
© 2020 Monowar Hasan

INTEGRATING SECURITY INTO REAL-TIME CYBER-PHYSICAL SYSTEMS

BY

MONOWAR HASAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Sibin Mohan, Chair
Professor Klara Nahrstedt
Professor Tarek Abdelzaher
Professor Kirill Levchenko
Professor Rodolfo Pellizzoni
Professor Rakesh Bobba

ABSTRACT

Cyber-physical systems (CPS) such as automobiles, power plants, avionics systems, unmanned

vehicles, medical devices, manufacturing and home automation systems have distinct cyber and

physical components that must work cohesively with each other to ensure correct operation. Many

cyber-physical applications have “real-time” constraints, i.e., they must function correctly within

predetermined time scales. A failure to protect these systems could result in significant harm to

humans, the system or even the environment. While traditionally such systems were isolated from

external accesses and used proprietary components and protocols, modern CPS use off-the-shelf

components and are increasingly interconnected, often via networks such as the Internet. As a

result, they are exposed to additional attack surfaces and have become increasingly vulnerable to

cyber attacks. Enhancing security for real-time CPS, however, is not an easy task due to limited

resource availability (e.g., processing power, memory, storage, energy) and stringent timing/safety

requirements. Security monitoring techniques for cyber-physical platforms (a) must execute with

existing real-time tasks, (b) operate without impacting the timing and safety constraints of the

control logic and (c) have to be designed and executed in a way that an adversary cannot easily

evade it. The objective of my research is to increase security posture of embedded real-time

CPS by integrating monitoring/detection techniques that defeat cyber attacks without violating

timing/safety constraints of existing tasks. My dissertation work explores the real-time security

domain and shows that by employing a combination of multiple scheduling/analysis techniques and

interactions between hardware/software-based security extensions, it becomes feasible to integrate

security monitoring mechanisms in real-time CPS without compromising timing/safety requirements

of existing tasks. In this research, I (a) develop techniques to raise the responsiveness of security

monitoring tasks by increasing their frequency of execution, (b) design a hardware-supported

framework to prevent falsification of actuation commands — i.e., commands that control the state

of the physical system and (c) propose metrics to trade-off security with real-time guarantees. The

solutions presented in this dissertation require minimal changes to system components/parameters

and thus compatible for legacy systems. My proposed frameworks and results are evaluated through

both, simulations and experiments on real off-the-shelf cyber-physical platforms. The development

of analysis techniques and design frameworks proposed in this dissertation will inherently make

such systems more secure and hence, safer. I believe my dissertation work will bring researchers

and system engineers one step closer to understand how to integrate two seemingly diverse yet

important fields — real-time CPS and cyber-security — while gaining a better understanding of

both areas.

ii

To my amazing parents and in-laws, amicable sister, fabulous uncle, awesome grandmother (nana)

and gorgeous wife — whose affections, supports, encouragements and prays make me successful.

iii

ACKNOWLEDGMENTS

This dissertation is the culmination of many years of hard work and I could not achieve this

without the companionship, inspiration and support of an entire community. I am grateful to have

the opportunity to work with and learn from outstanding individuals. While I try to acknowledge

every single one of them, I may miss a few names who helped me along the way.

First and foremost, I would like to thank my advisor Professor Sibin Mohan for trusting me and

providing necessary mentoring as well as intellectual support. No single page of this dissertation

would have been written without his support. I learned a lot from Prof. Mohan — from conducting

research and developing presentation skills to mentoring and managing a large research group and

whatnot. I am particularly grateful for valuing my opinions and supporting me during difficult

times. I believe these lessons will be valuable in my future endeavor.

I would like to thank my Ph.D. committee members Professors Klara Nahrstedt, Tarek

Abdelzaher, Kirill Levchenko, Rodolfo Pellizzoni and Rakesh Bobba who were more than generous

with their precious time and feedback that significantly helped to improve the quality of this work.

A special thanks to my collaborators Prof. Pellizzoni and Prof. Bobba — our countless hours of

brainstorming and discussion sessions shape this work. I am also deeply indebted for their help in

my academic job search process and writing reference letters for me. I am beholden to my master’s

advisor Professor Ekram Hossain for his supports and guidance in different stages of my academic

career. I would not have ended up getting a Ph.D. from University of Illinois at Urbana-Champaign

(UIUC) without his aspirations. Prof. Hossain also guided and actively assisted me throughout

the complex job search process.

I would also like to thank my internship mentors — Dr. Ulf Lindqvist and Dr. Gabriela Ciocarlie

from SRI International as well as Dr. Takayuki Shimizu and Dr. Hongsheng Lu from Toyota Motor

North America — for giving me the opportunity to work on some really exciting research ideas.

Graduate school can never be pleasant experience without the support from administration. I

would like to acknowledge and thank UIUC Computer Science department and Coordinated Science

Laboratory (CSL) for providing me necessary assistance to conduct my research. Special thanks go

to graduate academic advisors Viveka Kudaligama, Kara MacGregor and Maggie Chappell as well

as CSL staff members Tonia Siuts, Kelli Anderson and Theron Seckington. Dr. Derek Attig and

Mike Firmand from UIUC Graduate College examined and provided valuable feedback on my job

application materials — thank you, it helped a lot! I also acknowledge the supports from funding

agencies and our industry collaborators — National Science Foundation, Office of Naval Research,

Cyber Resilient Energy Delivery Consortium and Toyota Motor North America — for the funding

that have made my research possible.

I am fortunate to have the company of my colleagues, Dr. Chien-Ying Chen, Dr. Fardin

Abdi, Ashish Kashinath, Kyo Hyun Kim and other SyNeRCyS@Illinois group members — the

iv

collaborative work we did and the time we spent together had been a blissful experience. I hope

we will keep in touch and continue to collaborate in the future.

I would not be here today, doing what I am, without my family. I will be always grateful to my

parents Nazrul Islam and Dr. Monowara Begum, my in-laws Dr. Humayun Kabir and Noorjahan

Morshead, my awesome grandmother (nana) Anowara Begum, my uncle Rabiul Alam and my

sister Dr. Fahim Nowsheen who have been my biggest support and who offered all their love and

compassion — thank you for being there for me. I want to specially thank my wonderful wife,

Syeda Noor E Sumaiya. I feel incredibly lucky to have such a supportive and loving partner. I

could not have asked for a better partner — she is the most supportive person at times of stress

and uncertainty. I would have been a drop-out in first year of my Ph.D. without her. It is my

pleasure to endure this long journey with her — tasting the sweets and bitters of life together.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Statement . 4
1.2 Summary of Solutions . 5

CHAPTER 2 RELATED WORK . 9
2.1 Scheduling and Period Optimization in RTS . 9
2.2 Security in Real-Time Cyber-Physical Systems . 10

CHAPTER 3 ASSUMPTIONS ON ADVERSARIAL CAPABILITIES 12
3.1 Adversary Model for Chapter 4 and Chapter 5 . 12
3.2 Adversary Model for Chapter 6 . 12

CHAPTER 4 AN ADAPTIVE FRAMEWORK FOR INTEGRATING SECURITY
TASKS IN SINGLE CORE REAL-TIME SYSTEMS . 14
4.1 Introduction . 14
4.2 Overview of CONTEGO . 17
4.3 System Model . 18
4.4 Period Adaptation . 20
4.5 The Security Server . 22
4.6 Algorithm . 27
4.7 Evaluation . 27
4.8 Conclusion . 35

CHAPTER 5 A DESIGN-SPACE EXPLORATION FOR INTEGRATING SECURITY
TASKS IN MULTICORE REAL-TIME SYSTEMS . 36
5.1 Introduction . 36
5.2 Model and Assumptions . 38
5.3 HYDRA: Fixed Assignment of Security Tasks . 39
5.4 HYDRA-C: Continuous Security Monitoring . 42
5.5 Evaluation . 47
5.6 Conclusion . 52

CHAPTER 6 SELECTIVE CHECKING AND TRUSTED EXECUTION TO
PREVENT FALSE ACTUATIONS IN REAL-TIME CYBER-PHYSICAL SYSTEMS . . 53
6.1 Introduction . 53
6.2 Motivation, Overview and Background . 55
6.3 Checking Actuation Commands . 60
6.4 Game-Theoretic Analysis for Random Checking . 62
6.5 Evaluation . 68
6.6 Conclusion . 79

CHAPTER 7 DISCUSSION . 80

vi

CHAPTER 8 CONCLUSION AND FUTURE WORK . 82
8.1 Future Directions . 84

APPENDIX A CONTEGO – SUPPLEMENTARY MATERIALS 86
A.1 Linear Lower-Bound Supply Function and Schedulability Constraints 86
A.2 Solution to the Optimization Problems . 88
A.3 Comparison with Exact Method . 91

APPENDIX B HYDRA/HYDRA-C – SUPPLEMENTARY MATERIALS 94
B.1 Solution to the Period Selection Problem in HYDRA 94
B.2 Comparing HYDRA with Optimal Multicore Assignment 94
B.3 Proof of Lemma 5.1 . 95

APPENDIX C SCATE – SUPPLEMENTARY MATERIALS 96
C.1 Systen Model: Real-Time Task and Scheduling . 96
C.2 Feasibility Conditions . 97
C.3 Design-Time Tests for Integrating Actuation Checking in Existing Systems 97
C.4 Impact of Physical Inertia . 98

REFERENCES . 100

vii

CHAPTER 1: INTRODUCTION

Cyber-physical systems (CPS) such as avionics, nuclear power plants, automobiles, space vehicles,

power generation and distribution systems, medical devices, industrial robots have been in existence

for decades. Such systems, which often have safety-critical properties and real-time (i.e., stringent

timing) requirements. Any problems in real-time systems (RTS) could result in significant harm to

humans, the system or even the environment. Systems with real-time requirements need to function

correctly, but within their predefined timing constraints, often termed as “deadlines”. For example,

consider real-time CPS applications with stringent timing constraints such as deployment of a car’s

airbag or an industrial robot operates on a manufacturing conveyor line. A typical window for

an airbag deployment (time between detection of collision and final airbag operations) is around

50–60 ms [1] and the response time for robot movements (i.e., placing and moving objects on the

conveyor) is around 50–100 ms [2].

Execution Time

U
se

fu
ln

es
s

Deadline

General-purpose
systems

Real-Time
Systems

Figure 1.1: Timeliness requirements of real-time systems.

If real-time applications failed to comply with their timing requirements (deadlines), the

usefulness of results produced by the system drops sharply (see Fig. 1.1). From the earlier airbag

deployment and manufacturing robot example, if the application tasks fail to deploy the airbag in

time or there is a delay to update the angle of rotation of the robot arm, the physical system may

not work properly and hence put the safety of the human operators at risk. This is different from

general-purpose systems where the usefulness drops in a more gradual manner (e.g., a web service

may tolerate a few millisecond delay without degrading user experience significantly). Some of the

common properties and assumptions related to RTS are as follows: (i) stringent timing and safety

requirements, (ii) implemented as a system of periodic tasks, (iii) worst-case bounds are known

for most loops as well as the critical pieces of code, (iv) no dynamically loaded or self-modifying

code, (v) recursion is either not used or statically bounded and (vi) memory and processing power

often limited.

Figure 1.2 presents a high-level illustration of a real-time CPS. Each real-time application in

the system (called “task”) represents a time-critical function and a collection of such tasks are

hosted on a hardware platform. The scheduler in real-time operating system (RTOS) uses timers

and interrupt handlers to enforce timing guarantees at runtime. This ability of the scheduler to

interrupt application processing at precise time instants is essential to ensure the “correctness” of

1

Grid
ICS

Avionics
System

RTS nodeRTS node

RTS node RTS node
RTS node

RTS node

Automobiles

RTS node

Real-time tasks
[periodic, priority-driven]

Execution platform
[processor, timers]

Hardware resources
[memory, caches, sensors]

Applications

OS Layer

Hardware

Real-time scheduler and resource-sharing protocols
[bounded waiting times]

Communication
Bus(es)

Figure 1.2: Abstraction of a real-time CPS node with common uses cases.

the system. Access to shared platform resources (such as caches, buses, memory) is regulated using

resource sharing protocols to ensure data consistency and bounds on waiting time so that deadlines

can be met. The communication network in RTS is required to provide service with low jitters and

meet end-to-end message deadline for all messages.

Although safety and fault-tolerance have long been important design focus in such systems,

security has rarely been a consideration in the design of real-time CPS mainly due to beliefs such as:

(a) RTS lack inherent value to adversaries (“why would anyone attack them?”), (b) the prevalence

of custom hardware/software/protocols will deter attackers (“these protocols/hardware/software

are secret and so arcane that no one can decipher them”) and also (c) the lack of computing

power and memory in these systems will throttle potential adversarial actions (“what can they do

even if they get in?”). While traditionally RTS adopted proprietary protocols, platforms, software

and were air-gapped (i.e., not connected to the outside world), with the advent of newer domains

such as autonomous vehicles, drones, remote monitoring and control and Internet-of-Things (IoT)-

specific applications, RTS find themselves front and center in modern society. Since many RTS now

use commodity-off-the-shelf (COTS) components and are often connected to each other or even

the Internet, they expose additional attack surfaces, often overturning all of the aforementioned

beliefs. A number of high-profile attacks on real systems (e.g., Stuxnet [3], BlackEnergy [4]), attack

demonstrations by researchers on automobiles [5, 6] and medical devices [7] have shown that the

threat is real and systems composed of RTS might be vulnerable to cyber attacks.

Given the time and resource constraints under which RTS operate, vulnerabilities in RTS differ

2

considerably from those of traditional enterprise systems. Threats faced by RTS could vary in scope

and effect; from the leakage of critical data [8] to hostile actions due to lack of authentication [5, 6, 9].

However, simply adding security mechanisms that provide confidentiality (e.g., encryption),

integrity protection (e.g., message authentication) and availability (e.g., replication) without

considering the real-time and embedded nature of such systems will not be effective. In the

last few years there has been a lot of focus on securing critical CPS [10–18]. A major focus

of such work has been on securing communication protocols and on monitoring and detection

mechanisms at the network and application level. Given the increasing cyber-attack risks, however,

it is essential to have a layered defense and integrate resilience against cyber attacks into the design

of controllers and actuators (i.e., embedded RTS). It is also critical to retrofit existing controllers

and actuators with protection, detection, survival and recovery mechanisms. In addition, stringent

timing constraints severely inhibit how security solutions can be added to RTS; for instance, the

protection methods should not cause timing problems in RTS.

Integrating security techniques in real-time CPS, however, is not an easy task since they have

stringent timing and safety constraints — hence a security mechanism must not violate these

requirements. Any security mechanisms have to co-exist with the real-time tasks in the system.

However, stringent timing constraints in RTS introduce complexities — the strict deadlines for the

real-time tasks may not allow for frequent execution of security mechanisms. Unlike in conventional

IT settings, it may not be possible to execute the detection/monitoring tasks for arbitrary lengths

of time. Designers of the systems are required to balance between security requirements (e.g.,

having enough cycles for effective monitoring detection) and the timing/safety requirements (i.e.,

not interfere with real-time deadlines). Further, it may not be feasible for legacy systems to adjust

the parameters (such as run-times, period and execution order) of real-time tasks to accommodate

security techniques. For example, how often and how long should a monitoring and detection task

run to be effective but not interfere with real-time control or other safety-critical tasks? Integrating

security into multicore real-time platforms is more challenging when compared to the single core

systems since designers have multiple choices across cores to retrofit security mechanisms. While

this real-time vs. security trade-offs could potentially be addressed for newer systems at design

time, this is especially challenging for retrofitting legacy systems where the real-time tasks are

already in place and perhaps cannot be modified. An understanding of the interplay between

real-time constraints and the security requirements is very important for properly integrating the

two fields. The focus of my research is to develop techniques that will allow us to trade back and

forth between these, seemingly, conflicting properties so that designers of the systems can correctly

gauge system requirements — hence, perhaps, meeting both, the real-time constraints as well as

integrating effective security mechanisms.

My dissertation work presents design-time frameworks for integrating security monitoring

mechanisms into real-time CPS without violating timing/safety constraints. In particular, I study

and develop models for integrating monitoring and detection mechanisms into legacy (i.e., existing)

real-time CPS built using both, single and multicore processors. The security mechanisms to

3

be integrated could be any detection/protection/recovery mechanism depending on the system

requirements — for instance, an intrusion detection task or a trusted module that checks specific

system signals (such as filesystems, network packets, actuation commands). As part of this research

I analyze the various parameters that affect design choices while integrating security into RTS. I

further develop metrics that will enable us to measure success and objectively analyze different

solutions.1 I also evaluate my solutions on a variety of platforms — from simulation engines to real

hardware, viz., a ground rover, a flight controller, a infusion pump and a robotic arm.

1.1 THESIS STATEMENT

As mentioned earlier, integrating security in real-time CPS is not straightforward since

monitoring/detection mechanisms must (a) co-execute with existing real-time tasks, (b) comply

with timing/safety constraints and (c) designed/scheduled in a way that an adversary cannot easily

evade them. The real-time security solutions are constrained to address the following challenges:

1. How do we integrate and then characterize the effects of security in real-time CPS those

designed using both, single and multicore chips?

2. What are the trade-offs on the security and timing requirements while guaranteeing no (or

minimal) perturbations for the real-time properties?

3. What are the performance criteria and metrics that need to be considered while integrating

security into real-time CPS?

The challenges to answering these questions reside in the timing constraints imposed on real-time

CPS. I address these challenges by postulating the following hypothesis:

It is possible to integrate security into real-time cyber-physical systems

by a careful (task/scheduler-level) analysis of, and co-design with, system

constraints, viz. software, hardware and timing requirements.

My dissertation work shows that it becomes feasible to integrate security mechanisms in

real-time CPS without compromising timing/safety requirements by employing a combination

of time-aware solutions such as, (i) by imposing scheduling-level constraints (Chapters 4–5) or

(ii) interacting between scheduling/optimization techniques and hardware/software-based security

extensions (Chapter 6). The end goal, then, is to provide designers with a knob that they can use

to tune to one side or the other — real-time vs. security.

1The development of metrics for security is hard in general but can be made in specialized domains, as I
demonstrate.

4

Type of the Solution

Software-based
(scheduler-level)

Hardware-software
Co-design

R
ea

l-T
im

e
C

PS

Pl
at

fo
rm

Single
Core

Multicore

SCATE
[Chapter 6]

HYDRA
HYDRA-C
[Chapter 5]

CONTEGO
[Chapter 4]

Security Monitoring Tasks

Application Independent
[CONTEGO, HYDRA, HYDRA-C]
Application Specific － Protect Actuators
[SCATE]

• Real-time tasks execute natively
• Security checks perform inside a trusted enclave

• Both real-time and security monitoring
tasks execute on a common platform

Figure 1.3: Various security integration techniques proposed in this dissertation. Chapters 4–5
present pure software-based solutions. CONTEGO (Chapter 4) is designed for single core systems
while HYDRA and HYDRA-C (Chapter 5) target multicore platforms. Chapter 6 (SCATE)
presents a hardware-supported architecture and compatible for both, single and multicore systems.

1.2 SUMMARY OF SOLUTIONS

Based on the aforementioned challenges, my dissertation work is divided into three parts that

are presented in Chapters 4–6 (see Fig. 1.3). At the high-level, the solutions proposed in this

dissertation can be classified along two major dimensions. The horizontal dimension in Fig. 1.3

represents the type of the security integration techniques and the vertical dimension represents

the underlying real-time computational platform. The security integration techniques can be

either (i) pure software-based (Chapters 4–5) or (ii) leverage hardware-assisted security features

(Chapter 6). My proposed solutions are either (i) core-specific, i.e., designed for single core

(Chapter 4) or multicore (Chapter 5) systems or (ii) applicable for both, single and multicore

platforms (Chapter 6). I further consider cases where security monitoring tasks can be either

(i) periodic and independent of real-time applications (Chapters 4–5) or (ii) perform application-

specific checks, i.e., protect physical actuators from false actuation commands (Chapter 6). I now

summarize the solutions proposed in this dissertation.

Chapters 4–5 present scheduler-level defense mechanisms. These techniques (a) are software-

based approaches (integrated at design time), (b) can be applied by enforcing scheduler-level

constraints and (c) do not require any custom hardware and/or architectural support.

5

In Chapter 4, I propose to incorporate security mechanisms into legacy single core RTS by

implementing them as separate, independent periodic tasks (called “security tasks”). While there

exists some work on reconciling the addition of security mechanisms into RTS [10, 11, 19, 20], they

tend to increase execution times for real-time tasks and thus negatively impact timing constraints.

Architectural frameworks such as those proposed in prior work [12–15, 18, 21, 22] assume the

availability of custom hardware-support for monitoring and hence not suitable for legacy systems.

In contrast, I focus on integrating monitoring and detection tasks without any perturbation to

the real-time scheduling order by using scheduler-level techniques. In order to provide the best

protection, the security tasks need to be executed quite often. The challenge then, is to determine

the “right periods” (i.e., minimum inter-execution time) for the security tasks. Therefore, I

introduce a technique that allows the execution of security tasks opportunistically with lowest-

priority (so that they do not interfere the execution order of real-time tasks), while keeping the

best possible periods for the security tasks. I then propose a dual-mode model (named CONTEGO)

that allows the security tasks to execute in two different modes: (a) by default security tasks execute

opportunistically when the system is deemed to be uncompromised; (b) if an anomaly is suspected,

the security tasks may switch to higher priority; (c) the system reverts to “normal” mode if: (i) no

anomalous activity is found or (ii) the root cause of the problem is detected and malicious entities

are removed. I also propose a metric (called tightness of monitoring) that provides us one way

to trade-off security with schedulability. I evaluate my propose technique using time-to-detect an

intrusion as a performance criteria with a view to observing how well the security tasks can perform

desired monitoring and detection after period selection.

The techniques proposed in Chapter 4 target single core systems. The use of multicore platforms

in real-time CPS is increasingly becoming common since they provide higher performance and

better energy efficiency [23]. However, this makes the problem of integrating security mechanisms

more complex. Unlike single core systems, integrating security into multicore platforms is more

challenging since the designers now have multiple choices for where to allocate the security tasks.

For instance, should the engineers: (i) spread the security tasks to all cores (in conjunction with

the real-time tasks) and if so, how to determine the task-to-core assignment? or (iii) execute them

continuously across any available core? In addition, how the designers can determine the periods

of the security tasks? Chapter 5 addresses aforementioned issues. In particular, I first develop a

low-complexity iterative solution (called HYDRA) that jointly finds the security tasks’ periods and

core assignments. The HYDRA mechanism assumes that the security tasks are statically assigned

across all available cores. I then extend HYDRA with an alternate design mechanism, HYDRA-C,

that can raise the “responsiveness” of monitoring tasks by increasing their frequency of execution.

The key intuition is that if the security tasks are able to execute with as few interruptions as

possible (e.g., by moving immediately to an empty core when they are interrupted), then there is

much higher chance of successful detection and correspondingly, a much lower chance of successful

adversarial action. HYDRA-C provides better monitoring when compared to HYDRA but comes

with a cost (in terms of context switch overhead).

6

The techniques presented in Chapters 4–5 (i.e., CONTEGO, HYDRA, HYDRA-C) are pure

software-based (i.e., scheduler-level) solutions since real-time schedulers are considered to be the

most important resource management entity and hence is the focus of my work in terms of adding

security. I note that my software-based solutions execute both real-time and security tasks in a

common platform and hence the security mechanism may collapse if the adversary can compromise

the host operating system (OS). In the follow-up work (Chapter 6), I use hardware-assisted trusted

modules and execute security checks inside a tamper-resistant platform. Recall from Fig. 1.3 and

earlier discussion that, CONTEGO, HYDRA and HYDRA-C abstract application requirements

(i.e., security checks are periodic and independent of existing real-time tasks). Since majority

cyber-physical applications are largely based on sensing and actuation, any false/spoofed actuation

command — i.e., commands that control physical states — can disrupt the normal operation of the

plant. In Chapter 6, I leverage hardware-supported security extensions and address application-

specific requirements, i.e., protect physical actuators by checking actuation commands. I refer to

my framework SCATE. Specifically, SCATE uses the concept of trusted execution environments

(TEEs) [24] available in commodity processors (e.g., ARM TrustZone [25]) to ensure that security

critical execution segments of real-time tasks (e.g., checking of actuation commands) can not be

tampered even if the host OS is compromised. Unlike the frameworks proposed in Chapter 4 and

Chapter 5 that model detection/monitoring as independent and periodic tasks, security checks in

SCATE (i.e., validating actuation commands) are based on the actions of the real-time tasks (i.e.,

activated when real-time tasks generate actuation commands). I find out such TEE-based checking

of actuation commands in real-time applications can lead to significant context switch overhead

and a critical task may not comply with its timing requirements. To minimize checking overheads,

I therefore develop mechanisms (by using game theoretical analysis [26]) that selectively picks a

random subset of actuation commands for checking. I implement SCATE using off-the-shelf TEE

technology (ARM TrustZone) running embedded Linux. I demonstrate the feasibility of SCATE

for four real representative systems (viz., ground rover, flight controller, robotic arm and syringe

pump) and study the trade-off between security and timing guarantees.

Key Contributions of this Dissertation

• Design-time frameworks (CONTEGO, HYDRA, HYDRA-C) to integrate security tasks into

RTS that will allow system designers to improve the security posture without affecting

temporal constraints of the existing real-time tasks for both, single core (Chapter 4) and

multicore (Chapter 5) platforms.

• A new metric (named tightness of periodic monitoring) to measure the effectiveness of such

integration (Chapters 4–5).

• A time-aware hardware/software framework (SCATE) to secure COTS-based real-time cyber-

physical platforms against attacks that falsify actuation commands (Chapter 6). SCATE

7

deters attacks with significantly less overheads and also guarantee that it will not violate

timing constraints.

Chapters 7–8 discuss the limitations and possible extensions of my proposed techniques. I now

start with related research (Chapter 2) and then present my assumptions on attacker’s capabilities

(Chapter 3).

8

CHAPTER 2: RELATED WORK

In this chapter I summarize existing techniques. I have identified some well-defined categories and

sub-categories for related real-time scheduling and security research. I now present related work

along two fronts: (a) real-time scheduling models (Section 2.1) and (b) real-time CPS security

solutions (Section 2.2).

2.1 SCHEDULING AND PERIOD OPTIMIZATION IN RTS

While not in the context of real-time CPS security, there exist some related real-time scheduling

frameworks as I present below.

Real-Time Scheduling Frameworks

The system model presented in Chapters 4–5 may be viewed as special case of mixed-criticality

systems [27] where the system operates in multiple criticality levels (say “high” for real-time and

“low” for security tasks). However, unlike traditional mixed-criticality task model [28] where

execution times and periods are vectors of values (see the related survey [27]), I consider a single

execution time and period value (i.e., there exists only one criticality level). In mixed criticality

systems “low”-criticality tasks are abandoned to ensure timely operation of the “high”-criticality

tasks [29]. Abandoning security tasks may not be an option in my context since this will fail to

complete security checks in a timely manner. Mixed-criticality scheduling is also different than

the problem considered in this dissertation due to the fact that security properties (e.g., adaptive

switching depending on runtime behavior or frequent execution of monitoring events for faster

detection) are often different than temporal requirements (e.g., satisfying deadline constraints for

mixed-criticality tasks). However, the theory and concepts emerged from mixed-criticality systems

can also be applied to the real-time security problems to further harden the security posture of

future real-time CPS.

The scheduling approaches present in Chapter 5 can be considered as a special case of prior

work [30] where each task can bind to any arbitrary number of available cores. For a given period,

this prior analysis [30] is pessimistic for the model considered by HYDRA-C (i.e., real-time tasks are

partitioned and security tasks can migrate on any core) in a sense that it over-approximates carry-

in interference from the tasks bound to single cores (e.g., real-time tasks) and hence results in lower

schedulability (i.e., identical to the GLOBAL-TMax scheme in Fig. 5.7). Researchers also propose

various semi-partitioned scheduling strategies for fixed-priority RTS [31, 32]. However, these

existing work (a) primarily focus on improving schedulability (e.g., by allowing highest priority task

to migrate) and (b) are not designed for security requirements in consideration (e.g., minimizing

periods and executing security tasks with fewer interruption for faster anomaly detection).

9

Period Selection in Real-Time/Control Systems

There exists other work [33, 34] in which the authors statically assign the periods for multiple

independent control tasks considering control delay as a cost metric. Davare et al. [35] propose

to assign task and message periods as well as satisfy end-to-end latency constraints for distributed

automotive systems by leveraging schedulability analysis within a convex optimization framework.

Previous work use a different model/application scenario (such as controller area networks [36]

and/or minimize control delay using utilization-bound tests) and hence can not be directly adapted

in my context.

2.2 SECURITY IN REAL-TIME CYBER-PHYSICAL SYSTEMS

Enhancing security in time-critical cyber-physical applications is an active research area (see the

related surveys [37, 38]). Security in real-time CPS has been addressed in literature in different

contexts — in broader sense this includes (but not limited to) integrating monitoring and intrusion

detection mechanisms, protecting communication channels, defending against side-channel attacks,

as well as designing hardware/software based architectural solutions.

Securing Communication Messages/Channels

Researchers proposed techniques to secure real-time CPS from man-in-the-middle attacks, where

an attacker can compromise communication between system sensors and controllers [39, 40]. The

goal is to find trade-offs between control performance and security overheads (e.g., overheads for

enforcing data integrity technique such as message authentication codes to prevent the attacks).

There has been some work [10, 11] where authors proposed to add security mechanisms (such as

encryption) into RTS and considered periodic task scheduling where each task requires a security

service whose overhead varies according to the quantifiable level of the service. Unlike my research,

all of the aforementioned work require modification of the existing real-time tasks.

Defense Against Side-Channel Attacks

Bao et al. [41] model the behavior of the attacker and introduce a scheduling algorithm. Unlike

hard RTS, authors consider a system with aperiodic tasks that have soft deadlines. The proposed

algorithm provides a trade-off between side-channel information leakage and the number of deadline

misses for the real-time tasks. In comparison, I propose to ensure security policies in hard RTS

without violating temporal constrains and schedulability of the real-time tasks. A state cleanup

mechanism is introduced in literature [42] where the authors modify the fixed priority scheduling

algorithm to mitigate information leakage through shared resources (e.g., caches). However, this

leakage prevention comes at a cost of reduced schedulability. In comparison, I propose to ensure

security policies without violating temporal constraints and schedulability of the real-time tasks.

10

Randomization and Architectural Frameworks

Researchers also proposed schedule obfuscation methods [43] to minimize predictability of

deterministic RTS scheduler by randomizing the task schedule while providing the necessary real-

time guarantees. Unlike my schemes that works at the scheduler-level, there exist architectural

frameworks [12–15, 21, 22, 44] that can protect RTS against security vulnerabilities. I highlight

that all the aforementioned work require modification to the scheduler or real-time task parameters.

They are also not designed to protect against false actuation commands. It is not inconceivable

that those architectural frameworks and randomization protocols can the employed on top of my

proposed schemes to improve security posture in future real-time CPS.

Trusted Execution and CPS Security

Perhaps the closest line of work to SCATE is PROTC [45] where a monitor in the enclave

enforces secure access control policy (given by the control center) for some peripherals of the drone

and ensures that only authorized applications can access certain peripherals. Unlike my scheme,

PROTC is limited for specific applications (i.e., aerial robotic vehicles), requires a centralized

control center to validate/enforce security policies and does not consider real-time requirements.

Researchers also proposed anomaly detection approaches for robotic vehicles [17, 46, 47]. These

(prior) approaches do not leverage capabilities of TEEs (i.e., are vulnerable if the adversary

can compromise the host OS) and do not consider real-time aspects. Researchers also use

game-theoretical analysis for (a) general-purpose control systems [48, 49], (b) decision making

problems [50] and (c) preventing physical intrusions in CPS [51]. These schemes are not designed

to protect the systems against false actuation commands. In addition, they are not timing-aware

(i.e., real-time requirements are not considered). To the best of my knowledge, SCATE is the

first comprehensive work that introduces the notion of randomized coarse-grain checking using

game-theoretical model in order to validate actuation commands in a TEE-enabled real-time CPS.

There also exist large number of research for generic cyber-physical/Internet-of-things-specific

embedded systems as well as use of TrustZone to secure traditional embedded/mobile applications

(too many to enumerate here, refer to the related surveys [25, 52–55]) — however the consideration

of actuation-specific real-time security/scheduling distinguish SCATE from other research.

11

CHAPTER 3: ASSUMPTIONS ON ADVERSARIAL CAPABILITIES

I now present my adversary model. I consider identical threat models in Chapters 4–5 (see

Section 3.1). Section 3.2 presents assumptions on attacker’s capabilities considered in Chapter 6.

