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ABSTRACT

Programming for high performance systems to fully utilize the potential of the compute

system is a complex problem. This is particularly evident when programming distributed

memory clusters containing multiple NUMA chips and GPUs on each node since it would

require a complex combination of MPI, OpenMP, CUDA, OpenCL, etc to achieve high

performance even for sequentially simplistic codes. Programs requiring high performance are

usually painstakingly written by hand in C/C++ or Fortran using MPI+X to target these

machines.

This work presents a multi-layer code generation framework Vaani that takes a very

high-level representation of computations, and generates C+MPI code by transforming the

input through a series of intermediate representations. The very high level nature of the

language greatly facilitates programming parallel systems. Additionally, the use of multiple

representations provide a flexible and transparent venue for the user to interact and customize

the transformation process to generate code suitable to the user and the target machine.

Experimental evaluation shows that the current implementation of Vaani generates code

that is competitive with handwritten codes and hand-optimized libraries.
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and Professor Franz Franchetti for being on my dissertation committee and for their critical

feedback that helped shape my research.

I would like to thank all my friends here at University of Illinois at Urbana-Champaign

(UIUC) for being with me, supporting me and having fun together while we cruise through

graduate school. I would also like to thank my old friends Manisha, Vijetha, Rasha, Aghamar-

shan and Bharadwaj for being with me through all these years.

I would like to thank Anine Singh for rekindling my passion for dance, and Miss Sharon,

Miss Kayla and Miss Monic for taking care of my son Srirama, while I was at work.

I cannot express in words the gratitude I have for my family for their love, care and support

throughout my Ph.D. I cannot fathom the sacrifices my mother made to reach out and

support me in times of need, and I wonder if I could have done the same in her place. I

can never forget the trouble my father had to go through to take care of the children during

a pandemic that wrecked havoc across the globe. I feel very lucky to have parents-in-law

who are supportive of my work, who took time out of their busy schedules, and came to

the United States to help me and my husband work on our research, even while they had

to battle their own health issues. My husband Raghavendra has been a pillar of support

through thick and thin, and I can’t thank him enough for the troubles he put himself through

to give me time to finish my dissertation. I would like to thank my brother Raghu Teja, his

wife Harsha Sree, my brother-in-law Viswanatha Srinivas and his wife Aishwarya, for their

love, support and the fun times we spent together. I would like to thank my grandmother for

her help in taking care of my children. At her age, it was no mean task.

I owe this dissertation to my two children, Srirama Prahlada and Ameya Dakshayani, who

were born during my Ph.D. My son has been very patient, caring and understanding, always

waiting for me to find time to spend with him. It astonishes me how maturely he has handled

iv



the situation as a four year old, and I am extremely proud of him. I can’t forget the cries of

my daughter, as I shut the door to get some time to work.

I would like to thank my teachers at school, college, Indian Institute of Technology (IIT)

Kharagpur, and UIUC, who have taught me invaluable lessons and shaped me into who I am

today.

Lastly, I would like to thank the wheel of time to weave my life the way it willed, for

making me come to this point in time through a million little nudges.

v



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Array Representation of Computations . . . . . . . . . . . . . . . . . . . . . 1
1.2 Code for Distributed Memory Systems . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview of the Ideas in this Dissertation . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2 HIGH LEVEL LANGUAGE DESIGN . . . . . . . . . . . . . . . . . . 6
2.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Input Output Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Element-by-Element Operations . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Reduce/Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Rearrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 User Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 3 INTERMEDIATE REPRESENTATIONS . . . . . . . . . . . . . . . . 24
3.1 Rationale for Multiple Intermediate Representations . . . . . . . . . . . . . . 24
3.2 High Level Intermediate Representation (HLIR) . . . . . . . . . . . . . . . . 25
3.3 Mid Level Intermediate Representation (MLIR) . . . . . . . . . . . . . . . . 32
3.4 Low Level Intermediate Representation (LLIR) . . . . . . . . . . . . . . . . 35
3.5 C Level Intermediate Representation (CLIR) . . . . . . . . . . . . . . . . . . 41

CHAPTER 4 COMPILATION PROCESS . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Lexer and Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 HLIR to MLIR Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 MLIR Node Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Grid Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Partitioning and Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 MLIR Algorithm Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Partition and Map Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 MLIR to LLIR Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.10 LLIR Node Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.11 Code Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.12 Buffer Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.13 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



CHAPTER 5 USING VAANI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Compilation Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Alternate Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

CHAPTER 6 EXPERIMENTAL FRAMEWORK . . . . . . . . . . . . . . . . . . . 98

CHAPTER 7 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 BLAS-Like Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Stencil Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Iterative Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 8 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.1 Related Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2 Related Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CHAPTER 9 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.1 Operation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2 User Options and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

CHAPTER 10 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vii



CHAPTER 1: INTRODUCTION

Array computations form the crux of many science and engineering applications, and can

be succinctly represented in a very high-level notation. However, these codes are written

today in C/C++ or Fortran for distributed memory systems using MPI. Supercomputers have

different types of nodes and interconnects, and program optimization needs to be tailored

to suit each set of target machines. The selection of algorithms, data layout, mapping and

optimizations are interdependent and modifying one of them may typically require a complete

rewrite of the application.

The following sections describe the representation of computations in high level notation

and in C using MPI.

1.1 ARRAY REPRESENTATION OF COMPUTATIONS

A significant portion of scientific and high performance computing use multi-dimensional

arrays as primary data structures, and perform operations on the arrays that can be rep-

resented with an array view of the structure, as opposed to the scalar, element-by-element

view provided in C/C++ or Fortran. These array representations are succinct, clear and

easy to maintain and modify. The programmer intent and the core computation specification

is available in this representation. Figure 1.1 shows a simple matrix multiplication written

in MATLAB (left side) and C (right side). Straightforward C code is already much longer

than the corresponding MATLAB code, but for high performance, it needs to be even longer

since matrix multiplication benefits from two levels of blocking (possibly multiple levels of

blocking), loop unrolling, vectorization and other optimizations, which tend to obfuscate the

code. On the other hand, in C, we know exactly how the data is stored and accessed, possible

C = A*B

for(int i = 0; i < m; i++) {

for(int j = 0; j < n; j++) {

C[i][j] = 0;

for(int k = 0; k < r; k++) {

C[i][j] += A[i][k]*B[k][j];

}

}

}

Figure 1.1: Matrix multiplication in MATLAB and C
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optimizations to perform, and their impact on performance. MATLAB does everything under

the hood, and the user typically does not have much control over the performance.

1.2 CODE FOR DISTRIBUTED MEMORY SYSTEMS

Single Program Multiple Data (SPMD) programming style using MPI with C/C++ or

Fortran is the most commonly adopted style to program for distributed memory systems.

This requires the data to be manually partitioned across the processes, and communication

needs to be explicitly specified using sends and receives for inter-process communication.

The already long C code from Figure 1.1 becomes significantly more complex with explicit

partitioning and data transfers as shown in Figure 1.2. It must also be noted that this example

is already a simplified version, that make use of a simple algorithm (Cannon’s algorithm)

and assumes square matrices on a square grid. The choice of algorithms affect performance,

and in this case, we can have 1D, 2D or 3D partitioning, with different algorithm choices in

each of these partitioning schemes, where different matrices need to be communicated. For

example, in 2D partitioning, we can keep either A, B or C in place, and move the other two

matrices around to perform the computation. Again, the moving matrices can be broadcast

step-by-step or moved around cyclically, as in Cannon’s algorithm.

In this setting, the programmer must spend time in low level details, like index computations,

buffer management, etc. in addition to the time consumed by the high level design decisions

like the choice of partitioning, the choice of optimizations, etc. Further, modifying the code

from one set of partitioning and optimization choices to another requires a complete rewrite of

the program. The problem is exacerbated if we add the conventional optimizations mentioned

above, like tiling, unrolling and vectorization to the MPI version.

Hybrid programming, combining distributed memory MPI models with shared memory

paradigms like OpenMP are frequently used to find the optimum performance. MPI needs

explicit communication, and can be expensive to use within the same node, while OpenMP

threads are light weight. Computations which require data replication on each process

benefit from this model, for example, stencil computations with ghost layers. Again, this

adds another layer of optimizations, and thus complicates the design and implementation of

programs significantly.
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// Initial shuffle

MPI_Irecv(Ain[0], myrc*myrc, MPI_DOUBLE,

(col+row)%pp, pp, commRow, &req[0]);

MPI_Isend(Aout[0], myrc*myrc, MPI_DOUBLE,

(col+pp-row)%pp, pp, commRow, &req[1]);

MPI_Irecv(Bin[0], myrc*myrc, MPI_DOUBLE,

(row+col)%pp, pp, commCol, &req[2]);

MPI_Isend(Bout[0], myrc*myrc, MPI_DOUBLE,

(row+pp-col)%pp, pp, commCol, &req[3]);

MPI_Waitall(4, req, sts);

for(int l = 0; l < pp; l++) {

swapMatrix(&Ain, &Aout);

swapMatrix(&Bin, &Bout);

for (int i = 0; i < myrc; i++) {

for (int j = 0; j < myrc; j++) {

for (int k = 0; k < myrc; k++) {

Cl[i][j] += Aout[i][k] * Bout[k][j];

}

}

}

MPI_Irecv(Ain[0], myrc*myrc, MPI_DOUBLE,

(col+1)%pp, l, commRow, &req[0]);

MPI_Isend(Aout[0], myrc*myrc, MPI_DOUBLE,

(col+pp-1)%pp, l, commRow, &req[1]);

MPI_Irecv(Bin[0], myrc*myrc, MPI_DOUBLE,

(row+1)%pp, l, commCol, &req[2]);

MPI_Isend(Bout[0], myrc*myrc, MPI_DOUBLE,

(row+pp-1)%pp, l, commCol, &req[3]);

MPI_Waitall(4, req, sts);

}

Figure 1.2: Matrix multiplication in C+MPI using Canon’s algorithm
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1.3 OVERVIEW OF THE IDEAS IN THIS DISSERTATION

The very high-level notation used in this thesis provides a clear and succinct representation

of a computation that is easy to maintain and modify. However, this lacks the flexibility to

decide the placement of data and its corresponding optimizations. The main idea of this

dissertation is to define a high level array notation language that can be used to create high

performance code by following through a series of intermediate representations that lower the

high level input to optimized C code with MPI. The layered approach provides an intuitive

and clear transformation path, providing the users with an interface to transform the code

based on high-level decisions on how the computation must be partitioned and mapped, the

set of optimizations or strategies to adopt, without having to deal with the low-level details

such as the generation of actual send and receive calls, index manipulations, etc.

To this effect, we define four intermediate representations (IR). High Level IR (HLIR)

represents computations on arrays using a set of predefined operators. At this level, our

system performs optimizations using symbolic computation and simplification. Mid level IR

(MLIR) represents computations based on the data access patterns. During the translation

from HLIR to MLIR, operations are categorized as Map, Stencil, Reduce/Scan, Multiply,

etc. Low level IR (LLIR) represents local computations and communication, after data and

computations are partitioned onto a virtual process grid. This level still retains a high level

notation of the computation and communication. C level IR (CLIR) takes this one step

further and represents the computation and communication in near C notation, using loops

with index sets and instruction blocks; and lower level communication nodes.

We provide an interactive interface to the intermediate representations to lower a compu-

tation specified in the high level notation to MPI+C code. We also provide a user-guided

tuning approach to tune the generated code to a target machine, by allowing the user to

select parameterized optimizations and partitioning, and using autotuning to select the best

values for a given input and machine size.

1.4 CONTRIBUTIONS

This dissertation introduces a framework called Vaani to generate efficient distributed

memory code from high level specifications, while providing flexibility and transparency to

the internal transformations in the process of generating the final code. This work proposes

a layered approach to code transformation tailored for distributed memory systems that

provides an interactive interface to generate efficient code. The main contributions of this

dissertation are:
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1. Design of a high-level array notation language to represent computations, particularly

recurrences and stencil computations

2. Design of a series of intermediate representations to provide an interface to code

generation

3. Development of a scripting language strategy to generate code from a high-level

specification

1.5 THESIS ORGANIZATION

The rest of the thesis is organized as follows. Chapter 2 details the high level input

language to the framework Vaani. Chapter 3 provides detailed description of the intermediate

representations used in Vaani, and the rationale for choosing them. Chapter 4 discusses the

compilation process and code generation. Chapter 5 describes the process of generating a

program using Vaani. Chapters 6 and 7 describe the experimental setup and the evaluation

of Vaani respectively. Chapter 8 explains the related work. And finally, chapters 9 and 10

explore future possibilities and conclude the thesis.
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CHAPTER 2: HIGH LEVEL LANGUAGE DESIGN

Vaani uses a very high-level array notation with a strong typing system to specify compu-

tations as input to the system. The language design takes ideas from existing languages that

support array operations, like MATLAB [1] and NumPy [2], but does not adopt either of

them as is, to provide a coherent notation that is succinct, clear and expressive. Figure 2.1

has a few examples to demonstrate the syntax and structure of the language.

GEMVER (Figure 2.1a) is a program that takes a matrix A of size m× n, three column

vectors u1, u2, and y of size m (interpreted as m × 1), three column vectors v1, v2 and z

of size n (interpreted as n × 1), and two scalars alpha and beta as inputs and gives three

outputs A, x and w. Here, A is specified as inout, indicating it is both an input and an

output to the system. A is updated with two outer products specified by the expressions

u1 ∗ v1′ and u2 ∗ v2′, where the ‘′’ indicates a transpose. Then x is computed by performing

a scaled matrix-vector multiplication with the matrix A transposed and the input vector y,

and added to the input vector z. w is again computed by a scaled matrix-vector product.

SSSP (Figure 2.1b) is a combination of matrix-power and matrix-vector multiplication

with custom additive and multiplicative operators. Here, a square matrix A of size n× n, a

column vector x of size n× 1 are taken as inputs, and sssp is declared as an output. sssp

is computed using a custom power operator ‘∧’ where the additive operator is min and the

multiplicative operator is +. Here the matrix A is raised to the power of n with these custom

operators, and again multiplied to x with the same custom operators as specified by the

∗(min,+). This application, when provided with an adjacency matrix A where each element

A[i, j] indicates the cost between nodes i and j if a path exists, and a very large number

(that can be treated as infinity in this context) otherwise, and the vector x has the same very

large number all over, except one node k that has a 0, then the vector Anx gives the shortest

path costs from the node k [3].

Activation (Figure 2.1c) represents two commonly used activation functions relu and

sigmoid in deep neural networks. Here, the functions max and exp are maximum and

exponential respectively. These functions and the other operators are applied to each element

of the argument/operand matrices.

Blur (Figure 2.1d) is a 3× 3 box filter represented as two 3× 1 and 1× 3 filters in the x

and y dimensions. Here, it takes a matrix A as input and gives a matrix C as the output,

where the intermediate matrix B is a 3-point stencil computation in the first dimension, and

the final result is a 3-point stencil computation in the y direction. Here, the curly brackets

are used to indicate the relative offsets of the stencil.

6



program GEMVER

inout A matrix(m, n, real64)

in u1, u2, y cvector(m, real64)

in v1, v2, z cvector(n, real64)

in alpha, beta scalar(real64)

out x, w

A = A + u1*v1' + u2*v2'

x = beta*A'*y + z

w = alpha*A*x

(a) GEMVER: BLAS Level 2

program SSSP

in A matrix(n, real64)

in x cvector(n, real64)

out sssp

sssp = A^(min, +)n *(min, +) x

(b) SSSP: Matrix power with custom operators

function Activation

in input matrix(b, m, real64)

out relu, sigmoid

relu = max(input, 0)

sigmoid = 1/(1 + exp(-input))

(c) Activation: Some activation functions

function Blur

in A matrix(m, n, real64)

out C

B = (A{-1,0} + A + A{1,0})/3

C = (B{0,-1} + B + B{0,1})/3

(d) Blur: 3×3 blur as 3×1 and 1×3 passes

program Jacobi2D

in A matrix(m, n, real64)

in iter scalar(int32)

out B

B = rec B [iter] {

B = (B{-1} + B{-1;0,1}

+ B{-1;0,-1} + B{-1;1,0}

+ B{-1;-1,0})/5

with boundary=periodic

} with B[0] = A

(e) Jacobi2D: Jacobi stencil computation

program Gauss2D

in A matrix(m, n, real64)

in iter scalar(int32)

out B

B = rec B [iter] {

B = (B{-1} + B{-1;0,1}

+ B{0;0,-1} + B{-1;1,0}

+ B{0;-1,0})/5

with boundary=none

} with B[0] = A

(f) Gauss2D: Gauss-Siedel stencil computation

Figure 2.1: Example specification in Vaani
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Jacobi2D (Figure 2.1e) is a two dimensional Jacobi 5-point stencil computation for a fixed

number of iterations, while Gauss2D (Figure 2.1f) is a similar computation using Gauss-Siedel

iterations. Here, both programs take a matrix A of size m× n and a scalar integer iter as

inputs. Matrix B is declared to be the output of the system. These programs use a novel

recurrence construct to specify recurrences to compute new values of B. The recurrence of

B is initialized with the matrix A in the with clause B[0] = A, and the value of B in the ith

iteration is computed from the B in (i− 1)th iteration by using the assignment statement

in the body of the recurrence. Here, the numbers in the curly braces are divided by a

semicolon, and the first number indicates a temporal offset (offset in the iteration space of

the recurrence), while the ones following the ‘;’ indicate spatial offsets (offsets in the iteration

space of the array). It can be observed that to create a Gauss-Siedel iteration, one needs to

change the temporal offset for some of the terms from −1 to 0 to indicate current iteration.

Here, the 0 in B{0; 0,−1} and B{0;−1, 0} together create a Gauss-Siedel expression from

the top-left to the bottom-right corner of the matrix. Also, the boundary clause in Jacobi2D

(Figure 2.1e) indicates that a periodic boundary condition is applied to the computation,

while that in Gauss2D (Figure 2.1f) indicates that the boundary is ignored.

Vaani generates code in the form of either a stand alone complete program, reading inputs

from and writing outputs to files, or as functions which assume an MPI environment already

running and the inputs and outputs spread across the process grid as specified in the code

generation phase. For the functions, Vaani generates setup and teardown functions, and

a function to perform the computation. These C functions can be called from another C

program, such that the setup function must be called first, and then its output is an input

to the computation function, which can be called multiple times, and then the teardown

function is called. In Figure 2.1, GEMVER, SSSP, Jacobi2D and Gauss2D are programs,

whereas Blur and Activation are functions, as identified by the first keyword program or

function.

Vaani supports element-by-element operations, stencil operations, matrix products and

powers, transpose, reductions, rearrangements and recurrences. It also supports user declared

and user defined functions. The following sections describe their syntax and semantic behavior

in detail.

2.1 GRAMMAR

Figure 2.2 presents Vaani’s grammar. The terms in angular brackets (like 〈program〉)
are non-terminal symbols, characters in quotes (like ‘program’ and ‘:’) are keywords and

accepted symbols, and capital character strings (like ID and CONSTANT) are terminal symbols.

8



〈program〉 ::= 〈header〉 〈declaration〉+ 〈statement〉+

〈header〉 ::= ‘program’ [ID]
| ‘function’ ID

〈declaration〉 ::= ‘in’ ID (‘,’ ID)* 〈objtype〉
| ‘inout’ ID (‘,’ ID)* 〈objtype〉
| ‘out’ ID (‘,’ ID)* [〈objtype〉]

〈objtype〉 ::= ‘scalar’ ‘(’[ 〈datatype〉 ] ‘)’
| [‘vector’ | ‘cvector’ | ‘rvector’] ‘(’ 〈expr〉 [‘,’ 〈datatype〉] ‘)’
| ‘matrix’ ‘(’ 〈expr〉 [‘,’ 〈expr〉] [‘,’ 〈datatype〉] ‘)’
| ‘tensor’ ‘(’ [〈datatype〉] ‘)’
| ‘tensor’ ‘(’ 〈expr〉 (‘,’ 〈expr〉)* [‘,’ 〈datatype〉] ‘)’

〈datatype〉 ::= ‘bool’ | ‘int8’ | ‘uint8’ | ‘int16’ | ‘uint16’
| ‘int32’ | ‘uint32’ | ‘int64’ | ‘uint64’
| ‘real32’ | ‘real64’ | ‘complex64’ | ‘complex128’

〈statement〉 ::= 〈assignment〉 | 〈recurrence〉 | 〈function〉

〈assignment〉 ::= 〈lhs〉 (‘,’ 〈lhs〉)* ‘=’ 〈expr〉 (‘,’ 〈expr〉)* [‘with’ 〈stmtblock〉]

〈recurrence〉 ::= 〈lhs〉 (‘,’ 〈lhs〉)* ‘=’ ‘rec’ 〈recheader〉 [‘[’ 〈expr〉 ‘]’] 〈stmtblock〉 ‘with’
〈stmtblock〉

〈recheader〉 ::= (ID (‘,’ ID)* ‘[’ 〈selector〉 ‘]’)+

〈stmtblock〉 ::= 〈statement〉 | ‘{’ 〈statement〉+ ‘}’

〈function〉 ::= 〈funcdecl〉 | 〈funcdef 〉

〈funcdecl〉 ::= ‘extern’ ‘func’ ID ‘(’ 〈datatype〉 (‘,’ 〈datatype〉)* ‘)’ ‘=>’ 〈datatype〉

〈funcdef 〉 ::= ‘func’ ID ‘(’ 〈finputs〉 ‘)’ [ ‘=>’ 〈datatype〉] ‘=’ 〈funcbody〉

〈finputs〉 ::= [〈datatype〉] ID (‘,’ [〈datatype〉] ID)*

〈funcbody〉 ::= 〈expr〉 | ‘{’ 〈statement〉* 〈expr〉 ‘}’

Figure 2.2: Grammar for the input specification of Vaani.
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〈lhs〉 ::= ID [‘[’ 〈selector〉 (‘,’ 〈selector〉)* ‘]’]

〈expr〉 ::= 〈expr〉 〈binop〉 〈expr〉
| 〈unop〉 〈expr〉
| 〈expr〉 ‘’’ // transpose
| 〈expr〉 ‘?’ 〈expr〉 ‘:’ 〈expr〉 // conditional
| 〈id〉 ‘(’ [〈arg〉 (‘,’ 〈arg〉)*] ‘)’ // function call
| 〈expr〉 ‘[’ 〈selector〉 (‘,’ 〈selector〉)* ‘]’ // exact indexing
| 〈expr〉 ‘{’[INT ‘;’] INT (‘,’ INT)* ‘}’ // offset indexing
| CONSTANT (INT | FLOAT | BOOL)
| ID

〈arg〉 ::= 〈expr〉 | 〈op〉

〈selector〉 ::= 〈expr〉 | [expr] ‘:’ [expr] [‘:’ [expr]]

〈op〉 ::= ‘+’ | ‘*’ | ‘&&’ | ‘||’

〈binop〉 ::= ‘+’ | ‘.+’ | ‘-’ | ‘.-’
| ‘*’ [〈genop〉] | ‘.*’ | ‘/’ | ‘./’ | ‘%’ | ‘.%’
| ‘^’ [〈genop〉] | ‘.^’
| ‘==’ | ‘!=’ | ‘<=’ | ‘<’ | ‘>=’ | ‘>’
| ‘<<’ | ‘>>’
| ‘&&’ | ‘||’

〈unop〉 ::= ‘+’ | ‘-’ | ‘!’

