
experiment:

1. (crs, trap)← S1(1λ)

2. z ← Z

3. ID∗ ← P (z, crs) s.t. ID∗ ⊂ ID and |ID∗| = poly(λ).
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4. trapid∗ ← S2(trap, id∗), for every id∗ ∈ ID∗.

5. (id, x, π)← P (z, crs, ~trapID∗), where ~trapID∗ = {trapid∗}id∗∈ID∗ .

6. (id, x, π, w)← EP (z, crs).

7. Output 0 iff:
id /∈ ID∗ ∧ Verify(x, π, crs, id) = 1 ∧ (x,w) /∈ R. (6.8)

Remark 6.2. In our definition of simulation-extractability, we provide the cheating prover
P with a special trapdoor ~trapID∗ that is “punctured” at the identity set ID∗. Using this
special trapdoor, the cheating prover can compute simulated proofs for arbitrary statements
w.r.t. any identity id ∈ ID∗ on its own. The correctness of a punctured trapdoor is captured
in our definition of computational zero-knowledge.
One could alternatively consider a weaker definition of simulation-extractability where

instead of giving a punctured trapdoor to the cheating prover, we only provide him oracle
access to the simulator algorithm that uses the trapdoor to simulate proofs w.r.t. identities
id ∈ ID∗ on statements chosen adaptively by the cheating prover. Clearly, Definition 6.3
implies this weaker definition. We choose to work with Definition 6.3 as it enables easier
proof of security for our actively secure MPC protocol discussed later in this section.

Construction. We construct an ID-based SE-ZK-SNARK system (crsGen,Prove,Verify) for
any NP language L and identity set ID. We will use the following two ingredients: (1)
a witness-indistinguishable SNARK system (crsGen′,Prove′,Verify′) for an NP language L′

(described below), and (2) an identity-based signature scheme (Setup,Keygen, Sign,Verify)
which can be readily constructed using certificate chains from a standard digital signature
scheme, which can in turn be based on one-way functions [75].

• crsGen(1λ): On input a security parameter, compute crs′ ← crsGen′(1λ) and (msk,
mvk)← Setup(1λ). Output crs = (crs′,mvk).

• Prove(crs, id, x, w): On input a crs crs = (crs′,mvk), identity id, statement x and witness
w, compute a proof π′ ← Prove′(crs, x′, w) for the statement x′ = (x, id,mvk) s.t.
x′ ∈ L′ iff:

– x ∈ L, or

– ∃σ s.t. Verify(mvk, id, x, σ) = 1.

Here, the prover uses the witness w to prove the first part of the statement x′. Output
π = π′.
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• Verify(crs, id, x, π): On input a crs crs = (crs′,mvk), identity id, statement x and proof
π, compute and output Verify′(crs′, x′, π) where x′ = (x, id,mvk).

Theorem 6.3 (ID-Based SE-ZK-SNARK). Assuming the existence of one-way functions
and a witness-indistinguishable SNARK system for NP, the proposed construction is an
ID-Based SE-ZK-SNARK for any NP relation.

We start by describing the simulator S = (S1,S2,S3):

• S1(1λ): On input a security parameter, compute:

– crs′ ← crsGen′(1λ)

– (msk,mvk)← Setup(1λ)

Output (crs = crs′,mvk) and trap = msk.

• S2(trap, id): On input a master trapdoor trap = msk and identity id, compute and
output a “punctured” trapdoor trapid = skid ← Keygen(msk, id).

• S3(crs, id, trapid, x): On input a crs crs = (crs′,mvk), identity id, trapdoor trapid = skid

and statement x, compute:

– A signature σ ← Sign(skid, x) on message x using the signing key skid for identity
id.

– A proof π′ ← Prove′(crs′, x′, σ) for the statement x′ (defined as above) using σ as
a witness for the second part of x′.

Output π′.

Now, note that the crs computed by S1 is identically distributed to the crs computed by
the honest algorithm crsGen. Further, for any identity id and statement x ∈ L, the only
difference between a proof computed via Prove and S2 is that the former computes a proof
for statement x′ (defined as above) using a witness for the first part of x′, while S3 uses a
witness for the second part of x′. However, from the witness indistinguishability property of
(crsGen′,Prove′,Verify′), it follows that these proofs are computationally indistinguishable.

We next argue the simulation-sound extractability of our construction. For any cheating
prover P , our extractor EP is the same as defined for the proof system (crsGen′,Prove′,
Verify′). From the correctness of EP , we know that if P outputs an accepting proof π for
any statement x w.r.t. identity id, then except with negligible probability, EP outputs a
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witness w∗ s.t. either (x,w∗) = (x,w) ∈ R or w∗ = σ s.t. Verify(mvk, id, x, σ). From the
security of identity-based signatures, however, the latter case can only happen with negligible
probability.

Remark 6.3. In our transformation in the next subsection, we will in fact require the proof
system for a set of NP relations {R1, · · · , RN}, that can be efficiently evaluated given the
index of the relation. These relations can be combined into a single “super-relation”R which
consists of ((i, x), w) such that (x,w) ∈ Ri, and use a SE-ZK-SNARK system for this relation
R. For the sake of readability, the proof and verification for a statement of the form (i, x)
with respect to an identity id will be indicated as Proveid

Ri
(x,w; crs) and Verifyid

Ri
(x, π, crs).

