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ABSTRACT

Various applications would benefit from rapid inference on multispectral

images at the point of sensing. However, the acquisition of a full-resolution

multispectral image requires advanced spectrometers and prohibitive

sensing time. Also, performing the high-level vision tasks such as

classification and segmentation on the multispectral data consumes more

computation power than on the common RGB images. Compressed sensing

(CS) circumvents this sensing process usually using a random sensing

matrix to acquire fewer measurements and reconstructs the multispectral

image based on a sparsity assumption. The further high-level analysis of

images is performed on the reconstructed high-dimensional images. And a

random sensing matrix may not be physically realizable or the best fit for

extracting information pertaining to a high-level vision task. A realizable

low-cost data acquisition scheme and a fast processing system that makes

inference based on the acquired signal are desired for multispectral images.

In this thesis, we present a systematic way to jointly optimize the sensing

scheme subject to optical realizability constraints, and make inference of

the multispectral image in the compressed domain.

In the first part of the thesis, we state some open questions in compressed

inference. We review the theory on inference in the compressed domain.

We formulate the problem for compressed inference and state metrics to

evaluate the inference performance. We then review some existing realizable

optical compressed sensing imaging systems designed for multispectral

images and derive the forward model of data acquisition. The feasibility of

performing detection, classification and segmentation in the compressed

domain directly is then discussed for the multispectral images. Using tools

from detection and estimation theory, we derive the optimal decision rule to

perform compressed detection, classification and segmentation in a simple

data setting. Also, the feasibility of adjusting the optical acquisition
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schemes jointly with the neural network is discussed. The architecture of

neural networks that can achieve the performance of the optimal decision

rule is proposed and the existence of optimal weights is discussed.

Next, we use a synthetic dataset to compare the performance of the

proposed neural network and the optimal decision rule. Several synthetic

multispectral image datasets and a clinical tumor biopsy dataset are used

to verify the improvement of the obtained sensing scheme and compare the

performance of the neural network with that of a known optimal decision

rule.
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CHAPTER 1

INTRODUCTION

Various applications would benefit from rapid inference on multispectral

images at the point of sensing. Inference tasks such as classification or

segmentation for multispectral images are common in agricultural [1, 2],

medical [3] and remote sensing applications [4]. A low-cost data acquisition

scheme and a fast processing system that makes inference based on the

acquired signal are then desired for multispectral images.

Traditionally, obtaining the high spatial-spectral-resolution images

requires advanced, expensive sensors and takes much longer than a

consumer-grade camera. NASA’s Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) is an existing multispectral imaging system for

airborne platforms that captures 224 spectral bands [5] for a single image.

The size of the captured multispectral image cube is therefore hundreds

times larger than a common RGB image with the same spatial resolution.

The subsequent analysis and inference task of the multispectral image are

performed after the whole image is obtained. Performing high-level

inference tasks on this large volume 3D image, such as detection,

classification and segmentation, is computationally extensive.

Several optical compressed sensing imaging (CSI) systems have been

proposed [6–9] to circumvent the expensive and slow sensing process by

taking fewer measurements than the number of voxels of a multispectral

image using cheaper sensors. Compressed sensing (CS) theory is the pillar

of these practical systems: Given enough measurements and assuming that

the original signal is sparsifiable, i.e. there exists a basis under which the

signal is sparse, the exact recovery of the signal from the measurements is

ensured [10].

In the last decade, compressed sensing has emerged as a framework that

can significantly reduce the sensing cost by taking fewer measurements than

the signal dimension and recovering the signal from the measurements
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computationally. The fundamental works [10–13] show that a signal x ∈ Rn

can be recovered from a small set of nonadaptive, linear, and usually

randomized measurements y = Ax ∈ Rm, provided the signal satisfies the

sparsity property. The sparsity property assumes a natural image x is

sparse in some basis Ψ with a sparse code α, that is, x = Ψα+ ε, where ε is

a small approximation error. The sparse code α is often evaluated using the

`0 or its convex substitute `1 norm, e.g., α satisfies ‖α‖0 ≤ s or ‖α‖1 ≤ t.

The MAP estimate of the signal x in CS problem is expressed as:

α̂ = arg min
α∈Rn

‖y − AΨα‖2 +R(α)

x̂ = Ψα̂
(1.1)

where R(α) is a sparse-promoting regularizer of α and is related to its prior

distribution. For example, for Laplacian prior of α, this regularizer is µ‖α‖1

(`1 minimization). Another common regularizer µ‖α‖0 penalizes the

number of non-zero elements in α (`0 minimization). There are many

algorithms to recover the original signal assuming the sparsity property.

Basis pursuit [14] and orthogonal matching pursuit [15] are heuristic

algorithms to solve for the `0 minimization. LASSO [16], feature-sign [17],

forward-backward splitting [18] and FISTA [19] are proposed for `1

minimization problem with convergence guarantee on the signal x.

Single-pixel camera [9] is an immediate example of a CSI system. A

digital micromirror device (DMD) is used to spatially modulate the image

and obtain the single-pixel measurement. The original image could be

reconstructed by solving a nonlinear optimization iteratively [15, 16, 19].

But the single-pixel camera cannot directly apply to multispectral

imaging systems because the key component, the DMD, has no spectral

selectivity. Coded aperture snapshot spectral imaging [7] and its variations

[20, 21] are proposed to perform multispectral CS imaging. It utilizes a

coded aperture and a disperser lens to achieve the modulation on both

spectral and spatial domain. The principle of multispectral image

reconstruction is similar to that of the monotone image reconstruction. The

multispectral images are also assumed to be sparse under some

transformation and could be reconstructed using the sparsity property [20].

Though a random matrix is proved to be a universal sensing matrix for

CS [22], a designed sensing matrix could improve the reconstruction quality
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with the same number of measurements. Finding such a sensing matrix

based on the data has been studied [23, 24]. But these algorithms do not

yield a physically realizable sensing matrix in optical systems. To optimize

the tunable optical element, i.e., the realizable sensing matrix in a CSI

system for better reconstruction accuracy, some approaches use a surrogate

metric such as restricted isometry property [20, 25], while others optimize

the element jointly with the reconstructor [26].

When we consider the subsequent analysis or inference tasks, they are

often performed in the data domain, which means the high-dimensional

multispectral images are reconstructed from the measurements first. If we

simply stitch the pipelines, e.g., reconstructing the images using a designed

matrix and then classifying the images, then there are several shortcomings:

First, the optimization of reconstruction relies on image similarity metrics

such as `2 distance [26], but a reconstructed image with lower `2 error does

not necessarily imply better inference performance. Second, when the

number of measurements does not satisfy the sufficient condition of the

perfect reconstruction, then the subsequent inference may suffer from the

corruption induced by the reconstruction. For example, an end-to-end

network-based reconstructor may be unstable and bring extra

reconstruction error [27]. Third, performing an inference task only requires

the relevant sufficient statistic, whose dimension may be much lower than

that of the reconstruction. The last concern is the computational time and

memory cost, which can be significantly reduced if the reconstruction step

is eliminated and the inference happens in a lower dimension.

As early as 2009, the concept of compressed learning based on the

compressed sensing has been proposed. The compressed learning focuses on

the manipulation of the signal in the measurement domain rather than the

recovery of the signal. Calderbank et al. [28] show that the soft-margin

support vector machine (SVM) is able to classify in the compressed

domain. Also, the generalization loss of a SVM in the compressed domain

is bounded using the restricted isometry property (RIP) of the sensing

matrix. Davenport et al. [29] study several signal processing problems,

namely detection, classification and estimation, in the compressed domain.

They provide the error bounds of several signal processing problems for a

random sensing matrix A. Durrant et al. give an average-case bound on the

classification error of Fisher’s linear discriminant classifier in the
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compressed domain, with a random sensing matrix and the full knowledge

of the statistic of the signal [30]. An extended work provides sharp bounds

on the generalization error of a generic linear classifier on the compressed

domain [31]. A more general error probability bound using information

theory is given for any decision rule and for non-sparse signals [32]. We

follow the CS signal processing framework [29] to derive the theory for

compressed inference with full statistics of the data, and compare this

theoretical prediction with the experimental results.

Many works use handcrafted algorithms to optimize the sensing matrix

in compressed sensing imaging systems, but the acquisition process has not

been jointly optimized with various inference tasks. The NuMax algorithm

[23] has been used to optimize the modulation process in compressed

imaging systems, which improves the classification performance of the

compressed domain compared to a random modulation. But this work [24]

focuses on grayscale images. Linear filters and linear SVMs have been used

to conduct the face classification directly in compressed domain [33].

Meanwhile, this work shows that when the compression ratio is above 100

and the reconstruction is falling apart, the classification task sacrifices less

than 10% in accuracy

CS learning for multispectral images remains unexplored. It is shown

that for multispectral images, the class information is redundant in the

spectral domain [34, 35]. The 3D remote sensing image can be compressed

via linear dimension reduction techniques such as PCA, and a SVM/CNN

classifier is able to predict effectively the class label from a compressed

image. The acquisition schemes mentioned above are performed in silicon

and pose the technical difficulty of implementing a linear transform such as

PCA in optical systems. Instead, we would like an on-board optical sensing

system that performs compression at the speed of light. This sensing

system is very different from the imaging system because the reconstruction

of the image is no longer a priority compared to inference tasks.

At the same time, the optimization of the sensing matrix for inference

quality on multispectral images is also not studied. There are recent works

that optimize the optical system for the enhancement of images [36], or for

a fast acquisition scheme [37]. But these works do not involve optimizing

the backend CS imaging system with respect to the inference quality.

We summarize the currently unanswered questions as follows:
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1. How well can a CSI system extract information for specific inference

tasks, in terms of the fundamental information limits?

2. Does the availability of the full statistical model of the data affect the

CS learning performance?

3. How does the constraint of the acquisition schemes affect the CS

learning performance?

4. How can we find the optimal sensing matrix for CS learning under the

constraint of the optical system?

5. How do the fundamental bounds of the inference performance change

with the number of measurements and the complexity of the inference

task?

6. If using a deep neural network to optimize the acquisition scheme and

the predictor at the same time, how different is the learned

acquisition scheme from the underlying optimal acquisition scheme?

7. What is the best network architecture to learn the acquisition scheme

and the predictor at the same time?