〈genop〉 ::= ‘(’ 〈arg〉 ‘,’ 〈arg〉 ‘)’

DIGIT ::= ‘0’..‘9’

LETTER ::= ‘a’..‘z’‘A’..‘Z’

INT ::= DIGIT+

DECIMAL ::= DIGIT* ‘.’ DIGIT+

EXP::= (‘e’ | ‘E’) [‘+’ | ‘-’] INT

FLOAT ::= INT EXP | DECIMAL [EXP]

ID ::= (‘ ’ | LETTER) (‘ ’ | LETTER | DIGIT)*

Figure 2.2: Grammar for the input specification of Vaani (cont.)
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Datatype Multidimensional array size
scalar() []

vector(m) [m]
rvector(m) [m]
cvector(m) [m, 1]
matrix(m) [m, m]

matrix(m, n) [m, n]
tensor() []

tensor(m,n) [m, n]
tensor(m, m, m) [m, m, m]
tensor(m, n, k) [m, n, k]

tensor(n1, n2, ... , nk) [n1, n2, ... , nk]

Table 2.1: Type description and corresponding multidimensional array

∗ indicates that the expression preceding it can repeat 0 or more times, and square brackets

’[]’ represent optional expressions. The | symbol separates options for the same non-terminal.

ID refers to any identifier. Vaani identifiers contain upper or lower case letters, underscore,

and digits, but cannot start with a digit, similar to the identifiers used by almost all

programming languages. The constants supported in Vaani are integer, floating point and

boolean (true or false). Integers in Vaani are currently a sequence of digits. Floating point

numbers accept decimal or exponential notation.

A Vaani program starts with the keyword program or function followed by an identifier

to name the program or function. It is followed by a set of declarations of inputs and

outputs, discussed in detail in Section 2.3. After the input output specification, a sequence of

statements specify the actual computations. There are three types of statements recognized

in Vaani: an assignment, a recurrence or a function. An assignment statements takes a list of

expressions on the left hand side, a list of expressions on the right hand side, and an optional

annotation of statements using the ‘with’ clause. The statements following the ‘with’ clause

are first executed, then the right hand side expressions are evaluated, and then assigned to

the left hand side expressions. Vaani supports assignments to either identifiers or a subset of

an identifier (a tensor represented by an identifier) using square bracket indexing (described

in Section 2.6.1). Recurrences are described in Section 2.7 and functions are described in

Section 2.10.
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Vaani’s datatype C datatype
bool bool (stored as a byte)
int8 int8 t
int16 int16 t
int32 int32 t
int64 int64 t
uint8 uint8 t
uint16 uint16 t
unit32 uint332 t
uint64 uint64 t
real32 float
real64 double

complex64 float complex
complex128 double complex

Table 2.2: Primitive datatypes supported in Vaani and their corresponding C datatypes

2.2 TYPE SYSTEM

All data in Vaani is represented as a multidimensional array, with a fixed primitive datatype

and number of dimensions, but the actual size of each dimension can be determined at runtime.

For example, matrix ’A’ in Figure 2.1a is a two dimensional array with size m× n, where

m and n can be determined at runtime. These multidimensional arrays are represented

in Vaani as tensors with 0 or more dimensions (0 dimensions implying a scalar element).

During declaration, the types can be defined using the keywords scalar, cvector (column

vector), rvector (row vector), vector (default vector is a row vector), matrix and tensor

(multidimensional). These keywords are provided for ease of declaring the types, but all of

them are represented as tensors within the context of Vaani. Some example usages and their

corresponding array sizes are presented in table 2.1.

The currently supported primitive datatypes are boolean (bool), signed (int8, int16, int32,

int64) and unsigned (uint8, uint16, uint32, uint64) integers, real (real32 (float), real64

(double)) and complex (complex64 (float), complex128 (double)) numbers. The numbers in

the names indicate the number of bits used by the datatype. Vaani’s primitive datatypes

and their corresponding C datatypes are shown in table 2.2. The array sizes are represented

as a list of symbolic expressions providing the size in each of the dimensions. Default scalar

types are int32 (as the most commonly added scalars are indices) and all other types are

real64 (double).

The input types are explicitly provided by the user and the output and intermediate data

types are inferred by Vaani during the compilation process. Type analysis using casting rules
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and symbolic computations is described in Section 4.2. Distribution of these arrays onto a

multidimensional grid is described in Section 4.6.

2.3 INPUT OUTPUT SPECIFICATION

Input and output to the program/function is required to be explicitly specified in Vaani

using the keywords in for inputs, out for outputs and inout for variables that are both inputs

and outputs. The inputs must be type annotated, and the output types can be deduced from

the input types using type analysis (Section 4.2). The type declared in the output must be

compatible (as defined in Section 2.4) with the type deduced by the type analysis algorithm,

else Vaani flags an error.

〈declaration〉 of the grammar in Figure 2.2 describes the input output specification for

Vaani. each declaration begins with a keyword ‘in’, ‘out’ or inout; a list of identifiers, and

an 〈objtype〉 to define the type. Vaani allows for the use of undeclared identifiers in the size

descriptions and implicitly adds them to the list of inputs with a default type of int32.

For a program, scalar inputs are read from command line arguments, while arrays are read

from files. For a function, inputs and outputs are passed as arguments. inout variables are

modified in place for functions.

2.4 ELEMENT-BY-ELEMENT OPERATIONS

Vaani supports element-by-element operations on compatible arrays using MATLAB like

dot ‘.’ representation for certain operations. For example, ‘.∧’ represents element-by-element

power operation. Most other operations are provided as functions. Table 2.3 lists all the

element-by-element operations supported by Vaani, currently. Element-by-element operations

can also be performed using user defined or declared scalar functions on compatible arrays as

described in Section 2.10. Table 2.4 gives the operator precedence in Vaani, from high to low.

Vaani supports combining arrays of different sizes to perform element-by-element operations.

This is supported by replicating the values in an array to match the other input arrays.

To check for compatibility of two arrays, the array sizes are extended by appending 1s if

needed, to make the two array sizes of equal dimensions. Two arrays are compatible for

binary operation if, at each dimension, either the two sizes are statically determined to be

equal using symbolic equivalence checking, or atleast one of the two sizes is statically equal

to 1. In this case, the array with size 1 is implicitly replicated along this dimension m times

to match the size m of the other array. This replication is performed in as many dimensions
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Function Description
Basic Arithmetic

+ or .+ Addition
- or .- Subtraction

.* Multiplication
/ or ./ Division

.∧ Power
min Minimum
max Maximum

% or .% Modulo
remainder Remainder

ceil Round up
floor Round down

Relational operations
== Equal to
!= Not equal to
< Less Than
<= Less than or equal to
> Greater Than
>= Greater than or equal to

Boolean Arithmetic
&& Logical and
|| Logical or

xor Logical xor
! Logical not

Bitwise Operations
bitand Bitwise and
bitor Bitwise or
bitxor Bitwise xor
bitflip Bitwise not
<< Left shift
>> Right shift

Function Description
Trigonometric functions

sin Sine
cos Cosine
tan Tangent
asin Inverse sine
acos Inverse cosine
atan Inverse tangent
atan2 Four quadrant inverse tan

Hyperbolic functions
sinh Hyperbolic sine
cosh Hyperbolic cosine
tanh Hyperbolic tangent
asinh Inverse hyperbolic sine
acosh Inverse hyperbolic cosine
atanh Inverse hyperbolic tangent

Complex functions
abs Absolute value

phase Phase computation
real Real component
imag Imaginary component

conjugate Conjugate
Exponents and Logarithms

exp Exponent
log Logarithm base e
log2 Logarithm base 2
log10 Logarithm base 10
sqrt Square root
cbrt Cube root

Miscellaneous
? : conditional

<id > User functions

Table 2.3: Element-by-element operations defined in Vaani
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Level Operator Description
1 ( ) function call

2
[ ] exact index
{} offset index

3

’ matrix conjugate transpose
.’ matrix simple transpose
∧ matrix power
.∧ element-by-element power

4
+ unary plus
- unary minus
! not

5

* general matrix multiplication
.* element-by-element multiplication

./ or / division
.% or % mod

6
.+ or + addition
.- or - subtraction

7
<< left shift
>> right shift

8

< less than
> greater than
<= less than or equal to
>= greater than or equal to

9
== equal to
!= not equal to

10 && logical and
11 || logical or
12 ? : Conditional

Table 2.4: Operator precedence
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Input array sizes Extended array sizes Combined array size
Compatible array sizes

[m, n] [m, n]
[m, n]

[n] [1, n]
[m, n, k] [m, n, k]

[m, n, k]
[n, 1] [1, n, 1]
[m, 1] [m, 1]

[m, n]
[n] [1, n]

[m, k] [1, m, k]
[n, m, k]

[n, 1, k] [n, 1, k]
[m, n] [1, m, n]

[k, m, n]
[k, 1, 1] [k, 1, 1]

Incompatible array sizes
[m, n] [m, n]

X
[m] [1, m]

[m, n, k] [m, n, k]
X

[m, k] [1, m, k]

Table 2.5: Example compatible and incompatible arrays

as necessary for each of the two arrays to match the two array sizes. This replication has

been conventionally termed as a broadcast in NumPy and MATLAB.

The rules stated above are identical to the rules followed by NumPy. This differs from

the broadcasting rules of MATLAB, where the 1s are appended to the end (instead of at

the beginning) to extend the arrays to equal dimensions, mainly due to the default internal

representation of the arrays. MATLAB, being column-major, has the first dimension the

quickest changing, where as NumPy, our target language C and hence Vaani, being row-major,

has the last dimension changing fast.

Table 2.5 provides a few examples of compatible and incompatible array combinations,

and the final combined size of the operation.

These rules are extended by applying them pairwise for operations with more operands,

like addition and element-by-element multiplication, which support multiple operands.

2.5 MATRIX OPERATIONS

Matrix operations (multiplication ‘*’, power ‘∧’, and transpose ‘’’ or ‘.’’) are defined for

matrices of upto two dimensions. General matrix multiplication and matrix power using user

specified additive and multiplicative operations are supported using the operator followed by

a pair of operations or user defined scalar binary functions. This is described in the grammar
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(Figure 2.2) using 〈genop〉. For example, A*(min,+)B performs a matrix multiplication with

minimum as the additive operation and addition as the multiplicative operation, which

could be used to perform shortest path computations by using adjacency matrices as the

operands [3]. Also, A∧(min,+)n performs a similar matrix product n times with A. These

operations are used in the example SSSP of Figure 2.1b.

2.6 INDEXING

Vaani uses two types of indexing into the arrays, exact and offset indexing.

2.6.1 Exact Indexing

Square brackets (‘[’ ‘]’) are used to denote exact indexing into the array, to access individual

elements or sub-arrays. Vaani supports a triplet notation with [start] : [[stop][: step]] to

refer to sub-arrays (here, the square brackets in definition imply optional parameters). The

notation implies a list of numbers starting from start, ending at stop but not including

stop, and in increments of step. The default step size is 1, default start is 0, and default

stop is context-dependent, and is the end of an array in the context of indexing. Statically

determined constant indices can be negative to refer to the end of the array, but dynamic

indices must be positive. For example, consider a matrix A of size m × n. A[0, 0] refers

to the first element and A[-1,-1] refers to the last element A[m-1, n-1]. A[:,0] refers to

the first column of A, A[:, -1] to the last column (A[:, n-1]), and A[i1:j1, i2:j2] to a

sub-matrix of A where all the values i1, i2, j1, j2 are assumed to be positive integers within

the range. A[0, ::2] would imply alternate elements in the first row of A. This is similar to

the notation in NumPy, however, the main difference is that only statically constant negative

integers can be negative, while NumPy, being an interpreted language, allows any index to

be negative.

2.6.2 Offset Indexing

Curly brackets (‘{’ ‘}’) are used to denote offset indexing, which specifies the offset of the

index from an abstract current index, for each element in the array. We use these offsets to

represent spatial offsets for stencil computations and temporal offsets for recurrences. For

example, A{0,1} represents the element A[i, j+1] for an abstract current index of [i,j].

Offsets are couple with boundary specifications to determine the range of the operations.

Currently supported boundary conditions for Vaani are none and periodic. none denotes
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that the boundary values are not computed, while periodic indicates the offsets are wrapped

around circularly. The same offset index of A{0,1} for an m × n matrix A would have

indices of range [0:m, 0:n-1] if boundary is none while the full index range [0:m, 0:n]

if boundary is periodic. In the case of periodic boundary condition, A{0,1} for an actual

index of [i, n-1] would imply A[i, 0] by wrapping around to the beginning of the array.

If both spatial and temporal offsets are required, then the offsets are separated by a ‘;’

to differentiate the first temporal offset, and the latter spatial offsets. An example of this

indexing is used in Jacobi2D (Figure 2.1e) and Gauss2D (Figure 2.1f).

2.7 RECURRENCES

Vaani does not support traditional loops, but instead, supports recurrences. <recurrence>

of the grammar in Figure 2.2 describes the syntax of recurrences. Components of a recurrence

are described below.

2.7.1 Output Variables

Output variables are a list of identifiers that are defined within the recurrence whose values

will be carried over outside the recurrence. The B after the keyword rec in Figures 2.1e and

2.1f are the output variables.

2.7.2 Selectors

Selectors specify both the number of iterations to run, and the values to be saved. An

expression selector specifies the number of iterations to be run, and saves the last computed

value of the variable. A selector with a ‘:’ operator specifies both the number of iterations

to be run, and that values of all iterations are to be saved. This increases the dimension of

the variable by 1 from the internal recurrence size. The [iter] after the output variable

B in Figures 2.1e and 2.1f are the selectors. Here, starting with the initial values of B, the

iterations of the recurrence are run to obtain B[iter]. For example, if the selector had been

B[0:iter], then the values of B would be stored for each iteration of B, and the resulting B

would have a size of iter ×m× n, increasing the dimensions of B. It should be noted here

that in order to obtain B[iter], the computation must run for iter iterations starting from 1,

while to compute B[0:iter], the computation runs for (iter−1) iterations, as the expression

0:iter excludes iter.
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Alternatively, a ‘*’ can be used as a selector, specifying that the recurrence runs to conver-

gence. Since Vaani uses fixed array sizes, ‘*’ cannot be combined with the ’:’ specification

and only the last (converged) value can be saved.

Selectors are combined with the initialization values to obtain the recurrence iterations,

and the process is described in Section 2.7.6.

2.7.3 Condition

A condition can also be specified such that the iteration is run as long as this condition

is true. When combined with ‘*’ selector, the recurrence is run till this condition is false.

Combined with an iteration count, it terminates when either the condition is false or iteration

count is reached. Conditional execution is not allowed with ‘:’ selector for the same reason

as ‘*’.

2.7.4 Body

The body of a recurrence is a list of statements, defining all the output variables in each

iteration using variables from previous iterations. The values from previous iterations can be

accessed using temporal offsets in the recurrence domain. For example, A{-1} denotes the

value of the previous iteration, and A{-2} denotes the value 2 iterations before. For example,

fibonacci numbers can be represented using the statement F = F{-1} + F{-2}. Temporal

offsets can be combined with spatial offsets using the ‘;’ operator. Jacobi2D and Gauss 2D

from Figures 2.1e and 2.1f demonstrate the usage of both temporal and spatial offsets to

perform iterative stencil computations. The temporal offsets here can only be non-positive

integers, while spatial offsets can be any integer constant. The use of 0 as a temporal offset

for some of the terms of Gauss2D suggests that the values computed in the current iteration

must be used, which implies that a Gauss-Siedel iteration must be performed. The values

must be such that a consistent direction of computation can be determined, else Vaani throws

an error.

2.7.5 Initial Values

The statement block after the ‘with’ keyword provides the initial values to the recurrence.

The initial values can be specified using two ways.
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Single Iteration Point

The value of a variable at a single constant integer iteration point is specified using square

brackets (B[0] in Figures 2.1e and 2.1f). The number of values specified must equal the

maximum temporal offset of that variable that is used in the body of the recurrence. For

example, if a variable A has temporal offsets of {-1} and {-3}, then three consecutive integer

points must be specified.

All Iteration Points

The value of a variable for all iteration points can be specified using a ‘:’ operator in

square brackets, giving an array of values, where each element is mapped to one iteration

(for example, a[:] = A, where A is a 2 dimensional array, would give vector values to a).

The number of iterations must match the leading dimension of the array. This specification

is only valid for fixed iteration space.

2.7.6 Determination of the Iteration Space

Iteration space is determined by using the indices of the initial values and the selector. The

initial values determine the lower bound of the iteration, and the selector specifies the upper

bound. For example, in Figures 2.1e and 2.1f, the initial value of 0 specifies the iteration

starts from 1, and the selector specifies that the final iteration is iter.

2.8 REDUCE/SCAN

Reduction and scan operations are supported in Vaani using functions. The function sig-

natures are reduce(Array, [operation, axes]) and scan(Array, [operation, axes]).

The operation can be a built-in function (+, *, min, max, &&, ||, xor, bitand, bitor, bitxor)

or a user-defined function, and the default is addition (+). The axes for reduce can be one

or more integers specifying the dimension to reduce along, default is 0. Scan can only be

performed in one dimension.

Reduce removes the dimensions along which it is reduced, reducing the dimension of the

result array. It is planned to take a user specified boolean to retain the dimensions or not,

but is currently not implemented. For example, v = reduce(A, +, 1) on a matrix A of size

m× n results in a vector v of size m where each element v[i] is the sum of all the elements

in the row i of matrix A.
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Scan result has the same dimensions as the input array, with the elements in the specified

dimension a cumulative of the values. Scan currently performs inclusive scan, and a future

boolean to select inclusive or exclusive scan is planned.

2.9 REARRANGE

Rearrange functions currently supported in Vaani are described below.

2.9.1 Reshape

reshape(array, sz1, sz2, ...) function takes an array A and recasts it as an array

of size (sz1, sz2, ..). If the original size of the matrix is m1 × m2 × ... × mk, this

operation flattens the original array to one dimension of size m1 ∗m2 ∗ ... ∗mk, and then

recasts it to its new sizes sz1 × sz2 × ... × szj. The total size of the array A and the

size obtained by the new sizes must statically be equal on symbolic equivalence check, i.e.,

m1 ∗m2 ∗ ... ∗mk = sz1 ∗ sz2 ∗ ... ∗ szj. For example, an array of size (m, n, k) can be

cast as (m*n, k), (n, 1, k, m) or (m, 1, n, k), but not as (m, m, k) or (p, q) even if

m*n*k = p*q at runtime, as Vaani cannot determine it statically. Reshape operations are of

two types.

Implicit Reshape

This is possible if the original and final array shapes and distributions over the process grid

remains the same before and after reshape. This is possible if the reshape adds or removes 1

length dimensions to the array, or combines adjacent sizes where at least one of them is not

partitioned over the grid. This reshape does not generate any communication, and is only

performed implicitly in the way underlying data is viewed.

Explicit Reshape

The reshape must be explicit if the final array shape over the process grid differs from the

initial array. This reshape involves communication across the process grid.

2.9.2 Reorder

reorder(array, order) changes the dimensions of an array to be viewed in the order

specified. Matrix transpose is a special case of reorder, where reorder(A, 1, 0) is a simple
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expression original size result size

Explicit
replicate(A, m, n) [m, n] [m*m, n*n]
replicate(A, n) [m, n] [m, n*n]
replicate(A, k, m, 1) [m, n] [k, m*m, n]

Implicit
replicate(A, k, 1, 1) [m, n] [k, m, n]
replicate(A, n) [m, 1] [m, n]
replicate(A, m, 1) [n] [m, n]

Table 2.6: Example replicate expressions

matrix transpose. Reorder retains the row or column distribution of the original matrix,

but arranges them differently, often leading to a need to explicitly recreate the array. This

often involves communication, unless the reorder only changes the order of dimensions not

partitioned across the grid.

2.9.3 Flip

flip(array, [axis]) reverses the elements in axis dimension, defaulting to 0 if axis is

not specified. Flip involves communication to place the data in the correct place.

2.9.4 Replicate

replicate(array, rep1, rep2, ...) replicates the array by the sizes repi specified.

This takes the sizes list of the array and the sizes represented by rep, aligns them at the end

and appends 1s to make them the same size, and multiplies the terms pairwise to create a

new array. Replicate again is of two types, similar to reshape. Table 2.6 shows some examples

of replicate, and their final shapes.

Implicit Replicate

Implicit replicate replicates the array along a dimension that is originally 1. This only has

communication to make the array values available on the processes requiring it.

Explicit Replicate

Explicit replicate is when an array is replicated along a dimension that is not originally 1.

This increases the length of a dimension, and hence requires a redistribution of the array.
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2.10 USER FUNCTIONS

Vaani supports two types of user functions, user declared and user defined functions. These

functions can be used as element-by-element operations, as operators for general matrix

multiplication and power, and as functions for reduction and scan. Currently, Vaani only

supports scalar functions.

2.10.1 User Declared Functions

Externally defined scalar C functions can be declared in Vaani using the extern keyword.

As an example,

extern func modadd(int32, int32) => int32

introduces a function modadd that takes two integers and returns an integer. Vaani declares

these functions in the final generated C code as extern functions, and must be coupled with

their implementations at compile time.

