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ABSTRACT

In the problem of quickest change detection, a sequence of random variables is

observed sequentially by a decision maker. At some unknown time instant,

the emergence of an anomaly leads to a change in the distribution of the

observations. The goal in quickest change detection is to detect this change

as quickly as possible, subject to constraints on the frequency of false

alarm events. One important application of the theory of quickest change

detection is in the context of anomaly detection in sensor networks used

to monitor engineering systems. Sensor network related detection problems

can vary significantly depending on the spatial evolution of the anomaly in

the network as time progresses. Settings involving static anomalies, i.e.,

anomalies that are perceived by all sensors concurrently and that affect

sensors persistently, have been extensively studied in the quickest change

detection literature. In addition, semi-dynamic quickest change detection

settings that involve anomalies that affect sensors at different time instants,

albeit in a persistent manner, have recently received more attention. In

this dissertation, our goal is to study the problem of dynamic anomaly

detection in sensor networks, i.e., the case where anomalies may not affect

sensors persistently, but may move around the network affecting different

sets of sensors with time. The objective is to design anomaly detection

procedures that are provably optimal with respect to delay-false alarm

trade-off formulations. We study the quickest dynamic anomaly detection

problem under multiple settings by imposing different assumptions on the

spatial evolution of the anomaly. In particular, we consider the case where

anomalies evolve according to a discrete-time Markov chain model, for

which we develop asymptotically optimal procedures which we compare with

more computationally feasible heuristic detection algorithms that require

less model knowledge. The Markov model definition incorporates anomalies

the size of which may be constant or vary with time. In addition, we
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study the worst-path dynamic anomaly detection setting, where we assume

that the trajectory of the anomaly is unknown and deterministic, and that

candidate detection procedures are evaluated according to the anomaly path

that maximizes their detection delay. We consider the worst-path setting

under the assumption that the anomaly affects a fixed size of sensors, as well

as study the problem of worst-path anomaly detection when the size of the

anomaly changes with time. For the two worst-path settings we establish

that algorithms from quickest change detection literature can be modified to

result in provably asymptotically optimal, and in some cases, exactly optimal

procedures. A detailed performance analysis of the proposed algorithms is

conducted, and concise guidelines regarding the design of proposed tests are

provided. Numerical studies of the proposed detection schemes are presented

for all studied settings and for a variety of test cases, such as different network

sizes, probability distributions, and degrees of model knowledge. Finally, we

outline problems of interest for future work, such as the extension of proposed

algorithms and techniques in settings where model knowledge is limited.
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CHAPTER 1

INTRODUCTION

In many engineering applications, maintaining an accurate estimate of the

state of the monitored system is crucial to ensure reliable operation. In

such settings, the goal is often to detect whether an anomaly has led the

system to enter an abnormal state. Engineering applications where such

real-time decision making is crucial range from the detection of subtle faults

that may lead to catastrophic failures in large-scale systems to applications in

financial surveillance [1–9]. In modern engineering systems, state inference

is frequently facilitated by sequentially obtaining measurements from fast

sampling units monitoring the system. The scale of the data obtained due to

these fast sampling operations and the growing size of engineering systems

render the algorithmic detection of anomalies necessary. In statistics, the

design of sequential detection algorithms is frequently studied within the

framework of quickest change detection (QCD) [10–12].

The goal in QCD is to detect a change in the distribution of a sequentially

observed process as quickly as possible, subject to a tolerable false alarm

(FA) constraint. This change happens at an unknown time instant, referred

to as the changepoint. To our knowledge, the earliest instances of QCD

algorithms were the Shewhart test [13] and the celebrated Cumulative-Sum

(CUSUM) test [14]. These tests were not proposed with the goal of designing

procedures that are provably optimal, but mostly as heuristic schemes to be

used in monitoring manufacturing processes.

In the classical QCD problem ( [10–12]), the statistical behavior of the ob-

served process is completely specified by the non-anomalous and anomalous

distributions, that generate independent and identically distributed (i.i.d.)

observations before and after the emergence of the anomaly in the system.

This classical QCD setting is often referred to as the i.i.d. model. The

first major theoretical study of QCD algorithms was conducted by Shiryaev

in [15, 16]. In these works, Shiryaev introduced the Bayesian version of the
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classical single-changepoint QCD problem, where the changepoint is modeled

as a random variable with a known distribution and the goal is to minimize

the average detection delay subject to a bound on the probability of FA.

He then proposed the Shiryaev test as the exact solution to the Bayesian

problem under the i.i.d. model assumption. Later, Lorden introduced the

minimax QCD setting where the changepoint is considered to be an unknown

but deterministic quantity, and the goal is to minimize a worst-case average

detection delay (WADD) subject to a lower bound on the mean time to false

alarm (MTFA) [17]. Lorden established that under the i.i.d. assumption

Page’s CUSUM test is asymptotically optimal with respect to the minimax

constrained optimization problem as the MTFA goes to infinity. Pollak

proposed using a less pessimistic detection delay metric for the minimax QCD

setting, and established that the Shiryaev procedure can be modified to solve

the resulting delay-FA trade-off asymptotically in the i.i.d. setting [18]. The

first non-asymptotic result for minimax QCD was provided by Moustakides

in [19], where it was shown that the CUSUM test is the exact solution

to Lorden’s optimization problem. Moustakides later also established that

the CUSUM procedure is exactly optimal for a special case of dependent

processes [20]. Poor showed that the CUSUM algorithm is also optimal when

the detection delay is penalized exponentially rather than linearly, as was the

case in previous formulations of the classical i.i.d. setting [21]. Lai developed

a unified approach to Lorden’s and Pollak’s delay-FA problem formulations

and established that the CUSUM test is asymptotically optimal for both

the optimization problems even when the observations are dependent [22].

A Bayesian version of the single-sensor QCD problem for the case of non-

i.i.d. data was proposed by Tartakovsky and Veeravalli in [23], where it was

shown that the Shiryaev test can be modified to provide a solution that is

asymptotically optimal as the probability of false alarm goes to zero, even

when the distribution of the changepoint is not necessarily geometric.

The earliest theoretical results in QCD were derived for the single-sensor

setting, i.e., when the observations are sampled by one sensor that is

eventually affected by a change in distribution. In this dissertation, the

objective is to study the problem of anomaly detection in sensor networks,

i.e., groups of sensors used by a decision maker to monitor an engineering

system in real-time. Sequential detection problems in the context of sensor

networks have been extensively studied in the literature. Detailed research
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has been conducted when the monitored engineering system is affected by

a static anomaly, i.e., an anomaly that is perceived simultaneously and

that leads to a persistent change in the data-generating distributions of

the affected sensors. In particular, in [6] it was established that running

a CUSUM algorithm at each node and declaring a change as soon as an

alarm is raised by any of the sensors provides an asymptotically optimal

procedure for the case of a single sensor being affected by the anomaly.

In [24], Mei proved that for the case of i.i.d. observations before and after the

changepoint an asymptotically optimal procedure can be derived even when

the anomaly affects an unknown subset of nodes of unknown size persistently.

His procedure was based on calculating a CUSUM statistic at each node and

comparing the sum of the node statistics to a threshold to decide whether

to raise an alarm. For the same setting an alternative procedure that was

shown to perform better than Mei’s SUM-CUSUM scheme was proposed

in [25]. In [26], the aforemetioned setting of an unknown set of multiple

affected sensors was studied in a more general framework and second-order

asymptotically optimal algorithms were proposed. In [27], it was established

that when an upper bound on the number of affected sensors is known to the

decision maker, Mei’s SUM-CUSUM scheme can be modified to result in an

asymptotically optimal test.

In addition to static anomaly detection, the problem of sequentially detect-

ing semi-dynamic anomalies, i.e., anomalies that affect sensors persistently

but may be perceived at different time instants across sensors, has recently

received attention in the literature [28–34]. An important work in this

subject is [32], where it was established that Mei’s SUM-CUSUM test is

asymptotically optimal under i.i.d. assumptions even when the affected

sensors do not perceive the anomaly simultaneously. In addition, the semi-

dynamic anomaly detection setting was also considered in [31], where the

authors designed asymptotically optimal procedures to detect anomalies

after they have affected more than a pre-determined number of sensors, and

not directly after their emergence as in [32]. Distributed versions of the

algorithms in [31] were introduced in [33,34].

Note that all the aforementioned sensor network problems have a common

element: there is a persistent change in the distribution of each affected

sensor after it perceives the anomaly, even if the anomaly does not affect

sensors concurrently. However, the problem of detecting anomalies that
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are dynamic in nature has not been studied in the literature. The crucial

difference between the current literature on sensor network event detection

and our proposed dynamic anomaly setting is that in our work the anomaly

need not be persistent in any specific node, but it is persistent if we view

the entire network as a whole. This means that the anomaly is moving,

implying that the sets of affected sensors may vary as time progresses, and

each sensor can shift between the non-anomalous and anomalous state (we

will refer to such anomalies by using the term dynamic or moving anomaly

interchangeably).

There is a plethora of applications that we believe the dynamic anomaly

setting fits to, ranging from video object detection to detection of physically

moving adversaries. The formulations presented in this dissertation are

particularly relevant to adversarial settings, since in practice adversaries may

attempt to mask the emergence of an anomaly by forcing it to affect different

parts of the network as time progresses. Our goal in this work is to formulate

a family of dynamic anomaly detection problems and propose solutions that

are tractable, as well theoretically justified with respect to QCD trade-off

formulations of practical and theoretical interest. In particular, we study

three different settings: i) the case of a dynamic anomaly that evolves

according to a discrete-time Markov chain (DTMC); ii) the case of a dynamic

anomaly of constant size where there is no prior statistical knowledge

concerning the trajectory of the anomaly; iii) the case of a dynamic anomaly

that varies in size, affecting a different number of sensors as time progresses.

In particular, the dissertation is organized as follows:

1. In Chapter 2, we study the problem of sequentially detecting dynamic

anomalies under a Markov evolution assumption. In particular, we

begin introducing the Markov anomaly model, including the main

requirements that it has to satisfy to proceed with the analysis. We

then frame the underlying QCD problem as a dynamic composite

hypothesis testing problem and construct a Windowed Generalized

Likelihood Ratio (Windowed-GLR) test to detect the emergence of the

anomaly. We establish that the proposed test is asymptotically optimal

with respect to a defined delay-FA framework. We then compare its

performance with other asymptotically optimal and heuristic proce-

dures. We conclude that a CUSUM-type procedure, that may not
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necessarily be asymptotically optimal, offers very good performance

in comparison to provably asymptotically optimal procedures while

being more computationally efficient and requiring significantly less

model knowledge. It should be noted that procedures developed in this

chapter can handle both the cases of anomalies of constant and varying

size.

2. The Markov chain setting discussed in Chapter 2 can be non-practical

in engineering applications since proposed procedures require complete

knowledge of the Markov transition rates, something which might

not be feasible, especially for the case of large sensor networks. In

Chapter 3, we lift the Markov anomaly evolution assumption and

consider the problem of worst-path anomaly detection for anomalies

of constant size. We begin by introducing a worst-path modification

of Lorden’s detection delay metric [17] used in Chapter 2. According

to the modified metric, candidate detection schemes are evaluated with

respect to the anomaly trajectory that maximizes their detection delay.

We then establish that the CUSUM test introduced in Chapter 2 is an

exact solution to the studied problem for the case of a homogeneous

sensor network when the parameters of test are chosen to be equal.

In addition, we prove that for the case of heterogeneous sensors the

parameters of the proposed CUSUM test can be carefully chosen to

yield a first-order asymptotically optimal test. An interesting observa-

tion is that the resulting algorithm is an equalizer rule with respect

to the placement of the anomaly when considering the asymptotic

performance of the proposed CUSUM procedure. We conclude this

chapter by comparing the proposed test with heuristic as well as oracle

algorithms that require complete knowledge of the trajectory of the

anomaly. Furthermore, we numerically investigate the performance

loss that our test incurs when the weights are not chosen optimally.

3. In Chapter 4, we consider the problem of sequential detection of

worst-path varying-size dynamic anomalies, i.e., anomalies that move

around the network while affecting a different number of nodes as time

progresses. In particular, we study the setting where the anomaly does

not settle to a persistent anomaly size instantly, but after a series

of transient phases. Each transient phase corresponds to a different
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anomaly size and each one starts from a respective changepoint. We

begin the chapter by presenting the observation model. We then

introduce a generalization of the delay metric used in Chapter 3

that takes the presence of transient phases and their durations into

consideration. We establish that a Weighted Dynamic CUSUM-type

(WD-CUSUM) test [35] is asymptotically optimal for a specific choice

of algorithm parameters. This choice leads to a procedure that is an

equalizer rule with respect to anomaly placement at each post-change

phase, a conclusion similar to the one obtained for the test studied in

Chapter 3. We conclude by numerically evaluating the performance

of our proposed algorithm for different network sizes and for varying

degrees of model knowledge.

A QCD problem related to our work, especially compared to the dynamic

anomaly detection problem presented in Chapter 2, is the problem of QCD in

hidden Markov models (HMMs). Although the HMM QCD setting was not

initially studied in the context of sensor networks, algorithms and analytical

techniques can be exploited and used in the setting of Markov anomaly

detection. HMM QCD has been studied in prior work, e.g., see [36–40].

In [36–38], the problem of minimax HMM QCD was studied. For this

problem, the GLR-based test does not have a recursion, and is thus not

computationally efficient. In [36], instead of using the GLR approach, a

recursive test was designed using an approximate conditional probability

distribution, and was further shown to be first-order asymptotically optimal.

The main differences between our Markov anomaly setting and the work

in [36–38] are the following: (i) we focus on the application of sequential

dynamic anomaly detection in sensor networks; (ii) the work in [36–38]

considers the setting where the observations are generated according to a

HMM, and at some unknown but deterministic time, the parameters of

the HMM change abruptly, whereas in our problem, the data before the

changepoint is i.i.d. distributed, the data after the change is generated

by a HMM, and the pre-change data is independent from the post-change

data; (iii) we construct a Windowed-GLR test and establish its first-order

asymptotic optimality using a technique introduced in [22]; (iv) we also

construct several alternative algorithms, including the Dynamic Shiryav-

Roberts (D-S-R) test, the QCD test with changepoint estimation, and
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the Mixture-CUSUM (M-CUSUM) algorithm; and (v) we comprehensively

compare these algorithms numerically, and investigate the conditions under

which each of these tests should be preferred. The recursive HMM test

of [36] was further studied in [38] for two-state HMMs, where it was shown

to be equivalent to a quasi-GLR scheme with respect to a pseudo post-change

measure. Recently, the Bayesian setting was investigated in [39], where the

changepoint is modeled as a random variable with known distribution. Our

analysis for the case of an anomaly that evolves according to a DTMC mainly

uses the theoretical results of [22] and [39]. Although the work in [39] focuses

on the Bayesian case, some of the convergence results provided can still be

employed in our minimax setting. A different formulation of QCD in HMMs

was proposed in [40], and Shewhart-type tests were constructed and were

shown to exactly maximize the worst-case detection probability subject to

false alarm constraints.

Furthermore, our work is related to the single-sensor QCD problem un-

der transient dynamics studied in [2, 35, 41, 42], where the change in the

probability distribution of the observations does not happen instantaneously,

but through a sequence of transient phases each corresponding to a distinct

data-generating distribution. In particular, as will be seen in Chapter 4, the

varying-size dynamic anomaly detection problem involves transient phases

in the sense of [35]. However, note that in the dynamic anomaly setting the

statistical behavior of the observed process during these transient phases is

not completely specified, since the location of the anomalous nodes is not

known by the decision maker. As a result, it is not apparent whether the

detection procedures in [35] can be directly applied to the studied dynamic

anomaly detection setting. Furthermore, in our work, we do not make the

assumption that there is a persistent statistical behavior after a specific time

instant, unlike [35] where it is assumed that the system reaches a persistent

phase during which the distribution of the data does not change. Our main

assumption is that the anomaly eventually settles to a persistent anomaly

size. Although the varying-size anomaly detection and the transient QCD

settings appear to have significant differences, in Chapter 4 we establish that

a solution to a specific instance of the transient QCD problem presented

in [35] is also an asymptotic solution to the varying-size dynamic anomaly

detection problem.
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Notation

Before proceeding to the main part of the dissertation, we introduce some

necessary notation. A main assumption in this work is that all sensor

observations take values in R. To this end, let B(RL) denote the Borel

σ-algebra with respect to RL, L ≥ 1, and let µ a σ-finite measure on RL.

Our convention in this work is that for any sequence {α[k]}∞k=1, and k2 > k1

we have that
∏k1

j=k2
α[j] , 1 and

∑k1
j=k2

α[j] , 0. Furthermore, for any

sequence {α[k]}∞k=1, α[k1, k2] , [α[k1], . . . α[k2]]> denotes the samples from

time k1 to k2. For a set E, |E| denotes the number of elements in the set.

The set {1, 2, . . . , K} is denoted by [K]. The sequence X , {X[k]}∞k=1

denotes the sequence of random variables generated by the sensor network,

where X[k] , [X1[k], . . . , XL[k]]> is the observation vector at time k and

X`[k] ∈ R is the measurement obtained by sensor ` at time k. Furthermore,

σ(X[k1, k2]) denotes the σ-algebra generated by X[k1, k2]. Define the

Gaussian distribution with mean θ and variance σ2 by N (θ, σ2). Denote by

D(f‖g) the Kullback-Leibler divergence [43] between two probability density

functions f(·) and g(·). Furthermore, forK ≥ 0, ‖x‖K denotes theK-norm of

vector x. (x)+ restricts x from taking negative values, i.e., (x)+ , max{x, 0}.
Finally, for functions f : R 7→ R, g : R 7→ R, f(x) ∼ g(x) denotes that
f(x)
g(x)

= 1 + o(1) as x→∞, where o(1)→ 0 as x→∞.
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CHAPTER 2

MARKOV DYNAMIC ANOMALY
DETECTION

In this chapter, we consider the problem of sequential detection of a dynamic

anomaly that evolves according to a discrete-time Markov chain. In this

setting, the Markov transition rates quantify the probability of moving from

a specific set of anomalous nodes to a different set during the post-change

regime. We begin by introducing the observation model that describes the

data generation process. Following, we introduce the Markov model that

governs the evolution of the anomaly, along with assumptions the model

needs to satisfy so that our analysis is valid. We proceed by presenting

the delay-FA optimization problem to be solved. In this chapter, we consider

both Lorden’s and Pollak’s delay metrics, under the understanding that these

metrics will depend on the underlying Markov model. We then frame the

studied QCD problems as a dynamic composite hypothesis testing problem

and introduce the Windowed-GLR test, which we establish to be first-order

asymptotically optimal under both Lorden’s and Pollak’s formulations. In

addition, we present other algorithms that vary in terms of algorithmic

performance and in terms of model knowledge they require, and compare

them to the Windowed-GLR test. Numerical results imply that a recursive

CUSUM-type procedure offers comparable performance to provably asymp-

totically optimal procedures while being more computationally efficient and

requiring significantly less model knowledge. This chapter has appeared in

part as [44,45].
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2.1 Observation Model

Consider a network of L ≥ 1 nodes denoted by [L] , {1, . . . , L}. Denote by

g`(x), f`(x) the non-anomalous and anomalous probability density functions

(pdfs) at sensor ` ∈ [L], respectively. We assume that at each sensor

the corresponding non-anomalous and anomalous distributions are different

and that all data-generating distributions are known to the decision maker.

Initially, the data at all the sensors are i.i.d. according to the non-anomalous

distribution, and observations are assumed to be independent across sensors.

As a result, the joint pdf of X[k] is initially given by

g(X[k]) ,
L∏
`=1

g`(X`[k]). (2.1)

After some unknown and deterministic changepoint ν ≥ 1, a physical event

leads to the emergence of a dynamic anomaly in the network. The anomaly

moves around the network, affecting different sets of size m ∈ [L] as time

progresses. It is assumed that m is constant and known to the decision maker.

Define the process S , {S[k]}∞k=1, where S[k] denotes the m-dimensional

vector containing the indices of the anomalous nodes at time k. Note that

for notational convenience, S[k] is defined for all k ≥ 1 and not simply for

k ≥ ν. We denote by E ,
{
Ej

∣∣ 1 ≤ j ≤
(
L
m

)}
the set of all distinct possible

vector-values that S[k] can take (without loss of generality we assume that

the components of each vector are ordered to provide a unique vector per

anomaly placement). Nodes affected by the anomaly generate observations

according to the anomalous pdf. In particular, for k ≥ ν, we have that

conditioned on S, the joint pdf of X[k] is given by

pS[k](X[k]) ,

 ∏
`∈S[k]

f`(X`[k])

 ·
 ∏
`/∈S[k]

g`(X`[k])

 , (2.2)

where for E ∈ E , pE(x) denotes the joint pdf induced on a vector observation

when the anomalous nodes are the ones contained in E. We assume that the

observations before the changepoint are independent from the observations

after the changepoint. However, whether the data are independent across

time after the changepoint depends on our assumption on S. For example,

as will be seen in this chapter, assuming that S evolves according to a
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Markov model implies that the observations after the changepoint will not

be independent across time. According to eqs. (2.1) and (2.2), conditioned

on ν and S the complete statistical model is then the following:

X[k] ∼

{
g(X[k]), 1 ≤ k < ν,

pS[k](X[k]), k ≥ ν.
(2.3)

2.2 Markov Trajectory Model

In this chapter, we study the setting where the evolution of S[k] is specified

by a discrete-time Markov chain (DTMC). More specifically, we denote by

Pν(·) (Eν [·]) the probability measure (expectation) when the anomaly occurs

at time ν. In addition, we denote by P∞(·) (E∞[·]) the probability measure

(expectation) when ν = ∞, i.e., when there is no anomaly. Then, for any

k ≥ ν, under the Markov assumption we have that

Pν(S[k + 1]|S[1, k],X[1, k]) = Pν(S[k + 1]|S[k]) , λS[k],S[k+1], (2.4)

where λE,E′ ∈ [0, 1] denotes the probability that the anomaly placement

changes from the one in E to the one in E′ for E,E′ ∈ E . Furthermore, for

any k ≥ ν, conditioned on S[k], X[k] is independent from anything else. To

be more explicit, for any B ∈ B(RL), we have that

Pν(X[k] ∈ B|X,S) = Pν(X[k] ∈ B|S[k]) =

∫
B

pS[k](x)dµ(x). (2.5)

Under the Markov evolution assumption, the underlying stochastic process

of this problem can be viewed as a hidden Markov model (HMM), where

{S[k]}∞k=ν is a finite-state Markov chain, which is not directly observable. The

transition probability matrix is given by [λE,E′ ]E,E′ ∈E . Then, the sequence

of random vectors {X[k]}∞k=ν is adjoint to this Markov chain according to

(2.4) and (2.5). Therefore, after the anomaly appears in the network, there

is a change in the underlying stochastic process from an i.i.d. model to a

HMM.