In this thesis, we explore the possibility of performing high-level vision

tasks directly in the compressed domain, without reconstructing the

high-dimensional image. At the same time, we aim to jointly optimize the

CS acquisition subject to physical constraint with the inference for a better

inference accuracy. We propose an approach for learning a deep neural

network (DNN) for inference on compressively sensed multispectral image

data directly in the compressed domain, jointly with the optimization of

the CS acquisition. We do so for two simply realizable CSI systems and

another coded-aperture-based CSI system for inference tasks such as

classification and semantic segmentation of multispectral images. The

approach readily extends to other CSI systems and other inference tasks.

For quantitative performance assessment, we compare the inference

performance of the DNN in the compressed domain with the optimal

decision rule on a synthetic multispectral image dataset. We apply the

same approach for a medical tumor dataset and evaluate the segmentation

performance in the compressed domain.
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This thesis is structured as follows: Chapter 2 gives a brief review of

compressed sensing and states the problem. We introduce the optimal

decision rule when the full information of the data is present. Chapter 3

introduces existing optical CS systems and formulates optimization

problems for compressed signal acquisition processes. Chapter 5 shows the

qualitative comparison of the optimal decision rule with three simple neural

networks of designed architecture, on a monochrome synthetic dataset.

Chapter 6 and Chapter 7 present the experiments to validate the feasibility

of optical CS inference on synthetic and real multispectral datasets,

respectively. Finally, Chapter 8 concludes this thesis and discusses further

research directions.
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CHAPTER 2

PROBLEM STATEMENT

2.1 Notation

Table 2.1 defines the symbols and operators we use in the following

chapters.

Table 2.1: Notation table.

Symbol Meaning Symbol Meaning

x Signal in the data domain y
signal in the compressed

domain
A Sensing matrix v Additive noise

σ Noise level z
Inference target, such as

class label

C Number of classes N
Side length of a square

multispectral image

H
Height of a multispectral

image
W

Width of a multispectral
image

B Number of spectral bands K
Number of snapshots taken

in CS systems

D
Number of samples in a

training set
Pe Error probability

f
Neural-network based

predictor
Q Q function

θ
Parameter in the neural

network
w

Parameter that determines
the state of sensing matrices

π Prior probability of a class µ
Mean of the signal in

hypotheses
CELoss Cross entropy loss ReLU Rectified linear unit
Opera-
tor

Meaning
Opera-
tor

Meaning

diag Diagonalization operator ⊗ Kronecker product

� Schur-Hadamard product
(Element product)

1{·} Indicator function

? Convolution
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2.2 Multispectral Compressive Imaging

Consider a B band multispectral H ×W ×B image cube (Figure 2.1) of

height H and width W . Let x ∈ Rn, with n = HWB, represent the

vectorized version of the image cube.

Figure 2.1: A multispectral H ×W ×B image cube, B = 5.

We assume that the data is sensed by a linear compressive sensor

represented by matrix A ∈ Rm×n, where m < n, producing the measurement

y = Ax (2.1)

The measurement could include noise as well, but we choose to model all

the uncertainty in the problem in the signal x itself. This allows us to focus

on the effect of compressive sensing, i.e., on reducing the dimension of the

measurement from n to m rather than on the reduction in SNR due to

fewer measurements.

We will describe in Chapter 3 several practical CSI systems that define

specific, constrained forms of A. Denoting the set of feasible sensing

matrices by A, one could optimize A subject to the constraint A ∈ A for

better inference performance. However, especially with discrete—e.g.,

binary—constraints, the optimization could be NP hard and become

infeasible for A of practical dimensions.

An alternative is to represent the tunable parameters in the CSI systems

by a vector w ∈ Rd, where d is the number of tunable variables, or degrees

of freedom (DOF) in the acquisition system, and typically, for the optical

systems we consider, d� mn. The optimization of the sensing matrix can

then be reduced to the optimization of w in a much lower dimension. We
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therefore represent the measurements as

y = A(w)x (2.2)

As usual in the context of compressive sensing, we assume that the signal

x is compressible, that is, x ∈ X , where the set X has, in some sense,

dimensionality lower than the dimension n of the ambient space. Examples

of such X include the set of signals sparsely representable (at a fixed

sparsity level) by a known or learnable dictionary [38], or the set of signals

sparsifiable by a known or learnable transform [39, 40], or the set of signals

that live on a lower dimensional manifold [41, 42]. When the specific form

of X is not material, we will simply refer to the signal x as compressible.

2.3 Inference Problems in the Compressed Domain

As reviewed in Chapter 1, the classical formulation of compressive sensing

(CS) addresses the reconstruction of x ∈ Rn from the lower-dimensional

measurements y ∈ Rm. Likewise, traditionally, to perform inference tasks

with a CSI system one reconstructs the signal x first. Instead, for reasons

discussed in Chapter 1, in this thesis we consider performing the inference

tasks directly in the compressed domain.

In the following subsections, we formulate the compressed inference

problems addressed in this thesis: detection, classification, and semantic

segmentation.

2.3.1 Detection in the compressed domain

We consider the detection of a known compressible signal x ∈ Rn on an

additive noise background, when it is compressively sensed by A ∈ Rm×n.

The signal is absent under the null hypothesis and present under the

alternative. For the sake of simplicity, we assume that the noise v is white

Gaussian and has the same variance under the null and alternative

hypotheses. This results in a decision problem between the following
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hypotheses:

H0 : y = Av, v ∼ N (0, σ2I)

H1 : y = A(x+ v), v ∼ N (0, σ2I)
(2.3)

If the prior probability of the null hypothesis is unknown, then, following

the Neyman-Pearson formulation, we aim to maximize the detection rate

PD , Pr (H1 chosen when H1 true) at a given false alarm rate

PF , Pr (H1 chosen when H0 true). The performance of the detector in

this case is typically evaluated using an ROC curve [43]. On the other

hand, if the two hypotheses have known prior π0 and π1, respectively, then

we aim to minimize the error probability.

Pe , π0P (H1 accepted | H0) + π1P (H0 accepted | H1) (2.4)

which serves as the performance metric.

In the real world, the signal x in the data domain can also be a random

variable. For example, we may not know whether there is a human face in

an image, or when present, where the face is located in the image. We

consider two scenarios in the compressed sensing detection problem:.

1. Detection of a known object with a known position

2. Detection of a known object with an unknown position

The first scenario is the known signal case considered above, with

hypotheses represented more succinctly as:

H0 : y = Ax, x ∼ N (0, σ2I)

H1 : y = Ax, x ∼ N (µ, σ2I)
(2.5)

where µ is the mean of the image when a known object appears in the

known position.

For the second scenario, we consider a simple case: the B band image

contains a single object of size M ×M pixels randomly placed in an N ×N
pixel background. We formulate this problem as composite binary

hypothesis testing with the following two hypotheses, because the location
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of the object can be treated as a latent parameter.

H0 : y = Ax, x ∼ N (µ, σ2I), µ ∈ Ω0 = {0},

H1 : y = Ax, x ∼ N (µ, σ2I), µ ∈ Ω1

Ω1 = Set of images containing the known object

at some position, on a zero background.

(2.6)

The latent parameter µ, the mean of the Gaussian distribution, is

determined by the location of the object. The set of states Ω1 has

(N −M + 1)2 elements and each element µ ∈ Ω1 represents the mean of the

image. For the composite hypothesis H1, determining the object location

reduces to a classification problem, given that locations are discrete.

Similar to the known signal case, we also aim to minimize the error

probability when the prior probabilities are known and otherwise maximize

the detection rate for a given false alarm rate.

2.3.2 Classification in the compressed domain

We formulate classification in the compressed domain as a C-nary

hypothesis testing problem. Under hypothesis Hi, we have a measurement

of a known compressible signal xi on a white Gaussian noise background:

Hi : y = A(xi + v), v ∼ N (0, σ2I), for i = 1, . . . , C (2.7)

With known prior probabilities, we aim to minimize the probability of

misclassification, i.e., the error probability:

Pe ,
C∑
i=1

πiP (Hi rejected | Hi) (2.8)

2.3.3 Segmentation in the compressed domain

Image segmentation is to partition a given image into meaningful

subregions that delineate the objects or scenes in the image. These

subregions could be overlapping with each other or disjoint, depending on

the purpose of the segmentation. This is the highest level statistical
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inference task that we consider.

We consider a simple exclusive labelling scenario, i.e., one pixel can only

belong to one class. For an image x of size N ×N ×B, where B is the

number of spectral bands, semantic segmentation aims to assign one class

to each pixel and yield a size N ×N label map. Similar to classification, we

can write a C-nary hypothesis for each pixel, resulting in CN2
possible

labels for the whole image.

Denoting by xi the mean of the image corresponding to the ith label of

the image, i ∈ [CN2
], the hypotheses of compressed segmentation are

Hi : y = A(xi + v), v ∼ N (0, σ2I) (2.9)

There are several metrics to evaluate the quality of segmentation. The error

probability

Pe ,
CN2∑
i=1

πiP (Hi rejected | Hi) (2.10)

is usually not a meaningful metric for image segmentation because it

considers any imperfect segmentation as an error event, thus assigning

equal weight to a segmentation that is wrong by one pixel, and is therefore

visually almost correct, as to one that misclassifies all pixels, and is

therefore useless. Instead, other metrics are used to evaluate image

segmentation, to better correspond to their utility in applications.

Some of the more commonly used image segmentation metrics [44] are

pixel-wise accuracy and mean IOU (intersection over union). Let the

z∗ ∈ [C]N×N denote the ground truth segmentation, and ẑ ∈ [C]N×N denote

the predicted segmentation. The pixel-wise accuracy is defined as the

fraction of correctly labelled pixels,

Pixel-wise Accuracy ,
|z∗ == ẑ|

N2
(2.11)

where == compares two matrices pixel-by-pixel and returns a Boolean

matrix, and | · | counts the number of True elements in the Boolean matrix.

Given the predicted segmentation and the ground truth, the IOU of class

c ∈ [C] is defined as the intersection between the prediction’s cth class and

the groundtruth’s cth class divided by their union. Let Sc(z∗) and Sc(ẑ)

denote the support on which the pixel is labelled as cth class in the
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groundtruth and in the predicted segmentation, respectively. The IOU of

class c is then

IOUc(z
∗, ẑ) ,

|Sc(z∗)
⋂
Sc(ẑ)|

|Sc(z∗)
⋃
Sc(ẑ)|

, c ∈ [C] (2.12)

and the unweighted mean IOU is the mean of the IOUs of all classes

mIOU(z∗, ẑ) ,
1

C

C∑
i=1

IOUc(z
∗, ẑ) (2.13)

For compressed segmentation, we aim to minimize the error probability

and maximize the pixel-wise accuracy and mIOU.