3.1 ADVERSARY MODEL FOR CHAPTER 4 AND CHAPTER 5

In Chapters 4–5, I assume that an adversary may destabilize the system by leveraging

(known) vulnerabilities. For example, an attacker could compromise the file system (resulting

in corrupted information/system log), change the of control/actuation commands or infer side

channel information (e.g., user tasks, cache information, thermal profiles) to launch further attacks

(say denial of service). While there exists mechanisms (such as Simplex [56, 57]) that guarantee

(hardware/software) fault tolerance, I consider the cases where an attacker intentionally induces

faults (i.e., adversarial artifacts) that may jeopardize the safety of the system (e.g., results in miss

deadlines). My focus is on threats that can be dealt with by integrating additional security tasks

into the host. The addition of such tasks may necessitate changing the schedule or increasing the

execution time of real-time tasks as was the case in earlier work [10, 11, 19, 19, 42, 58, 59]. In this

research I consider situations where additional security tasks (see Table 4.1 for related examples)

are only allowed to have minimal (Chapter 4) or no impact (Chapter 5) on the schedule of existing

real-time tasks and are not allowed to modify real-time parameters. While I use specific intrusion

detection mechanisms (e.g., Tripwire [60], a filesystem integrity checking tool) to demonstrate my

approach, the ideas presented in Chapter 4–5 are agnostic to the specific monitoring mechanism.

The design of integration techniques and the design of the specific security tasks are orthogonal

problems. Since I aim to maximize the frequency of execution of security tasks, mechanisms whose

performance improves with frequency of execution (e.g., intrusion monitoring and detection tasks

or logging/tracing mechanisms) benefit from my model.

3.2 ADVERSARY MODEL FOR CHAPTER 6

My assumptions on adversarial capabilities in Chapter 6 is similar to that considered in prior

work [61, 62]. In particular, I assume that an adversary can tamper with the existing control logic to

manipulate actuation commands, thus modifying the behavior of a system in undesirable ways (i.e.,

threaten the safety of the system). I only consider the cases where an adversary’s actions results in

the modification of actuation commands. Other classes of attacks such as scheduler side-channel

attacks [63, 64], timing anomalies [61, 65] and network-level man-in-the-middle attacks [39, 40] are

not within the scope of this work. However, I do discuss how my approach can be extended to

other use-cases and mitigate some of those attacks (Chapter 7). I do not make any assumptions

as to how an adversary compromises tasks or actuation commands. For instance, bad software

12

engineering practices leave vulnerabilities in the systems [66]. When the system is developed

using a multi-vendor model [20] (where various components are manufactured and integrated by

different vendors) malicious code may be injected (say by a less-trusted vendor) during deployment.

The adversary may also induce end-users to download modified source code and/or remote access

Trojans, say by using social engineering tactics [15]. I do not consider the adversarial cases that

require physical access, i.e., the attacker cannot physically control/turn off/damage the actuators

or the system.

13

CHAPTER 4: AN ADAPTIVE FRAMEWORK FOR INTEGRATING SECURITY
TASKS IN SINGLE CORE REAL-TIME SYSTEMS

I now assert one part of my dissertation hypothesis (Section 1.1) by presenting a scheduler-

level security integration framework. In particular, I focus on integrating security tasks into

RTS (especially legacy systems) and define a metric (named tightness of periodic monitoring) to

measure the effectiveness of such integration. I introduce the concept of “opportunistic execution”

with hierarchical scheduling [67] and then propose a framework, CONTEGO, that allows security

tasks to operate in two different modes. In CONTEGO, security monitoring tasks (a) execute

opportunistically with a lowest priority most of the time (i.e., during normal system operation);

(b) however can adaptively change their mode of operation and execute with a higher priority (for

a limited amount of time) if any anomalous behavior is suspected. I evaluate CONTEGO using

synthetic workloads as well as with an implementation on a realistic embedded platform (an open-

source ARM CPU running real-time Linux). CONTEGO is shown to increase the security posture

of RTS without impacting their temporal (and hence, safety) constraints.

4.1 INTRODUCTION

Until recently, cyber-security considerations were an afterthought in the design of real-time CPS.

While fault-tolerance has been a design consideration, traditional fault-tolerance techniques that

were designed to counter and survive random or accidental faults are not sufficient to deal with

cyber-attacks. Given the increasing cyber-attack risks in RTS [3–7, 9], it is essential to integrate

resilience against such attacks into the design of RTS. There is also a need to retrofit existing critical

RTS with detection, survival and recovery mechanisms. The focus of my research is on integrating

or retrofitting security mechanisms into legacy RTS. A legacy RTS is one where modification or

perturbation of existing real-time tasks’ parameters (such as run-times, periods and task execution

orders) is not always feasible. When integrating any security mechanisms into RTS, the designers

need to ensure that they do not perturb or impact the real-time functions in any significant way

while at the same time provide the necessary level of security. Any security mechanisms that

are introduced not only have to co-exist with legacy real-time tasks without violating their real-

time and safety constraints but also the parameters of such legacy tasks cannot be adjusted to

accommodate the security tasks. This creates an apparent tension, especially so in the case of

legacy systems — between security requirements (e.g., having enough cycles for effective detection)

and the timing and safety requirements. Not only must the security mechanisms work effectively

but they must also not interfere with the deadlines of real-time tasks. For instance, any monitoring

and detection mechanism has to be designed so that an adversary cannot easily evade it. This

may require that the monitoring and detection tasks be run frequently. However, the stringent

timing constraints in hard RTS introduce additional complexities for the implementation of such

cyber-security mechanisms. For instance, the strict deadlines for the completion of periodic hard

14

Table 4.1: Example of Security Tasks

Security Task Approach/Tools

File-system checking Tripwire [60], AIDE [68], etc.

Network packet monitoring Bro [69], Snort [70], etc.

Hardware event monitoring Statistical analysis based checks [71]
using performance monitors (e.g.,
perf [72], OProfile [73], etc.)

Application specific checking Behavior-based detection (see the related
work [13–15, 74])

RTS may not allow for frequent execution of security mechanisms. Further, unlike in conventional

computing systems, it may not be possible to execute the security mechanisms for arbitrary lengths

of time.

In this chapter I aim to improve the security posture of RTS through integration of “security

tasks” (i.e., tasks that are specific for intrusion monitoring and detection tasks purposes) into

an fixed-priority RTS while ensuring that the existing real-time tasks are not affected by such

integration. Security tasks could include protection, detection or response mechanisms, depending

on the system requirements — for instance, a sensor correlation task (to detect sensor manipulation)

or an anomaly detection task (that checks possible intrusions) [75]. Table 4.1 presents some

examples of security tasks that can be integrated into legacy systems (again, this is by no stretch

meant to be an exhaustive list). In my experiments I considered intrusion detection as a monitoring

mechanism and used Tripwire [60] (a data integrity checking tool) to demonstrate the feasibility

of my approach — the ideas presented in this dissertation though apply more broadly to other

security mechanisms.

Considerations for Integrating Security Mechanisms. While integrating security tasks

into RTS, the following performance criteria need to be considered.

i) Monitoring Frequency: In order to provide the best protection, the security tasks need to

be executed quite often. On the one hand, if the interval between consecutive monitoring

events is too large, the adversary may harm the system (and remain undetected) between

two invocations of the security task. On the other hand, if the security tasks are executed

very frequently then it may impact the schedulability of the real-time tasks. Herein lies an

important trade-off between monitoring frequency and schedulability.

ii) Responsiveness: In some circumstances, a security task may need to execute with less

interference from higher-priority tasks. For instance, consider the scenario where a security

breach is suspected. In such an event the security task may be required to perform more

fine-grained checking instead of waiting for its next periodic slot. This may result in delayed

execution of low-priority, non-critical, real-time tasks. However, the scheduling policy needs

15

to ensure that the system remains secure without violating real-time constraints for critical,

high-priority, real-time tasks.

In this work I first focus on the monitoring frequency criterion (Section 4.4.1) and then extend

to improve responsiveness properties (Section 4.6). In particular, I consider incorporating security

mechanisms by implementing them as separate periodic tasks. This brings up the challenge of

determining the “right periods” (i.e., minimum inter-monitoring time) for the security tasks [76].

For example, consider the integration of an intrusion detection system (IDS) in an existing RTS

(for instance Tripwire or AIDE from Table 4.1) that checks integrity of filesystems. For functional

correctness the IDS task needs to execute at least once within a certain time period. If such a task

is scheduled less frequently or interrupted often before it can complete checking the entire system

(say by other, higher priority, real-time tasks), then an adversary could use that opportunity to

intrude into the system and modify sensitive file contents before the next invocation of the detection

task. In contrast, if the IDS task is executed more frequently, it may interfere the operation of

other low priority tasks. My analysis engine takes the real-time task parameters and periodicity

requirements of the security tasks and then find the suitable periods for the security tasks without

violating timing requirements (refer to Sections 4.5–4.5.2 for a formal model). This is different than

criticality-monotonic priority scheduling [77] in mixed-criticality systems [28] where task period and

priority ordering are already defined.

In some circumstances a security task may need to complete with less interference (e.g., better

responsiveness) from higher-priority real-time tasks. As an example, consider the scenario in which

a security breach is suspected and a security task may be required to perform more fine-grained

checking instead of waiting for its next execution slot. At the same time, the scheduling policy

needs to ensure that the system does not violate real-time constraints for critical, high-priority

control tasks. A simple approach to integrate security tasks without perturbing real-time scheduling

order is to execute them opportunistically, that is, with the lowest priority so that real-time tasks

are not affected. However, if the security tasks always execute with lowest priority, they suffer

more interference (i.e., preemption from high-priority real-time tasks) and the consequent longer

detection time (due to poor response time) will make the security mechanisms less effective. In

order to provide better responsiveness and increase the effectiveness of monitoring and detection

mechanisms, I then propose a multi-mode framework called CONTEGO.1 For the most part,

CONTEGO executes in a PASSIVE mode (i.e., with opportunistic execution of intrusion detection

tasks). However, CONTEGO will switch to an ACTIVE mode of operation to perform additional

checks as needed (e.g., fine-grained analysis, used as an example in Section 4.7.2). This ACTIVE

mode potentially executes with higher priority, while ensuring the timing guarantees of real-time

tasks.

Contributions. In this chapter I have the following contributions:

1In Latin, “Contego“ refers to “Shield”. Since my scheme intends to protect RTS against cyber-attacks, I name
my framework CONTEGO.

16

RT Task 1

RT Task 2
* Security Task 1: executes both Active and Passive Mode

* Security Task 2: executes only Passive Mode

.…..

2. Anomaly detected,
Perform additional checks
(Switch to Active Mode)

3. Active Mode (Security
Tasks execute with higher
priority than RT Task 2)

4. Find everything
normal or timeout
(Switch back to
Passive Mode)

1. Passive Mode
(Security Task executes
with lowest priority) Time

.…..

.…..SE Task 1

Higher to lower priority

RT Task 1

RT Task 2

.…..
SE Task 1

Higher to lower priority
SE Task 2

.…..

.…..

.…..

Time

Figure 4.1: CONTEGO: flow of operations depicting the PASSIVE and ACTIVE modes for the
security tasks.

• I introduce CONTEGO, an extensible framework to integrate security tasks into legacy RTS

(Section 4.2).

• CONTEGO allows the security tasks to execute with minimal perturbation of the scheduling

order of the real-time tasks while guaranteeing their timing constraints (Sections 4.5–4.6).

The proposed method can adapt to changes due to malicious activities by switching its mode

of operation.

• I propose a metric (named “tightness of monitoring”) to measure the security posture of the

system in terms of frequency of execution (Section 4.4).

I also evaluate the schedulability and security of the proposed approach using a range of synthetic

task sets and a prototype implementation on an ARM-based development board with real-time

Linux (Section 4.7). I now start with a brief overview of CONTEGO.

4.2 OVERVIEW OF CONTEGO

As illustrated in Fig. 4.1, CONTEGO improves the security posture of the system (that contains

a set of real-time tasks) by integrating additional security tasks and allowing them to execute in

two different modes (viz., PASSIVE and ACTIVE). I highlight that rather than designing specific

intrusion detection tasks that target specific attack behaviors, the generic framework proposed in

this chapter allows one to integrate a given security mechanism (referred to as security tasks) into

the system without perturbing the system parameters (e.g., period and task execution execution

17

order). If the system is deemed to be clean (i.e., not compromised), security tasks can execute

opportunistically2 (e.g., when other real-time tasks are not running). However if any anomaly or

unusual behavior is suspected, the security policy may switch to ACTIVE mode (e.g., more fine-

grained checking or response) and execute with higher priority for a limited amount of time (since

our goal is to ensure security with minimum perturbation of the scheduling order of the real-time

tasks). The security tasks may go back to normal (e.g., PASSIVE) mode if:

• No anomalous activity is found within a predefined time duration, say TAC ; or

• The intrusion is detected and malicious entities are removed (or an alarm triggered if human

intervention is required).

Although I allow the security tasks to execute with higher priority than some of the real-time tasks

in ACTIVE mode, the proposed framework ensures that the timeliness constraints (e.g., deadlines)

for all of the real-time tasks are always satisfied in both modes. By using this strategy, CONTEGO

not only enables compatibility with legacy systems (i.e., in normal situation real-time scheduling

order is not perturbed), but also provides flexibility to promptly deal with anomalous behaviors (i.e.,

the security tasks are promoted to higher priority so that they can experience less preemption and

achieve better response times).

4.3 SYSTEM MODEL

4.3.1 Real-Time Tasks

In this paper I consider the widely used fixed-priority sporadic task model [78]. In particular,

I consider a uniprocessor system consisting of m fixed-priority sporadic real-time tasks ΓR =

{τ1, τ2, · · · , τm}. Each real-time task τj ∈ ΓR is characterized by (Cj , Tj , Dj), where Cj is the

wors-case execution time (WCET) [79], Tj is the minimum inter-arrival time (or period) between

successive releases and Dj is the relative deadline. We assume that priorities are distinct and

assigned according to the rate monotonic (RM) [80] order (i.e., short task period implies higher

priority).

The processor utilization of τj is defined as Uj =
Cj
Tj

. Let hpR(τj) and lpR(τj) denote the sets

of real-time tasks that have higher and lower priority than τj , respectively. We assume that the

real-time task-set ΓR is schedulable by a fixed-priority preemptive scheduling algorithm. Therefore,

the worst-case response time wi is less than or equal to the deadline Di and the following inequality

is satisfied for all tasks τj ∈ ΓR: wj ≤ Dj , where wj = wk+1
j = wkj is obtained by the following

recurrence relation [81]:

w0
j = Cj , wk+1

j = Cj +
∑

τh∈hpR(τj)

⌈
wkj
Th

⌉
Ch. (4.1)

2Which is also the default mode of operation.

18

In Eq. (4.1),
∑

τh∈hpR(τj)

⌈
wkj
Th

⌉
Ch is the worst-case interference to τj due to preemption by the tasks

with higher priority than τj (i.e., hpR(τj)). The recurrence will have a solution if wk+1
j = wkj for

some k.

4.3.2 Security Tasks

I model PASSIVE and ACTIVE mode security tasks as independent periodic tasks. The PASSIVE

and ACTIVE mode tasks are denoted by the sets ΓpaS = {τ1, τ2, · · · , τnp} and ΓacS = {τ1, τ2, · · · , τna},
respectively. I assume that security tasks in both modes follow RM priority order. Each security

task τi ∈ {ΓpaS ∪ΓacS } is characterized by the tuple (Ci, T
des
i , Tmaxi , ωi), where Ci is the WCET, T desi

is the most desired period between successive releases (i.e., F desi = 1
T desi

is the desired execution

frequency of a security routine) and Tmaxi is the maximum allowable period beyond which security

checking by τi may not be effective. The parameter ωi > 0 is a designer-provided weighting factor

that may reflect the criticality of the security task3 τi. Critical security tasks would have larger

ωi. The security tasks have implicit deadlines, i.e., Di = Ti,∀τi that implies security tasks should

complete before their next monitoring instance. I do not make any specific assumptions about the

security tasks in different modes. For instance, both PASSIVE and ACTIVE mode task-sets may

contain completely different sets of tasks (i.e., {ΓpaS ∩ΓacS } = ∅) or may contain (partially) identical

tasks with different parameters (i.e., period and/or criticality requirements).

In PASSIVE mode, security tasks are executed with lower priority than the real-time tasks. Hence

the security tasks do not have any impact on real-time tasks and cannot perturb the real-time

scheduling order. In ACTIVE mode, I allow the security tasks to execute with a priority higher

than that of certain low priority real-time tasks. This provides us with a trade-off mechanism

between security (e.g., responsiveness) and system constraints (e.g., scheduling order of real-time

tasks). Since the task priorities are distinct, there are m priority-levels for real-time tasks (indexed

from 0 to m − 1 where level 0 is the highest priority). Among the m priority-levels, we assume

that ACTIVE mode security tasks can execute with a priority-level up to lS (0 < lS ≤ m), lS ∈ Z.

Although any period Ti within the range T desi ≤ Ti ≤ Tmaxi is acceptable for PASSIVE (e.g.,

τi ∈ ΓpaS) and ACTIVE (e.g., τi ∈ ΓacS) mode security tasks, the actual period Ti is not known

a priori. Furthermore, for ACTIVE mode security tasks (e.g., τi ∈ ΓacS), we need to find out the

suitable priority level l ∈ [lS ,m]. Therefore our goal is to find the suitable period (for both PASSIVE

and ACTIVE mode security tasks) as well as the priority-level (for ACTIVE mode security tasks)

that achieve the best trade-off between schedulability and defense against security breaches without

violating the real-time constraints.

3As an example, the default configuration of Tripwire [60], an intrusion detection system (IDS) for Linux that I
use as case study in Section 4.7.2, has different criticality levels (viz., weights), e.g., High (for scanning files that are
significant points of vulnerability), Medium (for non-critical files that are of significant security impact) and so forth.

19

4.4 PERIOD ADAPTATION

As already mentioned, one fundamental problem in integrating security tasks is to determine

which security tasks will be running when. This is different when compared to scheduling traditional

real-time tasks since the real-time task parameters (e.g., periods) are often derived from physical

system properties and cannot be adjusted due to control/application requirements. One may

wonder why I cannot assign the desired period (e.g., Ti = T desi) in both PASSIVE and ACTIVE modes

and set the ACTIVE mode priority level as l = lS so that the security tasks can always execute with

the desired frequency (i.e., F desi = 1
T desi

) and experience less interference (e.g., preemption) from

real-time tasks. However, since my goal is to integrate security mechanisms in legacy systems with

minimal4 or no perturbation, setting Ti = T desi , ∀τi in either or both mode(s) may significantly

perturb the real-time scheduling order. If the schedulability of the system is not analyzed after the

perturbation, some (or all) of the real-time tasks may miss their deadlines and thus the main safety

requirements of the system will be threatened. The same argument is also true for ACTIVE mode

if I set l = lS (or arbitrarily from the range [lS ,m]) and do not perform schedulability analysis

carefully.

Tightness of the Monitoring

Recall that the actual period as well as the priority-levels of the security tasks are unknown and

we need to adapt the periods within acceptable ranges. I measure the security of the system by

means of achievable periodic monitoring. Let Ti be the period of the security task τi ∈ {ΓpaS ∪ΓacS }
that needs to be determined. My goal is to minimize the gap between the achievable period Ti and

the desired period T desi and therefore I use the the following metric:

ηi =
T desi

Ti
, (4.2)

that denotes the tightness of the frequency of periodic monitoring for the security task τi. Thus

ηpa =
∑

τi∈ΓpaS

ωiηi and ηac =
∑

τi∈ΓacS

ωiηi denote the cumulative tightness of the achievable periodic

monitoring for PASSIVE and ACTIVE mode, respectively. This monitoring frequency metric,

provides for instance, one way to trade-off security with schedulability. Recall that if the interval

between consecutive monitoring events is too large, the adversary may remain undetected and

harm the system between two invocations of the security task. Again, a very frequent execution

of security tasks may impact the schedulability of the real-time tasks. This metric η(·) will allow

us to execute the security routines with a frequency closer to the desired one while respecting the

temporal constraints of the other real-time tasks.

4In ACTIVE mode CONTEGO does not introduce any timing violations for the real-time tasks, but their execution
might be delayed due to interference from high-priority security tasks (i.e., the tasks with priority-level l ∈ [lS ,m]).

20

4.4.1 Problem Overview

One may wonder why we cannot schedule the security tasks in the same way that the existing

real-time tasks are scheduled. For instance, a simple approach to integrating security tasks in

PASSIVE mode without perturbing real-time scheduling order is to execute security tasks at a

lower priority than all real-time tasks. Hence, the security routines will be executing only during

slack times when no other higher-priority real-time tasks are running. Likewise, in ACTIVE mode,

security tasks can be executed at a lower priority than more critical, high-priority real-time tasks.

Hence, the security tasks will only be executing when other real-time tasks with priority-levels

higher than lS are not running.

When both real-time and security tasks follow RM priority order, we can formulate a nonlinear

optimization problem for PASSIVE mode with the following constraints that maximizes the

cumulative tightness of the frequency of periodic monitoring:

(P4.1)
max
Tpa

ηpa (4.3)

Subject to:
∑
τi∈ΓpaS

Ci
Ti
≤ (m+ np)(2

1
m+np − 1)−

∑
τj∈ΓR

Cj
Tj

(4.4)

Ti ≥ max
τj∈ΓR

Tj ∀τi ∈ ΓpaS (4.5)

T desi ≤ Ti ≤ Tmaxi ∀τi ∈ ΓpaS (4.6)

where Tpa = [T1, T2, · · · , Tnp]T is the optimization variable for PASSIVE mode that needs to be

determined. The constraint in Eq. (4.4) ensures that the utilization of the security tasks are within

the remaining RM utilization bound [80]. The RM priority order for real-time and security tasks

is ensured by the constraints in Eq. (4.5), while Eq. (4.6) ensures the restrictions on periodic

monitoring.

Recall that in ACTIVE mode, I allow the security tasks to execute when the real-time tasks with

priority-levels higher than lS are not running. Hence, to ensure the RM priority order in ACTIVE

mode, we need to modify the constraints in Eq. (4.5) as follows:

Ti ≥ max
τj∈ΓRhp(lS)

Tj , ∀τi ∈ ΓacS (4.7)

where ΓRhp(lS)
represents the set of real-time tasks that are higher priority than level lS . In addition,

the constraints in Eq. (4.4) and Eq. (4.6) also need to be updated to consider ACTIVE mode task-

sets (e.g., ΓacS) and the number of active mode security tasks (na). Thus for ACTIVE mode we can

formulate an optimization problem similar to that of P4.1 with the objective function: max
Tac

ηac,

where Tac = [T1, T2, · · · , Tna]T is the ACTIVE mode optimization variable.

Although it is non-trivial to solve the above non-linear non-convex optimization problem in its

current form, it is possible to transform the above formulations into a convex optimization problem

21

using an approach similar to that presented in this chapter. However, one of the limitations of the

above approach is that the overall system utilization is limited by the RM bound which has the

theoretical upper bound of processor utilization only about lim
n→∞

n(2
1
n − 1) = ln 2 ≈ 69.31% [80],

where n is the total number of tasks under consideration. Further, the security tasks’ periods need

to satisfy the constraints in Eq. (4.5) and Eq. (4.7) (for PASSIVE and ACTIVE modes, respectively)

to follow RM priority order. In addition, instead of focusing only on optimizing the periods of the

security tasks, CONTEGO aims to provide an adaptive framework that can achieve other security

aspects (viz., responsiveness). Hence, instead of simply running security tasks by themselves in

idle-times or within predefined priority ranges, I propose using a “server” [67] to execute the

security tasks. With this approach, for instance, if better responsiveness is desired from security

mechanisms, we could increase the priority of the server and allow the server to execute until

the security task finishes its desired checking. Not only will the server abstraction allow me to

provide better isolation between real-time and security tasks; but it also enables me to integrate

responsiveness properties as I discuss in the following.

4.5 THE SECURITY SERVER

The server [67] is an abstraction that provides execution time to the security tasks according to

a predefined scheduling algorithm. My proposed security server is characterized by the capacity Q

and replenishment period P and works as follows. The server is executed with lowest-priority in

PASSIVE mode. However, in ACTIVE mode, the server can switch to any allowable priority-level5

within the range [lS ,m]. If any security task is activated at time t, then the server is activated

with capacity Q and the next replenishment time is set as t + P . When the server is scheduled,

it executes the security tasks according to its own scheduling policy. In this work I assume that

the server schedules the security tasks using fixed-priority RM scheduling. When a security task

executes, the current available capacity is decremented accordingly. The server can be preempted

by the scheduler to service real-time tasks. When the server is preempted, the currently available

capacity is not decremented. If the available capacity becomes zero and some security task has

not yet finished, then the server is suspended until its next replenishment time (t′). At time t′,

the server is recharged to its full capacity Q, the next replenishment time is set as t′ + P , and the

server is executed again. When the last security task has finished executing and there is no other

pending task in the server, the server will be suspended. Also, the server will become inactive if

there are no security tasks ready to execute.

4.5.1 Reformulation of the Period Adaptation Problem using Servers

When security tasks execute within the server, we need to modify the constraints in the period

adaption problem considering the server parameters Q and P . In the following I briefly discuss

5Calculation of the server priority-level is described in Section 4.6.

22

how to customize the period adaptation problem with the inclusion of the server.

Let me use UBS(Q,P),Γ to denote the utilization bound for the set of tasks Γ executing within

the server. When the smallest period of the task is greater than or equal to 3P − 2Q, it has

been shown [82] that the upper bound of the utilization factor for the security tasks is given by

UBS(Q,P),Γ = n

(3−QP
3−2

Q
P

) 1
n

− 1

, where n is number of tasks in the set Γ.

Thus with the inclusion of the server in PASSIVE mode, I now modify the constraints in Eqs.

(4.4) and (4.5) as follows:

∑
τi∈ΓpaS

Ci
Ti
≤ np

(3−Q
pa

P pa

3−2
Qpa

P pa

) 1
np

− 1

 (4.8)

Ti ≥ 3P pa − 2Qpa, ∀τi ∈ ΓpaS . (4.9)

Therefore, selection of the periods for security tasks in PASSIVE mode is a nonlinear constrained

optimization problem that can be formulated as follows:

(P4.2)
max
Tpa

∑
τi∈ΓpaS

ωi
T desi

Ti
(4.10)

Subject to: Eqs. (4.8), (4.9), (4.6).

where Qpa and P pa are the server capacity and replenishment period in PASSIVE mode, respectively.

Similarly, in ACTIVE mode, the period adaptation problem can be reformulated as follows:

(P4.3)
max
Tac

∑
τi∈ΓacS

ωi
T desi

Ti
(4.11)

Subject to:
∑
τi∈ΓacS

Ci
Ti
≤ na

(3−Q
ac

Pac

3−2
Qac

Pac

) 1
na

− 1

 (4.12)

Ti ≥ 3P ac − 2Qac ∀τi ∈ ΓacS (4.13)

T desi ≤ Ti ≤ Tmaxi ∀τi ∈ ΓacS (4.14)

where Qac and P ac are the server capacity and replenishment period in ACTIVE mode, respectively.

4.5.2 Selection of the Server Parameters

The period adaptation problem illustrated in Section 4.5.1 is derived based on a given set of

server parameters, e.g., (Q(·), P (·)). However, a fundamental problem is to find a suitable pair of

server capacity Q(·) and replenishment period P (·) that respects the real-time constraints of the

23

tasks in the system. My approach to selecting the server parameters in PASSIVE and ACTIVE mode

is described below.

Parameter Selection in Passive Mode

Recall that in PASSIVE mode, the server will execute with the lowest priority to have

compatibility with existing real-time tasks. Since the security tasks execute within the server,

we need to ensure the following two constraints:

• The server is schedulable: that is the server’s capacity and interference from higher priority

real-time tasks are less than the replenishment period; and

• The security tasks are schedulable: the minimum supply by the server to the security tasks

is greater than the worst-case workload generated by the security tasks.

Note that since the server is running with lowest priority, the real-time constraints (e.g.,

wj ≤ Dj , ∀τj ∈ ΓR) and the task execution order are not affected in the PASSIVE mode. Based

on the above two constraints, I illustrate an approach for determining the server parameters by

formulating it as a constraint optimization problem.

The security server is referred to as schedulable if the worst-case response time of the server does

not exceed its replenishment period [67]. Thus, following an approach similar to ones in earlier

work [83, 84], the server schedulability constraint can be represented as follows:

Qpa + ∆Spa ≤ P pa (4.15)

where ∆Spa =
∑

τh∈hpR(τSpa)

(
P pa

Th
+ 1
)
Ch is the worst-case interference experienced by the server

when preempted by the higher priority real-time tasks. In the above equation, the set of real-time

tasks with higher priority than the server (i.e., hpR(τpaS) = ΓR) is fixed.

Let me use hppaS (τi) to denote the set of PASSIVE mode security tasks that are higher priority than

τi ∈ ΓpaS . To ensure schedulability of the security tasks, we can derive the minimum supply of the

server delivered to the security tasks by using the periodic resource model from the literature [83–

85]. In particular, the constraints on the server supply to ensure schedulability of the security tasks

can be expressed as (refer to Appendix A.1 for formal derivations):

Qpa

P pa
[Ti − (P pa −Qpa)−∆Spa] ≥ Ipai , ∀τi ∈ ΓpaS (4.16)

where Ipai = Ci +
∑

τh∈hppaS (τi)

⌈
Ti
Th

⌉
Ch is the worst-case workload generated by the security task τi

and hppaS (τi) during the time interval of Ti. This workload is a constant for a given input.

Since I need to ensure maximal processor utilization for the security tasks without violating the

real-time constraints of the system, I define the following objective function: max
Qpa,P pa

Qpa

P pa . With this

24

objective function and the constraints in Eqs. (4.15)–(4.16), the PASSIVE mode server parameter

selection problem can be formulated as follows:

(P4.4)
max

Qpa,P pa

Qpa

P pa
(4.17)

Subject to: Eqs. (4.15), (4.16)

where server parameters Qpa and P pa are the optimization variables.

Parameter Selection in Active Mode

In ACTIVE mode, the security server is no longer the lowest priority task. Since the server can

execute with priority lS , there could be up to m− lS low priority real-time tasks than that of the

server. Thus we need to ensure the schedulability of the real-time tasks that are executing with a

priority lower than the server. Hence, in addition to the constraints described in Section 4.5.2 (i.e.,

Eqs. (4.15)–(4.16)), we need to consider the following:

• The real-time tasks with lower priority than the server are schedulable: that is, the

interferences from the server and other higher priority real-time tasks do not violate the

deadlines for these low-priority tasks.

I therefore define the following constraints to ensure the schedulability of the low-priority real-time

tasks:

Cj +
∑

τh∈hpR(τj)

⌈
Dj

Th

⌉
Ch +

(
Dj

P ac
+ 1

)
Qac ≤ Dj , ∀τj ∈ lpR(τacS) (4.18)

where
∑

τh∈hpR(τj)

⌈
Dj
Th

⌉
Ch is the interference experienced by τj from other real-time tasks and(

Dj
Pac + 1

)
Qac is the worst-case interference caused to τj by the server in ACTIVE mode. As

illustrated in Section 4.6, I iterate through the allowable priority ranges (e.g., [lS ,m]) to find the

server priority in ACTIVE mode. Note that for a given priority-level, the set of tasks lp(τacS) is

predefined. Thus the only variables for the constraints in Eq. (4.18) are the server capacity Qac

and replenishment period P ac.

Let me use hpacS (τi) to denote the set of ACTIVE mode security tasks that are higher priority

than τi ∈ ΓacS . Just as in P4.4 I now formulate the ACTIVE mode parameter selection problem as

follows:

25

(P4.5)
max
Qac,Pac

Qac

P ac
, (4.19)

Subject to: Eq. (4.18) and

Qac +
∑

τh∈hpR(τSac)

(
P ac

Th
+ 1

)
Ch ≤ P ac (4.20)

Qac

P ac
[Ti − (P ac −Qac)−∆Sac] ≥ Iaci ∀τi ∈ ΓacS (4.21)

where the set of real-time tasks with higher priority than the server (i.e., hpR(τacS) ⊂ ΓR) is a

constant for a given priority-level and Iaci = Ci +
∑

τh∈hpacS (τi)

⌈
Ti
Th

⌉
Ch is the worst-case workload

generated by the security task τi and hpacS (τi). Note that the schedulability of the higher priority

real-time tasks (i.e., ∀τj ∈ hpR(τacS)) is already ensured by definition.

Remark 4.1. The formulation of the period adaptation and server parameter selection problems

are nonlinear constraint optimization problems and are nontrivial to solve in their current form.

However, these problems can be transformed into a geometric programming (GP) [86] problem. In

addition, it is also possible to reformulate the non-convex GP representation into equivalent convex

form that can be solved using known algorithms such as the interior point [87, Ch. 11] method. For

details of this reformulation, I refer the readers to Appendix A.2.