In order to proceed with our analysis, we make the following assumptions

on the DTMC. In particular we assume that:

(C.1) Under P1(·), the DTMC S is ergodic (positive recurrent, irreducible
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and aperiodic) [46]. Furthermore, if we define the random matrices

M , diag ({pE(X[1]) : E ∈ E}) (2.6)

and

N , [λE,E′pE′(X[2])]E,E′ ∈E , (2.7)

then M and N are almost surely invertible under P1(·) and P∞(·).
Note that according to C.1 the DTMC S defined in (2.4) has a stationary

distribution denoted by a vector α , {αE : E ∈ E} ∈ A [46]. Here, A
denotes the simplex of all probability vectors of dimension |E|. We also

assume that S is initialized with α, i.e., that for all E ∈ E , Pν(S[ν] = E) ,

αE.

(C.2) There exists r > 0 such that∫
R
|x|r+1g`(x)dx <∞, (2.8)

and ∫
R
|x|r+1f`(x)dx <∞, (2.9)

for all ` ∈ [L]. The above assumptions cover many interesting examples of

HMMs, as noted in [39].

Note that from C.1 and the observation and Markov models in Sections

2.1 and 2.2, we have that for k1 ≤ ν ≤ k2

hν(X[k1, k2])

, g(X[k1, ν − 1]) ·
∑

Eν ,...,Ek2 ∈E

{
αEνpEν (X[ν]) ·

k2∏
j=ν+1

[
λEj−1,EjpEj(X[j])

]}
(2.10)

denotes the joint probability distribution of X[k1, k2] conditioned on a

changepoint ν.

Remark 1. Note that, although the observation model in this chapter was

outlined for the case of dynamic anomalies of constant size, the current

12



setting can be easily extended to anomalies of varying size easily by modifying

the definition of the DTMC to include states of varying size and location.

Although this extension to varying-size anomalies is straightforward for

the Markov evolution setting, in this chapter in order to facilitate the

presentation of the material we focus on the case of constant-size anomalies.

However, all the algorithms presented in this chapter can be directly applied

to the case of varying-size dynamic anomalies by modifying the definition

of the underlying DTMC. As will be seen later in this dissertation, such an

extension from the setting of constant-size to varying-size anomalies is not

as straightforward for the worst-path setting studied in Chapters 3 and 4.

2.3 Problem Formulation

The goal in QCD is to design stopping times that can detect the emergence

of an anomaly as quickly as possible while ensuring that the frequency of

FA events is below an acceptable level. In QCD, detection procedures take

the form of stopping times [10–12]. A stopping time τ with respect to the

observed sequenceX is an integer-valued random variable, such that for each

k ≥ 1, {τ ≤ k} ∈ σ(X[1, k]). In other words, the decision to stop at time k

is determined only by X[1, k].

In this dissertation, we focus on minimax problem settings, where the

changepoint ν is assumed to be deterministic and unknown. In order to

measure the frequency of false alarm events, we define the mean time to false

alarm (MTFA) as

E∞[τ ]. (2.11)

The definition of the detection delay is dependent on the way the trajectory

of the anomaly is modeled. For the Markov case studied in this chapter, our

detection delays will depend on the underlying Markov model. To this end,

we begin by defining the worst-case average detection delay (WADD) of a

stopping time τ under Lorden’s criterion, introduced in [17], for the Markov

model case by

WADD(τ) , sup
ν≥1

ess supEν
[
τ − ν + 1|τ ≥ ν,X[1, ν − 1]

]
, (2.12)
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where the convention that Eν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] , 1 when Pν(τ ≥
ν) = 0 is used. In addition, define the conditional average detection delay

(CADD) under Pollak’s criterion (see [18]) by

CADD(τ) , sup
ν≥1

Eν
[
τ − ν|τ ≥ ν

]
. (2.13)

The WADD metric is a more pessimistic metric than the CADD metric

(for more details see, e.g., [11]); in particular, it can be shown that for any

stopping rule τ

WADD(τ) ≥ CADD(τ). (2.14)

In this dissertation, we aim to design stopping rules that minimize a given

detection delay subject to a constraint on the MTFA. In particular, define

the family of stopping times

Cγ , {τ : E∞[τ ] ≥ γ}, (2.15)

i.e., stopping times that satisfy the MTFA constraint for a pre-determined

constant γ > 0. Our goal in this chapter is to design stopping rules that

solve the following constrained optimization problems:

min
τ

WADD(τ)

s.t. τ ∈ Cγ
(2.16)

and
min
τ

CADD(τ)

s.t. τ ∈ Cγ.
(2.17)

Remark 2. In this dissertation, we will without loss of generality be consid-

ering stopping times τ satisfying E∞[τ ] < ∞, since any stopping time that

does not satisfy this condition can be truncated to provide a smaller detection

delay while at the same time satisfying the FA constraint.
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2.4 Windowed-GLR Test

In QCD, algorithms are frequently designed by framing the problems stud-

ied in a dynamic composite hypothesis testing setting and constructing a

test based on the generalized likelihood ratio (GLR) statistic [10–12]. In

particular, in the Markov setting studied in this chapter at each time k we

distinguish between the following two hypotheses:

H k
0 : the anomaly appears at time ν > k, (2.18)

H k
1 : the anomaly appears at time ν ≤ k. (2.19)

Note that under the alternative hypothesis the changepoint ν is unknown. We

then take a GLR approach to construct the detection statistic (see, e.g., [11]

for the interpretation of classical QCD tests through the GLR approach).

Specifically, the likelihood under these two hypotheses can be expressed

respectively as follows:

H k
0 :

k∏
j=1

g(X[j]), (2.20)

H k
1 :

ν−1∏
j=1

g(X[j])
k∏
j=ν

φν(X[j]|X[ν, j − 1]), (2.21)

where φν(X[j]|X[ν, j − 1]) denotes the post-change conditional distribution

of X[j] given past observations (see (2.10)) and changepoint equal to ν, and

where φi(X[j]|X[i, j − 1]) , 1 for i ≥ j. Then, the GLR test statistic

between the two hypotheses can be written as

W ′
G[k] , max

1≤i≤k

k∑
j=i

log
φi(X[j]|X[i, j − 1])

g(X[j])
= max

1≤i≤k
logL(k, i), (2.22)

where

L(k, ν) ,
hν(X[1, k])

g(X[1, k])
(2.23)

denotes the likelihood ratio of X[1, k] between the hypothesis that the

anomaly appears at time ν and the hypothesis that the anomaly never

appears, and the corresponding stopping rule for threshold b > 0 is given
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by

τ ′G(b) , inf{k ≥ 1 : W ′
G[k] ≥ b}. (2.24)

Although the conditional pdf φi(X[j]|X[i, j− 1]) in (2.22) can be calculated

recursively (as shown below), to compute W ′
G[k], the number of quantities

that need to be stored scales with time k, which is not feasible for a real-

time algorithm. Thus, to design an implementable GLR test we consider

a windowed version of W ′
G[k]. Denote the windowed version of the GLR

statistic in (2.22) by

WG[k] , max
k−η≤i≤k

k∑
j=i

log
φi(X[j]|X[i, j − 1])

g(X[j])
, (2.25)

where η denotes window length. In addition, define the corresponding

stopping time by

τG(b) , inf{k ≥ 1 : WG[k] ≥ b}. (2.26)

As will be observed later, the window length η needs to scale with threshold

b (and as a result γ), and also depends on the sensor data-generating

distributions.

Note that for fixed j, i such that j > i, φi(X[j]|X[i, j − 1]) can be

calculated recursively by a standard Bayesian update. In particular, by using

the Bayes rule it can be easily shown that for E ∈ E

φi(X[j]|X[i, j − 1]) =
∑
E′ ∈E

pE′(X[j])Pi(S[j] = E′|X[i, j − 1]), (2.27)

Pi(S[j] = E|X[i, j − 1]) =
∑
E′ ∈E

Pi(S[j − 1] = E′|X[i, j − 1])λE′,E, (2.28)

Pi(S[j − 1] = E|X[i, j − 1]) = Pi(S[j − 1] = E|X[i, j − 2],X[j − 1])

=
Pi(S[j − 1] = E|X[i, j − 2])pE(X[j − 1])∑

E′ ∈E
Pi(S[j − 1] = E′|X[i, j − 2])pE′(X[j − 1])

, (2.29)

where the recursion is initialized with the stationary probability of the
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DTMC:

Pi(S[i] = E) , αE, (2.30)

for all E ∈ E .

For the Windowed-GLR test, we can establish a lower bound on the MTFA.

Lemma 1. For the stopping rule defined in (2.25) and (2.26), the MTFA

can be lower bounded as follows:

E∞[τG(b)] ≥ eb. (2.31)

Proof. The details of the proof can be found in Appendix A.1.

2.5 Asymptotic Optimality of the Windowed-GLR

Test

In this section, we present the first-order asymptotic optimality of the

Windowed-GLR detection procedure. Before proceeding to the main results,

we define the following effective KL number:

J , lim
k→∞

1

k

h1(X[1, k])

g(X[1, k])
= E1

[
log

h1(X[1],X[2])

g(X[1, 2])

]
, (2.32)

where the underlying probability measure is P1(·). Such a limit is assumed to

exist almost surely with 0 < J <∞, which is the case if the non-anomalous

and anomalous data-generating distributions are distinct at each node. KL-

type quantities often play a crucial role in characterizing the asymptotic

performance of QCD procedures, as will be seen in the remainder of this

dissertation.

We first present the universal lower bound on the CADD (and thus on the

WADD) for any stopping rule τ that satisfies the false alarm constraint.

Theorem 1. Consider the QCD problem outlined in Sections 2.1-2.3. If

conditions C.1 and C.2 are satisfied, then as γ →∞,

inf
τ ∈Cγ

WADD(τ) ≥ inf
τ ∈Cγ

CADD(τ) ≥ log γ

J
(1 + o(1)). (2.33)
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Proof. The details of the proof can be found in Appendix A.2.

Next, we establish an asymptotic upper bound on the WADD and CADD

of the Windowed-GLR test introduced in (2.25) and (2.26).

Theorem 2. Consider the stopping rule defined in (2.25) and (2.26). Con-

sider the window length η , η(b) such that

lim inf
b→∞

η(b)

b
>

1

J
. (2.34)

Then, under conditions C.1 and C.2, we have that as b→∞,

CADD(τG(b)) ≤WADD(τG(b)) ≤ b

J
(1 + o(1)). (2.35)

Proof. The details of the proof can be found in Appendix A.3.

Finally, the following theorem demonstrates the asymptotic optimality of

the Windowed-GLR test, which follows directly from Lemma 1 and Theorems

1 and 2.

Theorem 3. Consider the stopping rule defined in (2.25) and (2.26) with

b = log γ and η chosen to satisfy

lim inf
γ→∞

η(γ)

log γ
>

1

J
. (2.36)

Then, under conditions C.1 and C.2, the windowed-GLR test is first-order

asymptotically optimal under both (2.16) and (2.17), i.e., as γ →∞

WADD(τG(log γ)) ∼ CADD(τG(log γ)) ∼ log γ

J
. (2.37)

Proof. The result follows directly from Lemma 1 and Theorems 1 and 2.

2.6 Alternative Detection Schemes

In this section, we develop several alternative algorithms for the problem of

Markov anomaly detection, and derive lower bounds on their MTFAs. We

first design a Dynamic Shiryaev-Roberts (D-S-R) algorithm by modeling the
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changepoint as a geometric random variable with parameter ρ, and then let-

ting ρ→ 0. The advantage of the D-S-R algorithm is that it can be updated

recursively. We then develop a QCD algorithm with recursive changepoint

estimation. This test recursively estimates the unknown changepoint, and

then constructs a CUSUM-type algorithm using the estimated changepoint.

Finally, we design a Mixture-CUSUM algorithm, which is applicable for the

case where the Markov transition probabilities are unknown.

2.6.1 Dynamic Shiryaev-Roberts Test

For our first alternative test, we initially assume that the changepoint is

a geometric random variable with parameter ρ. We denote this geometric

changepoint by Γ. Specifically,

P(Γ = i) = ρ(1− ρ)i−1, i ≥ 1. (2.38)

In the following, we will show how we design a recursive test under such a

Bayesian framework. We will further let ρ→ 0 so that the designed algorithm

does not depend on ρ, and can be applied to the minimax setting studied in

this chapter, where the changepoint is deterministic and unknown.

Under the Bayesian assumption of the changepoint, we introduce one

addition state E0 6∈ E to denote the state where there is no anomaly in

the network. Then, the transition from the pre-change mode to the post-

change mode can be represented by the transition from state E0 to any state

E ∈ E . Specifically, for E ∈ E we denote by λE0,E the probability that the

anomaly first emerges at initial node placement given by E, i.e.,

P(S[k] = E|S[k − 1] = E0) , λE0,E. (2.39)

It is clear that

ρ =
∑
E ∈E

λE0,E. (2.40)

We further note that λE,E0 , 0, for any E ∈ E , and λE0,E0 = 1− ρ. For any
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E ∈ E ∪ {E0}, and k ≥ 1, define by

qE[k] , P(S[k] = E|X[1, k]) (2.41)

the posterior probability that the network is at state E at time k. A

natural way to construct a test is to compare with a threshold the posterior

probability that the network is in the pre-change state.

Note that qE[k] can be updated recursively. In particular, for any E ∈
E ∪ {E0}, by the Bayes rule we have that

qE[k] = P(S[k] = E|X[1, k − 1],X[k])

=
P(S[k] = E|X[1, k − 1],X[k])p(X[k]|X[1, k − 1])

p(X[k]|X[1, k − 1])

=
P(S[k] = E|X[1, k − 1])p(X[k]|S[k] = E,X[1, k − 1])∑

E′ ∈E p(X[k],S[k] = E′|X[1, k − 1])

=
P(S[k] = E|X[1, k − 1])p(X[k]|S[k] = E,X[1, k − 1])∑

E′ ∈E P(S[k] = E′|X[1, k − 1])p(X[k]|S[k] = E′,X[1, k − 1])

=
BE[k]∑

E′ ∈E BE′ [k]
, (2.42)

where p(·|·) denotes the conditional probability density function of X[k] and

for E ∈ E

BE[k] , P(S[k] = E|X[1, k − 1])p(X[k]|S[k] = E,X[1, k − 1])

= P(S[k] = E|X[1, k − 1])pE(X[k]). (2.43)
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We then compute BE[k] as follows:

BE[k] = P(S[k] = E|X[1, k − 1])pE(X[k])

=
∑

E′ ∈E ∪{E0}

P(S[k] = E,S[k − 1] = E′|X[1, k − 1])pE(X[k])

=
∑

E′ ∈E ∪{E0}

P(S[k − 1] = E′|X[1, k − 1])

· P(S[k] = E|S[k − 1] = E′,X[1, k − 1])pE(X[k])

=
∑

E′ ∈E ∪{E0}

P(S[k − 1] = E′|X[1, k − 1])

· P(S[k] = E|S[k − 1] = E′)pE(X[k])

=

 ∑
E′ ∈E ∪{E0}

qE′ [k − 1]λE′,E

 pE(X[k]). (2.44)

Combining (2.42) and (2.44) implies that qE[k] can be updated recursively.

We note that for E′ ∈ E

BE[k] =

 ∑
E′ ∈E ∪{E0}

qE′ [k − 1]λE′,E

 pE(X[k])

=

[
qE0 [k − 1]λE0,E +

∑
E′ ∈E

qE′ [k − 1]λE′,E

]
pE(X[k]). (2.45)

Furthermore, for E = E0 we have that

BE0 [k] = P(S[k] = E0|X[1, k − 1])pE0(X[k])

= qE0 [k − 1]λE0,E0g(X[k]). (2.46)

The recursion is initialized with qE0 [0] , 1 and qE[0] , 0 for all E ∈ E .

We further define the following invertible mapping:

wE[k] =
qE[k]

ρqE0 [k]
⇔ qE[k] =

wE[k]∑
E′ ∈E ∪{E0}

wE′ [k]
. (2.47)
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It then follows that

qE0 [k] =
1

1 +
[
ρ
∑
E′ ∈E

wE′[k]

] , (2.48)

where wE[k] can be computed recursively by

wE[k] =

[
λE0,E

ρ
+
∑
E′ ∈E

wE′ [k − 1]λE′,E

]
pE(X[k])

λE0,E0g(X[k])
, (2.49)

with the following priors: wE0 [k] , 1/ρ and wE[0] , 0, E ∈ E . From (2.48),

it follows that comparing qE0 [k] to a threshold b′ is equivalent to comparing∑
E′ ∈E

wE′[k] (2.50)

to a threshold (1/b′ − 1)/ρ.

To obtain a test that does not depend on ρ and can be applied to the

non-Bayesian setting, we take the limit ρ→ 0. In particular, we assume that

as ρ→ 0,

λE0,E

ρ
→ αE (2.51)

for all E ∈ E . Practically, this means that the changepoint is treated as an

unknown but deterministic variable, and that after the change occurs, the

initial location of the anomaly is distributed according to α. As a result, if

we define

rE[k] = lim
ρ→0

wE[k],

for E ∈ E , then the recursion of rE[k] is

rE[k] =

[
αE +

∑
E′ ∈E

rE′ [k − 1]λE′,E

]
pE(X[k])

g(X[k])
(2.52)

with rE[0] , 0. Define the test statistic

WSR[k] ,
∑
E ∈E

rE[k]. (2.53)
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The corresponding stopping rule is then given by

τSR(b) , inf {k ≥ 1 : logWSR[k] ≥ b} . (2.54)

This detection scheme involves calculating a test statistic for each possible

set of anomalous nodes. At each time k, the test statistic for one possible

anomaly allocation is calculated by first weighing the test statistics of all the

possible sets of anomalous nodes at the previous time instant according to the

corresponding transition probabilities, and then multiplying the likelihood

ratio of the sample taken by the anomalous nodes at that specific allocation.

Hence, the knowledge of the transition probabilities is needed in order to

implement this test.

We note that the D-S-R algorithm is developed by letting ρ → 0. Such

a changepoint can be intuitively interpreted as a “uniformly” distributed

random variable on the entire time scale. Therefore, this algorithm may

not perform as well as the Windowed-GLR test under both Lorden’s and

Pollak’s criteria, since both criteria are defined for the worst-case scenario

over all possible changepoints.

Next, we derive a lower bound on the MTFA for the D-S-R algorithm.

Lemma 2. For the stopping rule defined in (2.52) - (2.54), the MTFA can

be lower bounded as follows:

E∞[τSR(b)] ≥ eb. (2.55)

Proof. The details of the proof can be found in Appendix A.4.

2.6.2 QCD Algorithm with Recursive Changepoint
Estimation

In the Windowed-GLR test, the changepoint is implicitly estimated by the

maximum-likelihood approach over a finite window. The estimation does

not have a recursive form, and hence is not as computationally efficient,

which is why a windowed approach is used. An interesting question is

whether we can design a test that can recursively and inherently estimate

the changepoint, and then construct a CUSUM-type algorithm using the

estimated changepoint.
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QCD algorithms based on recursive changepoint estimation were proposed

in [47] to solve the semi-parametric QCD problem, and in [48] to solve the

composite QCD problem (for prior work in composite QCD see [17] and [22]).

The main idea is motivated by the CUSUM algorithm, for which, before the

changepoint the test statistic takes values around zero, and therefore an

estimate of the changepoint is the last time that the test statistic was equal

to zero. Following a similar idea, we design a QCD algorithm with recursive

changepoint estimation. In particular, define the following test statistic:

WCE[k] , max
ν̂[k−1]≤i≤k+1

k∑
j=i

log
φν̂[k−1](X[j]|X[ν̂[k − 1], j − 1])

g(X[j])
, (2.56)

where ν̂[k] denotes the estimate of the changepoint at time k. The estimate

of the changepoint is defined by

ν̂[k] = arg max
ν̂[k−1]≤i≤k+1

k∑
j=i

log
φν̂[k−1](X[j]|X[ν̂[k − 1], j − 1])

g(X[j])
. (2.57)

Following steps similar to those in [47], it can be shown that the detection

statistics in (2.56) and (2.57) can be updated recursively as follows:

WCE[k] =

(
WCE[k − 1] + log

φν̂[k−1](X[k]|X[ν̂[k − 1], k − 1])

g(X[k])

)+

, (2.58)

and

ν̂[k] =

{
ν̂[k − 1], WCE[k − 1] > 0 or ν̂[k − 1] = k,

k + 1, else,
(2.59)

where WCE[0] , 0 and ν̂[0] , 1. The corresponding stopping rule is

τCE = inf {k ≥ 1 : WCE[k] ≥ b} . (2.60)

The advantage of such a test is that it is an approximation to the GLR

test which can be implemented recursively. We now present a lower bound

for the MTFA for the algorithm defined in (2.56) - (2.60).

Lemma 3. For the stopping rule defined in (2.56) - (2.60), the MTFA can
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be lower bounded as follows:

E∞[τCE(b)] ≥ eb. (2.61)

Proof. The details of the proof can be found in Appendix A.5.

Due to the use of the recursive changepoint estimate ν̂[k], the analysis of

the detection delay for this algorithm is challenging. We leave this as an

open problem for future research.

2.6.3 Mixture-CUSUM Test

In practice, it might be hard to acquire complete knowledge of the transition

probabilities of the DTMC in (2.4). However, it might be possible to have

a good estimate of the stationary distribution of the DTMC, e.g., based on

symmetries in the network, we may be able to approximate the stationary

distribution by a uniform distribution. In this case, we approximate the

post-change joint data generating distribution by a mixture of pE(x), E ∈ E ,

where the weights are the stationary distribution α, and construct a CUSUM

algorithm that tests the change from the pre-change distribution to the

mixture distribution.