2.4 Inference Using Deep Neural Networks (DNN)

In real problems, often the full statistics of the data are unknown, but we

do possess D samples {x(i)}Di=1 or compressed samples {y(i)}Di=1 drawn from

the underlying distribution X or from Y with a given sensing matrix A,

and their corresponding label {z(i)}Di=1. For example, it is easier to obtain

MRI measurements for multiple subjects than construct a generative model

of the data source.

We can use a deep neural network with suitable architecture to learn the

inference. The goal of this neural network is to minimize the error

probability of the prediction, given D pairs of training samples

{(x(i), z(i))}Di=1 or {(y(i), z(i))}Di=1 for learning the inference in the

compressed domain.

Let fθ denote the desired neural network parameterized by θ whose input

is a compressed sample y and the output could be a detection,

classification, or segmentation result, which is denoted by s. To learn the

network using training samples, we set a loss function L(s, z) which is a

differentiable surrogate of the error probability. For example, in the

classification problem, the cross entropy loss is commonly used [45]. The

cross entropy loss requires two inputs, a C-dimensional vector s of the

predicted probability scores and the groundtruth class label z∗ ∈ [C]. We

use one-hot encoding to transform the groundtruth class label z∗ to another

C-dimension vector s∗(z∗) whose only non-zero element is z∗th element
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with value 1.

CELoss(s, z∗) ,
C∑
c=1

(s∗(z∗))c log(sc) (2.14)

Letting θ̂ denote the parameters of f trained using D samples

θ̂ = arg min
θ

D∑
i=1

L(fθ(y
(i)), z(i)) (2.15)

the decision rule of the DNN is then:

ẑ(y; θ̂) = arg max
i=1,...,C

(fθ̂(y))i (2.16)

The evaluation metrics of the neural networks, error probability, pixel-wise

accuracy, and mIOU are defined as follows:

Pe , E(y,z)∼(Y,Z)[1{ẑ(y; θ̂) 6= z}]

Pixel-wise Accuracy , E(y,z)∼(Y,Z)
|z == ẑ(y; θ̂)|

N2

mIOU , E(y,z)∼(Y,Z)

[
mIOU(z, ẑ(y; θ̂))

] (2.17)

Here, 1{·} is the indicator function and 1{s} =

 1, if s is true,

0 else.
. The

pixel-wise accuracy and mIOU metrics are the expectations of the

quantities defined in Eq. (2.11) and Eq. (2.13), respectively. For actual

evaluation of performance, these expected values are replaced by empirical

means over test samples.

2.5 Optimization of the Sensing Matrix in a DNN

In the optical CS systems, we manipulate the sensing matrix A by

configuring the optical elements in the system, such as altering the binary

pattern in the DMDs. Rather than define a separate optimization problem

to optimize the sensing matrix, one can treat A as a parameter in the

neural network. We can define a differentiable loss L, and the training
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target becomes

θ̂, Â = arg min
θ,A∈A

N∑
n=1

L(fθ(Ax
(i)), z(i)) (2.18)

where A is the set of sensing matrices that satisfy the constraints imposed

by the optical system. The decision rule of the DNN in the compressed

domain is then:

ẑ(Âx; θ̂, Â) = arg max
i=1,...,C

(fθ̂(Âx))i (2.19)

For the reasons stated in Section 2.2, we instead parameterize, as shown in

(2.2), the sensing matrix A by a vector w whose dimension is the same as

the number of degrees of freedom of A, and optimize over w.

ŵ, θ̂ = arg min
w,θ

D∑
i=1

L(fθ(A(w)x(i)), z(i)) (2.20)

The corresponding evaluation metrics of the DNN with the tunable sensing

matrix are defined as follows.

Pe , E(x,z)∼(X ,Z)[ẑ(A(ŵ)x; θ̂, A(ŵ)) 6= z]

Pixel-wise Accuracy , E(x,z)∼(X ,Z)
|z == ẑ(A(ŵ)x; θ̂, A(ŵ))|

N2

mIOU , E(x,z)∼(X ,Z)

[
mIOU(z, ẑ(A(ŵ)x; θ̂, A(ŵ))

] (2.21)

2.6 Research Questions

We address the following research for the problem formulations presented in

this chapter.

1. How well does a learned neural network perform compared to the

optimal decision rule in terms of the performance metrics mentioned

above?

2. How well does a DNN with tunable sensing matrix A learn the

sensing matrix? How will the learned A compare to the optimal

acquisition scheme?
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3. What are suitable neural network architectures for inference in the

compressed domain with a limited number of training samples?
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CHAPTER 3

COMPRESSED SENSING
MULTISPECTRAL IMAGING SYSTEMS

3.1 Overview

This chapter is a brief survey of optical compressed sensing imaging (CSI)

systems, focusing on multispectral imaging. We describe several such

systems that are studied in this thesis, and provide the sensing matrix A

describing the mapping from the data x to the compressed measurement y.

The single pixel camera [9] is one of the most famous and earliest CSI

systems. A single pixel camera consists of a modulation device, digital

micromirror device (DMD), two relay lenses and a single photon detector

(photodiode). The DMD chip has several hundred thousand microscopic

mirrors arranged in a rectangular array. The mirrors can be individually

rotated to an on or off state, and each tunable mirror modulates one image

pixel. When a mirror is turned to the on state, light from the object is

reflected into the lens making the pixel appear bright. In the off state, the

light is directed elsewhere, making the pixel appear dark. This DMD can

also produce grayscale states by pulse width modulation. The single pixel

camera utilizes one DMD to modulate the image and uses one focusing lens

to sum up the energy in all pixels so that the photodiode will receive one

reading, which we treat as one snapshot. The reading corresponds to the

inner product of the input image x with the DMD mask. One can alter the

pixel’s on/off state in the DMD to obtain multiple photodiode readings. By

taking K shots, one obtains a K-dimensional measurement.

Successful reconstruction from single pixel camera’s measurement [9] can

be obtained using l1-minimization mentioned in Chapter 2. Because the

DMD has no spectral selectivity, this system requires a spectrometer

instead of a single pixel detector to obtain spectral information. However,

since this single-pixel camera only multiplexes the spatial information in

17



Table 3.1: Optical CS systems. DMD: digital micromirror device. CA:
coded aperture.

Optical CS
Systems

Measurement
Dimension

Hardware
Requirements

Task

Opti-
mized

Acquisi-
tion

Single pixel
camera

(SPC) [9, 24]
K ×B DMD, single point

spectrometer
Recon [9] /
Classify [24]

×/X

SD CASSI
[21, 47]

(H+B−1)×W ×K
DMD, dispersive
elements, CCD

camera
Recon ×

Colored
CASSI [20]

(H+B−1)×W ×K
colored CA,

dispersive elements,
CCD camera

Recon X

DD CASSI
[48, 49]

H ×W ×K
DMD, dispersive
elements, CCD

camera
Recon ×

Band
selection

H ×W ×K filter-based
spectrometer

Classify X

Line
selection

(HK/B)×W ×B filter-based
spectrometer

Classify X

time but keeps the entire spectral domain uncompressed, such a system

would require more snapshots, and therefore longer acquisition, to capture

the image than a system that could multiplexes both the spatial and

spectral domains.

We introduce several single shot CSI systems that overcome the

limitations of the single pixel camera in the following section, with a

particular focus on snapshot multispectral capture, which means that the

spectral data are measured in a single exposure (shot) on the camera

sensors [46].

Now consider a multispectral H ×W ×B image cube, where B is the

number of spectral bands, and its sensing using various CSI schemes. Table

3.1 summarizes different sensing schemes and provides the measurement

dimension, given K � B physical image snapshots.

3.2 Line Selection and Band Selection in Full Sampling

Systems

One approach to compressed sensing is a variation on the full-sampling

scheme. There are three conventional full-sampling multispectral cameras

[46]: (1) filter-based spectrometers, (2) scanning spectrometers, and (3)

interferometry-based methods. The filter-based spectrometer obtains a full
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(a) Band selection diagram

(b) Line selection diagram

Figure 3.1: Example of band selection and line selection in full-sampling
CSI systems. Each 2D slice represents an H ×W image in one spectral
band. (a) Yellow or blue slices represent scanned or omitted bands. (b)
Yellow or blue lines represent scanned or omitted lines.

spatial resolution (raster-scanned) image using a color filter or

monochromatic light at one time and repeats this process for K different

wavelengths. The scanning spectrometer captures a spectrum of a single

spatial location at a time, and repeats for all HW spatial locations. The

interferometry-based method (also known as Fourier transform spectral

imaging) shines a beam containing multiple frequencies of light at once to

obtain one full-resolution image, and repeats this process with K beams

consisting of different frequency combinations.

Filter-based spectrometers and scanning spectrometers sense the 3D

image cube in a parallel fashion, i.e. one can choose which optical frequency

to scan or not in filter-based spectrometers without affecting the sensing of
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other frequencies. In contrast, the interferometry-based methods require

obtaining all the raw data before starting to process the information. This

thesis does not include CSI systems based on such methods.

For example, one simple CSI scheme called “band selection”, illustrated

in Figure 3.1a, is to select for scanning a subset of the spectral bands and

ignore the rest. Intuitively, if the image cube has strong correlation between

different spectral bands or the information in different bands is redundant,

then skipping several spectral bands will retain most of the information.

Previous work using this scheme used mutual information or clustering

[50–52] to select the bands.

Another scheme, called “line selection” [53], is illustrated in Figure 3.1b.

This scheme can also be implemented using a filter-based spectrometer. For

each spectral band, we select certain lines to scan. This scheme applies best

to images that have both spatial and spectral correlations. The advantage

of the band selection and the line selection schemes is that they do not

require additional hardware to modulate the image.

The mathematical formulation of these selection schemes is

straightforward. Let xvec = [ ~x1, . . . , ~xB]T ∈ RB×HW denote the flattened

multispectral image cube, where vector ~xb ∈ RHW represents the vectorized

version of the W ×H image slice in the b-th spectral band. Then the

measurement in the band selection scheme is simply

yBS = PΩK
xvec ∈ RK×HW (3.1)

where ΩK is the set of indices of scanned bands and PΩK
∈ RK×B is a

submatrix of the B ×B identity consisting of the rows indexed by ΩK .

For the line selection scheme, we use x = [xT1 , . . . ,x
T
B]T ∈ RBH×W to

denote the multispectral image cube, where matrix xb ∈ RH×W represents

the image slice corresponding to the b-th spectral band. The measurement

can be written as:

yLS = Ax ∈ R(
∑B

i=1 |Ωi|)×W

where A : RBH×W → R(
∑B

i=1 |Ωi|)×W

A = diag([PΩ1 , PΩ2 , . . . , PΩB
]) ,


PΩ1 0

. . .