4.5.3 Discussion on Mode Switching

As mentioned earlier, by default, CONTEGO operates in PASSIVE mode (i.e., execute

opportunistically). However, when a malicious activity is suspected, a PASSIVE-to-ACTIVE mode

change request will be issued. Similarly, an ACTIVE-to-PASSIVE mode change request will be

placed if the system seems clean after fine-grained checking, or a malicious entity is found and

removed. In steady-state (e.g., when security tasks are executing in PASSIVE or ACTIVE mode), the

schedulability of the real-time tasks is already guaranteed by the analysis presented in Section 4.5.2.

When CONTEGO switches from PASSIVE mode to ACTIVE mode, the schedulability of real-time

tasks will not be affected. The reason this that all the real-time tasks are higher priority than the

security tasks in PASSIVE mode and hence do not suffer any additional interference from security

tasks during mode change. Therefore, the schedulability of real-time tasks during PASSIVE-to-

ACTIVE mode switching is already covered by steady-state analysis (Section 4.5.2).

During ACTIVE-to-PASSIVE mode switching, observe that schedulability of the real-time tasks

that have a priority higher than the server (i.e., hpR(τacS)) is not affected. When the mode switch

request is issued, the ACTIVE mode server (and the security tasks) stop execution and the control is

then switched to the lowest priority PASSIVE mode server. Note that the constraints in Eq. (4.18)

that ensures the schedulability of the low-priority real-time tasks already captures the worst-case

interference introduced by the server. Hence the server will not impose any more interference

(even if the mode switch is performed in the middle of the execution of a busy interval) on the

26

low-priority real-time tasks than what I have calculated in the steady-state analysis (Section 4.5.2).

Therefore if both the PASSIVE and ACTIVE modes task-sets are schedulable, the system will also

be schedulable with mode changes.

4.6 ALGORITHM

I develop a simple scheme to obtain the security task’s period (for both PASSIVE and ACTIVE

mode) and priority-level (for ACTIVE mode). The overall algorithm, Algorithm 4.1, works as

follows.

To find the PASSIVE mode parameters, I initialize the security task’s period with the desired

period and solve the server parameter selection problem P4.4 (Lines 10–11). If there exists a

solution (e.g., the constraints are satisfied), I then obtain the periods of the security tasks by

solving P4.2 (Line 13). In the event that neither of these optimization problems returns a solution,

I report the task-set as unschedulable (Line 20), since it is not possible to execute security tasks

opportunistically without violating real-time constraints.

To select ACTIVE mode parameters, the algorithm iterates through each of the acceptable

priority-levels [lS ,m] and tries to obtain the periods that maximize tightness for periodic monitoring

without violating the real-time constraints (Lines 26–36). If there exists a solution (e.g., constraints

in P4.5 and P4.3 are mutually consistent), I store the solution in a candidate list. The algorithm

then finds the best priority-level from the candidate solution sets that provides the maximum

tightness (Line 39). In the event that no candidate solutions are found for any of the allowable

priority ranges, the algorithm reports the task-set as unschedulable.

If both the PASSIVE and ACTIVE mode tasks are schedulable, then Algorithm 4.1 returns the

corresponding periods and the ACTIVE mode priority-level (Line 4). Otherwise, the system is

considered as unschedulable (Line 7) since it is not possible to integrate security tasks with desired

requirements. This unschedulability result hints that the designers of the system should update

system parameters (e.g., the number of security tasks, desired and maximum allowable periods

of the security tasks, periods of the real-time tasks, if permissible) in order to integrate security

mechanisms.

4.7 EVALUATION

I evaluate CONTEGO with randomly generated synthetic workloads (Section 4.7.1) as well as

a proof-of-concept implementation on an ARM-based embedded development board and real-time

Linux (Section 4.7.2). My implementation is available in a public repository [88].

27

Algorithm 4.1: Feasibility Checking and Parameter Selection
Input: Set of real-time tasks, ΓR, PASSIVE and ACTIVE mode security tasks ΓpaS and ΓacS , allowable priority ranges [lS ,m]
Output: The tuple {l∗,Tpa, Qpa, P pa,Tac, Qac, Pac}, e.g., ACTIVE mode server priority-level, ACTIVE and PASSIVE mode

periods of the security tasks and ACTIVE and PASSIVE mode server parameters if the task-set is schedulable; Unschedulable
otherwise

1: Obtain PASSIVE and ACTIVE mode parameters using the functions PassiveModeParamSelection(ΓR, ΓpaS) and
ActiveModeParamSelection(ΓR, ΓacS , lS)

2: if Solution Found in BOTH Modes then
3: return {l∗,Tpa, Qpa, P pa,Tac, Qac, Pac} /* return the parameters */
4: else
5: return Unschedulable /* not possible to integrate security tasks in the system */
6: end if

7: function PassiveModeParamSelection(ΓR, ΓpaS)

8: Initialize PASSIVE mode period Ti := T desi , ∀τi ∈ ΓpaS
9: Solve P4.4 to obtain server parameters

10: if SolutionFound then
11: Solve P4.2 to obtain security periods
12: if SolutionFound then
13: /* return the parameters */
14: return Tpa, Qpa, P pa where Qpa, P pa and Tpa are the solutions obtained by P4.4 and P4.2
15: end if
16: else
17: return Unschedulable /* unable to integrate PASSIVE mode security tasks */
18: end if
19: end function

20: function ActiveModeParamSelection(ΓR, ΓacS , lS)
21: Schedulable := false
22: Initialize ACTIVE mode security task’s period T(l′)∀l′∈[lS ,m] := [T desi]T∀τi∈Γac

S

23: for each priority level l′ ∈ [lS ,m] do
24: Solve P4.5 to obtain server parameters
25: if SolutionFound then
26: Solve P4.3 to obtain security periods
27: if SolutionFound then
28: /* store the parameters for priority level l′ where Q∗, P ∗ and T∗ are the solutions obtained by P4.5 and

P4.3 */
29: Q(l′) := Q∗, P (l′) := P ∗,T(l′) := T∗

30: Schedulable := true
31: end if
32: end if
33: end for
34: /* obtain the parameters that provide best metric */
35: if Schedulable then
36: Find the priority-level l∗ from the solution vector T(l′)∀l′∈[lS ,m]| tasks at l′ is schedulable

that gives the maximum cumulative tightness ηac =
∑
τi∈Γac

S
ηi

37: Set Tac := T(l∗), Qac := Q(l∗), Pac := P (l∗)
38: /* return the parameters */
39: return l∗, Tac, Qac, Pac

40: else
41: return Unschedulable /* unable to integrate ACTIVE mode security tasks */
42: end if
43: end function

4.7.1 Experiment with Synthetic Task-sets

Simulation Setup

In order to generate task-sets with an even distribution of tasks, I grouped the real-time and

security task-sets by base-utilization from [0.01 + 0.1 · i, 0.1 + 0.1 · i], where i ∈ Z∧ 0 ≤ i ≤ 9. Each

28

0 0.2 0.4 0.6 0.8 1

Total Utilization

0

0.1

0.2

0.3

0.4

0.5

D
if
fe

re
n
c
e
 i
n
 C

u
m

u
la

ti
v
e
 T

ig
h
tn

e
s
s

P
a
s
s
iv

e
 M

o
d
e
 v

s
.
A

c
ti
v
e
 M

o
d
e

Figure 4.2: PASSIVE mode vs. ACTIVE mode: difference in cumulative tightness of achievable
periodic monitoring, ηav − ηpa. Non-zero difference indicates that the ACTIVE mode tasks achieve
better tightness than PASSIVE mode tasks. Task-sets from different base-utilization groups are
represented by different colors. Each of the data points represents schedulable task-sets.

utilization group contained 500 task-sets. In other words, a total of 5000 task-sets were tested for

each of the experiments. The utilization of the real-time and security tasks were generated by the

UUniFast [89] algorithm and I used GGPLAB [90] to solve the optimization problems.

I used the parameters similar to those used in earlier research [19, 83]. In particular, each task-set

instance contained [3, 10] real-time and [2, 5] security tasks in each of the modes. Each real-time

task τj ∈ ΓR had a period Tj ∈ [10 ms, 100 ms] and we assumed lS = d0.4me. The desired periods

for the security tasks ∀τi ∈ {ΓpaS ∪ ΓacS } were selected from [1000 ms, 3000 ms] and the maximum

allowable period was assumed to be Tmaxi = 10T desi . I considered ωi = 1, ∀τi ∈ {ΓpaS ∪ΓacS } and the

total utilization of the security tasks was assumed to be no more than 30% of the real-time tasks.

Results

Impact on Cumulative Tightness. In Fig. 4.2 we can see the difference in the tightnesses

of the periodic monitoring obtained by PASSIVE and ACTIVE mode (i.e., ηac − ηpa). For fair

comparison we used the same task-sets for both modes. The x-axis of Fig. 4.2 represents the total

system utilization (e.g., utilization of both real-time and security tasks). The positive values in

the y-axis of Fig. 4.2 imply that the ACTIVE mode tasks obtain better tightness that the PASSIVE

mode tasks.

The figure shows that ACTIVE mode tasks can achieve better cumulative tightness, and that the

cumulative tightness ηpa is comparatively better in low to medium utilization. The main reason is

that in ACTIVE mode security tasks are allowed to execute with higher priority, that causes less

interference and eventually increases the feasible region in the optimization problems (and hence

provides better tightness). For higher utilizations the difference is close to zero. This is because, as

utilization increases there is less slack in the system, making it difficult to schedule security tasks

frequently and resulting in similar levels of tightness for both modes.

29

0 0.2 0.4 0.6 0.8 1

Total Utilization

0

0.2

0.4

0.6

0.8

1

E
ff
e
c
ti
v
e
n
e
s
s
 o

f
S

e
c
u
ri
ty

Figure 4.3: The effectiveness of security vs. total utilization of the system. The closer the y-axis
values to 1, the nearer each security task’s period is to the desired period.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Total Utilization

0

20

40

60

80

100

A
c
c
e
p
ta

n
c
e
 R

a
ti
o
 (

%
)

Active Mode

Passive Mode

Figure 4.4: Schedulability of real-time and security tasks in both modes. The acceptance ratio is
defined by the ratio of the number of accepted task sets over the total number of generated tasks.
For each of the data points, 500 individual task-sets were tested.

Effectiveness of Security. The parameter η(·) is given by the total number of security tasks

and provides insights on cumulative measures of security. However, in this experiment (refer to

Fig. 4.3) I wanted to measure the effectiveness of the security of the system by observing whether

each of the security tasks in any mode can achieve an execution frequency closer to the desired

one. Hence I used the following metric: ξ = 1 − ‖T∗−Tdes‖2
‖Tmax−Tdes‖2

where T∗ is the solution obtained

from Algorithm 4.1, Tdes = [T desi]T∀τi and Tmax = [Tmaxi]T∀τi are the desired and maximum period

vector (refer to Section 4.7.1), respectively, and ‖·‖2 denotes the Euclidean norm. The closer the

value of ξ to 1, the nearer each of the security task’s period is to the desired period.

As the total utilization increases, the feasible set of the period adaptation problem that respects

all constraints in the optimization problems becomes more restrictive. As a result, we see the

degradation in effectiveness (in terms of ξ) for the task-sets with higher utilization. However, from

my experiments I find that CONTEGO can achieve periods that are within 18% of the desired

periods.

30

Impact on the Schedulability. I used the acceptance ratio metric to evaluate schedulability.

The acceptance ratio (y-axis in Fig. 4.4) is defined as the number of accepted task-sets (e.g., the

task-sets that satisfied all the constraints) over the total number of generated ones. As depicted in

Fig. 4.4 the ACTIVE mode task-set achieves better schedulability compared to the PASSIVE ones.

Recall that ACTIVE mode task-sets can be promoted up to priority level lS . As a result ACTIVE

mode security tasks potentially experience less interference than the PASSIVE ones. This flexibility

gives the optimization routines a larger feasibility region to satisfy all the constraints.

4.7.2 Experiment with Security Applications in an Embedded Platform

To observe the performance of the proposed scheme in a practical setup, I implemented

CONTEGO on an embedded platform. My experimental platform [91] was configured with 1 GHz

ARM Cortex-A8 single-core processor and 512 MB RAM. I used Linux as the operating system –

that allowed me to utilize the existing Linux-based IDSes (refer to Table 4.3) for the evaluation.

Since the vanilla Linux kernel is unsuitable for hard real-time scheduling, I enabled the real-time

capabilities with the Xenomai [92] 2.6.3 real-time patch (kernel version 3.8.13-r72) on top of an

embedded Debian Linux console image.

I measured the WCET of the real-time and security tasks using ARM cycle counter registers

(e.g., CCNT), giving us nanosecond-level precision. Since these registers are not enabled by

default, I developed a Linux kernel module to access the registers from application codes. My

prototype implementation was developed in C and uses a fixed-priority scheduler powered by the

Xenomai real-time patch. Real-time and security tasks in the system were defined by Xenomai

rt task create() function and were suspended after the completion of corresponding instances

using the rt task wait period() function.

Real-time Tasks. For a real-time application, I considered a UAV control system (refer to Table

4.2). I implemented it using an open-source UAV model [93]. The original application codes were

based on the STM32F4 micro-controller (ARM Cortex M4) and developed for FreeRTOS [94].

Because of differences in library support and execution semantics, I updated the source codes

accordingly and ported them to Linux.

Security Tasks. To integrate security in the aforesaid control system, I included additional

security tasks. For the security tasks, I considered two lightweight open-source intrusion detection

mechanisms, (i) Tripwire [60], that detects integrity violations by storing clean system state during

initialization and using it later to detect intrusions by comparing the current system state against

the stored clean values, and (ii) Bro [69] that monitors anomalies in network traffic. As Table 4.3

shows, I consider several security tasks in both modes, e.g., protecting security task’s own binary

files, protecting system binary and library files, monitoring network traffic. In each mode, I set the

desired and maximum allowable periods of the security tasks such that utilization of the security

31

Table 4.2: Real-Time Task Parameters for the UAV Control System

Task Function Period (ms)

Guidance Select the reference trajectory (i.e., altitude and
heading)

1000

Controller Execute closed-loop control functions (e.g., actuator
commands)

5000

Reconnaissance Read radar/camera data, collect sensitive information
and send data to the base control station

10000

Table 4.3: Security Tasks used in the Experiments

Task Function Mode

Check own binary of the
security routine
(Tripwire)

Scan files (viz., compare their hash value) in
the following locations: /usr/sbin/siggen,
/usr/sbin/tripwire, /usr/sbin/twadmin,
/usr/sbin/twprint, /usr/local/bro/bin

ACTIVE

Check critical executables
(Tripwire)

Scan file-system binary (/bin, /sbin) ACTIVE

and
PASSIVE

Check critical libraries
(Tripwire)

Scan file-system library (/lib) ACTIVE

Monitor network traffic
(Bro)

Scan predefined network interface (en0) ACTIVE

and
PASSIVE

tasks did not exceed 50% of the total system utilization.

Experience and Evaluation

Performance Impact in Different Modes. In the first set of experiments, I measured the

average CPU load when the security tasks were executing in PASSIVE and ACTIVE modes. For

that, we executed the security tasks independently for 500 s in PASSIVE and ACTIVE modes

and observed the CPU load using /proc/stat interface (represents the y-axis of Fig. 4.5). As

Fig. 4.5 shows, running security tasks in ACTIVE mode increased the average CPU load compared

to running them in PASSIVE mode. This is because ACTIVE mode contains more security tasks

(e.g., 4 compared to 2, refer to Table 4.1) and they execute more frequently than in PASSIVE

mode. Because of the nature of applications, most RTS prefer predictability over performance.

The overhead of running security tasks in ACTIVE mode comes with increased security guarantees

that will suffice for many RTS.

32

0 100 200 300 400 500

Time (s)

0

50

100

A
c
ti
v
e
 M

o
d
e

C
P

U
 L

o
a
d
 (

%
)

0 100 200 300 400 500
0

50

100

P
a
s
s
iv

e
 M

o
d
e

C
P

U
 L

o
a
d
 (

%
)

Figure 4.5: The CPU load when the security tasks executed in PASSIVE (top) and ACTIVE (bottom)
mode, respectively. The horizontal line represents average load over the observation duration
(500 s).

Impact on Detection Time. To study the detection performance I injected malicious code

into the system that mimics anomalous behaviors. I assumed that an attacker can take over6

one of the low-priority real-time tasks (referred to as the victim task) and is able to insert

malicious code that can execute with a privilege similar to that of legitimate tasks. I launched

the attack at both the network and host-level. I defined network-level DoS attacks as too many

rejected usernames and passwords submitted from a single address and used a real FTP DoS

trace [95] to demonstrate the attack. Malware (such as LRK, tOrn, Adore) in general-purpose

Linux environments causes damage to the system by modifying or overwriting the system binary

[96, Ch. 5]. Thus I follow a similar approach to demonstrate a host-level attack, viz., I injected

ARM shellcode [97] to override the victim task’s code and launched the attack by modifying the

contents in the file-system binary. I obtained the periods of the security tasks in both modes by

solving the period adaptation problem (Algorithm 4.1) and set it as the period of security tasks

(by using the Xenomai rt task set periodic() function). For each of the experiments, the work-

flow was as follows. I started with a clean (e.g., uncompromised) system state, launched the DoS

attack at any random time of the program execution and then injected the shellcode after a random

interval, and finally logged the time required by security tasks to detect the attacks. Initially the

security tasks ran in PASSIVE mode. When the network-level attack was suspected by the security

task (Bro), a mode change request was placed and the control was switched to ACTIVE mode with

the corresponding ACTIVE mode tasks (see Table 4.3). As mentioned in Section 4.2, my focus

is not on the effectiveness of a particular IDS here but on the effectiveness of integration of the

IDSes into RTS. Therefore I controlled the experimental environment so that the results were not

affected by the false positive/negative rates of the IDS used in the evaluation. In particular, both

of the launched attacks were detectable by the respective IDSes used in the evaluation. Detection

times were measured using ARM cycle counter registers (CCNT). To ensure the accuracy of the

6One way to override a task could be to use an approach similar to one presented in the literature [63] that exploits
the deterministic behavior of the real-time scheduling.

33

0 1 2 3 4

Detection Time (Cycle Count) ×109

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l
C

D
F

With Mode Change

Without Mode Change

Figure 4.6: The empirical distribution of time to detect the intrusions when mode change was
allowed vs when security tasks were run only in PASSIVE mode. I used ARM cycle counter registers
to measure the detection time. A total of 50 individual experiment instances were examined to
obtain the timing traces.

detection time measurements, I disabled all the frequency scaling features in the kernel (by using

the cpufrequtils utility) and allowed the platform to execute with a constant frequency (i.e., 1

GHz, the maximum frequency of our experimental platform).

I compared the performance of CONTEGO with an alternative approach that has no provision for

mode changes — that I refer to henceforth as the “opportunistic execution” scheme. In this scheme

the security tasks are run with the lowest priority (similar to the PASSIVE mode of operation in

CONTEGO). Specifically, I measured the time to detect both the host and network-level intrusions,

and plot the empirical cumulative distribution function (CDF) of those detection times in Fig. 4.6.

The x-axis in Fig. 4.6 represents the detection time (in cycle count) and the y-axis represents the

probability that the attack would be detected by that time. The empirical CDF is defined as

F̂α() = 1
α

α∑
i=1

I[ζi≤], where α is the total number of experimental observations, ζi is the time taken

to detect the attack in the i-th experimental observation, and  represents the x-axis values (viz.,

the detection times in cycle count) in Fig. 4.6. The indicator function I[·] outputs 1 if the condition

[·] is satisfied and 0 otherwise.

From Fig. 4.6 we can see that CONTEGO provides better detection time (i.e., fewer cycle counts

required to detect the intrusions). From my experiments I find that on average CONTEGO detects

attacks 27.29% faster than the reference scheme does. Opportunistic execution scheme allows the

security tasks to run only when other real-time tasks are not running, leading to more interference

(i.e., higher response times), and does not provide any mechanisms to adapt against abnormal

behaviors (e.g., the DoS attack in the experiments). In contrast, CONTEGO allows quick response

to anomalies (by switching to ACTIVE mode when a DoS attack is suspected). Since ACTIVE

security tasks can run with higher priority and less interference without impacting the timeliness

constraints of real-time tasks, CONTEGO had a superior detection rate in general for most of the

experiments without impacting safety.

34

4.8 CONCLUSION

In this chapter I introduce a dual-mode framework, CONTEGO, to integrate security into legacy

single core RTS and provide a glimpse of security design metrics for RTS. I demonstrate the efficacy

of such integration mechanisms in a practical system and analyze the design trade-offs, both from

security and real-time perspectives. The framework presented in this chapter asserts one part of

my dissertation hypothesis (Section 1.1) since CONTEGO is a software-based technique that works

at the scheduler-level and allows the designers to integrate periodic security checks while retaining

real-time guarantees. I believe CONTEGO will provide valuable hints to the engineers on how to

enhance security into such safety-critical systems.

I note that CONTEGO targets single core systems since majority of legacy RTS are built on single

core chips. However, modern real-time CPS are migrating towards multicore platforms [23]. This

makes the problem of integrating security mechanisms more complex. This is because, multicore

platforms allow parallel execution of security tasks and designers have multiple choices for where

to allocate the security tasks. Chapter 5 addresses the problem of integrating security tasks in a

multicore setup.

35

CHAPTER 5: A DESIGN-SPACE EXPLORATION FOR INTEGRATING
SECURITY TASKS IN MULTICORE REAL-TIME SYSTEMS

This chapter further asserts one part of my dissertation hypothesis (Section 1.1) and shows

the feasibility of integrating security monitoring mechanisms into multicore real-time platforms by

using time-aware scheduler-level techniques. Recall that the framework proposed in Chapter 4

(CONTEGO) targets single core systems. Despite the fact that most legacy real-time applications

are designed using platforms equipped with a single-core CPU, the trend towards multicore systems

can be seen as many off-the-shelf devices nowadays are built on top of a multicore environment [23].

As the use of multicore platforms in safety-critical RTS is increasingly becoming common, the focus

of this work is on integrating or retrofitting security mechanisms into multicore RTS. This makes the

problem of integrating security mechanisms more complex, as designers now have multiple choices

for where to allocate the security tasks. In this chapter I propose two design-time frameworks,

viz., HYDRA and HYDRA-C, that allows security tasks to operate with existing real-time tasks in

multicore platforms without perturbing system parameters or normal execution patterns. HYDRA

uses a static partitioning approach where security tasks are allocated to the cores (i.e., do not

migrate across cores at runtime). HYDRA-C, in contrast, executes security tasks in a “continuous”

manner — i.e., as often as possible, across cores. This is to ensure that any such mechanisms

run with few interruptions, if any. I evaluate HYDRA and HYDRA-C using a proof-of-concept

implementation with intrusion detection mechanisms as security tasks. I develop and use both, (a)

a custom intrusion detection system (IDS) as well as (b) Tripwire — an open source data integrity

checking tool. I find that my methods do not impact the schedulability and, on average, HYDRA-C

can detect intrusions 19.05% faster when compared to HYDRA without impacting the performance

of real-time tasks.

5.1 INTRODUCTION

Multicore processors have found increased use in the design of modern RTS [23]. However,

the use of such processors increases the security problems (e.g., due to parallel execution of critical

tasks) [37]. In this chapter I evaluate design alternatives to improve the security posture of multicore

RTS through integration of “security tasks” while ensuring that the existing real-time tasks are

not affected by such integration. My focus here is to integrate security in an existing (e.g.,

legacy) system where it is harder to (a) modify the micro-architecture (say inclusion of extra

hardware/processor cores) or (b) change real-time task parameters (such as execution time and/or

period). Existing work that integrate security in RTS either focuses on single core systems (e.g., see

Chapter 4 and related work [10, 11, 42, 58, 59]) and/or require modification of system parameters

[10, 11, 13, 42, 58, 59] and thus are not applicable for systems where it is harder to change the

real-time task parameters. My main goal is to explore design mechanisms that can raise the

responsiveness of such monitoring tasks by increasing their frequency of execution. Unlike single

36

core systems, integrating security into multicore platforms is more challenging since designers have

multiple choices across cores (due to parallel execution of tasks) to retrofit security mechanisms.

For instance, one design choice could be statically assign cores for security tasks (in conjunction

with the real-time tasks). The challenge then is to determine core allocation and periods of the

security tasks. Another possibility is to execute them continuously across any available core to

provide better security monitoring and detection. As an example, consider an intrusion detection

system (IDS) e.g., that checks the integrity of file systems. If such a system is interrupted (before

it can complete entire checking), then an adversary could use that opportunity to intrude into the

system and, perhaps, stay resident in the part of the filesystem that has already been checked. If,

in contrast, the IDS task is able to execute with as few interruptions as possible (e.g., by moving

immediately to an empty core when it is interrupted), then there is much higher chance of successful

detection and correspondingly, a much lower chance of successful adversarial action.

In this chapter I present two design-time frameworks, HYDRA1 and HYDRA-C2, for partitioned3

RTS. I first start with static security integration policy (i.e., does not allow runtime migration),

HYDRA, and find a suitable core assignment of security tasks in order to ensure that they can

execute with a frequency close to what a designer expects (Section 5.3). As we shall see in Section 5.5,

this static partitioning of security tasks results in delayed detection of intrusions. I then extend

HYDRA with an alternate design method, HYDRA-C, that uses the concept of semi-partitioned

scheduling [31] to enable continuous execution of security tasks (i.e., execute as frequently as

possible) across cores without impacting the timing constraints of other, existing, real-time tasks

(Section 5.4).

Contributions. In this chapter I present the following contributions.

• Integrating security mechanisms in a multicore setup where changing existing real-time task

parameters is not an option.

• A mathematical model to jointly obtain the assignment of security tasks to respective cores

with execution frequency close to the desired values (Section 5.3).

• A mathematical model and iterative solution that allows security tasks to execute as

frequently as possible while still considering the schedulability constraints of other tasks

(Section 5.4).

I also present an implementation on a realistic ARM-based multicore rover platform

(Section 5.5.1) and carry out a design-space exploration to study the trade-offs for schedulability

and security (Section 5.5.2). My evaluation shows that HYDRA-C can achieve better execution

1In Greek mythology Hydra is a serpent with multiple heads. I refer to my scheme as HYDRA since I am trying
to maximize the potential across multiple ‘heads’ (cores).

2HYDRA-C stands for “HYDRA-Continuous”.
3Since this is the commonly used multicore scheduling approach for many commercial and open-source OSs (such

as OKL4 [98], QNX [99], real-time Linux [100], etc.) — mainly due to its simplicity and efficiency [101].

37

frequency (consequently quicker intrusion detection) when compared with both fully-partitioned

(i.e., HYDRA) and global scheduling approaches while providing same or better schedulability.

Note: I do not target my frameworks towards any specific security mechanism — my focus is

to integrate any designer-provided security technique into a multicore-based RTS. I used Tripwire

and my in-house custom-developed malicious kernel module checker to demonstrate the feasibility

of my approach (Section 5.5) — the solutions proposed in this chapter is more broadly applicable

to other security mechanisms.

5.2 MODEL AND ASSUMPTIONS

5.2.1 Real-time Tasks and Scheduling Model

Consider a set of NR real-time tasks ΓR = {τ1, τ2, · · · , τNR}, scheduled on a multicore platform

with M identical cores M = {π1, π2, · · · , πM}. Each real-time task τr is represented by the tuple

(Cr, Tr, Dr) where Cr is the worst-case execution time (WCET), Tr is the minimum inter-arrival

time (i.e., period) and Dr is the relative deadline. In this work, I consider partitioned fixed-priority

preemptive scheduling [23] since (a) it does not introduce task migration costs and (b) it is widely

supported in many commercial and open-source real-time OSs (e.g., QNX, OKL4, real-time Linux,

etc.). I assume constrained deadlines for real-time tasks (i.e., Dr ≤ Tr) and the task priorities

are assigned according to rate-monotonic (RM) [80] order. All events in the system happen with

the precision of integer clock ticks. Real-time tasks are scheduled using partitioned fixed-priority

preemptive scheme [23, 101]. I further assume that the real-time tasks are schedulable, viz., the

worst-case response time (WCRT), denoted as Rr, is less than deadline. Therefore, the following

necessary and sufficient schedulability condition holds for each real-time tasks τr assigned to any

given core πm [101]:

∃t : 0 < t ≤ Dr and Cr +
∑

τi∈hp(τr,πm)

⌈
t

Ti

⌉
Ci ≤ t, (5.1)

where hp(τr, πm) denotes the set of real-time tasks with higher priority than τr assigned to core

πm.

5.2.2 Security Task Integration

I now formally define security tasks. I propose to improve the security posture by integrating

additional NS periodic security tasks ΓS = {τ1, τ2, · · · , τNS} (i.e., tasks that are specifically

designed for monitoring purposes). I follow the sporadic security task model introduced earlier

(Section 4.3.2). In Section 5.3, I first characterize each security task τs by the tuple (Cs, T
des
s , Tmaxs)

where Cs is the WCET, T dess is the best period (minimum inter-arrival time) between successive

releases (i.e., F dess = 1
T dess

is the desired frequency for effective security monitoring and/or intrusion

detection) and Tmaxs is a designer provided upper bound of the period — if the period of the

38

security task is larger than Tmaxs then the responsiveness is too low and security checking may

not be effective. Section 5.4 further relaxes the security task model and represents each security

task as (Cs, Ts, T
max
s) to allow it execute as frequently as possible, across cores. I assume that

the priorities of of the security tasks are distinct and specified by the designers (e.g., derived

from specific security requirements). These tasks have implicit deadlines, i.e., they need to finish

execution before the next invocation. I also assume that task migration and context switch overhead

is negligible compared to the WCETs.

I first propose a mechanism, HYDRA, statically allocate security tasks to their respective cores

(Section 5.3). I then extend HYDRA with an alternative design choice (named HYDRA-C) that

allows runtime migration of security tasks (Section 5.4). As we shall see in Section 5.5, HYDRA-

C provides better security (i.e., faster detection time) and schedulability but comes with a cost

(increases context switch overhead).

5.3 HYDRA: FIXED ASSIGNMENT OF SECURITY TASKS

Recall that one way to integrate security mechanisms into existing systems without perturbing

real-time task behavior is to execute security tasks with the lowest priority as compared to the

real-time tasks (Chapter 4). Thus security tasks will execute opportunistically in the slack time

(e.g., when other real-time tasks are not running). As mentioned in Section 4.1, if the interval

between consecutive monitoring events is too large, the adversary may remain undetected and

harm the system between two invocations of the security task. In contrast, very frequent execution

of security tasks may impact the schedulability of the system (due to higher utilization). Since the

actual periods of the security tasks are not known and we need to adapt the periods to optimize

the trade-offs between schedulability and defense against intrusions.

I measure the security of the system by means of the achievable periodic monitoring and our

goal is to minimize the perturbation between the achievable (unknown) period Ts and the given

desired period T dess for all security tasks τs ∈ ΓS . Therefore I consider the following “tightness”

metric introduced in Section 4.4:

ηs =
T dess

Ts
, (5.2)

that represents how close the period of the security task is to its desired period. Note that the

tightness metric is bounded by T dess
Tmaxs

≤ ηs ≤ 1. As mentioned earlier, if the interval between

consecutive monitoring events is too large, the adversary may remain undetected and harm the

system between two invocations of the security task. In contrast, very frequent execution of security

tasks may impact the schedulability of the system (due to higher utilization). The metric in Eq.

(5.2) allows me to measure how close the security tasks are able to get to their desired monitoring

frequencies.

One fundamental problem while integrating security mechanisms is to determine which security

tasks will be assigned to which core and executed when. Although security tasks can execute in any

39

of the M available cores and any period T dess ≤ Ts ≤ Tmaxs is acceptable, the actual task-to-core

assignment and the periods of the security tasks are not known apriori. The goal of HYDRA

therefore is to jointly find the core-to-task assignment and suitable periods for security tasks. Note

that arbitrarily setting Ts = T dess for all (or some) security tasks τs ∈ ΓS may lead to the system

becoming unschedulable. This is because, low-priority security tasks may miss deadlines due to

interference from higher priority tasks. Also exhaustively finding all possible acceptable periods

for the security tasks for all available cores is not feasible. It will cause an exponential blow-up as

numbers of tasks and cores increase. For instance for a given taskset ΓS , there is a total of |M×Γs|
assignments possible4 (where A×B = {(a, b) | a ∈ A∧ b ∈ B} and | · | denotes set cardinality) and

for each combination the period for each security task τs ∈ ΓS can be any value within the range

[T dess , Tmaxs]. In order to address this combinatorial problem I obtain the periods of the security

tasks by framing it as an optimization problem.