6.4.2 Verifiable Protocol Execution

To abstract out the compiler, we present a “Verifiable Protocol Execution” functionality
Fvpe (parametrized by a protocol ρ which is to be verifiably executed) and present a protocol
Πvpe (also parametrized by ρ) that standalone securely realizes Fvpe against active corruption.
Then, in Section 6.4.4 we show that a semi-malicious protocol can be readily turned into a
protocol secure against active corruption, using Πvpe.
First, for any semi-malicious protocol ρ, we define the functionality Fvpe〈ρ〉 which accepts

the inputs for ρ from all the parties; also it accepts the randomness for the corrupt parties
from the adversary, and uniformly samples the randomness for the honest parties. Then it
executes the protocol ρ honestly using these inputs and randomness. At each round, if no
party issues “abort” it sends the messages generated by the execution to the parties to which
the messages are addressed. Formally we define Fvpe〈ρ〉 as follows:

Definition 6.4 (Functionality Fvpe). The functionality Fvpe〈ρ〉, parametrized by a semi-
malicious protocol ρ, is defined as follows:

1. For each i ∈ [n], if Pi is honest, receive input xi from Pi and sample a (sufficiently
long) bit string si uniformly at random; else receive (xi, si) from the adversary. Let
x̂i = (xi, si).

2. Internally run ρ among virtual parties P̃1, . . . , P̃n, with inputs x̂1, . . . , x̂n respectively.
At each round τ of this execution carry out the following:

(a) If Pj is corrupt, and in ρ, P̃i sends a message to P̃j, then forward the message to
Pj.

(b) If the adversary sends (abort, i), send abort to Pi, and also terminate P̃i in the
internal execution of ρ.
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{vki, ski}i∈[n] ← MS.KeyGen(1λ),
Hash← HashFamily(1λ),

crs← SNARK.crsGen(1λ),
paramsρ ← ρ.Setup(1λ, 1d)

Figure 6.1: The params used in the SE-ZK-SNARK system.

(c) If P̃i produces an output yi, send yi to Pi.

6.4.3 Protocol Πvpe

For any protocol ρ, the protocol Πvpe〈ρ〉 implements Fvpe〈ρ〉 (stand-alone) securely against
active corruption. As described below, Πvpe〈ρ〉 has a setup phase (to create a common
reference string), and consists of two phases: an input commitment phase and an execution
phase. ρ itself may include a setup phase ρ.Setup to create a common reference string. ρ
is required to have an a priori determined communication pattern, indicating which parties
send messages to which parties in each round (and how many rounds T there are in total). Let
in(i, τ) denote the set of all j such that at round τ , ρ requires Pj to send a message to Pi. We
write ρ(t; (i, j); {mτ

k,i}τ<t,k∈in(i,τ), x̂i) to denote the message (possibly empty) that Pi should
send to Pj at round t, computed from its own input and randomness x̂i and the messages
mτ
k,i it received in all previous rounds τ < t. Also, we write ρ(out; i; {mτ

k,i}τ≤T,k∈in(i,τ)) to
indicate the output to be produced by Pi at the end of the protocol.
Setup. The setup contains four parts: the setup of the PKI environment, A hash function
Hash sampled from a hash family HashFamily(1λ), the common random strings that will
be used in the SE-ZK-SNARK system, and the setup of ρ (if any). Formally, (params) ←
Πvpe〈ρ〉.Setup(1λ, 1d), where params are showed in Figure 6.1
Commitment Phase. The goal of this phase is to construct a short, globally known
commitment to the inputs and random-tapes in ρ, for all the parties. This phase uses
a (fixed, arbitrary) subgraph T of the communication graph of ρ, which forms a rooted
spanning tree.2 This phase consists of two passes up and down the tree, starting from the
leaves. In the first upward pass, the parties essentially use a Merkle-tree to commit to
x̂i = (xi, si) for all i ∈ [n] (using a hash function included in the setup). Along with the

2We require the communication graph of ρ to be connected and that all parties know this graph (and
spanning tree).
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hash value, each party also includes a SE-ZK-SNARK proof of correctness in its message to
its parent in the tree; correspondingly, each party verifies the the proofs from its children,
and also includes this proof in its input to the hash function. Recall that the SE-ZK-SNARK
proofs are associated with an identity; all the proofs used in our protocol shall use the
prover’s index as the identity. The relation proven to one’s parent includes the fact that the
proofs from the children verified. Though the relations are recursively defined, as we shall
see, the complexity of the relations will not grow exponentially with depth, as the relation
at a node will depend only on the complexity of verifying a SE-ZK-SNARK proof for the
relations at its children, and not on computing those relations themselves.
This is followed by a downward pass starting from the root, where the final aggregated

commitment α is sent to all the nodes. Here again, the messages are accompanied by
appropriate proofs. At the end of this pass, the honest parties are assured that the
commitment they have received includes their own input and randomness; however, it is
possible that the inputs from the other parties are not correctly included.3 To address this,
we make one more pair of up and down passes, in which a multi-signature of the commitment
is created and passed back to all the parties. Verifying this multi-signature assures the honest
parties that all the honest parties have received the same commitment.
T is a spanning tree over the set of nodes [n]. chldrn(j) denotes the set of children of j, and
parent(j) is the parent of j (j other than root) in T . W.l.o.g, we assume that the indices of
the nodes are sorted such that the root is 1 and for all j > 1, parent(j) < j. The party at
node j is denoted by Pj.
All messages are assumed to contain a header uniquely identifying its role in the protocol