0 PΩB


(3.2)
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where Ωi is the set of indices of scanned lines in the i-th band, PΩi
∈ R|Ωi|×H

is the submatrix of the H ×H identity consisting of the rows indexed by

Ωi, and diag represents a block diagonalization operator defined above.

A variation of the line selection scheme is to scan both selected rows and

columns. This variation could help if information in the image is equally

correlated in both vertical and horizontal directions. To implement, this

scheme requires the hardware to scan the lines in both directions, which is

often possible at no increased cost - for example with a mirror

galvanometer laser beam scanner.

3.3 Dual Dispersive Coded Aperture Compressive

Spectral Imaging (DD-CASSI)

The DD-CASSI system [7] consists of two dispersive optical elements such

as triangular prisms, a coded aperture (CA), and a focal plane array (FPA)

detector such as a CCD camera. This scheme requires two dispersers placed

symmetrically on the two sides of the CA.

Figure 3.2 illustrates the DD-CASSI system [46]. For better

visualization, the 3D spectral image cube (x, y, λ) is shown using a 2D

matrix representing both the spatial (x) domain and the spectral (λ)

domain. A 3D image cube is firstly sheared by the dispersive element,

which means that all spectral bands are translated in the x direction with

neighboring spectral bands’ translation differing by a distance of 1 pixel.

Then the oblique image cube is modulated by a DMD CA of size

(H +B − 1)×W . The second disperser reverses the shearing and produces

an unsheared spectral cube with a replicated slanted code. In the end the

FPA records the sum of energies of B spectral bands, obtaining the final

“projection” of size H ×W as one snapshot.

With K different DMD patterns, the FPA records K different snapshots

and we obtain the final measurement of size K ×H ×W . This CS scheme

ensures that, at the cost of two dispersers and calibration, the final

projection captures a partial spectrum of every spatial pixel in each

snapshot.

For a mathematical formulation, let xvec = [ ~x1
T , . . . , ~xB

T ]T ∈ RB×HW

denote the flattened multispectral image cube, where, as in the band
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Figure 3.2: Spatial-spectral CASSI illustration.

Figure 3.3: DMD pattern c(k) (black) and DMD pattern for 2nd spectral

band, c
(k)
2 (blue).

selection scheme, vector ~xb ∈ RHW represents the vectorized b-th spectral

band image slice. For the k-th snapshot, let c(k) ∈ {0, 1}(H+B−1)W denote

the DMD code, which is the vectorized version of the k-th 2D DMD pattern

(the black solid line rectangle in Figure 3.3), and let

Qb : {0, 1}(H+B−1)W → {0, 1}HW denote the b-th window extractor of the

vectorized DMD code. That is, Qb extracts the sub-vector with components

corresponding to an H ×W window from the (H +B − 1)×W vectorized

2D DMD code. For example, in Figure 3.3, Qb extracts the sub-vector with

components corresponding to the blue dotted line rectangle from the

vectorized version of the black solid line rectangle. Then vector

c
(k)
b := Qbc

(k) = c(k)[b : b+H − 1] ∈ {0, 1}H×W (3.3)

is a vectorized version of a sliding window of size H ×W (the blue -shaded

rectangle with broken line outline in Figure 3.3), which encodes the image’s

b-th spectral band. Using this notation, we can write the measurement
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yk ∈ RHW as:

yk =
B∑
b=1

c
(k)
b � ~xb =

B∑
b=1

(Qbc
(k))� ~xb

= [I, . . . , I]
[
((Q1c

(k))� ~x1)T , . . . , ((QBc(k))� ~xB)T
]T

= (1TB ⊗ I)diag([(Q1c
(k))T , . . . , (QBc(k))T ]T )xvec

(3.4)

where � denotes the Schur-Hadamard product, or element-by-element

product of vectors or matrices of the same dimension, and ⊗ denotes the

Kronecker product.

The final measurement y using K different DMD patterns can be

expressed as

y = Axvec ∈ RK×HW

where A : RB×HW → RK×HW

A =

 (1TB ⊗ I)diag([(c
(1)
1 )T , . . . , (c

(1)
B )T ]T )

. . .

(1TB ⊗ I)diag([(c
(K)
1 )T , . . . , (c

(K)
B )T ]T )


(3.5)

A variation on this DD-CASSI is called the single disperser CASSI

(SD-CASSI) [49], which only has one disperser and a coded aperture of

smaller size. The SD-CASSI produces an oblique image cube and each

snapshot has size (H +B − 1)×W .

3.4 Optimization of the Acquisition Scheme

As discussed in Section 2.5, in optical systems the sensing matrix A is not

entirely adjustable. One metric to evaluate the complexity of a compressed

sensing systems is the number of degrees of freedom (DOF) of the

acquisition scheme, which refers to the number of independent parameters

that define its configuration. In general, the greater the number of degrees

of freedom, the better the performance of a scheme. From this perspective,

the number of DOF of the band selection scheme is only B while the line

selection scheme has BH DOF. For DD-CASSI, the number of DOF for K

snapshots is KW (H +B − 1).
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While much of the compressed sensing literature advocates and analyzes

the use of randomized acquisition schemes, in which the variables

controlling the DOF are chosen independently at random from some

distribution, there are a few works that optimize the optical acquisition

scheme for a better reconstruction performance. Some approaches use a

surrogate metric such as the restricted isometry property (RIP) [20, 25]. A

smaller RIP constant δ of a sensing matrix implies the inverse problem is

more stable and it is easier to reconstruct the image from scarce

measurements. Another work [26] optimizes the optical element jointly with

a neural network-based reconstructor to achieve end-to-end optimization.

However, we are not aware of any work to date that optimizes the optical

sensing matrix for better inference performance. This is one of the

contributions of this thesis.
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CHAPTER 4

APPROACH AND ANALYSIS

In this chapter, we describe the solutions to the problems stated in Chapter

2. First in Section 4.1 we present the optimal decision rule that minimizes

the error probability for compressed detection, classification, and

segmentation in settings in which the data statistics are fully known. We

give lower and upper bounds on error probability for the tasks of

compressed detection and classification when the sensing matrix is a

random matrix. Then in Section 4.2, we explain the implementation of the

optimal decision rule for different optical sensing schemes. Next, in Section

4.3, a DNN framework is proposed for compressed inference. In the end, we

present the detailed structure of the DNN, and an approach to the

optimization of the sensing matrix by embedding its model in the DNN.

A random Gaussian matrix A of size m× n,m ≤ n,Aij ∼ N (0, 1
m

) is a

common sensing matrix in the compressed sensing literature [11, 12]. The

Gaussian random matrix is popular because it is easy to generate and

amenable to theoretical analysis. With high probability, it asymptotically

satisfies restricted isometry property (RIP) with small RIP constant for

sparse signals [54], which is a desirable property of a sensing matrix for

exact recovery from measurements. Therefore it is useful as a benchmark to

assess the overall system performance, as is also done in this chapter.

However, such random Gaussian matrices often do not satisfy the

constraints of the CSI systems that are considered in Chapter 3. Instead,

we wish to find a sensing matrix A tailored to a particular class of signals

that satisfies the optical system constraints.
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4.1 Compressed Inference in a Known Data Statistics

Setting and the Optimal Decision Rule

In general, we do not have the full statistics of the data in real detection,

classification, or segmentation problems. Thus it is hard to evaluate the

performance of a specific algorithm for these tasks. In order to examine the

capability of a specific neural network in these inference problems, we

propose simple data settings in which we discuss the optimal decision rule

with full statistics of the data.

4.1.1 Detection in the compressed domain

Detection with unknown prior probabilities

Consider the hypotheses in (2.3), when the prior probabilities of the

hypotheses are unknown. The Neyman-Pearson detector maximizes the

detection rate PD when the false alarm rate PF is below a given level γ.

This scenario is analyzed by Davenport et al. [29, 55]. The decision rule for

the accepted hypothesis is a likelihood ratio test:

Λ(y) =
p(y | H1)

p(y | H0)

H1

≷
H0

η (4.1)

p (y|H1) =
exp(−(y − Ax)T (σ2AAT )−1(y − Ax)/2)

(2πσ2)m/2(|AAT |)1/2

p (y|H0) =
exp(−yT (σ2AAT )−1y/2)

(2πσ2)m/2(|AAT |)1/2

(4.2)

where the threshold η is chosen such that

PF =

∫
Λ(y)>η

p(y | H0)dy = γ (4.3)

The decision rule simplifies to

xTARy
H1

≷
H0

‖PATx‖2

2
+ σ2 log(η) (4.4)

where AR , AT (AAT )−1 is the right inverse of A and PAT , ARA is the

orthonormal projection matrix onto the row space of A.
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Given the false alarm rate γ, the optimal detection rate in the

compressed domain is [29, 55]:

PD(γ) = Q

(
Q−1(γ)− ‖PATx‖2

2

σ

)
(4.5)

where Q is the Q-function of standard Gaussian tail distribution.

Optimal Lossless Sensing Matrix

An optimal choice of A ∈ Rm×n, for any m ≥ 1, is one that satisfies

range(AT ) ⊃ x. With this choice, we have PATx = x, and the error

probability (4.4) reduces to that of the uncompressed setting with A = I.

That such lossless compressive detection is possible is, of course, to be

expected, because the optimum detector for a known signal x in white noise

uses the scalar sufficient statistic xTy.

The limitation of the lossless choice of A described here is that it requires

substantial knowledge about the signal x - in the form of an m-dimensional

subspace that contains it.

Random Sensing Matrix

The other extreme of a sensing matrix is a random matrix, which is

universal in the sense that its performance is, with high probability, the

same for any signal x.