5.3.1 Formulation as an Optimization Problem

Objective Function and Bounds on Period

Let me consider the vector X = [xms]T∀τs∈ΓS ,∀πm∈M where xms = 1 if τs is assigned to πm and 0

otherwise. Recall that my goal is to find a task assignment that minimizes the difference between

achievable and desired periods (e.g., maximize the tightness) for all the security tasks. Hence I

define the following objective function:

max
X,T

∑
πm∈M

∑
τs∈ΓS

xms ωsηs =
∑

πm∈M

∑
τs∈ΓS

xms ωs
T dess

Ts
(5.3)

where T = [Ts]
T
∀τs∈Γs

is the (unknown) period vector that needs to be determined and ωs reflects

the priority (higher priority tasks would have large ωs). Besides, in order to satisfy the frequency

of periodic monitoring, the security task needs to satisfy the following constraint:

T dess ≤ Ts ≤ Tmaxs , ∀τs ∈ Γs. (5.4)

Finally, each security task must be assigned to exactly one core:
∑

πm∈M
xms = 1, ∀τs ∈ Γs.

Schedulability Constraint

Since the security tasks are executed with a priority lower that all real-time tasks, they will

suffer interference from all real-time and high priority security tasks executing in the same core.

Let hpS(τs) ⊂ ΓS denote the set of security tasks with a higher priority than τs. The worst-case

4For instance, when M = 8 cores and NS = 10 tasks there is a total of 3.518437208883×1013 possible assignments.

40

release pattern of τs occurs when τs and all high-priority tasks are released simultaneously [81].

Using response time analysis [84] I calculate an upper bound to the interference experienced by τs

for a given core πm and represent as follows:

Ims =
∑
τr∈ΓR

Imr
(

1 +
Ts
Tr

)
Cr +

∑
τh∈hpS(τs)

xmh

(
1 +

Ts
Th

)
Ch, (5.5)

where Imr = 1 if the real-time task τr is partitioned to core πm and 0 otherwise.

The first and second term in Eq. (5.5) represent the amount of interference from real-time and

high-priority security tasks, respectively. Note that the assignment of real-time tasks to cores is

known by assumption. In order to ensure that each security task τs will complete its execution

before its deadline on its assigned core, the following constraint needs to be satisfied:

Cs + Ims ≤ Ts, ∀τs ∈ Γs, ∀πm ∈M : xms = 1. (5.6)

The variables X and T in the above formulation turn the problem into a non-linear combinatorial

optimization problem that is NP-hard. I therefore propose an iterative algorithm HYDRA that

jointly finds the security tasks’ period and core assignment.5.

5.3.2 Algorithm

As mentioned earlier, jointly finding the security task assignment and periods is an NP-hard

problem. Even for fixed periods, finding the assignment for security tasks turns the problem

to a bin-packing problem that is known to be NP-hard [102]. Existing partitioning heuristics

(e.g., first-fit, best-fit, etc.) [23] are not directly applicable in our context since the real-time

requirements (e.g., minimize the number of cores so that all real-time tasks can meet deadlines) are

often different from the security requirements (e.g., execute security tasks more often to improve

intrusion detection rate without violating real-time constraints).

For a given task τs and allocation vector X, let us rewrite the optimization problem as follows:

max
Ts

ηs, Subject to: T dess ≤ Ts ≤ Tmaxs , Cs + Ims ≤ Ts. (5.7)

Notice that for a given assignment X (see Algorithm 5.1), the period Ts is the only variable (when

the Th,∀τh ∈ hpS(τs) is known) in Ims (see Eq. (5.5)). Although the period adaptation problem in

Eq. (5.7) is a constraint optimization problem it can be transformed into a convex optimization

problem (that is solvable in polynomial time). For details of this reformulation I refer the readers

5Appendix B.2 presents a comparison of my proposed iterative scheme with a brute force approach that
exhaustively searched for all possible combinations for a small setup (M = 2 cores and up to NS = 6 security
tasks). My experiments show that the performance degradation (in cumulative tightness) is less than 22% and that
may be acceptable given the exponential computational complexity of finding an optimal solution using exhaustive
search.

41

Algorithm 5.1: HYDRA — Task Allocation and Period Adaptation

Input: Input taskset Γ = {ΓR ∪ ΓS} and the partition of real-time tasks I = [Imr]T∀τr∈ΓR,∀πm∈M

Output: The security task allocation X = [xms]T∀τs∈ΓS ,∀πm∈M and periods T = [Ts]
T
∀τs∈ΓS

, if the taskset is
schedulable, Unschedulable otherwise.

1: Initialize xms := 0, ∀τs ∈ ΓS , ∀πm ∈M
2: for each security task τs ∈ ΓS (from higher to lower priority) do
3: for each core πm ∈M do
4: Solve the optimization problem in Eq. (5.7)
5: end for
6: Let M′s ⊆M is the set of core(s) for which the optimization problem is feasible
7: if M′s = ∅ then
8: /* Unable to find suitable period for τs */
9: return Unschedulable

10: end if
11: Find the core πm∗ = argmax

πm∈M′s
ηms where ηms is the tightness of τs obtained for πm

12: Set xm
∗

s := 1 /* Assign τs to πm∗ */
13: Update period Ts := Tm

∗
s where Tm

∗
s is the period obtained by solving optimization for πm∗

14: end for

15: return (X,T) /* Return the allocation vector and periods */

to Appendix B.1.

The proposed HYDRA algorithm (summarized in Algorithm 5.1) works as follows. I start with

the highest priority security task τs and try to obtain the best period for each available core

πm ∈ M by solving the period adaptation problem introduced in Eq. (5.7) (Line 4). If there

exists a set of cores M′s ⊆ M for which the optimization problem is feasible (e.g., an optimal

period is obtained satisfying the real-time constraints) we pick the core πm∗ ∈ M′s that gives

the maximum tightness (Line 11) and allocate the security task to core πm∗ (Line 12). This will

ensure that the more critical security tasks will get a period close to the desired one. I repeat this

process for all security tasks to jointly obtain the assignment and periods. If for any security task

τj the set of available cores M′j is empty (e.g., the optimization problem is infeasible) we return

the taskset as unschedulable (Line 9) since it is not possible to find any suitable core with given

taskset parameters. This unschedulability result will provide hints to the designers to update the

parameters of security tasks (and/or the real-time tasks, if possible) in order to integrate security

for the target system.

5.4 HYDRA-C: CONTINUOUS SECURITY MONITORING

Recall from Section 5.1 that my goal is to explore the possible ways in which security could be

integrated in multicore-based real-time platforms. The HYDRA mechanism presented in Section 5.3

assumes that the real time tasks are distributed across all available cores. I now propose an

alternative design choice where I allow security tasks to continuously migrate at runtime (i.e., the

combined taskset with real-time and security tasks follows a semi-partitioned scheduling policy)

whenever any core is available (e.g., when other real-time or higher-priority security tasks are not

42

…..
…..

…..
…..

Period

Security Task

Time

Task activation
Schedule (vanilla)

Schedule (with security task)

Core 0

Core 1

Real-time Task 1 (core 0)
Real-Time Task 2 (core 1)

Core idle (slack time)

Core 0

Core 1

Figure 5.1: Illustration of HYDRA-C for a dual-core platform: two real-time tasks (blue and green)
are statically assigned to two cores (core 0 and core 1, respectively). I propose to integrate a security
task (red) that will execute with lowest priority and can be migrated to ether core (whichever is
idle) at runtime.

running). I refer to this scheme as HYDRA-C. An illustration of HYDRA-C is presented in Fig. 5.1

where two real-time tasks (represented by blue and green rectangles) are partitioned into two cores

and a newly added security task (red rectangle) can move across cores. As we shall see in Section

5.5, allowing security tasks to execute on any available core will give us the opportunity to execute

security tasks more frequently (e.g., with shorter period) and that leads to better responsiveness

(faster intrusion detection time).

5.4.1 Period Selection

As mentioned earlier, one fundamental question is to figure out how often to execute security

tasks so that the system remains schedulable and also can execute within a designer provided

frequency bound (so that the security checking remains effective). Mathematically period selection

can be expressed as: minimize
Ts,∀τs∈ΓS

∑
τs∈ΓS

Ts, subject to Rs ≤ Ts ≤ Tmaxs , ∀τs ∈ ΓS . This is a non-trivial

optimization problem since the period of τs can be anything in [Rs, Tmaxs] and the response time

Rs is a variable as it depends on the period of other higher priority security tasks. I first derive

the WCRT of the security tasks and use it as a (lower) bound to find the periods (Section 5.4.2).

Response Time Analysis

In the following I determine the response time of a job τks of security task τs using an iterative

method and the response time in each iteration is denoted by x.

Interference Caused by Real-Time Tasks. The interference Iτs←τi caused by a task τi on

τks is the number of time units in the busy period6 when τi executes while τks does not. I first

6This is the maximal continuous time interval [t1, t2) until τks finishes where all the cores are executing either

43

Time
%0 %0 + (

$1														$1														$101
(

Time
			%0 %0 + (

$1															$1															$101
(

ℛ1

Figure 5.2: Workload of the real-time tasks for a window of size x. ai denotes the arrival time.

calculate the workload7 of the real-time tasks using the following lemma and use this to derive the

interference.

Lemma 5.1. The maximum workload of real-time tasks executed on a given core πm (in any

possible time interval of length x) is obtained when all real-time tasks are released synchronously

at the beginning of the interval.

Since real-time tasks are statically partitioned to cores and they have higher priority than

any task that is allowed to migrate between cores, their worst-case workload can be obtained

based on the critical instant [80] used for single-core fixed-priority scheduling case (formal proof in

Appendix B.3).

Let ΓπmR ⊆ ΓR denote the set of real-time tasks partitioned to core πm. Based on Lemma 5.1,

an upper bound to the workload of real-time tasks on πm can be obtained by assuming that each

real-time task τr is released at the beginning of the interval and each job of τr executes as early

as possible after being released (see Fig. 5.2). I thus obtain the workload for real-time task τr:

WR
r (x) =

⌊
x
Tr

⌋
Cr + min(x mod Tr, Cr) and summing over all real-time tasks on πm yields a

total workload
∑

τi∈ΓπmR

WR
i (x). Note that by definition, the interference caused by a group of tasks

executing on the same core πm on τs cannot be greater than x−Cs + 1. Therefore, the maximum

interference caused by real-time tasks can be bounded as:

Iτs←ΓπmR

(
x,
∑

τi∈ΓπmR

WR
i (x)

)
= min

(∑
τi∈ΓπmR

WR
i (x), x− Cs + 1

)
. (5.8)

Interference Caused by Other Security Tasks. I next consider the workload of security

tasks with higher priority than τs. The workload computation for this case depends on the arrival

time of the task relative to the beginning of the busy period. Let me define a task τi as a carry-in

task (CI) if there exists one job of τi that has been released before the beginning of a given time

window of length x and executes within the window. If no such job exists, τi is referred to as a

non-carry-in task (NC).

To calculate the number of carry-in tasks, I extend the busy period of τks from its arrival time

(denoted by as) to an earlier time instance t0 (see Fig. 5.3) such that during any time instance

t ∈ [t0, as) all cores are busy executing tasks with higher priority than τs [103]. Note that by

higher priority tasks or τks itself.
7The workload Wi(w) of a task τi in a window of length w represents the accumulated execution time of τi within

this time interval [103].

44

Time
!" − $"

%0 Arrival ($") Finish (!")
$" − %0

Busy Period

Figure 5.3: Busy period extension.
Time

%0 %0 + (

$1														$1														$101
(

Time
						%0 %0 + (

		$1														$1														$101
(

ℛ1

Figure 5.4: Illustration of carry-in task for a window of size x.

definition, this implies that there was at least one free core (i.e., not executing higher priority

tasks) at time t0 − 1.

Lemma 5.2. At most M − 1 higher priority tasks can have carry-in at time t0.

Proof. The maximum number of higher priority tasks that can have carry-in at t0 is M−1 since by

definition there have to be strictly less than M higher priority tasks active at time t0−1 (otherwise

they will occupy all the cores). QED.

Since Lemma 5.2 holds for all tasks with higher priority than τs, an immediate corollary is

that the number of security tasks with carry-in at t0 also cannot be larger than M − 1. If a

security task τi does not have carry-in, its workload is maximized when the task is released at

the beginning of the busy interval. Hence, we can calculate the workload bound WSNC
i (x) for the

interval x as follows: WSNC
i (x) =

⌊
x
Ti

⌋
Ci + min(x mod Ti, Ci). Likewise, the workload bound

for a carry-in security task τi in an interval of length x starting at t0 is given by (see Fig. 5.4):

WSCI
i (x) = WSNC

i (max(x− x̄i, 0)) + min(x,Ci − 1), where x̄i = Ci − 1 + Ti −Ri. We can bound

the workload of the first carry-in job to Ci − 1 because the job must have started executing at the

latest at t0− 1 (given that not all cores are busy). Finally, using the same argument as before, the

interference of τi can be bounded as follows: Iτs←τi(x,Wi(x)) = min (Wi(x), x− Cs + 1) , where

Wi(x) is either WSNC
i (x) or WSCI

i (x). Notice that the WCRT and periods of security task in

the carry-in workload function is actually an unknown parameter. However, I follow an iterative

scheme (Section 5.4.2) that allows me to calculate the period and WCRT of all higher priority

security tasks before I calculate the interference for task τs.

Response Time Calculation

Let hpS(τs) denote the set of security tasks with a higher priority than τs. Note that we do not

know which (at most) M − 1 security tasks in hpS(τs) have carry-in. In order to derive the WCRT

of τs, let us define Zτs ⊂ Γ×Γ as the set of all partitions of hpS(τs) into two subsets ΓNCs and ΓCIs

45

(i.e., the non overlapping set of carry-in and non-carry-in tasks) such that:

ΓNCs ∩ ΓCIs = ∅,ΓNCs ∪ ΓCIs = hpS(τs), and |ΓCIs | ≤M − 1. (5.9)

For a given carry-in and non-carry-in set (i.e., ΓNCs and ΓCIs), the total interference experienced

by τs is calculated as follows:

Ωs(x,Γ
NC
s ,ΓCIs) =

∑
πm∈M

Iτs←ΓπmR

(
x,

∑
τi∈ΓπmR

WR
i (x)

)
+

∑
τi∈ΓNCs

Iτs←τi

(
x,WSNC

i (x)
)

+
∑

τi∈ΓCIs

Iτs←τi

(
x,WSCI

i (x)
)
. (5.10)

The response time Rs|(ΓNCs ,ΓCIs) then will be the minimal solution of the following iteration8 [103]:

x =
⌊

Ωs(x,ΓNCs ,ΓCIs)
M

⌋
+Cs. I solve this using an iterative fixed-point search with the initial condition

x(0) = Cs. The search terminates if there exists a solution (i.e., x = x(l) = x(l−1) for some iteration

l) or when x(l) > Tmaxs for any iteration l since τs becomes trivially unschedulable for WCRT

greater than Tmaxs . Finally, I calculate the WCRT of τs as follows:

Rs = max
(ΓNCs ,ΓCIs)∈Zτs

Rs|(ΓNCs ,ΓCIs). (5.11)

5.4.2 Algorithm

The security task τs remains schedulable with any period Ts ∈ [Rs, Tmaxs]. However as mentioned

earlier, the calculation of Rs requires us to know the period and response time of other high priority

tasks τh ∈ hpS(τs). Also if we arbitrarily set Ts = Rs (since this allows us to execute security tasks

more frequently) it may negatively affect the schedulability of other tasks that are at a lower

priority than τs because of a high degree of interference from τs. Hence, I developed an iterative

algorithm that trades-off between schedulability and monitoring frequency.

My proposed solution (Algorithm 5.2) works as follows. I first fix the period of each security task

Tmaxs and calculate the response time Rs (Line 1). If there exists a task τj such that Rj > Tmaxj I

report the taskset as unschedulable (Line 3) since it is not possible to find a period for the security

tasks within the designer provided bounds — this unschedulability result will help the designer in

modifying the requirements (and perhaps real-time tasks’ parameters, if possible) accordingly to

integrate monitoring tasks for the target system. If the taskset is schedulable with Tmaxs , I then

optimize the periods from higher to lower priority order (Lines 5–8) and return the period (Line 9).

To be specific, for each task τs ∈ ΓS I perform a logarithmic search [104, Ch. 6] (see Algorithm

5.3 for the pseudocode) and find the minimum period T ∗s within the range [Rs, T
max
s] such that all

low priority tasks (denoted as lp(τs)) remain schedulable, i.e., ∀τj ∈ lp(τs) : Rj ≤ Tmaxj (Line 7)

8Note that the worst-case is when the job arrives at t0 (i.e., as = t0).

46

Algorithm 5.2: HYDRA-C — Period Selection
Input: Set of real-time and security tasks Γ = ΓR ∪ ΓS
Output: Periods of the security tasks, T (if the security tasks are schedulable); Unschedulable otherwise

1: Set Ts := Tmaxs and calculate Rs for ∀τs ∈ ΓS
2: if ∃τs such that Rs > Tmaxs then
3: return Unschedulable
4: end if
5: for each security task τs ∈ ΓS (from higher to lower priority) do
6: /* Find period for which all lower priority tasks are schedulable */
7: Find minimum T ∗s ∈ [Rs, Tmaxs] using Algorithm 5.3 such that all low priority task τj remain schedulable

(i.e., Rj ≤ Tmaxj ,∀τj)
8: end for
9: return T := [T ∗s]∀τs∈ΓS /* return the periods */

Algorithm 5.3: Calculation of Minimum Feasible Period for τs
Input: Set of real-time and security tasks Γ = ΓR ∪ ΓS
Output: A feasible period T ∗s for the security task under analysis (i.e., τs)

1: Define T ls := Rs, T rs := Tmaxs , T cs := 0
2: Set T̂s := {Tmaxs } /* Initialize to store the set of feasible periods */
3: while T ls <= T rs do

4: Update T cs := bT
l
s+Tr

s
2
c

5: if ∃τj ∈ lp(τs) such that τj is not schedulable with Ts = T cs then
6: /* Increase the period of τs to make the taskset schedulable (e.g., by reducing the interference) */
7: Update T ls := T cs + 1
8: else
9: /* Taskset is schedulable with T cs */

10: T̂s := T̂s ∪ {T cs } /* Add T cs to the feasible period list */
11: /* Check schedulability with smaller period for next iteration */
12: Update T rs := T cs − 1
13: end if
14: end while
15: Set T ∗s := min

(
T̂s
)

/* Find the minimum feasible period */

16: return T ∗s /* return the period of τs */

and repeat the search for next security task.

5.5 EVALUATION

I evaluate HYDRA and HYDRA-C on two fronts: (i) a proof-of-concept implementation on an

ARM-based rover platform with security applications — to demonstrate the viability of my scheme

in a realistic setup (Section 5.5.1); and (ii) with synthetically generated workloads for broader

design-space exploration (Section 5.5.2). My implementation is available in a public, open-sourced

repository [105].

47

Figure 5.5: Rover used in experiments.

5.5.1 Experiment with an Embedded Platform

I implemented my ideas on a rover platform (Fig. 5.5). The rover peripherals (e.g., wheel, motor,

servo, sensor) are controlled by a Raspberry Pi [106] single board computer. I used Linux kernel

4.9 and enabled real-time capabilities by applying the PREEMPT RT patch [100] (version 4.9.80-

rt62-v7+). My experiments were performed on a dual-core setup — this was done by setting the

flag maxcpus=2 in the boot command file /boot/cmdline.txt.

In my experiments the rover moved around autonomously and periodically captured and stored

images. I assumed implicit deadlines for real-time tasks and considered two tasks: (a) a navigation

task — that avoids obstacles using an infrared sensor and navigates (e.g., both driving and path-

planning) the rover and (b) a camera task that captures and stores still images. Parameters for the

navigation and camera tasks were (Cr, Tr): (240, 500) ms and (1120, 5000) ms, respectively (i.e.,

total real-time task utilization was 0.7040).

I introduced two security tasks: (a) an open-source security application, Tripwire [60], that checks

intrusions in the image data-store and (b) my custom security task that checks current kernel

modules (for detecting rootkits) and compares with an expected profile of modules. I modified

Tripwire configurations (/etc/tripwire/twpol.txt) and adapted it into periodic execution model.

The WCET of the security tasks were 5342 ms and 223 ms, respectively and the maximum

periods9 of security tasks were assumed to be 10000 ms (e.g., total system utilization is at least

0.7040 + 0.5565 = 1.2605). The system configurations and tools used in my experiments are

summarized in Table 5.1.

Experience and Evaluation

I observed the performance of HYDRA and HYDRA-C by analyzing how quickly an intrusion

can be detected. I considered the following two realistic attacks10: (i) an ARM shellcode [97] that

9I picked this maximum period value by trial and error so that the taskset became schedulable for demonstration
purposes.

10Note: my focus here is on the integration of any given security mechanisms rather the detection of any particular
class of intrusions. Hence I assumed that there were no zero-day attacks and the security tasks were able the detect

48

Table 5.1: Summary of the Evaluation Platform

Artifact Configuration/Tools

Platform 1.2 GHz 64-bit Broadcom BCM2837 (Raspberry Pi 3)
CPU ARM Cortex-A53
Memory 1 Gigabyte
Operating System Debian Linux (Raspbian Stretch Lite)
Kernel version Linux Kernel 4.9
Real-time patch PREEMPT RT 4.9.80-rt62-v7+
Kernel flags CONFIG PREEMPT RT FULL enabled
Boot parameters maxcpus=2, force turbo=1, arm freq=700,

arm freq min=700
WCET measurement ARM cycle counter registers
Task partition Linux taskset

HYDRA-C HYDRA
0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
et

ec
tio

n
Ti

m
e

(c
yc

le
 c

ou
nt

)

1e19

(a)

HYDRA-C HYDRA
0

1

2

3

4

5

6

N
um

be
r o

f C
on

te
xt

 S
w

itc
he

s 1e4

(b)

Figure 5.6: Experiments with rover platform: (a) time (cycle counts) to detect
intrusions; (b) average number of context switches. On average HYDRA-C can detect the intrusions
faster without impacting the performance of real-time tasks.

allows the attacker to modify the contents of the image data-store — this attack can be detected

by Tripwire; (ii) a rootkit [107] that intercepts all the read() system calls — my custom security

task can detect the presence of the malicious kernel module. In Fig. 5.6a I show the average time

to detect both the intrusions (in terms of cycle counts, collected from 35 trials) for HYDRA-C

and HYDRA schemes. From my experiments I found that, on average, HYDRA-C can detect

intrusions 19.05% faster compared to the HYDRA approach (Fig. 5.6a). Since HYDRA-C allows

security tasks to migrate across cores, it has shorter periods and that leads to faster detection

times.

I next measured the overhead of our security integration approach in terms of number of context

switches. For each of the trials I observed the schedule for 45 seconds and counted the number

of context switches using the Linux perf tool [72]. In Fig. 5.6b I show the number of context

switches (y-axis) for HYDRA-C and HYDRA schemes (for 35 trials). As shown in the figure,

HYDRA-C increases the number of context switches (since I permit migration across cores). From

the corresponding attacks correctly.

49

my experiments I found that, on average, HYDRA-C increases context switches by 1.75 times.

However, this increased context switch overhead does not impact the deadlines of real-time tasks

(since the security tasks always execute with a priority lower than the real-time tasks) and thus

may be acceptable for many real-time applications.

5.5.2 Experiment with Synthetic Tasksets

I also conducted experiments with randomly generated workloads for broader design-space

exploration. I considered M ∈ {2, 4} cores and each taskset instance contained [3 ×M, 10 ×M]

real-time and [2×M, 5×M] security tasks. I only considered schedulable real-time tasksets. Each

real-time task had periods between [10, 1000] ms and the maximum periods for security tasks were

selected from [1500, 3000] ms. I assumed that real-time tasks were partitioned using a best-fit [101]

strategy. The utilization of individual tasks were generated using Randfixedsum algorithm [108]

and total utilization of the security tasks was at least 30% of the system utilization.

Impact on Schedulability and Security Trade-off

While in this work I consider a legacy system (where real-time tasks are partitioned to cores),

for comparison purposes I considered the following two schemes (in addition to HYDRA) that do

not consider any period adaptation for security tasks.

• GLOBAL-TMax: In this scheme all the real-time and security tasks are scheduled using a global

fixed-priority multicore scheduling scheme11 [23]. Since my focus here is on schedulability I

set Ts = Tmaxs , ∀τs ∈ ΓS . This scheme allows me to observe the performance impacts of

binding real-time tasks to the cores (due to legacy compatibility).

• HYDRA-TMax: This is similar to the HYDRA approach introduced in Section 5.3 but instead

of minimizing periods here we set Ts = Tmaxs , ∀τs. This allows me to observe the trade-offs

between schedulability and security in a fully-partitioned system.

In Fig. 5.7 I compare the performance of HYDRA-C with the HYDRA, GLOBAL-TMax and

HYDRA-TMax strategies in terms of acceptance ratio (y-axis) defined as the number of schedulable

tasksets over the generated ones. As we can see from the figure, HYDRA-C outperforms HYDRA

when the normalized utilization
∑

Ci/Ti

M (x-axis) increases. HYDRA-C allows security tasks to

execute in parallel across cores and also allocate periods considering the schedulability constrains

of all low priority tasks — this results in a smaller response times and can find more tasksets

11I note that there exists recent work [109] that aims to reduce pessimism of multicore schedulability analysis by
dividing task WCET into two virtual partitions and then calculating response times by enumerating all possible
partitions. Given the workload of real-time and security tasks, my interference calculations (Section 5.4.1) can be
adopted to such a two-partitions method. However, from my experiments I found that this extra complexity (i.e.,
enumerating all WCET partitions) does not improve the schedulability any further.

50

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
 (%

)

[0.0,0.1]

[0.1,0.2]

[0.2,0.3]

[0.3,0.4]

[0.4,0.5]

[0.5,0.6]

[0.6,0.7]

[0.7,0.8]

[0.8,0.9]

[0.9,1.0]

0

20

40

60

80

100

2 Cores

HYDRA-C HYDRA GLOBAL-TMax HYDRA-TMax

[0.0,0.1]

[0.1,0.2]

[0.2,0.3]

[0.3,0.4]

[0.4,0.5]

[0.5,0.6]

[0.6,0.7]

[0.7,0.8]

[0.8,0.9]

[0.9,1.0]

0

20

40

60

80

100

4 Cores

Figure 5.7: Impact on schedulability and security. The acceptance ratio vs taskset utilizations
for 2 and 4 core platforms: HYDRA-C outperforms HYDRA and GLOBAL-TMax approaches for
higher utilizations.

that satisfy the designer specified bound. In contrast, HYDRA uses a greedy approach that

minimizes the periods of higher priority tasks first without considering the global state. Also

HYDRA statically binds the security task to the core and hence suffers interference from the higher

priority tasks assigned to that core — this leads to lower acceptance ratios. For higher utilizations

HYDRA-C can find schedulable tasksets that can not be easily partitioned by using the HYDRA-

TMax scheme. The acceptance ratio of HYDRA-C and the HYDRA-TMax scheme is equal when

utilization less than 0.7 since some lower priority security tasks experience less interference due to

longer periods and specific core assignment. While I bind the real-time tasks to cores (due to legacy

compatibility), it does not affect the schedulability since real-time tasks are already schedulable

when partitioned and my analysis reduces the interference that real-time tasks have on security

ones. I also highlight that while my approach results in better schedulability, HYDRA-C/HYDRA-

TMax and GLOBAL-TMax schemes are incomparable in general (i.e., there exists tasksets that

may be schedulable by task partitioning but not in global scheme and vice-versa) — I allow security

tasks to migrate due to security requirements (e.g., to achieve faster intrusion detection — as I

explain in the next experiments, see Fig. 5.8).

In the final set of experiments (Fig. 5.8) I compare the achievable periods (in terms of Euclidean

distance) for my approach and the other schemes. The x-axis in the Fig. 5.8 shows the normalized

utilizations and the y-axis represents the average difference between the following period vectors

T∗ = [T ∗s]∀τs∈ΓS : (a) HYDRA-C and HYDRA (dashed line); (b) HYDRA-C and other strategies

(e.g., GLOBAL-TMax and HYDRA-TMax) that do not consider period minimization (dotted

marker). Higher distance values imply that the periods calculated by HYDRA-C are smaller (i.e.,

leads to faster detection time) and HYDRA-C outperforms the other scheme. For low to medium

utilizations HYDRA-C performs better when compared to HYDRA. In situations with higher

utilizations, the lesser availability of slack time results in HYDRA-C and HYDRA performing in

a similar manner. My experiments show that HYDRA-C achieves better continuous monitoring

51

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
iff

er
en

ce
in

 P
er

io
d

V
ec

to
r

[0.0,0.1]

[0.1,0.2]

[0.2,0.3]

[0.3,0.4]

[0.4,0.5]

[0.5,0.6]

[0.6,0.7]

[0.7,0.8]

[0.8,0.9]

[0.9,1.0]

0.0

0.2

0.4

0.6

0.8

1.0

2 Cores

HYDRA-C vs HYDRA HYDRA-C vs w/o Period Optimization

[0.0,0.1]

[0.1,0.2]

[0.2,0.3]

[0.3,0.4]

[0.4,0.5]

[0.5,0.6]

[0.6,0.7]

[0.7,0.8]

[0.8,0.9]

[0.9,1.0]

0.0

0.2

0.4

0.6

0.8

1.0

4 Cores

Figure 5.8: Difference in period vectors for HYDRA-C and reference schemes (e.g., HYDRA,
GLOBAL-TMax, HYDRA-TMax): the non-negative distance (y-axis in the figure) implies that
HYDRA-C finds shorter periods than other schemes.

when compared with both a fully-partitioned approach (HYDRA, HYDRA-TMax) and a global

scheduling approach (GLOBAL-TMax) while providing the same or better schedulability.

5.6 CONCLUSION

This chapter presents an evaluation of design choices (HYDRA and HYDRA-C) for integrating

security tasks into a multicore RTS. Since I provide comparisons of my solution with two extremes

— an static assignment strategy and continuous execution policy that allows runtime migration

— this work provides valuable hints to designers on how to build security into such systems. By

using my framework, engineers can now evaluate the design choices of such integration techniques

to improve the overall security (and hence, safety) of the systems.

In Chapters 4–5 I present pure software-based real-time security integration techniques and

assert one part of my dissertation hypothesis (Section 1.1). When both real-time and security

tasks are executed on a same platform, an attacker may compromise the underlying host system

and prevent the security checks to be successful.12 In the follow-up work (Chapter 6), I address this

issue by leveraging hardware-assisted security features available in modern embedded processors.

In particular, I use a trusted (and verified) computing module and execute the security checks

inside a secure enclave. This mechanism ensures that even if the (potentially untrusted) real-time

tasks are compromised, an adversary can not send false signals. The proposed framework, SCATE

(Chapter 6), reason out my dissertation hypothesis since I show the feasibility of integrating security

checks by using time-aware hardware/software-based techniques.

12I discuss this issue further in Chapter 7.

52

CHAPTER 6: SELECTIVE CHECKING AND TRUSTED EXECUTION TO
PREVENT FALSE ACTUATIONS IN REAL-TIME CYBER-PHYSICAL

SYSTEMS

So far I have presented software-based security integration techniques — this asserts one part

of my dissertation hypothesis (Section 1.1). I now reason out my hypothesis by presenting a time-

aware software/hardware-based real-time security integration framework. In particular, I leverage

the capabilities of hardware-assisted security features, viz., the ARM TrustZone [25] and design

a targeted security measure (i.e., techniques that prevent falsification of actuation commands).

Cyber-physical applications can be vulnerable to attacks that target outgoing actuation commands,

i.e., ones that modify the behavior of their physical systems. The limited resources in such systems,

coupled with their stringent timing constraints, often prevents the checking of every outgoing

command. In this chapter I present a “selective checking” mechanism that uses game-theoretic

modeling [110] to identify the right subset of commands to be checked in order to deter an adversary.

This mechanism is coupled with a “delay-aware” trusted environment (using TrustZone) to ensure

that only verified actuation commands are ever sent to the physical system, thus maintaining

their safety and integrity. The selective checking and trusted execution (SCATE) framework is

implemented on an off-the-shelf ARM platform running standard embedded Linux. I demonstrate

the effectivness of SCATE using four realistic cyber-physical systems (a ground rover, a flight

controller, a robotic arm and an automated syringe pump) and study design tradeoffs. Not only

does SCATE provide a high level of security that can almost match the performance of a fine-

grained mechanism (i.e., one that checks all actuation commands), it also suffers significantly

lesser overheads (30.48%–47.32% less) in the process. In fact, SCATE can work with more systems

than its fine-grained counterpart since the latter causes timing delays that negatively affect the

safety of the system. Considering that most CPS do not have any such checking mechanisms, and

SCATE is guaranteed to meet all the timing requirements (i.e., ensure the safety/integrity of the

system), my methods can significantly improve the security (and, hence, safety) of the system.