(corresponding to the variable name and indices in the description below).
Commitment Phase of Πvpe〈ρ〉. The commitment phase uses SE-ZK-SNARKs for sets
of NP relations Rup

j and Rdown
j (with j denoting the prover’s index for the former and the

receiver’s for the latter), defined recursively as follows. Here, all the proofs will use the
prover’s index as the identity.
• (φ,w) ∈ Rup

j , for j ∈ leaves(T ), iff φ = (crs, c), w = (x̂, r), c = COM(x̂; r), where leaves(T )
denotes the set of leaves of T .
• (φ,w) ∈ Rup

j , for j 6∈ leaves(T ), j 6= 1 (i.e., not the root), iff φ = (crs, c) and
w = (x̂, {ck, βk}k∈chldrn(j), r) s.t. c = COM(Hash({ck}k∈chldrn(j)), x̂; r)) and ∀k ∈ chldrn(j),
SNARK.VerifykRup

k
((crs, ck), βk, crs) = 1.

3One could have hashed signed inputs to assure each honest party that all honest parties’ inputs are
correctly included in the commitment; however, this leaves room for the adversary to supply the honest
parties with commitments which have inconsistent inputs for the corrupt parties. The next pass handles
both these issues together.
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• (φ,w) ∈ Rdown
j , for j ∈ chldrn(1) (i.e., children of root), iff φ = (crs, c, α),

w = (x̂, {c`, β`}`∈chldrn(1), r) s.t. c = cj, α = COM(Hash({c`}`∈chldrn(1)), x̂; r)), and
SNARK.Verify`Rup

`
((crs, c`), β`, crs) = 1, ∀` ∈ chldrn(1) \ {j}

• (φ,w) ∈ Rdown
j , for j 6∈ chldrn(1), j 6= 1, iff φ = (crs, c, α), w =

(x̂, {c`}`∈chldrn(parent(j)), r, c
′, γ) s.t. c = cj, c′ = COM(Hash({c`}`∈chldrn(1)), x̂; r)), and

SNARK.Verifyparent(i)
Rdown
i

((crs, c′, α), γ, crs) = 1, where i = parent(j).
Below, for the sake of brevity, instead of specifying π ← SNARK.Proveid

R(crs, x, w), we
often leave w implicit and say that π is a proof that x ∈ L[R] with respect to the identity
id. (Here L[R] = {x | ∃w s.t. (x,w) ∈ R}.)

1. Aggregate Commitments with Proofs.

(a) For j = n to 1, Pj proceeds as follows: If j is not a leaf, first it receives (ck, βk)
from each k ∈ chldrn(j) and asserts that SNARK.VerifykRup

k
((crs, ck), βk, crs) = 1.

Then, Pj samples rj and computes cj = COM(Hash({ck}k∈chldrn(j)), x̂j; rj). Then:

• Pj, for j > 1, sends (cj, βj) to Pparent(j), where βj is a proof that (crs, cj) ∈
L[Rup

j ], with associated identity j (prover’s index).
• P1 sends, ∀k ∈ chldrn(1), sends Pk (α, σk, γk) where α = c1 where4 σk ←

MS.Sign(sk1, ck), and γk is a proof that (crs, ck, α) ∈ L[Rdown
k ], with identity

1.

2. Distribute the Aggregated Commitment with Proofs. Above, children of the
root leaf already received α from the root, P1.

(a) For j = 2 to n, Pj receives (α, σj, γj) from Pparent(j), and asserts that
MS.verify(vkparent(j), cj, σj) = 1, and SNARK.Verifyparent(j)

Rdown
j

(φ, γj, crs) = 1, where
φ = (crs, cj, α) if j ∈ chldrn(1) and φ = (crs, α) otherwise. If the verification
succeeds, it sends (α, σk, γk) to Pk for each k ∈ chldrn(j), where σk ←
MS.Sign(skj, ck), and γk is a proof that (crs, α) ∈ L[Rdown

k ], with identity j.

3. Create the Multisignature.

(a) For j = n to 2, Pj sends a combined multisignature σj =
MS.Combine({vki, σi}i∈chldrn(j) ∪ {vkj, σ′j}, α) to parent(j), where σ′j =
MS.Sign(skj, α).

(b) P1 computes a final combined multisignature
σ = MS.Combine({vki, σi}i∈chldrn(1) ∪ {vk1, σ

′
1}, α), where σ′1 = MS.Sign(sk1, α).

4Here a normal signature, instead of a multi-signature suffices. We overload MS to keep the setup shorter.
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4. Verify the Multisignature.

(a) ∀k ∈ chldrn(1), P1 sends σ to Pk.

(b) For j = 2 to n, Pj receives σ from Pparent(j) and checks if
MS.MultiVer({vk`}`∈[n], α, σ) = 1. If so, it sends σ to Pk, ∀k ∈ chldrn(j);
otherwise, Pj aborts.