In particular, the Mixture-CUSUM (M-CUSUM) test statistic for the

Markov anomaly case is defined as follows:

Wα[k] , max
1≤i≤k

k∑
j=i

log

(∑
E ∈E

αE
pE(X[j])

g(X[j])

)

= max
1≤i≤k

k∑
j=i

log

(∑
E ∈E

αE
∏
`∈E

f`(X`[j])

g`(X`[j])

)
. (2.62)

Note that this statistic can be equivalently updated recursively:

Wα[k] = (Wα[k − 1])+ + log

(∑
E ∈E

αE
∏
`∈E

f`(X`[k])

g`(X`[k])

)
, (2.63)

with Wα[0] , 0. The Mixture-CUSUM stopping rule is

τM(α, b) , inf {k ≥ 1 : Wα[k] ≥ b} . (2.64)
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Since this test is essentially a CUSUM algorithm that tests a change from

the pre-change distribution to a mixture post-change distribution, its MTFA

can be lower bounded similarly to the CUSUM algorithm.

Lemma 4. For the M-CUSUM algorithm defined in (2.62) - (2.64), the

MTFA can be lower bounded as follows for any α ∈ A:

E∞[τM(α, b)] ≥ eb. (2.65)

Proof. The result follows directly from the lower bound on the MTFA for

the CUSUM algorithm ( see [17], [18] and [22]).

Since the M-CUSUM algorithm only employs the stationary distribution

of the DTMC, we might expect a loss in performance compared to the other

algorithms that make use of the entire transition matrix. However, as will

be seen in Section 2.8, the M-CUSUM test performs competitively with the

presented asymptotically optimal algorithms.

2.7 Fuh’s Recursive Approximation Algorithm

In this section, we review Fuh’s (see [36]) recursive approximation algorithm,

and instantiate it for our dynamic anomaly detection problem.

As discussed in Section 2.4, the GLR-based test does not admit a recur-

sion. To address this problem, Fuh in [36] approximates the conditional

pdf φi(X[j]|X[i, j − 1]) in (2.22) using φ1(X[j]|X[1, j − 1]). Such an

approximation inherently uses the likelihood when the changepoint is at time

1 to approximate the likelihood when the changepoint is at ν. In this way,

the log-likelihood ratio does not depend on the changepoint ν, and thus the

test statistic can be updated recursively. Specifically, the detection statistic

of Fuh’s recursive approximation test is given by

WF [k] , max
1≤i≤k

k∑
j=i

log
φ1(X[j]|X[1, j − 1])

g(X[j])
. (2.66)

Then, WF [k] can be written recursively as follows:

WF [k] = (WF [k − 1])+ + log
φ1(X[k]|X[1, k − 1])

g(X[k])
, (2.67)
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where WF [0] , 0. The corresponding stopping rule is defined as

τF (b) , inf{k ≥ 1 : WF [k] ≥ b}. (2.68)

In [36], Fuh used the stationarity properties of Markov chains to prove the

first-order asymptotic optimality of τF . For completeness, we include his

result in the next theorem.

Theorem 4. ( [36]) Consider the stopping rule defined in (2.66) -(2.68) with

b = log γ. Then we have that

E∞[τF (log γ)] ≥ γ (2.69)

and that as γ →∞

WADD(τF (log γ)) ∼ CADD(τF (log γ)) ∼ log γ

J
. (2.70)

2.8 Numerical Results

In this section, we conduct a numerical study for the Markov dynamic

anomaly detection problem. We set g` = N (0, 1) and f` = N (2, 1) for

all ` ∈ [L]. We consider different values of network size L, and compare all

the algorithms discussed in this section.

For the Windowed-GLR test, the QCD algorithm with recursive change-

point estimation and Fuh’s recursive approximation test, the worst case

detection delay is not necessarily attained at ν = 1 for the WADD or CADD

(also see in [38]). As a result, it is difficult to analytically or numerically

calculate the worst-case detection delay for these algorithms. For the D-

S-R and M-CUSUM tests, the WADD and CADD are attained at ν = 1.

For the purpose of illustration, we simulate the average detection delay

Eν [τ − ν|τ ≥ ν] for different values of the changepoint ν, which serves as

an approximation for the WADD and CADD.

In Fig. 2.1, we evaluate the value of J as a function of the network size L.

The KL number J was calculated by the Monte Carlo method according to

(2.32). Note that J decreases with network size. This implies that for a large

network, the Windowed-GLR test requires a large window size. In Fig. 2.2,
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Figure 2.1: J versus L.
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Figure 2.2: Evolution of test
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Figure 2.3: E1[τ − 1|τ ≥ 1] versus
MTFA for L = 10.
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Figure 2.4: E1[τ − 1|τ ≥ 1] versus
MTFA for L = 100.

we plot the evolution of test statistics for L = 100 and ν = 120. It can be

seen that the statistics for all the algorithms grow after the changepoint. In

Fig. 2.3, we plot the average detection delay vs. MTFA for the algorithms

discussed in this chapter for ν = 1, L = 10 and η = 30. Among all the

tests, the Windowed-GLR test, Fuh’s recursive approximation algorithm,

and the M-CUSUM test perform the best. In the remainder of this section,

we mainly compare these three algorithms. In Fig. 2.4, we first compare
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Figure 2.5: E1[τ − 1|τ ≥ 1] versus
MTFA for L = 10.
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Figure 2.6: E50[τ − 50|τ ≥ 50]
versus MTFA for L = 10.

Fuh’s test with the M-CUSUM test for L = 100 and ν = 1. We note that

although the M-CUSUM algorithm only employs the stationary distribution

of the DTMC, and does not use the transition probabilities, it provides

very good performance compared to Fuh’s recursive approximation test,
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Figure 2.7: E1[τ − 1|τ ≥ 1] versus
MTFA for L = 20.
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Figure 2.8: E30[τ − 30|τ ≥ 30]
versus MTFA for L = 20.

which is provably first-order asymptotically optimal. Furthermore, Fuh’s

test can be computationally expensive for a large L, since it requires O(L2)

computations per time step, while the computational complexity for the M-

CUSUM algorithm is only O(L). Thus, for large networks, the M-CUSUM

test might be a better choice if computational resources are limited. In Fig.

2.5, we repeat the comparison for L = 10, η = 30 and ν = 1 by adding the

Windowed-GLR test, and similar observations are obtained. Note that in

this case Fuh’s recursive test offers identical performance to the Windowed-

GLR, since the former inherently assumes that the change occurs at ν = 1.

In Fig. 2.6, we further compare Fuh’s test and the M-CUSUM test with the

Windowed-GLR test for L = 10, η = 30 and ν = 50. Note that although

for the case of ν = 1 the Windowed-GLR test has a similar performance to

Fuh’s algorithm, the Windowed-GLR test performs better for ν 6= 1. This

phenomenon is expected since Fuh’s test is using the likelihood when ν = 1

as an approximation. Finally, in Figs. 2.7 and 2.8 we compare the three tests

for the case of L = 20 with η = 50, ν = 1 and ν = 30, and obtain similar

conclusions.
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CHAPTER 3

CONSTANT-SIZE WORST-PATH
DYNAMIC ANOMALY DETECTION

In this chapter, we study the problem of dynamic anomaly detection in

sensor networks under a worst-path setting, for anomalies of constant size. In

Chapter 2, we considered the dynamic anomaly detection setting when the

anomaly moves according to a DTMC. However, as was mentioned there,

assuming knowledge of the transition probabilities of a DTMC, especially for

the case of large networks, is a very hard assumption to guarantee in practice.

As a result, we need to consider settings where such model knowledge is not

needed. Furthermore, we saw in Chapter 2 that the M-CUSUM procedure

performs competitively compared to other algorithms requiring complete

knowledge of the underlying DTMC. Hence, one interesting question is

whether there exists some QCD formulation of the dynamic anomaly setting

where the M-CUSUM test is also theoretically justified. To this end, in

this chapter we lift the assumption of an underlying DTMC governing the

evolution of the anomaly and assume that the path of the anomaly is

unknown but deterministic. To balance this lack of knowledge, we introduce

a novel modification of Lorden’s [17] delay metric used in Chapter 2, that

evaluates candidate stopping rules according to their performance on the

worst path of the anomaly. Next, we establish that the M-CUSUM test

with uniformly chosen weights is exactly optimal for the defined worst-path

delay vs. MTFA QCD framework. Furthermore, we show that we can

choose the parameters of the M-CUSUM test such that we get a first-order

asymptotically optimal procedure even when the sensors are heterogeneous.

We conclude the chapter by comparing the M-CUSUM test with other

heuristic and oracle tests (oracle algorithms use complete knowledge of the

anomaly path) for the case of homogeneous sensors, as well as by investigating

the performance loss that we incur when the algorithm parameters are

not chosen optimally in the heterogeneous sensors case. This chapter has

appeared in part as [49–51].
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3.1 Observation Model

In this chapter, we focus on the problem of constant-size anomalies; hence,

the observation model is the same as that in Section 2.1. In particular,

we have that conditioned on ν and S the complete statistical model is the

following:

X[k] ∼

{
g(X[k]), 1 ≤ k < ν,

pS[k](X[k]), k ≥ ν.
(3.1)

Here we also assume that observations are independent across sensors,

and independent across time before the changepoint. Similarly, datapoints

sampled before and after the changepoint are assumed to be independent.

The main difference here is that the trajectory process S is unknown and

deterministic, and not assumed to evolve according to a DTMC as in Chapter

2. This also implies that observations are independent across time and

sensors after the changepoint, conditioned on S.

Note that the dynamic anomaly QCD problem described in (3.1) can also

be posed as the following dynamic composite hypothesis testing problem: at

each time instant k, decide between the hypotheses

H k
0 : the anomaly appears at time ν > k,

H k
1,S : the anomaly appears at time ν ≤ k and evolves according to S.

(3.2)

The likelihood ratio between the hypothesis that the anomaly appears at

time ν and evolves according to S and the hypothesis that the anomaly

never appears is given by

ΓS(k, ν) ,
k∏
j=ν

 ∏
`∈S[j]

f`(X`[j])

g`(X`[j])

 =
k∏
j=ν

ΓS(j, j). (3.3)

3.2 Problem Formulation

Since in this chapter the anomaly trajectory process S is assumed to be

deterministic, we modify Lorden’s delay metric used in Chapter 2 to evaluate
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candidate detection schemes according to the anomaly path that maximizes

their expected detection delay. In particular, denote by ESν [·] the expectation

when the changepoint is equal to ν and the trajectory of the anomaly is

specified by S. Then, for any stopping rule τ adapted to X consider the

following modification of Lorden’s WADD metric:

WADD(τ) , sup
S

sup
ν≥1

ess supESν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] , (3.4)

where the convention that ESν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] , 1 when PSν (τ ≥
ν) = 0 is used. Note that an additional sup is used to account for the

trajectory of the anomaly that maximizes the detection delay of τ . Our

goal then is to design a stopping time τ to solve the following constrained

optimization problem:

min
τ

WADD(τ)

s.t. τ ∈ Cγ.
(3.5)

3.3 Randomized Anomaly Allocation Model

Before proceeding to the presentation of our main theoretical results, it is

necessary to introduce another statistical model that plays an important role

in the analysis, as well as in the interpretation of the results in this chapter.

In particular, consider an alternate setting to that of (3.1), where at each time

instant after the changepoint, the m anomalous nodes are chosen randomly.

To this end, denote by α , {αE : E ∈ E} ∈ A the probability mass function

(pmf) containing the probabilities that each of the vectors in E is chosen as

the vector of anomalous nodes. That is, at each time instant k the probability

that the m anomalous nodes are chosen to be in E is given by αE, and the

sets of anomalous nodes are picked i.i.d. across time. When at each time

instant after the changepoint the anomalous nodes are placed i.i.d. randomly

according to α, we have that the induced joint pdf after the changepoint is

a mixture of pdfs given by

pα(X[k]) ,
∑
E ∈E

αEpE(X[k]). (3.6)
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As a result, the complete observation model for the case of a randomized

anomaly allocation according to pmf α is the following:

X[k] ∼

{
g(X[k]), 1 ≤ k < ν,

pα(X[k]), k ≥ ν.
(3.7)

Remark 3. It is important to note that the model described in (3.7) is an

intermediate model that is going to be used to facilitate algorithm design and

analysis in order to solve (3.5). The main observation model of interest in

this chapter is the one outlined in Section (3.1), which is the model that

governs data generation in this chapter.

Similarly to (3.1), we can pose the following dynamic composite hypothesis

testing problem corresponding to (3.7): at each time k choose between the

hypotheses

H̄ k
0 : the anomaly appears at time ν > k,

H̄ k
1,α : the anomaly appears at time ν ≤ k and is placed according to α.

(3.8)

The likelihood ratio between the hypothesis that the anomaly appears at

time ν and is randomly placed according to α at each time instant and the

hypothesis that the anomaly never appears is given by

Lα(k, ν) ,
k∏
j=ν

pα(X[j])

g(X[j])
=

k∏
j=ν

(∑
E ∈E

αE
∏
`∈E

f`(X`[j])

g`(X`[j])

)
=

k∏
j=ν

L(j, j).

(3.9)

We also denote the KL divergence between the post- and pre-change distri-

butions in (3.7) by

Iα , D(pα‖g) = Eα1
[
log

pα(X[1])

g(X[1])

]
, (3.10)

where Eαν [·] denotes the expectation when the underlying statistical model

is that of (3.7) with changepoint being equal to ν and the anomaly placed

randomly according to α.

Note that the model in (3.7) characterizes a different QCD problem

compared to the one described in (3.1) - (3.5), one in which the pre- and
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post-change pdfs are completely specified. This QCD problem is associated

with a corresponding detection delay. In particular, for stopping time τ ,

define the detection delay corresponding to the model in (3.7) by

WADDα(τ) , sup
ν≥1

ess supEαν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]]. (3.11)

Here, we also use the convention that Eαν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] , 1

when Pαν (τ ≥ ν) = 0. Since both the pre- and post-change joint pdfs for

the QCD problem presented in (3.7) - (3.11) are completely specified, the

classical CUSUM test studied in [17–19, 22] can be directly applied to solve

this QCD problem exactly [19]. In the remainder of this chapter, we show

that solving the QCD problem in (3.7) - (3.11) for a carefully chosen α,

which depends on the data generating distributions of the sensors, leads to

a solution to the QCD problem of interest described in eqs. (3.1) - (3.5).

3.4 Mixture-CUSUM Test

In Chapter 2, we numerically established that the M-CUSUM test with

mixture weights chosen according to the stationary probabilities performs

competitively compared to provably asymptotically optimal procedures that

require complete model knowledge and are more computationally demanding

(see Section 2.8). In this chapter, we study the application of the M-CUSUM

test in the worst-path dynamic anomaly detection setting. To this end, for

λ ∈ A, consider the following M-CUSUM test statistic:

Wλ[k] , max
1≤i≤k

Lλ(k, i) (3.12)

with the corresponding stopping time

τM(λ, b) , inf
{
k ≥ 1 : Wλ[k] ≥ eb

}
. (3.13)

It can be easily established (see, e.g., [11]) that for any λ ∈ A the test

statistic in (3.12) can be computed recursively as

Wλ[k] = max{Wλ[k − 1], 1}Lλ(k, k), (3.14)
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where Wλ[0] , 0.

Remark 4. Note that the version of the M-CUSUM test described in eqs.

(3.12) - (3.14) is equivalent to the one in (2.62) - (2.64), and is only used in

this chapter to facilitate a clean and concise analysis of the performance of

the algorithm.

From the exact optimality of the CUSUM test [19] it follows that the M-

CUSUM test presented in eqs. (3.12) - (3.14) is the exact solution to the QCD

problem detailed in (3.7) - (3.11) for γ > 0 when α = λ, if b is chosen such

that E∞[τM(α, b)] = γ. In the remainder of this chapter, we establish that by

choosing λ accordingly the M-CUSUM procedure is also an exact solution to

(3.5) when the network is comprised of homogeneous sensors, as well as first-

order asymptotically optimal for the general heterogeneous network case.

Our analysis is based on relating the two QCD models presented in Sections

3.1 - 3.2 and 3.3, and exploiting tools used for the analysis of the CUSUM

test in [19, 22]. Before proceeding to establish the optimality properties of

the M-CUSUM test, we present an important theorem relating the detection

delay metrics (3.4) and (3.11), introduced in Sections 3.2 and 3.3 respectively.

Theorem 5. Let γ > 0 and α ∈ A. Consider the QCD problems outlined

in Sections 3.1 -3.2 and 3.3. Consider the stopping rule defined in (3.12) -

(3.14) with b chosen such that E∞[τM(α, b)] = γ. We have that

WADD(τM(α, b)) ≥ inf
τ∈Cγ

WADD(τ) ≥WADDα(τM(α, b)). (3.15)

Proof. The details of the proof can be found in Appendix B.2.

3.5 Homogeneous Sensor Network Case

We begin by considering the case of a homogeneous sensor network, i.e., a

network where g`(x) , g(x) and f`(x) , f(x) for all ` ∈ [L], x ∈ R (note that

with some abuse of notation g(x) denotes the common marginal pre-change

pdf, while g(x) denotes the joint pdf under P∞(·)). Since the network in

this case is symmetric, an intuitive weight choice for the M-CUSUM test of

(3.12)-(3.14) is one where all the weights are equal. This then implies that

by the symmetry of the statistical model, as well as the resulting symmetry
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of the detection procedure with respect to the placement of the anomaly,

placing the anomaly randomly or according to the worst-path approach will

not lead to a different detection delay. In particular, we have the following

lemma:

Lemma 5. Consider a homogeneous sensor network where g`(x) , g(x) and

f`(x) , f(x) for all ` ∈ [L], x ∈ R. Let λU ,
[(

L
m

)
, . . . ,

(
L
m

)]>
be the uniform

M-CUSUM weights vector. For any threshold b > 0 and any α ∈ A we have

that

WADD(τM(λU , b)) = WADDα(τM(λU , b)). (3.16)

Proof. The details of the proof can be found in Appendix B.3.

By using Theorem 5 and Lemma 5 we can establish the exact optimality

of the M-CUSUM test with uniform weights for the case of a homogeneous

sensor network.

Theorem 6. Consider a homogeneous sensor network where g`(x) , g(x)

and f`(x) , f(x) for all ` ∈ [L], x ∈ R. Let γ > 0. The M-CUSUM test with

uniform weights λ = λU ,
[(

L
m

)
, . . . ,

(
L
m

)]>
and threshold b chosen such that

E∞[τM(λU , b)] = γ is exactly optimal with respect to (3.5), i.e.,

WADD(τM(λU , b)) = inf
τ∈Cγ

WADD(τ). (3.17)

Proof. The result follows directly by combining Theorem 5 and Lemma 5.

Theorem 6 implies that, for the case of homogeneous sensors, the M-

CUSUM test that solves the QCD problem of eqs. (3.7) - (3.11) for a uniform

pmf α = λU is also the exact solution to (3.1) - (3.5). Next, we investigate

whether a similar result holds for the general case of heterogeneous networks.

3.6 Heterogeneous Sensor Network Case

In Section 3.5, we saw how the symmetry of a homogeneous sensor network

can facilitate the construction of an exactly optimal test with respect to (3.5).

However, in the case of a heterogeneous sensor network, such a symmetry

no longer holds, and a result similar to Lemma 5 cannot be established
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in general. In this section, we show that by choosing the weights of the

M-CUSUM test carefully, a first-order asymptotically optimal test can be

derived by exploiting an asymptotic type of symmetry that is related to the

expected drift of the test statistic.

3.6.1 Universal Asymptotic Lower Bound on the WADD

We begin our analysis for the heterogeneous sensor network setting by

presenting an asymptotic lower bound on WADD for stopping times in Cγ.
Our lower bound is derived by using Theorem 5 together with the asymptotic

lower bound on WADD [17, 22]. In particular, note that the inequalities

in Theorem 5 hold for any arbitrary α ∈ A. Therefore, to obtain the

tightest asymptotic lower bound we need to consider the α that maximizes

the coefficient of the asymptotic rate of WADD. To this end, define the

minimizer of the effective KL divergence Iα by

∗
α , arg min

α∈A
Iα. (3.18)

It can be shown that Iα is strictly convex with respect to α, hence, such a

minimizer is uniquely defined. As a result, we can define the minimum value

of Iα by

∗
I , I ∗α. (3.19)

We then have the following theorem:

Theorem 7. Let
∗
I be defined as in (3.19). Consider the QCD problem

outlined in Sections 3.1 - 3.2. We then have that as γ →∞

inf
τ ∈Cγ

WADD(τ) ≥ log γ
∗
I

(1 + o(1)). (3.20)

Proof. By Theorem 5 we have that for any α ∈ A and any γ > 0

inf
τ ∈Cγ

WADD(τ) ≥ inf
τ ∈Cγ

WADDα(τ), (3.21)
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which implies that the inequality also holds for α =
∗
α , i.e., as γ →∞

inf
τ ∈Cγ

WADD(τ) ≥ inf
τ ∈Cγ

WADD ∗
α(τ) ∼ log γ

∗
I

, (3.22)

where the asymptotic delay approximation follows from the asymptotic

analysis of the CUSUM test [17,22].

3.6.2 Asymptotic Upper Bound on the WADD of the
M-CUSUM Test

Although deriving a lower bound on WADD is similar for both homogeneous

and heterogeneous sensor networks (Theorem 5), upper bounding WADD in

the latter case for arbitrary λ is nontrivial. To find the weight choice of the

M-CUSUM test that results in an asymptotically optimal test, it is important

to further investigate the minimization of Iα. To this end, we present the

following lemma:

Lemma 6. Let
∗
α be defined as in (3.18). We then have the following:

i) Case m ≥ 2 (multiple anomalous nodes):
∗
α cannot be a corner point of

A, i.e., 2 ≤ ‖ ∗α‖0 ≤ |E|.
If ‖ ∗α‖0 = |E| (interior-point minimum),

EpE
[
log

(
p ∗α(X[1])

g(X[1])

)]
= EpE′

[
log

(
p ∗α(X[1])

g(X[1])

)]
(3.23)

for all E, E′ ∈ E, where EpE [·] denotes the expected value when the set of

anomalous nodes is given by E ∈ E.

If 2 ≤ ‖ ∗α‖0 < |E| (boundary-point minimum), let E ′ , {E ∈ E :
∗
αE > 0}

the subset of vectors in E for which non-zero weights are assigned in
∗
α. We

then have that for all E, E′ ∈ E ′ eq. (3.23) holds. Furthermore, we have

that for all B ∈ E ′, B′ ∈ E \ E ′

EpB′
[
log

(
p ∗α(X[1])

g(X[1])

)]
> EpB

[
log

(
p ∗α(X[1])

g(X[1])

)]
. (3.24)

ii) Case m = 1 (single anomalous node):
∗
α is an interior point of A, i.e.,

‖ ∗α‖0 = |E| = L.