6.1 INTRODUCTION

Modern cyber-physical applications with real-time requirements are increasingly becoming

targets for cyber-attacks. The traditional approaches of air-gapping such systems [13, 18] or

using proprietary protocols and hardware [12] have been found wanting in the face of recent high-

profile attacks: e.g., Stuxnet [3], attack demonstrations by researchers on medical devices [7] and

automobiles [6], denial-of-service (DoS) attacks mounted from IoT devices [111], among others. A

common thread among all of the aforemention attacks, especially ones that threaten the physical

safety of the system, is the falsification of actuation commands — i.e., commands that control

the state of the physical system are either modified or replaced while in transit to the physical

component. Note that CPS are comprised of a tight interplay between computation, control

53

and communication. At its core, a cyber-physical “plant” consists of actuators and sensors that,

respectively, monitor and control the physical properties of the system. Due to the tight coupling

between actuators and physical plants, such systems are often vulnerable to unexpected situations

(e.g., malicious actions) that were not considered during the design/development phases [112].

Hence, sending false/spoofed commands to the actuators can disrupt the normal operation of the

physical plant and jeopardize its safety. For instance, an industrial robot on a manufacturing line,

must carry out its operation (e.g., placing an object on a conveyor) in 50–100 ms [2]. Failure to

do so, could disrupt the entire manufacturing operation and even put the safety of the plant and

human operators at risk. If an attacker could modify the command that changes the angle of

rotation of the robot arm, the robot may completely miss the conveyor and, potentially, crash the

entire system.

In this work I intend to check actuation commands before they can affect the state of the physical

system. If I find that the command can have negative effects, i.e., it compromises the safety and/or

integrity of the CPS, then my proposed technique prevents it from being sent out1 To prevent

tampering, I implement the checking mechanism in a trusted execution environment (TEE) that is

available on modern commodity processors, viz., the ARM TrustZone [25].2

In an ideal scenario, every outgoing actuation command should be checked. A serious hurdle

that prevents such a strategy is that, as mentioned earlier, CPS have stringent timing requirements

— very often the actuation command, once sent out, must be received by the physical system in a

short, fixed, amount of time. This limits the amount of time delays that can be introduced during

the checking process. In addition, the control software has its own timing constraints, e.g., it must

complete execution before a certain “deadline”; failure to do so can also cause instability in the

system. Hence, we cannot check (and hence, delay) every command since each check compounds

the delays faced by the software. In addition, as seen in Section 6.3.1 the use of the TEE-based

checking mechanims introduces additional delays due to context-switch overheads, further affecting

the deadlines. Hence, there is a need to carefully consider how many and which actuation commands

are to be checked — to ensure that (a) the system safety/timing requirements are met and (b) also

deter attackers. Picking a fixed subset of actuation commands is not helpful since an adversary can

circumvent the checks by targeting the “unchecked” commands. To this end, I develop a mechanism

to validate a random subset of commands, varying at run-time that significantly increases the

difficulty for would-be attackers. I use a game-theoretic formulation of a two-player normal-form

game [26, 114, 115] for the “selective checking” of the actuation commands (Section 6.4). The

combined framework is referred to as the selective checking and trusted environment (SCATE)

system.

Contributions. In this chapter I make the following contributions:

• I present a framework, SCATE, that protects cyber-physical systems from attacks that falsify

1Note that the actions taken when we detect a problematic actuation command is orthogonal to the work presented
here and depends on the specific CPS. I briefly discuss some of these strategies in Section 7.

2This does not preclude the use of other TEEs, e.g., Intel SGX [113].

54

/* other computation */
...

/* actuation request */
set_speed(val)

...

/* other computation */
...

Real-Time Task

Physical Actuator

Set the
Motor Speed

Figure 6.1: Illustration of a vanilla (non-secure) execution scenario that does not check actuation
commands.

actuation commands. [Section 6.2.3]

• I use a combination of game-theoretic analysis and a trusted execution environment to deter

attackers, significantly reduce checking overheads and still guarantee the safety and integrity

of the CPS. [Section 6.4]

I implemented SCATE [Section 6.5] on a commercially available ARM Cortex A53 platform [106]

and commodity TEE (TrustZone [25]) running embedded Linux. My system and techniques

were evaluated using four realistic, standardized, cyber-physical systems [Section 6.5.2]: (a)

an autonomous ground rover, (b) a flight controller, (c) a robotic arm (typically found in

manufacturing systems) and (d) a syringe pump used in medical devices. I also carried out a

broader design space exploration [Section 6.5.3] using simulated workloads and also analyzed the

trade-offs between security and timing/safety properties. Not only does SCATE deter attacks, it

is able to do so with significantly less overheads and also guarantee that it will not compromise

the system safety and timing properties. My open-sourced implementation is available in a public

repository [116].

6.2 MOTIVATION, OVERVIEW AND BACKGROUND

6.2.1 The Requirement for Checking Actuation Commands

Real-time CPS consists of cyber components and physical components. The cyber units perform

the computing for estimation of the system state (e.g., location of the unmanned vehicle and the

direction of its movement) and generation of appropriate control signals for the actuators. The

physical components include the entities that are closer to the physical system under observation

such as sensors that take measurements and the actuators that mobilize the physical system or its

dynamics.

55

Source
Destination

Line following mission
(expected rover path)

Control spoofing attack:
attacker turns off the motor
and the rover stalls

(a)

0 5000 10000 15000 20000 25000 30000
Time (ms)

0

100

200

To
ta

l D
is

ta
nc

e
Tr

av
el

ed
 (c

m
)

Control Spoofing
(motor turned off)

Spoofing
Starts

Expected

(b)

Figure 6.2: Illustration of control spoofing attacks on a rover platform: (a) high-level schematic
of my experiment setup where a rover performs a line following mission and an adversary triggers
malicious code that turns off one of the rover motors; (b) readings from rover motor encoders
under control spoofing attack. Without proper checking, an adversary can inject erroneous signals
(shaded region in Fig. 6.2b) and deviate the rover from its expected behavior (dashed line). In this
setup the rover stalled in the middle of its mission due to control spoofing attack as shown by the
constant readings from wheel motors).

In a non-secure system, when a task generates actuation command, it is being directly issued to

the physical actuators. Figure 6.1 illustrates this: when a controller tasks generates an actuation

command (to set the speed of the motor) it directly changes the speed without checking whether the

speed value is legitimate or not. Without explicit control and verification over actuation process,

it is possible to send arbitrary signals to the actuators and an adversary can drive the system in

undesirable ways. For instance, consider ground rovers that can be used in multiple cyber-physical

applications such as remote surveillance, agriculture and manufacturing [46]. For demonstration

purposes, I use a COTS-based ground rover running an embedded variant of Linux on an ARM

Cortex-A53 platform (Raspberry Pi [106]). The rover is equipped with two optical encoders that

are connected to the motors (i.e., actuator in this setup); it can turn left by switching off the right

encoder and vice-versa.

As depicted in Fig. 6.2a, I carried-out a line-following mission where the rover steered from an

initial location to a target location by following a line. A controller task runs the standard, pre-

packaged, proportional–integral–derivative (PID) closed-loop control [117]. A 5-byte value is sent to

the actuator (via memory-mapped registers) to control the wheel motors via the I2C interface [118].

This aids in the navigation and control of the rover. The x-axis of Fig. 6.2 shows the time and

the y-axis is the total distance traveled by the rover (i.e., readings from the wheel motors). Since

the vendor implementation of the controller does not verify control commands, I was able to inject

a logic bomb and send spoofed commands to turn off the motor (marked in the figure). As a

result, the rover deviates from its mission. The dashed line (after 17 seconds) shows the expected

behavior (viz., without any attack) as a reference (obtained by running a linear regression test

from the traces of the uncompromised execution). As the shaded region in the figure shows, the

encoder readings (i.e., traversed distance) remained same and the rover was not following the line

under the presence of the attack that. I note that designing and scheduling checking techniques for

real-time cyber-physical platforms is often more challenging when compared to the general-purpose

56

/* other computation */
...

/* actuation request */
set_speed(val)

...

/* other computation */
...

Real-Time Task

Normal Execution Mode

Switch to
Secure Mode

/* check request */

if val is within
threshold:
/* allow request */

/* return */

Set the
Motor Speed

Trusted Execution Mode

Return to
Normal Mode

Figure 6.3: Flow of operation in SCATE. When a task generates any actuation command, it will
be checked by a trusted entity leveraging TEE technologies (say ARM TrustZone [25]). In this
illustration the speed of the actuators (motors attached to the wheels) is only set if the speed value
is within a predefined range.

systems due to additional timing/safety constraints (see Table 6.3 for related examples) imposed

by such systems. To the best of my knowledge, there is no existing technique that can be directly

retrofitted to solve this problem. I believe there is a practical requirement and intellectual merit

for designing framework that can protect actuators in real-time CPS and hence is the focus of this

research.

6.2.2 System Model

I consider a set of priority-driven, periodic real-time tasks, Γ, running on a multicore CPS

platform Π. The set of tasks Γp ⊂ Γ running on a given core πp ∈ Π is fixed and given by the

designers. Each task τi issues Ni number of actuation requests. I assume that there is a designer-

given quality-of-service (QoS) requirement that Nmin
i ≤ Ni actuation requests (among total Ni

number of requests) must be checked (by the trusted entity running inside TEE) for each invocation

of a task. I further assume that each actuation command aji is associated a designer-provided weight

ωji that represents the importance/preference of checking the corresponding command over other.

Higher weight imply that the actuation request is more critical and designers want to examine it

more often. I provide a formal representation of my task and real-time model in Appendix C.1.

6.2.3 Problem Overview and Proposed Approach

Actuation commands that are malicious can jeopardize the safety and integrity of cyber-physical

applications. In this research I propose techniques to protect systems from control spoofing attacks

by examining actuation commands before they are being issued to physical peripherals. I name this

framework, SCATE where I consider cyber-physical applications consisting of software tasks that

can have two different types of execution sections: (a) regular (potentially untrusted) execution

57

/* other computation */
...
actuation_request_1()
...
actuation_request_2()
...
actuation_request_3()
/* other computation */
...

check_actuation_2()

check_actuation_3()

Normal Execution Mode Trusted Execution Mode

/* other computation */
...
actuation_request_1()
...
actuation_request_2()
...
actuation_request_3()
/* other computation */
...

check_actuation_1()

check_actuation_3()

Normal Execution Mode Trusted Execution Mode

….

Task Instance 1 Task Instance 2

Figure 6.4: Random selection of actuation commands for checking.

section where normal executions are carried-out and (b) trusted sections where critical information

(i.e., actuation events) are examined. The high-level schematic of SCATE is depicted in Fig. 6.3.

When a task issues actuation command, SCATE transfers the control to secure mode using

TrustZone SMC instructions. In the secure mode a designer-given trusted entity checks the

actuation commands. In this work I assume that my checking module uses policy rules that

defines the mapping of various system states and corresponding legitimate actuation events (refer

to Section 6.3 for details). Note that although I use ARM TrustZone as the underlying TEE to

demonstrate my ideas, other trusted environments can be used in SCATE without loss of generality.

As we shall see in Section 6.3.1, the context switch overhead for switching between normal

and trusted modes is not negligible. For example, consider the rover used in my experiments

(Section 6.5). The control loop frequency of the controller task is 5 Hz (200 ms) and it generates

four actuation commands (to set the speeds and direction of attached motors). The controller task

must complete execution before its sampling interval (200 ms). If we check the speed and direction

values of each of the four commands using TrustZone, the controller task fails to comply with its

timing requirements (since it requires 261 ms to finish). For such situations (i.e., when not all the

commands can be verified while respecting timing guarantees for all the tasks), SCATE selectively

checks a subset of actuation events. For this, I leverage the tools from game theory [26, 114] and

randomly select a subset of commands (for checking) in each job of a task that provides us a

trade-off between security and timing guarantees (see Section 6.4 for details). Figure 6.3 shows

an illustrative case where a tasks generates three actuation requests and we can check at most

two request to comply with timing/safety requirements. In this case SCATE randomly checks two

commands in different task instances (e.g., command (2, 3) in first instance and command (1, 3)

in second instance). From earlier rover example, by reducing the number of checks to half3 (e.g.,

randomly checks two commands in each task instances instead of all four), SCATE manages to

finish the controller task before 200 ms without significantly degrading security (e.g., on average,

SCATE requires one additional task instances to detect an attack when compared to the scheme

that checks all four commands).

3Section 6.5 presents details of this experimental setup and additional results.

58

6.2.4 Background

I now provide background on the TEE technology (ARM TrustZone [25]) and the game-theoretic

modeling tool [26]) used in this work.

Trusted Environments and ARM TrustZone

Trusted environments are set of hardware and software-based security extensions where the

processors maintain a separated subsystem in addition to the traditional OS (also called rich

OS) components. TEE technology has been implemented on commercial hardware such as ARM

TrustZone [25] and Intel SGX [113]. In this work I consider TrustZone as the building block of

our model due to wide usage of ARM processors in CPS. I note that although I use the TrustZone

functionality for demonstration purposes, my ideas are rather general and can be adapted to other

TEE technology without loss of generality.

TrustZone contains two different privilege blocks: (i) regular (non-secure) execution environment,

called “Normal World” (NW) and (ii) a trusted environment, referred to as “Secure World” (SW).

The NW is the untrusted environment that runs a commodity untrusted OS (called rich OS)

whereas SW is a protected computing block that only runs privileged instructions. TrustZone

hardware ensures that the resources in the SW can not be accessed from the NW. These two

worlds are bridged via a software module, the secure monitor. The context switch between the NW

and SW is performed via a secure monitor call (SMC).

Normal-Form Games

The overheads for TEE context switch is costly (Section 6.3.1). If a task cannot verify all

the actuation commands, I propose to select only a subset of commands in each job for checking.

For this, I leverage the tools from game theory [110] to ensure that the chosen subsets are non-

deterministic, at least from the adversary’s point of view (see Section 6.4 for details). In multi-

agent systems, if the optimal action for one agent to take depends on the actions that the other

agents take, game theory is used to analyze how an agent should behave in such settings. In a

normal-form game [26], every player j ∈ {1, 2, · · · , J} has a set of strategies (or actions) σj and

a utility function uj : σ1 × σ2 × · · · × σJ → R that maps every outcome (a vector consisting

of a strategy for every player) to a real number. As we shall see in Section 6.4.1, I formulate

this problem as a two-player game (e.g., system designer and adversary). The output of the

game finds the probability distribution over the player’s strategies (i.e., fraction of time a given

strategy is selected in the game) that leads to optimal outcome. While game-theoretic analysis has

been used in other modeling problems (e.g., patrolling [115], network routing [119], transportation

systems [120], tracking information flows [48], decision making [50]), to the best of my knowledge

this is the first work that uses normal-form games in the real-time security context.

59

action1 action2 action3 action4

state1 state2 state3 ...

...

System States

Actions
(Valid Actuation Commands)

(a)

a1 a2 a3

s1 s2 s3
States (Rover Positions):
s1: right of the line
s2: left of the line
s3: on top of line

Actuation Commands:
a1: move right
a2: move left
a3: drive forward

(b)

Figure 6.5: (a) State → Action mapping used in SCATE for checking actuation commands. (b)
Example states and corresponding valid actuation commands for a line-following rover.

6.3 CHECKING ACTUATION COMMANDS

In SCATE a “checking module” executes inside the trusted environment. The checking module

observes system states and decides whether a given actuation command is legitimate or malicious.

Recall that when a task issues actuation requests, SCATE transfers control to the secure execution

mode using TrustZone SMC instructions. In particular, for a given real-time platform I assume

that there exists a CheckAct(τi, a
j
i , t) function4 that examines a given actuation command aji

(where 1 ≤ j ≤ Ni, Ni is total number of commands the task issues) generated by a task

τi at a given time t. As shown in Fig. 6.5a, the checking module uses policy abstraction

rules [121], viz., State → Action pairs where the State predicate represents a given system

state and Action denotes corresponding valid actuation command(s). In particular, I assume

that when τi executes an actuation command, function CheckAct(τi, a
j
i , t) first observes system

state S(t) and then decides whether the actuation command aji is valid for the current state

S(t). For instance, consider the line-following rover presented in Section 6.2.1. The directions

for the wheels of the rover (i.e., forward, left and right; controlled by the attached motors) are

the actuation commands. At any given point of time, the rover can be in one of three states:

S = {ON LINE,LEFT OF LINE,RIGHT OF LINE} that denotes whether the rover is on top

of the line or shifted left/right of the line, respectively. The rover controller task performs the

following actuation operations (i.e., actions): move left()/move right() (move the rover left/right,

respectively) and move forward() (drive the rover forward). The corresponding State → Action

mapping for this rover is illustrated in Fig. 6.5b. If the rover is on left side of the line (i.e.,

State = LEFT OF LINE), the valid command should be move right() (i.e., shift the rover back

to the line so that it stays on the line) and if the rover is on top the line (i.e., State = ON LINE),

the controller task should drive it forward (i.e., issue move forward() command).

Table 6.1 summarizes the possible checks for various real-time platforms — however, this is by

4The exact function depends on the specific CPS and application requirements.

60

Table 6.1: Actuation Command Checking for Various Cyber-Physical Platforms*

Platform Application Actua-
tors

Possible Checking Conditions

Robotic vehicle
(ground, aerial)

Surveillance,
agriculture,
manufacturing

Servo,
motor

(a) Check if the robot is following the mission; (b) allow only
predefined number of actuation commands per period

Robotic arm Manufacturing Servo,
buzzer

(a) Check the servo pulse sequences matches with the desired
(design-time) sequence; (b) do not raise alarm if the pulse
sequence is normal

Infusion/Syringe
pump

Health-care Motor,
display

(a) Drive the motor only to allowable positions/rates (b)
display only the amount of fluid infused (e.g., obtained from
motor encoders)

Water/air
monitoring system

Home/indus-
trial automa-
tion

Buzzer,
display

(a) Send high pulse to buzzer only if water-level is high/air
quality abnormal/detect smoke; (b) do not display alert if the
system state is normal

Surveillance system Home/indus-
trial automa-
tion

Servo,
buzzer

(a) Trigger alarm only if there is an impact/object detected in
camera; (b) rotate camera (using servos) only within allowable
pan/tilt angle

*Platforms listed in shaded rows are implemented and evaluated in this work. Other examples are presented here to illustrate
applicability of my ideas for multiple use-cases.

no stretch meant to an exhaustive list. I assume that State → Action rules are given by the

designers based on system requirements. I note that the ideas presented here are agnostic to the

specific checking method and SCATE is compatible with existing techniques (e.g., defining rules

at design times [62, 122], deriving from specifications [123] and based on statistical analysis [74].)

In this work I focus on how to selectively examine random subsets of actuation commands by

using designer-provided checking rules. In Section 6.5.2 I describe implementation of CheckAct()

functions for four realistic platforms used in my evaluation.

6.3.1 The Requirement for Coarse-Grain Checking

In order to check actuation commands we must ensure that SCATE should not cause inordinate

delays and the timing requirements of real-time tasks are satisfied (i.e., they complete execution

before deadlines). I therefore develop design-time tests (see Appendix C.2) that ensure tasks

meet their timing requirements (deadlines). My analysis in Appendix C.2 shows that there is an

overhead for inspecting the actuation commands using TEEs and a task may miss its timing/safety

requirements. As I mentioned earlier, any failure to meet timing requirements disrupts the stability

of the system and can be catastrophic. For instance, consider the rover example from Section 6.2.3.

If the controller task fails to issue navigation commands before the time limit, the rover may

stall, or worse, may not be able to steer properly and even crash. Hence, delays caused by the

checking mechanisms can also result in such problems. Table 6.3 presents additional examples for

the possible consequences when tasks are unable to meet their timing requirements.

Existing work [124–126] show that although TEEs are implemented on hardware, they can still

cause significant overheads — this is particularly acute in real-time applications. For instance,

consider the Linux-based TrustZone port, OP-TEE [127] supported on many embedded platforms.

61

My experiments show that the overhead of switching between normal to trusted mode is around

66 ms for Raspberry Pi platform. For completeness, I also performed experiments on an ARMv8-

M Cortex-M33 architecture using ARM FVP libraries [128] where the regular applications were

running on FreeRTOS [94] and trusted mode codes were executed on bare-metal. I find that

the mode switching delays in this setup are 2 ms. I note that the delays are higher in Linux

environment due to extra overheads (i.e., execution of sequence of API calls [124]) imposed by

Linux kernel and OP-TEE secure OS. Although the overheads of secure calls (SMC) for switching

between regular and trusted modes are platform-specific, it may not be feasible to check multiple

actuation commands while retaining real-time guarantees. For example, if a task operates at 50

Hz (i.e., required to finish before 20 ms) [63] and regular computation takes 10 ms, the FreeRTOS-

based setup allows at most 5 checks to comply with timing requirements. Likewise, for applications

running on a Linux and OP-TEE-based Raspberry Pi platform (Section 6.5.2), we can check at

most 3 commands per instance if the controller task operates at 5 Hz. We therefore need smart

techniques, say where only a subset of commands are vetted for each instances while maintaining

security guarantees, to support TEE-based checking for real-time applications. I now present my

methods to achieve this (based on game-theoretic analysis) in the following section.

6.4 GAME-THEORETIC ANALYSIS FOR RANDOM CHECKING

As checking all (or most of the) actuation commands can jeopardize the safety of the real-time

tasks, I now propose a mechanism to deal with this issue of monitoring overheads. I consider

the case when there exists a task τi such that τi cannot perform all the Ni checking before its

deadline (denoted by Di). One option to reduce the number of checks is to verify only a subset of

commands so that the task can finish before its deadline. That is, check a subset of commands,

Ki, (Nmin
i ≤ Ki < Ni) such that RTEEi ≤ Di, ∀τi ∈ Γ where RTEEi is the response time (i.e.,

time between task arrival to completion). The challenge is then to decide which subset of Ki

(among Ni) actuation requests should be selected for checking in each task τi. In addition, if we

check only fixed Ki commands and an adversary jeopardizes some or all of the remaining Ni −Ki

requests, then the attack will succeed and remain undetected. To balance the security and real-time

requirements, SCATE randomly selects different subsets of requests for checking. In particular, at

each task instances SCATE randomly picks a set of Ki commands with pre-computed probability

distributions. While I pick a subset of commands, it should look like (to adversary) that SCATE is

checking it all. As a result, it will be difficult for an attacker to identify which subset of requests are

selected for checking in evading detection and thus less chances of success — since each instance

of a task will select a different subset of requests for vetting. As we shall see in Section 6.4.1

I formulate this problem as a two-player game [26] and develop Algorithm 6.1 to determine the

feasible number of Ki inspection points that provide similar level of security. I now illustrate my

ideas with a simple example.

62

Intuition and Example. Let us consider a ground rover performing a line-following mission.

The rover controller task (τc) generates the following actuation requests (Nc = 3): (a) setEncL(val)

and setEncR(val) that set the speed of left and right motor encoders, respectively (denoted by a1
c

and a2
c); (b) setNav(cmd) that issues a navigation command where each cmd specifies values to the

peripheral registers for navigating the rover forward, backward, left and right direction (denoted

by a3
c). Recall from the description of the system model that there exists designer-provided weights

ωji for checking each of the commands aji (see Appendix C.1). Let the weights are given by:

Ωc = {ω1
c , ω

2
c , ω

3
c}. As we shall see in Section 6.4.1, the weights are used to determine which

commands will be checked more often. For example, if ω3
c = 2 and ω1

c = ω2
c = 2, then SCATE

tends to check setEncR(val) twice more times that the other two commands. The checking for a1
c

and a2
c involves to check whether the speed value is within a given bound (e.g., val ∈ [v−, v+]) and

for a3
c the checking module verifies if the cmd value is consistent so that the rover is within the

line and correctly follows the mission. I now consider the case when checking all three requests

does not comply with the timing requirement of τc and we can only verify at most Ki = 2 requests

(I describe how to calculate the value of Ki for each task τi in Section 6.4.2). Therefore, the

possible combinations for perform checking are as follows: Xc = {(a1
c , a

2
c), (a

2
c , a

3
c), (a

1
c , a

3
c)}. For

each instance of the task τc, SCATE randomly selects any j-th element from the set Xc with

probability xjc that provides better “monitoring coverage”. For example, let x1
c = x2

c = 0.25 and

x3
c = 0.5. Then, for any given instance of τc the possibility of verifying both a1

c and a2
c is 25%,

verifying both a2
c and a3

c is 25%, where the possibility of verifying a1
c and a3

c is 50% (recall that by

assumption we can check only 2 commands per job). In the following section I present my ideas to

compute these probabilities using game-theoretical analysis.

6.4.1 Generating Randomized Schedules

I now present our techniques to derive the probabilities for selecting random subsets of commands

to be checked. The formulations this section assumes that the size of feasible subset of commandsKi

— that ensures all timing requirements are met — is known for each task. In Section 6.4.2 I present

algorithms to derive Ki. I model the selection of a subset of commands (for checking) as two-player

normal-form game (also called leader-follower game) [26, 114, 115]. The game formulations allow

the designers to model the fact that an attacker acts with knowledge of defender’s actions and

thus reacting accordingly. Since normal-form games address the challenges posed by my context

(i.e., selecting optimal actions for decision-making agents), I use this game model in SCATE for

generating randomized schedules.

Game Setup

In my model I consider two players: the system designer and the adversary. Let Xi denote the

set of all combinations of choosing Ki subset of commands from total Ni number of possibilities,

63

i.e., the size of set |Xi| =
(
Ni
Ki

)
= Ni!

Ki!(Ni−Ki)! . In game-theoretic terminology Xi represents

the set of designer’s “strategies”. As we discuss in the previous section, the j-th element

of Xi is a vector of size Ki that represents which subset of commands will be picked for

inspection. Let us now introduce the variable Qi that represents the attacker’s set of actions.

The set Qi represents the possible combinations of actuation requests invoked by τi that an

adversary can compromise. Recall from the rover example where the controller task τc invokes

Nc = 3 actuation requests, the adversary can pick one of the following eight combinations:

Qc = {(a1
c), (a

2
c), (a

3
c), (a

1
c , a

2
c), (a

2
c , a

3
c), (a

1
c , a

3
c), (a

1
c , a

2
c , a

3
c), (∅)}. For example, the first element in

the set denotes the adversary chooses to compromise only invocation a1
c , the fifth element implies

both a2
c and a3

c are compromised while the last element implies there is no attack in the job during

this instance of the task. Note that the size of the attacker’s strategy set Qi is 2Ni .

Recall that each actuation command aji is associated with a designer-given weight ωji (see

Section 6.2.2 and Appendix C.1). The higher weight for a given command implies that designers

want to check the corresponding command often. For instance, from the rover example designers

may want to check navigation commands (a3
c) more frequently than the ones that set the wheel

speeds (a1
c , a

2
c) and may set higher weight for ω3

c . Let Λ(Xj
i) denote the set of commands used

for vetting and Ψ(Xj
i) is the set of corresponding weights in the j-th element of the strategy

set Xi. Likewise Λ(Qli) denotes the set of commands and Ψ(Qli) is the corresponding set of

weights compromised by the attacker in its l-th strategy. In the rover example, if we select j = 2

and l = 4 (i.e., second and fourth elements of the designers and adversary’s strategy set) then

Λ(X2
c) = {a2

c , a
3
c}, Ψ(X2

c) = {ω2
c , ω

3
c} and Λ(Q4

c) = {a1
c , a

2
c}, Ψ(Q4

c) = {ω1
c , ω

2
c}. I now introduce

two variables, viz., system reward (λ) and system cost (ζ). Higher system reward and lower cost is

good for the designers and bad for the attackers. Likewise, higher system cost and lower reward is

favorable for the adversary’s point of view (and bad for the designers).

If a task τi selects the j-th element from set of strategies Xi and the attacker selects the l-th

strategy from Qi for attack then the system reward is λj,li and cost is ζj,li . If the task selects a subset

of commands for vetting in its j-th strategy and the adversary also attacks those invocations in its

l-th strategy, i.e., Λ(Xj
i) = Λ(Qli), it implies that the attack is detected. Hence, I set λj,li a large

positive value (i.e., high system reward, since the attack is detected) and ζj,li a large negative value

(i.e., no system cost). In contrast, if Λ(Xj
i) ∩ Λ(Qli) = ∅ for any pair (j, l), i.e., Λ(Xj

i) does not

contain any commands in attackers l-th strategy Λ(Qli), that implies the compromised commands

are not vetted (i.e., the intrusion is not checked). In this case I set λj,li a large negative value (i.e.,

no reward) and ζj,li a large positive value (i.e., high system cost).

When the above two conditions do not hold (i.e., only a subset of the compromised commands are

checked) and therefore ∃(j, l) such that Λ(Xj
i) ∩ Λ(Qli) 6= ∅, I then obtain the system reward/cost

by normalizing the weights of both adversary and designer’s strategies. For this, I define the reward

and cost functions as follows.

64

System Reward:

λj,li =

∑
w∈Ψ(Xj

i)

w∑
w∈Ψ(Xj

i)∪Ψ(Qli)

w
(6.1)

System Cost:

ζj,li =

∑
w∈Ψ(Qli)

w∑
w∈Ψ(Xj

i)∪Ψ(Qli)

w
. (6.2)

Let me revisit the rover example with j = 2 and l = 4. In this case λ2,4
c = ω2

c+ω3
c

ω1
c+ω2

c+ω3
c

and

ζ2,4
c = ω1

c+ω2
c

ω1
c+ω2

c+ω3
c
. This reward and cost functions give me one way to measure the security of

the system in terms of how many significant invocations SCATE can monitor given an attacker’s

strategy. Higher system reward (and lower cost) implies that SCATE performs more checking with

respect to a given adversarial action.

Formulation as an Optimization Problem

I now develop models to determine the optimal strategy for each of the tasks. Let me now

denote xji is the probability of selecting j-th element from Xi (represents the proportion of times

in which a strategy j is used by the task τi in the game). The output of the game will provide us

the probability distribution of (randomly) selecting subset of Ki commands from the set possible

choices (i.e., Xi) for the different instances of a given task τi. For a given adversarial strategy l,

summing over all the strategy sets Xi (i.e.,
∑|Xi|

j=1 x
j
iλ
j,l
i and

∑|Xi|
j=1 x

j
i ζ
j,l
i) gives us the total system

reward and cost, respectively.

We can obtain probability distributions of selecting elements from Xi for a given attacker strategy

l (that maximizes the system reward) by forming a linear optimization program. In particular, for

each of the attacker’s l-th strategy (where 1 ≤ l ≤ |Qi|), I compute a strategy for the τi such that

(i) playing l-th strategy is a best response from the adversary’s point of view (i.e., more system

cost) and (ii) under this constraint, the strategy maximizes the reward for τi (i.e., checks critical

commands more often). The linear optimization program is given as follows.

max
xji

∑|Xi|

j=1
xjiλ

j,l
i (6.3)

Subject to: ∀l′ ∈ [1, |Qi|],
∑|Xi|

j=1
xji ζ

j,l
i ≥

∑|Xi|

j=1
xji ζ

j,l′

i (6.4)∑|Xi|

j=1
xji = 1 (6.5)

xji > 0, ∀j ∈ [1, |Xi|]. (6.6)

65

The objective function in Eq. (6.3) maximizes the total system reward. The constraint in

Eq. (6.4) ensures that the current (e.g., l-th) strategy results in higher cost for the attacker when

compared to other adversarial strategies. The constraint in Eq. (6.5) ensures the sum of probability

distributions equal to unity and the last constraint in Eq. (6.6) ensures non-zero probabilities so

that all combinations of the actuation commands from Xi can be selected.

Let [xji]j=1:|Xi|(l) denote the solution obtained from the linear programming formulation for

the l-th adversarial strategy. Then, from all feasible strategies l (where 1 ≤ l ≤ |Qi|) I choose

the one (say l∗) that maximizes the objective value in Eq. (6.3), i.e., l∗ = argmax
1≤l≤|Qi|

∑|Xi|
j=1 x

j
iλ
j,l
i .

The variables [xji]j=1:|Xi|(l
∗) obtained by solving the corresponding linear program gives us the

probability distributions of selecting Ki subset of commands from total Ni commands. The game-

theoretical analysis allows me to show that the probability distributions obtained by solving the

l∗-th linear program will be optimal for the task τi (i.e., maximizes system reward) [26, 115].

For a given strategy l, the above linear programming formulation can be solved using standard

off-the-shelf optimization solvers [129, 130] in polynomial time. Since the strategy set Qi is finite

by definition, we can calculate the optimal probability distributions (i.e., [xji]j=1:|Xi|(l
∗)) in finite

amount of time since it is polynomial in the total number of adversarial strategies.

6.4.2 Calculating the Size of the Feasible Command Set

My focus here is to examine as many actuation commands as possible while meeting real-time

guarantees. The game formulation from the previous sections assumes that I know the size of the set

Ki and calculate the probabilities accordingly. However, in a system with multiple real-time tasks,

finding the size of feasible set Ki for each task τi ∈ Γ while also meeting the real-time requirements

(deadlines) is a non-trivial problem. I therefore develop an iterative solution for finding the size of

this set.