2.10.2 User Defined Functions

Users can also define functions in Vaani using statements and expressions supported in

Vaani. As an example,

func modadd(int32 a, int32 b) => int32 = { (a + b)%n }

introduces a function modadd that performs modulo addition. Here, the value n, that is not

an input to the function, takes the value of n when the function is defined. User defined

functions do not need type annotations, the types can be deduced on instantiation. For

example, a function

func square(a) = { a*a }

introduces a function square that squares a given number where the return type is determined

by the type of the argument at each instance.
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CHAPTER 3: INTERMEDIATE REPRESENTATIONS

The intermediate representations(IR) of Vaani represent the specified computations at

varying levels of detail. The representations are designed to enable different types of

optimizations at different stages of the compilation. The high-level IR (HLIR) represents

the operations on the arrays as specified by the user, the mid-level IR (MLIR) represents

computations categorized by the data access patterns, the low-level IR (LLIR) represents the

communication and local computation, and the C-level IR (CLIR) is the final step before

generating the code, and is in the form of iterations spaces and instruction blocks. The input

program is parsed and transformed through these representations as shown in Figure 3.1

before generating the final code. In this chapter, we explore the rationale for this design in

Section 3.1 and look at the different IRs in sections 3.2 to 3.5. We provide details of the

actual translation in chapter 4.

3.1 RATIONALE FOR MULTIPLE INTERMEDIATE REPRESENTATIONS

The design and implementation of a distributed memory program intuitively follows

a general pattern. First, a high level computation specification is developed, which is

independent of underlying implementation details. Then, the data and computation is

distributed onto a process grid. Next, the communication necessary to carry out the

computation assuming this distribution is determined. Finally, optimizations for local

computations are selected and implemented. This represents a flow in which each step

is dependent on the previous step, as a specification is necessary to perform distribution,

a distribution is necessary to determine communication, and local computations must be

extracted before performing local optimizations. These steps are typically performed in this

order, even if a user wishes to backtrack or maintain multiple versions of the final code.

Vaani’s intermediate representations follow this intuitive pattern, and thus enable the user

to intuitively define and refine the computations from a high level representation, breaking

them down into simpler and smaller chunks of computation, that lends itself to a varying set

of operations and optimizations. In Vaani, the language described in chapter 2 and HLIR

provide the implementation independent specification of computations. MLIR is used to

partition and distribute data and computation onto a virtual process grid. Communication

is introduced on translation from MLIR to LLIR, and local optimizations are performed on

LLIR and CLIR.
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INPUT

OUTPUT

HLIR

MLIR

LLIR

CLIR

Figure 3.1: Translation through IRs

3.2 HIGH LEVEL INTERMEDIATE REPRESENTATION (HLIR)

The high level IR is used to denote the program using arrays as objects with the operations

supported in the input language as-is as nodes. This representation has a list of inputs, a list

of outputs, and a directed acyclic graph (DAG) connecting the inputs to the outputs, where

each node is an operation. These nodes represent all possible computations defined in Vaani

like element-by-element operations, matrix operations, indexing operations, etc.

Recurrences are treated as a single node in HLIR, thus avoiding cycles but creating a

hierarchical nesting, as shown in Figures 3.6 and 3.7 for Jacobi2D and Gauss2D, respectively.

Recurrences have a set of recurrence variables and a set of recurrence outputs. Recurrence

variables are the variables that are considered inputs to each iteration of the recurrence and

have an initialization edge from outside the recurrence. Recurrence outputs are the outputs

defined in each iteration of the recurrence, and they have an edge out of the recurrence.

There is a loop in the recurrence, where the outputs of the current iteration are the inputs of

the next iteration. This is ignored, and the body of the recurrence is treated as a DAG for

the translation. Eventually, buffer allocation and code generation make sure that the output

to input match is correctly performed in the final code. This input to output match can be

performed unambiguously, as the temporal offsets of recurrences are constant integers. Nested

recurrences create a hierarchy of recurrence nodes, where an inner recurrence is considered a

statement in the outer recurrence.

HLIR is generated by parsing the input specification into an abstract syntax tree (AST)

and performing type and shape analysis to annotate the intermediate nodes with a datatype

and symbolic array size. Symbolic expression simplification, strength reduction and common
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m int32[] n int32[] A real64[m, n]

+ real64[m, n]

0

u1 real64[m, 1]

.* real64[m, n]

0

u2 real64[m, 1]

.* real64[m, n]

0

y real64[m, 1]

*(add, mul) real64[n, 1]

1

v1 real64[n, 1]

transpose(simple) real64[n]

0

v2 real64[n, 1]

transpose(simple) real64[n]

0

z real64[n, 1]

+ real64[n, 1]

1

alpha real64[]

.* real64[m, n]

0

beta real64[]

.* real64[n, m]

0

A real64[m, n]x real64[n, 1] w real64[m, 1]

1

transpose(simple) real64[n, m]

0

12

0

11

*(add, mul) real64[m, 1]

1

0

0

1

Figure 3.2: GEMVER HLIR

n int32[]

^(min, add) real64[n, n]

1

A real64[n, n]

0

x real64[n, 1]

*(min, add) real64[n, 1]

1

sssp real64[n, 1]

0

Figure 3.3: SSSP HLIR

26



b int32[] m int32[] input real64[b, m]

.* real64[b, m]

1

max() real64[b, m]

0

sigmoid real64[b, m]relu real64[b, m]

exp() real64[b, m]

0

1 int32[]

/ real64[b, m]

0

1 int32[]

+ real64[b, m]

0

1

-1 int32[]

0

1

0 int32[]

1

Figure 3.4: Activation HLIR

m int32[] n int32[] A real64[m, n]

Offset {-1, 0} real64[m, n]

0

Offset {1, 0} real64[m, n]

0

+ real64[m, n]

1

C real64[m, n]

0 2

/ real64[m, n]

0

Offset {0, -1} real64[m, n]

0

Offset {0, 1} real64[m, n]

0

+ real64[m, n]

1

3 int32[]

1

0 2

/ real64[m, n]

0

3 int32[]

1

Figure 3.5: Blur HLIR
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RECURRENCE

Body

m int32[] n int32[] A real64[m, n]

B{-1}real64[m, n]

single

iter int32[]

+ int32[]

1

B real64[m, n]

B [iter]real64[m, n]

Offset {0, 1} real64[m, n]

0

Offset {0, -1} real64[m, n]

0

Offset {1, 0} real64[m, n]

0

Offset {-1, 0} real64[m, n]

0

+ real64[m, n]

0

1 2 3 4

/ real64[m, n]

0

5 int32[]

1

iterations

1:1 + iter:1

1 int32[]

0

Figure 3.6: Jacobi2D HLIR
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RECURRENCE

Body

m int32[] n int32[] A real64[m, n]

B{-1}real64[m, n]

single

iter int32[]

+ int32[]

1

B real64[m, n]

B [iter]real64[m, n]

B{0}real64[m, n]
update

Offset {0, 1} real64[m, n]

0

Offset {1, 0} real64[m, n]

0

+ real64[m, n]

0 Offset {0, -1} real64[m, n]

0

Offset {-1, 0} real64[m, n]

0

1 3

/ real64[m, n]

0

24

5 int32[]

1

iterations

1:1 + iter:1

1 int32[]

0

Figure 3.7: Gauss2D HLIR
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1: m [] 2: n [] 3: A [m, n]

14: Map

out[0] = {4} + {0}.*{1} + {2}.*{3}

A

0

4

4: u1 [m, 1]

0

5: u2 [m, 1]

2

6: y [m, 1]

15: Multiplication

out[0] = {1}.*{0}'*{2}

-

0

2

7: v1 [n, 1]

12: Rearrange

out[0] = {0}'

-

0

0

8: v2 [n, 1]

13: Rearrange

out[0] = {0}'

-

0

0

9: z [n, 1]

16: Map

out[0] = {0} + {1}

x

0

1

10: alpha []

17: Multiplication

out[0] = {0}.*{1}*{2}

w

0

0

11: beta []

1

A [m, n] x [n, 1]w [m, 1]

0

1 0

1 3

2

Figure 3.8: GEMVER MLIR

sub-expression elimination are possible optimizations at this level.

Figures 3.2 through 3.7 present the HLIR versions of the sample examples from Figure 2.1.

In each of these examples, the topmost rectangular nodes represent the inputs, the bottom

rectangular nodes represent the outputs, and the intermediate ovals represent computation

nodes. A solid arrow brings all the required inputs to a computation node. These arrows are

numbered to specify the order of the inputs to a node.

Inout parameters and assignment operations are technically expected to introduce cycles.

However, Vaani treats them to be unique nodes in HLIR and thus do not produce cycles.

This information is used in a much later stage (buffer allocation), to possibly reduce the total

memory consumption by reusing buffers.
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1: n []

4: Multiplication

out[0] = {0}^{1}*{2}

sssp

0

1

2: A [n, n]

0

3: x [n, 1]

2

sssp [n, 1]

Figure 3.9: SSSP MLIR

1: b [] 2: m [] 3: input [b, m]

4: Map

out[0] = 1/(1 + exp(-1.*{0}))

sigmoid

0

0

5: Map

out[0] = max({0}, 0)

relu

0

0

sigmoid [b, m] relu [b, m]

Figure 3.10: Activation MLIR
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1: m [] 2: n [] 3: A [m, n]

4: Stencil

out[0] = ({0}{-1, 0} + {0} + {0}{1, 0})/3

B

0

0

C [m, n]

5: Stencil

out[0] = ({0}{0, -1} + {0} + {0}{0, 1})/3

C

0

0

Figure 3.11: Blur MLIR

3.3 MID LEVEL INTERMEDIATE REPRESENTATION (MLIR)

The mid-level IR represents computations grouped by the data access patterns. The

main nodes are map nodes that represent element-by-element operations, stencil nodes

that represent stencil computations, multiplication nodes that represent matrix-matrix

and matrix-vector products, and matrix power operations, rearrange nodes that represent

transpose, flip, replicate, reorder and reshape, combine nodes which have reduce and scan

operations, and recurrence. Each node has a list of inputs, a list of outputs, and a function

operating on the inputs to generate the outputs, which are again, represented as DAGS (a

linear text version is presented in the figures).

map node takes a set of array inputs and performs element-by-element operations to

generate a set of outputs. The actual operations are encoded as a function that map the

inputs to the outputs through a set of operations, again stored as a DAG. These nodes need

communication to align the arrays across the processes, and no communication for the actual

computation. These nodes are obtained by translating element-by-element operations in

HLIR and fusing the operations together.

stencil node performs the same operations as a map node but also includes at least one

offset-indexed array. This is different from the map node as offset-indexed arrays require

ghost regions and data exchange with neighbor nodes.
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5: Recurrence

Body

1: m [] 2: n [] 3: A [m, n]

7: B{-1}[m, n]

single

4: iter []

6: Slice

out[0] = 1 : 1 + {0} : 1

-

0

0

B [m, n]

9: B [iter][m, n]

8: Stencil

out[0] = ({0} + {0}{0, 1} + {0}{0, -1} + {0}{1, 0} + {0}{-1, 0})/5

B

0

0

iterations

Figure 3.12: Jacobi2D MLIR
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5: Recurrence

Body

1: m [] 2: n [] 3: A [m, n]

7: B{-1}[m, n]

single

4: iter []

6: Slice

out[0] = 1 : 1 + {0} : 1

-

0

0

B [m, n]

10: B [iter][m, n]

8: B{0}[m, n]
update

9: Stencil

out[0] = ({0} + {0}{0, 1} + {1}{0, -1} + {0}{1, 0} + {1}{-1, 0})/5

B

0

0 1

iterations

Figure 3.13: Gauss2D MLIR
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multiplication node performs matrix-matrix and matrix-vector multiplications, and

matrix power operations. This node generates different communication patterns based on

the algorithm selected.

rearrange nodes perform data alignment and rearrangement. These include transpose,

flip, replicate, reorder and reshape operations. These nodes generate communication nodes

depending on the pattern of rearrangement. These nodes also represent a change in data

distribution on a virtual process grid.

combine nodes perform reduction and scan operations. These again generate reduce or

scan communication patterns.

recurrence nodes are hierarchical, like in HLIR and have the same mechanics as in HLIR.

Only difference is that the nodes in the DAG of the iteration are MLIR nodes instead of

HLIR nodes.

Since MLIR categorizes nodes based on the data access and communication patterns, it

lends itself amenable to grouping computations together by merging nodes, defining the

communication patterns in lower layers. Grid declaration, data partitioning and mapping

(Section 4.6) are performed on the MLIR, and communication and computation strategies

are selected for each node in MLIR.

MLIR undergoes a series of transformations during the translation process. The initial

MLIR is generated with a one-to-one correspondence to HLIR. Then nodes are merged to

group the computations. MLIR also provides an interface to allow users to manually select

nodes to merge. MLIR supports each node to have multiple outputs to allow for a greater

freedom to the user in merging the nodes. Then, data partitioning and mapping is specified

on the merged MLIR. Consistency and propagation of mapping type is performed on MLIR

and each node (input, output and intermediate computation nodes) is annotated with a data

partition and map.

Figures 3.8 through 3.13 present the MLIR version of the examples from Figure 2.1.

3.4 LOW LEVEL INTERMEDIATE REPRESENTATION (LLIR)

Low-level IR (LLIR) nodes represent computation and communication operations on each

process on the virtual process grid. Local data arrays are computed using the partitioning

and mapping on the MLIR, to determine the local inputs and outputs. Computation nodes

in LLIR specify local computations on local inputs to generate local outputs based on the

MLIR. Communication nodes define communication patterns. All LLIR nodes have a mask

parameter to select or filter the nodes on which the computation/communication is performed.
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1: m[]

[]

[]

[Replicate, Replicate]

2: n[]

[]

[]

[Replicate, Replicate]

3: A[m, n]

[mp0, np1]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

12: Multiplication

{0}*{1}

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Partial]

-

0

0

4: x[n, 1]

[np0, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

10: Realign

0 to 1

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Unique:0, Block:0]

-

0

0

5: y[m, 1]

[mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

14: (Comp) Map

out[0] = {2}.*{3} + {0}.*{1}

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

z

0

1

6: alpha[]

[]

[]

[Replicate, Replicate]

9: View

out[i0, i1] = {0}[]

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

alpha

0

0

7: beta[]

[]

[]

[Replicate, Replicate]

8: View

out[i0, i1] = {0}[]

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

beta

0

0

z [m, 1]

[m, 1]

[mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

13: Reduce

1 unique

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

-

0

0

11: Broadcast

0

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Replicate, Block:0]

-

0

0

2

0

1

3

Figure 3.14: LLIR for matrix-vector multiplication
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3.4.1 Computation Nodes

Computation nodes have a set of inputs, a set of outputs and a function that maps

outputs to inputs using a DAG. The main difference between the computation nodes of

MLIR and LLIR is that LLIR nodes represent local computation. The main types of LLIR

computation nodes are Map nodes, Stencil nodes, Multiplication nodes and Combine nodes.

These perform the operations as their corresponding MLIR nodes, but on local arrays only.

The communication requirements and data placements are taken care of in other nodes.

3.4.2 Communication Nodes

Communication nodes in LLIR describe communication patterns in the process grid.

broadcast node specifies broadcast of an array in a set of grid dimensions. gather node

gathers an array from all the processes in a particular grid dimension. scatter node

distributes an array to all the processes in a particular grid dimension. reduce and scan

nodes perform reduction and scan operations on an array in a particular grid dimension.

transpose node is used to circularly shift data among the indices. realign node is similar

to a transpose node, but the data transfer is one directional. Transpose of a matrix on

a two dimensional grid generates a transpose node as all the nodes in the grid both send

and receive data, while the transpose of a row or column vector on a two dimensional grid

generates a realign node if the data is present without replication. boundaryexchange node

is used for halo exchange. gather and reduce nodes have an option to obtain the result on

a unique process or on all the processes in the dimension.

3.4.3 View Nodes

LLIR uses view nodes to implicitly view an array as an array of a different shape. They

take an input array, an output array and a mapping of output indices to input indices. These

are used to implicitly replicate along a dimension, transpose, flip, etc. These index maps are

of three types.

1. Identity: These map an index of the output to an index of the input.

2. Reverse: These map an index of the output to the reverse of an index of the input.

3. Unique: These map an index of the output to a constant value.

These nodes are used to view, for example, a vector v of size [m, 1] as a matrix A of

size [m,n], where the first index of the output matrix is identity mapped to the first index
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of the vector, and the second index of the output matrix is Unique mapped to 0. Thus,

A[i, j] = v[i, 0] would be result of the index map.

3.4.4 Examples

Consider a simple matrix-vector multiplication z = αAx+ βy. Figure 3.14 shows the LLIR

version of this multiplication. Here, we assume that the computation is performed on a

two dimensional square grid of processes. The matrix A is block distributed on the process

grid. The second line in node 3, [mp0, np1], show that the size of matrix A is mp0 × np1,

where mp0 and np1 are variables whose values are obtained at runtime. These represent

the sizes specified in the next line, [[p ×m/p], [p × n/p]], indicating that both dimensions

are blocked into p parts, of size roughly m/p and n/p, respectively. The last line in node 3,

[block : 0, block : 1], indicates that the array dimension 0 is block distributed on grid dimension

0, and array dimension 1 is block distributed on grid dimension 1. The partition information

[[p×m/p], [p× n/p]], combined with the distribution information [block : 0, block : 1], and

a symbolic index for each process in the process grid, together give the exact values of the

variables mp0 and np1. Here, the naming convention is to show that the mp0 is obtained by

splitting m onto p parts onto dimension 0 of the grid, while the np1 is obtained by breaking

the size n into p parts on dimension 1 of the grid. The user provides the vectors x and y

as column vectors available on the first column of the grid, and the user requires the result

vector z, again, to be aligned on the first column of the grid. This is, again, depicted in

the last lines of nodes 4, 5, and the final output node z, [block : 0, unique : 0], where array

dimension 0 is distributed on grid dimension 0, and the data is presently unique on grid

dimension 1, with the index of the unique process being 0. This implies that the vector is

distributed on the first column, block distributed across the rows. The constants alpha and

beta are replicated on all the processes, depicted by the [replicate, replicate] on the last line

of nodes 6 and 7. Node 12 performs the actual multiplication of Ax on every process. Node

10 is a realign, which transposes x to align with the matrix A. This makes x align along a

row, instead of a column. Node 11 then broadcasts the array x in grid dimension 0, using

the column communicator. Node 13 reduces the partially distributed multiplication result

Ax in grid dimension 1 along the row communicator, obtaining the result as a column vector

on the first column of the grid. Node 14 performs the computation z = α(Ax) + βy. Nodes 8

and 9 are view nodes that map index [i0, i1] to no index on the input side, as α and β are

scalars that don’t have any indices.

Figures 3.15 through 3.20 present the LLIR versions of the examples from Figure 2.1.
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1: m[]

[]

[Replicate, Replicate]

2: n[]

[]

[Replicate, Replicate]

3: A[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

22: (Comp) Map

out[0] = {4} + {2}.*{3} + {0}.*{1}

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

A

0

4

4: u1[m, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

17: Broadcast

1

[[pX(m/p)], [1]]

[Block:0, Replicate]

-

0

0

5: u2[m, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

12: Broadcast

1

[[pX(m/p)], [1]]

[Block:0, Replicate]

-

0

0

6: y[m, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

24: Multiplication

out[0] = {0}*{1}

[[pX(n/p)], [1]]

[Block:0, Unique:0]

-

0

1

7: v1[n, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

19: Realign

0 to 1

[[pX(n/p)], [1]]

[Unique:0, Block:0]

-

0

0

8: v2[n, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

14: Realign

0 to 1

[[pX(n/p)], [1]]

[Unique:0, Block:0]

-

0

0

9: z[n, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

25: (Comp) Map

out[0] = {0}.*{1} + {2}

[[pX(n/p)], [1]]

[Block:0, Unique:0]

x

0

2

10: alpha[]

[]

[Replicate, Replicate]

11: beta[]

[]

[Replicate, Replicate]

23: View

out[i0, i1] = {0}[]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

beta

0

0

A [m, n]

[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

w [m, 1]

[m, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

x [n, 1]

[n, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

0

26: Multiplication

out[0] = {0}*{1}

[[pX(m/p)], [1]]

[Block:0, Unique:0]

w

0

0

18: View

out[i0, i1] = {0}[i0, 0]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

u1

0

0

13: View

out[i0, i1] = {0}[i0, 0]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

u2

0

0

1

20: Broadcast

0

[[pX(n/p)], [1]]

[Replicate, Block:0]

-

0

0

15: Broadcast

0

[[pX(n/p)], [1]]

[Replicate, Block:0]

-

0

0

1

0

0

16: View

out[i0, i1] = {0}[i1, 0]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

-

0

0

1

2

21: View

out[i0, i1] = {0}[i1, 0]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

-

0

0

3

Figure 3.15: GEMVER LLIR
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4: Recurrence

Body

1: n[]

[]

[]

[Replicate, Replicate]

2: A[n, n]

[np0, np1]

[[pX(n/p)], [pX(n/p)]]

[Block:0, Block:1]

8: Multiplication

{0}*{1}

(real64) [np0, 1]

[[pX(n/p)], [1]]

[Block:0, Partial]

x

0

0

3: x[n, 1]

[np0, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

5: x{-1}[n, 1]

single

sssp [n, 1]

[n, 1]

[np0, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

10: x [n][n, 1]

6: Realign

0 to 1

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Unique:0, Block:0]

-

0

0

9: Reduce

1 unique

(real64) [np0, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

-

0

0

7: Broadcast

0

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Replicate, Block:0]

-

0

0

1

Figure 3.16: SSSP LLIR
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1: b[]

[]

[Replicate, Replicate]

2: m[]

[]

[Replicate, Replicate]

3: input[b, m]

[[pX(b/p)], [pX(m/p)]]

[Block:0, Block:1]

4: (Comp) Map

out[0] = 1/(1 + exp(-1.*{0}))

[[pX(b/p)], [pX(m/p)]]

[Block:0, Block:1]

sigmoid

0

0

5: (Comp) Map

out[0] = max({0}, 0)

[[pX(b/p)], [pX(m/p)]]

[Block:0, Block:1]

relu

0

0

sigmoid [b, m]

[b, m]

[[pX(b/p)], [pX(m/p)]]

[Block:0, Block:1]

relu [b, m]

[b, m]

[[pX(b/p)], [pX(m/p)]]

[Block:0, Block:1]

Figure 3.17: Activation LLIR

3.5 C LEVEL INTERMEDIATE REPRESENTATION (CLIR)

C-level IR (CLIR) is a DAG of instruction blocks. Each node has a mask filter, an iteration

space, and a list of instructions. Setup and tear-down of the process grid, declaration of

variables, allocation of memory, etc. are also represented as nodes in CLIR. This is the final

representation before Vaani generates the final code. Currently, Vaani uses CLIR as a way

to represent the final code internally, and does not provide its access to the user.