Suppose that the sensing matrix A is a random matrix, such that PAT is

a random ortho-projector. Possible choices of A that satisfy this include a

random Gaussian matrix, a random matrix with Aij ∈ {−1, 0,+1} [56], and

various other random matrices [57]. The Johnson-Lindenstrauss lemma

[56, 58] states the following:

Theorem 1 (Johnson-Lindenstrauss lemma). For arbitrary set S of C

points, given constants 0 < ε < 1, β > 0, let

m ≥ 4 + 2β

ε2/2− ε3/3
ln(C) (4.6)

a random orthonormal projector PAT satisfies the following with probability

at least 1− C−β:

(1− ε)
√
m/n ≤ ‖PAT (u− v)‖2

‖u− v‖2

≤ (1 + ε)
√
m/n, for all u, v ∈ S (4.7)

The compressed detection is only concerned with two points, 0 and x.
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We apply the JL lemma with |S| = C = 2, ζ = 2−β. Supposing

m ≥ 4 ln(2)− 2 ln(ζ)

ε2/2− ε3/3
(4.8)

then with probability 1− ζ, a random orthoprojector PAT satisfies (4.7) and

the term ‖PATx‖2
2 concentrates around m‖x‖2/n. The detection rate is

PD(γ) ≈ Q
(
Q−1(γ)−

√
SNRm

)
(4.9)

where the signal-to-noise ratio in the compressed domain is

SNRm ,
m

n
SNR (4.10)

and the SNR in the data domain is

SNR ,
‖x‖2

2

σ2
(4.11)

This detection rate is determined by the SNR and by the compression ratio

n/m. In general a lower compression ratio and a higher SNR would yield a

higher detection rate.

This result [29, 55] appears counter-intuitive from the perspective of

compressed sensing. Suppose that the signal x is sparse at some fixed

sparsity level s. Then CS theory tells us that when the number of

measurements m is large enough compared to s, one can recover with high

probability the exact signal from its measurement. Consider therefore an

ad-hoc detector that first recovers the sparse signal x, and then performs

the detection in the data domain. One expects the detection of this

detector to be the same as for the uncompressed signal in noise, x+ v, and

not to depend on SNR reduced by the compression factor m/n.

On the other hand, the detection performance of the optimal detector

using the compressed signal y = A(x+ v) cannot be worse than that of the

ad-hoc detector. Therefore the factor of m/n SNR loss seen in (4.9) – (4.11)

appears paradoxical.

The resolution of this apparent paradox is that the above ad-hoc

detection scheme too suffers from reduced SNR, and cannot beat the

optimum compressive detector. To see this, consider first what happens to

the energy of any fixed signal x under the action of a random matrix
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A ∈ Rm×n with orthonormal rows. (This is a good approximation to A with

elements
i.i.d.∼ N (0, 1/n)). This is equivalent to projection by a random

orthoprojector, so that with high probability, ‖Ax‖2 concentrates around

(m/n)‖x‖2
2, representing a reduction of the energy of the signal by factor

m/n.

Consider next what happens to the variance of the noise v ∼ N(0, σ2In)

under the action of A. The covariance of Av is σ2AAT = σ2Im. Hence, the

noise variance per component remains unchanged, whereas the energy of

the signal is reduced by factor m/n. This fact (mentioned also in [55])

results in an inherent SNR loss by the factor m/n, and explains the

appearance of this factor in all the expressions for the performance of

compressive inference schemes. Because this SNR loss is inherent to the

compressive scheme, it cannot, of course, be overcome by any ad-hoc

scheme, including the one involving first recovering the signal.

Detection with known prior probabilities

This case is a simple extension of the case considered by Davenport et al.

[29]. Suppose the priors of the null and alternative hypotheses are π0 and

π1, respectively. The maximum a posteriori (MAP) detector yields the

lowest error probability [43]. Its decision rule is a likelihood ratio test:

p (y|H1)

p (y|H0)

H1

≷
H0

p (H0)

p (H1)
=
π0

π1

(4.12)

It follows (see Appendix A.3) that the decision rule (4.12) can be expressed

as

xTARy
H1

≷
H0

‖PATx‖2

2
+ σ2 log(

π0

π1

) (4.13)

We can compute the exact error probability for a given sensing matrix A:

Pe = π0P (H1 accepted | H0) + π1P (H0 accepted | H1)

= π0Q

(
‖PATx‖2

2σ
+
σ log(π0/π1)

‖PATx‖2

)
+ π1Q

(
‖PATx‖2

2σ
− σ log(π0/π1)

‖PATx‖2

) (4.14)

For orthonormal projectors PAT that satisfy (4.7), it follows that the
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error probability has the upper bound:

Pe ≤ π0 exp

(
−
(

(1− ε)2SNRm

8
+

log2(π0/π1)

2(1 + ε)2SNRm

+
(1− ε) log(π0/π1)

2(1 + ε)

))
+ π1 exp

(
−
(

(1− ε)2SNRm

8
+

log2(π0/π1)

2(1− ε)2SNRm

− log(π0/π1)

2

))
(4.15)

The detailed derivation of upper bound can be found in Appendix A.3, as a

simple extension to the Neyman-Pearson detector [29]. Under the uniform

prior assumption (π0 = π1 = 0.5), (4.14) is shown in Appendix A.3 to yield

the bounds

exp

(
−(1 + ε)2SNRm

4

)
≤ Pe ≤ exp

(
−(1− ε)2SNRm

8

)
(4.16)

The bounds become tighter with decreasing ε, in which case Pe is

determined by the SNR and the compression ratio of data over

measurement dimension n/m. Similar to the Neyman-Pearson case, the

effective SNR is reduced by the compression ratio n/m. Higher SNR and

lower compression ratio n/m yield lower error probability, decaying at an

exponential rate. Thanks to this exponential dependence, with sufficiently

high SNR, the SNR loss by the compression factor n/m will still provide

sufficiently small error probability for many applications.

Detection with composite hypotheses

Another compressed sensing problem mentioned in Section 2.3.1

considers detecting an object with unknown position and it is described in

(2.6). For simplicity, we assume the prior probability of each hypothesis is

the same, π0 = π1 = 1/2.

Again, the MAP decision rule minimizes the error probability. Under the
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uniform prior, it reduces to the ML rule.

c∗ = arg max
c∈{0,1}

P (Hc)P (y | Hc) = arg max
c∈[C]

P (y | Hc)

= arg max
c∈{0,1}

∑
x∈Ωc

P (y, x | Hc)

= arg max
c∈{0,1}

∑
x∈Ωc

P (y | Hc, x)P (x | Hc)

= arg max
c∈{0,1}

P (y | Hc) = arg max
c∈{0,1}

∑
x∈Ωc

P (y | Hc, x)P (x | Hc)

= arg min
c∈{0,1}

∑
x∈Ωc

exp

(
−(y − Ax)T (AAT )−1(y − Ax)

2σ2
+ log(P (x | Hc))

)
(4.17)

For the detection in the data domain without compression, A = I, the

optimal decision rule reduces to:

c∗ = arg min
c∈{0,1}

∑
x∈Ωc

exp

(
−‖y − x‖

2

2σ2
+ log(P (x | Hc))

)
(4.18)

We do not provide an upper bound of the error probability here due to

its complexity. Furthermore, in the case of a designed sensing matrix A, an

upper bound on the error probability in terms of the constant ε in (4.7)

would be of limited utility. This is because, unlike the case of some random

matrices, computing ε for an arbitrary fixed matrix A for a large set of

candidate x is expensive or even intractable. Instead, we estimate the error

probability using Monte Carlo simulation as described next.

Estimating the error probability by Monte Carlo simulation.

We generate independent data samples for different noise levels σ under

hypotheses Hcs and use the optimal decision rule (4.17) to compute the

empirical error probability. With a large enough number of samples, the

empirical error probability provides a good approximation for the true error

probability because the empirical Pe converges to the true Pe almost surely.

Note that in computation, the exponential terms in (4.17) may encounter

numerical underflow if σ is very small. The Exp-normalize trick (also

known as LogSumExp trick) avoids the numerical underflow and helps to

compute the exact likelihood. For example, in (4.17), this trick computes

the quantity d , minx∈Ωc ‖y − x‖2/2σ2 and subsequently computes the

quantity exp(−d)
∑

x∈Ωc
exp

(
−
(
‖y−x‖2

2σ2 − d
)

+ log(P (x | Hc))
)

to
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circumvent the numerical overflow or underflow.

4.1.2 Classification in the compressed domain

Classification with known prior probabilities

Similar to detection in the compressed domain, we denote the prior

probability of each class by πi, i = 1, . . . , C, and for each class the mean of

the signal is xi, i = 1, . . . , C. Consider the hypotheses (2.7). The maximum

a posterior probability (MAP) decision rule yields the lowest error

probability, or the misclassification rate. For a specific sensing matrix A

and associated measurement y = Ax, the optimal decision rule is:

i∗ = arg max
i=1,...,C

P (Hi | y)

= arg max
i=1,...,C

πiP (y | Hi)

= arg min
i=1,...,C

(y − Axi)T
(
AAT

)−1
(y − Axi)− 2σ2 log(πi)

(4.19)

When the classification is performed in the original data domain A = I, the

decision rule reduces to

i∗ = arg min
i=1,...,C

‖y − xi‖2 − 2σ2 log(πi) (4.20)

The error probability upper bound of the MAP decision rule derived in

Appendix A.4 is:

Pe ≤
C∑
t=1

πt
∑
6̀=t

Q

−‖PAT (xt − x`)‖2

2σ
+

σ log
(
πt
π`

)
‖PAT (xt − x`)‖2

 (4.21)

This error bound is determined mainly by the noise level σ and the

projected difference ‖PAT (xt − x`)‖2 between different signals xt and x`. In

general, a larger average projected difference and a smaller σ yield lower

error probability, if we ignore the second term inside the Q-function.

Analyzing the monotonicity of this upper bound is hard due to the term

log(πt/π`). Under uniform prior probability scenario, the bound reduces to
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Pe ≤
1

C

C∑
t=1

∑
`6=t

Q

(
−‖PAT (xt − x`)‖2

2σ

)
(4.22)

Classification with unknown prior probabilities

We utilize the maximum likelihood (ML) decision rule in this case. The

ML likelihood is equivalent to the MAP rule when the prior probability of

the class is all equal.

i∗ = arg min
i

(y − Axi)T
(
AAT

)−1
(y − Axi) (4.23)

The conditional misclassification rate Pe can be bounded using the union

bound [29]:

Pe|Ht = 1−
∏
j 6=t

(
1−Q

(
‖PAT (xt − xj))‖2

2σ

))
≤
∑
j 6=t

Q

(
‖PAT (xt − xj))‖2

2σ

) (4.24)

where t is the index of the underlying true hypothesis. This upper bound

coincides with (4.21) under the uniform prior probabilities.