Execution Phase In each round, each party Pi sends messages to its outgoing neighbors
in the round according to the semi-malicious protocol ρ. Meanwhile, similar to the recursive
proofs in the commitment phase, Pi also sends a proof showing that 1) Pi computes the
message honestly using the input committed in the first phase and the messages it receives
so far, 2) it computes an aggregated commitment of its input as well as its children’ commits,
3) it verifies the final aggregated commit α 4) it verifies the proofs that the messages received
so far all follow ρ honestly.
Therefore, by the (additive-overhead) extraction of the SE-ZK-SNARK, the proofs are

recursively (computationally) bound to its previous proofs that according to the computation
path of the protocol and finally bound to the input. The input is then bound to the final
combined commitment that has been multisigned by all the parties in the first phase. Hence
we can argue that, unless the collision resistance of the hash function, the soundness of the
commitment scheme, the unforgeability of the multisignature scheme, or the extractionability
of the SE-ZK-SNARK scheme fails, the corrupt parties cannot deviate from the protocol
without triggering an abort.
The proofs in the protocol are for relations Rρ

i,j,t corresponding to proving that a message
from Pi to Pj in the tth step is correctly computed according to the input and randomness x̂i
that Pi committed during the first phase of the protocol and the messages received during
the protocol (with proofs, which have been verified by Pi). This is formalized below.
Recall that in(i, τ) denotes the set of all j such that at round τ , ρ requires Pj to send a
message to Pi. Rρ

i,j,t is defined as follows:
• (φ,w) ∈ Rρ

i,j,t iff φ = (crs, α,m), w =
(
x̂, h, r, γ, c, σ, {mτ

k,i, θ
τ
k,i, δ

τ
k,i}τ∈[t−1],k∈in(i,τ)

)
such that

m = ρ
(
t; (i, j); {mτ

k,i}τ∈[t−1],k∈in(i,τ); x̂
)
, c = COM(h, x̂; r), and

MS.verify(vkparent(i), c, σ) = 1, (6.9)

MS.verify(vkk,mτ
k,i, θ

τ
k,i) = 1, (6.10)

SNARK.Verifyparent(i)
Rdown
i

((crs, c, α), γ, crs) = 1, (6.11)

SNARK.VerifykRρ
k,i,τ

((crs, α,mτ
k,i), δτk,i, crs) = 1, ∀τ ∈ [t− 1], k ∈ in(i, τ). (6.12)
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(Note that the last condition is absent for t = 1.)
Execution Phase of Πvpe〈ρ〉. For each round t, Pi and Pj, where i ∈ in(j, t):

1. Pi computes mt
i,j = ρ(t; (i, j); {mτ

k,i}τ∈[t−1],k∈in(i,τ), x̂i), and a proof δti,j that mt
i,j ∈

L[Rρ
i,j,t] with respect to the identity i. It also computes a signature θti,j on mt

i,j using
its signing key ski. Then it sends (mt

i,j, θ
t
i,j, δ

t
i,j) to Pj.

2. For each j ∈ in(i, t), Pi receives (mt
j,i, δ

t
j,i) from Pj, defines φ = (crs, α,mt

j,i), and asserts
that SNARK.VerifyjRρj,i,t(φ, δ

t
j,i, crs) = 1.

If this is the last round of the protocol, Pi computes and outputs yi =
ρ(out, i; {mτ

k,i}τ∈[t−1],k∈in(i,τ), x̂i).

We prove the security in Section 6.5.

6.4.4 Using VPE To Compile From Semi-Malicious to Malicious Security

If ρ is a semi-malicious secure protocol for a secure function evaluation functionality F ,
then there is a simple standalone secure protocol for F in the the Fvpe〈ρ〉-hybrid model: the
honest parties will simply send their inputs for F to Fvpe〈ρ〉, and output the outputs received
back (or abort). The security of the protocol follows from the fact that Fvpe〈ρ〉ensures semi-
malicious behavior from the adversary in the ρ execution. Indeed, the only actions allowed
for the adversary in Fvpe〈ρ〉– choosing an input and randomness for each corrupt party,
followed by aborting communication with an honest party at any point – is allowed by the
semi-malicious adversary model.
Further, the above compiler continues to be secure even if we replace Fvpe〈ρ〉 with a

protocol Πvpe〈ρ〉 that standalone securely realizes Fvpe〈ρ〉. While typically UC security is
required for such composition, note that only a single session of Fvpe〈ρ〉 is invoked above.
Formally, a simulator Sim∗ for the final protocol in the F ideal model is constructed as
follows: Given an adversary Adv, first we define the (non-black-box) simulator SimAdv for
Πvpe〈ρ〉 to obtain a hybrid execution in the Fvpe〈ρ〉, with Sim as the adversary. Since Fvpe〈ρ〉
is internally running ρ with virtual parties Pi, we “open it up” and combine the execution
of {P̃i}i∈C with SimAdv to define a new adversary Adv′, which is simply a semi-malicious
adversary for ρ. Then we use the semi-malicious security of ρ to obtain the final simulator
Sim∗.
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6.5 SECURITY OF THE VPE PROTOCOL

The goal is to show that the environment’s view (which includes the adversary’s view,
along with the honest parties’ inputs and outputs) in the real world is indistinguisable from
its view in the ideal world of Ff , when using an appropriately defined simulator.
To prove the security under the active corruption, we define five hybrids, where the first

hybrid denotes the real world execution and the last hybrid denotes the simulator in the
ideal world. Let x̂i = (xi, si) be the input of Pi and its private random string si, and let
yi be the output of Pi at the end of the execution. Every message in Πvpe〈ρ〉 from Pi to Pj
is of the form (µti,j, πti,j), where t is the round number, πti,j is a SE-ZK-SNARK proof about
a statement involving crs, µti,j and possibly α (which is part of a message µτj,i for a round
τ during the commitment phase). The π component is absent in the messages sent during
the multi-signature phase of the commitment phase. Here, the µ components are computed
with no reference to the π components in any of the messages.
For each i = 0, · · · , 4, let Hybridi be the view of the (stand-alone) environment in the

experiments summarized below.