3.5.1 Computation node

CLIR has a single unified computation node, unlike specialized ones in previous IRs. Each

node has a list of indices, an iteration space defined by a list of triplets of start, stop and

step.The node also has a list of instructions that appear for each iteration point.

3.5.2 Communication nodes

These nodes represent the same communication patterns as LLIR, but each node has buffer

details and, again, a list of instructions.

3.5.3 Instructions

Instructions are C-like instructions that are used in CLIR. Currently, Vaani uses assignment,

assert, copy and MPI instructions. Loops and if statements are represented in iteration spaces
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1: m[]

[]

[Replicate, Replicate]

2: n[]

[]

[Replicate, Replicate]

3: A[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

4: Halo Exchange

[1, 1], [0, 0] Boundary: Periodic

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

A

0

0

C [m, n]

[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

5: Stencil

out[0] = ({0}{-1, 0} + {0} + {0}{1, 0})/3

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

0

6: Halo Exchange

[0, 0], [1, 1] Boundary: Periodic

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

0

7: Stencil

out[0] = ({0}{0, -1} + {0} + {0}{0, 1})/3

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

C

0

0

Figure 3.18: Blur LLIR
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5: Recurrence

Body

1: m[]

[]

[Replicate, Replicate]

2: n[]

[]

[Replicate, Replicate]

3: A[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

6: B{-1}[m, n]

single

4: iter[]

[]

[Replicate, Replicate]

B [m, n]

[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

9: B [iter][m, n]

7: Halo Exchange

[1, 1], [1, 1] Boundary: Periodic

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

0

8: Stencil

out[0] = ({0} + {0}{0, 1} + {0}{0, -1} + {0}{1, 0} + {0}{-1, 0})/5

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

0

Figure 3.19: Jacobi2D LLIR
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5: Recurrence

Body

1: m[]

[]

[Replicate, Replicate]

2: n[]

[]

[Replicate, Replicate]

3: A[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

6: B{-1}[m, n]

single

4: iter[]

[]

[Replicate, Replicate]

B [m, n]

[m, n]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

11: B [iter][m, n]

7: B{0}[m, n]
update

9: Halo Exchange

[0, 1], [0, 1] Boundary: None

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

0

8: Halo Exchange

[1, 0], [1, 0] Boundary: None

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

0

10: Stencil

out[0] = ({1} + {1}{0, 1} + {0}{0, -1} + {1}{1, 0} + {0}{-1, 0})/5

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

B

0

1 0

Figure 3.20: Gauss2D LLIR

44



and masks, respectively. Assignment takes two arguments, an LHS and an RHS, where LHS

is an indexed array (or a scalar) and RHS is an expression. MPI instruction is an instruction

that calls an MPI function. CLIR has functions defined for all the MPI functions currently

used by Vaani.
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CHAPTER 4: COMPILATION PROCESS

This chapter describes the compilation process in Vaani and its implementation, from the

input specified in Chapter 2 to C code using MPI. The generated C code conforms to C99

standard. Vaani is written in python 3.

4.1 LEXER AND PARSER

Vaani uses the grammar specified in Figure 2.2 and the precedence rules of table 2.4 to

generate an LALR parser using lark-parser [4]. The abstract syntax tree (AST) generated by

the parser is converted into a DAG. A symbol table keeps track of all defined variables and is

updated with each assignment. For every assignment, the statements in the with clause are

first processed, and then the actual statements.

Constant folding optimization is performed on the resultant HLIR, where at each node, if

all its children are constants, the node is replaced by a recomputed constant.

4.2 TYPE ANALYSIS

Type analysis is performed on HLIR. Inputs to the program are already type annotated. In

this step, every intermediate node is annotated with a type. The type in Vaani constitutes a

datatype and a list of symbolic sizes. Datatype for each internal node depends on the datatype

of its inputs. Datatype determination is done using standard C type-casting rules and C

standard library definitions of corresponding functions. Size determination is done depending

on the type of the node being processed. Algorithm 4.1 describes the size computation for

some of the nodes in Vaani.

Element computes the output size for binary element-by-element operations. Unary

operations just retain the shape of the input, while multi-child operations can be assumed

to have the same function called iteratively. The inputs to the function, lsizes and rsizes

are lists of sizes, of the two operands to an element-by-element operation. reslen is the size

of the return type, which is maximum of the two input sizes. Pad pads a list of sizes with

1s to obtain an array of requested dimensions. For example, a 2-d array of sizes [m,n] is

padded with two 1s to obtain a 4-d array of sizes [1, 1,m, n]. Then, going down the lists of

sizes, if both lsizes and rsizes are equal, then that is the size of the output array in that

dimension. And if either of them is 1, then the size would be the other. If both are not equal,

and atleast one of them is not 1, then it raises an error.
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Algorithm 4.1 Array Shape Analysis

procedure Element(lsizes, rsizes)
reslen← max(size(lsizes),

size(rsizes))
lsizes← Pad(lsizes, reslen)
rsizes← Pad(rsizes, reslen)
osizes← list(reslen)
for i← 1, reslen do

if lsizes[i] = rsizes[i] or
rsizes[i] = 1 then

osizes[i]← lsizes[i]
else if lsizes[i] = 1 then

osizes[i]← rsizes[i]
else

Error(“Incompatible sizes”)
end if

end for
return osizes

end procedure

procedure MatMul(lsizes, rsizes)
Require: size(lsizes) ≤ 2, size(rsizes) ≤ 2

lsizes← Pad(lsizes, 2)
rsizes← Pad(rsizes, 2)
Assert(lsizes[2] = rsizes[1])
return [lsizes[1], rsizes[2]]

end procedure

procedure Reduce(sizes, axes)
osizes← list()
for i← 1, size(sizes) do

if i not in axes then
osizes.append(sizes[i])

end if
end for
return osizes

end procedure

procedure Pad(sizes, len)
pad← len− size(sizes)
return [1] ∗ pad+ sizes

end procedure

procedure Transpose(sizes)
Require: size(sizes) ≤ 2

sizes← Pad(sizes, 2)
return [sizes[2], sizes[1]]

end procedure

procedure Replicate(sizes, repvals)
reslen← max(size(sizes),

size(repvals))
sizes← Pad(sizes, reslen)
repvals← Pad(repvals, reslen)
osizes← list(reslen)
for i← 1, reslen do

osizes[i]← sizes[i] ∗ repvals[i]
end for
return osizes

end procedure

procedure Reshape(oldsizes, newsizes)
oldsize← TotalSize(oldsizes)
newsize← TotalSize(newsizes)
Assert(oldsize = newsize)
return newsizes

end procedure

procedure Reorder(sizes, order)
dims← size(sizes)
osizes← list(dims)
for i← 1, dims do

osizes[i]← sizes[order[i]]
end for
return osizes

end procedure

procedure TotalSize(sizes)
size← 1
for sz in sizes do

size← size ∗ sz
end for
return size

end procedure
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MatMul is for matrix multiplication. Here, the two sizes must be less than or equal to

2, as matrix multiplication is only defined for vectors and matrices. Here, the two sizes are

again padded to length 2, to make vectors also matrices. Then, it checks that the inner two

sizes are equal, and creates an output size by taking the outer two sizes.

Reduce is for reduction, while scan retains the shape of its input. Reduce removes the

dimensions in which the reduction is performed. For example, a reduction in dimension 2 of

a three dimensional array of size [m,n, k] yields a size of [m, k].

Transpose is for matrix transpose, and interchanges the two indices after padding to

length 2. Replicate, Reshape and Reorder are for the replicate, reshape and reorder

functions supported in Vaani. Replicate takes a list of sizes, sizes, and a list of values

repvals, pads both to get the same length, and performs element by element multiplication

in each dimension to replicate the array repvals times. Reshape recasts the entire array, so

the only check in Reshape is to assertain that the total size of the array before and after

reshape is the same. Here, TotalSize computes the total size of the array by multiplying

the sizes in each dimension. Reorder views the old dimensions in a new order, so the

output sizes are a permutation of the input sizes, based on the order specified.

4.3 HLIR TO MLIR TRANSLATION

Each node in HLIR is converted into a node in MLIR. Offset indexing nodes are converted

into Stencil nodes; all element-by-element nodes are converted into Map nodes; transpose,

flip, replicate, reshape and reorder are converted into Rearrange nodes; matrix multiplication

and matrix power are converted into Multiplication nodes; reduce and scan operations

into Combine nodes and recurrences remain recurrences, with each internal node converted

into an MLIR node. This is depicted in Algorithm 4.2. MLIR graph at this stage is shown

for GEMVER and Jacobi in Figures 4.1 and 4.2.

4.4 MLIR NODE MERGING

Nodes of MLIR are merged to generate the nodes represented in the MLIR Figures 3.8

through 3.13. This merge is done in two steps, to account for the boundary value specifications

in the computation. In the first iteration, only nodes that belong to a single line of source

code are merged. The boundary conditions are then validated, and a second round of merging

is performed. The merge in this stage is not aggressive, only nodes that have a direct

parent-child relationship are merged. This is to allow greater flexibility in later stages, such
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Algorithm 4.2 HLIR to MLIR translation

procedure Translate(HLIR)
MLIR = newMLIR
for output in HLIR.outputs do

MLIR.outputs.append(
TranslateNode(output))

end for
end procedure

procedure TranslateNode(node)
if node.type in [Input, Constant] then

return node
else if node.type is Expression then

return TranslateExpr(node)
else if node.type is Recurrence then

return TranslateRec(node)
end if

end procedure

procedure TranslateRec(node)
for v in node.recvars do

v.init =TranslateNode(v.init)
end for
for o in node.recoutputs do

o.def =TranslateNode(o.def)
end for
return node

end procedure

procedure TranslateExpr(node)
newinputs = []
for input in node.inputs do

newinput.append(
TranslateNode(input))

end for
if node.type in [MatMul,MatPow]

then
mlirtype = Multiplication

else if node.type in
[Transpose, F lip, Reshape,
Reorder, Replicate] then

mlirtype = Rearrange
else if node.type in [Reduce, Scan]

then
mlirtype = Combine

else if node.type in [Offset] then
mlirtype = Stencil

else
mlirtype = Map

end if
func =GenerateFunction(node)
mlirnode = mlirtype(newinputs,

func)
return mlirnode

end procedure
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1: m [] 2: n [] 3: A [m, n]

16: Map

out[0] = {0} + {1} + {2}

A

0

0

4: u1 [m, 1]

13: Map

out[0] = {0}.*{1}

-

0

0

5: u2 [m, 1]

15: Map

out[0] = {0}.*{1}

-

0

0

6: y [m, 1]

20: Multiplication

out[0] = {0}*{1}

-

0

1

7: v1 [n, 1]

12: Rearrange

out[0] = {0}'

-

0

0

8: v2 [n, 1]

14: Rearrange

out[0] = {0}'

-

0

0

9: z [n, 1]

21: Map

out[0] = {0} + {1}

x

0

1

10: alpha []

17: Map

out[0] = {0}.*{1}

-

0

0

11: beta []

19: Map

out[0] = {0}.*{1}

-

0

0

A [m, n]w [m, 1]x [n, 1]

1

18: Rearrange

out[0] = {0}'

-

0

0

12

0

11

22: Multiplication

out[0] = {0}*{1}

w

0

1

0

0

1

Figure 4.1: GEMVER MLIR before Node Merging
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5: Recurrence

Body

1: m [] 2: n [] 3: A [m, n]

11: B{-1}[m, n]

single

4: iter []

8: Scalar

out[0] = {0} + {1}

-

0

1

B [m, n]

19: B [iter][m, n]

12: Stencil

out[0] = {0}{0, 1}

-

0

0

13: Stencil

out[0] = {0}{0, -1}

-

0

0

14: Stencil

out[0] = {0}{1, 0}

-

0

0

15: Stencil

out[0] = {0}{-1, 0}

-

0

0

16: Map

out[0] = {0} + {1} + {2} + {3} + {4}

-

0

0

1 2 3 4

18: Map

out[0] = {0}/{1}

B

0

0

17: Constant

5 []

1

iterations

10: Slice

out[0] = {0} : {1} : {2}

-

0

1

6: Constant

1 []

0

7: Constant

1 []

0

9: Constant

1 []

2

Figure 4.2: Jacobi2D MLIR before Node Merging
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as possible overlap of communication and computation. However, this stage exposes the IR

for user to manually select nodes to be merged, if desired.

Algorithm 4.3 MLIR merge

procedure Merge(MLIR)
for output in MLIR.outputs do

output =TryMerge(output)
end for

end procedure

procedure TryMerge(node)
if node is Input or Constant then return node
end if
mergenodes = [inp for inp in node.inputs if CanMerge(inp, node)]
mergenodes =CheckCycle(node, mergenodes)
if non-empty(mergenodes) then

newnode =MergeNodes(mergenodes ∪ {node})
return TryMerge(newnode)

else
for inp in node.inputs do

inp =TryMerge(inp)
end for
return node

end if
end procedure

Both iterations of merge begin with the output nodes, and walk backwards towards the

inputs after performing all possible merges at a node recursively. This is described in

Algorithm 4.3. Here, the TryMerge function returns if the node is a leaf node. Else, it

tries to merge the node with as many children as it can legally merge. This is checked in two

steps.

First, each input node is checked to see if a merge is possible with the base node, that is

the node at which the merge is performed. Table 4.1 displays the nodes that are allowed to

be merged, and any conditions they must satisfy for the merge to be valid.

Another important requirement to merge nodes is to ensure that no cycle is formed on

merging the nodes. Figure 4.3 illustrates how merging two nodes in a DAG may lead to a

cycle. Given a set of nodes to be merged, if there is path from one node in the set to another

through a node that is not present in the set, a cycle will be formed. In the example, merging

B and D is not valid as there is a path from B to D via the node C which is not also merged

with B and D. To detect these cycles, we start with the inputs to the set as described in
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Base Node Allowed merge nodes Condition

Map

Map -
Stencil -
Scalar -

Constant -

Stencil

Map -
Stencil -
Scalar -

Constant -

Multiplication

Multiplication -
Map Scalar multiplication

Rearrange Matrix transpose
Constant -

Rearrange Constant -
Combine Constant -

Table 4.1: Allowed merge nodes

B
0

C
0

D
0

A
0

E
0

(a) Original graph

BD
0 1

C
0

A
0

E
0

(b) Graph after merging

Figure 4.3: Formation of a cycle on merging nodes B and D
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Algorithm 4.4 Cycle detection while merging nodes

procedure CheckCycle(node, mergenodes)
inputs =UniqueInputs(mergenodes ∪ {node})
while NotEmpty(inputs) do

newinputs = inputs.pop().inputs
if empty(newinputs ∩mergenodes) then

inputs = inputs ∪ newinputs
else

mergenodes = mergenodes \ newinputs
return CheckCycle(node, mergenodes)

end if
end while
return mergenodes

end procedure

the Algorithm 4.5, and walk backwards, seeing if any of its previous inputs are present in

the set of nodes to be merged. Algorithm 4.4 demonstrates this method for cycle detection.

Walking through the algorithm for the example in Figure 4.3, the node would be D and the

set of mergenodes would be {B}. The function UniqueInputs creates a list of inputs to

the set of nodes that remove redundancies, and also eliminate inputs that are in the set itself.

In the example, node B which is an input to D is disregarded as B and D will be merged.

The unique inputs to B and D would be A and C. In the while iteration, if the first input

node considered is A, it has no inputs and thus does not change anything. The next input to

be popped is C, whose input is B. And since B is in mergenodes, it creates a cycle. B is

removed and the algorithm is called again without B, and it terminates as there are no more

mergenodes. It should be noted that we could as well have started with the outputs of the

nodes and walked forwards through the dependency graph, instead.

Algorithm 4.5 describes how two nodes are merged in MLIR. First, the constant nodes are

separated from the other nodes to be merged, and are folded into the functions of each node.

Then, the inputs and outputs of the merged node are determined. A node is an input to

the merged node if it is an input to any of the nodes to be merged, and it is not the output

of any of the nodes to be merged. And, a node is an output to the merged node if it is an

output to a node to be merged, and it has dependencies beyond the nodes to be merged.

The function is merged by taking the new selected outputs and tracing them backwards to

the new set of inputs through the old set of functions. A new node is created depending

on the type of the nodes merged, and the dependency graph is updated accordingly. The

procedure GetResultType describes how the type of the merged node is determined.
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Algorithm 4.5 Merging nodes

procedure MergeNodes(nodelist)
constants = [node for node in nodelist if node is Constant]
nodelist = nodelist \ constants
FoldConstants(nodelist, constants)
inputs =

⋃
node∈nodelist node.inputs

outputs =
⋃

node∈nodelist node.outputs
inputs = inputs \ outputs
outputs = [op for op in outputs if nonempty(dep(op) \ nodelist)]
function = MergeFunction(nodelist, inputs, outputs)
nodetype = GetResultType([node.type for node in nodelist])
node =Create(nodetype, function, inputs, outputs)
UpdateDependencies()
return node

end procedure

procedure GetResultType(typelist)
if any(typelist = Multiplication) then

return Multiplication
else if all(typelist = Scalar) then

return Scalar
else if all(typelist = Stencil or typelist = Map) then

if any(typelist = Stencil) then
return Stencil

else
return Map

end if
else

return “Unable to determine type”
end if

end procedure
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1: b [] 2: m [] 3: input [b, m]

4: Map

out[0] = 1/(1 + exp(-1.*{0}))

sigmoid

0

0

5: Map

out[0] = max({0}, 0)

relu

0

0

sigmoid [b, m] relu [b, m]

(a) Activation MLIR before merge

1: b [] 2: m [] 3: input [b, m]

4: Map

out[0] = max({0}, 0)

out[1] = 1/(1 + exp(-1.*{0}))

relu, sigmoid

0 1

0

relu [b, m] sigmoid [b, m]

(b) Activation MLIR after merge

1: m [] 2: n [] 3: A [m, n]

4: Stencil

out[0] = ({0}{-1, 0} + {0} + {0}{1, 0})/3

B

0

0

C [m, n]

5: Stencil

out[0] = ({0}{0, -1} + {0} + {0}{0, 1})/3

C

0

0

(c) Blur MLIR before merge

1: m [] 2: n [] 3: A [m, n]

4: Stencil

out[0] = ((({0}{-1, 0} + {0} + {0}{1, 0})/3){0, -1}

+ ({0}{-1, 0} + {0} + {0}{1, 0})/3

+ (({0}{-1, 0} + {0} + {0}{1, 0})/3){0, 1})/3

C

0

0

C [m, n]

(d) Blur MLIR after merge

Figure 4.4: Examples of user initiated merge nodes
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4.4.1 User Initiated Node Merging

The user can initiate merging of nodes, by specifying a list of nodes in the MLIR to be

merged. For example, the two activation functions sigmoid and relu in activation function

from Figure 3.10 can be merged in Vaani by calling merge(4, 5), where 4, 5 are the node

numbers in MLIR. Similarly, Blur in 3.11 has two stencil nodes, with indices 4 and 5, and

they can be merged in Vaani using merge(4, 5). The effect of these merges are shown in

Figure 4.4. The merge follows the same steps given in 4.5.

4.5 GRID CREATION

The generated program is intended to run as a set of autonomous processes executing their

own code in an MIMD style with communication across the processes. Vaani views these

processes as a multi-dimensional grid. The creation of a symbolic grid in Vaani is explained

in this section.

A grid is created in MLIR using a command grid(<dims>, <sizes>, <indices>), where

<dims> mentions the number of dimensions in the grid, and must be a constant integer.

<sizes> and <indices> are lists of strings, where the strings represent variable names that

are not yet present in the program. The <sizes> specify the size of the grid in each dimension,

while the <indices> specify the index of a process in the grid. These sizes and indices, in

the final program, are initialized to the grid dimensions and to uniquely identify a process in

the multidimensional grid, respectively, and are used in Vaani as symbolic placeholders. If

<sizes> or <indices> are not specified, Vaani generates them automatically, and tries to

keep them consistent and readable.

A command grid(1) creates a 1-dimensional grid with auto-generated sizes and indices,

while grid(1, [‘p’], [‘rank’]) creates a 1-dimensional grid where p would hold the total

number of processes, and rank would hold the index of a given process (also known as a rank

in MPI terminology).

A command grid(2, [‘p’, ‘q’]) would create a 2-dimensional rectangular grid, while

the command grid(2, [‘p’, ‘p’]) would create a 2-dimensional square grid. This only

works if the total number of available nodes is a perfect square, else the program would

terminate.

Vaani supports higher order grid creation, using grid(3, [‘p’, ‘q’, ‘r’) or grid(3,

[‘p’, ‘p’, ‘p’]) where the latter terminates if the number of nodes is not a perfect cube.

While Vaani also allows for creation of grids like grid(3, [‘p’, ‘q’, ‘p’), Vaani currently

relies on automatic grid dimension creation and returns an error if the partition does not
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match the expected split. So even if a split was possible, it is not guaranteed that Vaani

would find it. For instance, if the total number of nodes is 12, a partition of [2, 3, 2] would fit

the model and such a grid would be successful, but if the default grid created returns [3, 2, 2],

the program would take that to be an error.

Since the generated program uses MPI for communication, we use the concept of commu-

nicators from MPI, which is a channel to communicate with a set of processes. Vaani also

provides handles to symbolic communicators that can be referenced to define communication

patterns. In MPI, the global communicator is called MPI COMM WORLD. Vaani provides a

handle to a copy of the global communicator, and in the case of multi dimensional grids, a

handle to communicators in each dimension. So, for a 2-dimensional grid, Vaani has handles

for a global, row and column communicators.

4.6 PARTITIONING AND MAPPING

This section describes how data is partitioned and mapped onto the symbolic grid created

in the previous section 4.6.

4.6.1 Data Partitioning

A dimension of a data can be partitioned in two ways, either by specifying a block size

b, or by specifying the number of pieces k. A dimension i of a d-dimensional array thus

partitioned is treated as two dimensions i1 and i2, such that, if the original dimension i is of

size n, the new dimensions are n/b× b, or k × n/k.

The case where expressions n/b or n/k do not generate integer values (which is the

assumption in general) are handled as:

1. If the block size b is specified, all the blocks have size b except the last block which will

have n mod b elements.

2. If the number of pieces k is specified, then let n = q ∗ k + r, where 0 ≤ r < k. The first

r pieces have q + 1 elements, while the next k − r pieces have q elements.