We follow the derivation by Davenport et al. [29] but utilize the JL

lemma (Theorem 1) instead of the RIP property to derive an upper bound

on the conditional error probability. The JL lemma does not restrict the

signals to be sparse while the RIP property does. For large enough

m ≥ 4 ln(C)− 2 ln(ζ)

ε2/2− ε3/3
(4.25)

a random orthoprojector PAT satisfies (4.7) with probability at least 1− ζ
simultaneously for all points xt and xj, t, j ∈ [C]. The upper bound, which

holds simultaneously for all t ∈ [C], is then:

Pe|Ht ≤
∑
j 6=t

Q

(
(1− ε)‖(xt − xj))‖2

√
m

2σ
√
n

)
(4.26)

Defining d , mini,j ‖xi − xj‖, we derive an upper bound on the

(unconditional) error probability using the Chernoff bound on the
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Q-function Q(z) ≤ exp(− z2

2
).

Pe =
∑
t

P (Ht)Pe|Ht

≤
∑
t

P (Ht)
∑
j 6=t

Q

(
(1− ε)d

√
m

2σ
√
n

)
=
∑
j 6=t

Q

(
(1− ε)d

√
m

2σ
√
n

)
≤ (C − 1) exp

(
−d

2(1− ε)2m

8σ2n

)
= (C − 1) exp

(
−(1− ε)2SNRm

8

)
(4.27)

where SNRm = m/nSNR, SNR = d2/σ2 in the classification case.

Similar to the detection case, a higher SNR d2

σ2 and a lower compression

ratio n
m

yield a lower error probability. This bound is linear in the number

of classes C. When C = 2, and we set x1 = 0, x2 = x, d2 = ‖x‖2, this bound

reduces to the detection problem of signal 0 and x, as in (4.16).

This upper bound is useful when it is lower than C−1
C

, the error

probability of a random guess between C classes. If the number of

measurements m is larger than 8 ln(C)
(1−ε)2SNR

, then compressed classification is

better than a random guess.

We use these optimal decision rules and Monte Carlo simulation to

estimate the error probability Pe in compressed classification using

arbitrary (not necessarily random) sensing matrices A.

4.1.3 Segmentation in the compressed domain

We consider a simple data setting and aim to minimize the error

probability mentioned in Section 2.3.3: a square shift-invariant object of

size Mc ×Mc drawn at random from possible C classes that appears at a

random position on a N ×N background and is imaged for B spectral

bands. The pixel values of the object are deterministic signals of its class

and are known for each class, but the location of the object is unknown.

This data setting is a simplified version of many image segmentation

applications—for example, segmenting the cell types from a tumor biopsy
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multispectral image, where the object of interest, such as tumor cells, could

be round or of irregular shape and appearing in different locations, and the

pixel values are correlated to each other within the same class.

The simple hypothesis test for this setting is formulated in (2.9) with∑C
c=1(N −Mc + 1)2 hypotheses. For clarity, we use xc,i instead of xi to

denote the mean of the image that contains an object from cth class at the

ith location Similar to the classification problem, the optimal decision rule

that minimizes the error probability is:

c∗, i∗ = arg min
c,i

(y − Axc,i)T
(
AAT

)−1
(y − Axc,i)− 2σ2 log(πc,i) (4.28)

where πc,i denotes the prior probability of the cth object appearing in the

ith location. Again, we use this optimal decision rule and Monte Carlo

simulation to estimate the Pe, pixel-wise accuracy, and mean IOU.

4.2 Optimal Decision Rule in Practice

Recall the optimal decision rule for compressed segmentation (4.28). For

the band selection and line selection CS scheme, we set the measurement as

ATy = G(w)� x instead of y. This extra AT does not affect the optimal

decision rule, because the AAT of the line or band selection schemes

happens to be equal to the identity matrix. To see this, note that

‖ATy − ATAxc,i‖2
2 = (y − Axc,i)TAAT (y − Axc,i)

= ‖y − Axc,i‖2
2

= (y − Axc,i)T (AAT )−1(y − Axc,i)

(4.29)

We can then replace term (y − Axc,i)T (AAT )−1(y − Axc,i) in (4.19) by

‖ATy − ATAxc,i‖2
2. Assuming a uniform prior of classes c and the locations

i, we use

c∗, i∗ = arg min
c,i

‖ATy − ATAxc,i‖2
2 (4.30)

as the optimal decision rule for compressed segmentation for line and band

selection. This simplification allows further discussion of the suitable neural

network architecture.

For the DD-CASSI scheme, we also use ATy as the measurement. But
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computing (y − Axc,i)T (AAT )−1(y − Axc,i) with the whitening matrix

(AAT )−1 can be tricky (see Appendix A.2). In our subsequent experiments,

we replace the (AAT )−1 with the identity matrix as a suboptimal decision

rule since it is easy to implement. We used (4.30) for DD-CASSI schemes

as well.

4.3 Neural Network for Compressed Inference

In Chapter 2, we briefly discuss training a DNN for inference in the

compressed domain and in Section 2.5 we suggest to optimize the sensing

matrix within the DNN. However, choice of a suitable network architecture

for compressed classification or segmentation was not addressed. In this

section, we present the details of the DNN, using a compressed

segmentation network as an example.

Figure 4.1 shows the diagram of the compressed segmentation network.

This network consists of two parts: a linear CS operator denoted as A

defines the CS scheme and a (deep) neural network denoted by fθ maps the

compressed signal to the corresponding class label denoted by z.

Figure 4.1: Compressed segmentation network diagram.

In Section 2.5, the manipulation of the sensing matrix A through

parameterization A(w) is mentioned. In addition to the loss function in

(2.20), we need a penalty term, a function of the parameter w, to control

the number of measurements m of the sensing matrix A(w). The exact

form of the penalty term depends on the CSI scheme.
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4.4 Loss Function

4.4.1 Line and band selection scheme

In the band selection scheme introduced in Section 3.2, the number of DOF

is d = B and the parameter w ∈ RB. We can write ATAx = G(w)� x
where x is the image cube, and G(w) is a binary mask that has the same

size as x. In G(w) 1 or 0 indicate scanned or skipped voxels, respectively,

and G(w) = 1{w > 0}
⊗

11T ∈ RB×H×W . Using the measurement y = Ax,

the input to the DNN is ATy = ATAx = G(w)� x.

In the line selection scheme, the number of DOF is HB and the

parameter w ∈ RBH . The binary mask is G(w) = 1{w > 0}
⊗

1 ∈ RBH×W .

The rest is the same as the band selection scheme.

Let x(n), n ∈ [D] and z(n) ∈ [C]H×W denote the n-th 3D image sample out

of a D-sample dataset and the corresponding segmentation label,

respectively. The loss function combines the cross entropy loss, which is a

common choice for image segmentation tasks [59, 60], and the cost of the

number of scanned bands or lines as a penalty term.

L(θ, w) =
1

D

D∑
n=1

CELoss(fθ(Ax
(n)), z(n)) + λ1‖G(w)‖0

=
1

D

D∑
n=1

CELoss(fθ(y
(n)), z(n)) + λ1

∑
i,j,k

Gi,j,k(w)

(4.31)

where CELoss denotes the sum of cross entropy loss for all pixels defined in

(2.14), ‖G(w)‖0 counts the number of scanned lines/bands, and λ1 is a

hyperparameter that controls the sparsity of the binary mask G(w).

Note that the number of scanned bands or lines is determined by the

learned parameter w and it is hard to fix the number of non-zeros in G(w)

during the training process of the network. Hence we used a penalty term

for this scheme. For DD-CASSI scheme (Section 4.4.2), we do not need a

penalty term because the number of snapshots K is predetermined and the

training alters the K DMD patterns only.
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4.4.2 DD-CASSI scheme

For the DD-CASSI CS scheme, the number of DOF is (H +B − 1)WK for

K snapshots, and the parameter w ∈ R(H+B−1)W×K . The kth DMD pattern

c(k) ∈ {0, 1}(H+B−1)W mentioned in Section 3.3 is parameterized by w:

c(k) = 1{wk > 0} (4.32)

We can write the sensing matrix A(w) using (3.5):

A(w) =

 (1TB ⊗ I)diag([(1{w1 > 0}1)T , . . . , (1{w1 > 0}B)T ]T )

. . .

(1TB ⊗ I)diag([(1{wK > 0}1)T , . . . , (1{wK > 0}B)T ]T )

 (4.33)

Let x(n), n ∈ [D] and z(n) ∈ [C]H×W denote the n-th 3D image sample out

of a D-sample dataset and the corresponding segmentation label,

respectively. The loss function for the DD-CASSI scheme is:

L(θ, w) =
1

D

D∑
n=1

CELoss(fθ(y
(n)), z(n))

=
1

D

D∑
n=1

CELoss(fθ(A(w)x(n)), z(n))

(4.34)

where CELoss is cross-entropy loss between the predictions and labels.

4.4.3 Binarized layer

The optimization of the loss function with respect to w, the parameter of

sensing matrix A, can be tricky because the DMD mask in DD-CASSI (k)

or the selection mask G(w) in the band/line selection scheme are

binary-valued. One way to generate such binary values is to use the

binarization function sign(w) [61], which is applied element-wise for a

tensor input, yielding 1 for positive elements and 0 otherwise. The binary

mask G(w) is then generated from an intermediate binary parameter

wb , sign(w) (4.35)
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This binarization function is easy to implement in the forward propagation.

However, the derivative of the sign function is zero almost everywhere,

making it apparently incompatible with back-propagation while training

the network. We use the “straight-through estimator”, which simply sets

∂wb/∂w to 1 [62], treating the binary neuron during back propagation as an

identity operator.

Given the gradient ∂L
∂wb of the loss function L with respect to binary

parameter wb (obtained by standard back propagation), then the

straight-through estimator gives the gradient of L with respect to the

real-valued parameter w by

∂L

∂w
=

∂L

∂wb
∂wb

∂w
=

∂L

∂wb
(4.36)

This estimate of gradients with respect to binary parameters proved

effective in binarized NN [26, 63].

Intuitively, with the stochastic gradient-type optimization algorithms

used for optimizing the parameters of the DNN in training, for sufficiently

small learning rate it is only necessary that the gradient computed per

sample be correct in expected value. Although the straight-through

estimator is biased, it has the right sign, which is argued to suffice under

some conditions [62]. In our application the binarization layer is the first

and only such layer, and this approach turns out empirically to be effective.

4.5 NN for the Optimum Decision Rule

A neural network should be able to implement, with appropriate learned

parameters, the optimum decision rule. When the data distribution is

unknown a neural network is able to learn the parameters in the optimal

decision rule from limited samples.