Proof. The details of the proof can be found in Appendix B.4.
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By exploiting the properties presented in Lemma 6, we derive an asymp-

totic upper bound on WADD(τM(
∗
α, b)). In particular, we have the following

theorem:

Theorem 8. Let
∗
α be defined as in (3.18). Assume that

max
E ∈E

EpE

[(
log

p ∗α(X[1])

g(X[1])

)2
]
<∞. (3.25)

Consider the stopping rule defined in (3.12) - (3.14). We then have that as

b→∞

WADD(τM(
∗
α, b)) ≤ b

∗
I

(1 + o(1)). (3.26)

Proof. The details of the proof can be found in Appendix B.5.

3.6.3 Asymptotic Optimality of the M-CUSUM Test

By combining Theorems 7 with 8 we can establish the asymptotic optimality

of the M-CUSUM test for weight choice λ =
∗
α.

Theorem 9. Let
∗
α,

∗
I be defined as in (3.18) and (3.19) respectively, and

assume that

max
E ∈E

EpE

[(
log

p ∗α(X[1])

g(X[1])

)2
]
<∞. (3.27)

Consider the stopping rule defined in (3.12) - (3.14). We then have that:

i) For any γ > 0, λ

E∞[τM(λ, log γ)] ≥ γ. (3.28)

ii) The M-CUSUM test with λ =
∗
α is first-order asymptotically optimal

under (3.5), i.e., as γ →∞

inf
τ ∈Cγ

WADD(τ) ∼WADD(τM(
∗
α, log γ)) ∼ log γ

∗
I

. (3.29)

Proof. i) Follows directly from the MTFA analysis of the CUSUM test [17,22].

ii) Follows from i) and Theorems 7 and 8.
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Essentially, Theorem 9 implies that, for the case of heterogeneous sensors,

there exists a choice of α such that the M-CUSUM test that solves the QCD

problem of (3.7) - (3.11) for said α exactly is also asymptotically optimal

with respect to (3.1) - (3.5). This α is the unique minimizer of the KL

divergence in (3.10).

The asymptotic optimality of the M-CUSUM test with weights given by
∗
α

can be intuitively explained through Lemma 6. In particular, since a larger

γ implies a larger threshold, if we consider the logarithm of the M-CUSUM

test statistic in (3.12) (equivalent M-CUSUM form studied in (2.62)), the

expectation of the added log-likelihood ratio (which is usually referred to

as the “drift” of the statistic) dominates the asymptotic performance of the

M-CUSUM test. For a general choice of λ this drift is not generally equal for

the different anomaly placements E ∈ E . Therefore, the worst-path delay

will be dominated by the smallest resulting drift among anomaly placements.

However, by Lemma 6 we know that choosing λ =
∗
α implies that the drift of

the statistic is equal among a specific subset of anomaly placements. In other

words, the M-CUSUM test with λ =
∗
α is an equalizer rule with respect to

the drift of the test statistic among different anomaly allocations for a subset

of E . Furthermore, as we see in Lemma 6, all other placements of anomalous

nodes lead to a larger drift and hence do not play a role asymptotically due to

the worst-path aspect of the delay. This equalization of slopes is the reason

that the M-CUSUM test with optimal weights matches the universally best

delay asymptotically.

Remark 5. It should be noted that the first-order asymptotic optimality

results in this chapter also hold if we use a worst-path version of Pollak’s

detection delay [18]. In particular, for stopping time τ define the detection

delay

CADD(τ) , sup
S

sup
ν≥1

ESν [τ − ν|τ ≥ ν] . (3.30)

By deriving an inequality connecting CADD and the corresponding Pollak’s

delay metric under the randomized anomaly allocation model of Sec. 3.3., and

since WADD is always larger than CADD, we can easily establish the first-

order asymptotic optimality of the M-CUSUM test under Pollak’s criterion.

As a result, Theorem 9 also holds when WADD is replaced by CADD.

However, it is not clear whether the M-CUSUM test is exactly optimal with
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respect to Pollak’s criterion for the case of homogeneous sensor networks,

since the exact optimality of the CUSUM test for Pollak’s formulation in the

classical single-sensor QCD setting has not been established. Hence, it can

not be exploited to prove the exact optimality of the M-CUSUM test, as was

done in Appendix B.2.

3.7 Numerical Results

In this section, we present numerical results for the worst-path dynamic

anomaly QCD problem studied in this chapter for the case of a single

anomalous node (m = 1) and different network sizes L. We present results

for both homogeneous and heterogeneous sensor networks.

For the case of a homogeneous network, we assume that g = N (0, 1) and

f = N (1, 1). For homogeneous networks, we can introduce two additional

tests that can be used for comparison: a heuristic test and an oracle-type

test. In particular, note that for all S we have that

E∞

[
L∑
`=1

log
f(X`[k])

g(X`[k])
+ (L−m)D(f‖g)

]
= −mD(f‖g) < 0

ES1

[
L∑
`=1

log
f(X`[k])

g(X`[k])
+ (L−m)D(f‖g)

]
= mD(f‖g) > 0.

This suggests that the following Naive-CUSUM (N-CUSUM) test may be a

candidate test for detecting the distribution change described in (3.1). In

particular, consider the test described by the following recursion:

WN [k] , (WN [k − 1])+ +
L∑
`=1

log
f(X`[k])

g(X`[k])
+ (L−m)D(f‖g) (3.31)

with WN [0] , 0 and corresponding stopping time

τN , inf {k ≥ 1 : WN [k] ≥ b} .

Although the N-CUSUM test can be employed to detect the anomaly

reasonably well due to the statistic WN [k] having the right drift behavior

before and after the change, it does not necessarily solve the QCD problem
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in (3.5).

We also compare our proposed procedure to an Oracle-CUSUM (O-

CUSUM) test, which is a CUSUM test that uses complete knowledge of

S. That is, to define this test we assume that at time k we do not know

whether a change has occurred, but we know which set of sensors would be

affected if an anomaly had already emerged in the network. In particular,

consider the statistic calculated by using the following recursion:

WO[k] = (WO[k − 1])+ + log

 ∏
`∈S[k]

f(X`[k])

g(X`[k])

 (3.32)

with WO[0] , 0 and with corresponding stopping time

τO , inf {k ≥ 1 : WO[k] ≥ b} . (3.33)

Since this O-CUSUM test uses the knowledge of the location of the anomalous

nodes, it is expected to perform better than our proposed test. However, such

a test is not implementable since in practice such location information will

not be available to the decision maker.

In Figs. 3.1(a), 3.1(b) and 3.2(a) we compare the M-CUSUM test with

the N-CUSUM test and the O-CUSUM test for network sizes L = 5, L = 10

and L = 20. Note that due to the symmetry of the M-CUSUM and the N-

CUSUM test statistics, WADD is equal to the delay for any arbitrary path of

the anomaly. By inspecting Figs. 3.1(a), 3.1(b) and 3.2(a) we note that the

M-CUSUM test outperforms the heuristic N-CUSUM test, which is expected

since the M-CUSUM test is optimal with respect to (3.5). In addition,

we note that the O-CUSUM test performs better than the other detection

schemes, which is to be expected since it exploits complete knowledge of S.

We also note that as L increases the performance gap between the O-CUSUM

test and the M-CUSUM test increases. This is because as the network

size increases the “noise” that is introduced in the M-CUSUM test due to

nodes that are not anomalous also increases. This is not the case for the

O-CUSUM test, since this scheme inherently assumes complete knowledge

of the anomalous nodes. In Fig. 3.2(b), we evaluate the performance of

our proposed M-CUSUM test for different values of L. We note that as
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(a) WADD versus MTFA for L = 5, m = 1.

Mean Time to False Alarm (MTFA)
103 104

E
xp

ec
te

d 
D

et
ec

tio
n 

D
el

ay

20

40

60

80

100 N-CUSUM test
M-CUSUM test
O-CUSUM test

(b) WADD versus MTFA for L = 10, m = 1.

Figure 3.1: WADD versus MTFA for homogeneous sensor networks.

L increases our proposed test performs worse, which is expected since the

algorithm is affected by more “noise” from non-anomalous nodes for larger

network sizes.

For the case of a heterogeneous sensor network, we compare three versions

of the test introduced in eqs. (3.12) - (3.14): the first version (“Optimal

weights” in Fig. 3.3) uses the optimal weights
∗
α to achieve a uniform

average statistic drift among anomaly placements (see Lemma 6); the second

and third versions (“Non-optimal weights 1” and “Non-optimal weights 2”

in Figs. 3.3) use arbitrary choices of weights that only guarantee that the

expected drift of the statistic is positive for any placement of the anomaly.

The optimal weights are found by using gradient descent with the derivatives

calculated as in eq. (B.62). Note that, according to (B.62), each derivative
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(a) WADD versus MTFA for L = 20, m = 1.
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(b) WADD versus MTFA for the M-CUSUM when m = 1 and for different L values.

Figure 3.2: WADD versus MTFA for homogeneous sensor networks.

is equal to a difference of two expected values, which we calculate using

Monte Carlo methods. Furthermore, it should be noted that the WADD in

the case of heterogeneous sensor networks is calculated approximately, since

the worst path of the anomaly cannot be specified analytically. However, as

the MTFA becomes large, the WADD can be approximated by placing the

anomalies at the nodes (in this case node since m = 1) that correspond to

the smallest post-change drift for the test statistic. For the optimal weight

choice the placement of the anomaly does not affect the delay for large

MTFA, since the drift does not depend on the trajectory of the anomaly.

We consider the cases of L = 10 and L = 20. For the case of L = 10,

we assume that g` = N (0, 1) for all ` ∈ [L], and that f` = N (θ`, 1) with

θ = [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]> denoting the vector of the mean
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(a) WADD versus MTFA for L = 10, m = 1.
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(b) WADD versus MTFA for L = 20, m = 1.

Figure 3.3: WADD versus MTFA for heterogeneous sensor networks.

values of the anomalous distributions. The results can be seen in Fig. 3.3(a).

The M-CUSUM test statistic using optimal weights is then characterized by

a uniform statistic drift, approximately equal to 0.178. For the case of “Non-

optimal weights 1” the smallest drift corresponds to placing the anomaly

at sensor 2, corresponding to an approximate slope of 0.029, and for the

case of “Non-optimal weights 2” at sensor 5, with an approximate slope of

0.065. We see that the Mixture-CUSUM test using the optimal weights
∗
α

outperforms the other two implementations. Similar results can be produced

by considering the case of L = 20. For that case, we assume that g` = N (0, 1)

for all ` ∈ [L], f` = N (0.8, 1) for all 1 ≤ ` ≤ 5, f` = N (1, 1) for all 6 ≤ ` ≤ 15,

and f` = N (1.2, 1) for all 16 ≤ ` ≤ 20. The results can be seen in Fig. 3.3(b),

where we note that the optimal-weights test outperforms the tests that use
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arbitrarily chosen weights. The resulting homogeneous statistic drift is then

approximately equal to 0.036. Furthermore, for the case of “Non-optimal

weights 1” the worst drift corresponds to placing the anomaly at any sensor

` ∈ [5], corresponding to an approximate slope of 0.003, and for the case

of “Non-optimal weights 2” at any sensor ` ∈ {16, 17, 18, 19, 20}, with an

approximate slope equal to 0.023. Finally, it should be noted that in this

case we have chosen “Non-optimal weights 1” to correspond to the case of

uniform weights. As a result, the gap between the blue and red lines in Fig.

3.3(b) captures the loss we suffer if we wrongly make the assumption that

the sensors of the network are homogeneous.
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CHAPTER 4

VARYING-SIZE WORST-PATH DYNAMIC
ANOMALY DETECTION

In Chapter 3, we studied the problem of sequentially detecting dynamic

anomalies of constant size under a worst-path delay metric. Although the

extension to detecting anomalies of varying size for the Markov setting can

be easily achieved by modifying the structure of the DTMC, as mentioned

in Chapter 2, generalizing the results of Chapter 3 to the varying-size case

is non-trivial. In this chapter, we study the problem of worst-path dynamic

anomaly detection for anomalies of varying size. Our main assumption is

that the dynamic anomaly to be detected evolves not only in space, but also

in size through a series of phases. Every phase corresponds to a specific

anomaly size, with the final phase referred to as the persistent phase and

the intermediate phases as the transient phases. We frame this varying-size

dynamic anomaly detection problem under a worst-path setting by extending

the delay metric introduced in Chapter 3 to account for the presence of

transient phases. Similarly to Chapter 3, where the constant-size dynamic

anomaly QCD problem was solved by associating it with an instance of the

classical QCD setting, in this chapter we use results from transient QCD [35].

In particular, we establish that a version of the Weighted Dynamic-CUSUM

procedure, that solves a specific instance of the transient QCD problem

studied in [35], is asymptotically optimal for the dynamic anomaly detection

problem of interest in this chapter. The proposed detection scheme involves

a set of parameters to be chosen by minimizing KL numbers, such as in

Chapter 3. The main difference here is that there is a different mixture weight

vector per post-change phase, resulting from a minimization of a specific

KL divergence per phase. Finally, we numerically evaluate our proposed

procedure for different cases, such as different network sizes, different degrees

of model knowledge, and for the case of optimal vs. non-optimal parameter

choice. This chapter has appeared in part as [52,53].
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4.1 Observation Model

We begin this chapter by outlining the observation model for the case of

varying-size dynamic anomalies. As in the case of Chapters 2 and 3, before

the emergence of the dynamic anomaly in the network, it is assumed that

sensors generate data i.i.d. across time with respect to their non-anomalous

distributions. As a result, the joint pdf of the observations before the anomaly

emerges is given by

g(X[k]) ,
L∏
`=1

g`(X`[k]). (4.1)

At some unknown and deterministic changepoint ν1 ≥ 1, a dynamic anomaly

emerges in the network, affecting different sets of sensors as time progresses.

It is assumed that the number of affected nodes changes in phases before

resolving to a persistent anomaly size. In particular, we assume that our

system goes through K − 1, K ≥ 2, transient phases before reaching the

persistent size phase, each phase corresponding to a specific dynamic anomaly

size. Phase i ∈ [K] is assumed to begin at an unknown and deterministic

changepoint νi, where νi ≥ νi′ for i > i′. As a result, the duration of the i-th

transient phase is given by

di , νi+1 − νi (4.2)

for i ∈ [K − 1]. We denote by d , {di}K−1
i=1 the vector containing the

transient phase durations. Note that we assume that in addition to the

changepoints, the durations of the transient phases are also unknown and

deterministic. In addition, without loss of generality we assume that adjacent

phases correspond to distinct anomaly sizes. Define by m(i) ∈ [L] the size of

the anomaly at phase i ∈ [K]. Denote by S(i) , {S(i)[k]}∞k=1 the unknown

but deterministic trajectory of the anomaly at phase i, where S(i)[k] denotes

the vector containing the anomalous nodes at time k and phase i. Note

that S(i)[k] is defined for all k ≥ 1 and not only νi ≤ k < νi+1 for

notational convenience, although only the values at νi ≤ k < νi+1 affect

the distribution of our observations. Define by E (i) the set of vector-values

of S(i)[k] corresponding to all anomaly allocations for an anomaly of size

m(i). Note that there are |E (i)| =
(
L
m(i)

)
such positions (here also, without
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loss of generality we assume that the components of each vector are ordered

to provide a unique vector per anomaly placement).

Assume that the observations are independent across time, conditioned on

the values of the changepoints {νi}ki=1, and on the anomaly trajectory. Then,

for a fixed set of trajectory sequences S , {S(i)}Ki=1 and fixed changepoints

{νi}Ki=1 we have that for i ∈ [K] and νi ≤ k < νi+1 (assuming νK+1 ,∞)

X[k] ∼ pS(i)[k](X[k]) ,

 ∏
`∈S(i)[k]

f`(X`[k])

 ·
 ∏
` /∈S(i)[k]

g`(X`[k])

 .

As a result, conditioned on {νi}Ki=1 and S the observations are independent

and the complete statistical model is the following:

X[k] ∼

{
g(X[k]), 1 ≤ k < ν1,

pS(i)[k](X[k]), νi ≤ k < νi+1,
(4.3)

for i ∈ [K].

4.2 Problem Formulation

Our goal in this chapter is to design a detection algorithm to detect the

abrupt distribution change occurring at time ν1, described in (4.3), as quickly

as possible, subject to FA constraints. To this end, we use a generalization

of the delay metric introduced in Chapter 3 to account for the presence of

transient phases during which the anomaly changes in size. Explicitly, denote

by ESν1,d[·] the expectation under the statistical model in (4.3) for fixed ν1, d

and S. Then, for any stopping rule τ adapted to X and for vector d define

the following delay metric:

WADDd(τ) , sup
S

sup
ν1≥1

ess supESν1,d [τ − ν1 + 1|τ ≥ ν1,X[1, ν1 − 1]] , (4.4)

where the convention that ESν1,d [τ − ν1 + 1|τ ≥ ν1,X[1, ν − 1]] , 1 when

PSν1,d(τ ≥ ν1) = 0 is used. Note that the proposed detection delay depends

on d, since different phase durations imply different probability distributions

across time, hence different delay for τ . Our goal in this chapter is to design

a stopping procedure τ that solves the following stochastic optimization

49



problem for γ > 0:

min
τ

WADDd(τ)

s.t. τ ∈ Cγ
(4.5)

for any value of d.

4.3 Randomized Anomaly Allocation Model

As in Chapter 3, in this section, we introduce an alternative statistical model

to that in (4.3), only used as an intermediate tool that will play an important

role in the presentation of our results, as well as in the analysis. More

explicitly, consider the case of a dynamic anomaly that at each phase i

affects one of the sets of sensors in E (i) at random. To this end, denote

by α(i) ,
{
α

(i)
E : E ∈ E (i)

}
∈ A(i) the pmf containing the probabilities that

each of the vectors in E (i) is chosen as the vector of anomalous nodes at each

time instant during phase i (here, A(i) denotes the simplex of all probability

vectors of dimension |E (i)|). In particular, at each time instant in phase i

the anomalous nodes are chosen i.i.d. from E (i) according to α(i). Define by

α , {α(i)}Ki=1 the set of the aforementioned pmfs for all phases. According

to this randomized allocation model, we have that the joint pdf before the

emergence of the anomaly is going to be the same with the pre-change joint

pdf in (4.3). In addition, after the emergence of the anomaly we have that

the joint pdf of the observations at phase i is completely specified and given

by

p
(i)

α(i)(X[k]) ,
∑
E ∈E(i)

α
(i)
E pE(X[k]). (4.6)

For fixed {νi}Ki=1, α this results in the following statistical observation model:

X[k] ∼

{
g(X[k]), 1 ≤ k < ν1,

p
(i)

α(i)(X[k]), νi ≤ k < νi+1,
(4.7)

for i ∈ [K]. Furthermore, for fixed α define the KL divergence between the

joint pdf at phase i and the non-anomalous joint pdf g(x) by

I
(i)

α(i) , D(p
(i)

α(i)‖g). (4.8)
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Note that (4.7) corresponds to a transient QCD problem, as described in [35],

since the pre-change and post-change pdfs are completely specified. This

transient QCD problem is associated with a corresponding detection delay.

In particular, let Eαν1,d[·] denote the expectation under the model in (4.7)

for fixed ν1, α, d. Then, for stopping time τ define the detection delay

corresponding to the QCD problem detailed in (4.7) by

WADDα,d(τ) , sup
ν1≥1

ess supEαν1,d[τ − ν1 + 1|τ ≥ ν1,X[ν1 − 1]], (4.9)

where the convention that Eαν1,d[τ − ν1 + 1|τ ≥ ν1,X[ν1 − 1]] , 1 when

Pαν1,d(τ ≥ ν1) = 0 is also used here. Note that the transient QCD problem de-

scribed in (4.7)-(4.9) can be solved by using the Weighted Dynamic-CUSUM

(WD-CUSUM) test proposed in [35], which is first-order asymptotically

optimal. However, it is not clear whether this solution coincides with the

solution to (4.5). In the remainder of the chapter, we show that solving the

transient QCD problem in (4.7) - (4.9) for a specific choice of pmfs in α will

lead to the solution of the initial worst-path problem described in (4.5).

4.4 Mixture-WD-CUSUM Test

In this section, we present the Mixture-WD-CUSUM (M-WD-CUSUM) test

that solves the transient QCD problem introduced in eq. (4.7) - (4.9). In

particular, consider the following M-WD-CUSUM test statistic:

Ωλ[k] = max{Ω(1)
λ [k], . . . ,Ω

(K)
λ [k], 0}, (4.10)

where for i ∈ [K], Ω
(i)
λ [k] is calculated recursively as

Ω
(i)
λ [k] = max

0≤j≤i

(
Ω

(j)
λ [k − 1] +

i−1∑
r=j

log ρr

)
+ log

p
(i)

λ(i)(X[k])

g(X[k])
+ log(1− ρi),

(4.11)

where ρ0 , 1, ρi ∈ (0, 1) for i ∈ [K − 1], ρK , 0, Ω(i)[0] , 0 for all i ∈ [K],

and Ω(0)[k] , 0 for all k. Furthermore, define the corresponding stopping
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time by

τΩ(λ, b) , inf{k ≥ 1 : Ωλ[k] ≥ b}. (4.12)

From the results in [35], the M-WD-CUSUM test presented in (4.10) - (4.12)

is first-order asymptotically optimal with respect to the transient QCD

problem in (4.7) - (4.9) when α = λ for carefully chosen ρi parameters

. Explicitly, the ρi parameters in (4.11) are introduced so that the FA

constraint is satisfied for b = log γ, and should be chosen to not play a role

asymptotically in order for an asymptotically optimal test to be derived.

More details regarding choosing the ρi parameters will be given in the

subsequent analysis, and can also be found in [35]. In the remainder of

the chapter, we leverage the results of [35] to establish that choosing α

accordingly will lead to the first-order asymptotic optimality of the M-WD-

CUSUM with respect to (4.5).

4.5 Universal Asymptotic Lower Bound on the WADD

We begin our analysis by presenting an asymptotic lower bound on WADD

for stopping times in Cγ. As in Chapter 3, our lower bound is based on a

lemma connecting the delays in eqs. (4.4) and (4.9). In particular, our first

lemma implies that the worst-path delay cannot be smaller than the delay

that corresponds to choosing the anomalous nodes at random regardless of

the choice of prior α. We use this lemma and the asymptotic results in [35]

to derive the tightest asymptotic lower bound on WADD. In particular, the

lemma is as follows:

Lemma 7. Consider the QCD problems outlined in Sections 4.1 - 4.2 and

4.3. For any stopping time τ , vector of pmfs α and d we have that

WADDd(τ) ≥WADDα,d(τ). (4.13)

Proof. The details of the proof can be found in Appendix C.3.