In Vaani, partitioning can be performed on MLIR by using the commands block(<name>,

<dim>, <size>), which splits <dim> into blocks of size <size>, or chunk(<name>, <dim>,

<size>), which splits <dim> into <size> number of pieces. <name> is a string specifying the

name of a variable.
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Figure 4.5: Block cyclic distribution of 16× 16 array on a 2× 3 grid with a block size of 3× 2
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4.6.2 Mapping

A d-dimensional array (or a partitioned array) A can be mapped to a k dimensional process

grid G, by specifying which dimension of A is mapped to which dimension of the process grid,

and if the distribution is block or cyclic.

Block partitioning a dimension is equivalent to data partitioning the dimension into k

pieces as described earlier, and mapping one-to-one onto the grid dimension, assuming the

size of the grid is k in that dimension. For example, a mapping of [(‘block’, 0, 0),

(‘block’, 1, 1)] partitions a 2 dimensional array onto a 2 dimensional grid by blocking in

the x and y direction.

Cyclic partitioning assigns indices of a dimension of data in a round robin fashion to the

indices of a process grid. It must be noted that both block and cyclic distributions produce

equal partition sizes, only the index mapping is different.

Block cyclic partitions can be specified by first blocking the dimension, and then applying

a cyclic mapping. For example, a matrix A of size m× n is partitioned using block(‘A’, 0,

‘b’), block(‘A’, 1, ‘b’) and a mapping of [(‘cyclic’, 0, 0), (‘cyclic’, 1, 1)]

gives a block cyclic distribution on a two dimensional process grid. Figures 4.5a and 4.5b

show block cyclic distribution for a 16× 16 array distributed on a 2× 3 grid with a block

size of 3× 2.

If the dimension of the grid is larger than the mapped dimensions of the array, the user

can specify whether the data is placed on a unique node in that dimension or replicated

along that dimension. For example, a mapping of [(‘block’, 0, 0), (‘unique’, 1, 1)]

maps a one dimensional array onto a two dimensional grid where the array is distributed in

dimension 0 (x), and present on the first index of dimension 1 (y). A mapping of [(‘block’,

0, 0), (‘block’, 1, 1), (‘replicate’, 2)] maps a 2 dimensional array onto a three

dimensional grid by blocking the two dimensions of the array on two of the dimensions of

the grid, and replicating the array in the third dimension. This can be used, for example, to

perform matrix multiplication using a 3D grid.

You can choose to group the data of an array, which takes the dimensions not distributed

on the grid and makes that a unit. Figures 4.5c and 4.5d shows the data layout for block

cyclic distribution of an array on a 2 dimensional grid as a flattened array in memory. It

must be noted that the data has not actually been laid out at this stage, and grouping does

not correspond to any communication or data movement, it just transforms the internal

representation of the data.
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4.6.3 Representation in MLIR

Partition and mapping of an array A of type t onto a grid G is represented in Vaani using

an ArrayGridMap. An ArrayGridMap has partitioning information for each dimension of the

array (as a recursive block or chunk partitioned size), and a mapping information for each

dimension of the grid. These mapping are of the following types.

1. Block: block map a dimension of the array to this grid dimension.

2. Cyclic: cyclic map a dimension of the array to this grid dimension.

3. Unique: the array is present on only one process in this grid dimension.

4. Replicate: the array is replicated on every process in this grid dimension.

5. Partial: the array values are distributed on every process in this grid dimension, and

they need an operation to collect the actual values.

4.7 MLIR ALGORITHM SELECTION

Vaani has a provision to annotate some nodes in MLIR with special instructions on lowering

to LLIR. An example is to choose simple halo exchange or to overlap communication and

computation in a stencil node. In a simple halo exchange, the stencil node in LLIR would

create one computation node and a halo exchange node, while the LLIR for overlap would

create a computation node for the boundaries, a computation node for the internal values,

and a communication node that is dependent only on the boundary computation. Vaani is

built to easily support and extend other choices, but are currently not supported.

Another way for the user to select algorithms is for multiplication node by specifying

partitioning and mapping information for the node.

4.8 PARTITION AND MAP TYPE ANALYSIS

Once the user specifies the grid, selected partitioning and mapping, and possible algorithm

choices, Vaani performs type analysis to align partitioned and mapped data at each node.

This step fills details that are missing in user specification, verifies consistency in case of

existing specifications, and adds rearrangement nodes as required.

To perform this analysis, Vaani tries to start from points that have an ArrayGridMap

specified, and spread this mapping outwards at each of these places. This algorithm is
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Algorithm 4.6 Mapping Type Analysis (Overall)

procedure Analyze(MLIR)
BuildLists(MLIR)
while MLIR.processnodes do

Iterate()
end while

end procedure

procedure Iterate(MLIR)
progress = False
next = []
for node in MLIR.processnodes do

if TryMap(node) then
progress = True

else
next.append(node)

end if
end for
if progress then

MLIR.processnodes = next
MLIR.leaves = [lf for lf in

MLIR.leaves if not lf.map]
else

node = FindNode(MLIR.leaves)
ForceMap(node)
MLIR.leaves.remove(node)

end if
end procedure

procedure BuildLists(MLIR)
nodes = all intermediate nodes in MLIR
MLIR.processnodes = set(nodes)
lvs = MLIR.inputs ∪MLIR.outputs
MLIR.leaves = [lf for lf in lvs if not

lf.map]
end procedure

procedure FindNode(nodes)
maxdims = −1
possible = None
for node in nodes do

dims = count(dims in node where
size[dim] > 1)

if dims > maxdims then
maxdims = dims
possible = node

end if
end for
return possible

end procedure

procedure ForceMap(node)
Require: node is an output or an input

node.map = Default
end procedure
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Algorithm 4.7 Mapping Type Analysis (Individual Nodes)

procedure Map(node)
Require: Atleast one input or output map

ipmaps = [ip.map for ip in
node.inputs if ip.map]

opmaps = [op.map for op in
node.outputs if op.map]

cmap = ComMaps(ipmaps, opmaps)
for n in node.inputs∪node.outputs do

if n.map then
if not CheckSimilar(cmap,

n.map) then
Add Rearrange

end if
else

n.map = GetSimilar(cmap,
n.sizes)

end if
end for

end procedure

procedure MultiplicationMV(node)
Require: Matrix map

if not CheckMult(node.inputs)
then

Add Rearrange
end if
mulmap = GetMult(node.inputs)
if node.output.map then

if not CheckSimilar(mulmap,
node.output.map) then

Add rearrange
end if

else
node.output.map = mulmap

end if
end procedure

procedure Combine(node)
Require: Atleast one input or output map

opmap = node.output.map
ipmap = node.input.map
if node.operation = “scan” then

if ipmap & opmap then
if not CheckSimilar(ipmap,

opmap) then
Add Rearrange

end if
else

Copy map
end if

else
if ipmap & opmap then

imr = Drop(ipmap,
node.axis)

if not CheckSimilar(imr,
opmap) then

Add Rearrange
end if

else if ipmap then
node.output.map = Drop(

ipmap, node.axis)
else

node.input.map = Add(opmap,
node.axis)

end if
end if

end procedure

procedure Rearrange(node)
Require: Atleast one input or output map

opmap = node.output.map
ipmap = node.input.map
if not (ipmap or opmap) then

ipmap, opmap = GetRar(ipmap,
opmap, node)

end if
end procedure
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presented in Algorithm 4.6. Here, we build two sets, one of the intermediate MLIR nodes,

and one of the leaf nodes, both input and output nodes in the program. Here, only the

leaf nodes that do not have a map from the user are considered. For each node in the

processnodes, Vaani tries to complete the mapping using the maps of its inputs and/or

outputs. If none of these maps are present, then the attempt fails. The actual process of

completing these maps are presented in Algorithm 4.7 for all the major types of nodes in

MLIR. If no node completes the map in an iteration, then one of the inputs or outputs that

have not yet been mapped are selected and a default map is created for that node, and the

iteration repeats.

It can be observed that all the node types require some map, either an input or an output

map. Map and Stencil nodes require at least one input or output node already be mapped.

ComMaps combines a set of maps of compatible array sizes, and generates one map. This

typically looks at each array and grid dimension, and if that array dimension is similarly

mapped on all the present maps, it will pick that map. Else, it will look for a majority of

the maps, or, give preference to an output map, or in worst case, pick one arbitrarily. If the

combined array size is larger that the parts, it tries to map unmapped array dimensions to

grid dimensions that are unique or replicated on the smaller arrays. Once a combined map is

determined, for each input and output, if it has a map, CheckSimilar checks if the map is

compatible with the combined map, and rearrange nodes are inserted otherwise. If there is

no map, a compatible map is generated.

Multiplication nodes are preprocessed before the analysis to only perform a single

multiplication at each node. Matrix powers are transformed into recurrences of matrix

multiplications. Thus, the Multiplication nodes only have two array inputs with or

without transpose. For matrix-vector multiplication, it requires the map for the matrix input.

In this case, the vector is the only one that undergoes rearrange, and the matrix is kept

intact. For matrix-matrix multiplication, Vaani requires at least two of the three involved

matrices, the two inputs and the output. However, Vaani tries to delay mapping of these

nodes to obtain all three maps independently, if possible. This is not possible only if the

output of one such multiplication is the input to another, in which case the third map is

determined by combining the mapping of the required two maps.

Combine nodes are either reduction or scan operations. Scan operations have the same

array size in input and output, and thus can have the same map, if either of them is not

present. If both the maps are present, then a rearrange is needed if they don’t represent

the same partitioning. In case of reduce operation, the array dimension of the reduction is

removed in the result. Thus, if the output map is present, the axis dimension is added, and

if the input map is present, it is removed. If both maps are present, the input map with the
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Figure 4.6: GEMV MLIR after partition and map type analysis

axis removed is aligned with the output map and rearrangements are added accordingly.

Rearrange nodes perform a specified rearrange operation. This node can take any mapping

as input and any mapping as output. Like with multiplication nodes, these nodes also delay

their decision to see if both the input and output maps are obtained through other nodes. If

it is not possible, then the mapping with the least data movement is created for the other

map.

Figure 4.6 shows the MLIR of matrix-vector multiplication GEMV after the partition and

map type analysis is completed. Here, a rearrange node is added for each of the scalars alpha

and beta to replicate them to match the vector y, and a rearrange node to transpose and

replicate the vector x to perform the matrix multiplication.
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4.9 MLIR TO LLIR TRANSLATION

Each node in MLIR translates to a set of nodes in LLIR. The nodes in LLIR are classified

as computation nodes and communication nodes. For each array in LLIR, a local array

type and mask are generated, depending on the partition and mapping of each node. For

example, consider a 2 dimensional grid of size p× q. Let each process be identified by its

index in the two grid dimensions (rowrank, colrank). If an array of size m × n is block

distributed on the grid, then the dimensions of the local array will be mp0 × nq1, where

mp0 = m/p + ((rowrank < m%p)?1 : 0) and nq1 = n/q + ((colrank < n%q)?1 : 0); and

the mask will be empty. If a column vector of size m× 1 is distributed across the rows to

the first column of the grid ((block, 0, 0), (unique, 1, 0)), then the local array will

be mp0× 1, where mp0 is previously defined, and a mask of colrank == 0. In this context,

mask is used as the condition satisfying which a node will have a portion of the array. Here,

the array is present on all the nodes, while the vector is only present on the first column.

Map node has all the data aligned with rearrange nodes, and thus, only generates a

computation node (LLIR Map node).

Stencil node also has data aligned with rearrange nodes. However, a boundary exchange

is necessary to have all the data required for computation, and thus a BoundaryExchange

communication node is created in LLIR, followed by a computation node (LLIR Stencil

node).

Combine node first generates a local reduction computation node. If the operation is a

scan, it generates a Scan communication node, while it generates a Reduce communication

node if it is a reduction. Scan nodes also need a third node, a local scan node.

Multiplication node, in case of matrix-vector multiplication, first has a rearrange node

to align the vector along the right dimension of the array, if needed. Then a multiplication

computation node is created. Finally, if the multiplication results in a partial distribution of

the final array, then a Reduce communication node is created.

Rearrange node looks at the input map, the output map, and the rearrange operation

encoded in its function to generate communication nodes. To this effect, it first looks at

the indices in the input and output that are mapped to each other in the rearrange (for

example, in a transpose, input index 0 is mapped to output index 1 and vice versa). If the

aligned index in both the input and output are not mapped to the same grid dimension,

then a tuple of array indices and grid dimensions are marked to be realigned. Chains of such

realignments are created where the source of one dimension is the destination of another and

each chain is processed separately. If the array dimension in the input is not mapped to a

grid dimension, but it is mapped to a grid dimension in the output, it implies that the array
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Figure 4.7: Rearrange node generation

must be scattered in that dimension. Similarly, if the array dimension is mapped to a grid

dimension in the input, but it is not in the output array, then the array must be gathered.

If the chain is circular, like in an array transpose on 2 dimensional grid, where rows and

columns are to be interchanged, it is a circular transpose. If the chain only requires the data

to transfer from one dimension to another, then it is a realignment. Then, the result from

these operations and the final output is considered, and any broadcasts that are necessary

are generated. Finally, the partition methods of any array dimension are considered, and if

they are not the same, then a repartition node is created. Finally, a view node is created, if

needed,to provide a handle to convert from the expected output to the actual output.

This process is demonstrated by the following examples. Consider a 4 dimensional array A

of size [x1, x2, x3, x4] mapped onto a two dimensional grid such that the third and fourth

dimension (of sizes x3 and x4) are block distributed on grid dimensions 0 and 1. Consider
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Figure 4.7: Rearrange node generation (cont.)
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[[pX(x3/p)]]

[Unique:0, Block:0]

7: Realign

1 to 0

(real64) [x3p0]

[[pX(x3/p)]]

[Block:0, Unique:0]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: Broadcast

1

(real64) [x3p0]

[[pX(x3/p)]]

[Block:0, Replicate]

-

0

0

9: View

out[i0, i1, i2, i3] = {0}[i2]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(e)

8: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x3, x4]

[x3p0, x4p1]

[[pX(x3/p)], [pX(x4/p)]]

[Block:0, Block:1]

7: View

out[i0, i1, i2, i3] = {0}[i2, i3]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

B

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

1

(f)

Figure 4.7: Rearrange node generation (cont.)
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9: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x1, x4]

[x1p0, x4p1]

[[pX(x1/p)], [pX(x4/p)]]

[Block:0, Block:1]

7: Gather

0 from 0 to all

(real64) [x1, x4p1]

[[x1], [pX(x4/p)]]

[Replicate, Block:1]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: View

out[i0, i1, i2, i3] = {0}[i0, i3]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(g)
9: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x4, x3]

[x4p0, x3p1]

[[pX(x4/p)], [pX(x3/p)]]

[Block:0, Block:1]

7: Transpose

1 to 0 to 1

(real64) [x4p1, x3p0]

[[pX(x4/p)], [pX(x3/p)]]

[Block:1, Block:0]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: View

out[i0, i1, i2, i3] = {0}[i3, i2]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(h)

Figure 4.7: Rearrange node generation (cont.)
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9: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x3, x2]

[x3p0, x2p1]

[[pX(x3/p)], [pX(x2/p)]]

[Block:0, Block:1]

7: Gather

1 from 1 to all

(real64) [x3p0, x2]

[[pX(x3/p)], [x2]]

[Block:0, Replicate]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: View

out[i0, i1, i2, i3] = {0}[i2, i1]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(i)

10: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x1, x2]

[x1p0, x2p1]

[[pX(x1/p)], [pX(x2/p)]]

[Block:0, Block:1]

7: Gather

0 from 0 to all

(real64) [x1, x2p1]

[[x1], [pX(x2/p)]]

[Replicate, Block:1]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: Gather

1 from 1 to all

(real64) [x1, x2]

[[x1], [x2]]

[Replicate, Replicate]

-

0

0

9: View

out[i0, i1, i2, i3] = {0}[i0, i1]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(j)

Figure 4.7: Rearrange node generation (cont.)
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11: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x2, x3]

[x2p0, x3p1]

[[pX(x2/p)], [pX(x3/p)]]

[Block:0, Block:1]

7: Gather

0 from 0 to 0

(real64) [x2, x3p1]

[[x2], [pX(x3/p)]]

[Unique:0, Block:1]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: Realign

1 to 0

(real64) [x2, x3p0]

[[x2], [pX(x3/p)]]

[Block:1, Unique:0]

-

0

0

9: Broadcast

1

(real64) [x2, x3p0]

[[x2], [pX(x3/p)]]

[Block:1, Replicate]

-

0

0

10: View

out[i0, i1, i2, i3] = {0}[i1, i2]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(k) (l)

Figure 4.7: Rearrange node generation (cont.)
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10: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x2, x4, x3, x1]

[x2, x4, x3p0, x1p1]

[[x2], [x4], [pX(x3/p)], [pX(x1/p)]]

[Block:2, Block:3]

7: Gather

3 from 1 to 0

(real64) [x2, x4, x3p0, x1]

[[x2], [x4], [pX(x3/p)], [x1]]

[Block:2, Unique:0]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: Scatter

1 onto 1

(real64) [x2, x4p1, x3p0, x1]

[[x2], [pX(x4/p)], [pX(x3/p)], [x1]]

[Block:2, Block:1]

-

0

0

9: View

out[i0, i1, i2, i3] = {0}[i1, i3, i2, i0]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(m)

11: (Comp) Map

out[0] = {0} + {1}

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

C

0

0

6: B[x4, x1, x2, x3]

[x4, x1, x2p0, x3p1]

[[x4], [x1], [pX(x2/p)], [pX(x3/p)]]

[Block:2, Block:3]

7: Gather

2 from 0 to 0

(real64) [x4, x1, x2, x3p1]

[[x4], [x1], [x2], [pX(x3/p)]]

[Unique:0, Block:3]

-

0

0

C [x1, x2, x3, x4]

[x1, x2, x3, x4]

[x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

8: Realign

1 to 0

(real64) [x4, x1, x2, x3p0]

[[x4], [x1], [x2], [pX(x3/p)]]

[Block:3, Unique:0]

-

0

0

9: Scatter

0 onto 1

(real64) [x4p1, x1, x2, x3p0]

[[pX(x4/p)], [x1], [x2], [pX(x3/p)]]

[Block:3, Block:0]

-

0

0

10: View

out[i0, i1, i2, i3] = {0}[i3, i0, i1, i2]

(real64) [x1, x2, x3p0, x4p1]

[[x1], [x2], [pX(x3/p)], [pX(x4/p)]]

[Block:2, Block:3]

-

0

0

1

(n)

Figure 4.7: Rearrange node generation (cont.)
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element-by-element addition of A with an array B for the following cases.

(a) B is a scalar uniquely distributed on both the dimensions. Then, as in Figure 4.7a, B

is broadcast along dimensions 0 and 1, and a view is created to map the 4 dimensional

index to no index.

(b) B is a vector of size x4 and is distributed along grid dimension 1. In this case, as in

Figure 4.7b, B is broadcast along dimension 0 to replicate, and a view node is created

to map the 4 dimensional index [i0, i1, i2, i3] to the one dimensional index [i3].

(c) B is a vector of size x4 and is uniquely distributed on both dimensions. In this case, as

in Figure 4.7c, since the original array dimension is not mapped to the grid, and the

final dimension is mapped to grid dimension 1, a scatter node is generated to map the

array dimension 0 onto the grid dimension 1. Then the resultant array is replicated in

dimension 0, with a similar view as before.

(d) B is a vector of size x1 distributed along grid dimension 1. In this case, the addition

cannot be performed as is, as the two arrays are incompatible. We use reshape(B, x1,

1, 1, 1) to make the arrays compatible. Then, as in Figure 4.7d, the vector that is

distributed along the dimension 1, is gathered onto all nodes (all gather) to replicate

it along grid dimension 1, and then broadcast in grid dimension 0 to align with the

matrix A.

(e) B is a vector of size x3 distributed along grid dimension 1. In this case, again, we need

to reshape it to size [x3, 1] to make it compatible to the array A. Then, as in Figure

4.7e, The array, which is distributed along dimension 1 is realigned onto dimension 0,

and replicated along dimension 1 to match matrix A.

(f) B is a matrix of size [x3, x4] distributed along grid dimensions 0 and 1. This aligns

perfectly with A, and only a view node is generated, as in Figure 4.7f.

(g) B is a matrix of size [x1, x4] distributed along grid dimensions 0 and 1. This needs a

reshape to change the size to [x1, 1, 1, x4]. Here, as in Figure 4.7g, index 0 is gathered

from dimension 0 to all processes on dimension 0, and a view node is created to correctly

index the array.

(h) B is a matrix of size [x4, x3] distributed along grid dimension 0 and 1, respectively.

This needs a transpose to align with A. This is shown in Figure 4.7h.
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(i) B is a matrix of size [x3, x2] distributed along grid dimensions 0 and 1. Here, we

transpose B and reshape the result to [x2, x3, 1]. This transpose is to ensure that the

dimensions of x2 and x3 align correctly with A, instead of an explicit reshape. Here, x2

is gathered from grid dimension 1 to all processes and a view is created to incorporate

the transpose. It must be noted that the creation of the communication nodes (a

gather) are dependent on the complexity of the actual transformation, instead of the

specified operations (a transpose and reshape), as in Figure 4.7i.

(j) B is a matrix of size [x1, x2] distributed along grid dimensions 0 and 1. It is reshaped

to size [x1, x2, 1, 1] to align with A. The entire matrix must be present on all processes,

and Vaani does this by performing two successive all gathers in both the dimensions 0

and 1, as in Figure 4.7j.

(k) B is a matrix of size [x2, x3] distributed along grid dimensions 0 and 1. We, again,

reshape B to size [x2, x3, 1] to match A. Here, x2 is gathered in grid dimension 0

uniquely to process 0, then the matrix is realigned from grid dimension 1 to grid

dimension 0 (to match x3), and then the matrix is broadcast in grid dimension 1 to

make it available for the addition, as in Figure 4.7k. Here, even though the specification

only has a reshape, the distribution of x3 on a dimension different than the matrix A,

calls for a more complex transformation.

(l) B is a three dimensional tensor of size [x1, x2, x3] such that x2 and x3 are distributed

along grid dimensions 0 and 1. It is then reshaped to size [x1, x2, x3, 1]. The LLIR

nodes for this transformation is given in Figure 4.7l, where x2 is gathered from grid

dimension 0 onto the first column, then matrix is realigned to be present on the first

row instead, and then broadcast down the column to align with matrix A.