Consider a special case of the compressed segmentation setting described

in Section 4.1.3, with C = 1, A = I, and i ∈ 1, ..., (N −M + 1)2. We can

use the optimal decision rule (4.28) for compressed classification and the

optimal decision rule reduces to

i∗ = arg min
i
‖y − xi‖2

F − 2σ2 log(πi) (4.37)
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where y and xi are N ×N matrices. The above decision rule is equivalent to

i∗ = arg max
i
〈y, xi〉 − ‖xi‖2

F/2 + σ2 log(πi) (4.38)

In this section, we describe three neural network architectures that are able

to implement this optimal decision rule in the data domain.

4.5.1 Fully connected neural network

The optimal decision rule (4.38) can be implemented as a one-layer dense

neural network. Let the weight matrix W of this fully connected (FC) layer

have size N ×N × (N −M + 1)2, set each column of W to exactly the

vectorized version of xi, and set the ith element of bias b of this FC layer to

−‖xi‖2/2 + σ2 log(πi). Then the ith element of the FC layer output is

〈Wi, y〉 − bi = 〈y, xi〉 − ‖xi‖2
F/2 + σ2 log(πi) (4.39)

The optimal decision rule hence becomes

i∗ = arg max
i
〈Wi, y〉 − bi (4.40)

The parameter W and b need to be learned from given data samples. Given

the data sample pairs (y(i), z(i))Di=1, z(i) denoting the class label of y(i), the

loss function is defined as follows:

f(y)i , 〈Wi, y〉 − bi, i ∈ [(N −M + 1)2]

L(W, b) =
1

D

D∑
i=1

CELoss(Softmax(f(y(i))), z(i))
(4.41)

The softmax function takes an input of a vector s of dimension R and

normalizes it into a probability distribution consisting of R probabilities

proportional to the exponentials of the input.

Softmax(s)i ,
exp(si)∑R
j=1 exp(sj)

,∀i = 1, . . . , R (4.42)

This network is a direct implementation of the decision rule in (4.38).

However, it has a drawback: the size of the weight W has order O(N4).
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Hence the sample complexity, the number of samples required to

successfully train the network, is at least O(N4) [64]. It follows that this

NN architecture is only suitable for small N .

4.5.2 Convolutional neural network (CNN)

In the image segmentation example mentioned in Section 4.1.3, the object

is shift-invariant and the rest of the background has zero pixel values in xi.

We can therefore simplify the computation of the term 〈y, xi〉 in the

optimal decision rule (4.38) using the shift-invariance property:

〈y, xi〉 = 〈Piy, Pixi〉, Pi : RN×N → RM×M (4.43)

The operator Pi is a patch extractor for ith object location,

i = 1, . . . , (N −M + 1)2, which takes in the image and extracts an M ×M
patch. For every i, Pixi is essentially the pixel values of the shift-invariant

object and we denote κ , Pixi ∈ RM×M . The computation of 〈Piy, Pixi〉 is

equivalent to the following convolution operation performed on a 2D image.

〈Piy, Pixi〉 = 〈Piy, κ〉 = vec(y ? κ)i (4.44)

Now, if the exact size of this shift-invariant object M is known, or an

upper bound on the size of a bounding box in which the object can be

inscribed is known, we only need one convolution layer with 1 output

channel in order to compute 〈y, xi〉 for all i. By setting the 2D convolution

kernel to κ, this CNN convolves the input image y with κ, producing the

feature vec(y ? κ)i, i = 1, . . . , (N −M + 1)2. The next and last linear layer

has an identity weight matrix W = I ∈ R(N−M+1)2×(N−M+1)2 and bias

bi = −‖xi‖2
F/2 + σ2 log(πi). The final step is to find the position of the

maximum in the output features Wvec(y ? κ) + b and this position is our

final prediction. By setting these weights κ,W, b, this CNN network

performs equivalently to the optimal decision rule:

i∗ = arg max
i
〈y, xi〉 − ‖xi‖2

F/2 + σ2 log(πi)

= arg max
i

vec(y ? κ)i − bi
(4.45)
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The convolution kernel κ and the bias b need to be learned from the data

samples. Similar to (4.41), the loss function is defined as follows:

L(κ) =
1

D

D∑
i=1

CELoss(Softmax(vec(y(i) ? κ)− b), z(i)) (4.46)

When M � N , the number of parameters in this CNN is of order

O(M2) +O(N2), which is far less than for the fully connected network, and

thus the CNN requires far fewer data samples to train.

If the object is chosen from one of C classes, then we can increase the

number of channels in the convolution layer from 1 to C and implement the

optimal decision similarly.

4.5.3 CNN with fixed-size kernels

From the analysis in Section 4.5.2, the kernel size of the CNN needs to be

at least maxCc=1Mc ×maxCc=1 Mc for multiple objects. When the required

kernel side length maxCc=1Mc is close to N , the number of parameters in

this CNN is then similar to that of the fully connected network.

In machine learning, it is a common practice to replace a single large

filter with multiple layers of small filters that have the same receptive field.

Because expressivity of a network increases exponentially with network

depth [65], a deeper network has greater expressivity for a given number of

free parameters. The receptive field of a layer in CNN refers to the part of

the input image that contributes to the filter output at this specific layer.

This receptive field increases linearly as we stack more convolutional layers.

It is equivalent to the side length of the convolution of multiple layers of

kernels. The receptive field of L layers of k × k filters is

((k − 1)L+ 1)× ((k − 1)L+ 1).

In this section, we discuss a linear CNN with multiple convolution layers

of a fixed convolution kernel size (e.g., 3) combined with a final linear layer.

Our analysis does not include any nonlinearities in the network. Instead of

assigning every parameter in this network, we prove the existence of

optimal fixed kernel-size channels, with which the CNN is equivalent to the

optimal decision rule in (4.38). The structure of the CNN is shown in

Figure 4.2. This network has L convolution layers, each with J output
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channels. The last linear layer sums up all the convolution results from the

Lth layer and vectorizes the 2D matrix as a vector output.

The following theorem gives a sufficient condition on the existence of the

fixed-size optimal channels, for a given number of the layers L and the

number of channels J in CNN architecture.

Figure 4.2: Architecture of a CNN with fixed kernel size. It has L
convolution layers, each containing J convolution channels.

Theorem 2. Consider a CNN with filter size 3× 3, and L convolution

layers, each layer containing 4 convolution channels, with an output linear

layer to sum up all the channels at the end. Then this network can produce

an output equal to the convolution of the input with an arbitrary M ×M
kernel if and only if L ≥M/2− 1. Furthermore, if L < M/2− 1, then

regardless of the number of channels in each layer of the CNN, there exist

M ×M convolution kernels that the CNN cannot realize.

Proof. Let L denote the finite number of convolution layers, and let J

denote the number of convolution channels in each layer. These consecutive

L convolution layers combined should act like one M ×M convolution layer

for an arbitrary M ×M kernel. The receptive field of the Lth layer of 3× 3

kernel is (2L+ 1)× (2L+ 1), which should be larger than M ×M , so

L ≥M/2− 1. This proves the necessity of the condition on L for any J .

What remains to be proved is the sufficiency of the condition on L, for

J = 4.

Let q
(i,j)
` ∈ R3×3 denote the 3× 3 convolution kernel in the `th layer,

which takes in the ith channel in the (`− 1)th layer as input and outputs

j-th channel in the `th layer. WLOG, assume the input image y has 1
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channel. Then the output of the CNN with one convolution layer is

J∑
j1=1

y1 ? q
(1,j1)
1 = y1 ?

J∑
j1=1

q
(1,j1)
1 (4.47)

Similarly, the output of the CNN with two convolution layers is:

J∑
j2=1

J∑
j1=1

y1 ? q
(1,j1)
1 ? q

(j1,j2)
2 = y1 ?

(
J∑

j1=1

q
(1,j1)
1 ?

(
J∑

j2=1

q
(j1,j2)
2

))
(4.48)

and the output of the CNN with L convolution layers is

y1 ?

(
J∑

jL=1

J∑
j2=1

· · ·
J∑

jL=1

q
(1,j1)
1 ? q

(j1,j2)
2 ? · · · ? q(jL−1,jL)

L

)
(4.49)

Let q denote the overall convolution filter

q ,
J∑

jL=1

J∑
j2=1

· · ·
J∑

jL=1

q
(1,j1)
1 ? q

(j1,j2)
2 ? · · · ? q(jL−1,jL)

L

=
J∑

jL=1

q
(1,j1)
1 ?

(
J∑

j2=1

q
(j1,j2)
2 ? · · · ?

(
J∑

jL=1

q
(jL−1,jL)
L

)) (4.50)

We would like to know the minimum J for a given kernel size M and a

given number of convolution layers L =
⌊
M−1

2

⌋
. We use mathematical

induction to find the minimum number J .

Consider the case of M = 5, L = 2 first. It is desired that for any 5× 5

filter kernel κ5, there exist q
(1,j1)
1 s and q

(j1,j2)
1 s such that the following holds:

J∑
j1=1

q
(1,j1)
1 ?

(
J∑

j2=1

q
(j1,j2)
2

)
= κ5 ∈ R5×5 (4.51)

Letting qj12 =
∑J

j2=1 q
(j1,j2)
2 , this equation is equivalent to

J∑
j1=1

Q
(1,j1)
1 vec

(
qj12

)
= vec(κ5) ∈ R25 (4.52)

where Q
(1,j1)
1 ∈ R25×9 is the doubly block matrix (a special case of Toeplitz

matrix) corresponding to the 2D convolution of q
(1,j1)
1 . We can rewrite the
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above equation as

[
Q

(1,1)
1 |Q(1,2)

1 | . . . |Q(1,J)
1

]

vec(q1

2)

vec(q2
2)

. . .

vec(qJ2 )

 = vec(κ5) (4.53)

For an arbitrary 5× 5 filter kernel κ5, as long as the block matrix

Q1 ,
[
Q

(1,1)
1 |Q(1,2)

1 | . . . |Q(1,J)
1

]
has full row rank, then there exists a solution

of


vec(q1

2)

vec(q2
2)

. . .

vec(qJ2 )

. Experimentally we found that for random q
(1,j)
1 s , J = 4

almost surely guarantees the full row rank of Q1.

Consider a larger number of M > 5, and assume we can generate any

arbitrary kernel of size (M − 2)× (M − 2). From (4.50), it is desired that

for any filter kernel κM of size M ×M

J∑
jL=1

q
(1,j1)
1 ?

(
J∑

j2=1

q
(j1,j2)
2 ? · · · ?