My proposed solution works as follows (refer to Algorithm 6.1 for a formal description). In Lines

1–4, I first fix Ki = Nmin
i ,∀τi and check the whether all tasks meet their timing requirements (i.e.,

finish before their deadlines). If there exists a task such that it fails to meet timing requirements,

I report that it is “infeasible” to integrate SCATE in the target system while satisfying designer

specified QoS requirements (Line 7). This infeasibility result provides hints to the designers to

update or modify system parameters (e.g., number of commands, QoS requirements) to enable the

ability to check actuation commands in the system. Otherwise (i.e., RTEEi ≤ Di), I optimize the

number of commands a task can verify in an iterative manner (Lines 9–18). To be specific, for

a given task τs I perform a logarithmic search (see Algorithm 6.2 for the pseudo-code) and find

the maximum number of commands K∗i that can be verified within the range [Nmin
i , Ni] such that

all low-priority tasks τl meets their timing requirements (Line 11). If the selected parameter K∗i
is less than the total commands Ni, I then use game theoretical-analysis from Section 6.4.1 and

obtain probabilities of randomly selecting K∗i commands (in each task instance) from a total of

66

Algorithm 6.1: SCATE: Parameter Selection
Input: Input taskset parameters Γ
Output: For each task τi, the size of the feasible set K∗i ≥ Nmin

i and
selection probability xji , j = 1, · · · , |X∗i | for each of the combinations in the strategy set X∗i ;
Infeasible otherwise.

1: /* Check minimum feasibility requirements */
2: for each τi ∈ Γ do
3: Set Ki = Nmin

i and calculate response time RTEEi using Eq. (C.3)
4: end for
5: /* Unable to integrate SCATE with minimum QoS requirements */
6: if ∃τi such that RTEEi > Di then
7: return Infeasible
8: end if
9: for each task τi (from higher to lower priority order) do

10: Find maximum K∗i ∈ [Nmin
i , Ni] such that all low-priority tasks τl meet their timing requirements (i.e.,

RTEEl ≤ Dl)
11: /* not all the commands can be examined — obtain parameters for non-deterministic checking */
12: if K∗i < Ni then
13: Determine the strategy set X∗i for K∗i where |X∗i | =

(
Ni
K∗i

)
and

obtain probabilities xji by solving the game formulation
14: end if
15: Update response time RTEEl for each τl that executes with a priority lower than τi

with the updated size K∗i
16: end for
17: /* return the solution */
18: return the size of the feasible set K∗i and

probability xji of selecting j-th strategy (j = 1, 2, · · · , |X∗i |) from X∗i
for each task τi ∈ Γ

Algorithm 6.2: Calculation of Maximum Feasible Actuation Requests for a Given Task
τi

1: Define Kl
i := Nmin

i , Kr
i := Ni, Kc

i := 0
2: Set K̂i := {Nmin

i } /* Initialize a variable to store feasible values */
3: while Kl

i ≤ Kr
i do

4: Update Kc
i := bK

l
i+Kr

i
2
c

5: if ∃τl ∈ lp(τi, πp) such that τl is not schedulable with Ki = Kc
i then

6: /* Decrease verification load to make the taskset schedulable */
7: Update Kr

i := Kc
i − 1

8: else
9: /* Taskset is schedulable with Kc

i */

10: K̂i := K̂i ∪ {Kc
i } /* Add Kc

i to the feasible list */
11: /* Check schedulability with larger Ki for next iteration */
12: Update Kl

i := Kc
i + 1

13: end if
14: end while
15: /* return the maximum from the set of feasible values */

16: return max
(
K̂i
)

Ni commands (Line 14). The above process is repeated for all the tasks and the algorithm finally

returns the corresponding selection probabilities (Line 20).

67

Rich OS (Linux) TrustZone Enclave (OP-TEE)

Check Actuation
Commands

Real-Time Tasks

Real-Time Scheduler
Kernel Space

Actuation
Requests

1

Random
Selection

2 4

Switch to
Secure Mode

3

Figure 6.6: Sequence of steps involved in the SCATE operation: when the tasks generate actuation
requests (e.g., ioctl() calls), the commands are first received by the scheduler and then (randomly)
selected requests are transferred to the secure enclave for checking.

6.5 EVALUATION

In this section I first present my implementation details (Section 6.5.1). I then show the viability

of SCATE (i) using four realistic cyber-physical case-studies (Section 6.5.2) and (ii) generated

workloads for a broader design-space exploration (Section 6.5.3).

6.5.1 Implementation

I implemented SCATE on Raspberry Pi 3 Model B [106] (equipped with 1.2 GHz 64-bit ARMv8

CPU and 1 GB RAM). I selected Raspberry Pi as my implementation platform since (a) it supports

a commodity TEE (ARM TrustZone), (b) existing literature [15, 45, 62, 131–133] has shown the

feasibility of deploying cyber-physical applications on Raspberry Pi and (c) it provides a robust

development environment that allows me to analyze the viability of my approach on multiple

realistic off-the-shelf cyber-physical systems under a common platform. In my experiments I

considered both motors (DC as well as stepper) and servos as actuators. I used the Adafruit

motor shield [134] (an I/O extension daughter-board for Raspberry Pi) that allowed us to control

multiple actuators using the I2C interface. For controlling motors and servos I used an open-

source motor driver [135] and servo controllers [136]. I implemented trusted execution modes using

the OP-TEE [127] software stack that uses GlobalPlatform TEE APIs [137]. OP-TEE provides

a minimal secure kernel (called OP-TEE core) that can be run in parallel with a rich OS (e.g.,

Linux). I used Ubuntu 18.04 filesystem with a 64-bit Linux kernel (version 4.16.56) as the rich

OS and executed CheckAct() functions in the OP-TEE secure kernel (version 3.4). The controller

and checker codes are written in C for compatibility with the OP-TEE APIs. For accuracy of my

measurements I disabled all the frequency scaling features in the kernel and executed RP3 at a

constant frequency (i.e., 1.2 GHz, the maximum supported clock speed). This was to ensure that

values observed in different trials were consistent.

The linear programs were solved using the Python-MIP library [130] with CBC solver [138].

SCATE operates at the scheduler-level (see Fig. 6.6). When a task generates actuation requests

(i.e., ioctl() calls, see block 1○ in Fig. 6.6), the real-time scheduler randomly selects a subset

68

Table 6.2: Summary of My Implementation Platform

Artifact Configuration

Platform Broadcom BCM2837 (Raspberry Pi 3)
CPU 1.2 GHz 64-bit ARM Cortex-A53
Memory 1 Gigabyte
Operating System Linux (NW), OP-TEE (SW)
Kernel version Linux kernel 4.16.56, OP-TEE core 3.4
Interface I2C
Boot parameters dtparam=i2c arm=on, dtparam=spi=on, force turbo=1,

arm freq=1200, arm freq min=1200, arm freq max=1200

of commands (block 2○). In particular, from the probabilities obtained by the game model

(Section 6.4.1), SCATE uses the roulette-wheel selection technique [139] for selecting a random

subset of commands at runtime (i.e., for each instance of a task). My implementation uses a

standard C random number generator. However, this does not preclude the use of other hardware-

supported generators such as Z1FFER [140] and OneRNG [141] to ensure tamper-proof true random

number generation and further improve the security of SCATE. For each of the selected commands,

the scheduler then transfers the control to the secure enclave (i.e., OP-TEE) for checking (blocks 3○
and 4○ in Fig. 6.6). For each of my case-studies, I implemented the CheckAct() as an OP-TEE

trusted application. The implementation and details of CheckAct() for the each of platforms is

presented in Section 6.5.2. I note that my implementation using Raspberry Pi, Linux and OP-

TEE serves as a good proof-of-concept and can be extended with other OS, hardware platforms

and TEE architecture without loss of generality. My implementation code is available in a public

repository [116]. Table 6.2 summarizes system configurations and implementation details.

6.5.2 Experiments with Realistic Cyber-Physical Platforms

I chose four realistic real-time cyber-physical platforms as case-studies to evaluate the efficacy of

SCATE: (a) ground rover, (b) UAV flight controller, (c) robotic arm and (d) syringe/infusion pump

that are used in many cyber-physical applications. These are off-the-shelf platforms and I did not

modify them. I note that unlike generic applications, there are few publicly available open-source

real-time platforms due to their proprietary nature (see more in Chapter 7). In addition, there

is a significant amount of effort involved in setting up a TEE-supported real-time cyber-physical

platform and generating evaluation traces from it. I therefore limit ourselves to four real-time

platforms in this paper — albeit they cover a wide range of application domains (see Table 6.1)

and should suffice to demonstrate the feasibility of my approach.

Since I focus on scheduling independent actuation checking events, the type of attacks and

checking techniques are orthogonal to my model. For demonstration purposes, I use fault

injection [142, 143] to mimic malicious behavior and trigger attacks that are known to the checking

module (i.e., CheckAct() function). Note that this is a standard technique used by the researchers

69

Table 6.3: Real-Time Cyber-Physical Platforms used in My Experiments

Platform Application Real-
Time/Safety
Requirements

Actuation
Commands

Attack
Demonstra-
tion

Checks inside
Enclave

Ground Rover The rover performs
a line following
mission. The
controller task sets
the speed of the
rover and steers the
wheels (based on its
position on the line)
by executing a PID
control loop

Set the speed
and direction
of the motors
for the wheel
movements
within sampling
interval (i.e.,
control loop
frequency, set at
5 Hz)

• Set the speed
of the wheels
• Set wheel
directions (left,
right, forward
and backward)

DoS attack [62]:
arbitrarily sets
high speed for
one of the wheel
motors

The speed of motors
can only be within
predefined limit

Flight
Controller

Executes a PID
control loop and
issues PWM signals
to four motors
connected to the
four propellers of a
quad-copter

Issue the PWM
signal within
sampling
frequency
interval (5 Hz
in our setup)
to ensure the
quad-copter is
stable

• Set PWM
frequency
• Set PWM
pulse duration
(four, one for
each of the
propellers)

Parameter
corruption
attack [17]:
modify
PID control
coefficients and
send incorrect
PWM pulse to
the front right
motor

Check PID control
coefficients (i.e.,
pulse duration
values) before
issuing PWM
signals to the motos

Robotic Arm The robot arm
performs the
following operations
in a sequence: pick
an object (close it
claws), move the
arm to destination
position, drop the
object (open claws)
and reset the arm
back to initial
position

Complete
movement of the
object before
arrival of the
next object;
inter-arrival
duration of the
objects was set
at 250 ms

Set rotation
angle for each of
the four servos

Synchronization
attack [143]:
sends incorrect
angle value
to the servo
channel and
prevents the
arm from
resetting back
to its initial
position

Check the
consistency of each
(channel, angle)

pair (i.e., the angel

value for a given
servo channel

can not be more
than the designer
provided bounds)
before issuing pulses
to the servo motors

Syringe Pump The pump pushes
certain amount of
fluid and then pulls
the trigger to reset
the syringe to its
initial position

Perform the
push/pull
operations
within designer
specified time
limit (set at 300
ms)

• Set motor
rotation
frequency
• Drive the
motor for-
ward/backward
to push the flu-
ids and reset the
motor position

Bolus tampering
attack [131,
143]: the
attacker injects
more fluid than
the permitted
volume

Checks the amount
of fluid the motors
can pump (i.e.,
monitor the number
of PUSH/PULL events
the controller task
invokes)

to evaluate security solutions in cyber-physical applications [13, 17, 44, 46, 62, 143]. I now present

the evaluation platforms used in our experiments. Table 6.3 summarizes the properties of each of

these systems and attack/detection techniques used in my experiments.

• Case-Study #1 (Ground Rover): My first case-study platform is a ground rover

introduced in Section 6.2.3. There are two motors attached to the rover wheels (e.g., actuators in our

context). I used an open-source implementation of the rover controller (written in Python) [144]

and ported it to C for compatibility with OP-TEE APIs. The rover performed a line-following

mission where it moved from a source to a target way-point by following a line. Each instance of

the controller task first set the speed of the motor for the wheel movements and then steered (e.g.,

forward, left or right) based on its position on the line.

Actuation: The rover has four actuation commands: two for setting the speed of both of the wheels

70

and two for issuing navigation commands to the two motors attached to the wheel. Table 6.3 lists

these actuation commands.

Attack and Consequences: I injected a DoS attack [62] that arbitrarily sets a high speed for one of

the motors (to destabilize the rover and move it away from the line). This attack can deviate the

rover form its way-points (or even crash it) due to the imbalance in the wheel speeds.

Detection: In my setup the CheckAct() functions validates as to whether the rover speed is within

designer-given predefined thresholds [145] and verifies whether the navigation commands were

consistent with the rover position. I detected the DoS attack by checking the bounds on the speed

(i.e., 70–100 decimal values [145]) issued by the controller task.

• Case-Study #2 (Flight Controller): My second case-study is a flight-controller for quad-

copter [146]. The original controller code is developed for Arduino platforms. Since Arduino

boards do not support TrustZone, I adapted it to execute on Raspberry Pi and OP-TEE enabled

environments. In this setup the controller executes a PID control loop using the Ziegler–Nichols

method [147] and sends pulse width modulation (PWM) signals to spin each of four motors (i.e.,

actuators) connected to the propellers.

Actuation: There are five actuation commands: one for setting the PWM frequency and other four

are for sending PWM pulse durations for each of the motors to rotate the copter propellers. The

CheckAct() functions verified whether the PWM frequency and pulse durations sent to each of the

motors were within a certain range (obtained from PID control logic).

Attack and Consequences: For this case study I considered a parameter corruption attack [17] that

modifies the control parameters (e.g., the PID control coefficients) at runtime and sends incorrect

pulse values to the front-right motors. This attack can suddenly turn off/freeze the propellers. As

a result, the copter will instantly fall/crash.

Detection: This attack is detected since I verify the PID parameters and corresponding PWM pulse

durations.

• Case-Study #3 (Robotic Arm): My next case-study platform is a robotic arm used in

manufacturing systems. The movement of the robotic arm is controlled by four servos (actuators

in our context). Each servo is connected to a specific “channel” (I/O port) in the Adafruit motor

shield. I use an open-source Python-based robot controller [148] and adapted the implementation

for my C-based setup.

Actuation: The robot performed an assembly line sequence with the following four actuation

operations: PICK(), MOVE(), DROP() and RESET() that (i) picks an object from first position,

(ii) moves the arm to a final position, (iii) drops the object and, finally, (iv) resets the arm to

initial position (to pick up another object). Each operation takes a (channel, angle) pair that

controls the rotation of the corresponding servo to the desired angle (45◦ in my setup [148]).

Attack and Consequences: Used a synchronization attack [143] that destabilizes the assembly line

by preventing the robot from resetting its arm back to the initial position. To demonstrate this,

I injected a logic bomb that sets an incorrect angle value in the RESET() operation (e.g., servo

channel 3). This attack can collapse the whole assembly line since the arm is not returned to the

71

initial position and hence is unable to pick up objects queued in the line.

Detection: CheckAct() detects this attack since it asserts that each servo can only move up to a

certain designer-provided angle (45◦) for each of the operations.

• Case-Study #4 (Syringe Pump): My final case-study platform is a syringe/infusion

pump [149]. In our experiments I considered a bolus delivery use-case [131, 150] where the syringe

pump first pushes a certain amount of fluid (PUSH event) and then pulls the trigger back (PULL

event). The syringe movement is controlled by a stepper motor. Since the original implementation is

for Ardiuno platforms (and does not support TrustZone), I modified the codes to make it compatible

with Raspberry Pi and its motor driver library.

Actuation: For a given fluid amount, the syringe pump implementation selects the number of steps

where the PUSH and PULL events should be called. I considered each of the PUSH/PULL events as

actuation requests since they set the direction of motor rotation. In my setup there were seven

actuation requests: one for setting the motor rotation frequency and six for PUSH and PULL events

(three each). PULL events were called after all three PUSH operations were completed.

Attack and Consequences: I implemented a bolus tampering attack [131, 143] where the adversary

injects more fluid than is required (i.e., more that three PUSH events). The attack has serious safety

consequences and is a health hazard since it can inject more fluids/medications to the patient body

than the permitted amount.

Detection: This attack is detected by CheckAct() since it verifies the motor frequency and how

many times each of the PUSH/PULL events are called.

Experience and Findings. In my study I compare SCATE against another scheme that

checks all the actuation commands. I refer to this latter technique as the “fine-grain” checking

scheme. Note that in fine-grain checking, there are more context switches between normal and

secure execution mode since all the commands are checked. The goal of my experiments was to

study the trade-offs between security and real-time requirements. I therefore considered the subset

of commands selected for checking were no more than 50% of the total number of commands so

that tasks can finish before their timing requirements (see Table 6.3)5 (i.e., K = b0.5Nc) and

assumed equal weights for all commands. I note that my implementation is modular and can be

easily adjusted with different weight values. Table 6.4 lists the total number of commands (N) and

subset of commands (K) for each of evaluation platforms. I now discuss the results of applying

these schemes on the case-studies and address the following research questions (RQs):

• RQ1. How quickly an intrusion can be detected by SCATE when compared to the fine-grain

scheme?

• RQ2. What are the performance impacts and runtime overheads of these schemes?

5I also carried out additional experiments to show the effect of varying this parameter (see Section 6.5.3).

72

Table 6.4: Number of Actuation Commands

Platform Total
Commands
(N)

Selected
for Vetting
(K = b0.5Nc)

Ground Rover 4 2
Flight Controller 5 2
Robotic Arm 4 2
Syringe Pump 7 3

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Ground Rover

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Flight Controller

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Robotic Arm

1 250 500 750 1000

2
4
6
8

10
12
14
16

Platform: Syringe Pump

0.0 0.2 0.4 0.6 0.8 1.0
Experiment ID

0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 in

 D
et

ec
tio

n
(N

um
be

r o
f T

as
k

In
st

an
ce

s)

Figure 6.7: Delay in detecting an intrusion (in terms of number of jobs) for SCATE in comparison
with the fine-grain scheme. On average (horizontal line), the detection delay is no more than 3
task instances for my case-study platforms.

Security Analysis

In the first set of experiments (Fig. 6.7) I analyze the delay in detecting the attacks: between

SCATE and fine-grain scheme. The workflow of my experiments for each of the platforms was

as follows: for a given platform and for each of my experiments (x-axis of Fig. 6.7) I triggered

the attack at random points in time (i.e., during the execution of the victim task) and measured

the time delays (in terms of number of task instances, y-axis in Fig. 6.7) when the corresponding

CheckAct() function detected the attack. In the fine-grain scheme, the time to detect an attack is

upper bounded by the sampling interval (period), Ti (i.e., requires at most one task instance). For

a given platform, each point (x̂, ŷ) in Fig. 6.7 represents the delay in detecting an attack (when

compared to fine-grain checking) at the x̂-th experiment trial is no more than ŷTc time units (i.e.,

requires ŷ additional task instances) where Tc is the period of the corresponding controller task (see

Table 6.3). The horizontal line in the figure shows the mean detection delay. From my experiments,

with 1000 individual trials for each of the four platforms, I found that the mean and 99th-percentile

detection delay were 1–3 and 3–12 sampling intervals, respectively (refer to Table 6.5 for exact

values). I note that this delay in detection results in improve response time and reduced resource

73

Unsecured Fine-grain SCATE
0

200

400

600

2 ms

261 ms

132 ms

Platform: Ground Rover

Unsecured Fine-grain SCATE
0

200

400

600

1 ms

325 ms

131 ms

Platform: Flight Controller

Unsecured Fine-grain SCATE
0

200

400

600

44 ms

303 ms

174 ms

Platform: Robotic Arm

Unsecured Fine-grain SCATE
0

200

400

600

3 ms

515 ms

223 ms

Platform: Syringe Pump

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
Ti

m
e

(m
s)

Figure 6.8: Execution time of the main controller task for different schemes. The plots show
99th-percentile values observed from 1000 individual trials. Red horizontal lines represent task
deadlines. Fine-grained checking requires more time to compute (due to additional checks and
context switching overheads) and often derives the system in unsafe states.

usage (see more in the following experiments) and that could be acceptable for many real-time

applications.6

Key Findings: SCATE can provide similar-level of security when compared to the fine-grained

checking since on-average it requires only 1–3 additional task instances to detect the attacks.

Timeliness and Overhead Analysis

The physical system will remain stable if the controller task can finish execution before its next

periodic invocation. As a reference, I also compare with traces from vanilla execution scenario when

there is no verification of actuation commands (i.e., tasks are always running in the rich OS). I refer

to this vanilla execution as “unsecured” since it does not protect the system from any adversarial

actions. Figure 6.8 shows the execution time (y-axis) for all three schemes (captured using the Linux

clock gettime() function and the CLOCK PROCESS CPUTIME ID clock). The vertical line represents

the deadlines, i.e., if the response time of the task is above the margin, the task misses its deadline

and the physical system will became unstable (and hence unsafe). Both the fine-grained and SCATE

increase response times when compared to the unsecured scheme since there is no context switch

between Linux and OP-TEE in the latter. I note that the increase in computing resources due to

integration of additional security checking/protection techniques (e.g., cryptographic operations,

memory isolation, intrusion detection, control flow integrity checks) is an expected side-effect to

improve security as observed in prior work [10, 16, 17, 19, 20, 124].

The fine-grained scheme expends more time (than SCATE) since it verifies all N actuation

commands, i.e., there are more context switches (from rich OS to secure enclave) and runtime

6I discuss this topic further in Chapter 7.

74

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Ground Rover

Unsecured SCATE Fine-grain

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Flight Controller

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Robotic Arm

0 5 10 15 20
0.0
0.2
0.4
0.6
0.8
1.0

Platform: Syringe Pump

0.0 0.2 0.4 0.6 0.8 1.0
CPU Load (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ric

al
 C

D
F

Figure 6.9: Empirical CDF of the CPU load. On average, SCATE uses 30.48%–47.32% less CPU.

checking overheads. As a result, the controller task can easily miss its deadline and drive the

system into an unsafe state for all of my case-studies. In contrast, intermittent checking (SCATE)

allows the tasks to finish within deadlines. I note that since, by definition, task response times

must be less than their periods for stability requirements (Appendix C.1), the controller tasks must

be required to execute with a slower frequency (i.e., longer period) if we want to enforce fine-grain

checking. For many control systems sampling rates affect the control performance [33]; therefore

by selectively checking only a subset of commands, designers can improve task response times and

control frequencies while ensuring stability of the physical system.

Key Findings: Fine-grained checking increases execution time and the controller tasks fail to

comply with their timing requirements. SCATE manages to complete execution before the deadline

of the tasks.

In the final set of experiments (Fig. 6.9) I show the resource usage (i.e., CPU load) for all three

cases for each platform in our evaluation. For that, I executed the controller tasks independently for

60 seconds and observed the CPU load using /proc/stat interface. I report the results from 1000

individual trials. The x-axes of Fig. 6.9 show the CPU load and y-axes show the corresponding

cumulative distribution function (CDF). The vertical line shows the average CPU usage. From

my experiments I found that SCATE increases CPU usage by 1.5–3.2 times when compared to

unsecured scheme – this is expected since vanilla execution does not provide any security guarantees

(and there is no context switch overhead). I also note that SCATE reduces CPU load by 30.48%–

47.32% when compared to the fine-grain scheme; this could be useful for many applications (say

for battery operated systems to improve thermal efficiency).

Key Findings: In comparsion with fine-grained checking, on average, SCATE uses 30.48%–47.32%

less CPU for its operation.

Remarks. My experiments on the four real platforms conclude that SCATE results in slight

75

Table 6.5: Comparison with Fine-grain Checking: Summary of Findings

Platform Performance Metrics: SCATE vs Fine-grain

Detection Delay
(Task Instances)

Execution Time
Reduction

CPU Usage
Reduction

Mean 99th-p (%) (%)

Ground Rover 1 3 49.69 37.58
Flight Controller 2 8 59.81 47.32
Robotic Arm 3 12 42.80 30.48
Syringe Pump 2 8 56.81 42.87

Table 6.6: Simulation Parameters

Parameter Values

Number of processor cores, P 4
Number of tasks, M [12, 40]
Task periods, Ti [10, 1000] ms
Number of actuation requests, Ni {[3, 5], [8, 10]}
Minimum requests verified per job, Nmin

i d0.2Nie
Verification overhead, Coi 10% of Ci

degradation in security (e.g., mean detection delay is at most 3 jobs) while provide significant

savings in task response time (i.e., guarantees stability) and resource usage. Table 6.5 summarizes

my findings (i.e., delay in detection as well as reduction in execution time and CPU usage) for all

four experimental platforms. As we see in the experiments, there is a trade-off between security

and real-time requirements. For instance, the fine-grain checking scheme can detect the intrusions

faster (i.e., requires at most one additional instances) when compared to SCATE. However it results

in the controller tasks taking significantly longer time to finish (i.e., can make the system unstable)

and consume more resources (e.g., CPU, battery, memory). By using the mechanisms proposed

in SCATE, designers can now measure such trade-offs, evaluate the cost of integrating security

and customize the number of security checks for each task that provides the best balance between

real-time and security guarantees.

6.5.3 Simulation-based Evaluation

I also developed an open source simulator [116] and conducted experiments with randomly

generated workloads for broader design-space exploration. Table 6.6 lists the parameters used

in my simulations.

76

[0.
0,0

.1]

[0.
1,0

.2]

[0.
2,0

.3]

[0.
3,0

.4]

[0.
4,0

.5]

[0.
5,0

.6]

[0.
6,0

.7]

[0.
7,0

.8]

[0.
8,0

.9]

[0.
9,1

.0]
0

50

100

C
ov

er
ag

e
R

at
io

 (%
) Medium: Ni [3, 5], i

Upper Bound Mean

[0.
0,0

.1]

[0.
1,0

.2]

[0.
2,0

.3]

[0.
3,0

.4]

[0.
4,0

.5]

[0.
5,0

.6]

[0.
6,0

.7]

[0.
7,0

.8]

[0.
8,0

.9]

[0.
9,1

.0]
0

50

100
High: Ni [8, 10], i

0.0 0.2 0.4 0.6 0.8 1.0

Base Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.10: Utilization vs coverage ratio. The upper bound represents the fine-grained checking
where all the commands are verified. SCATE can provide at least 50% coverage per instance if the
system utilization is no more than 70%.

Workload Generation

I considered P = 4 cores and each taskset instance contained [3P, 10P] tasks. To generate

systems with an even distribution of tasks, I grouped the tasksets by base CPU utilization7 from

[(0.01 + 0.1i)P, (0.1 + 0.1i)P] where i ∈ Z, 0 ≤ i ≤ 9. Each utilization group contained 500 tasksets

(i.e., a total 10 × 500 = 5000 tasksets were tested). I assumed that the tasks were partitioned

using the first-fit strategy [101]. I only considered the feasible tasksets (i.e., the response times

are less than deadlines for all tasks) — since tasksets that fail to meet this condition are trivially

unschedulable. Task periods were generated according to a log-uniform distribution where each

task had periods between [10, 1000] ms. I assumed rate-monotonic priority ordering (i.e., shorter

period implies higher priorities) [80]. For a given number of tasks and total system utilization, the

utilization of individual tasks were generated using Randfixedsum algorithm [108].

I further assumed that for each task τi, the overhead for checking each actuation command (Coi)

is no more than 10% of task execution time Ci (i.e., Coi = 0.1Ci). I considered two actuation

command request scenarios: (i) medium (Ni ∈ [3, 5], ∀τi) and (ii) high (Ni ∈ [8, 10], ∀τi). I also

assumed equal weights for all actuation commands and the minimum number of checking Nmin
i

was at least 20% of total number of requests (i.e., Nmin
i = d0.2Nie).

Results

In the following experiments (Fig. 6.10) I study how many commands each task can verify

per instance in SCATE. For this, I introduce a metric called “coverage ratio” (CR). The

CR metric shows us how many actuation commands (over total number of commands) we can

check without violating timing constraints. I define CR as follows: CR = 1
|Γ|
∑

τi∈Γ
Ki
Ni

where

1
|Γ|
∑

τi∈Γ
Nmin
i
Ni

≤ CR ≤ 1 |Γ| is the total number of tasks and the parameter Ki is obtained

from Algorithm 6.1 (see Section 6.4.2). Notice that CR = 1 (i.e., upper bound) is the fine-grain

7Recall from Section 4.3.1 that the utilization of a task is given by the ratio of its execution time to period [80].

77

20 30 40 50 60 70 80
Coverage Ratio (%)

1
3
5
7
9

11
13
15

D
et

ec
tio

n
Ti

m
e

(N
um

be
r o

f I
ns

ta
nc

es
)

Fine-grain
SCATE

20 30 40 50 60 70 80
Coverage Ratio (%)

0
10
20
30
40
50

S
C

A
TE

 v
s

Fi
ne

-g
ra

in
In

cr
ea

se
 in

 S
ch

ed
ul

ab
ili

ty
 (%

)

Figure 6.11: Real-time and security trade-offs: low coverage ratio (i.e., when fewer commands are
checked in each task instance), while increasing the acceptance ratio (left plot), can lead to increase
in detection time (right plot). I set the number of actuation commands at Ni = 5.

checking case since it verifies all the commands. Let me now define base-utilization of a taskset

(i.e., total utilization without any actuation checking) as U
P where U =

∑
τi∈Γ

Ci
Ti

, Ci is the task

execution time and Pi is the period. The x-axes of Fig. 6.10 show the base-utilization and y-axes

show coverage ratio for both medium (top plot) and high (bottom plot) actuation scenarios. From

my experiments I find that SCATE provides similar level of security when compared to fine-grain

scheme if the total utilization is no more than 60% and 40% for medium and high actuation request

scenarios, respectively. I note that while fine-grain checking can provide better coverage, this upper

bound is otherwise unattainable (specially for high utilization cases) since the all the tasks may not

meet their timing requirements. This is seen in my additional experiments (Fig. C.1). In contrast,

SCATE can provide at least 50% coverage even in high utilization cases (e.g., U
P ≤ 0.7), when

fine-grained checking fails and makes system infeasible.

Key Findings: The performance of SCATE is identical to the fine-grain scheme for low-to-medium

system utilizations (i.e., able to check all actuation commands). For higher utilizations, SCATE

manages to check more than 50% and 25% of the total actuation commands in each task instances

for the medium and high scenarios, respectively.

In the last set of experiments (Fig 6.11) I show the trade-off between real-time and security

guarantees. For this, I use the “schedulability” metric — a useful mathematical tool developed by

the real-time community to analyze whether all activities of a given system can meet their timing

constraints even in the worst-case behavior of the system [23]. A given taskset is considered as

schedulable if all the tasks in the taskset meet their timing requirements (i.e., response time is less

than or equal to deadline). If the tasks are not schedulable, the system will be in unsafe state

(and should not be deployed). The x-axes of Fig. 6.11 show coverage ratio. The y-axis in the left

figure shows the increase in schedulability in SCATE when compared to fine-grain scheme while

the right figure shows the detection time (in terms of number of task instances) for both of the

schemes. As I mentioned earlier, in the fine-grain scheme, the detection time for a known attack

is upper bounded by the period of the task (i.e., requires at most one additional instances when

compared to the insecure base-case). As we see from the figure, there is a trade-off between real-

78

time and security requirements: lower coverage ratio increases the schedulability (since there are

lower checking overheads) but increases the detection times. This is because if coverage ratio is low,

only a few commands are selected for checking during each instances and a vulnerable/compromised

command will only be verified infrequently; thus resulting longer detection times. I also carried out

additional experiments (Appendix C.3) to study the trade-offs of integrating TEE-based SCATE

mechanism in existing real-time platforms. My results (see Fig. C.1 in Appendix C.3) show that

there is a cost of integrating security (since it reduces the number of tasks that meets their timing

requirements).

Key Findings: If we perform fewer checks in each task instances, we can accommodate more tasks

in the system (i.e., result in higher acceptance ratio). However, this may result in delayed detections

(e.g., on average, requires eight additional task instances) since not all the actuation commands

are frequently checked.

Summary. My experiments reveal interesting trade-offs between real-time and security

requirements. Fine-grain checking — while providing better security guarantees (i.e., lower

detection time) — can negatively affect schedulability and, hence, safety and integrity of the system.

SCATE, in contrast, provides better schedulability guarantees (especially for high utilization cases)

but may be result in slower detection times. By using my approach, designers of the systems can

now customize their platforms and selectively verify actuation commands based on application

requirements.

6.6 CONCLUSION

In this chapter I present a framework, SCATE, to enhance the security and safety of the time-

critical cyber-physical systems. I use a combination of trusted hardware and the intrinsic real-time

nature of such systems and propose techniques to selectively verify a subset of commands that

provides a trade-offs between real-time and security guarantees. I believe that my technique can

be incorporated into multiple cyber-physical application domains such as avionics, automobiles,

industrial control systems, medical devices, unmanned and autonomous vehicles.