(m) B is a 4 dimensional tensor of size [x2, x4, x3, x1]. We use reorder(B, 3, 0, 2, 1)

to align with A. Here, x1 is gathered from grid dimension 1, and then x4 is scattered

on the same dimension 1, as in Figure 4.7m.

(n) B is a 4 dimensional tensor of size [x4, x1, x2, x3] and we use reorder(B, 1, 2, 3,

0) to order the tensor to size [x1, x2, x3, x4] aligning with A. Here, x2 is gathered from

grid dimension 0, then the array is realigned to distribute x3 along dimension 0 instead

of 1, and finally, x4 is scattered along the grid dimension 1. This is presented in Figure

4.7n.

As a complete program example, Figure 4.8 is the LLIR obtained from the MLIR for

GEMV in Figure 4.6. The two rearrange nodes for alpha and beta need not perform any
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1: m[]

[]

[]

[Replicate, Replicate]

2: n[]

[]

[]

[Replicate, Replicate]

3: A[m, n]

[mp0, np1]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

12: Multiplication

{0}*{1}

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Partial]

-

0

0

4: x[n, 1]

[np0, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

10: Realign

0 to 1

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Unique:0, Block:0]

-

0

0

5: y[m, 1]

[mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

14: (Comp) Map

out[0] = {2}.*{3} + {0}.*{1}

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

z

0

1

6: alpha[]

[]

[]

[Replicate, Replicate]

9: View

out[i0, i1] = {0}[]

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

alpha

0

0

7: beta[]

[]

[]

[Replicate, Replicate]

8: View

out[i0, i1] = {0}[]

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

beta

0

0

z [m, 1]

[m, 1]

[mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

13: Reduce

1 unique

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

-

0

0

11: Broadcast

0

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Replicate, Block:0]

-

0

0

2

0

1

3

Figure 4.8: GEMV LLIR
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tag(6, # Node number in LLIR

['x', 'y'], # Iteration indices

[('block', 'x', ['x0', 'x1'], 'b'), # Split x into blocks

('block', 'y', ['y0', 'y1'], 'b'), # Split y into blocks

('parallel', 'x0'), # Parallelize x0

('vectorize', 'x1', 4), # Vectorize x1 by 4

('unroll', 'y1', 2), # Unroll y1 by 2

('interchange', 'x1', 'y0')]) # Interchange x1 and y0

(a) Tag specification

# pragma omp parallel for private(y0, x1, y1)

for(x0 = 0; x0 < m; x0 += b) {

for (y0 = 0; y0 < n; y0 += b) {

# pragma omp simd simdlen(4)

for(x1 = x0; x1 < min(x0+b, m); x1++) {

for(y1 = y0; y1 < min(y0+b, n); y1 += 2) {

// Code for (x1, y1), and (x1, (y1 + 1))

}

}

}

}

(b) Loop nest for m× n iteration space

Figure 4.9: Sample LLIR computation tag

communication or computation, and they only generate a view node to indicate that all

indices are ignored and a scalar value is returned. The rearrange node of the vector x

generates a realign node to convert it from being distributed on the first column on the

process grid to distributed along the first row. Then, the vector is broadcast down the column

along the column communicator to replicate the vector on all the rows. The multiplication

node is split into two nodes, a local computation multiplication node and a reduce node. The

map node generates a local computation map node without any other nodes necessary.

4.10 LLIR NODE TAGGING

Vaani provides for tagging nodes in LLIR. Some of the features are described in the

following.
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4.10.1 Computation Nodes

Computation nodes in LLIR can be tagged to indicate thread parallelism, tiling, vec-

torization, loop unroll and loop reorder. Figure 4.9 shows a sample tag in LLIR and its

corresponding loop nest generated. The code shown is simplified for clarity, and assumes

both n and b are multiples of the unroll factor 2.

4.10.2 Communication Nodes

Vaani does not yet support tagging of communication nodes, but possible directions are to

use varying styles of communication patterns available in MPI like selecting blocking or non-

blocking communication. Halo exchange, for example, can be performed using non-blocking

send/recv, persistent communication if it appears in a recurrence, one sided communication,

synchronized exchange in each dimension (that takes care of diagonal elements if needed),

etc.

4.11 CODE ORDER

An order is determined for the nodes in LLIR, in the order they will appear in the final

source code. This order is selected so that all dependencies are satisfied in the LLIR, starting

from the outputs and walking backwards to the inputs, such that a node is only placed in

the order after its parents are placed. This is obtained by performing a topological sort of

the nodes in LLIR.

4.12 BUFFER ALLOCATION

Once a schedule is determined, and the dependencies marked, buffers are allocated for

each of the arrays. Notably, inputs and outputs are allocated their respective buffers. Each

internal node retains the name assigned to it, if it has a name in the original program, else a

Vaani generated temporary name is assigned.

4.12.1 Recurrences

Buffers in recurrences depend on the type of the recurrence variable. If all intermediate

iterations of the variable are saved, an output buffer for the combined array is allocated, and

each iteration of the recurrence accesses the corresponding section of the array. If only the last
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memcpy(&vn_B[0][0][0], &A[0][0], sizeof(double)*mp0*nq1);

for(int32_t rc0 = 1; rc0 < iter + 1; rc0++) { // Recurrence

for(int32_t i = 0; i < mp0; i++) { // Inside map loop

for(int32_t j = 0; j < nq1; j++) {

vn_B[rc0%2][i][j] = vn_B[(1 + rc0)%2][i][j] + A[i][j];

}

}

}

memcpy(&B[0][0], &vn_B[iter%2][0][0], sizeof(double)*mp0*nq1);

(a) B = B{-1} + A, saving only the last iteration B[iter]

memcpy(&vn_B[1][0][0], &A[0][0], sizeof(double)*mp0*nq1);

memcpy(&vn_B[0][0][0], &A[0][0], sizeof(double)*mp0*nq1);

for(int32_t rc0 = 2; rc0 < iter + 1; rc0++) {

for(int32_t i = 0; i < mp0; i++) {

for(int32_t j = 0; j < nq1; j++) {

vn_B[rc0%3][i][j] = vn_B[(2 + rc0)%3][i][j] +

vn_B[(1 + rc0)%3][i][j];

}

}

}

memcpy(&B[0][0], &vn_B[iter%3][0][0], sizeof(double)*mp0*nq1);

(b) B = B{-1} + B{-2}, saving only the last iteration B[iter]

memcpy(&B[0][0][0], &A[0][0], sizeof(double)*mp0*nq1);

memcpy(&B[1][0][0], &A[0][0], sizeof(double)*mp0*nq1);

for(int32_t rc0 = 2; rc0 < iter; rc0++) {

for(int32_t i = 0; i < mp0; i++) {

for(int32_t j = 0; j < nq1; j++) {

B[rc0][i][j] = B[-1 + rc0][i][j] + B[-2 + rc0][i][j];

}

}

}

(c) B = B{-1} + B{-2}, saving all iterations B[0:iter]

Figure 4.10: Buffer allocation and use in a recurrence for an array of size m× n with
initialization from array A
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iteration is needed, then the total number of iteration values required for the recurrence are

saved. For example, in the Jacobi2D example from 2.1e, since it uses the previous iteration

(-1) and writes to the current iteration (0), only 2 copies of the array suffice, and they are

indexed in the code accordingly. If a fibonacci-like operation was performed, it would require

3 iterations and thus, 3 copies of the buffer would be required. Figure 4.10 shows code

snippets for these examples.

4.12.2 Ghost Regions

Buffers with extended ghost regions are allocated for nodes requiring ghost regions, and

all indices are remapped to point to the correct locations. For example, an array A of local

size m× n with 1 layer ghost boundary on all sides would have an index shift of (1, 1), thus

A[i][j] would be addressed as A[i+1][j+1], where as a more complex ghost layer with two

to the left and one on top would index as A[i+2][j+1]. The bottom and right ghost layers

would change the stride length, but not the index values.

4.13 CODE GENERATION

Each node in LLIR is transformed into CLIR by explicitly defining iteration spaces and C

instruction representations. These representations are then generated as the final C code, in

the order determined by the schedule.

4.13.1 Boilerplate

During transformation from LLIR to CLIR, a list of headers, the function name (main for

a program) and arguments to the function (argc and argv for a program) are determined.

Commandline arguments, file inputs and file outputs are marked for code generation. These

are used to create the basic structure of the final code.

4.13.2 Declarations

All variables encountered in the translation from LLIR to CLIR are tracked by type and

declared in the program. Array sizes depend on the grid size, and thus they are not allocated

with declarations.
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/*** Grid Setup Begin ***/

MPI_Init(&argc, &argv);

MPI_Comm_dup(MPI_COMM_WORLD, &vaani_comm);

MPI_Comm_size(vaani_comm, &p);

MPI_Comm_rank(vaani_comm, &rank);

/*** Grid Setup End ***/

Figure 4.11: 1-dimensional grid creation

4.13.3 Grid Creation

Grid dimensions, ranks and communicator handles are created during the grid creation

phase (Section 4.5). Vaani uses these handles to create MPI grids. Figure 4.11 shows the

generated code for a 1 dimensional grid, while Figure 4.12 shows the grid creation for both

rectangular and square grids. Figure 4.13 shows some 3d grid creations.

4.13.4 Array Allocations

After the grid has been created, command line arguments are parsed to obtain scalar inputs

to the program like array sizes. These, combined with the grid dimensions and ranks, are

used to generate local array sizes. Once local array sizes are determined, arrays are allocated.

Vaani supports two ways of allocating and using the arrays:

• Multi-dimensional arrays: These have a space overhead to support the multidimensional

indexing feature, but allow for readable indexing schemes. Figure 4.14a shows allocation

and usage of a 3 dimensional array.

• Flat arrays: These have flat arrays, and need complex indexing schemes. Figure 4.14b

shows allocation and usage of a flattened 3 dimensional array.

A way to define array indexing using compile time definitions (#define) is being explored

to support simpler indexing without the memory overhead.

4.13.5 Computation

The LLIR computation tag, if specified, or a default tag is used to generate the loop nests

for each computation node. Each output in the node is assigned an expression that maps it

to its input. Vaani currently does not perform optimizations in expression generation, and
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/*** Grid Setup Begin ***/

MPI_Init(&argc, &argv);

MPI_Comm_dup(MPI_COMM_WORLD, &vaani_comm);

MPI_Comm_size(vaani_comm, &nprocs);

MPI_Comm_rank(vaani_comm, &rank);

MPI_Dims_create(nprocs, 2, dimsizes);

MPI_Cart_create(vaani_comm, 2, dimsizes, periodic, 0, &comm2d);

MPI_Cart_coords(comm2d, rank, 2, coords);

p = dimsizes[0];

q = dimsizes[1];

rowrank = coords[0];

colrank = coords[1];

MPI_Comm_split(comm2d, colrank, rowrank, &colcomm);

MPI_Comm_split(comm2d, rowrank, colrank, &rowcomm);

/*** Grid Setup End ***/

(a) Rectangular grid (p× q)

/*** Grid Setup Begin ***/

...

assert(dimsizes[0] == dimsizes[1]);

p = dimsizes[0];

rowrank = coords[0];

colrank = coords[1];

...

/*** Grid Setup End ***/

(b) Square grid (p× p)

Figure 4.12: 2-dimensional grid creation
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/*** Grid Setup Begin ***/

MPI_Init(&argc, &argv);

MPI_Comm_dup(MPI_COMM_WORLD, &vaani_comm);

MPI_Comm_size(vaani_comm, &nprocs);

MPI_Comm_rank(vaani_comm, &rank);

MPI_Dims_create(nprocs, 3, dimsizes);

MPI_Cart_create(vaani_comm, 3, dimsizes, periodic, 0, &comm3d);

MPI_Cart_coords(comm3d, rank, 3, coords);

p = dimsizes[0];

q = dimsizes[1];

r = dimsizes[2];

gridrank0 = coords[0];

gridrank1 = coords[1];

gridrank2 = coords[2];

MPI_Comm_split(comm3d, gridrank2 + r*gridrank1, gridrank0, &dim0comm);

MPI_Comm_split(comm3d, gridrank2 + r*gridrank0, gridrank1, &dim1comm);

MPI_Comm_split(comm3d, gridrank1 + q*gridrank0, gridrank2, &dim2comm);

/*** Grid Setup End ***/

(a) grid of size p× q × r

/*** Grid Setup Begin ***/

...

assert(dimsizes[0] == dimsizes[1]);

assert(dimsizes[1] == dimsizes[2]);

p = dimsizes[0];

...

/*** Grid Setup End ***/

(b) grid of size p× p× p

/*** Grid Setup Begin ***/

...

assert(dimsizes[0] == dimsizes[2]);

p = dimsizes[0];

q = dimsizes[1];

...

/*** Grid Setup End ***/

(c) grid of size p× q × p

Figure 4.13: 3-dimensional grid creation
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/* Allocation */

A = malloc(sizeof(double**)*t);

A[0] = malloc(sizeof(double*)*t*m);

A[0][0] = malloc(sizeof(double)*t*m*n);

for(int32_t i = 0; i < t; i++) {

A[i] = A[0] + i*m;

for(int32_t j = 0; j < m; j++) {

A[i][j] = A[0][0] + i*m*n + j*n;

}

}

/* Usage */

for(int32_t i = 0; i < t; i++) {

for(int32_t j = 0; j < m; j++) {

for(int32_t k = 0; k < n; k++) {

... A[i][j][k] ...

}

}

}

(a) Multidimensional array A of local size t×m× n

/* Allocation */

A = malloc(sizeof(double)*t*m*n);

/* Usage */

for(int32_t i = 0; i < t; i++) {

for(int32_t j = 0; j < m; j++) {

for(int32_t k = 0; k < n; k++) {

... A[k + n*j + i*m*n] ...

}

}

}

(b) Flattened array A of size t×m× n

Figure 4.14: Array allocation and indexing
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leaves it to the underlying C compiler. Code for expressions are generated in a recursive

manner. Argument strings are first generated, and then they are combined to create the final

expression. Arguments are parenthesized if needed following standard C operator precedence.

4.13.6 Communication

Vaani currently uses blocking collective operations and non-blocking send and receive

operations. Figure 4.15 shows sample code generated to broadcast, reduce to a unique index,

all reduce and realign vectors on a two dimensional square process grid. Here, it can be

observed that if Vaani allocates the same buffer for the reduction during buffer allocation, the

generated code uses MPI IN PLACE to reuse the buffer. However, a new temporary buffer is

allocated for the realignment operation, as the size and distribution of the data would be

different, and hence a new buffer is preferable.
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MPI_Bcast(&v[0], np1, MPI_DOUBLE, 0, colcomm);

(a) Broadcast vector v along the column communicator

if(rowrank == 0) {

MPI_Reduce(MPI_IN_PLACE, &y[0], np1, MPI_DOUBLE, MPI_SUM,

0, colcomm);

}

else {

MPI_Reduce(&y[0], &y[0], np1, MPI_DOUBLE, MPI_SUM, 0, colcomm);

}

(b) Reduce vector y along the column communicator to rank 0

MPI_Allreduce(MPI_IN_PLACE, &v[0], mp0, MPI_DOUBLE, MPI_SUM, rowcomm);

(c) All reduce vector v in place along the row communicator

rqid = 0;

if(rowrank == 0) {

MPI_Irecv(&temp1[0], np1, MPI_DOUBLE, colrank*p, 0, vaani_comm,

&req[rqid++]);

}

if(colrank == 0) {

MPI_Isend(&x[0], np0, MPI_DOUBLE, rowrank, 0, vaani_comm,

&req[rqid++]);

}

if(rqid>0) MPI_Waitall(rqid, req, MPI_STATUSES_IGNORE);

(d) Realign vector x from row distributed to column distributed as vector temp1

Figure 4.15: Some example communication codes
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CHAPTER 5: USING VAANI

In this chapter, we take a basic matrix-vector multiplication operation z = αAx+ βy and

walk through the process of using Vaani to obtain final C code.

5.1 SPECIFICATION

The first step is to write a specification in Vaani. Figure 5.1 shows the program specification

for matrix-vector multiplication. We use the file extension ‘.vn’ to denote Vaani files by

convention, and save the specification as ‘gemv.vn’. The parser, however, can take any text

file and try to parse it as a Vaani specification.

5.2 COMPILATION SCRIPT

A python script can be used to compile and generate a C code file from a specification.

Figure 5.2 shows a sample compilation script. The interactive module of Vaani has functions

to interface into the Vaani compiler. This module is first imported as it. The bare minimum

steps to generate C code are the function calls, parse to parse the input file and generate

HLIR, hlirtomlir to convert HLIR to MLIR, grid to specify a grid for the computation,

mlirtollir to convert to LLIR, llirtoclir to convert to CLIR, clirtocode to internally

generate the code, and generate to generate the final C program. The function plot plots

the current intermediate representation to a file. This process uses pygraphviz module, and

typically supports most common formats like ‘.jpg’, ‘.png’, ‘.ps’, ‘.pdf’, etc, detected by the

extension provided in the filename. We use the ‘.pdf’ format in the example.

program GEMV

in m, n scalar(int64)

in A matrix(m, n, real64)

in x cvector(n, real64)

in y cvector(m, real64)

in alpha, beta scalar(real64)

out z

z = alpha * A * x + beta * y

Figure 5.1: Matrix-vector multiplication specification in Vaani
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import vaani.interactive as it

name = 'gemv'

it.parse(name + '.vn')

it.plot(name + '-hlir.pdf')

it.hlirtomlir()

it.plot(name + '-mlir.pdf')

it.grid(2, ['p', 'p'])

it.mlirtollir()

it.plot(name + '-llir.pdf')

it.llirtoclir()

it.clirtocode()

it.generate(name + '.c')

Figure 5.2: Python script to invoke Vaani

5.3 EXECUTION

Running the basic script from Figure 5.2 as python gemv-script.py generates three IR

Figures and a C code file. Figure 5.3 shows the three intermediate representations generated

by the program.

HLIR shows each operation as a node, and has two scalar multiplications, one matrix-vector

multiplication and one addition. MLIR combines the nodes to generate a multiplication

node for the matrix-vector multiplication, and a map node for the two scalar multiplications

and the addition. LLIR shows that the column vector x must be transposed (realign node

performs vector transpose) to align to the first row of processes, then broadcast down the

columns. Then the matrix-vector multiplication is performed locally on all the nodes, and

the result is marked as partially distributed in the column dimension. Then the results are

reduced to a single column, and finally the map is performed to generate the final result.

Figure 5.4 shows the complete code generated by Vaani. Note that the input arrays

are initialized with fixed values, the actual computation is repeated reps times and the

computation is timed, to ease evaluation of the generated code.

5.4 ALTERNATE VERSIONS

Alternate versions of the same computation can be generated by altering the compilation

script. Figure 5.5 shows the modified script for a 1D grid distribution and its corresponding

default partitioning in LLIR. Here, the matrix A is column distributed onto the process grid,
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m int64[] n int64[] A real64[m, n]

.* real64[m, n]

1

x real64[n, 1]

*(add, mul) real64[m, 1]

1

y real64[m, 1]

.* real64[m, 1]

1

alpha real64[]

0

beta real64[]

0

z real64[m, 1]

0

+ real64[m, 1]

0

1

(a) HLIR

1: m [] 2: n [] 3: A [m, n]

8: Multiplication

out[0] = {0}*{1}

-

0

0

4: x [n, 1]

1

5: y [m, 1]

9: Map

out[0] = {0}.*{1} + {2}.*{3}

z

0

3

6: alpha []

0

7: beta []

2

z [m, 1]

1

(b) MLIR

Figure 5.3: Intermediate representations of GEMV
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1: m[]

[]

[]

[Replicate, Replicate]

2: n[]

[]

[]

[Replicate, Replicate]

3: A[m, n]

[mp0, np1]

[[pX(m/p)], [pX(n/p)]]

[Block:0, Block:1]

12: Multiplication

{0}*{1}

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Partial]

-

0

0

4: x[n, 1]

[np0, 1]

[[pX(n/p)], [1]]

[Block:0, Unique:0]

10: Realign

0 to 1

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Unique:0, Block:0]

-

0

0

5: y[m, 1]

[mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

14: (Comp) Map

out[0] = {2}.*{3} + {0}.*{1}

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

z

0

1

6: alpha[]

[]

[]

[Replicate, Replicate]

9: View

out[i0, i1] = {0}[]

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

alpha

0

0

7: beta[]

[]

[]

[Replicate, Replicate]

8: View

out[i0, i1] = {0}[]

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

beta

0

0

z [m, 1]

[m, 1]

[mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

13: Reduce

1 unique

(real64) [mp0, 1]

[[pX(m/p)], [1]]

[Block:0, Unique:0]

-

0

0

11: Broadcast

0

(real64) [np1, 1]

[[pX(n/p)], [1]]

[Replicate, Block:0]

-

0

0

2

0

1

3

(c) LLIR

Figure 5.3: Intermediate representations of GEMV (cont.)
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#include <stdio.h>

#include <stdlib.h>

#include <inttypes.h>

#include <mpi.h>

#include <math.h>

#include <assert.h>

int32_t main(int32_t argc, char** argv) {

/*** Declarations Begin ***/

int64_t m, n, mp0, np1, np0;

double alpha, beta;

int32_t nprocs, rank, p, rowrank, colrank;

MPI_Comm vaani_comm, comm2d, colcomm, rowcomm;

int32_t dimsizes[2], periodic[2], coords[2];

double **A, *x, *y, *z, *temp0, *temp1;

MPI_Request req[2];

int32_t rqid;

double ts, te;

int reps;

/*** Declarations End ***/

/*** Grid Setup Begin ***/

MPI_Init(&argc, &argv);

MPI_Comm_dup(MPI_COMM_WORLD, &vaani_comm);

MPI_Comm_size(vaani_comm, &nprocs);

MPI_Comm_rank(vaani_comm, &rank);

dimsizes[0] = 0;

dimsizes[1] = 0;

periodic[0] = 0;

periodic[1] = 0;

MPI_Dims_create(nprocs, 2, dimsizes);

MPI_Cart_create(vaani_comm, 2, dimsizes, periodic, 0, &comm2d);

MPI_Cart_coords(comm2d, rank, 2, coords);

assert(dimsizes[0] == dimsizes[1]);

p = dimsizes[0];

rowrank = coords[0];

colrank = coords[1];

MPI_Comm_split(comm2d, colrank, rowrank, &colcomm);

MPI_Comm_split(comm2d, rowrank, colrank, &rowcomm);

/*** Grid Setup End ***/

Figure 5.4: GEMV Vaani generated code
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/*** Command Line Inputs Begin ***/

m = strtol(argv[1], NULL, 10);

n = strtol(argv[2], NULL, 10);

alpha = strtod(argv[3], NULL);

beta = strtod(argv[4], NULL);

reps = atoi(argv[5]);

/*** Command Line Inputs End ***/

/*** Local Size Computation Begin ***/

mp0 = m/p + ((rowrank<m%p)?1:0);

int64_t mp0_start = mp0*rowrank + ((rowrank<(m%p))?0:(m%p));

np1 = n/p + ((colrank<n%p)?1:0);

int64_t np1_start = np1*colrank + ((colrank<(n%p))?0:(n%p));

np0 = n/p + ((rowrank<n%p)?1:0);

int64_t np0_start = np0*rowrank + ((rowrank<(n%p))?0:(n%p));

/*** Local Size Computation End ***/

/*** Allocate Arrays Begin ***/

A = malloc(sizeof(double*)*mp0);

A[0] = malloc(sizeof(double)*mp0*np1);

for(int32_t i = 0; i < mp0; i++) {

A[i] = A[0] + i*np1;

}

x = malloc(sizeof(double)*np0);

y = malloc(sizeof(double)*mp0);

z = malloc(sizeof(double)*mp0);

temp0 = malloc(sizeof(double)*mp0);

temp1 = malloc(sizeof(double)*np1);

/*** Allocate Arrays End ***/

/*** Read Input Arrays Begin ***/

//read_2d_double(vaani_comm, A, m, n, mp0, np1, "A.txt");

for(int32_t i = 0; i < mp0; i++) {

for(int32_t j = 0; j < np1; j++) {

A[i][j] = (mp0_start + i + 1)*(np1_start + j + 1);

}

}

Figure 5.4: GEMV Vaani generated code (cont.)