Remark 6. Note that Lemma 7 also holds for the case of constant-size worst-

path dynamic anomaly detection studied in Chapter 3. However, in Chapter 3
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we used Lemma 5 mainly because it facilitates the proof of the exact optimality

of the M-CUSUM test in the homogeneous sensors case.

Since the results in [35] provide a universal asymptotic lower bound on

WADD for any α, an asymptotic lower bound on WADD then follows directly

from Lemma 7. However, since the asymptotic rate in the lower bound of

WADD is a function of the KL numbers defined in (4.8), we need to choose

the pmfs in α to get the tightest lower bound on WADD. To this end, define

∗
α(i) , arg min

α(i)∈A(i)

I
(i)

α(i) . (4.14)

It can be shown that I
(i)

α(i) is strictly convex with respect to α(i), hence, such a

minimizer is uniquely defined. Denote by
∗
α , { ∗α(i)}Ki=1 the vector containing

the minimizing pmfs. Furthermore, define the minimum value of I
(i)

α(i) by

∗
I(i) , I

(i)
∗
α(i)

. (4.15)

To ensure that the transient phases play a non-trivial role asymptotically, the

durations of the transient phases need to scale to infinity accordingly with

γ. In particular, without loss of generality, assume that there exist constants

ci ∈ [0,∞) ∪ {∞}, i ∈ [K − 1] such that as γ →∞

di ∼ ci
log γ
∗
I(i)

, (4.16)

where dK , ∞. This assumption can be intuitively explained since,

asymptotically, the rate of the transient durations with respect to log γ will

indicate the phase at which the anomaly will be detected (also see [35]). The

specific choice of KL numbers as a scaling coefficient in (4.16) will imply that

the universal lower bound and upper bound on the delay of the proposed test

will match, as will be noted in the upper bound analysis. To this end, we

have the following theorem for the lower bound:

Theorem 10. Consider the QCD problem defined in Sections 4.1 and 4.2.

Assume that (4.16) holds. Furthermore, define h , min{j ∈ [K] :
∑j

i=1 ci ≥
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1}. We then have that as γ →∞

inf
τ∈Cγ

WADDd(τ) ≥ log γ

(
h−1∑
i=1

ci
∗
I(i)

+
1−

∑h−1
i=1 ci

∗
I(h)

)
(1− o(1)). (4.17)

Proof. The result follows directly by applying Lemma 7 for α =
∗
α and using

Theorem 5 of [35] to lower bound WADD ∗
α,d(τ).

4.6 Asymptotic Upper Bound on the WADD of the

M-WD-CUSUM Test

We now establish an asymptotic upper bound on the WADD of the pro-

posed M-WD-CUSUM algorithm. The asymptotic upper bound is based on

exploiting the upper bound analysis in [35] and [50]. For the asymptotic

upper bound analysis to be non-trivial we need to assume that the transient

durations scale accordingly to threshold b. In particular, assume that there

exist constants c′i ∈ [0,∞) ∪ {∞}, i ∈ [K − 1] such that

di ∼ c′i
b
∗
I(i)

. (4.18)

Furthermore, we need to choose the parameters ρi, i ∈ [K − 1] in the M-

WD-CUSUM test such that their effect is asymptotically negligible [35]. In

particular, assume that ρi can be chosen such that as b→∞

ρi → 0, and − log ρi
b
→ 0, (4.19)

for i ∈ [K − 1]. We then have the following asymptotic upper bound:

Theorem 11. Consider the QCD problem defined in Sections 4.1 and 4.2.

Suppose b and ρi, i ∈ [K − 1] are chosen such that (4.18) and (4.19) hold.

Assume that

max
i∈ [K]

max
E ∈E(i)

EpE

(log
p

(i)
∗
α(i)

(X[1])

g(X[1])

)2
 <∞. (4.20)

Furthermore, define h′ , min{j ∈ [K] :
∑j

i=1 c
′
i ≥ 1}.
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Consider the stopping rule defined in (4.10) - (4.12). We then have that

as b→∞

WADDd(τΩ(
∗
α, b)) ≤ b

(
h−1∑
i=1

c′i
∗
I(i)

+
1−

∑h′−1
i=1 c′i

∗
I(h′)

)
(1 + o(1)). (4.21)

Proof. The details of the proof can be found in Appendix C.4.

4.7 Asymptotic Optimality of the M-WD-CUSUM

Test

By combining Theorems 10 with 11 we can establish the asymptotic optimal-

ity of the M-WD-CUSUM when λ =
∗
α. In particular, we have the following

theorem:

Theorem 12. Consider the QCD problem defined in Sections 4.1 and 4.2.

Assume that

max
i∈[K]

max
E ∈E(i)

EpE

(log
p

(i)
∗
α(i)

(X[1])

g(X[1])

)2
 <∞. (4.22)

Consider the stopping rule defined in (4.10) - (4.12). We then have that:

i) For any γ > 0, λ

E∞[τΩ(λ, log γ)] ≥ γ. (4.23)

ii) Assume that (4.16) is satisfied as γ →∞ for some ci ∈ [0,∞) ∪ {∞},
i ∈ [K − 1], and that as γ →∞

ρi → 0, and − log ρi
log γ

→ 0 (4.24)

for all i ∈ [K − 1]. Let h , min{j ∈ [K] :
∑j

i=1 ci ≥ 1}. We then have that

the M-WD-CUSUM test with λ =
∗
α is first-order asymptotically optimal
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under (4.5), i.e., as γ →∞

WADDd(τΩ(
∗
α, log γ)) ∼ inf

τ ∈Cγ
WADDd(τ)

∼ log γ

(
h−1∑
i=1

ci
∗
I(i)

+
1−

∑h−1
i=1 ci

∗
I(h)

)
. (4.25)

Proof. i) Follows directly from the MTFA analysis of the WD-CUSUM test

[35].

ii) Follows from i) and Theorems 10 and 11, and since for b = log γ we

have that ci = c′i for all i ∈ [K − 1].

Remark 7. Similarly to Chapter 3, the first-order asymptotic optimality

results in this chapter also hold if we use a worst-path version of Pollak’s

detection delay [18]. In particular, for stopping time τ and vector of transient

durations d define the detection delay

CADDd(τ) , sup
S

sup
ν1≥1

ESν1,d [τ − ν1|τ ≥ ν1] . (4.26)

By deriving a lower bound similar to the one in Lemma 7, and since WADD

is always larger than CADD, we can easily establish the first-order asymptotic

optimality of the M-WD-CUSUM test under Pollak’s criterion, i.e., Theorem

12 also holds when WADD is replaced by CADD.

4.8 Numerical Results

In this section, we numerically evaluate the performance of the proposed M-

WD-CUSUM algorithm of (4.10) - (4.12). We consider the case of both

homogeneous and heterogeneous sensors. For the case of homogeneous

sensors, it can be shown that the optimal weight choice is given by choosing

the weights uniformly at each phase [52] . Note that WADD for the proposed

test is attained at ν1 = 1. Furthermore, for the case of heterogeneous sensors,

the worst path cannot be specified analytically, as in the case in Chapter

3. As a result, we will approximate the worst-path delay by placing the

anomalous nodes at each phase such that the worst-possible slope for the

test statistic is attained. We numerically calculate the average statistic slope
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through Monte Carlo simulations. In addition, we use ρi = 1
b

to guarantee

that the conditions in (4.19) are satisfied.

For the case of homogeneous sensors we focus on the case of g` = N (0, 1)

and f` = N (1, 1) for ` ∈ [L]. In Fig. 4.1, we simulate the proposed M-

WD-CUSUM test for the case of K = 3, m(1) = 1, m(2) = 2, m(3) = 3,

d1 = 9, d2 = 10 and for L = 3, 5, 10. We note that for fixed MTFA the

average detection delay increases with network size. This is to be expected

since a larger network introduces more noise in the calculation of the mixture

likelihood ratios in (4.11). Furthermore, we see that as the MTFA increases

the slopes of the curves decrease gradually. This means that the Mixture-

WD-CUSUM is adaptive to each transient phase (also see [35]) since the

expected slope of the test statistic increases as the anomaly size increases.

Mean Time to False Alarm (MTFA)
102 103 104

E
xp

ec
te

d 
D

et
ec

tio
n 

D
el

ay

10

15

20

25 L = 10
L = 5
L = 3

Figure 4.1: WADD versus MTFA for K = 3 and varying network sizes.

In Fig. 4.2, we evaluate the performance loss that our algorithm incurs

when the anomaly size is not completely specified. In particular, we consider

the case of K = 3, m(1) = 2, m(2) = 3, m(3) = 4, d1 = 9, d2 = 10 and L = 6

and compare the performance of the M-WD-CUSUM test that is designed by

completely knowing the values of these parameters with the M-WD-CUSUM

that assumes that K = 6 and m(i) = i for i ∈ [K]. As expected, the algorithm

that exploits complete knowledge of the size of the anomaly at each phase

performs much better. Note that the performance loss for our case study is

not significant; however, the performance loss can increase significantly as L

increases, if our estimates for K and m(i) are not sufficiently accurate.

Finally, in Fig. 4.3 we evaluate the performance of our proposed detection

procedure for the case of a heterogeneous sensor network with L = K = 5,
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Figure 4.2: WADD versus MTFA comparison between the test that exploits
and test that does not exploit complete knowledge of the anomaly size
across phases for a homogeneous sensor network.

m(i) = i for i ∈ [K], g` = N (0, 1) and f` = N (θ`, 1) where θ =

[0.8, 0.8, 1, 1.2, 1.2]>. Furthermore, we assume that d1 = 19 and d2 = d3 =

d4 = 20. To this end, we compare the M-WD-CUSUM that uses complete

knowledge of f`(·) and g`(·) for all ` ∈ [L] and chooses the proposed optimal

weights to the M-WD-CUSUM test that uses uniform weights (i.e., assumes

sensors are homogeneous). For each phase, the anomaly for the uniform

weights case is placed so that the slope of the statistic is minimized. We see

that there is significant performance loss when the decision maker assumes

that the sensors are homogeneous when they are heterogeneous.
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Figure 4.3: WADD versus MTFA comparison between the test that exploits
and test that does not exploit complete knowledge of the sensor pdfs for a
heterogeneous sensor network.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, we studied the problem of dynamic anomaly detection

in sensor networks in a quickest change detection framework. Existing works

in the literature of quickest change detection in sensor networks only focus

on detecting anomalies that affect sensors persistently. As a result, new

formulations are needed to describe problems involving dynamic anoma-

lies, i.e., anomalies affecting the whole network persistently but without

necessarily affecting sensors persistently. In this work, we introduced the

problem of dynamic anomaly detection in sensor networks and established

that algorithms from the literature of classical quickest change detection and

transient quickest change detection can be modified to provide tests that

offer strong theoretical guarantees, such as exact or asymptotic optimality.

We first studied the setting where an emerging anomaly is modeled as a

discrete-time Markov chain in Chapter 2. We constructed the Windowed-

GLR test, and established its first-order asymptotic optimality. We also

constructed three alternative tests, including the D-S-R test, the QCD

test with recursive changepoint estimation and the M-CUSUM test. By

conducting comprehensive numerical studies we showed that our Windowed-

GLR test provides the best performance in terms of the trade-off between

the MTFA and the delay. However, it requires complete knowledge of the

probability transitions of the underlying Markov chain and it may suffer

from a high computationally complexity especially for large networks. Our

proposed M-CUSUM test has a computational complexity of O(L), which is

the most efficient among all other tests, and it only requires knowledge of the

stationary probabilities of the underlying Markov model, while performing

competitively to provably asymptotically optimal tests.

In Chapter 3, we lifted the Markov assumption on the trajectory of

the anomaly and focused on a worst-path approach for detecting dynamic

anomalies of constant size. To this end, we introduced a modified version
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of Lorden’s detection delay metric [17] that evaluates candidate detection

schemes according to their worst performance with respect to the path of the

anomaly. We proposed a CUSUM-type test that is an exact solution to the

constant-size dynamic anomaly QCD problem for the case of a homogeneous

network, and is also first-order asymptotically optimal when applied to a

heterogeneous network. We concluded the chapter by conducting a numerical

study of the proposed algorithm which included comparisons with heuristic

and oracle procedures.

In Chapter 4, we extended the results in Chapter 3 to consider the case

of worst-path anomaly detection of anomalies of varying size. As outlined,

such an extension is not as straightforward in the worst-path setting as in the

Markov setting. For the worst-path varying-size anomaly setting, we made

the core assumption that the size of the anomaly evolves in a series of phases,

where each phase corresponds to a specific anomaly size. The final phase

corresponds to the persistent anomaly size, and the intermediate phases are

referred to as transient phases. Under this framework, we established that a

WD-CUSUM-type test from the literature of transient QCD [35] is first-order

asymptotically optimal. We concluded the chapter by numerically evaluating

the proposed detection scheme.

We now discuss possible future directions and interesting problems to be

addressed:

1. Composite/non-parametric setting: A major assumption through-

out this dissertation has been that the decision maker has complete

knowledge of the sensor data-generating distributions. This assumption

is reasonable for the pre-change distributions of the sensors, since they

can be estimated by observing the system operate in the non-anomalous

mode. However, in practice the decision maker either has partial

knowledge of the anomalous sensor distributions, e.g., up to some

unknown parameters (composite setting), or has no knowledge of the

anomalous distributions (non-parametric setting). The composite QCD

problem has been extensively studied in the literature, albeit in simpler

settings than those considered in this dissertation [17, 22]. Although

the algorithms proposed in these works are characterized by strong the-

oretical guarantees, they involve calculating test statistics that cannot

be updated recursively. Recently, algorithms that are recursive and
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asymptotically optimal have been proposed for the classical composite

quickest change detection setting [48]. These tests involve calculating

CUSUM-type statistics that use a maximum-likelihood estimator to

estimate the parameters of the anomalous distributions. Hence, the

QCD problem becomes a problem of joint detection and estimation. To

guarantee that the observed test statistic can be updated recursively,

these algorithms also include an estimate of the changepoint to be

calculated at each time instant. In particular, by exploiting the

fact that CUSUM-type statistics take values very close to zero when

an anomaly is not present in the network, the maximum-likelihood

estimate of the changepoint at each time instant can be shown to be

the equal to the last time the test statistic was equal to zero. Similar

detection schemes have also been recently used for the problem of semi-

parametric QCD [47].

To tackle the problem of lack of post-change model knowledge in our

more complicated sensor network setting, our detection procedures have

to be enhanced with estimation mechanisms. The main challenges

then are the following: (i) similar to [47, 48] the decision maker has

no knowledge of whether an anomaly has emerged in the system,

hence might use data points from a non-anomalous distribution to

estimate the corresponding anomalous distribution; (ii) in the dynamic

anomaly setting many of the sensors may generate data points from

their non-anomalous distributions even after an anomaly has emerged

in the system, hence the decision maker has to construct an estimate

of the most probable anomalous nodes at each time instant and only

use their measurement for the data-generating distribution estimation.

Challenge (i) can be addressed by exploiting recent ideas from [47,48],

since lack of knowledge of the changepoint is apparent in both problems.

Regarding Challenge (ii), estimates of the anomalous sensors can

be constructed, e.g., in the composite case, by using a generalized

likelihood ratio between the anomalous and non-anomalous distribution

at each sensor. These generalized likelihood ratios can be ordered and

the sensors that correspond to largest likelihood ratio values can then

be used as estimates of the most likely anomalous sensors. The mixture

weights of the proposed tests can then be calculated by using the
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estimates of the anomalous distributions. Although these extensions

might lead to tractable tests that can be employed in practice, we

believe that establishing optimality properties for algorithms of such

structure is going to be extremely challenging. However, performance

evaluation of the proposed procedures can be achieved by constructing

bounds on the asymptotic delay performance, as well as through

comprehensive numerical studies with synthetic and real data.

2. Adversarial setting: Recently, game-theoretic adversarial settings

have been considered in sequential hypothesis testing problems, involv-

ing an adversary that can modify the data observed by the decision

maker [54–58]. A promising research problem would be to study the

extension of algorithms from these works to the QCD setting, and in

particular, to the dynamic anomaly detection settings considered in

this dissertation.

3. Distributed dynamic anomaly detection: In this dissertation, we

focus on the problem of dynamic anomaly detection in sensor networks

when decision making is done by a centralized decision maker. In

practice, anomaly detection using centralized algorithms is difficult to

implement due to limited communication bandwidth and long commu-

nication distance, especially in large networks. Moreover, in centralized

settings data processing is done in one centralized fusion center, often

making the complexity of the computations, which usually scales with

the network size, unmanageable. To tackle these challenges, distributed

algorithms are often employed. In distributed detection settings, part

of the information processing is done at the sensor level, by leveraging

data obtained from local sensors. The final decision is taken by a fusion

center that uses all the results obtained by the data-processing that

occurred at each sensor. The problem of detecting a static anomaly that

affects all the sensors of the network concurrently by using distributed

algorithms has been addressed in [59]. Furthermore, in [33,34] authors

tackled the semi-dynamic anomaly detection problem introduced in

[31] by proposing distributed algorithms that require communication

between neighboring nodes to be implemented. The complexity of

these algorithms at each node was linear to the number of neighbors.

An interesting research problem would be to derive distributed versions
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of the detection procedures introduced in this dissertation and analyze

their performance theoretically and numerically.

4. Continuous-time setting: All the problems studied in this disser-

tation are discrete-time problems, i.e., involve a decision maker that

uses data sampled in discrete-time indices. There has been significant

work in continuous-time problems in the area of QCD (for a review

see, e.g., [12]). It would be interesting to investigate the problem of

dynamic anomaly detection in sensor networks in a continuous-time

setting.

5. Data-efficient dynamic anomaly detection: In many applications

anomalies occur rarely, making the cost of sampling observations before

an anomaly is present in the system costly. In [60–62], authors studied

the problem of data-efficient QCD, where they established that on-off

observation control can be introduced in many QCD settings to lead

to data-efficient detection schemes. In particular, in [62] the authors

considered the problem of sequentially detecting static anomalies in a

sensor network by using on-off observation control to limit sampling

costs. An interesting research problem would be to incorporate on-off

observation control techniques from [60–62] to construct data-efficient

algorithms for the problem of dynamic anomaly detection in sensor

networks.
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APPENDIX A

PROOFS FOR CHAPTER 2

A.1 Proof of Lemma 1

Note that W ′
G[k] ≥ WG[k], hence, τG(b) ≥ τ ′G(b) for all b. Therefore,

E∞[τG(b)] ≥ E∞[τ ′G(b)]. (A.1)

Let

WV [k] ,
k∑
i=1

k∏
j=i

φi(X[j]|X[i, j − 1])

g(X[j])
=

k∑
i=1

L(k, i), (A.2)

and

τV (b) = inf{k ≥ 1 : WV [k] ≥ eb}. (A.3)

Note that

WV [k] =
k∑
i=1

φi(X[k]|X[i, k − 1])

g(X[k])
L(k − 1, i)

=
k−1∑
i=1

φi(X[k]|X[i, k − 1])

g(X[k])
L(k − 1, i) + L(k − 1, k). (A.4)

Then, from (A.2) and (A.4), we have that

E∞[WV [k]|X[1, k − 1]] = 1 +WV [k − 1], (A.5)

and

E∞[WV [k]] = k. (A.6)
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This implies that {WV [k]−k}∞k=1 is a zero-mean martingale under P∞(·) [12].

Thus, by the optional sampling theorem (see, e.g., [12]) and the fact that

WV [k] ≥ eW
′
G[k], we have that

E∞[τG(b)] ≥ E∞[τ ′G(b)] ≥ E∞[τV (b)] = E∞[WV [τV (b)]] ≥ eb. (A.7)

A.2 Proof of Theorem 1

Let ε > 0. Define

Kγ ,
log γ

J
. (A.8)

By Markov’s inequality, it follows that

Eν [τ − ν|τ ≥ ν] ≥ Pν(τ − ν ≥ Kγ(1− ε)|τ ≥ ν)Kγ(1− ε). (A.9)

Then, to prove the theorem it suffices to show that for any τ ∈ Cγ, there

exists some ν ≥ 1 such that

Pν(ν ≤ τ < ν +Kγ(1− ε)|τ ≥ ν) = o(1), (A.10)

as γ →∞, i.e., that

lim
γ→∞

sup
τ ∈Cγ

inf
ν≥1

Pν(ν ≤ τ < ν +Kγ(1− ε)|τ ≥ ν) = 0. (A.11)

Define a , (1− ε2) log γ. Then for any ν, we have that

Pν(ν ≤ τ < ν +Kγ(1− ε)|τ ≥ ν)

= Pν
(
ν ≤ τ < ν +Kγ(1− ε),L(τ, ν) > ea

∣∣∣τ ≥ ν
)

+ Pν
(
ν ≤ τ < ν +Kγ(1− ε),L(τ, ν) ≤ ea

∣∣∣τ ≥ ν
)
. (A.12)
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The first term in (A.12) can be upper bounded as follows:

Pν
(
ν ≤ τ < ν +Kγ(1− ε),L(τ, ν) > ea

∣∣∣τ ≥ ν
)

(a)

≤ Pν
(

max
ν≤j<ν+Kγ(1−ε)

logL(j, ν) > a
∣∣∣τ ≥ ν

)
(b)
= Pν

(
max

ν≤j<ν+Kγ(1−ε)
logL(j, ν) > a

)
(c)
= P1

(
max1≤j<1+Kγ(1−ε) logL(j, 1)

Kγ(1− ε)
> J(1 + ε)

)
, (A.13)

where (a) is due to the fact that

{ν ≤ τ < ν +Kγ(1− ε), logL(τ, ν) > a} ⊆
{

max
ν≤j<ν+Kγ(1−ε)

logL(j, ν) > a

}
;

(A.14)

(b) is due to the facts that {τ ≥ ν} ∈ σ(X[1, ν − 1]), and the pre- and post-

change observations are independent; and (c) follows by the independence

between the pre- and post-change observations.

By Lemma A.1 in [63], if

logL(k, 1)

k

k→∞−−−→
a.s.