1. Hybrid0 is the environment’s view in the execution of Πvpe〈ρ〉 in the real world. The
environment’s view includes the setup, all the messages received by the adversary
during the protocol execution, as well as the honest parties’ inputs and outputs
{(xi, yi)}i∈H from this execution.

2. Hybrid1 is generated by the same experiment as Hybrid0 with the following
modification: the simulator (Sim1, Sim2, Sim3) is used to generate the SE-ZK-SNARK
scheme’s setup crs as well as all the proofs πti,j given by the honest parties i ∈ H.

It directly follows from the zero-knowledge property of SE-ZK-SNARK that Hybrid0
c≈

Hybrid1.

3. Hybrid2 is generated by the same experiment as Hybrid1 with the following
modification: In the commitment phase, for each j ∈ H, Pj uses a commitment to
a dummy string as cj. (Note that in this hybrid the proofs are already generated by
a simulator; the simulator takes cj as an input, and does not need the message or
randomness used to generate cj.)

From the hiding property of COM, we have Hybrid1
c≈ Hybrid2.

4. Hybrid3 is in the Fvpe〈ρ〉-hybrid model, with a non-blackbox simulator Sim interacting
with the adversary Adv and the functionality Fvpe〈ρ〉. The details of Sim are shown in
Figure 6.2. Briefly, it behaves as follows:
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• Sim simulates the commitment phase execution of the honest parties in Hybrid2

faithfully (as it no more depends on their inputs).

• It uses an extractor for SE-ZK-SNARK system to extract the corrupt parties’
inputs and randomness for ρ from the commitment phase, and forwards it to
Fvpe〈ρ〉.

• It continues with the simulation of the execution phase using the honest parties’
messages received from Fvpe〈ρ〉, by adding simulated proofs to them. In this phase
Sim simply verifies all the proofs πti,j sent by each corrupt party Pi to any honest
party Pj, and if any verification fails, it sends (abort, j) to Fvpe〈ρ〉.

To complete the proof, we need to argue that Hybrid2
c≈ Hybrid3.

Extraction from a Tree of Proofs. We describe an efficient procedure to extract
witnesses from a “tree of proofs,” when the proofs are given using a SE-ZK-SNARK system
with additive polynomial overhead extraction. Consider a rooted tree Q, with anNP relation
Ru associated with each node u of the tree such that (φ,w) ∈ Ru only if φ = (crs, x) and
for all v ∈ chldrn(u), VerifyRv(φv, πv, crs) = 1 (additional conditions may be included), where
φv = fv(φ,w), πv = gv(φ,w) for some efficiently computable functions fv, gv. Our goal is to
extract a consistent set of witnesses wv for all the nodes v in the tree, from an adversary
who gives a proof πv0 for a statement φv0 , where v0 is the root of the tree, such that (i) if
u = parent(v), then (φv, wv) ∈ Rv, where, for v 6= v0, φv = fv(φu, wu) with u = parent(v).
We consider an adversary who is given an auxiliary input z ← Z, a simulated CRS crs, and

also a set of trapdoors trapID∗ for a set of identities ID∗ (for simplicity we consider an a priori
fixed set ID∗, which suffices for our purposes). For brevity, we omit identities and trapID∗

from the description below, with the understanding that all the proofs are with respect to
specific identities (associated with the nodes) that are not contained in ID∗. We shall define
a set of machines Av, Ev for each node in the tree Q as follows. Each Av will be defined as
a PPT machine that will output a statement-proof pair (φv, πv) for the relation Rv, and Ev
is the extractor guaranteed to exist by Definition 2.5, such that RT(Ev) ≤ RT(Av) + p(λ).
Av0 is the original adversary Adv which, given inputs (z, crs) and a random tape rv0 outputs

(φv0 , πv0). For all other nodes v in Q we inductively define Av as follows, in terms of Au and
Eu, where u = parent(v): It takes an input (z, crs) and a random tape rv = ru||rv, (length of
rv to be bounded below), such and runs Eu(z, crs, ru; rv) to obtain (φu, πu, wu), and outputs
(φv, πv) = (fv(φu, wu), gv(φu, wu)).
We point out that, thanks to the additive overhead extraction property, Av remains a

polynomial time adversary. Let q = p+ q0 be a polynomial where p is as in the definition of
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additive overhead extraction, and q0 is an upperbound on the time needed to compute fv and
gv for any node in the tree (q is fixed independent of the adversary). Inductively, suppose that
for a node u at a depth d, RT(Au) ≤ RT(Av0)+dq(λ) (base case being d = 0 for u = v0). If v is
a child of u, then RT(Av) ≤ RT(Eu)+q0(λ) ≤ RT(Au)+p(λ)+q0(λ) ≤ RT(Av0)+(d+1)q(λ),
by the definition of Av, the additive overhead guarantee, and the inductive assumption and
the definition of q. Also, w.l.o.g, we keep the length of the random tapes (for Eu and Av)
upperbounded by the running time of the machines.
Our final extraction procedure consists of Eu hardwired for all nodes u in Q. On input