92



//read_2d_double(vaani_comm, x, n, 1, np0, 1, "x.txt");

if(colrank == 0) {

for(int32_t i = 0; i < np0; i++) {

x[i] = (np0_start + i + 1);

}

}

//read_2d_double(vaani_comm, y, m, 1, mp0, 1, "y.txt");

if(colrank == 0) {

for(int32_t i = 0; i < mp0; i++) {

y[i] = (mp0_start + i + 1);

}

}

/*** Read Input Arrays End ***/

ts = MPI_Wtime();

for(int32_t repid = 0; repid < reps; repid++){

rqid = 0;

if(rowrank == 0) {

MPI_Irecv(&temp1[0], np1, MPI_DOUBLE, colrank*p, 0,

vaani_comm, &req[rqid++]);

}

if(colrank == 0) {

MPI_Isend(&x[0], np0, MPI_DOUBLE, rowrank, 0,

vaani_comm, &req[rqid++]);

}

if(rqid>0) MPI_Waitall(rqid, req, MPI_STATUSES_IGNORE);

MPI_Bcast(&temp1[0], np1, MPI_DOUBLE, 0, colcomm);

for(int32_t i = 0; i < mp0; i++) {

for(int32_t j = 0; j < np1; j++) {

temp0[i] = temp0[i] + A[i][j]*temp1[j];

}

}

Figure 5.4: GEMV Vaani generated code (cont.)
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if(colrank == 0) {

MPI_Reduce(MPI_IN_PLACE, &temp0[0], mp0, MPI_DOUBLE,

MPI_SUM, 0, rowcomm);

}

else {

MPI_Reduce(&temp0[0], &temp0[0], mp0, MPI_DOUBLE,

MPI_SUM, 0, rowcomm);

}

if(colrank == 0) {

for(int32_t i = 0; i < mp0; i++) {

z[i] = alpha*temp0[i] + beta*y[i];

}

}

}

te = MPI_Wtime() - ts;

MPI_Allreduce(MPI_IN_PLACE, &te, 1, MPI_DOUBLE,MPI_SUM, vaani_comm);

if(rank == 0) printf("GEMV\tGEN\t%d\t%lf\n",nprocs,te/(reps*nprocs));

/*** Write Output Arrays Begin ***/

//write_2d_double(vaani_comm, z, m, 1, mp0, 1, "z.txt");

/*** Write Output Arrays End ***/

/*** Free Arrays Begin ***/

free(A[0]);

free(A);

free(x);

free(y);

free(z);

free(temp0);

free(temp1);

/*** Free Arrays End ***/

/*** Grid Teardown Begin ***/

MPI_Finalize();

/*** Grid Teardown End ***/

return 0;

}

Figure 5.4: GEMV Vaani generated code (cont.)
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import vaani.interactive as it

name = 'gemv'

it.parse(name + '.vn')

it.plot(name + '-hlir.pdf')

it.hlirtomlir()

it.plot(name + '-mlir.pdf')

it.grid(1)

it.mlirtollir()

it.plot(name + '-llir.pdf')

it.llirtoclir()

it.clirtocode()

it.generate(name + '.c')

(a) Python script to invoke Vaani

Figure 5.5: GEMV distributed on a 1D grid

and the vector x is present on the first process of the grid. To perform the multiplication, x

is scattered along the grid, the multiplication is performed, and the result is generated by

summing the individual multiplication results using reduction.

Now, a user could decide to row distribute the matrix, distribute the vectors, and modify

the script to explicitly do so. This is shown in Figure 5.6. Here, the vector x is gathered to be

present on all processes, then the multiplication is performed. The result of the multiplication

is already distributed across the processes, and the scalar multiply and addition can be

performed directly.
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1: m[]

[]

[]

[Replicate]

2: n[]

[]

[]

[Replicate]

3: A[m, n]

[m, nnprocs0]

[[m], [nprocsX(n/nprocs)]]

[Block:1]

11: Multiplication

{0}*{1}

(real64) [m, 1]

[[m], [1]]

[Partial]

-

0

0

4: x[n, 1]

[n, 1]

[[n], [1]]

[Unique:0]

10: Scatter

0 onto 0

(real64) [nnprocs0, 1]

[[nprocsX(n/nprocs)], [1]]

[Block:0]

-

0

0

5: y[m, 1]

[m, 1]

[[m], [1]]

[Unique:0]

13: (Comp) Map

out[0] = {2}.*{3} + {0}.*{1}

(real64) [m, 1]

[[m], [1]]

[Unique:0]

z

0

1

6: alpha[]

[]

[]

[Replicate]

9: View

out[i0, i1] = {0}[]

(real64) [m, 1]

[[m], [1]]

[Unique:0]

alpha

0

0

7: beta[]

[]

[]

[Replicate]

8: View

out[i0, i1] = {0}[]

(real64) [m, 1]

[[m], [1]]

[Unique:0]

beta

0

0

z [m, 1]

[m, 1]

[m, 1]

[[m], [1]]

[Unique:0]

12: Reduce

0 unique

(real64) [m, 1]

[[m], [1]]

[Unique:0]

-

0

0

1

2

0

3

(b) LLIR

Figure 5.5: GEMV distributed on a 1D grid(cont.)
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import vaani.interactive as it

name = 'gemv'

it.parse(name + '.vn')

it.plot(name + '-hlir.pdf')

it.hlirtomlir()

it.plot(name + '-mlir.pdf')

it.grid(1)

it.gridmap('A', ('block', 0, 0))

it.gridmap('x', ('block', 0, 0))

it.gridmap('y', ('block', 0, 0))

it.gridmap('z', ('block', 0, 0))

it.mlirtollir()

it.plot(name + '-llir.pdf')

it.llirtoclir()

it.clirtocode()

it.generate(name + '.c')

(a) Python script to invoke Vaani

1: m[]

[]

[]

[Replicate]

2: n[]

[]

[]

[Replicate]

3: A[m, n]

[mnprocs0, n]

[[nprocsX(m/nprocs)], [n]]

[Block:0]

11: Multiplication

{0}*{1}

(real64) [mnprocs0, 1]

[[nprocsX(m/nprocs)], [1]]

[Block:0]

-

0

0

4: x[n, 1]

[nnprocs0, 1]

[[nprocsX(n/nprocs)], [1]]

[Block:0]

10: Gather

0 from 0 to all

(real64) [n, 1]

[[n], [1]]

[Replicate]

-

0

0

5: y[m, 1]

[mnprocs0, 1]

[[nprocsX(m/nprocs)], [1]]

[Block:0]

12: (Comp) Map

out[0] = {2}.*{3} + {0}.*{1}

(real64) [mnprocs0, 1]

[[nprocsX(m/nprocs)], [1]]

[Block:0]

z

0

1

6: alpha[]

[]

[]

[Replicate]

9: View

out[i0, i1] = {0}[]

(real64) [mnprocs0, 1]

[[nprocsX(m/nprocs)], [1]]

[Block:0]

alpha

0

0

7: beta[]

[]

[]

[Replicate]

8: View

out[i0, i1] = {0}[]

(real64) [mnprocs0, 1]

[[nprocsX(m/nprocs)], [1]]

[Block:0]

beta

0

0

z [m, 1]

[m, 1]

[mnprocs0, 1]

[[nprocsX(m/nprocs)], [1]]

[Block:0]

3

1

2 0

(b) LLIR

Figure 5.6: 1D grid
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CHAPTER 6: EXPERIMENTAL FRAMEWORK

We evaluate the generated code on 8 nodes of a cluster, where each node has two Intel R©

Xeon R© CPU E5-2670v2 processors with 10 cores each, operating at 2.50 GHz connected

together via Infiniband. Each processor has 30 MB L3 cache and a node has 64 GB of main

memory and runs CentOS 6.9 operating system. All code is compiled using Intel R© compilers

version 18.0.1 and Intel R© MPI library with -O3 optimization flag.
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CHAPTER 7: EVALUATION

In this chapter, we evaluate code generated by Vaani on the distributed memory cluster

described in chapter 6. Three types of computations are considered for evaluation. First,

Basic Linear Algebra Subroutines (BLAS) like computations, particularly level-2 operations

are evaluated and compared to implementations using Intel R© Math Kernel Library (MKL)

ScaLAPACK library routines. Then, a 9-point star Jacobi stencil is evaluated and compared

to Parallel Research Kernels (PRK) stencil implementation in MPI. Finally, power iteration

computation using the novel recurrence construct with iteration count and termination

condition is compared, again, to MKL routines.

Name Operations
ATAX y = A′Ax

BATAX y = βA′Ax

BICGK
q = Ap
s = A′r

GEMV z = αAx+ βy

GEMVER
A = A+ u1v

′
1 + u2v

′
2

x = βA′y + z
w = αAx

GEMVT
x = βA′y + z
w = α ∗ A ∗ x

GESUMMV y = αAx+ βBx

HESSBLK
A = A− u1v′1 + u2v

′
2

v = A′x
w = Ax

TRILAZY y = y − Y U ′u− UY ′u

Table 7.1: Example level 2-BLAS programs

7.1 BLAS-LIKE OPERATIONS

Table 7.1 shows some level-2 BLAS operations using matrix-vector multiplication and

vector-vector outer products. Figure 7.1 shows the specification of these routines as programs

in Vaani, except GEMVER which has been a running example throughout the thesis. We

compare these operations with Intel R© Math Kernel Library (MKL) ScaLAPACK library

routines. Some operations have a single library call, while some operations are a series of

calls to the library. Figure 7.2 shows the MKL function call sequences for these operations. It

must be noted that the user must generate a complete program that creates a grid, allocates
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and initializes arrays and creates descriptions for MKL function calls before the actual

computation sequence, and we show a sample of this in Figure 7.3. We repeat the iteration

in the program 5 times and take the average execution time for one iteration for each of the

applications. We run the applications 3 times and take the minimum execution time among

multiple runs.

Figure 7.4 shows the execution time and speedup of Vaani generated code and MKL for

matrix size of 50, 000× 60, 000 (except for HESSBLK which requires a square matrix and we

used 50, 000× 60, 000. Speedup is computed with respect to the execution time of MKL. It

can be seen that Vaani generates competitive code. Although MKL is faster for some of the

test cases on a single process, Vaani outperforms MKL for higher number of processes and

scales better than MKL for most of the test cases.

We also evaluate the same code for a small matrix of size 5000× 6000, and the results are

presented in Figure 7.5.

7.2 STENCIL COMPUTATIONS

Parallel Research Kernels (PRK) Stencil [5] is a benchmark that applies a radius-2 star

stencil to a distributed 2D array. We use the MPI1 version from the suite and compare it

against the code generated by Vaani. The original code is 337 lines of code. The Vaani

program is in Figure 7.6. It must be noted that the Vaani code adds a constant to the matrix

A, which is what PRK stencil code does to make sure that data needs to be sent on every

iteration. The computation is repeated for 5 times and the average time per iteration is

computed, for both PRK stencil and Vaani generated stencil. Such applications are run

thrice, and the minimum time is reported. Figure 7.7 show the execution time and speedup

compared to 1 process execution of PRK for a matrix dimension of 50,000. It can be observed

that Vaani generated code performs as well as PRK.

7.3 ITERATIVE COMPUTATIONS

Power iteration is a simple eigenvalue algorithm that produces an eigenvector of a diago-

nalizable matrix. The recurrence relation for the computation is

vk+1 =
Avk
||Avk||

(7.1)

Starting with a random vector v0, the vector is multiplied by a matrix A and normalized

in each iteration. The Vaani specification is given in Figure 7.8. The same iteration in
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program ATAX

in A matrix(m, n, real64)

in x cvector(n, real64)

out y

y = A'*A*x

(a) ATAX

program BATAX

in beta scalar(real64)

in A matrix(m, n, real64)

in x cvector(n, real64)

out y

y = beta*A'*A*x

(b) BATAX

program BICGK

in A matrix(m, n, real64)

in p cvector(n, real64)

in r cvector(m, real64)

out q, s

q = A*p

s = A'*r

(c) BICGK

program GEMV

in A matrix(m, n, real64)

in x cvector(n, real64)

in y cvector(m, real64)

in alpha, beta scalar(real64)

out z

z = alpha*A*x + beta*y

(d) GEMV

program GEMVT

in A matrix(m, n, real64)

in y cvector(m, real64)

in z cvector(n, real64)

in alpha, beta scalar(real64)

out x, w

x = beta*A'*y + z

w = alpha*A*x

(e) GEMVT

program HESSBLK

inout A matrix(n, real64)

in u1, u2, v1, v2, x

cvector(n, real64)

out v, w

A = A - u1*v1' + u2*v2'

v = A'*x

w = A*x

(f) HESSBLK

program GESUMMV

in A, B matrix(m, n, real64)

in x cvector(n, real64)

in alpha, beta scalar(real64)

out y

y = alpha*A*x + beta*B*x

(g) GESUMMV

program TRILAZY

in U, Y matrix(m, n, real64)

in y, u cvector(m, real64)

out y

y = y - Y*U'*u - U*Y'*u

(h) TRILAZY

Figure 7.1: Example specification in Vaani
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pdgemv(&NT, &m, &n, &done, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, temp0, &one, &one, descm, &one);

pdgemv(&T, &m, &n, &done, A[0], &one, &one, descA,

temp0, &one, &one, descm, &one,

&dzero, y, &one, &one, descn, &one);

(a) ATAX

pdgemv(&NT, &m, &n, &done, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, temp, &one, &one, descm, &one);

pdgemv(&T, &m, &n, &beta, A[0], &one, &one, descA,

temp, &one, &one, descm, &one,

&dzero, y, &one, &one, descn, &one);

(b) BATAX

pdgemv(&NT, &m, &n, &done, A[0], &one, &one, descA,

p, &one, &one, descn, &one,

&dzero, q, &one, &one, descm, &one);

pdgemv(&T, &m, &n, &done, A[0], &one, &one, descA,

r, &one, &one, descm, &one,

&dzero, s, &one, &one, descn, &one);

(c) BICGK

pdgemv(&NT, &m, &n, &alpha, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&beta, y, &one, &one, descm, &one);

(d) GEMV

Figure 7.2: Computation sections for MKL programs
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pdger(&m, &n, &done, u1, &one, &one, descm, &one,

v1, &one, &one, descn, &one,

A[0], &one, &one, descA);

pdger(&m, &n, &done, u2, &one, &one, descm, &one,

v2, &one, &one, descn, &one,

A[0], &one, &one, descA);

pdgemr2d(&n, &one, z, &one, &one, descn,

x, &one, &one, descn, &context);

pdgemv(&T, &m, &n, &beta, A[0], &one, &one, descA,

y, &one, &one, descm, &one,

&done, x, &one, &one, descn, &one);

pdgemv(&NT, &m, &n, &alpha, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, w, &one, &one, descm, &one);

(e) GEMVER

pdgemr2d(&n, &one, z, &one, &one, descn,

x, &one, &one, descn, &context);

pdgemv(&T, &m, &n, &beta, A[0], &one, &one, descA,

y, &one, &one, descm, &one,

&done, x, &one, &one, descn, &one);

pdgemv(&NT, &m, &n, &alpha, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, w, &one, &one, descm, &one);

(f) GEMVT

pdgemv(&NT, &m, &n, &alpha, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, y, &one, &one, descm, &one);

pdgemv(&NT, &m, &n, &beta, B[0], &one, &one, descA,

x, &one, &one, descn, &one,

&done, y, &one, &one, descm, &one);

(g) GESUMMV

Figure 7.2: Computation sections for MKL programs (cont.)
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pdger(&n, &n, &dmone, u1, &one, &one, descn, &one,

v1, &one, &one, descn, &one,

A[0], &one, &one, descA);

pdger(&n, &n, &done, u2, &one, &one, descn, &one,

v2, &one, &one, descn, &one,

A[0], &one, &one, descA);

pdgemv(&T, &n, &n, &done, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, v, &one, &one, descn, &one);

pdgemv(&NT, &n, &n, &done, A[0], &one, &one, descA,

x, &one, &one, descn, &one,

&dzero, w, &one, &one, descn, &one);

(h) HESSBLK

pdgemv(&T, &m, &n, &done, U[0], &one, &one, descA,

u, &one, &one, descm, &one,

&dzero, temp1, &one, &one, descn, &one);

pdgemv(&NT, &m, &n, &dmone, Y[0], &one, &one, descA,

temp1, &one, &one, descn, &one,

&done, y, &one, &one, descm, &one);

pdgemv(&T, &m, &n, &done, Y[0], &one, &one, descA,

u, &one, &one, descm, &one,

&dzero, temp1, &one, &one, descn, &one);

pdgemv(&NT, &m, &n, &dmone, U[0], &one, &one, descA,

temp1, &one, &one, descn, &one,

&done, y, &one, &one, descm, &one);

(i) TRILAZY

Figure 7.2: Computation sections for MKL programs (cont.)
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#include <stdio.h>

#include <stdlib.h>

#include <inttypes.h>

#include <mpi.h>

#include "mkl_pblas.h"

#include "mkl_blacs.h"

#include "mkl_scalapack.h"

int32_t main(int32_t argc, char** argv) {

/*** Declarations Begin ***/

MKL_INT m, n, mp0, np1, np0, mb, nb;

MKL_INT nprocs, rank, p, rowrank, colrank;

int32_t dimsizes[2];

double ...;

/*** Declarations End ***/

/*** Grid Setup Begin ***/

MKL_INT context;

MKL_INT info, one = 1, zero = 0;

blacs_pinfo(&rank, &nprocs);

dimsizes[0] = dimsizes[1] = 0;

MPI_Dims_create(nprocs, 2, dimsizes);

assert(dimsizes[0] == dimsizes[1]);

p = dimsizes[0];

blacs_get(&zero,&zero,&context);

blacs_gridinit(&context, "R", &p, &p);

blacs_gridinfo(&context, &p, &p, &rowrank, &colrank);

/*** Grid Setup End ***/

/*** Local Size Computation Begin ***/

mb = m/p + ((m%p==0)?0:1);

nb = n/p + ((n%p==0)?0:1);

mp0 = (m%p == 0)? mb : ((rowrank == p-1)?m%mb : mb);

np0 = (n%p == 0)? nb : ((rowrank == p-1)?n%nb : nb);

/*** Local Size Computation Begin ***/

Figure 7.3: Boilerplate for MKL programs
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/*** MKL Description Begin ***/

MKL_INT descA[9], descm[9], descn[9];

char NT = 'N';

char T = 'T';

double dzero = 0.0, done = 1.0, dmone = -1.0;

descinit(descA, &m, &n, &mb, &nb, &zero, &zero,

&context, &mp0, &info);

descinit(descm, &m, &one, &mb, &one, &zero, &zero,

&context, &mp0, &info);

descinit(descn, &n, &one, &nb, &one, &zero, &zero,

&context, &np0, &info);

/*** MKL Description End ***/

/*** Array allocation and initialization Begin ***/

...

/*** Array allocation and initialization End ***/

/*** Computation Begin ***/

...

/*** Computation End ***/

/*** Free Arrays Begin ***/

...