J (A.15)

under P1(·), then it follows that

lim
γ→∞

P1

 max
1≤j<1+Kγ(1−ε)

logL(j, 1)

Kγ(1− ε)
> J(1 + ε)

 = 0. (A.16)

By Lemma 1. (i) in [39], it follows that if C.1 and C.2 are satisfied, then

(A.15) holds, and consequently (A.16) holds.

We then analyze the second term in (A.12). By a change of measure

argument similar to the one in [22], we have that there exists ν ≥ 1 such
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that

Pν
(
ν ≤ τ < ν +Kγ(1− ε),L(τ, ν) ≤ ea

∣∣∣∣τ ≥ ν

)
(a)
= E∞

[
1{ν≤τ<ν+Kγ(1−ε),L(τ,ν)≤ ea}L(τ, ν)

∣∣∣∣τ ≥ ν

]
≤ eaP∞

(
ν ≤ τ < ν +Kγ(1− ε)|τ ≥ ν

)
(b)

≤ Kγ(1− ε)ea

γ

γ→∞−−−→ 0, (A.17)

where (a) follows by a change of measure argument; and (b) follows from the

fact (see the proof of Theorem 1 in [22]) that for any positive integer i < γ,

if E∞[τ ] ≥ γ, then there exists some ν ≥ 1 such that

P∞(τ ≥ ν) > 0, and P∞(τ < ν + i|τ ≥ ν) ≤ i

γ
. (A.18)

Combining (A.12), (A.13), (A.16), (A.17), the fact that the upper bound

in (A.17) is independent of τ , and the fact that for any stopping time τ ,

WADD(τ) ≥ CADD(τ), the theorem is established.

A.3 Proof of Theorem 2

Let 0 < ε < J , δ > 0 and

nb ,
b

J − ε
. (A.19)

It can be shown that for any ν ≥ 1,

ess supEν
[
τG(b)− ν + 1

nb

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

]
≤ ess sup

∞∑
ζ=0

Pν (τG(b)− ν + 1 > ζnb|τG(b) ≥ ν,X[1, ν − 1])

≤
∞∑
ζ=0

ess supPν (τG(b) > ζnb + ν − 1|τG(b) ≥ ν,X[1, ν − 1])

≤ 1 +
∞∑
ζ=1

ess supPν (τG(b) > ζnb + ν − 1|τG(b) ≥ ν,X[1, ν − 1]) . (A.20)
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For any ζ ≥ 1, it then follows that

Pν (τG(b) > ζnb + ν − 1|τG(b) ≥ ν,X[1, ν − 1])

= Pν
(

max
1≤k≤ζnb+ν−1

WG[k] < b

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

)
= Pν

(
max

1≤k≤ζnb+ν−1
max

k−η≤i≤k

k∑
j=i

log
φi(X[j]|X[i, j − 1])

g(X[j])
< b∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

)
≤ Pν

( ⋂
r∈[ζ]

{
max

rnb+ν−1−η≤i≤rnb+ν−1

rnb+ν−1∑
j=i

log
φi(X[j]|X[i, j − 1])

g(X[j])
< b

}
∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

)
. (A.21)

Without loss of generality, we choose η such that η ≥ nb for large b. This

further implies that rnb + ν − η ≤ (r − 1)nb + ν for large b. As a result, for

large b, (A.21) can be further upper bounded as follows:

Pν (τG(b) > ζnb + ν − 1|τG(b) ≥ ν,X[1, ν − 1])

≤ Pν
( ⋂
r∈ [ζ]

Ar

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

)
, (A.22)

where for simplicity of notation, we denote the event

Ar ,


rnb+ν−1∑

j=(r−1)nb+ν

log
φ(r−1)nb+ν(X[j]|X[(r − 1)nb + ν, j − 1])

g(X[j])
< b

 ,

(A.23)

for all r ≥ 1. It is clear that Ar ∈ σ(X[(r − 1)nb + ν, rnb + ν − 1]). Then, it

follows that

Pν

 ⋂
r∈ [ζ]

Ar

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]


=

ζ∏
r=1

Pν
(
Ar

∣∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

)
. (A.24)
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This further implies that

ess supPν

 ⋂
r∈ [ζ]

Ar

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]


≤

ζ∏
r=1

ess supPν

Ar∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

 . (A.25)

Then, if the following holds that for any r ≥ 1,

ess supPν

Ar∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

 ≤ δ, (A.26)

where δ is independent of ν, and can be arbitrarily small for large b, then

ess supPν

⋂
r∈[ζ]

Ar

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

 ≤ δζ , (A.27)

which together with (A.20) implies that

sup
ν≥1

ess supEν
[
τG(b)− ν + 1

nb

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

]
≤ 1 +

∞∑
ζ=1

δζ =
1

1− δ
.

(A.28)

This in turn implies that

sup
ν≥1

ess supEν
[
τG(b)− ν + 1

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

]
≤ b

(J − ε)(1− δ)
.

(A.29)

Since (A.29) holds for all ε small enough we have that

sup
ν≥1

ess supEν
[
τG(b)− ν + 1

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1]

]
≤ b

J(1− δ)
. (A.30)

Furthermore, since δ → 0 as b → ∞, the proof is complete if we can show

(A.26) is true.

In the following, we prove that (A.26) is true. We first note that according
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to our notation,

logL(rn+ ν − 1, (r − 1)n+ ν)

=
rn+ν−1∑

j=(r−1)n+ν

log
φ(r−1)n+ν(X[j]|X[(r − 1)n+ ν, j − 1])

g(X[j])
. (A.31)

By the Markov property of the problem model as in (2.4) and (2.5), it follows

that

Pν

 1

n
logL(rn+ ν − 1, (r − 1)n+ ν) <

J

1 + ε

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj


=
∑
E ∈E

Pν

(
1

n
logL(rn+ ν − 1, (r − 1)n+ ν) <

J

1 + ε
,S[(r − 1)n+ ν] = E

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

)

=
∑
E ∈E

Pν
(

1

n
logL(rn+ ν − 1, (r − 1)n+ ν) <

J

1 + ε

∣∣∣∣S[(r − 1)n+ ν] = E

)

· Pν

S[(r − 1)n+ ν] = E

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

 . (A.32)

From Lemma A.1. in [39], it follows that for any E ∈ E and any r ≥ 1,

lim
n→∞

Pν

(
1

n
logL(rn+ ν − 1, (r − 1)n+ ν) <

J

1 + ε

∣∣∣∣S[(r − 1)n+ ν]=E

)
= 0. (A.33)
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It then follows that for any r ≥ 1,

lim
n→∞

ess supPν

(
rn+ν−1∑

j=(r−1)n+ν

1

n
log

φ(r−1)n+ν(X[j]|X[(r − 1)n+ ν, j − 1])

g(X[j])

<
J

1 + ε

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

)

= lim
n→∞

ess supPν

(
1

n
logL(rn+ ν − 1, (r − 1)n+ ν)

<
J

1 + ε

∣∣∣∣τG(b) ≥ ν,X[1, ν − 1],
⋂

j ∈ [r−1]

Aj

)
= 0,

(A.34)

which further implies that (A.26) is true. This concludes the proof.

A.4 Proof of Lemma 2

Note that

E∞[WSR[k]|X[1, k − 1]]

= E∞

[∑
E ∈E

rE[k]

∣∣∣∣X[1, k − 1]

]

= E∞

[∑
E ∈E

([
αE +

∑
E′ ∈E

rE′ [k − 1]λE′,E

]
pE(X[k])

g(X[k])

)∣∣∣∣X[1, k − 1]

]
= 1 +

∑
E ∈E

∑
E′ ∈E

λE′,ErE′ [k − 1]

= 1 +
∑
E ∈E

rE[k − 1]

= 1 +WSR[k − 1], (A.35)

which implies that {WSR[k]− k}∞k=1 is a martingale under P∞(·). It can also

be shown that E∞[WSR[k] − k] = 0. As a result, by the optimal stopping

theorem (see e.g., [12]), it follows that E∞[WSR[τSR(b)] − τSR(b)] = 0. This
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further implies that

E∞[τSR(b)] = E∞[WSR[τSR(b)]] ≥ eb. (A.36)

A.5 Proof of Lemma 3

Let

τS(b) , inf

{
k ≥ 1 : WS[k] ,

k∑
j=1

log
φ1(X[j]|X[1, j − 1])

g(X[j])
≥ b

}
. (A.37)

By expressing the algorithm in (2.56) - (2.60) as a sequence of i.i.d. circles

of (A.37) it can be easily shown that by using Wald’s identity (see e.g., [11])

E∞[τCE] ≥ E∞[τS(b)]

P∞(WS[τS(b)] ≥ b)
≥ 1

P∞(WS[τS(b)] ≥ b)
. (A.38)

Consider the event

Ai ,

{
i∏

j=1

φ1(X[j]|X[1], . . . ,X[j − 1])

g(X[j])
≥ eb, τS(b) = i

}
. (A.39)

It then follows that

P∞(WS[τS(b)] ≥ b)

==
∞∑
i=1

E∞[1{Ai}]

=
∞∑
i=1

E∞

[
i∏

j=1

φ1(X[j]|X[1, j − 1])

g(X[j])

i∏
j=1

g(X[j])

φ1(X[j]|X[1, j − 1])
1{Ai}

]

≤ e−b
∞∑
i=1

E∞

[
i∏

j=1

φ1(X[j]|X[1, j − 1])

g(X[j])
1{Ai}

]

≤ e−b
∞∑
i=1

P1 (Ai)

≤ e−b. (A.40)

The result then follows by combining (A.38) and (A.40).
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APPENDIX B

PROOFS FOR CHAPTER 3

B.1 Useful Lemmas

The proofs of Chapter 3 rely on the following lemmas:

Lemma 8. For any stopping time τ and N ≥ 1 define the truncated version

of τ by τ (N) , min{τ,N}. We then have that

WADD(τ (N)) ≤WADD(τ). (B.1)

Proof. Fix ν ≥ 1. Consider initially that N ≥ ν. Then, since {τ (N) ≥ ν} =

{min{τ,N} ≥ ν} = {τ ≥ ν}∩{N ≥ ν}, we have that {τ (N) ≥ ν} = {τ ≥ ν}.
Since τ (N) ≤ τ , this implies that for any N ≥ ν and any S we have that

ESν
[
τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]

]
= ESν

[
τ (N) − ν + 1|τ ≥ ν,X[1, ν − 1]

]
≤ ESν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] . (B.2)

For the case of N < ν, we have that that PSν (τ (N) ≥ ν) = 0, which implies

that by convention for any N < ν and any S we have that

ESν
[
τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]

]
= 1. (B.3)

Furthermore, note that for any S we have that

ESν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] ≥ 1. (B.4)
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From (B.2) - (B.4) we have that for any ν ≥ 1 and any S

ESν
[
τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]

]
≤ ESν [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] . (B.5)

By taking the sup and ess sup on both sides, with respect to the changepoint

and history of observations respectively (4.4), the lemma is established.

Lemma 9. Let C > 0, τ a stopping time adapted to X, and Φ : R 7→ R a

function satisfying |Φ(x)| ≤ C for all x ∈ R. Then for any λ ∈ A we have

that

lim
N→∞

E∞

τ (N)−1∑
k=0

Φ(Wλ[k])

 = E∞

[
τ−1∑
k=0

Φ(Wλ[k])

]
. (B.6)

Proof. Note that since τ ≥ τ (N) we have that

E∞

[
τ−1∑
k=0

Φ(Wλ[k])

]
= E∞

τ (N)−1∑
k=0

Φ(Wλ[k])

+ E∞

[
τ−1∑

k=τ (N)

Φ(Wλ[k])

]
.

(B.7)

Furthermore, note that by using Jensen’s and triangle inequalities together

with the assumption that Φ(x) is bounded we have that

E∞

[
τ−1∑

k=τ (N)

Φ(Wλ[k])

]
≤
∣∣∣∣E∞

[
τ−1∑

k=τ (N)

Φ(Wλ[k])

] ∣∣∣∣
≤ E∞

[
τ−1∑

k=τ (N)

∣∣∣∣Φ(Wλ[k])

∣∣∣∣
]

≤ E∞[τ − τ (N)]

= E∞[(τ −N)+]. (B.8)
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Since (τ −N)+ is a non-negative random variable, we then note that

E∞[(τ −N)+] =
∞∑
j=0

P∞((τ −N)+ > j)

=
∞∑
j=0

P∞(τ > j +N)

=
∞∑
j=N

P∞(τ > j), (B.9)

which since, by assumption

E∞[τ ] =
∞∑
j=0

P∞(τ > j) <∞ (B.10)

implies that

lim
N→∞

E∞[(τ −N)+] = lim
N→∞

P∞(τ > N) = 0. (B.11)

As a result, from (B.8) we have that

lim
N→∞

E∞

[
τ−1∑

k=τ (N)

Φλ(W [k])

]
= 0. (B.12)

After taking the limit in both sides of (B.7) and using eq. (B.12) the lemma

is established.
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B.2 Proof of Theorem 5

Fix α ∈ A. Due to the presence of the sup and ess sup in (3.4), we have that

for any path S, ν ≥ 1, stopping time τ and N ≥ 1

WADD(τ (N)) ≥ ESν
[
τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]

]
= ESν

[
∞∑
j=ν

1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
(a)
= E∞

[
∞∑
j=ν

ΓS(j − 1, ν)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
(B.13)

where (a) follows by changing the measure to P∞(·). By multiplying both

sides of the inequality (B.13) with 1{τ (N)≥ν}(1−Wα[ν − 1])+ and taking the

expected value under E∞[·] we have that

E∞
[
1{τ (N)≥ν}(1−Wα[ν − 1])+WADD(τ (N))

]
≥ E∞

[
1{τ (N)≥ν}(1−Wα[ν − 1])+E∞

[ ∞∑
j=ν

ΓS(j − 1, ν)1{τ (N)≥j}∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]]
(b)
= E∞

[
E∞
[
1{τ (N)≥ν}(1−Wα[ν − 1])+

∞∑
j=ν

ΓS(j − 1, ν)1{τ (N)≥j}∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]]
(c)
= E∞

[
∞∑
j=ν

1{τ (N)≥ν}(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

]
, (B.14)

where (b) follows since 1{τ (N)≥ν}(1−Wα[ν−1])+ is σ(X[1, ν−1])-measurable

and, hence, can go inside the expectation since the conditioning is with

respect toX[1, ν−1]; and (c) follows from the tower property of expectations.

By summing on both sides of (B.14) over ν from ν = 1 to ν = N , and due
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to the linearity of expectation and the fact that τ (N) ≤ N , we have that

E∞

τ (N)∑
ν=1

1{τ (N)≥ν}(1−Wα[ν − 1])+WADD(τ (N))


≥ E∞

τ (N)∑
ν=1

∞∑
j=ν

1{τ (N)≥ν}(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

 , (B.15)

which in turn implies that

E∞

τ (N)∑
ν=1

(1−Wα[ν − 1])+WADD(τ (N))


≥ E∞

τ (N)∑
ν=1

τ (N)∑
j=ν

(1−Wα[ν − 1])+ΓS(j − 1, ν)


(d)
= E∞

τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)

 , (B.16)

where (d) follows after changing the order of the summation. By the linearity

of expectation, WADD(τ (N)) can go outside of the expectation since it is a

constant, hence we then have that

WADD(τ (N)) ≥
E∞

[
τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

] . (B.17)

By taking the sup with respect to S, and since the right-hand side fraction

depends on S only through S[1, N − 1], we have that

WADD(τ (N)) ≥ sup
S[1,N−1]

E∞

[
τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

] . (B.18)

77



Since the denominator in the right-hand side does not depend on S, we have

that

WADD(τ (N)) ≥
sup

S[1,N−1]

E∞

[
τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

] . (B.19)

To proceed, we further bound the numerator in (B.19). For 1 ≤ n ≤ N − 1,

define the following function:

Ψn,N−1(S[1, n− 1],S[n+ 1, N − 1])

, sup
S[n]

E∞

[
N∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

]
. (B.20)

Then, by first taking the sup over S[n] we have that

sup
S[1,N−1]

E∞

τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)


= sup
S[1,n−1],S[n+1,N−1]

[
sup
S[n]

E∞

[
N∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

]]
= sup
S[1,n−1],S[n+1,N−1]

Ψn,N−1(S[1, n− 1],S[n+ 1, N − 1]). (B.21)

Note that under P∞(·) and for j such that 1 ≤ j ≤ n ≤ N − 1 we have that

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j} (B.22)
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is independent of S[n]. For 1 ≤ n < j ≤ N we have that

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

=
n∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

+

j∑
ν=n+1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

= ΓS(n, n)

 n∑
ν=1

(1−Wα[ν − 1])+

j−1∏
i=ν
i 6=n

ΓS(i, i)

1{τ (N)≥j}


+

j∑
ν=n+1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}, (B.23)

where under P∞(·) the dependence from S[n] is only through the likelihood

ratio ΓS(n, n) of the first term.

For 1 ≤ j ≤ N and 1 ≤ n ≤ N − 1 define

Aj,n ,

 n∑
ν=1

(1−Wα[ν − 1])+

 j∏
i=ν
i 6=n

ΓS(i, i)

1{τ (N)≥j}

1{j>n} (B.24)

and

Bj,n ,

(
j∑

ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

)
1{j≤n}

+

(
j∑

ν=n+1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j}

)
1{j>n}. (B.25)

As a result, from eqs. (B.23) - (B.25) we have that for 1 ≤ j ≤ N and

1 ≤ n ≤ N − 1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)1{τ (N)≥j} = ΓS(n, n)Aj,n +Bj,n. (B.26)
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Then, from eqs. (B.20), (B.26) we have that

Ψn,N−1(S[1, n− 1],S[n+ 1, N − 1])=sup
S[n]

E∞

[
N∑
j=1

(ΓS(n, n)Aj,n +Bj,n)

]

=sup
S[n]

E∞

[
ΓS(n, n)

N∑
j=1

Aj,n +
N∑
j=1

Bj,n

]
.

(B.27)

Note that since Aj,n and Bj,n are independent of S[n] under P∞(·), we have

that for all E ∈ E

sup
S[n]

E∞
[
ΓS(n, n)

N∑
j=1

Aj,n +
N∑
j=1

Bj,n

]

= sup
S[n]

E∞

 ∏
`∈S[n]

f`(X`[n])

g`(X`[n])

 N∑
j=1

Aj,n +
N∑
j=1

Bj,n


≥ E∞

[(∏
`∈E

f`(X`[n])

g`(X`[n])

)
N∑
j=1

Aj,n +
N∑
j=1

Bj,n

]
, (B.28)

which together with eq. (B.27) implies that

Ψn,N−1(S[1, n− 1],S[n+ 1, N − 1])

≥ E∞

[(∏
`∈E

f`(X`[n])

g`(X`[n])

)
N∑
j=1

Aj,n +
N∑
j=1

Bj,n

]
. (B.29)
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By averaging both sides of eq. (B.29) with respect to α we then have that

Ψn,N−1(S[1, n− 1],S[n+ 1, N − 1])

=
∑
E ∈E

αEΨn,N−1(S[1, n− 1],S[n+ 1, N − 1])

≥
∑
E ∈E

αEE∞

[(∏
`∈E

f`(X`[n])

g`(X`[n])

)
N∑
j=1

Aj,n +
N∑
j=

Bj,n

]

= E∞

[(∑
E ∈E

αE

(∏
`∈E

f`(X`[n])

g`(X`[n])

))
N∑
j=1

Aj,n +
N∑
j=1

Bj,n

]

= E∞

[
Lα(n, n)

(
N∑
j=1

Aj,n

)
+

N∑
j=1

Bj,n

]

= E∞
[ N∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+Lα(n, n)

j−1∏
i=ν
i 6=n

ΓS(i, i)

1{τ (N)≥j}

]
. (B.30)

By unfolding eq. (B.21) in the same fashion with respect to all 1 ≤ n ≤ N−1,

it can be easily shown that

sup
S[1,N−1]

E∞

τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+ΓS(j − 1, ν)


≥ E∞

τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+Lα(j − 1, ν)

 , (B.31)

which in turn together with (B.19) implies that

WADD(τ (N)) ≥
E∞

[
τ (N)∑
j=1

j∑
ν=1

(1−Wα[ν − 1])+Lα(j − 1, ν)

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

]

=

E∞

[
τ (N)∑
j=1

(
j−1∑
ν=1

(1−Wα[ν − 1])+Lα(j − 1, ν) + (1−Wα[j − 1])+

)]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

] .