(z, crs, r) it sets rv0 = r (where v0 is the root of Q), samples rv of the appropriate lengths for
each node v, defines rv to be the concatenation of ru for all ancestors u of v in Q, and runs
Eu(z, crs, ru; rv) to obtain wu for each node u. If the proof system used is a Z-auxiliary input
SE-ZK-SNARK for the set of relations {Rv} for nodes v in a polynomially large relation-tree
Q, then by a union bound, the probability that a PPT adversary Adv, given (z, crs) and
trapID∗ as above, outputs (φ, π) that verifies with respect to an id 6∈ ID∗, but the above
procedure fails to recover a consistent set of witnesses for all nodes is negligible.
Hybrid2

c≈ Hybrid3. We briefly sketch the argument that the view of the environment
in Hybrid3 is indistinguisable from that in Hybrid2. The main idea is to ensure that if
the proofs and signatures sent by a corrupt parties to an honest party during the execution
phase verify, then the accompanying message should match what the functionality Fvpe〈ρ〉
would generate and send to the honest party in that round.
To argue this, we shall use the tree extractor from above again on trees of proofs from

corrupt parties to honest parties, this time with relations of the form Rρ
i,j,t at the root

and consisting of nodes of the form Rρ
i′,j′,t′ and Rdown

i′ (with i′ ∈ C, t′ < t). The extracted
witnesses include purported values of x̂i′ and set of messages from honest parties (possibly
the empty set) that are “connected to” mt

i,j in ρ (as well as (simulated) proofs accompanying
those messages). The messages from the honest parties must exactly be the ones that the
simulator forwarded from Fvpe〈ρ〉, by the unforgeability of the signatures.
We shall also argue that the extracted values x̂i′ from the corrupt parties by this extractor

must be same ones as extracted by Sim in the commitment step. This relies on unforgeability
of signatures used during the commitment phase.
Recall the forest obtained from T by deleting the honest parties’ nodes. First consider a

corrupt party i′ that appears in a tree in that forest which is rooted at i∗ 6= 1. In this case,
the value x̂i′ extracted (from the commitment phase as well as the execution phase) is related
to ci∗ , the aggregated commitment sent by Pi∗ to its parent (which is an honest party). Due
to the unforgeability of the signature on ci∗ , in all the extractions, x̂i′ will be related to the
same value of ci∗ . Further, due to the binding of COM and the collision-resistance of Hash,
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Commitment Phase. Sim interacts with the corrupt parties on behalf of the honest
parties {Pi}i∈H, acccording to the Hybrid2 experiment. During the commitment phase it
simply executes the honest parties in Hybrid2 faithfully as this execution does not depend
on their inputs.
If any of the proofs βi (i ∈ C, parent(i) ∈ H) or γj (parent(j) ∈ C, j ∈ H) fails to verify
during the commitment phase, the corresponding simulated honest party aborts and does
not contribute to the multi-signature. In this case Sim will send (abort, i) for all i ∈ H after
the commitment phase is over, and will stop the simulation.
Input Extraction. If the commitment phase completes with all the proofs βi and γj
supplied by the adversary being accepted, Sim will try to extract the inputs x̂i for all i ∈ C,
using the tree extractor (described earlier), as follows.
Let T be the tree used for aggregating the commitments. At the end of the commitment
phase, Sim considers the forest obtained by deleting the set of nodes H from T . Each tree in
this forest is denoted as Ti, where i is the root of that tree. For each tree Ti for i 6= 1, proceed
as follows: redefine the output of the adversary to be just the proof and the statement for
the relation Rup

i (i.e., ((crs, ci), βi)), and the auxiliary input Zi to be all the messages sent to
the corrupt parties by Sim (on behalf of honest parties) prior to that, as well as the common
reference string of Πvpe〈ρ〉; define the relation-tree with Rup

j for all j in Ti, rooted at Rup
i ,

and invoke the tree extractor for this relation tree and this adversary, with auxiliary input
Zi. If the extraction succeeds, it yields witnesses for all the proofs βj for all j in Ti, and in
particular, x̂j for all parties j in Ti. If P1 is corrupt we define an adversary which outputs a
statement (crs, ck, α) and a proof γk for the relation Rdown

k , where Pk is an (arbitrary) honest
party adjacent to a leaf of T1. We define a relation-tree as follows: it consists of Rdown

j for
all j in the path from k to 1 (the root) and Rup

j for all j ∈ T1 (except j = 1); this tree is
rooted at Rdown

k . Then we invoke the tree-extractor for the adversary with respect to this
relation-tree, with auxiliary input Z1 which includes all the messages Sim sent to it till it
produced the output. If successful, the extraction obtains the witnesses for all the proofs
γj for all j in the path from parent(k) till the root, and for all the proofs βj for all j in T1
(except j = 1). The witness for γj for j ∈ chldrn(1) includes x̂1 and the witnesses for βj
include x̂j for all other j in T1.
If all the extractions are successful, Sim forwards the inputs x̂j for all corrupt parties Pj
obtained above are forwarded to Fvpe〈ρ〉.
Execution Phase. Sim simulates the execution phase using the honest parties’ messages
received from Fvpe〈ρ〉 at each round, by adding simulated proofs to them. Also Sim faithfully
verifies all the signatures (ci, σi) and proofs δti,j sent by each corrupt party Pi to any honest
party Pj, and if any verification fails, it sends (abort, j) to Fvpe〈ρ〉.