/*** Free Arrays End ***/

blacs_exit(0);

}

Figure 7.3: Boilerplate for MKL programs (cont.)
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(a) ATAX execution time (b) ATAX speedup

(c) BATAX execution time (d) BATAX speedup

(e) BICGK execution time (f) BICGK speedup

Figure 7.4: Comparison to Intel R© MKL
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(g) GEMV execution time (h) GEMV speedup

(i) GEMVER execution time (j) GEMVER speedup

(k) GEMVT execution time (l) GEMVT speedup

Figure 7.4: Comparison to Intel R© MKL (cont.)
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(m) GESUMMV execution time (n) GESUMMV speedup

(o) HESSBLK execution time (p) HESSBLK speedup

(q) TRILAZY execution time (r) TRILAZY speedup

Figure 7.4: Comparison to Intel R© MKL (cont.)
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(a) ATAX execution time (b) BATAX execution time

(c) BICGK execution time (d) GEMV execution time

(e) GEMVER execution time (f) GEMVT execution time

Figure 7.5: Comparison to Intel R© MKL for small matrices
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(g) GESUMMV execution time (h) HESSBLK execution time

(i) TRILAZY execution time

Figure 7.5: Comparison to Intel R© MKL for small matrices (cont.)

program rad2

in A matrix(n, n, real64)

out A, B

A, B = rec A, B [5] {

B = -0.125*A{0, -2} + -0.25*A{0, -1}

+ 0.125*A{0, 2} + 0.25*A{0,1}

+ -0.125*A{-2, 0} + -0.25*A{-1, 0}

+ 0.125*A{2, 0} + 0.25*A{1, 0}

with boundary=none

A = A + 1

} with {

A[0] = A

}

Figure 7.6: Stencil specification in Vaani

111



(a) execution time (b) speedup

Figure 7.7: Comparison to PRK Stencil

program powit

in A matrix(n, real64)

in v cvector(n, real64)

out eig

eig = rec vn [50][diff > 1e-12]

{

vn = A*vn{-1}

vn = vn/vn'*vn

diff = reduce(vn{0} - vn{-1})

} with {

vn[0] = v

}

Figure 7.8: Power iteration specification in Vaani

Intel MKL is given in Figure 7.9. The execution time and speedup with respect to single

process MKL code are given in Figure 7.10. Similar to BLAS routines, Vaani although slower

than MKL for small number of processes, performs similar to or better than MKL for larger

number of processes.
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for(rc0 = 1; rc0 < 51, diff > 1e-12; rc0++) {

pdgemv(&NT, &n, &n, &done, A[0], &one, &one, descA,

vn[(1+rc0)%2], &one, &one, descn, &one,

&dzero, vn[rc0%2], &one, &one, descn, &one);

pdnrm2(&n, &norm, vn[rc0%2], &one, &one, descn, &one);

norm = 1.0/norm;

pdscal(&n, &norm, vn[rc0%2], &one, &one, descn, &one);

pdcopy(&n, vn[rc0%2], &one, &one, descn, &one

temp0, &one, &one, descn, &one);

pdaxpy(&n, &dnone, vn[(rc0+1)%2], &one, &one, descn, &one,

temp0, &one, &one, descn, &one);

pdasum(&n, &diff, temp0, &one, &one, descn, &one);

MPI_Bcast(&diff, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

}

Figure 7.9: Power iteration specification in Vaani

(a) execution time (b) speedup

Figure 7.10: Comparison of Power Iteration to Intel MKL
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CHAPTER 8: RELATED WORK

Array computations are a major component of high performance computing, and thus,

extensive research has been performed to improve programmer productivity and program

performance targeting single core, multi-core, accelerator and distributed memory computing.

This section describes the relevant related work, and where our work stands in the larger

picture.

This body of related work is described in two different ways. First, systems with similar

ideas or goals as our system are discussed in comparison to Vaani. Then, the literature that

shapes each component of Vaani are described.

8.1 RELATED SYSTEMS

In this section, systems that have similar goals as Vaani are described. The body of work

related to Vaani can be classified in two ways, first, based on the goal of the system, and

second, based on the techniques or underlying design principles.

8.1.1 Goal-Based Classification

The goals can be classified into

1. Automatic parallelization

2. Array notation languages

3. High performance libraries

4. High performance runtime systems

5. Domain specific languages

Automatic Parallelization

Automatic parallelization from sequential code in C/Fortran has been tried and successful

to a certain degree in the SUIF [6] [7] and Polaris [8] compilers, and pluto for shared

memory [9] and distributed memory [10] systems. These work well for small kernels but do

not provide any flexibility to the user. These are good tools to automatically parallelize
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existing C code, but do not leverage the additional information and representation ease of

high-level notations.

Compilation from MATLAB programs to map onto ScaLAPACK [11] and to C on dis-

tributed memory systems [12] take a similar high level notation, but do not provide the

flexibility and choice as our system.

Array Notation Languages

Array notation languages use arrays as first class objects, and allow users to manipulate

arrays directly. Languages such as ZPL [13], Co-array Fortran [14], High Performance

Fortran [15], Chapel [16] and X10 [17] are close to our work in terms of the input, target

systems, and possible optimizations. However, these languages aim to be general purpose

languages, and thus do not deliver as much flexibility and performance as our system can

potentially deliver.

High Performance Libraries

Another approach commonly taken for high performance array operations is the use of

high performance libraries like PetSc [18] for scientific computing. ScaLAPACK [19] provides

a set of linear algebra routines for distributed memory systems and most vendors have their

custom implementations. ATLAS [20] autotunes BLAS routines for a system. The main

drawback of library implementations is the additional overhead of the library, and the lack of

optimizations across library routines.

High Performance Runtime Systems

Bohrium [21] and TensorFlow [22] are runtime systems from python to distributed memory

systems and Numba [23] is a just-in-time compiler that compiles python code to C and

MPI before executing. [24] describes just-in-time compilation for Julia to use productivity

languages for performance too.

Domain Specific Languages

Domain specific languages (DSL) have been used for linear algebraic expressions in [25,26,27].

Lgen [25], [26] generates efficient kernels for small, fixed size inputs and targets single core

and vectorization strategies. BTO [27] generates efficient kernels for sequences of level-1 and
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level-2 BLAS operations and targets shared memory systems, relying on the compiler for

vectorization. Hydra [28] explores automatic code generation from linear algebraic equations

and targets shared memory systems. Pochoir [29] is a DSL for stencil computations targeting

shared memory systems, while Physis [30], Stella [31] use an embedded DSL for stencil

computations targeting GPU-accelerated supercomputers. Liszt [32] is a DSL for stencil

computations on unstructured grids using graph as a primitive and graph accesses to deduce

the stencil. CTF [33] is an embedded DSL for tensor contractions, Elemental [34] is an

embedded DSL for linear algebra based on the FLAME [35] approach, implemented as a C++

template library. Eigen [36], Armadillo [37] and MTL4 [38,39] are also C++ template libraries

providing linear algebra and other matrix operations for shared memory systems. MTL4

provides a proprietary supercomputing edition that provides distributed data structures and

parallel operations on these structures.

Hierarchically tiles arrays (HTA) [40] provide an abstract to view arrays as a hierarchical

tiles, and support parallelization onto distributed memory systems, shared memory systems

and optimizations for data locality.

Loopy [41] is a code generator for array based codes for accelerators based on polyhedral

framework, that allows users to specify desired transformations and optimizations for code

generation.

Delite [42,43] is a framework to enable development of domain specific languages and high

performance compilers based on lightweight modular staging principles [44], and OptiML [45]

is a DSL on top of Delite that supports machine learning operations.

Halide [46] is an embedded DSL for image processing pipelines which separates the

computation specification from the schedule and optimization, so the users can specify the

optimizations explicitly providing flexibility and tuning capabilities. They also use auto-

tuning to automatically generate tuned code for shared memory and GPU accelerated systems.

Distributed Halide [47] is an extension to Halide that targets distributed memory systems.

AlphaZ [48] is a system using polyhedral framework that enables exploration of transfor-

mations and optimizations of affine loop nests. Chill [49] is another framework that exposes

a scheduling language to allow transformations on affine loop nests.

Tiramisu [50] is a polyhedral compiler with an embedded DSL in C++ for dense and

sparse DNN and data parallel algorithms.

Tensor Comprehensions [51] is a C++ library to automatically synthesize high-performance

machine learning kernels using Halide [46], ISL [52] and NVRTC [53] or LLVM [54].

Lift [55, 56] is a DSL for generating high performance GPU code using a high-level

functional data parallel language with a system of rewrite rules which encode algorithmic

and hardware-specific optimisation choices.
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8.1.2 Technique-Based Related Systems

Some common methods, techniques and design principles are explored in this section.

Polyhedral Compilation

A large section of the related work is based on polyhedral compilation techniques based on

pressburger arithmetic [57]. Automatic compilers like Pluto [9, 10], algorithms in SUIF [7],

work by Adve et al. [58], Bondhugala et al. [59], DSLs like LGen [26], Chill [49], AlphaZ [48],

Tiramisu [50], TensorComprehensions [51], Loopy [41] all use the polyhedral framework.

Integer set library (ISL) [52], PolyLib [60] and Princess [61] are some polyhedral libraries

that form the backbone of these techniques. CLooG [62] is a code generator that is used

frequently in polyhedral code generation. Polyhedral framework provides a strong and

expressive representation for affine loop nests and enables several transformations like loop

skewing and strip mining. It gives tools to reason about imperfect (not all statements are

in the innermost region) and non-rectangular loop nests. However, the major drawback of

these systems is that we cannot split an iteration domain into either parameterized number

of pieces or into blocks of a parameterized size. This limitation has restricted the usage to

fixed size tiles and even fixed number of processes (in Tiramisu [50]) in these systems. Some

works like [7] [58], [63] skirt this restriction by using processes like index variables in the loop

nest, and manually dividing the iteration spaces during code generation. Vaani does not take

this route, as it partitions the data early in the processing (MLIR), and using this framework

at this stage is not convenient. However, Vaani could use this framework for code generation

from LLIR, but does not currently do so.

Pattern Based Compilation

Another common compilation technique is to identify patterns in the program and use

optimizations or strategies based on these patterns. These patterns could be used to perform

optimizations like in constant folding, strength reduction, expression substitution, etc.,

or transforming from one level of abstraction to another, like extracting communication.

Spiral [64], LGen [25], BTO [27], Lift [55, 56], Delite framework [42] and its derivative DSLs

use pattern matching to perform optimizations. Vaani also uses pattern based techniques in

HLIR optimizations, in the design of the MLIR and the transformation from MLIR to LLIR.
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Well Defined Intermediate Representations

Increasingly many systems are exposing a well defined intermediate representation to users,

to provide a common platform for optimizations and to allow collective development in an

open source framework. Pencil [65] and Lift [55] define intermediate languages for accelerator

programming. Halide [46], Tiramisu [50], Delite [42], LGen [25], BTO [27], Bohrium [21],

TensorFlow [22] etc. define intermediate representations that expose interfaces that can

be modified by a user or a tuner. Vaani follows a similar viewpoint in the importance of

exposing intermediate representations.

Interfaces for User Selection

POET [66], AlphaZ [48], Halide [46,47] and Tiramisu [50] provide a language, commands

or interface for users or tuners to select transformations. Chapel [16] and HPF [15] provide

constructs to define parallelism and mapping in their programming language. Optimizations

and transformations for best performance are program and target dependent, and it is difficult

to select a set of optimizations that work for all cases. So, these systems provide flexibility

to users or autotuners to select the transformations, and explore the design space, without

manually writing low level code.

8.1.3 Where Our Work Stands

Our work provides a transparent and flexible interface that enables users to express their

program in a high level notation and generate efficient distributed memory code comparable

to hand-optimized versions in significantly less time. We do not intend to be a plug-and-play

performance boost, and instead we provide a framework to ease the process of development

of code by hand.

The closest work, in our opinion, that shares design ideas with Vaani is Tiramisu, in that it

also uses multiple intermediate layers to define the computations. It believes that providing

interfaces for transformations are important for prototyping or autotuning. Major difference

is in the way the layers are selected. Tiramisu views all computations as expressions with

associated loop nests in the polyhedral framework. Whereas, Vaani views computations at

an array level, with a focus on the actual operations in the first layer. Vaani looks at the

patterns in the computation only in MLIR and iteration spaces are not considered till LLIR.

Another significant difference is that Tiramisu generates code for distributed memory systems

by mapping a dimension of the affine loop nest to the processes and generating send/receive
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calls for communication. Vaani, on the other hand, maps computations to distributed

memory systems using multidimensional virtual process grids, and a set of send/recv and

collective operations. Tiramisu does not support parametric tiling, multidimensional grids

and collective operations. Tiramisu targets a broader set of applications by accepting any

affine loop nests, while Vaani is restricted to rectangular array operations.

We also observe that the design of Tiramisu, and other systems targeting distributed

memory systems like Halide [47] concentrate on optimizing first for single core, multi-core,

GPUs and finally distributed memory systems, which is how automatic parallelization has

evolved. Vaani, on the other hand, first optimizes for distributed memory systems and then

focuses on local optimizations. We believe that Vaani has a more intuitive approach to code

generation for distributed systems, and argue that it closely follows the steps a user would

take to manually write code in MPI.

8.2 RELATED COMPONENTS

In this section, some individual components that together form the system Vaani are

considered. The design of the system follows the principle of separation of concerns [67], that

is used extensively in compiler design to break complex tasks into simpler manageable tasks.

The design of the high level notation is inspired by array programming languages like

MATLAB [1], APL [68], and NumPy [2]. In particular, Vaani uses the “‘.’〈operator〉” notation

from MATLAB to indicate element-by-element operations, and the broadcasting definition

from NumPy. The recurrence construct is inspired by the mathematical formulations of

recurrence relations [69], and its widespread use in formulating scientific computing problems.

The parser for the high level notation is developed using lark parser [4], which uses LALR

parsing techniques [70].

The HLIR is a directed acyclic graph (DAG), which has been traditionally used to represent

expressions in compilers [70]. The implementation of the expression hierarchy and the internal

structures are inspired by the expression handling in symbolic computation libraries like

SymPy [71], and Python package Pymbolic.

Merging operations in MLIR is similar to loop fusion and has been presented in [72].

Bohrium [21] implements a fusion algorithm [73] to merge NumPy [2] operations where they

formulate the merge as a weighted graph partitioning problem which is NP-hard and define

heuristics to approximately solve the problem efficiently. Vaani uses a simpler heuristic and

only merges parent-child nodes, and provides interface to merge nodes manually. Vaani does

not aggressively merge all possible nodes to not create false dependencies for the lower levels

and to encourage overlap of communication and computation.
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Code generation for distributed memory systems from loop nests has been proposed by

Amarasinghe et al. [7] and Bondhugula et al. [59] using polyhedral frameworks. These models

compute send and receive sets on each process and introduce send/receive communication

nodes. This is different from Vaani, in that Vaani supports a richer communication layer,

with point-to-point and collective communications. However, these works support loop nests

that are more generic and versatile compared to the ones Vaani supports.

Vaani’s partitioning of data is a parametric tiling of the data. Parametric tiling in systems

like Halide [46] is performed on the intervals domains, which is similar in concept to Vaani.

Both these systems have perfect loop nests with rectangular iteration spaces. On a related

note, parametric tiling of imperfect loop nests is performed in [74], where each statement

in the iteration space is embed into a special product space, and tiling is performed on this

space. PrimeTile [63] uses polyhedral models to extract polyhedrons based on cloog [62],

transform the loop nests to allow rectangualr tiling, and split the loop nests into rectangularly

tilable regions, and prologue and epilogue portions.

Vaani generates code for C with MPI [75]. Other target systems that Vaani could

potentially be extended to support are GasNet [76], a high performance communication

interface, Charm++ [77], a parallel programming framework with an adaptive runtime system,

and Legion [78], a parallel programming system that separates specification of computation

and parallelization.

Development of C programs in MPI is described in [79,80]. Several algorithms are used

for matrix multiplication depending on the distribution and grid dimensions. Modified

Cannon’s algorithm [81] is used for matrix multiplication on square grids where we allow for

non-square matrices, while a variant of SUMMA [82] is used for block-cyclic distribution on

2D rectangular grids. Matrix multiplication on a 3D grid is described in [83], and a 2.5 D

algorithm (not currently in Vaani is described in [84].

Vaani uses a simple heuristic to determine the order of matrix multiplications, in that

if one of them is a vector, it reduces to matrix-vector product, where possible. This is

because Vaani assumes a symbolic array size, and more complex analyses are not possible.

This problem is solved by dynamic programming in [85], and even more optimally using

triangulation of polygons in [86,87].

Transpose of a block-cyclic distributed matrix on a rectangular grid is described in [88].

The algorithm to generate communication for rearrange nodes in translation from MLIR to

LLIR is based on a generalization of the algorithms implemented in ScaLAPACK [19] and

C++ library Elemental [34].

Program order is computed by topologically sorting the nodes in LLIR. This is obtained by

using reverse post order traversal described in [89]. An optimization to overlap communication
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and computation is not currently implemented in Vaani. It promises to be an effective

optimization [90], but has mixed results in current MPI implementations as described in [91].

Buffer allocation in Vaani is based on register allocation in [70] and [92]. Particularly, [92]

talks about allocation on DAGs using dependency analysis, which is what Vaani performs.

However, Vaani does not have a fixed number of registers, like in register allocation, and

hence, allocates as many buffers as needed.

Vaani defines recurrence constructs but currently implements them sequentially, similar

to Tiramisu [50], OptiML [45]. Vaani could potentially benefit from parallelizing certain

recurrences, for example, ones in which each iteration is independent, or ones which resolve to

be reduction or scan operations. Extracting parallelism from recurrences has been explored

in [93,94].
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CHAPTER 9: FUTURE WORK

Vaani provides a tool to easily generate C code using MPI. We discuss a few directions in

which Vaani could be expanded upon in the future.

9.1 OPERATION SUPPORT

Vaani has a language that is easy to expand and support more operations. Some possible

operations are given below.

• Parameterized offset indexing to specify parameterized stencils, that can be used to

express convolutions, or more complex stencils.

• Expansion of recurrence notation to support iterative matrix algorithms.

• Delayed update operator to platform independently specify bulk-synchronous algo-

rithms.

9.2 USER OPTIONS AND OPTIMIZATIONS

A range of options and optimizations are possible to be included in Vaani, which is

modularly designed to incorporate expansions easily. Some examples are given below.

• Options to select different MPI patterns for the same communication, for example,

boundary exchange could use row and column communicators (currently used), create

specific neighbor communicators, experiment with different types of send/recv pairs,

etc.

• More optimization passes at each of the IR levels.

• Optimize recurrences, if possible, by analyzing the patterns and parallelizing it.

9.3 TUNING

Vaani provides a number of options in various IRs to easily generate different versions of

the code for the same program. This provides handles to tune the code by experimenting

with various options. A possible future direction is to support autotuning in Vaani, either

replacing the user interaction or augmenting it.
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CHAPTER 10: CONCLUSION

To bridge the gap between productive high-level languages and high-performing C code,

this work proposes a series of intermediate representations to provide handles for selection of

data and computation partitioning and mapping, optimizations and structure of the generated

code. First, it proposes a new notation combining ideas from several existing array notation

languages, coupled with a few new constructs, to succinctly represent computations. Then it

proposes a set of intermediate representations that can lower a high level specification to

low-level C code for distributed memory systems in a natural and intuitive manner. Then

it creates an interactive framework based on these representations to generate C code from

a high-level notation. We have also demonstrated that the generated code is competent

compared to efficient library implementations.We expect our system to be adopted to ease

writing of C code by hand.
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[41] A. Klöckner, “Loo.py: Transformation-based code generation for gpus and
cpus,” in Proceedings of ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming, ser. ARRAY’14. New York,
NY, USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2627373.2627387 p. 8287.

[42] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun, “A
domain-specific approach to heterogeneous parallelism,” in Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming, ser. PPoPP ’11.
New York, NY, USA: Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/1941553.1941561 p. 3546.

[43] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun,
“Delite: A compiler architecture for performance-oriented embedded domain-specific
languages,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 4s, Apr. 2014. [Online].
Available: https://doi.org/10.1145/2584665

[44] T. Rompf and M. Odersky, “Lightweight modular staging: A pragmatic approach to
runtime code generation and compiled dsls,” in Proceedings of the Ninth International
Conference on Generative Programming and Component Engineering, ser. GPCE ’10.
New York, NY, USA: Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1868294.1868314 p. 127136.

[45] A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Wu, A. R. Atreya, K. Olukotun,
T. Rompf, and M. Odersky, “Optiml: An implicitly parallel domain-specific language for
machine learning,” in Proceedings of the 28th International Conference on International
Conference on Machine Learning, ser. ICML’11. Madison, WI, USA: Omnipress, 2011,
p. 609616.

128

https://doi.org/10.1145/1274971.1274989
https://doi.org/10.1080/17445760902758560
https://doi.org/10.1145/1066650.1066657
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/1941553.1941561
https://doi.org/10.1145/2584665
https://doi.org/10.1145/1868294.1868314


[46] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand,
“Decoupling algorithms from schedules for easy optimization of image processing
pipelines,” ACM Trans. Graph., vol. 31, no. 4, pp. 32:1–32:12, July 2012. [Online].
Available: http://doi.acm.org/10.1145/2185520.2185528

[47] T. Denniston, S. Kamil, and S. Amarasinghe, “Distributed halide,” in Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’16. New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2851141.2851157

[48] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “Alphaz: A system for
design space exploration in the polyhedral model,” in Languages and Compilers for
Parallel Computing, H. Kasahara and K. Kimura, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 17–31.

[49] C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing high-level loop
transformations,” U.of Southern California, Tech. Rep., 2008.

[50] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral compiler for expressing fast
and portable code,” in Proceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization, ser. CGO 2019. IEEE Press, 2019, p. 193205.

[51] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses,
S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions,” CoRR, vol. abs/1802.04730, 2018.
[Online]. Available: http://arxiv.org/abs/1802.04730

[52] S. Verdoolaege, “isl: An integer set library for the polyhedral model,” in Mathematical
Software – ICMS 2010, K. Fukuda, J. v. d. Hoeven, M. Joswig, and N. Takayama, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 299–302.

[53] Nvdia, “Nvrtc,” https://docs.nvidia.com/cuda/nvrtc/index.html.

[54] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis
&amp; transformation,” in Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-Directed and Runtime Optimization, ser. CGO ’04.
USA: IEEE Computer Society, 2004, p. 75.

[55] M. Steuwer, T. Remmelg, and C. Dubach, “Lift: A functional data-parallel ir for high-
performance gpu code generation,” in Proceedings of the 2017 International Symposium
on Code Generation and Optimization, ser. CGO ’17. IEEE Press, 2017, p. 7485.

[56] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach, “High performance
stencil code generation with lift,” in Proceedings of the 2018 International Symposium on
Code Generation and Optimization, ser. CGO 2018. New York, NY, USA: Association
for Computing Machinery, 2018. [Online]. Available: https://doi.org/10.1145/3168824 p.
100112.

129

http://doi.acm.org/10.1145/2185520.2185528
https://doi.org/10.1145/2851141.2851157
http://arxiv.org/abs/1802.04730
https://doi.org/10.1145/3168824


[57] D. C. Oppen, “Elementary bounds for presburger arithmetic,” in Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, ser. STOC ’73. New
York, NY, USA: Association for Computing Machinery, 1973. [Online]. Available:
https://doi.org/10.1145/800125.804033 p. 3437.

[58] V. S. Adve, J. Mellor-Crummey, M. Anderson, J.-C. Wang, D. A. Reed, and K. Kennedy,
“An integrated compilation and performance analysis environment for data parallel
programs,” in Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’95. New York, NY, USA: Association for Computing Machinery,
1995. [Online]. Available: https://doi.org/10.1145/224170.224340 p. 50es.

[59] U. Bondhugula, “Compiling affine loop nests for distributed-memory parallel
architectures,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2503210.2503289

[60] D. K. Wild, “A library for doing polyhedral operations,” Parallel Algorithms
and Applications, vol. 15, no. 3-4, pp. 137–166, 2000. [Online]. Available:
https://doi.org/10.1080/01495730008947354
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