(B.32)
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From Lemma 1 of [19] we have that

j−1∑
ν=1

(1−Wα[ν − 1])+Lα(j − 1, ν) = Wα[j − 1] (B.33)

which together with (B.32) implies that

WADD(τ (N)) ≥
E∞

[
τ (N)∑
j=1

(Wα[j − 1] + (1−Wα[j − 1])+)

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

]

=

E∞

[
τ (N)∑
j=1

max{Wα[j − 1], 1}

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

] . (B.34)

Consider b chosen such that

E∞[τM(α, b)] = γ. (B.35)

Let b′ ≥ b such that b′ > 0. Then, from Lemma 8 and (B.34) we have that

WADD(τ) ≥WADD(τ (N)) ≥
E∞

[
τ (N)∑
j=1

max{Wα[j − 1], 1}

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

]

≥
E∞

[
τ (N)∑
j=1

min{max{Wα[j − 1], 1}, eb′}

]

E∞

[
τ (N)∑
ν=1

(1−Wα[ν − 1])+

] . (B.36)

Note that ∣∣∣∣min
{

max{Wα[j − 1], 1}, eb′
} ∣∣∣∣ ≤ eb

′
(B.37)
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and that since Wα[j − 1] ≥ 0

|(1−Wα[j − 1])+| ≤ 1. (B.38)

Furthermore, since E∞[τ ] < ∞ by assumption, by using Lemma 9 after

taking the limit on both sides of (B.36) and doing a change of variables we

have that

WADD(τ) ≥
E∞

[
τ−1∑
j=0

min{max{Wα[j], 1}, eb′}

]

E∞
[
τ−1∑
ν=0

(1−Wα[ν])+

] . (B.39)

Since (B.39) holds for arbitrary τ , we have that for any γ > 0

inf
τ ∈Cγ

WADD(τ) ≥ inf
τ ∈Cγ

E∞

[
τ−1∑
j=0

min{max{Wα[j], 1}, eb′}

]

E∞
[
τ−1∑
ν=0

(1−Wα[ν])+

]

≥
inf
τ ∈Cγ

E∞

[
τ−1∑
j=0

min{max{Wα[j], 1}, eb′}

]

sup
τ ∈Cγ

E∞
[
τ−1∑
ν=0

(1−Wα[ν])+

] . (B.40)

Note that the function Q(x) , (1 − x)+ is continuous and non-increasing

with Q(0) = 1. As a result, from Theorem 1 of [19] we have that

E∞

τM (α,b)−1∑
ν=0

(1−Wα[ν])+

 = sup
τ ∈Cγ

E∞

[
τ−1∑
ν=0

(1−Wα[ν])+

]
. (B.41)

Furthermore, note that the function U(x) , −min
{

max{x, 1}, eb′
}

is

continuous and non-increasing in x with U(0) = −min
{

1, eb
′}

. As a result,
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from Theorem 1 of [19] we also have that

inf
τ ∈Cγ

E∞

[
τ−1∑
j=0

min{max{Wα[j], 1}, eb′}

]

= − sup
τ ∈Cγ

E∞

[
−

τ−1∑
j=0

min{max{Wα[j], 1}, eb′}

]

= −E∞

− τM (α,b)−1∑
j=0

min{max{Wα[j], 1}, eb′}


= E∞

τM (α,b)−1∑
j=0

min{max{Wα[j], 1}, eb′}

 . (B.42)

Then, from (B.40) - (B.42) we have that

inf
τ∈Cγ

WADD(τ) ≥
E∞

[
τM (α,b)−1∑

j=0

min{max{Wα[j], 1}, eb′}

]

E∞

[
τM (α,b)−1∑

ν=0

(1−Wα[ν])+

]

(e)
=

E∞

[
τM (α,b)−1∑

j=0

max{Wα[j], 1}

]

E∞

[
τM (α,b)−1∑

ν=0

(1−Wα[ν])+

] , (B.43)

where (e) is implied since Wα[j] < eb ≤ eb
′

for 0 ≤ j ≤ τM(α, b) − 1 and

since b′ > 0. Furthermore, note that from the optimality of the CUSUM test

for the classic QCD problem [19] we have that

E∞

[
τM (α,b)−1∑

j=0

max{Wα[j], 1}

]

E∞

[
τM (α,b)−1∑

ν=0

(1−Wα[ν])+

] = WADD(τM(α, b)). (B.44)

As a result, from (B.43) and (B.44) and since

WADD(τM(α, b)) ≥ inf
τ∈Cγ

WADD(τ) (B.45)
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the theorem is established.

B.3 Proof of Lemma 5

Fix α ∈ A, b > 0 and N ≥ 1. For purposes of presentation of this proof,

we denote the stopping τM(λU , b) with uniform weights and threshold b by

simply τM and WλU [k], LλU (·, ·) by W [k] and L(·, ·) respectively. Define

the truncated stopping time τ
(N)
M , min{τM , N}. Note that by employing a

change of measure similar to the one in (B.13) we have that for any ν ≥ 1

and any S

Vν , ESν
[
τ

(N)
M − ν + 1

∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
= ESν

[
∞∑
j=ν

1{
τ
(N)
M ≥j

}∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]

= ESν

[
N∑
j=ν

1{
τ
(N)
M ≥j

}∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]

= E∞

[
N∑
j=ν

ΓS(j − 1, ν)1{
τ
(N)
M ≥j

}∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]

= 1 + E∞

[
N∑

j=ν+1

ΓS(j − 1, ν)1{
τ
(N)
M ≥j

}∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
(a)
= 1 + E∞

[
N∑

j=ν+1

ΓS(j − 1, ν)

(
j−1∏
i=ν

1{W [i]<eb}

)∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
,

(B.46)

where (a) follows since for ν + 1 ≤ j ≤ N we have that conditioned on{
τ

(N)
M ≥ ν

}
{
τ

(N)
M ≥ j

}
=

j−1⋂
i=ν

{W [i] < eb}. (B.47)

To proceed, we establish that for any 1 ≤ ν ≤ N − 1

Vν = 1 + E∞
[
ΓS(ν, ν)1{W [ν]<eb}Vν+1

∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
, (B.48)
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with Vν = 1 for all ν ≥ N . First of all, from the definition of Vν we have that

VN = ESN
[
τ

(N)
M −N + 1

∣∣∣τ (N)
M ≥ N,X[1, N − 1]

]
= ESN

[
N −N + 1

∣∣∣τ (N)
M ≥ N,X[1, N − 1]

]
= 1. (B.49)

In addition, for ν ≥ N + 1 the event {τ (N)
M ≥ ν} cannot occur, hence, we

have that Vν = 1 for all ν ≥ N . Furthermore, note that ΓS(ν, ν)1{W [ν]<eb} is

present in all terms of the summation in (B.46), hence

Vν = 1 + E∞

[
ΓS(ν, ν)1{W [ν]<eb}

·
N∑

j=ν+1

ΓS(j − 1, ν + 1)

(
j−1∏
i=ν+1

1{W [i]<eb}

)
∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]

= 1 + E∞

[
ΓS(ν, ν)1{W [ν+1]<eb}

·

1 +
N−1∑
j=ν+2

ΓS(j − 1, ν + 1)

(
j−1∏
i=ν+1

1{W [i]<eb}

)
∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
(b)
= 1 + E∞

[
E∞
[
ΓS(ν, ν)1{W [ν]<eb}

·
(

1 +
N∑

j=ν+2

ΓS(j − 1, ν + 1)

( j−1∏
i=ν+1

1{W [i]<eb}

))
∣∣∣∣τ (N)
M ≥ ν + 1,X[1, ν]

]∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
(c)
= 1 + E∞

[
ΓS(ν, ν)1{W [ν]<eb}

·
(

1 + E∞
[ N∑
j=ν+2

ΓS(j − 1, ν + 1)

( j−1∏
i=ν+1

1{W [i]<eb}

)
∣∣∣∣τ (N)
M ≥ ν + 1,X[1, ν]

])∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
(d)
= 1 + E∞

[
ΓS(ν, ν)1{W [ν]<eb}Vν+1

∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
, (B.50)
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where (b) follows from the tower property of expectations; (c) follows since

ΓS(ν, ν)1{W [ν]<eb} is σ(X[1, ν])-measurable; and hence can go out of the

conditional expectation, and (d) follows from (B.46).

We will now establish that Vν is independent of S for all ν ≥ 1 and that

it is a function of X[1, ν] only through W [ν]. First of all, we have already

established that for ν ≥ N , Vν = 1, hence we only have to investigate the

case of ν ≤ N − 1. For ν ≤ N − 1 since τ
(N)
M is truncated by N and since

X[1, ν − 1] are independent from S we have to show that Vν is independent

of S[ν,N ] and that Vν is a function of X[1, ν−1] only through W [ν−1]. For

1 ≤ k ≤ N − 2, assume that the statement holds for VN−k(W [N − 1 − k]).

From (B.48) we have that

VN−(k+1) = 1 + E∞

[
ΓS(N − 1− k,N − 1− k)

· 1{W [N−1−k]<eb}VN−k(W [N − 1− k])∣∣∣∣∣τ (N)
M ≥ N − 1− k,X[1, N − 2− k]

]
(e)
= 1 + E∞

[
ΓS(N − 1− k,N − 1− k)1{max{W [N−2−k],1}L(N−1−k,N−1−k)<eb}

· VN−k(max{W [N − 2− k], 1}L(N − 1− k,N − 1− k))∣∣∣∣∣τ (N)
M ≥ N − 1− k,X[1, N − 2− k]

]

(f)
= 1 + E∞

[ ∏
`∈S[N−1−k]

f(X`[N − 1− k])

g(X`[N − 1− k])


· 1{

max{W [N−2−k],1}
( ∏
`∈S[N−1−k]

f(X`[N−1−k])
g(X`[N−1−k])

)
<eb

}

· VN−k

max{W [N − 2− k], 1}

 ∏
`∈S[N−1−k]

f(X`[N − 1− k])

g(X`[N − 1− k])


∣∣∣∣∣τ (N)
M ≥ N − 1− k,X[1, N − 2− k]

]
, (B.51)

where (e) follows from eq. (3.14); and (f) follows from (3.9). Note that,

under P∞(·), the distribution of the likelihood ratio in (B.51) is independent
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of S[N − 1− k]. As a result, we have that for all E ∈ E

VN−(k+1) =1 + E∞

[(∏
`∈E

f(X`[N − 1− k])

g(X`[N − 1− k])

)
· 1{

max{W [N−2−k],1}
( ∏
`∈E

f(X`[N−1−k])
g(X`[N−1−k])

)
<eb

}
· VN−k

(
max{W [N − 2− k], 1}

(∏
`∈E

f(X`[N − 1− k])

g(X`[N − 1− k])

))
∣∣∣∣∣τ (N)
M ≥ N − 1− k,X[1, N − 2− k]

]
. (B.52)

From (B.52), we can then easily see that VN−(k+1) is independent of S.

Furthermore, since the likelihood ratio in (B.52) is independent of X[1, N −
2 − k] we have that VN−(k+1) is a function of X[1, N − 2 − k] only through

W [N − 2 − k]. As a result, by induction we have that for all ν ≥ 1, Vν is

independent of S and depends on X[1, ν − 1] only through W [ν − 1].

Following, note that for ν ≥ 1, from the independence of Vν from S and

eq. (B.48) we have that for all E ∈ E

Vν = 1 + E∞

[(∏
`∈E

f(X`[ν])

g(X`[ν])

)
1{W [ν]<eb}Vν+1

∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
.

(B.53)

As a result, by averaging over E with respect to α we have that

Vν = 1 +
∑
E ∈E

αEE∞

[(∏
`∈E

f(X`[ν])

g(X`[ν])

)
1{W [ν]<eb}Vν+1

∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]

= 1 + E∞

[(∑
E ∈E

αE
∏
`∈E

f(X`[ν])

g(X`[ν])

)
1{W [ν]<eb}Vν+1

∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]

= 1 + E∞
[
L(ν, ν)1{W [ν]<eb}Vν+1

∣∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
. (B.54)

By unfolding the recursion in (B.54), it can be easily seen that for any ν ≥ 1
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and S

ESν
[
τ

(N)
M − ν + 1|τ (N)

M ≥ ν,X[1, ν − 1]
]

= Eαν
[
τ

(N)
M − ν + 1|τ (N)

M ≥ ν,X[1, ν − 1]
]
. (B.55)

From the Monotone Convergence Theorem, since τ
(N)
M − ν + 1 and 1{

τ
(N)
M ≥ν

}
are non-decreasing with N , we have that for all S

lim
N→∞

ESν
[
τ

(N)
M − ν + 1

∣∣∣τ (N)
M ≥ ν,X[1, ν − 1]

]
= lim

N→∞

ESν
[
(τ

(N)
M − ν + 1)1{τ (N)

M ≥ν}

∣∣∣X[1, ν − 1]
]

ESν
[
1{

τ
(N)
M ≥ν

}∣∣∣X[1, ν − 1]

]

=
ESν
[
limN→∞(τ

(N)
M − ν + 1)1{τ (N)

M ≥ν}

∣∣∣X[1, ν − 1]
]

ESν
[
limN→∞ 1{τ (N)

M ≥ν}

∣∣∣X[1, ν − 1]
]

=
ESν
[
(τM − ν + 1)1{τM≥ν}|X[1, ν − 1]

]
ESν
[
1{τM≥ν}|X[1, ν − 1]

]
= ESν [τM − ν + 1|τM ≥ ν,X[1, ν − 1]] . (B.56)

Similarly, it can be shown that

lim
N→∞

Eαν
[
τ

(N)
M − ν + 1|τ (N)

M ≥ ν,X[1, ν − 1]
]

= Eαν [τM − ν + 1|τM ≥ ν,X[1, ν − 1]] . (B.57)

As a result, by taking the limit on both sides of (B.55) and using eqs. (B.56)

and (B.57) we have that for all ν ≥ 1, S

ESν [τM − ν + 1|τM ≥ ν,X[1, ν − 1]] = Eαν [τM − ν + 1|τM ≥ ν,X[1, ν − 1]]

(B.58)

which in turn implies

WADD(τM) = WADDα(τM). (B.59)
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B.4 Proof of Lemma 6

Define β ,
[
βE1 , . . . , βE|E|−1

]>
where αEj , βEj for j ∈ [|E| − 1]. The

constrained optimization of Iα can then be equivalently replaced by

inf
β

q(β)

s.t. βEj ≥ 0, ∀ j ∈ [|E| − 1]

|E|−1∑
j=1

βEj ≤ 1,

(B.60)

where

q(β) ,
∫
RL

(1− ‖β‖1) pE|E|(x) +

|E|−1∑
j=1

βEjpEj(x)



· log


(

(1− ‖β‖1) pE|E|(x) +
|E|−1∑
j=1

βEjpEj(x)

)
g(x)

 dµ(x). (B.61)

Denote by
∗
β the solution to (B.60). Then, the derivative at

∗
β is given by

∂q(β)

∂βEi

∣∣∣∣∗
β

= EpEi

[
log

(
p ∗α(X[1])

g(X[1])

)]
− EpE|E|

[
log

(
p ∗α(X[1])

g(X[1])

)]
. (B.62)

Without loss of generality we have that that either
∗
β =

[ ∗
βE1 , . . . ,

∗
βEl , . . . , 0

]>
with l ∈ [|E| − 1] and

∗
βEj > 0 for all j ∈ [l] (boundary or interior point), or

∗
β = [0, . . . , 0]> (corner point).

Assume that
∗
β is a corner point. In this case we have that for all i ∈ [|E|−1]

∂q(β)

∂βEi

∣∣∣∣∗
β

=
∑
`∈E|E|

(
D(f`‖g`)1{`∈Ei} −D(g`‖f`)1{` /∈Ei}

)
−
∑
`∈E|E|

D(fi‖gi) < 0,

(B.63)

which is a contradiction since

∂q(β)

∂βEi

∣∣∣∣∗
β

≥ 0 (B.64)
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must hold for all i ∈ [|E| − 1] due to the fact that
∗
β is a minimum.

As a result,
∗
β is not a corner point, hence

∗
β =

[ ∗
βE1 , . . . ,

∗
βEl , . . . , 0

]>
. In

this case, for all i ∈ [l] we have that

∂q(β)

∂βEi

∣∣∣∣∗
β

= 0, (B.65)

which implies that for all i ∈ [l]

EpEi

[
log

(
p ∗α(X[1])

g(X[1])

)]
= EpE|E|

[
log

(
p ∗α(X[1])

g(X[1])

)]
, I ′. (B.66)

Furthermore, we have that since
∗
βEj = 0 for l + 1 ≤ j ≤ |E| − 1

I ′ =

(
l∑

j=1

∗
βEj +

(
1−

l∑
j=1

∗
βEj

))
I ′

=

(
l∑

j=1

∗
αEj +

∗
αE|E|

)
I ′

=

|E|∑
j=1

∗
αEjEpEj

[
log

(
p ∗α(X[1])

g(X[1])

)]
= Ep∗

α

[
log

(
p ∗α(X[1])

g(X[1])

)]
=

∗
I

> 0. (B.67)

In addition, we have that for l + 1 ≤ i ≤ |E| − 1

∂q(β)

∂βEi

∣∣∣∣∗
β

> 0. (B.68)

This implies that for all i ∈ [l] ∪ {|E|} and l + 1 ≤ j ≤ |E| − 1

EpEj

[
log

(
p ∗α(X[1])

g(X[1])

)]
> EpEi

[
log

(
p ∗α(X[1])

g(X[1])

)]
=

∗
I. (B.69)

ii) For the case of m = 1, without loss of generality assume that for all

1 ≤ j ≤ |E| = L, we have that Ej = j. For l + 1 ≤ i ≤ L− 1, we then have
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that

EpEi

[
log

(
p ∗α(X[1])

g(X[1])

)]
= Epi

[
log

(
p ∗α(X[1])

g(X[1])

)]
= Epi

[
log

(
l∑

j=1

∗
αj
fj(Xj[1])

gj(Xj[1])
+
∗
αL
fL(XL[1])

gL(XL[1])

)]

= Eg

[
log

(
l∑

j=1

∗
αj
fj(Xj[1])

gj(Xj[1])
+
∗
αL
fL(XL[1])

gL(XL[1])

)]

= Eg
[
log

(
p ∗α(X[1])

g(X[1])

)]
< 0. (B.70)

We then have that from eqs. (B.62), (B.66), (B.67) and (B.70)

∂q(β)

∂βEi

∣∣∣∣∗
β

< 0 (B.71)

for all l+ 1 ≤ i ≤ L− 1, which leads to a contradiction, since (B.71) cannot

hold at the minimum.

B.5 Proof of Theorem 8

Our upper bound analysis is based on the proof technique in [22]. Due to the

structure of the M-CUSUM test described in (3.12) - (3.14), we have that

for any b > 0

WADD(τM(
∗
α, b)) = sup

S
ES1 [τM(

∗
α, b)]. (B.72)

Let 0 < ε <
∗
I and

nb ,
b

∗
I − ε

. (B.73)
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We then have that

sup
S

ES1
[
τM(

∗
α, b)

nb

]
(a)
= sup

S

∞∫
0

PS1
(
τM(

∗
α, b)

nb
> x

)
dx

(b)

≤ sup
S

∞∑
ζ=0

PS1 (τM(
∗
α, b) > ζnb)

= 1 + sup
S

∞∑
ζ=1

PS1 (τM(
∗
α, b) > ζnb), (B.74)

where (a) follows from writing the expectation as an integral of the inverse

cumulative density function for a positive random variable; and (b) from the

sum-integral inequality. Define the log-likelihood ratio at time j correspond-

ing to (3.7) for α =
∗
α by

Z[j] , log
p ∗α(X[j])

g(X[j])
. (B.75)
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For any path S, ζ ≥ 1, we then have that

PS1 (τM(
∗
α, b) > ζnb)

= PS1
(

max
1≤k≤ζnb

W ∗
α[k] < eb

)
(c)
= PS1

(
max

1≤k≤ζnb
max
1≤i≤k

L ∗α(k, i) < eb
)

(d)
= PS1

(
max

1≤k≤ζnb
max
1≤i≤k

k∑
j=i

Z[j] < b

)
(e)

≤ PS1

(
max

1≤i≤rnb

rnb∑
j=i

Z[j] < b, ∀ r ∈ [ζ]

)
(f)

≤ PS1

 rnb∑
j=(r−1)nb+1

Z[j] < b, ∀ r ∈ [ζ]


(g)
= PS1


rnb∑

j=(r−1)nb+1

Z[j]

nb
<

∗
I − ε, ∀ r ∈ [ζ]


(h)
=

ζ∏
r=1

PS1


rnb∑

j=(r−1)nb+1

Z[j]

nb
<

∗
I − ε

 , (B.76)

where (c) follows from the definition of the M-CUSUM statistic (eq. (3.12));

(d) follows by taking the logarithm at both sides of the inequality; (e) and

(f) by using the binning technique in [22]; (g) by diving both sides by nb;

and (h) by the independence of the observations over time.
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Note that for b > 0 we then have that from (B.76)

sup
S

∞∑
ζ=1

PS1 (τM(
∗
α, b) > ζnb)

= sup
S

lim
ξ→∞

ξ∑
ζ=1

PS1 (τM(
∗
α, b) > ζnb)

≤ lim
ξ→∞

sup
S

ξ∑
ζ=1

PS1 (τM(
∗
α, b) > ζnb)

≤ lim
ξ→∞

ξ∑
ζ=1

sup
S

PS1 (τM(
∗
α, b) > ζnb)

≤ lim
ξ→∞

ξ∑
ζ=1

sup
S


ζ∏
r=1

PS1


rnb∑

j=(r−1)nb+1

Z[j]

nb
<

∗
I − ε




≤ lim
ξ→∞

ξ∑
ζ=1

ζ∏
r=1

sup
S

PS1


rnb∑

j=(r−1)nb+1

Z[j]

nb
<

∗
I − ε




= lim
ξ→∞

ξ∑
ζ=1

sup
S

PS1


nb∑
j=1

Z[j]

nb
<

∗
I − ε



ζ

. (B.77)

For fixed S, b define

IS,b , ES1


nb∑
j=1

Z[j]

nb

 =

nb∑
j=1

EpS[j]
[Z[j]]

nb
≥

∗
I, (B.78)

where the inequality follows from Lemma 6. This in turn implies that for
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any S we have that

PS1


nb∑
j=1

Z[j]

nb
<

∗
I − ε

 = PS1


nb∑
j=1

Z[j]

nb
<

∗
I − ε+ IS,b − IS,b



≤ PS1


nb∑
j=1

Z[j]

nb
< IS,b − ε



≤ PS1


∣∣∣∣∣
nb∑
j=1

Z[j]

nb
− IS,b

∣∣∣∣∣ > ε

 . (B.79)

Define

σ̄2 , max
E ∈E

VarpE (Z[1]) . (B.80)

From eq. (3.25), we have that σ̄2 <∞. Then, by Chebychev’s inequality

PS1


∣∣∣∣∣
nb∑
j=1

Z[j]

nb
− IS,b

∣∣∣∣∣ > ε

 ≤ VarS1


nb∑
j=1

Z[j]

nb

 1

ε2

=
1

ε2n2
b

nb∑
j=1

VarpS[j]
(Z[j])

≤
∑nb

j=1 σ̄
2

n2
bε

2

=
σ̄2

nbε2
. (B.81)

By using (B.74), (B.77), (B.79) and (B.81) we then have that

sup
S

ES1
[
τM(

∗
α, b)

nb

]
≤ 1 + lim

ξ→∞

ξ∑
ζ=1

[
σ̄2

nbε2

]ζ
. (B.82)

Let 0 < δ < 1. Since nb is increasing with b, we have that for all b > b̃, where

96



b̃ large enough

sup
S

ES1
[
τM(

∗
α, b)

nb

]
≤ 1 + lim

ξ→∞

ξ∑
ζ=1

δζ =
∞∑
ζ=0

δζ =
1

1− δ
(B.83)

which implies that for all b > b̃

sup
S

ES1 [τM(
∗
α, b)] ≤ b

(
∗
I − ε)(1− δ)

. (B.84)

Since (B.84) holds for all ε small enough we have that

sup
S

ES1 [τM(
∗
α, b)] ≤ b

∗
I(1− δ)

. (B.85)

Finally, since δ → 0 as b→∞ we have that

WADD(τM(
∗
α, b)) = sup

S
ES1 [τM(

∗
α, b)] ≤ b

∗
I

(1 + o(1)) (B.86)

as b→∞.
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APPENDIX C

PROOFS FOR CHAPTER 4

C.1 Useful Notation

For the theoretical analysis of Chapter 4, we focus on the case of two post-

change phases (one transient phase and one persistent phase). The results

in this chapter hold for the case of arbitrary number of phases K ≥ 2 known

by the decision maker, but in that case the analysis becomes cumbersome.