Figure 6.2: Simulator Sim used in the Hybrid3 (ideal execution of Fvpe〈ρ〉) for proving the
security of Πvpe〈ρ〉.
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the value of x̂i′ itself should be the same in all extractions.
This does not cover the possibility that if the root is corrupt, it could partition the honest

parties into two sets and run independent executions of ρ with them (which is not allowed in
the ideal world). It is to prevent this that we use a multi-signature in the commitment phase.
Consider a corrupt party i′ in a tree T1 in the forest of corrupt parties, where T1 is rooted at
1, the root of T (T1 exists only if 1 itself was corrupt). In this case x̂i′ extracted during the
commitment phase is bound to α. We defined the input extraction (in Figure 6.2) using an
arbitrary honest party Pk such that in T , k is adjacent to a leaf of T1. But the unforgeability
of the multi-signature ensures that all honest parties must agree on the same α. Hence,
during the execution phase again, the extracted x̂i′ is bound to the same α, no matter which
honest party is the receiver. As before, due to the binding of COM and collision-resistance
of Hash, this ensures that the value of x̂i′ itself is the same in all extractions.
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CHAPTER 7: CONCLUSION

BBT Framework. Firstly, we formalize the notion of a Black-Box Transformation (BBT)
from protocol schemes satisfying some security (or efficiency) requirements to a protocol
scheme satisfying some other requirements.1 Towards this, we formalize notions like protocol
schemes (which map functionalities to protocols) and security definitions (which are just sets
of pairs of functionalities and protocols), all in a fairly abstract fashion. A BBT itself is
modeled using a circuit that describes a protocol’s structure as a program built from various
components.
The framework is general enough to cast several famous transformations (GMW, Bracha,

IKOS and IPS) as instances of BBT.
We remark that we treat security notions highly abstractly, and do not impose

any conditions on how security is proven. However, in all our positive results and
examples, security definitions use a simulation paradigm, and one could define a “fully”
blackbox transformation by requiring that the simulator of the protcol resulting from the
transformation be constructed in a black-box manner from the simulators of the given
protocols. For the sake of simplicity, and to keep the focus on the structure of the
constructions rather than on the proofs of security, we do not formally include this restriction
in our definition of BBT. We also point out that this strengthens our impossibility results.
New BBT Transformations and Consequences. We present a new transformation
which can be used to obtain known and new results about (information-theoretically) secure
MPC for general function evaluation, with guaranteed output delivery, given an honest-
majority and a broadcast channel. Our transformation yields such an MPC scheme starting
from two protocol schemes – one achieving full-security, but for a lower threshold (βn
corruption threshold, for some β > 0) and one achieving semi-honest security under honest-
majority (Corollary 4.1). (See the next section for an overview of the transformation, and the
various intermediate transformations that lead to it.) From this transformation we obtain
the following results:

1. We readily obtain the result of Rabin and Ben-Or [11] as a consequence of the earlier
work of Ben-Or et al. and Chaum et al. [9, 10], via the above transformation.

2. We obtain the first “constant-rate” MPC protocol scheme with guaranteed output
1The term “Black-Box” refers to the fact that (the next-message function of) the resulting protocol

uses (the next-message function of) all the constituent protocols and the functionality itself as oracles;
however, note that the constituent protocols themselves may depend on their functionalities in a non-black-
box manner.
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delivery against corruption of less than n/2 parties, provided the number of parties is
constant (Corollary 4.2). That is, the total communication in this protocol is at most
cn|C|, where C is the circuit representation of the function, and cn is a constant
independent of the security parameter and C but dependent only on the number
of parties. This result is obtained – following the lead of [14]2 – by applying our
transformation to the scheme of [42] (combined with a secret-sharing scheme due to
[43]) and the semi-honest secure scheme of [9].

3. Next, we present an efficiency leveraging transformation, which is designed to
improve the efficiency of a protocol scheme with full-security, by combining it with
a (cheaper) protocol which achieves security-with-abort (Theorem 4.6). By applying
this transformation to the above protocol with full-security and an efficient protocol
with security-with-abort from [40], we obtain a “scalable” MPC protocol with full-
security and optimal corruption-threshold – i.e., tolerating corruption of less than n/2
parties (Corollary 4.3).3 For an arguably natural class of functions (namely, sequential
computations, where the size of a circuit implementing the function is comparable to
its depth), this is the first scalable protocol with full-security and optimal threshold
(complementing a result of [41], which obtains similar efficiency for circuits which are
of relatively low depth).

4. We present an efficient new transformation from two-party protocols in the OT-
hybrid or OLE-hybrid model that offer security against passive corruptions to zero-
knowledge proofs in the commitment-hybrid model, improving over a recent similar
transformation of Hazay and
Venkitasubramaniam [37] for the case of static zero-knowledge. (We note that the
IKOS transformation for protocols in such hybrid models requires at least 3 parties.)
The transformation from [37] cannot be applied in the OLE-hybrid model, and when
applied to natural protocols in the OT-hybrid model such as the GMW protocol, it
requires several separate commitments for each gate in the circuit. Our transformation
for the OLE-hybrid model can be applied towards efficient zero-knowledge proofs for
arithmetic circuits and in both hybrids our transformation requires just a constant
number of commitments overall (for a constant soundness error). This transformation
may have relevance to the recent line of work on practical zero-knowledge proofs

2In [14], these two protocol schemes were combined to obtain a similar constant-rate protocol, but in the
oblivious-transfer (OT) hybrid model and with security-with-abort.

3Here the term “scalable” denotes that for evaluating large circuits C, the communication complexity per
party scales as Õ(|C|) (up to polylog multiplicative factors and polynomial additive terms of the security
parameter and the number of partiesh).
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initiated in [76]. In contrast to [37], we do not consider here the goal of adaptive
zero-knowledge in the plain model.