The techniques presented in Chapters 4–5 support a part of my dissertation hypothesis

(Section 1.1) by presenting software-based time-aware security integration techniques for both,

single core (CONTEGO) and multicore (HYDRA/HYDRA-C) platforms. Chapter 6 further

bolsters my claims and demonstrates the efficacy of a hardware/software-based co-design approach

(SCATE) to integrate security in single/multicore-based real-time CPS. Hence, the combined

frameworks developed in Chapters 4–6 affirm my dissertation hypothesis.

79

CHAPTER 7: DISCUSSION

My frameworks presented in Chapters 4–5 are not focused towards any specific security

mechanisms and allow designers to integrate any given technique based on application requirements.

Depending on the actual operation of the security tasks, a particular (class of) attack may or may

not be detectable. For instance CONTEGO, HYDRA and HYDRA-C may not detect a zero-day

exploit for some security tasks.

The underlying detection algorithms in security tasks could raise false positive errors that may

cause CONTEGO to switch modes unnecessarily. Again, a clever adversary may remain undetected

and provide a fake indication of malicious activity. This may cause CONTEGO to frequently

switch modes thus reducing performance and availability. Although CONTEGO guarantees that

the system will remain schedulable (and hence safe) even with mode changes (refer to Section

4.5.3), running of security tasks in the ACTIVE mode could impose additional overheads (i.e.,

increased load as we have seen in Fig. 4.5) that designers of the system may want to avoid. The

false-positive/false-negative errors can be mitigated by carefully designing the detection algorithms

based on application requirements. Further, I argue that forced mode changes would require an

adversary to intrude into the system and remain undetected for a long time. In practice that could

be difficult and unlikely in the presence of several intrusion detection tasks.

The security mechanism presented in Chapters 4–5 will collapse if the adversary can compromise

all the security tasks. To do so, the adversary would need to intrude into the system, remain

undetected and monitor the schedule [63] (to override the security tasks) over a long period of

time. While compromising all the security tasks could be difficult in practice, it nevertheless would

be worthwhile to check the integrity of the monitoring mechanisms, thus further improving the

security posture of the systems. This is an interesting research problem by itself and I investigate

this in Chapter 6. In particular, SCATE executes security checks (that verify actuation commands)

inside a trusted enclave (ARM TrustZone) and ensures that the protection mechanisms can not be

tampered.

Note that checking rules (i.e., State → Action matching) used in SCATE are generally derived

from system requirements/specifications and SCATE is compatible with existing techniques [122,

123]. My current implementation aims to block malicious commands. Other strategies could involve

the raising of alarms and/or sending out buffered (or even predetermined) alternate commands. I

intend to incorporate these features in future work. Chapter 6 assumes the existence of a “perfect”

checking module given by the system engineers (i.e., an attack is always correctly detected by

the CheckAct() function). Depending on the actual implementation, CheckAct() functions may

result in false-positive/false-negative errors. My model can also handle such cases by incorporating

the detection inefficiency factors in the calculation of reward/cost metrics. For example, if the

detection accuracy of CheckAct() is 95%, one way to express reward and cost functions is as

follows: λImperfect = (1− .05)λ and ζImperfect = (1 + .05)ζ, respectively.

80

While SCATE imposes delays in detection (e.g., on average 1–3 task instances when compared

to the scheme that checks all the actuation commands), this could retain the safety and normal

operations of the plant due to physical inertia. For example, consider a simplified drone example.

If an adversary sends false commands and turns off the propellers, the drone’s altitude will not

instantaneously drop to zero. Hence, although SCATE may not detect the attack instantly, it can

still block spoofed commands and prevent the drone from crashing. I present additional results

and discuss this topic further in Appendix C.4.

In this dissertation I consider fixed-priority scheduling scheme for real-time tasks — since this is

the scheduling policy used in a majority of the practical systems. Real-time researchers also propose

other schemes such as dynamic-priority [80], global [23] and randomized schedules [43, 151]. My

proposed schemes can also be adapted to different real-time scheduling techniques by modifying

schedulability conditions and response time expressions. Customizing the proposed frameworks for

other scheduling policies, however, require further research.

Although I demonstrate my ideas on various realistic real-time platforms, the lack of real-time

benchmarks is one of the major challenges in evaluating real-time cyber-physical security solutions.

This is partly because of the diversity of such applications and software/hardware platforms as

well as their hardware-dependent nature. In addition, critical cyber-physical applications are

rarely open-sourced for safety/security/proprietary reasons. As a result, existing real-time security

research is mainly evaluated by using simulations [10, 11, 19, 20] and/or limited case studies [12–

15, 18, 39, 40, 62, 83, 152–154].

81

CHAPTER 8: CONCLUSION AND FUTURE WORK

Modern real-time embedded systems have evolved in a complex manner due to autonomous

systems and cloud-like transparent infrastructure. They are also increasingly facing serious security

problems. There is a need for a multi-layered, systematic, engineering approach to secure such

critical systems. In this dissertation I develop frameworks to integrate security into legacy real-time

cyber-physical platforms. I start with a hypothesis that there exist security monitoring mechanisms

(such as those check filesystems integrity or verify actuation commands) that can be integrated into

real-time CPS using timing-aware techniques. I validate my hypothesis by developing solutions

that can integrate independent, periodic security monitoring tasks by imposing scheduler-level

constraints — for both, single core (Chapter 4) and multicore platforms (Chapter 5) — without

compromising timing/safety guarantees of existing tasks. I further propose a hardware/software

co-design approach (Chapter 6). The framework proposed in Chapter 6 prevents attacks that falsify

actuation commands by (a) leveraging hardware-assisted security extensions (to ensure integrity

of security checks) and (b) applying scheduling and game theory-based optimization techniques (to

comply with timing/safety requirements). I demonstrate the efficacy of my integration mechanisms

in practical cyber-physical platforms and analyze the design trade-offs — both, from security and

real-time perspectives. I believe that solutions developed in this work will help the designers to

characterize security of systems. It is my intent that this dissertation work will guide future research

efforts and ultimately improve the security of this field.

Correctness of the Dissertation Hypothesis. The aim of this dissertation is to show that

a given set of designer-provided security monitoring techniques can be adapted for real-time CPS

without compromising timing/safety requirements of existing tasks. Recall from Section 1.1 my

dissertation hypothesis states that it is possible to integrate security into real-time cyber-physical

systems by a careful (task/scheduler-level) analysis of, and co-design with, system constraints, viz.

software, hardware and timing requirements. My dissertation work has provided the means to

analyze each of the constructs mentioned in the hypothesis. Chapters 4–5 impose scheduler-

level constraints to integrate security monitoring tasks. I use intrusion detection mechanisms

as security tasks and demonstrate the efficacy of my integration techniques using (a) a custom

intrusion detection task (Chapter 5) as well as (b) off-the-shelf integrity checking tools such as

Tripwire [60] and Bro [69] (Chapter 4–Chapter 5). I further combine hardware-assisted security

features (ARM TrustZone [25]) with scheduling/optimization techniques and develop solutions that

prevent falsification of actuation commands while retaining real-time guarantees (Chapter 6).

The techniques developed in this work show that it is possible to integrate security in real-time

CPS by imposing time-aware, scheduler-level constraints (Chapters 4–5). I further demonstrate the

feasibility of hardware/software-based co-design approaches to integrate security in cyber-physical

applications without compromising real-time requirements (Chapter 6). Therefore the conjugated

techniques presented in Chapters 4–6 hold my dissertation hypothesis.

82

Table 8.1: Recommended Security Integration Techniques for Various Scenarios

Constraints Recommended
Security Checks CPS Platform Techniques

Independent of
real-time tasks

Does not support
trusted executions

CONTEGO (Single core)
HYDRA-C (Multicore)

Require application
specific checks

Supports trusted
executions

SCATE
(Single core and
Multicore)

Lessons Learned and Recommendations. The techniques proposed in this dissertation

analyze various real-time vs. security trade-offs. For instance, the ACTIVE mode in CONTEGO

can detect intrusions faster but it requires more resources and delays execution of other low-priority

tasks. Likewise, we can ensure better responsive by migrating the security tasks to empty cores

at runtime (HYDRA-C) but it increases number of context switches. Selective checks in SCATE

result in improved timing and QoS guarantees but comes with a cost of delayed detection.

The frameworks presented in Chapter 5 does not require low-level modifications in the system

kernel. Therefore it is possible to deploy continuous security monitoring techniques (e.g., HYDRA-

C) using scheduler interfaces provided by the real-time kernels (e.g., RT PREEMPT [100]). I note

that publicly available real-time Linux schedulers do not support adaptive mode switching such as

those proposed in Chapter 4. One way to provide adaptive switching is to develop userspace plugins

(e.g., by using the Linux /proc interface [155, Ch. 6]) that can interact with the scheduler and

switch the execution mode at runtime depending on application requirements. I further note that

at present OP-TEE [127] is the only open source, well-documented, active project for developing

TrustZone-enabled applications in Linux. Therefore it is required to use the interfaces provided by

the OP-TEE developers to integrate off-the-shelf TEE-based checking mechanisms in Linux-based

real-time applications.

Based on the techniques developed in this dissertation, I have the following recommendations

(listed in Table 8.1) to integrate security in real-time CPS.

• If (a) the security monitoring mechanisms are independent of real-time tasks and (b) the

underlying CPS platform does not support trusted enclaves, then CONTEGO and HYDRA-

C are the suitable frameworks for securing single and multicore-based real-time platforms,

respectively.

• If (a) the security checks depend on the actions of the real-time tasks and (b) they require

tamper-proof execution, designers can adapt techniques similar to that presented in SCATE

to integrate security in their target platform.

83

8.1 FUTURE DIRECTIONS

I now highlight possible directions to extend the solutions proposed in this dissertation for a

comprehensive security-aware real-time framework.

Non-preemptive Execution. My frameworks allow security tasks to be preempted (by other

higher-priority real-time or security tasks) at any point of time. There exist cases when some of the

security tasks may need to be executed without preemption. For instance, consider a security task

that scans the process table and has been preempted in the middle of its operation. An adversary

may corrupt the process table entry that has already been scanned before the next scheduling

point of the security task. When the security tasks are rescheduled, it will start scanning from its

last known state and may not be able to detect the changes in a timely manner. When security

tasks need to perform special non-preemptive operation, the priority of the task can be increased

to a priority that is strictly higher than all of the real-time tasks. I note that the cost of non-

preemption (by means of priority inversion) will compromise the timing constraints of some (or

all) of the real-time tasks. Hence, schedulability analysis needs to consider this. Besides, The

scheduling policy should identify which real-time or security tasks can be dropped (or perhaps

reschedule to other cores) to provide better trade-off between real-time system performance and

defense against security vulnerabilities.

Dependency and Reactive Security. The solutions proposed in this dissertation work in a

proactive manner. Another direction is to design security integration techniques that react, based

on anomalous behavior. Hence the executions of security checks require to follow certain precedence

constraints. For instance, consider a security task checks runtime of real-time tasks. Because of

intrusions (or perhaps due to other system artifacts) the monitored task is not behaving as expected.

Therefore the security task may perform additional actions to identify the root cause of the problem

(e.g., it may check the list of system calls, to see if any undesired calls are executed). In such cases

we may not independently execute the security tasks in parallel into multiple cores. One way to

support such a feature is to consider the dependency between security checks (e.g., checking of

system calls depends on runtime behavior of monitored task).

Integration of Cryptographic Primitives. The game theory-based formulation used in

Chapter 6 can be extended to other real-time security use-cases. For instance, consider a distributed

CPS where real-time nodes periodically exchange messages that need to be encrypted/authenticated

(say to prevent man-in-the-middle attacks) [10, 11, 39]. While longer key sizes can provide better

encryption, it requires more time to perform crypto operations (hence less number of messages

can be secured and/or tasks can miss deadlines). By using game formulations similar to those in

Chapter 6, designers of systems can use different (perhaps smaller) key sizes for different messages

(to reduce overhead) that provides maximal security from an external observer’s point of view while

guaranteeing timing requirements.

84

Performance Metrics. In this work I use time-to-detect an intrusion as a performance metric

to observe how well the security checks can perform desired monitoring and detection. While

time-to-detect is a useful metric, it is hard to quantify in a comprehensive way as it depends on

a number of factors (such as the efficacy of monitoring tasks and the kind of intrusion) and is a

lagging metric. I believe that identifying and designing better security metrics is an important and

challenging research problem.

Response and Recovery Mechanisms. A key reason for detecting attacks early is to provide

enough information to system operators so that they can respond to and recover from attacks.

Systems with real-time requirements often use autonomous, decision making algorithms for

controlling elements in the physical world and there is a need for automatic recovery (on the

detection of an attack). The techniques proposed in this work do not consider the after-effects of

an intrusion. We need further studies to design autonomous attack detection, isolation and response

algorithms for safety-critical real-time embedded systems.

85

APPENDIX A: CONTEGO – SUPPLEMENTARY MATERIALS

A.1 LINEAR LOWER-BOUND SUPPLY FUNCTION AND SCHEDULABILITY
CONSTRAINTS

For the security server with unknown capacity Q and replenishment period P , I derive the lower

(upper) bound of Q (P) that makes security tasks running under server schedulable by using

periodic server model introduced in literature [84, 85, 156]. The key idea from previous work

is that a task τi can be schedulable if minimum supply for the server can match the maximum

workload generated by τi and hp(τi) during a time interval t. If the server task τS is scheduled by a

fixed-priority scheme, the minimum supply of the server is delivered to the security tasks when its

(k − 1)-th execution has just finished with minimum interference from the high-priority real-time

tasks τj ∈ ΓR. Then, the subsequent executions of k-th release are maximally delayed by the

higher-priority real-time tasks. For this minimum supply, we can parameterize the linear lower-

bound supply function lsbfS(t) with the period and execution time of higher-priority real-time

tasks.

The worst-case response time of the server is the longest time from the server being replenished

to its capacity being exhausted with the maximum interference from the high-priority real-time

tasks, given that there are security tasks ready to use all of the server’s available capacity. In order

to calculate exact response time of the server, I use the formula introduced in existing work [157].

Using this exact method, we can calculate the maximum possible preemption on the server from the

higher-priority real-time tasks for a certain length of window and add up the server’s capacity. The

calculation is repeated iteratively by increasing the window size until the window size exceeds the

server’s relative replenishment period (in this case the system is determined to be unschedulable)

or until the window size is stable. Then, the window size is the busy period [158] and let me denote

it as wS .

The worst-case release pattern of server occurs when τS and hp(τS) is released simultaneously.

The worst-case busy period wS is the maximum time duration that the server can take to execute

full capacity Q when it is released simultaneously with the higher-priority real-time tasks, hp(τS)

at the k-th release. By using the traditional exact analysis [157] the worst-case busy period can be

obtained as:

wk+1
S = Q+

∑
τh∈hp(τS)

⌈
wkS
Th

⌉
· Ch (A.1)

where w0
S = Q and wS = wk+1

S = wkS when it converges for some k.

Therefore, the worst-case delay at the k-th release and thereafter can be represented as:

∆S =
∑

τh∈hp(τS)

⌈
wS
Th

⌉
· Ch. (A.2)

86

However, such iterative methods are only amenable to brute-force approach. This is because, the

ceiling function with unknown value (e.g., the busy period) can not be in our formulation. Thus

I take a different approach by approximating ∆S . During a time interval of P , the maximum

workload generated by the server and higher-priority real-time tasks can be represented by:

wS = Q+
∑

τh∈hp(τS)

⌈
P

Th

⌉
· Ch. (A.3)

Thus using Eq. (A.3), we can avoid the iterative calculation by assuming the number of invocation

of higher-priority real-time tasks during P , not during the exact busy period of the server. Since

dye ≤ y + 1, I linearize wS by removing the ceiling function and represent Eq. (A.3) as:

wS = Q+
∑

τh∈hp(τS)

(
P

Th
+ 1

)
· Ch. (A.4)

Therefore, the worst-case linear lower-bound supply function of the security server during a time

interval t is given by [156]:

lsbfS(t) =
Q

P
[t− (P −Q)−∆S] (A.5)

where

∆S =
∑

τh∈hp(τS)

(
P

Th
+ 1

)
· Ch. (A.6)

Let Γ
(·)
S represents the corresponding security tasksets in the representative mode (i.e., PASSIVE

or ACTIVE). In order to derive the minimum capacity that guarantees to schedule τi ∈ Γ
(·)
S , let me

consider the situation when τi barely meets it deadline at t = Di with the worst-case interference

from high-priority security tasks, hp(τi) ∈ Γ
(·)
S . Let me now define the critical instant of the security

tasks, i.e., the worst-case response time of τi when τi and hp(τi) are released simultaneously at

the end of server’s (k − 1)-th execution and suffer worst-case preemptions from k-th release and

thereafter [84]. Let me further denote Ii as the worst-case workload generated by the τi and hp(τi)

from critical instant to deadline of τi where Ii is given by:

Ii = Ci +
∑

τh∈hp(τi)

⌈
Di

Th

⌉
· Ch. (A.7)

In order to ensure the schedulability of the security task τi, the minimum supply delivered by the

server has to be greater than or equal to the worst-case workload during the time interval Di, i.e.,

lsbfS(Di) ≥ Ii ∀τi ∈ ΓS (A.8)

where lsbfS(·) is given by Eq. (A.5). Therefore, the constraints on the server supply bound to

87

ensure schedulability of the security task τi can be expressed as:

Q

P
[Di − (P −Q)−∆S] ≥ Ii. (A.9)

It is worth noting that Eq. (A.8) is only a sufficient and not necessary condition. The security

task τi can be schedulable if and only if there exists a time instance t ≤ Di such that the inequality

in Eq. (A.8) holds. I use the sufficient condition in Eq. (A.8) because the presence of time in the

necessary condition makes the proposed optimization framework inapplicable to the problem under

consideration. Despite the fact that this bound may not be exact and may incur approximation

error in the supply function, as I show in Section 4.7, it enables us to integrate security tasks

without violating real-time constraints.

A.2 SOLUTION TO THE OPTIMIZATION PROBLEMS

The ACTIVE and PASSIVE modes parameter selection formulations given in Section 4.5 are

constrained nonlinear optimization problems and not very straightforward to solve. Therefore I

reformulate the optimization problems as a geometric program (GP) [86]. A non-linear optimization

problem can be solved by GP if the problem is formulated as follows:

min
X

f0(x) (A.10)

Subject to: fi(x) ≤ 1 i = 1, · · · , zp (A.11)

gi(x) = 1 i = 1, · · · , zm (A.12)

where x = [x1, x2, · · · , xz]T denotes the vector of z optimization variables. The functions

f0(x), f1(x), · · · , fzp(x) are posynomial and g1(x), · · · , gzm(x) are monomial functions, respectively.

A function gi(x) is monomial if it can be expressed as:

gi(x) = ci

Li∏
l=1

xall (A.13)

where ci ∈ R+ and al ∈ R. Note that the coefficient ci must be non-negative but the exponents al

can be any real number including fractional and negative.

A posynomial function is the sum of the monomials, and thus can be represented as:

fi(x) =

Li∑
l=1

clx
a1l
1 xa2l

2 · · ·x
a1l
z (A.14)

where cl ∈ R+ and ajl ∈ R. We can maximize a non-zero posynomial objective function by

minimizing its inverse.

88

Period Selection using Geometric Programming Formulation

Observation A.1. The fundamental measures, i.e.,
∑

τi∈Γ
(·)
S

ωi
T desi
Ti

=
∑

τi∈Γ
(·)
S

ωiT
des
i T−1

i and

∑
τi∈Γ

(·)
S

Ci
Ti

=
∑

τi∈Γ
(·)
S

CiT
−1
i in the period adaptation problem are posynomials where Γ

(·)
S represents

the corresponding security tasksets in the representative mode (i.e., PASSIVE or ACTIVE).

This is directly follows from the observation that all the coefficients are non-negative and the

variables (e.g., periods) are always positive. Besides, I am only summing up positive terms and

therefore the terms are closed under addition. Since the requirement for posynomials is that it

need to be closed under addition, the above terms are posynomials.

An interesting property of posynomials and monomials is that, if f(·) is a posynomial and g(·)
is a monomial, the ratio f(·)

g(·) will become a posynomial. Since f(·)
g(·) is a posynomial, this allows

us to express the constraint f(·) < g(·) as follows: f(·)
g(·) ≤ 1. For instance, we can easily handle

the constraint of the form f(·) ≤ α where f(·) is a posynomial and α > 0. We can refer f̂(·) is

an inverse posynomial if 1
f̂(·)

is a posynomial. Besides, we can maximize a non-zero posynomial

objective function by minimizing its inverse.

Based on the above description, I reformulate the maximization problem as a standard GP

minimization problem in either mode as follows:

min
T(·)

∑
τi∈Γ

(·)
S

ωi
−1(T desi)

−1
Ti (A.15)

Subject to:
(∑
τi∈Γ

(·)
S

CiTi
−1
)
·

n
(3−Q

(·)

P (·)

3−2
Q(·)

P (·)

) 1
n

− 1

−1

≤ 1 (A.16)

(3P (·) − 2Q(·))Ti
−1 ≤ 1 ∀τi ∈ Γ

(·)
S (A.17)

T desi Ti
−1 ≤ 1 ∀τi ∈ Γ

(·)
S (A.18)

(Tmaxi)−1Ti ≤ 1 ∀τi ∈ Γ
(·)
S (A.19)

where for any symbol y(·) represents the corresponding variable in the representative mode (e.g.,

PASSIVE or ACTIVE).

The above GP formulation is not a convex optimization problem since the posynomials are

not convex functions [86]. However, it can be converted into a convex optimization problem

using logarithmic transformations (i.e., based on a logarithmic change of variables, as well as

a logarithmic transformation of objective and constraint functions). In particular, by using

logarithmic transformations (i.e., representing T̃i = log Ti and hence Ti = eT̃i , and replacing

inequality constraints of the form fi(·) ≤ 1 with log fi(·) ≤ 0), I convert the above formulation into

a convex optimization problem. This convex optimization reformulation is solvable in polynomial

time by using standard algorithms, such as the interior-point method [87, Ch. 11].

89

Selection of Server Parameters

Theorem A.1. The objective functions (i.e., the ratio between server capacity and period) and the

server schedulability constraints (i.e., Eq. (4.15) and Eq. (4.20)) can be expressed in posynomial

form.

Proof. The proof follows by rearranging the terms in posynomial form and transform the objective

functions into minimization expression. Let me rearrange the objective function (i.e., ratio between

capacity and period) as QP−1 which is clearly a posynomial. The objective functions in P4.4 and

P4.5 can be rewritten as a standard GP minimization problem as follows:

min
Q(·),P (·)

Q(·)−1
P (·) (A.20)

where Q(·) and P (·) represent the server parameters in PASSIVE and ACTIVE modes. Note that

Eq. (A.20) is also in posynomial form. Let me now rearrange server schedulability constraints as

follows:

(Q(·) + ∆S(·))P (·)−1 ≤ 1 (A.21)

where

∆S(·) =
∑

τh∈hp(τ
(·)
S)

(P (·) + Th) · T−1
h · Ch. (A.22)

Since the optimization variables (e.g., capacity and replenishment period) are always positive, using

the similar argument presented in Observation A.1, I can assert that Eq. (A.21) is a posynomial

constraint. QED.

In order to express the schedulability constraints for the security tasks (i.e., Eqs. (4.16) and

(4.21)) as as posynomial form the me rearrange the equations as follows:

P (·)(Q(·) + Ii) + ∆S(·)Q(·)

Q(·)(Q(·) + T ∗i)
≤ 1 ∀τi ∈ Γ

(·)
S . (A.23)

Recall that, if we want to represent the constraint of the form f(·)
g(·) ≤ 1 the denominator must be

monomial. However, the inequality in Eq. (A.23) does not conform to a posynomial form due to the

posymolial term in the denominator, i.e., Q(·)(Q(·) + T ∗i) =
(
Q(·))2 +QT ∗i . The following theorem

illustrates how the constraints on server bound can be represented in posymonial form.

Theorem A.2. The server bound constraints can be formulated as the following posynomial form:[
P (·)(Q(·) + Ii) + ∆S(·)Q(·)

]
·
[
Q(·) · ĝ(Q(·), T ∗i)

]−1
≤ 1 ∀τi ∈ Γ

(·)
S . (A.24)

Proof. The theorem is proved by using the geometric mean approximation [159, Ch. 2] of

posynomials. Since the denominator in Eq. (A.23) is a posynomial, let me approximate Q + T ∗i
with a monomial by the following geometric mean approximation.

90

Let me denote Q+T ∗i as g(Q(·), T ∗i) = u1(Q(·)) +u2(T ∗i) where u1(Q(·)) = Q(·) and u2(T ∗i) = T ∗i .

We can approximate g(Q(·), T ∗i) with

ĝ(Q(·), T ∗i) =

[
u1(Q(·))

a

]a
·
[
u2(T ∗i)

b

]b
(A.25)

where a = u1(y0)
g(y0,T ∗i) , b =

u2(T ∗i)
g(y0,T ∗i) and y0 ∈ R+ is a constant that satisfies ĝ(y0, T

∗
i) = g(y0, T

∗
i). The

approximated monomial ĝ(Q(·), T ∗i) can be rewritten as

ĝ(Q(·), T ∗i) =

(
Q

a

)a
·
(
T ∗i
b

)b
(A.26)

where a = y0

y0+T ∗i
, b =

T ∗i
y0+T ∗i

. Using this monomial approximation, I represent Eq. (A.23) as:

P (·)(Q(·) + Ii) + ∆S(·)Q(·)

Q(·) · ĝ(Q(·), T ∗i)
≤ 1 ∀τi ∈ Γ

(·)
S (A.27)

and the proof follows.

QED.

Likewise, the real-time task schedulability constraints for the ACTIVE mode (e.g., Eq. (4.18))

can be represented as follows:(
Cj +

∑
τh∈hpR(τj)

⌈
Dj

Th

⌉
Ch

)
D−1
j +

(
Dj (P ac)−1Qac +Qac

)
D−1
j ≤ 1, ∀τj ∈ lpR(τacS). (A.28)

After the logarithmic transformation (i.e., Q̃
(·)
i = logQ

(·)
i , P̃

(·)
i = logP

(·)
i and replacing the

inequality constraints fi(·) ≤ 1 with log fi(·) ≤ 0), the objective function and the constraints

become a standard convex optimization problem that is solvable in polynomial time.

I also present another approach and carry out additional experiments to obtain server parameters

by exhaustively searching all possible period and capacity values. My findings are presented in the

following section.

A.3 COMPARISON WITH EXACT METHOD

I now compare the GP-based approach with an exhaustive search method1 based on exact

analysis. In this exhaustive search, I assign server replenishment period from 1 to Pmax with

a granularity of δ. For each period, I determine the minimum capacity requirements that makes

the tasks schedulable. From the set of feasible period and capacity pair, I take the pair that

maximizes the server utilization. Notice that, the minimum server capacity Qmin(τi, P) for τi ∈ ΓS

1Similar search method has also been discussed in literature [67, 84, 156].

91

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total Utilization

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 o
f

S
c
h

e
d

u
la

b
le

 T
a

s
k
-s

e
ts

Proposed

Exhaustive Search

Figure A.1: Normalized percentage of the number of schedulable task-sets. The base-utilization of
the real-time tasks were varied from [0.01+0.1·i, 0.1+0.1·i] where 0 ≤ i ≤ 8, i ∈ Z. The utilizations
of the security tasks were generated from [0.11, 0.20]. For exhaustive search, I set Pmax = 2500
with search granularity δ = 0.5.

with a given P can be obtained by solving the quadratic inequality in Eq. (A.9), which is given

by:

Qmin(τi, P) =
−(Di − P −∆S) +

√
(Di − P −∆S)2 + 4IiP

2
. (A.29)

In the above equation ∆S is calculated by exact method, i.e.,

∆S =
∑

τh∈hp(τS)

⌈
wS
Th

⌉
· Ch (A.30)

where wS is obtained from Eq. (A.1). In order to find the minimum required capacity of the server

for a given replenishment period P , I take the maximum of the capacity Qmin(τi, P) over all the

security tasks τi ∈ ΓS which is defined as:

Qmin(P) = max
τi∈ΓS

{Qmin(τi, P)} . (A.31)

Hence any Q from [Qmin(P), P] such that Q + ∆S ≤ P will be the feasible capacity (i.e., makes

the task-set schedulable).

In Fig. A.1 I compare the number of schedulable task-sets found in the proposed method and

exhaustive search. For exhaustive search, I set Pmax = 2500 with granularity δ = 0.5. As we can see

from figure, the difference in terms of schchdulable task-sets found by exhaustive search compared

to GP increases for higher base-utilization. I attribute that due to approximation of supply function

in the security server. Recall that, the exhaustive search method calculates minimum capacity of

the server by exact analysis of the busy period. In contrast, the proposed method approximates the

interference to the server from real-time tasks during the interval of server replenishment period

and linearize it by taking the ceiling off. While this approximation error is small for low utilization

92

D
if
fe

re
n

c
e

s
 i
n

 t
h

e

S
e

c
u

ri
ty

 S
e

rv
e

r
U

ti
liz

a
ti
o

n
Security Tasks' Utilization Real-Time Tasks' Utilization

-0.1

0

0.1

0.3

0.2

0.3

0.4

0.5

0.6

0.60.2 0.40.1 0.200

Figure A.2: Exhaustive search vs. GP-based optimization: difference in the server utilization for
schedulable tasksets. For each utilization group, I randomly generated 100 task-sets and compared
the schedulability of both schemes.

cases, as the base-utilization increases the error accumulates and reduces schedulability. However,

still it is possible to accumulate task-sets for higher base-utilization.

The quality of solution (i.e., server utilization) obtained by GP and exhaustive search is illustrated

in Fig. A.2. The z-axis in this figure represents the difference in server utilization, i.e.,
(
QEX

PEX − QGP

PGP

)
where QEX and QGP (PEX and PGP) represent the capacity (replenishment period) obtained

from exhaustive search and proposed method, respectively. For low-to-medium utilization cases,

the difference is close to zero, which implies the quality of the solution obtained by the GP

method is similar to that of obtained by exhaustive search. However, when the utilization is

higher the exhaustive search outperforms the proposed method. Again, I attribute this due to the

approximation of supply function in the security server.

It is worth noting that the solution obtained by exhaustive search may not be optimal in a sense

that the actual replenishment period may appear beyond Pmax. As we can see from Fig. A.2,

for some task-sets the difference is less than zero, i.e., QEX

PEX is lower than QGP

PGP . I highlight that

the actual search region to find the optimal server parameters for exhaustive search may widely

vary based on task-set inputs; and can only be found numerically by trial-and-error. Instead, the

proposed method provides a generic approach to analyze the system that is independent of task-set

input parameters.

I note that the proposed GP-based approach can solve a given task-set in seconds, while the

exhaustive search method generally takes few minutes to couple of hours depending on the size

of Pmax and the search granularity δ. Besides, the exhaustive search method is not scalable for

task-sets with large number of tasks.

93

APPENDIX B: HYDRA/HYDRA-C – SUPPLEMENTARY MATERIALS

B.1 SOLUTION TO THE PERIOD SELECTION PROBLEM IN HYDRA

The period adaptation problem given in Section 5.3.2 is a constrained optimization problem

and not straightforward to solve. Therefore I reformulate the optimization problems as a GP [86].

Based on the concepts presented in Appendix A.2, we can represent period selection problem as

a GP. Let me rearrange the objective function as follows: min
Ts

(T dess)
−1

. Likewise period bound

constraint in Eq. (5.4) can be represented as T dess Ts
−1 ≤ 1 and (Tmaxs)−1Ts ≤ 1, respectively. In

addition, the schedulability constraint in Eq. (5.6) can be rewritten as: (Cs + Ims)T−1
s ≤ 1 where

Ims =
∑
τr∈ΓR

Imr (Tr + Ts)T
−1
r Cr +

∑
τh∈hpS(τs)

xmh (Th + Ts)T
−1
h Ch. (B.1)

The above reformulation is not a convex optimization problem since the posynomials are not

convex functions [86]. However, by using logarithmic transformations (i.e., representing T̃s = log Ts

and hence Ts = eT̃s , and replacing inequality constraints of the form fi(·) ≤ 1 with log fi(·) ≤ 0),

we can convert the above formulation into a convex optimization problem that can be solved using

standard algorithms, such as the interior-point method in polynomial time [87, Ch. 11].

B.2 COMPARING HYDRA WITH OPTIMAL MULTICORE ASSIGNMENT

I now empirically compare HYDRA an “optimal” multicore allocation scheme. The result of

an empirical comparison of HYDRA with an optimal solution (i.e., a solution of the formulation

described in Section 5.3.1 that finds the variables X and T) is presented in Fig. B.1 where I

exhaustively searched for all possible combinations for a small setup with M = 2 cores and up

to NS = 6 security tasks. To find the optimal solution, I examined each of the MNS possible

assignments of security tasks to cores. For each assignment, I then determined the value of the

period vector T that maximized the cumulative tightness by solving a convex optimization problem

(see Appendix B.1).