Consider the sequences S(1) , {S(1)[k]}∞k=1 and S(2) , {S(2)[k]}∞k=1 which

characterize the location of the anomalous nodes at each time instant for

post-change phase 1 and 2 respectively. For clarity of notation we will use

ν in the Appendix C to denote the first changepoint ν1, d to denote the

transient duration d1 and ρ to denote ρ1. Then, for fixed changepoint ν and

transient duration d (second changepoint ν2 = ν + d), ν ≥ 1, d ≥ 0, we have

the following statistical model for the two-phase case:

X[k] ∼


g (X[k]) , 1 ≤ k < ν,

pS(1)[k] (X[k]) , ν ≤ k < ν + d,

pS(2)[k] (X[k]) , k ≥ ν + d.

(C.1)

Furthermore, define the likelihood ratio of samples X[1, k] between the

hypothesis that the anomaly evolves according to S and changepoints are

equal to ν1 and ν2 and the hypothesis that the anomaly never appears by

ΓS(k, ν1, ν2),


[

min{ν2−1,k}∏
j=ν1

∏
`∈S1[j]

f`(X`[j])
g`(X`[j])

]
·

[
k∏

j=ν2

∏
`∈S2[j]

f`(X`[j])
g`(X`[j])

]
, ν1 < ν2,

k∏
j=ν1

∏
`∈S2[j]

f`(X`[j])
g`(X`[j])

, ν1 = ν2.

(C.2)
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In addition, for the model in (4.7), define the likelihood ratio of samples

X[1, k] between the hypothesis that the anomaly evolves according to

mixture weights in α and changepoints are equal to ν1 and ν2 and the

hypothesis that the anomaly never appears by

Lα(k, ν1, ν2) =


[

min{ν2−1,k}∏
j=ν1

p
(1)

α(1)
(X[j])

g(X[j])

]
·

[
k∏

j=ν2

p
(2)

α(2)
(X[j])

g(X[j])

]
, ν1 ≤ ν2,

k∏
j=ν1

p
(2)

α(2)
(X[j])

g(X[j])
, ν1 = ν2,

(C.3)

and the log-likelihood ratio at phase i ∈ [2], time k for α =
∗
α by

Z(i)[k] = log
p

(i)
∗
α(i)

(X[k])

g(X[k])
. (C.4)

Finally, denote the logarithm of the weighted likelihood ratio [35] in (C.3)

for ρ ∈ (0, 1) by

ωα(k, ν1, ν2)=


log

(
min{ν2−1,k}∏

j=ν1

p
(1)

α(1)
(X[j])(1−ρ)

)
ρ
1{k≥v2}

k∏
j=ν2

p
(2)

α(2)
(X[j])

k∏
j=ν1

g(X[j])

, ν1 ≤ ν2,

log
ρ

k∏
j=ν1

p
(2)

α(2)
(X[j])

k∏
j=ν1

g(X[j])

, ν1 = ν2.

(C.5)

C.2 Useful Lemma

The proofs of Chapter 4 rely on the following lemma:

Lemma 10. For any stopping rule τ , define its truncated version by τ (N) ,

min{τ,N} where N is a positive integer. Then, we have that for any d ≥ 0

WADDd(τ) ≥WADDd(τ
(N)). (C.6)

Proof. Fix N ≥ 1. Consider initially the case that N ≥ ν. Then, since

{τ (N) ≥ ν} = {min{τ,N} ≥ ν} = {τ ≥ ν} ∩ {N ≥ ν}, we have that

{τ (N) ≥ ν} = {τ ≥ ν}. Since τ (N) ≤ τ , this implies that for any N ≥ ν and
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any S, d we have that

ESν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]]

= ESν,d[τ (N) − ν + 1|τ ≥ ν,X[1, ν − 1]]

≤ ESν,d[τ − ν + 1|τ ≥ ν,X[1, ν − 1]]. (C.7)

For the case that N < ν, we have that that PSν,d(τ (N) ≥ ν) = 0, which implies

that for any N < ν and any S, d we have that

ESν,d
[
τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]

]
= 1, (C.8)

by convention. Furthermore, note that for any S, d we have that

ESν,d [τ − ν + 1|τ ≥ ν,X[1, ν − 1]] ≥ 1. (C.9)

From (C.7) - (C.9), we have that for any ν ≥ 1 and any S, d

ESν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]]

≤ ESν,d[τ − ν + 1|τ ≥ ν,X[1, ν − 1]]. (C.10)

By taking the sup and ess sup on both sides the lemma is established.

Remark 8. It should be noted that the use of the superscript in τ (N) of

Lemma 10 (as well as Lemma 8) is not related to the superscript used to

denote post-change phases, which appears in Chapter 4, as well as Appendix

C. In particular, with some abuse of notation, it is the convention in this

dissertation that when a superscript in the form of (·) is used on a stopping

time it refers to a truncated stopping time. On the contrary, when it is used

in any other quantity aside from a stopping time it is used to denote which

post-change phase said quantity is related to.
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C.3 Proof of Lemma 7

Let N ≥ 1. For any stopping rule τ , we have that from Lemma 10 for any

ν, d, N ≥ 1

WADDd(τ) ≥WADDd(τ
(N)) ≥ sup

S
ESν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]].

(C.11)

Following, we have that for any ν, d,S and N > ν + d

ESν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]]

= ESν,d

[
∞∑
j=ν

1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
(a)
= ESν,d

[
N∑
j=ν

1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

=
N∑
j=ν

ESν,d
[
1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
(b)
=

N∑
j=ν

E∞
[
ΓS (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= E∞

[
N∑
j=ν

ΓS (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= E∞
[
ΓS (ν − 1, ν, ν + d)1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
+ E∞

[
N∑

j=ν+1

ΓS (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= E∞
[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
+ E∞

[
N∑

j=ν+1

ΓS (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
(c)
= E∞

[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
+ E∞

[
N−1∑
j=ν

ΓS (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
, (C.12)
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where (a) follows since 1{τ (N)≥j} = 0 for j > N because τ (N) ≤ N ; (b) follows

from a change of measure; and (c) from a change of variables. As a result,

by taking the supremum over S we have that

sup
S

ESν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]]

(d)
= E∞

[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

+ sup
S

E∞

N−1∑
j=ν

ΓS (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]


(e)
= E∞

[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

+ sup
S(1)[1,N−1],S(2)[1,N−1]

E∞

N−1∑
j=ν

ΓS (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]


(f)
= E∞

[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

+ sup
S(1)[ν,ν+d−1],S(2)[ν+d,N−1]

E∞

N−1∑
j=ν

ΓS (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]


(C.13)

where (d) follows because the first term in (C.12) does not depend on S; (e)

follows since the summation in the second expectation is from j = ν to N−1

which implies that only the first N−1 samples are involved in the calculation

of ΓS (j, ν, ν + d); and (f) follows from the definitions of changepoints ν and

ν + d. By following similar steps to Appendix B.2, i.e., using the fact that

the sup can be lower bounded by the average, it can be shown that for any

α

sup
S(1)[ν,ν+d−1],S(2)[ν+d,N−1]

E∞

[
N−1∑
j=ν

ΓS (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

≥ E∞

[
N−1∑
j=ν

Lα (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
. (C.14)
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Then, by combining (C.11), (C.13) and (C.14) we have that for any b, α

WADDd(τ)

≥ E∞
[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
+ E∞

[
N−1∑
j=ν

Lα (j, ν, ν + d)1{τ (N)>j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= E∞
[
1{τ (N)≥ν}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
+ E∞

[
N∑

j=ν+1

Lα (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= E∞
[
1{τ (N)≥ν}Lα(ν − 1, ν, ν + d)

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
+ E∞

[
N∑

j=ν+1

Lα (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= E∞

[
N∑
j=ν

Lα (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

=
N∑
j=ν

E∞
[
Lα (j − 1, ν, ν + d)1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

=
N∑
j=ν

Eαν,d
[
1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= Eαν,d

[
N∑
j=ν

1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]

= Eαν,d

[
∞∑
j=ν

1{τ (N)≥j}

∣∣∣∣τ (N) ≥ ν,X[1, ν − 1]

]
= Eαν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]]. (C.15)
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From the Monotone Convergence Theorem, since τ (N) − ν + 1 and 1{τ (N)≥ν}

are non-decreasing with N , we have that

lim
N→∞

Eαν,d[τ (N) − ν + 1|τ (N) ≥ ν,X[1, ν − 1]]

= lim
N→∞

Eαν,d
[
(τ (N) − ν + 1)1{τ (N)≥ν}|X[1, ν − 1]

]
Eαν,d

[
1{τ (N)≥ν}|X[1, ν − 1]

]
=

Eαν,d
[
limN→∞(τ (N) − ν + 1)1{τ (N)≥ν}|X[1, ν − 1]

]
Eαν,d

[
limN→∞ 1{τ (N)≥ν}|X[1, ν − 1]

]
=

Eαν,d
[
(τ − ν + 1)1{τ≥ν}|X[1, ν − 1]

]
Eαν,d

[
1{τ≥ν}|X[1, ν − 1]

]
= Eαν,d

[
τ − ν + 1|τ (N) ≥ ν,X[1, ν − 1]

]
. (C.16)

As a result, by taking the sup over ν and the ess sup we have that for any

stopping time τ , α, and for d ≥ 0

WADDd(τ) ≥WADDα,d(τ). (C.17)

C.4 Proof of Theorem 11

Our upper bound analysis is based on the proof technique in [35]. In

particular, it can be shown that the M-WD-CUSUM test statistic is given

by

Ωα[k] = max
1≤i1≤i2≤k+1

ωα(k, i1, i2). (C.18)

In addition, due to the Markov property and recursive structure of the M-

WD-CUSUM test statistic, we have that for any S, α and any values of b

and d

WADDd(τΩ(α, b)) = sup
S

ES1,d [τΩ(α, b)] . (C.19)
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Furthermore, since ρ → 0 and − log ρ
b
→ 0 as b → ∞ and since d ∼ c′1

b
∗
I(1)

as

b→∞ we have that

d ∼ c′1
b

∗
I(1) + log(1− ρ)

(C.20)

as b → ∞. Depending on the value of c′1 we can proceed to bound

sup
S

ES1,d [τΩ(
∗
α, b)] as in [35].

Case 1: Consider the case of c′1 > 1. Let δ > 0. Choose ε > 0 such that

1 ≤ 1+ε
1−ε ≤ c′1 which in turn implies that

c′1(1−ε)
1+ε

≥ 1 and define

nb ,
b

∗
I(1) + log(1− ρ)− ε

, (C.21)

cε ,

⌊
c′1

1− ε
1 + ε

⌋
. (C.22)

We then have that

sup
S

ES1,d
[
τΩ(

∗
α, b)

nb

]
(a)
= sup

S

∞∫
0

PS1,d
(
τΩ(

∗
α, b)

nb
> x

)
dx

(b)

≤ sup
S

∞∑
ζ=0

PS1,d(τΩ(
∗
α, b) > ζnb)

≤ 1 +
cε∑
ζ=1

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb) + sup

S

∞∑
ζ=cε+1

PS1,d(τΩ(
∗
α, b) > ζnb)

≤ 1 +
cε∑
ζ=1

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb) + lim

ξ→∞

ξ∑
ζ=cε+1

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb),

(C.23)

where (a) follows from writing the expectation as an integral of the inverse

cumulative density function for a positive random variable; and (b) from the

sum-integral inequality.

We now consider two cases depending on the value of ζ relative to cε. First,

fix ζ ∈ [cε]. We then have that datapoints X[1, ζnb] are all generated in the
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first post-change phase. As a result, we have that for any S and ζ ∈ [cε]

PS1,d(τΩ(
∗
α, b) > ζnb)

= PS1,d
(

max
1≤k≤ζnb

Ω ∗α[k] < b

)
(c)
= PS1,d

(
max

1≤k≤ζnb
max

1≤i1≤i2≤k+1
ω ∗α(k, i1, i2) < b

)
(d)

≤ PS1,d (ω ∗α(rnb, (r − 1)nb + 1, d+ 1) < b,∀ r ∈ [ζ])

(e)
= PS1,d

 rnb∑
j=(r−1)nb+1

(
Z(1)[j] + log(1− ρ)

)
< b, ∀ r ∈ [ζ]


(f)
=

ζ∏
r=1

PS1,d

 1

nb

rnb∑
j=(r−1)nb+1

(
Z(1)[j] + log(1− ρ)

)
<

b

nb


(g)
=

ζ∏
r=1

PS1,d


rnb∑

j=(r−1)nb+1

Z(1)[j]

nb
<

∗
I(1) − ε

 (C.24)

where (c) follows from (C.18); (d) follows by binning the observations and

bounding the maxima (see [22] and [35]); (e) follows from (C.5); (f) follows

from independence of data across times conditioned on S; and (g) follows

from the definition of nb. We then have that for any b > 0 from (C.23) and

(C.24)

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb) ≤ sup

S


ζ∏
r=1

PS1,d


rnb∑

j=(r−1)nb+1

Z(1)[j]

nb
<

∗
I(1) − ε




=

sup
S

PS1,d


nb∑
j=1

Z(1)[j]

nb
<

∗
I(1) − ε



ζ

. (C.25)
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By Lemma 6 of Chapter 3 we have that

IS,b,d , ES1,d


nb∑
j=1

Z(1)[j]

nb

 =

nb∑
j=1

Ep
S(1)[j]

[
Z(1)[j]

]
nb

≥
∗
I(1). (C.26)

This in turn implies that for any S

PS1,d


nb∑
j=1

Z(1)[j]

nb
<

∗
I(1) − ε

 = PS1,d


nb∑
j=1

Z(1)[j]

nb
<

∗
I(1) − ε+ IS,b,d − IS,b,d



≤ PS1,d


nb∑
j=1

Z(1)[j]

nb
< IS,b,d − ε



≤ PS1,d


∣∣∣∣∣
nb∑
j=1

Z(1)[j]

nb
− IS,b,d

∣∣∣∣∣ > ε

 . (C.27)

Define

(σ̄(1))2 , max
E ∈E(1)

VarpE
(
Z(1)[1]

)
. (C.28)

From eq. (4.20), we have that (σ̄(1))2 <∞. Then, by Chebychev’s inequality

PS1,d


∣∣∣∣∣
nb∑
j=1

Z(1)[j]

nb
− IS,b,d

∣∣∣∣∣ > ε

 ≤ VarS1,d


nb∑
j=1

Z(1)[j]

nb

 1

ε2

=
1

ε2n2
b

nb∑
j=1

Varp
S(1)[j]

(
Z(1)[j]

)
≤
∑nb

j=1(σ̄(1))2

n2
bε

2

=
(σ̄(1))2

nbε2

≤ δ (C.29)
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for large b, which from (C.25) implies that for large b

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb) ≤ δζ . (C.30)

For the case of ζ > cε, we have that for large threshold b samples X[1, ζnb]

can be generated in either the transient or the persistent anomaly size phase.

Define

t ,

⌈ ∗
I(1)

min{
∗
I(1),

∗
I(2)}

⌉
+ 1. (C.31)

We then have that for large b, cεnb ≤ ν2 ≤ (cε + t)nb. Consider ζ such that

cε + (l − 1)t ≤ ζ ≤ cε + lt− 1, for any l ≥ 1. We then have that

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb) = sup

S
PS1,d

(
max

1≤k≤ζnb
Ω ∗α[k] < b

)
≤ sup

S
PS1,d (A1 ∩ A2)

≤ sup
S

PS1,d (A1) · sup
S

PS1,d (A2) (C.32)

where

A1 , {w ∗α (rnb, (r − 1)nb + 1, d+ 1) < b,∀ r ∈ [cε]} (C.33)

A2 , {w ∗α ((cε + rt)nb, (cε + (r − 1)t)nb + 1, d+ 1) < b,∀ r ∈ [l − 1]} .
(C.34)

By following similar steps to (C.24) - (C.30) it can be established that for

large b

sup
S

PS1,d (A1) ≤ δcε (C.35)

and

sup
S

PS1,d (A2) ≤ δl−1. (C.36)

We then have than from (C.23), (C.30), (C.32), (C.35), (C.36) and the
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definition of t

sup
S

ES1,d
[
τΩ(

∗
α, b)

nb

]
≤ 1 +

cε∑
ζ=1

δζ + lim
ξ→∞

ξ∑
l=1

tδcε+l−1

=
1

1− δ
+ tδcε + (t− 1)δcε+1 1

1− δ
, 1 + δ′ (C.37)

where δ′ → 0 as b → ∞ since δ → 0 as b → ∞ and cε ≥ 1. This in turn

implies that as b→∞

WADDd(τΩ(
∗
α, b)) = sup

S
ES1,d [τΩ(

∗
α, b)] ≤ b

∗
I(1)

(1 + o(1)). (C.38)

Case 2: Consider the case of c′1 ≤ 1. Define

n′b =

(
d+

b− log ρ− d(
∗
I(1) + log(1− ρ))
∗
I(2)

)
(1 + ε)

∼ b

(
c′1
∗
I(1)

+
1− c′1
∗
I(2)

)
(1 + ε). (C.39)

This implies that

lim
b→∞

n′b
d

=

(
1 +

(
1

c′1
− 1

) ∗
I(1)

∗
I(2)

)
(1 + ε) > 1 (C.40)

which in turn implies that for large b, n′b > d and n′b−d→∞ as b→∞ [35].

By analyzing the expectation as in case 1 we have that

sup
S

ES1,d
[
τΩ(

∗
α, b)

n′b

]
≤ 1 + sup

S
PS1,d(τΩ(

∗
α, b) > n′b) + sup

S

∞∑
ζ=2

PS1,d(τΩ(
∗
α, b) > ζn′b)

≤ 1 + sup
S

PS1,d(τΩ(
∗
α, b) > n′b) + lim

ξ→∞

ξ∑
ζ=2

sup
S

PS1,d(τΩ(
∗
α, b) > ζn′b). (C.41)

For fixed S and since for any constants x, y and random variables X, Y ,
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P(X + Y < x+ y) ≤ P(X < x) + P(Y < y) we then have that

PS1,d(τΩ(
∗
α, b) > n′b)

= PS1,d
(

max
1≤k≤n′b

Ω ∗α[k] < b

)
≤ PS1,d (w ∗α[n′b, 1, d+ 1] < b)

= PS1,d

 d∑
j=1

(
Z(1)[j] + log(1− ρ)

)
+ log ρ+

n′b∑
j=d+1

Z(2)[j] < b


= PS1,d

(
d∑
j=1

(
Z(1)[j] + log(1− ρ)

)
+

n′b∑
j=d+1

Z(2)[j]

< d(
∗
I(1) + log(1− ρ)) + (n′b − d)

∗
I(2) − εa

)

< PS1,d

(
d∑
j=1

(
Z(1)[j] + log(1− ρ)

)
< d(

∗
I(1) + log(1− ρ))− εa

2

)

+ PS1,d

 n′b∑
j=d+1

Z(2)[j] < (n′b − d)
∗
I(2) − εa

2



≤ PS1,d


d∑
j=1

Z(1)[j]

d
<

∗
I(1) − εa

2d

+ PS1,d


n′b∑

j=d+1

Z(2)[j]

n′b − d
<

∗
I(2) − εa

2(n′b − d)


(C.42)

where a , d
∗
I(2) + b− d(

∗
I(1) + log(1− ρ))− log ρ. This in turn implies that

sup
S

PS1,d(τΩ(
∗
α, b) > ζnb) ≤ sup

S
PS1,d


d∑
j=1

Z(1)[j]

d
<

∗
I(1) − εa

2d



+ sup
S

PS1,d


n′b∑

j=d+1

Z(2)[j]

n′b − d
<

∗
I(2) − εa

2(n′b − d)

 .

(C.43)
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Following, we upper bound both of the terms in the right hand side of (C.43).

In particular, from (C.26) we have that

sup
S

PS1,d


d∑
j=1

Z(1)[j]

d
<

∗
I(1) − εa

2d



= sup
S

PS1,d


d∑
j=1

Z(1)[j]

d
<

∗
I(1) − εa

2d
+ IS,b,d − IS,b,d



≤ sup
S

PS1,d


d∑
j=1

Z(1)[j]

d
< IS,b,d −

εa

2d



≤ sup
S

PS1,d


∣∣∣∣∣
d∑
j=1

Z(1)[j]

d
− IS,b,d

∣∣∣∣∣ > εa

2d

 . (C.44)

From Chebychev’s inequality we then have that

sup
S

PS1,d


∣∣∣∣∣
d∑
j=1

Z(1)[j]

d
− IS,b,d

∣∣∣∣∣ > εa

2d

 ≤ sup
S

1

d2
VarS1,d

(
d∑
j=1

Z(1)[j]

)(
2d

εa

)2

≤ 1

d

(
2dσ̄(1)

εa

)2

≤ δ

2
(C.45)

for large b since d/a converges to a constant as b → ∞. Similarly, it can be

shown that

sup
S

PS1,d


n′b∑

j=d+1

Z(2)[j]

n′b − d
<

∗
I(2) − εa

2(n′b − d)

 ≤ δ

2
(C.46)
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for large b.

Define

t′ ,

 1(
c′1
∗
I(1)

+
1−c′1
∗
I(2)

)
min{

∗
I(1),

∗
I(2)}

+ 1. (C.47)

Following similar arguments to (C.32) - (C.36) we can establish that if (l −
1)t+ 1 ≤ ζ ≤ lt for any l ≥ 1 we then we have that

sup
S

PS1,d(τΩ(
∗
α, b) > ζn′b) ≤ t′δl. (C.48)

Combining (C.41), (C.45), (C.46) and (C.48) we have that

sup
S

ES1,d
[
τΩ(

∗
α, b)

nb

]
≤ 1 + δ + lim

ξ→∞

ξ∑
ζ=2

t′δζ−1

=
1

1− δ
+ t′δ + (t′ − 1)

δ2

1− δ
, δ′′ (C.49)

where δ′′ → 0 as b→∞. As a result, we have that from (C.39) and (C.49)

WADDd(τΩ(
∗
α, b)) = sup

S
ES1,d [τΩ(

∗
α, b)] ≤ b

(
c′1
∗
I(1)

+
1− c′1
∗
I(2)

)
(1 + o(1)).

(C.50)

Finally, from (C.38) and (C.50) the theorem is established.
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