5. Our final application considers the problem of relaxing the corruption threshold from
the optimal n/2 to n(1/2− ε), for any constant ε > 0. In this case, we obtain a highly
scalable protocol in which the total communication for evaluating a circuit C is Õ(|C|),
ignoring additive terms that depend on the number of parties, but not the size of the
circuit (Corollary 4.4). This improves over a result of [36].4

For this, we apply Bracha’s transformation [18] to one of the above protocols.
Specifically, we use Bracha’s transformation to combine an outer protocol that has a
relatively low corruption threshold but is highly scalable with respect to communication
and computation (in our case the one from [36]), and an inner protocol with optimal
threshold (in our case, the one from item 2 above), to obtain a protocol with a near-
optimal threshold.

BBT Impossibility Results. One may ask if security against active corruption can solely
be based on security against semi-honest adversaries. Such questions can be formalized as
questions about the existence of a BBT. We present two impossibility results:

1. We consider the question of functionally-black-box protocol schemes, introduced by
Rosulek [35]. (This is a special case of protocol transformations where no protocol
scheme is provided to the transformation.) Rosulek demonstrated a two-party
functionality family for which there is no functionally black-box protocol, assuming
the existence of one-way functions. We present an unconditional version of this result
(Theorem 3.1).

2. We show a functionality family – namely, zero-knowledge proof functionalities – for
which there is no BBT from semi-honest security to security (with abort) against active
adversaries (Theorem 3.2).

We remark that the proof of our second result breaks down if we expanded the family
of functionalities from ZK functionalities to all efficient functionalities. We leave it as an
important open problem to prove broader impossibility results for general computation (in
which the family considered is the family of all functionalities).
New Efficiency Measure: (MPC) Bottleneck Complexity. We introduce a new
measure of per-party communication complexity for (distibuted) functions, called bottleneck

4In [36], in the absence of broadcast channels, the near-optimal threshold of n( 1
3 − ε) was considered.

We can extend our result to this setting by implementing broadcast channels among a constant number of
parties, with a constant factor blow-up in communication.
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complexity that measures the maximum communication required by any party within the
protocol execution. While achieving O(n) bottleneck complexity (where n is the number
of parties) is straightforward, we show that achieving sublinear bottleneck complexity is
not always possible, even when no security is required. We prove this by demonstrating
the existence of n-party functions with k bits of input for each party, that have bottleneck
complexity Θ(nk). Showing an explicit function with Ω(n) bottleneck complexity will require
showing an explicit function with Ω(n2) circuit size complexity. On the other hand, we
observe that many useful classes of functions do have o(n) bottleneck complexity.
MPC Transformation of Bottleneck Complexity. We show a general transformation
from arbitrary efficient protocols to secure MPC protocols (in a model with public setup)
that asymptotically (as a function of n) preserves the communication and computational
requirements per party, and preserves the same communication graph. As part of
our transformation, we introduce cryptographic primitives—Incremental FHE, Verifiable
Protocol Execution—and give a construction of ZK-SNARKs with an ID-based simulation-
extractability property. These may be of independent interest.

7.1 FUTURE WORK

The multiple dimensions of multiparty computation suggests a lot more potential topics to
discuss. In addition to alternate communication measures such as the bottleneck complexity
proposed in Chapter 5, alternate security guarantees such as the security with partially-
identifiable-abort proposed in Chapter 4, and various thresholds of the corruption such as
1/2, 1/3, an arbitrary constant fraction, etc., there are several more features to explore.
Black-box Transformations. Forgoing the binary corruption model for players (corrupt
or honest), the line of rational cryptography models the parties as (mixed) rational players
in games, and relies on designing mechanisms and equilibria for security. Black-box
transformations across models involving various kinds of rational and malicious adversaries
opens up interesting avenues to explore.
While the black-box transformation model – and some of the existing transformations –

relate to protocols in hybrid models, our negative results consider black-box transformations
of protocols in the plain model. This raises the question of how far the negative results
hold in the hybrid models. In particular, given a semi-honest protocol in f -hybrid for a
functionality drawn from a family, we may ask whether the protocol can be transformed
into an actively secure protocol for the same functionality, in g-hybrid for interesting pairs
of functionalities f and g. Further, one may extent the black-box transformation model
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to a setting where the hybrid functionality f itself is drawn from a family and given as a
black-box to the transformation.
Bottleneck Complexity. In Chapter 6, the adversary is static – i.e., it needs to fix a
corruption set of parties beforehand. Furthermore, the results in Chapter 6 concern only
protocols with a fixed communication pattern and leave out more general types of protocols
involving dynamic communication patterns. Extending the results to those settings remains
open.
Also, the results in Chapter 6 rely on SNARKs where the extractor incurs only an additive

overhead, which is a strong assumption. This is crucial because when the overhead of
extraction is multiplicative in the complexity of the proof, the prover’s running time would
grow exponentially – unless the protocol has a small number of communication rounds. We
leave it open to obtain a better trade-off between the bottleneck complexity, the assumptions
and the round complexity of the given protocols.
Finally, the cryptographic primitives that we developed, such as Incremental FHE,

Verifiable Protocol Execution, and ZK-SNARKs with an ID-based simulation-extractability
property, are potentially of independent interest. We leave it for future work to use them
and build upon them.
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