The x-axis of Fig. B.1 represents total system utilization and y-axis is the difference in cumulative

tightness (i.e., ∆η = ηOPT−ηHYDRA
ηOPT

× 100%) for HYDRA and the optimal solution. As shown in

the figure, for low to medium utilization cases, HYDRA’s performance is similar to the optimal

solution (i.e., the difference is zero). However for higher utilizations performance degrades. This is

because HYDRA follows an iterative best-fit strategy to find the periods (and assignment). Hence

for higher utilization values the lower priority tasks may not get periods close to the desired values

(and the cumulative tightness degrades). As we see from the figure, the degradation (in cumulative

tightness) is no more than 22% and that may be acceptable given the exponential computational

complexity of finding an optimal solution.

94

0.0 0.5 1.0 1.5 2.0

Total Utilization

0

20

40

60

80

100

D
iff

er
en

ce
 in

 C

um
ul

at
iv

e
Ti

gh
tn

es
s

(%
)

Figure B.1: Comparing HYDRA with optimal solution: I consider M = 2 and NS ∈ [2, 6] with
other parameters similar to that mentioned in Section 5.5.2.

B.3 PROOF OF LEMMA 5.1

Since real-time tasks are partitioned and they have higher priorities than security tasks, the

schedule of real-time tasks executed on πm does not depend on any other task in the system. Now

consider any interval [t, t+ x) of length x. I show that we can obtain an interval [t′, t′ + x) where

all tasks are released at t′, such that the workload of real-time tasks on πm is higher in [t′, t′ + x)

compared to [t, t+ x).

First step: let t′ be the earliest time such that πm continuously executes real-time tasks in [t′, t);

if such time does not exist, then let t′ = t. By definition, πm does not execute real-time tasks at

time t′−1. Also since real-time tasks continuously execute in [t′, t), the workload of real-time tasks

in [t′, t′ + x) cannot be smaller than the workload in [t, t+ x).

Second step: since πm is idle at t′ − 1, no job of real-time tasks on πm released before t′ can

contribute to the workload in [t′, t). Hence, the workload can be maximized by anticipating the

release of each real-time task τr so that it corresponds with t′. This concludes the proof.

95

APPENDIX C: SCATE – SUPPLEMENTARY MATERIALS

C.1 SYSTEN MODEL: REAL-TIME TASK AND SCHEDULING

I consider a system consists with M fixed-priority real-time tasks Γ = {τi, · · · , τM} running on

P identical processor cores Π = {π1, · · · , πP }. In this work, I consider a partitioned fixed-priority

preemptive scheduling [23] (a widely supported approach in many commercial and open-source

real-time operating systems such as QNX [99], OKL4 [98], real-time Linux [100], etc.) where tasks

are statically assigned to the processor cores using a predefined partitioning scheme. The set of

tasks running on a given core πp is denoted by Γp and Γ = ∪πp∈Π{Γp}. Each task τi is represented

by the following tuple:

(Ci, Ti, Di, Ni, N
min
i ,Wi). (C.1)

Each of the above variables represents the following:

• Ci is the constant, upper bound on the computation time, called worst-case execution time

(WCET) [79];

• Ti is the minimum inter-arrival time (period), i.e., consecutive jobs of τi should be temporally

separated by at least Ti time units;

• Di (usually less than or equal to Ti) is the timing constraint (deadline);

• Ni is the number of actuation requests that τi sends out;

• Nmin
i ≤ Ni is a QoS parameter that denotes the minimum number of actuation commands

that must be checked; and

• Wi = {ω1
i , · · · , ω

Ni
i } is a designer-provided weight vector where the weight ωji represents the

importance of j-th actuation command over other.

As we see in Section 6.4, the parameters Nmin
i and Wi help the designers to determine the subset

of commands to be selected in each job of the task for checking when not all Ni commands can

be checked due to timing constraints. While I represent the above task model as above for ease

of presentation, I note that not all the real-time tasks in a given system may invoke actuation

requests. For such tasks τi′ setting Ni′ = Nmin
i′ = 0 and ignoring the variable Wi′ will hold the

consistency of the representation.

I consider a discrete time model [160] where the system and task parameters are multiples of a

time unit, i.e., an interval starting from time point t1 and ending at time point t2 that has a length

of t2 − t1 by [t1, t2) or [t1, t2 − 1]. I also assume that the non-secure system (i.e., when there is

no actuation command checking) is “schedulable”, that is, for each task τi ∈ Γ, the response time

(time between completion and arrival) is less than the deadline of the task.

96

C.2 FEASIBILITY CONDITIONS

Let Ni be the number of actuation requests generated by τi that require vetting and Coi is an

upper bound of additional computing time due to (a) context switching (from normal execution

to secure enclave and returning the context back to normal mode) and (b) perform checking inside

the enclave. Then the WCET of τi can be represented as follows:

CTEEi = Ci +NiC
o
i . (C.2)

The task τi is “schedulable” if its worst-case response time (WCRT), RTEEi , is less than deadline,

i.e., RTEEi ≤ Di. We can calculate an upper bound of RTEEi using traditional response-time

analysis [101] as follows:

RTEEi = CTEEi +
∑

τh∈hp(τi,πp)

(
1 + Di

Th

)
CTEEh (C.3)

where hp(τi, πp) ∈ Γp denotes the set of tasks that are higher-priority than τi running on core πp.

The taskset Γ is referred to as schedulable if all the tasks are schedulable, viz., RTEEi ≤ Di,∀τi ∈ Γ.

Let Ri = Ci +
∑

τh∈hp(τi,πp)

(
1 + Di

Th

)
Ch denote the vanilla response time (i.e., when there is no

actuation checking). Notice that the task τi will miss its deadline if RTEEi > Di. From Eq. (C.3)

we can deduce that τi will its miss deadline if the following condition holds: Oi > Di −Ri where

Oi = NiC
o
i +

∑
τh∈hp(τi,πp)

(
1 + Di

Th

)
NiC

o
h (C.4)

is the total overhead for checking the actuation commands.

C.3 DESIGN-TIME TESTS FOR INTEGRATING ACTUATION CHECKING IN EXISTING
SYSTEMS

I also performed experiments to show the impact of integrating TEE-based actuation checking

mechanisms (e.g., SCATE and the fine-grain scheme) in an existing system. For this, I use the

“schedulability” metric introduced in Section 6.5.3. To demonstrate the effect of schedulability for

a large number of tasksets with different parameters, let me now introduce the notion of acceptance

ratio that is defined as the number of schedulable tasksets over the total number of generated

tasksets (e.g., 500 for a given utilization group in my setup).

In Fig. C.1 I compare the performance of difference schemes in terms of acceptance ratio (y-

axis in the figure). The x-axis shows the normalized base-utilization U
P where U =

∑
τi∈Γ

Ci
Ti

(i.e.,

taskset utilization without any actuation checking). As expected, schedulability drops for high

utilization cases since less number of tasks meet their deadlines due to increased load. While

non-secure execution (i.e., when there is no command verification) results in better schedulability

97

[0.
0,0

.1]

[0.
1,0

.2]

[0.
2,0

.3]

[0.
3,0

.4]

[0.
4,0

.5]

[0.
5,0

.6]

[0.
6,0

.7]

[0.
7,0

.8]

[0.
8,0

.9]

[0.
9,1

.0]

Base Utilization

0

50

100

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Unsecured
Fine-grain (Ni [3, 5])
SCATE (Ni [3, 5])
Fine-grain (Ni [8, 10])
SCATE (Ni [8, 10])

Figure C.1: Impact on schedulability: Fine-grained checking can reduce schedulability significantly
(specially if tasks have large number of actuation requests) due to increased validation overheads.

0 5 10 15 20 25 30
Time (s)

0.0

0.5

1.0

1.5

2.0

D
is

ta
nc

e
fro

m
G

ro
un

d
(m

)

Reference Mission

0 5 10 15 20 25 30
Time (s)

0.0

0.5

1.0

1.5

2.0

D
is

ta
nc

e
fro

m
G

ro
un

d
(m

)

Compromised Mission

Figure C.2: Effect of physical inertia in cyber-physical applications. The left plot shows the
expected altitudes of the drone during mission. The right plot presents the altitudes during attacks.
While there exist slight drifts in altitudes before SCATE detects false commands (shaded areas in
the right plot), it does not jeopardize the safety (i.e., the drone was above from the ground and
did not crash).

due to reduced utilization, it does not provide any security guarantee. The fine-grain checking,

while providing better security (since it verifies every request), performs poorly in terms of meeting

the timing guarantees (essentially keeping the system safe) specifically for highly loaded systems.

(i.e., less number of tasks found to be schedulable) due to more validation overheads. In contrast,

SCATE provides better schedulability with (slight) QoS/security degradation as we demonstrate

in Section 6.5.3. The designers of the systems can use the results presented here to analyze the

feasibility of integrating TEE-based checking method in their target platforms.

C.4 IMPACT OF PHYSICAL INERTIA

I now present the impacts of physical inertia to detect attacks in SCATE. For instance, consider

a simplified drone example. The baseline safety requirement for the drone is not to crash into the

ground during flight. I use existing quad-copter models [161] and simulate the dynamics of the

drone for 30 seconds (x-axes in Fig. C.2). In this mission, the drone takes-off from the ground

and then lands in the target position. The y-axes in Fig. C.2 represent altitudes of the drone (i.e.,

distance from the ground) during the mission. The left plot of Fig. C.2 shows the corresponding

altitudes over time during the normal quad-copter operation. To demonstrate malicious activity,

I injected attacks that sent false commands to turn off the propellers (right plot of Fig. C.2).

98

In particular, I triggered attacks at the following three instances, viz., (i) while the quad-copter

was ascending (at 5 sec.), (ii) in the peak altitude (at 12 sec.) and (iii) during descent (at 25

sec.). The attacks were detected by SCATE within 8 task instances (i.e., 99-th percentile values

obtained from the flight controller case-study, see Table 6.5). The vertical lines (light red) in the

plot represent time difference when an attack is triggered and when it is detected by SCATE.

As the figure illustrates, there is a slight drift in altitude before SCATE detects and blocks false

commands. However, this delayed detection does not jeopardize safety constraints (i.e., it does not

drop the drone’s altitude to zero) and the drone is able to complete the mission without crashing.

Hence it is not inconceivable that the detection delays induced by SCATE will be acceptable for

many cyber-physical applications.

99

REFERENCES

[1] A. Hussain, M. Hannan, A. Mohamed, H. Sanusi, and A. Ariffin, “Vehicle crash analysis for
airbag deployment decision,” Int. J. of Auto. Tech., vol. 7, no. 2, pp. 179–185, 2006.

[2] K. Castelli, A. M. A. Zaki, and H. Giberti, “Development of a practical tool for designing
multi-robot systems in pick-and-place applications,” MDPI Robotics, vol. 8, no. 3, 2019.

[3] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper, Symantec
Corp., Security Response, vol. 5, p. 6, 2011.

[4] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack on the ukrainian
power grid,” SANS Industrial Control Systems, 2016.

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham et al., “Experimental security analysis of a modern automobile,”
in IEEE S&P, 2010, pp. 447–462.

[6] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno et al., “Comprehensive experimental analyses of automotive
attack surfaces,” in USENIX Sec. Symp., 2011.

[7] S. S. Clark and K. Fu, “Recent results in computer security for medical devices,” in
MobiHealth, 2011, pp. 111–118.

[8] Joon Son and Alves-Foss, “Covert timing channel analysis of rate monotonic real-time
scheduling algorithm in MLS systems,” in IEEE Inf. Ass. Wor., 2006, pp. 361–368.

[9] H. Teso, “Aircraft hacking: Practical aero series,” in HITB Sec. Conf., 2013.

[10] T. Xie and X. Qin, “Improving security for periodic tasks in embedded systems through
scheduling,” ACM TECS, vol. 6, no. 3, p. 20, 2007.

[11] M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu, “Static security optimization
for real-time systems,” IEEE Trans. on Indust. Info., vol. 5, no. 1, pp. 22–37, 2009.

[12] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3A: Secure system
simplex architecture for enhanced security and robustness of cyber-physical systems,” in
ACM HiCoNS, 2013, pp. 65–74.

[13] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “SecureCore: A multicore-based
intrusion detection architecture for real-time embedded systems,” in IEEE RTAS, 2013, pp.
21–32.

[14] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha, “Memory heat map: anomaly detection in
real-time embedded systems using memory behavior,” in ACM/EDAC/IEEE DAC, 2015,
pp. 1–6.

[15] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha, “Learning execution
contexts from system call distribution for anomaly detection in smart embedded system,”
in ACM/IEEE IoTDI, 2017, pp. 191–196.

100

[16] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Securing real-time
microcontroller systems through customized memory view switching.” in NDSS, 2018.

[17] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and X. Xinyan, “Detecting
attacks against robotic vehicles: A control invariant approach,” in ACM CCS, 2018, pp.
801–816.

[18] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo, “Preserving physical
safety under cyber attacks,” IEEE IoT J., vol. 6, no. 4, pp. 6285–6300, 2018.

[19] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Real-time systems security through
scheduler constraints,” in Euromicro ECRTS, 2014, pp. 129–140.

[20] R. Pellizzoni, N. Paryab, M.-K. Yoon, S. Bak, S. Mohan, and R. B. Bobba, “A generalized
model for preventing information leakage in hard real-time systems,” in IEEE RTAS, 2015,
pp. 271–282.

[21] D. Lo, M. Ismail, T. Chen, and G. E. Suh, “Slack-aware opportunistic monitoring for real-
time systems,” in IEEE RTAS, 2014, pp. 203–214.

[22] F. Abdi, J. Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso, and S. Mohan, “On-
chip control flow integrity check for real time embedded systems,” in IEEE CPSNA, 2013,
pp. 26–31.

[23] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM CSUR, vol. 43, no. 4, pp. 35:1–35:44, 2011.

[24] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: What it is,
and what it is not,” in IEEE Trustcom/BigDataSE/ISPA, 2015, pp. 57–64.

[25] S. Pinto and N. Santos, “Demystifying ARM TrustZone: A comprehensive survey,” ACM
CSUR, vol. 51, no. 6, p. 130, 2019.

[26] V. Conitzer and T. Sandholm, “Computing the optimal strategy to commit to,” in ACM EC,
2006, pp. 82–90.

[27] A. Burns and R. I. Davis, “A survey of research into mixed criticality systems,” ACM CSUR,
vol. 50, no. 6, p. 82, 2018.

[28] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,” in IEEE RTSS, 2007, pp. 239–243.

[29] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A review of priority assignment
in real-time systems,” Elsevier J. of sys. arch., vol. 65, pp. 64–82, 2016.

[30] A. Gujarati, F. Cerqueira, and B. B. Brandenburg, “Schedulability analysis of the Linux
push and pull scheduler with arbitrary processor affinities,” in Euromicro ECRTS, 2013, pp.
69–79.

[31] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling on multiprocessors,”
in IEEE RTAS, 2009, pp. 23–32.

101

[32] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-priority preemptive
scheduling for multi-core processors,” in Euromicro ECRTS, 2009, pp. 239–248.

[33] E. Bini and A. Cervin, “Delay-aware period assignment in control systems,” in IEEE RTSS,
2008, pp. 291–300.

[34] A. Aminifar, P. Eles, Z. Peng, and A. Cervin, “Control-quality driven design of cyber-physical
systems with robustness guarantees,” in DATE, 2013, pp. 1093–1098.

[35] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli,
“Period optimization for hard real-time distributed automotive systems,” in ACM DAC, 2007,
pp. 278–283.

[36] K. Tindell, H. Hanssmon, and A. J. Wellings, “Analysing real-time communications:
Controller area network (CAN).” in IEEE RTSS, 1994, pp. 259–263.

[37] C.-Y. Chen, M. Hasan, and S. Mohan, “Securing real-time Internet-of-things,” MDPI Sensors,
vol. 18, no. 12, 2018.

[38] H. Chai, G. Zhang, J. Zhou, J. Sun, L. Huang, and T. Wang, “A short review of security-
aware techniques in real-time embedded systems,” J. of Cir., Sys. and Comp., vol. 28, no. 02,
2019.

[39] V. Lesi, I. Jovanov, and M. Pajic, “Network scheduling for secure cyber-physical systems,”
in IEEE RTSS, 2017, pp. 45–55.

[40] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embedded control tasks,”
ACM TECS, vol. 16, pp. 188:1–188:21, 2017.

[41] C. Bao and A. Srivastava, “A secure algorithm for task scheduling against side-channel
attacks,” in ACM TrustED, 2014, pp. 3–12.

[42] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Integrating security constraints into
fixed priority real-time schedulers,” RTS Journal, vol. 52, no. 5, pp. 644–674, 2016.

[43] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “TaskShuffler: A schedule randomization
protocol for obfuscation against timing inference attacks in real-time systems,” in IEEE
RTAS, 2016, pp. 1–12.

[44] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo, “Guaranteed physical
security with restart-based design for cyber-physical systems,” in ACM/IEEE ICCPS, 2018,
pp. 10–21.

[45] R. Liu and M. Srivastava, “PROTC: PROTeCting drone’s peripherals through ARM
trustzone,” in ACM DroNet, 2017, pp. 1–6.

[46] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu, “RoboADS: Anomaly detection against
sensor and actuator misbehaviors in mobile robots,” in IEEE/IFIP DSN, 2018, pp. 574–585.

[47] F. Fei, Z. Tu, R. Yu, T. Kim, X. Zhang, D. Xu, and X. Deng, “Cross-layer retrofitting of
UAVs against cyber-physical attacks,” in IEEE ICRA, 2018, pp. 550–557.

102

[48] S. Moothedath, D. Sahabandu, J. Allen, A. Clark, L. Bushnell, W. Lee, and R. Poovendran,
“A game-theoretic approach for dynamic information flow tracking to detect multi-stage
advanced persistent threats,” IEEE TACON, 2020.

[49] J. Chen and Q. Zhu, “A game-theoretic framework for resilient and distributed generation
control of renewable energies in microgrids,” IEEE Trans. on Smart Grid, vol. 8, no. 1, pp.
285–295, 2016.

[50] G. Yang, R. Poovendran, and J. P. Hespanha, “Adaptive learning in two-player stackelberg
games with continuous action sets,” in IEEE CDC, 2019, pp. 6905–6911.

[51] S. Rass, A. Alshawish, M. A. Abid, S. Schauer, Q. Zhu, and H. De Meer, “Physical intrusion
games – optimizing surveillance by simulation and game theory,” IEEE Access, vol. 5, pp.
8394–8407, 2017.

[52] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems security – A survey,” IEEE
IoT J., vol. 4, no. 6, pp. 1802–1831, 2017.

[53] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and privacy issues in
Internet-of-Things,” IEEE IoT J., vol. 4, no. 5, pp. 1250–1258, 2017.

[54] M. Ammar, G. Russello, and B. Crispo, “Internet of Things: A survey on the security of IoT
frameworks,” Elsevier J. of Inf. Sec. & App., vol. 38, pp. 8–27, 2018.

[55] W. Li, H. Chen, and H. Chen, “Research on ARM TrustZone,” ACM GetMobile, vol. 22,
no. 3, pp. 17–22, 2019.

[56] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18, no. 4, pp. 20–28,
2001.

[57] X. Wang, N. Hovakimyan, and L. Sha, “L1Simplex: Fault-tolerant control of cyber-physical
systems,” in ACM/IEEE ICCPS, 2013, pp. 41–50.

[58] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang, “Design optimization of security-sensitive
mixed-criticality real-time embedded systems,” in IEEE ReTiMiCS, 2013.

[59] K. Jiang, P. Eles, and Z. Peng, “Optimization of secure embedded systems with dynamic
task sets,” in DATE, 2013, pp. 1765–1770.

[60] “Tripwire,” https://github.com/Tripwire/tripwire-open-source.

[61] R. Mahfouzi, A. Aminifar, S. Samii, M. Payer, P. Eles, and Z. Peng, “Butterfly attack:
Adversarial manipulation of temporal properties of cyber-physical systems,” in IEEE RTSS,
2019, pp. 93–106.

[62] M. Hasan and S. Mohan, “Protecting actuators in safety critical IoT systems from control
spoofing attacks,” in ACM IoT S&P, 2019, pp. 8–14.

[63] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash, “A novel side-channel
in real-time schedulers,” in IEEE RTAS, 2019, pp. 90–102.

[64] S. Liu, N. Guan, D. Ji, W. Liu, X. Liu, and W. Yi, “Leaking your engine speed by spectrum
analysis of real-time scheduling sequences,” J. of Sys. Arch., vol. 97, pp. 455–466, 2019.

103

[65] M. Bechtel and H. Yun, “Denial-of-service attacks on shared cache in multicore: Analysis
and prevention,” in IEEE RTAS, 2019, pp. 357–367.

[66] F. Loi, A. Sivanathan, H. H. Gharakheili, A. Radford, and V. Sivaraman, “Systematically
evaluating security and privacy for consumer IoT devices,” in ACM IoTS&P, 2017, pp. 1–6.

[67] R. Davis and A. Burns, “An investigation into server parameter selection for hierarchical
fixed priority pre-emptive systems,” in IEEE RTNS, 2008.

[68] “AIDE,” http://aide.sourceforge.net/.

[69] “The Bro network security monitor,” https://www.bro.org.

[70] M. Roesch, “Snort - lightweight intrusion detection for networks,” in USENIX Conf. on Sys.
Admin., 1999, pp. 229–238.

[71] L. L. Woo, M. Zwolinski, and B. Halak, “Early detection of system-level anomalous behaviour
using hardware performance counters,” in DATE, 2018, pp. 485–490.

[72] V. M. Weaver, “Linux perf event features and overhead,” in IEEE FastPath, 2013.

[73] “OProfile,” http://oprofile.sourceforge.net/.

[74] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM CSUR,
vol. 41, no. 3, p. 15, 2009.

[75] J. Song, G. Fry, C. Wu, and G. Parmer, “CAML: Machine learning-based predictable system-
level anomaly detection,” in IEEE CERTS, 2016, pp. 12–18.

[76] S. Mohan, “Worst-case execution time analysis of security policies for deeply embedded real-
time systems,” ACM SIGBED Review, vol. 5, no. 1, p. 8, 2008.

[77] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis for mixed criticality
systems,” in IEEE RTSS, 2011, pp. 34–43.

[78] A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time
environment,” Massachusetts Institute of Technology, Tech. Rep., 1983.

[79] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-case execution-time problem –
overview of methods and survey of tools,” ACM TECS, vol. 7, no. 3, p. 36, 2008.

[80] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environment,” JACM, vol. 20, no. 1, pp. 46–61, 1973.

[81] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new
scheduling theory to static priority pre-emptive scheduling,” SE Journal, vol. 8, no. 5, pp.
284–292, 1993.

[82] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis of hierarchical
fixed-priority scheduling,” in Euromicro ECRTS, 2002, pp. 173–181.

[83] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni, “Exploring opportunistic execution for
integrating security into legacy hard real-time systems,” in IEEE RTSS, 2016, pp. 123–134.

104

[84] M.-K. Yoon, J.-E. Kim, R. Bradford, and L. Sha, “Holistic design parameter optimization of
multiple periodic resources in hierarchical scheduling,” in DATE, 2013, pp. 1313–1318.

[85] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,” in IEEE
RTSS, 2003, pp. 2–13.

[86] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric
programming,” Opt. & Eng., vol. 8, no. 1, pp. 67–127, 2007.

[87] S. Boyd and L. Vandenberghe, Convex optimization, 2004.

[88] “CONTEGO implementation,” https://github.com/mnwrhsn/contego.

[89] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,” RTS
Journal, vol. 30, no. 1-2, pp. 129–154, 2005.

[90] A. Mutapcic, K. Koh, S. Kim, L. Vandenberghe, and S. Boyd, “GGPLAB:
a simple Matlab toolbox for geometric programming,” 2006. [Online]. Available:
https://stanford.edu/∼boyd/ggplab/

[91] “BeagleBone Black,” https://beagleboard.org/black.

[92] “Xenomai – real-time framework for Linux,” https://xenomai.org.

[93] “UAV control codes,” https://github.com/Khan-drone/flight-control.

[94] “FreeRTOS,” http://www.freertos.org.

[95] “FTP brute-force attack trace,” https://github.com/bro/bro/blob/master/testing/btest/
Traces/ftp/bruteforce.pcap.

[96] Ethical Hacking and Countermeasures: Secure Network Operating Systems and
Infrastructures, 2nd ed. EC-Council, 2017.

[97] “Linux ARM shellcode,” https://www.exploit-db.com/exploits/21253/.

[98] G. Heiser and B. Leslie, “The OKL4 microvisor: Convergence point of microkernels and
hypervisors,” in ACM APSys, 2010, pp. 19–24.

[99] F. Kolnick, “The QNX 4 real-time operating system,” Basis Comp. Sys. Inc., 1998.

[100] L. Fu and R. Schwebel, “Real-time Linux wiki,” https://rt.wiki.kernel.org/index.php/
rt preempt howto, [Online].

[101] J. Chen, “Partitioned multiprocessor fixed-priority scheduling of sporadic real-time tasks,”
in Euromicro ECRTS, 2016, pp. 251–261.

[102] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of sporadic task
systems,” in IEEE RTSS, 2005.

[103] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds for fixed priority
multiprocessor scheduling,” in IEEE RTSS, 2009, pp. 387–397.

[104] D. E. Knuth, The art of computer programming: sorting and searching, 1997, vol. 3.

105

[105] “HYDRA-C implementation,”
https://github.com/mnwrhsn/multicore-continuous-security-monitoring.

[106] “Raspberry Pi,” https://tinyurl.com/rpi3modelb.

[107] “Linux rootkit,” https://github.com/crudbug/simple-rootkit.

[108] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis of multiprocessor
tasksets,” in WATERS, 2010, pp. 6–11.

[109] Y. Sun and M. Di Natale, “Assessing the pessimism of current multicore global fixed-priority
schedulability analysis,” in ACM SAC, 2018, pp. 575–583.

[110] T. Roughgarden, “Algorithmic game theory,” Comm. of the ACM, vol. 53, no. 7, pp. 78–86,
2010.

[111] J. Westling, “Future of the Internet of things in mission critical applications,” 2016.

[112] E. Simmon, K.-S. Kim, E. Subrahmanian, R. Lee, F. De Vaulx, Y. Murakami, K. Zettsu, and
R. D. Sriram, A vision of cyber-physical cloud computing for smart networked systems. US
Dept. of Commerce, NIST, 2013.

[113] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Crypt. ePrint Arch., no. 086, pp.
1–118, 2016.

[114] J. C. Harsanyi and R. Selten, “A generalized nash solution for two-person bargaining games
with incomplete information,” INFORMS Man. Sci., vol. 18, no. 5-part-2, pp. 80–106, 1972.

[115] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus, “An efficient heuristic
approach for security against multiple adversaries,” in IFAAMAS AAMAS, 2007, pp. 1–8.

[116] “SCATE implementation,” https://github.com/mnwrhsn/scate implementation.

[117] “Dexter Industries Sensors,” https://github.com/DexterInd/DI Sensors.

[118] “I2C manual,” Philips Semiconductors, 2003. [Online]. Available: https:
//tinyurl.com/i2c-manual

[119] Y. A. Korilis, A. A. Lazar, and A. Orda, “Achieving network optima using Stackelberg routing
strategies,” IEEE/ACM TON, vol. 5, no. 1, pp. 161–173, 1997.

[120] J. Cardinal, M. Labbé, S. Langerman, and B. Palop, “Pricing of geometric transportation
networks,” in CCCG, 2005, pp. 92–96.

[121] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion (unfixable) flaws on
a billion devices: Rethinking network security for the Internet-of-things,” in ACM HotNets,
2015, pp. 1–7.

[122] S. Adepu and A. Mathur, “From design to invariants: Detecting attacks on cyber physical
systems,” in IEEE QRS-C, 2017, pp. 533–540.

[123] R. Berthier and W. H. Sanders, “Specification-based intrusion detection for advanced
metering infrastructures,” in IEEE PRDC. IEEE, 2011, pp. 184–193.

106

[124] A. Mukherjee, T. Mishra, T. Chantem, N. Fisher, and R. Gerdes, “Optimized trusted
execution for hard real-time applications on cots processors,” in ACM RTNS, 2019, pp.
50–60.

[125] J. Amacher and V. Schiavoni, “On the performance of arm trustzone,” in IFIP DAIS, 2019,
pp. 133–151.

[126] Y. Liu, K. An, and E. Tilevich, “RT-trust: Automated refactoring for trusted execution
under real-time constraints,” in ACM GPCE, 2018, pp. 175–187.

[127] “Open Portable Trusted Execution Environment,” https://www.op-tee.org/.

[128] “ARM Fixed Virtual Platforms,”
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.

[129] L. Vandenberghe, “The CVXOPT linear and quadratic cone program solvers,” 2010.
[Online]. Available: http://cvxopt.org/documentation/coneprog.pdf

[130] “The Python-MIP package,” https://www.python-mip.com/.

[131] L. Cheng, K. Tian, and D. D. Yao, “Orpheus: Enforcing cyber-physical execution semantics
to defend against data-oriented attacks,” in ACM ACSAC, 2017, pp. 315–326.

[132] R. Liu and M. Srivastava, “VirtSense: Virtualize Sensing through ARM TrustZone on
Internet-of-Things,” in ACM SysTEX, 2018, pp. 2–7.

[133] T. Liu, A. Hojjati, A. Bates, and K. Nahrstedt, “Alidrone: Enabling trustworthy proof-of-
alibi for commercial drone compliance,” in IEEE ICDCS, 2018, pp. 841–852.

[134] “Adafruit motor shield for Raspberry Pi,” https://learn.adafruit.com/adafruit-motor-shield.

[135] “Adafruit DC and stepper motor driver source code,” https://github.com/threebrooks/
AdafruitStepperMotorHAT CPP.

[136] “PCA9685 I2C PWM driver,” https://github.com/TeraHz/PCA9685.

[137] “GlobalPlatform TEE client API specifications,” https://globalplatform.org/specs-library/
tee-client-api-specification/.

[138] K. Martin, “Tutorial: COIN-OR: Software for the OR community,” INFORMS Interfaces,
vol. 40, no. 6, pp. 465–476, 2010.

[139] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic acceptance,” Elsevier
Physica A, vol. 391, no. 6, pp. 2193–2196, 2012.

[140] “Z1FFER open source hardware random number generator,” http://www.openrandom.org.

[141] “Open hardware random number generator,” https://onerng.info.

[142] F. M. Tabrizi and K. Pattabiraman, “Flexible intrusion detection systems for memory-
constrained embedded systems,” in IEEE EDCC, 2015, pp. 1–12.

[143] M. R. Aliabadi, A. A. Kamath, J. Gascon-Samson, and K. Pattabiraman, “Artinali: dynamic
invariant detection for cyber-physical system security,” in ACM ESEC/FSE, 2017, pp. 349–
361.

107

[144] “Raspberry Pi rover,” https://github.com/Veilkrand/simplePiRover.

[145] “GoPiGo,” https://github.com/DexterInd/GoPiGo.

[146] “Drone controller,” https://github.com/lobodol/drone-flight-controller.

[147] K. J. Åström and T. Hägglund, “Revisiting the Ziegler–Nichols step response method for
PID control,” Elsevier J. of Proc. Con., vol. 14, no. 6, pp. 635–650, 2004.

[148] “Robot arm control,” https://github.com/tutRPi/6DOF-Robot-Arm.

[149] “C-FLAT implementation,” https://github.com/control-flow-attestation/c-flat.

[150] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R. Sadeghi, and
G. Tsudik, “C-FLAT: control-flow attestation for embedded systems software,” in ACM
CCS, 2016, pp. 743–754.

[151] H. Baek and C. M. Kang, “Scheduling randomization protocol to improve schedule entropy
for multiprocessor real-time systems,” MDPI Symmetry, vol. 12, no. 5, p. 753, 2020.

[152] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Contego: An adaptive framework for
integrating security tasks in real-time systems,” in Euromicro ECRTS, 2017, pp. 23:1–23:22.

[153] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-space exploration for
allocating security tasks in multicore real-time systems,” in DATE, 2018, pp. 225–230.

[154] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Period adaptation for continuous
security monitoring in multicore systems,” in DATE, 2020.

[155] “Linux Kernel Workbook,” https://lkw.readthedocs.io/.

[156] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions: response-time analysis
and server design,” in ACM EMSOFT, 2004, pp. 95–103.

[157] M. Joseph and P. Pandya, “Finding response times in a real-time system,” The Comp. J.,
vol. 29, no. 5, pp. 390–395, 1986.

[158] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,” in
IEEE RTSS, 1990, pp. 201–209.

[159] M. Chiang, Geometric programming for communication systems, 2005.

[160] D. Isovic, “Handling sporadic tasks in real-time systems: Combined offline and online
approach,” Tech. Rep., June 2001.

[161] T. Luukkonen, “Modelling and control of quadcopter,” School of Science, Aalto University,
Tech. Rep., 2011.

108