(
J∑

jL=1

q
(jL−1,jL)
L

))
= κM ∈ RM×M (4.54)

By assumption, the above equation reduces to

J∑
j1=1

q
(1,j1)
1 ? κ

(j1)
M−2 = κM ∈ RM×M (4.55)

Following the analysis of 2-convolution layer CNN, we can rewrite the

above equation as

[
Q

(1,1)
1 |Q(1,2)

1 | . . . |Q(1,J)
1

]

vec(κ1

M−2)

vec(κ
(2)
M−2)

. . .

vec(κ
(J)
M−2)

 = vec(κM) (4.56)

where Q
(1,j)
1 ∈ RM2×(M−2)2 doubly block matrix that is equivalent to the 2D

convolution with q
(1,j)
1 . As M increases, the number of convolution channels

J that guarantees the full row rankness of the block matrix Q1 approaches

2 and is lower bounded by 2.
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Combining with the case of M = 5, L = 2, the minimum number of

channels J to implement the optimal decision rule for an arbitrary M is

4.

Remark (1). We have shown that J = 4 channels in each layer are

sufficient for the result to hold. However, this was obtained by considering

the conditions for the matrix Q1 in (4.52) to have generically full row rank,

which is not necessary for (4.52) to have a solution for every

right-hand-side, because Q1 also has learnable (tunable) parameters. Hence,

we have not shown that J = 4 is a necessary condition. However, empirical

results of training a linear CNN suggest that J = 4 is indeed a necessary

condition. Hence we propose the following:

Conjecture (1). For J < 4, the sufficient condition of Theorem 2 does not

hold.

Remark (2). The proof of Theorem 2 and our empirical results

summarized in Conjecture 1 reveal the role of multiple channels in CNNs

for image segmentation tasks.

Remark (3). For the image segmentation problem with C shift-invariant

objects, with each object bounded in a Mc ×Mc box, we can use a similar

architecture of a linear CNN to implement the optimal decision rule. We

simply use M = arg maxc∈[C] Mc for the theorem. The convolution layers

are replicated C times, and each set of convolution layers can generate one

Mc ×Mc filter kernel. The final linear layer is modified to take in C

channels instead of 1.

Remark (4). If we adopt the popular CNN architecture, using a ReLU

layer after each convolution layer, then the analysis of the number of

channels J becomes complex. Because the ReLU only transmits one

polarity, and two ReLUs would be required to implement a linear operation,

more channels will be required in general to implement an arbitrary M ×M
convolution by a ReLU CNN than by a linear CNN. We do not discuss this

scenario further theoretically and instead present the results of numerical

experiments in the next chapter.

Similar to section 4.5.2, the last linear layer has an identity weight

matrix W = I and the bias bi = −‖xi‖2
F/2 + σ2 log(πi). The optimal
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decision rule of this L-layer CNN is

q ,
J∑

jL=1

J∑
j2=1

· · ·
J∑

jL=1

q
(1,j1)
1 ? q

(j1,j2)
2 ? · · · ? q(jL−1,jL)

L

i∗ = arg max
i

vec (y ? q)i − bi

(4.57)

and the loss function is defined as:

L(q, b) =
1

D

D∑
i=1

CELoss
(
Softmax

(
vec(y(i) ? q

)
− b
)
, z(i)) (4.58)

The number of parameters in this CNN network has order of

O(M) +O(N2), because the number of 3× 3 convolution kernels is

J2bM−1
2
c = 16bM−1

2
c.

4.5.4 U-Net: Empirically successful segmentation network

Figure 4.3: U-Net deep neural network structure and notations.

A U-Net [59] structure can be used as the segmentation network fθ.

Since the U-Net contains not only convolution layers but also BatchNorm

layers and pooling layers, as well as skip connections, the analysis of

implementing the optimal decision rule in a U-Net is complex and is not

attempted here. The U-Net is a successful model for various medical

imaging segmentation applications [66] thanks to the following architectural
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aspects: (i) its encoder-decoder structure provides it with a large receptive

field, enabling it to understand the full context of the image; and (ii) its

skip-connections that propagate the low-level features to the final semantics

enable it to be responsive to local features.

Figure 4.3 shows the U-Net architecture adapted from one used for

monochrome image segmentation [59] by increasing the number of input

channels from one to B. The input to this U-Net is a multispectral image

with B spectral bands. This input could be a multispectral image x, in the

case of segmentation in the data domain, or an image ATy, derived from

the CS measurement y, in the case of segmentation in the compressed

domain. Assuming that A has full row rank (no redundant measurements),

it follows that AT has a left inverse, and therefore the information contents

of ATy and y are the same, and ATy may be used as the input to the DNN

rather than y, without loss. The multispectral feature extraction is all done

in the first layer of the network.

In detail, this U-Net has 4 basic encoder blocks, 4 decoder blocks in the

left and right halves of the diagram, respectively, one center block and

direct copy connections between them. These 4 encoder blocks reduce the

convolution feature size by half in each block and constitute the contraction

branch. In turn, the 4 decoder blocks double the feature size in each block

and constitute the expansion branch.

Each encoder block has 2 composite layers and a max pooling layer to

reduce the feature size. Each composite layer consists of a 3× 3 convolution

layer, a batch normalization (BN) layer, and a Rectified linear unit (ReLU)

layer. The number on top of each rectangle is the number of channels of the

features. Each decoder block has two composite layers and one transposed

convolution layer to increase the feature size.

The decoder block also incorporates features from previous encoder layers

through direct concatenation. The center block is similar to the decoder

block except it does not include the concatenation at its input. In the last

layer, a 1× 1 convolution layer (red arrow) produces the final C-channel

tensor of size C ×H ×W and applying the softmax function and the

argmax function to this tensor yields z ∈ [C]H×W .
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4.6 Other Inference Paradigms

In this section, we describe other network architectures to perform inference

using compressed measurements and original data. We limit the discussion

to the line and band selection scheme and use the U-Net as the

segmentation network.

4.6.1 Segmentation on reconstructed data

Figure 4.4: Composite segmentation network block diagram.

To compare the direct inference in compressed domain with the

traditional reconstruction + inference pipeline, we use the network

architecture shown in Figure 4.4, called composite segmentation network.

Here, the segmentation U-Net f0 is a pre-trained network trained on fully

scanned data and is fixed in this pipeline. The reconstruction U-Net gθ

takes in ATy as input and outputs a reconstruction x̂. The reconstruction

U-Net gθ has the same network architecture as segmentation U-Net except

that the final layer will produce a B-band image instead of C-class

predictions. The reconstruction network gθ is trained to minimize the mean

squared error between the input x and the reconstructed results x̂ for a

tunable sensing matrix A(w).

min
θ,w

1

N

N∑
n=1

‖gθ(y(n))− x(n)‖2
2 + λ1‖A(w)‖0 (4.59)

The final prediction of this composite network is then given by f0(gθ(y)).

4.6.2 Multitask learning: Reconstruction and segmentation

Figure 4.5 shows the diagram of multitask learning (MTL) to reconstruct

3D data and produce semantics at the same time. The idea of multitask

learning [67] is not new: by sharing representations between related tasks, a
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Figure 4.5: Multitask learning network block diagram.

joint model that is trained to perform multiple tasks generalizes better on a

single original task. In this MTL model, we utilize eavesdropping to

improve the segmentation accuracy.

The reconstruction and segmentation U-Net hζ takes in the ATy as input

and has two outputs: the reconstruction x̂ and the intermediate features th.

The U-Net hζ has one contraction branch composed of 4 encoder blocks,

which are the same as in Section 4.5.4. The U-Net hζ has two expansion

branches, each consisting of 4 decoder blocks. One expansion branch

produces the reconstruction x̂ while the other branch produces intermediate

features th. Another segmentation U-Net fθ takes in the reconstruction x̂

and generates the segmentation features tf . The final convolution layer `ξ

of this joint network combines the intermediate features th and

segmentation features tf by concatenating them together and producing the

final semantics z.

The final decision of the segmentation is based on the reconstructed x̂

and the intermediate feature th. The eavesdropping of the multi-task

learning happens in the contraction branch of hζ .

We set the loss function of this MTL network to:

L(θ, ζ, ξ, w) =
1

N

N∑
n=1

CELoss(`ξ(th, tf ), z
(n))

+ λMSE
1

N

N∑
n=1

‖x(n) − x̂‖2
2 + λ1‖A(w)‖0

(4.60)

where th can be written as a function th(hζ , A(w)x(n)), tf as a function

tf (fθ, hζ , A(w)x(n))) and x̂ as x̂(hζ , A(w)x(n)). The final prediction is given

by `ξ(th, tf ). This network is trained to minimize the loss function defined

in (4.60)

min
θ,ζ,ξ,w

L(θ, ζ, ξ, w) (4.61)
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CHAPTER 5

SYNTHETIC DATA NUMERICAL
EXPERIMENTS: NEURAL NETWORKS VS

OPTIMUM CLASSIFICATION

In this chapter, we compare the performance of a neural network of a

simple architecture versus that of the optimal decision rule in the data

domain. These experiments show the neural network’s capability of

choosing optimal parameters to implement the optimal decision rule for a

given number of training samples and training epochs, which verifies the

analysis in Section 4.5.

5.1 Synthetic Dataset for Classification Task

In Section 4.5, we have listed three neural network architectures, namely,

fully connected neural network (section 4.5.1), CNN (section 4.5.2), and

CNN with fixed size filters (section 4.5.3). Given the correct parameters,

these neural networks can implement the optimal decision rule in the data

domain. We also briefly mentioned their sample complexity. In this section,

we generate a synthetic monochromatic dataset to experimentally verify the

number of samples these networks need to learn the optimal parameters.

We simulate a shift-invariant object of size M ×M randomly appearing

in a N ×N background. Figure 5.1 shows two sample images with

negligible noise, where the object of fixed pixel mean appears in the

different locations. The goal of this classification task is to determine the

location of the object using the input image.

The hypothesis of this classification task is formulated in (2.9), with

(N −M + 1)2 hypotheses, and in the data domain, the hypothesis reduces

to:

y = xi + v, v ∼ N (0, σ2I) (5.1)

where xi represents the mean of the image. The mean of the image is a

random sample from Uniform[0, 1]M×M , and we fix the xi in these
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Figure 5.1: Sample image from synthetic dataset for classification.

numerical experiments. The optimal decision rule reduces to

i∗ = arg min
i
‖y − xi‖2 − 2σ2 log(πi) (5.2)

where πi represents the prior probability of the ith location. We define two

different spatial distributions of the object:

Uniform spatial prior: πi =
1

(N −M + 1)2
,∀i (5.3)

In the Gaussian spatial prior, letting (s, t) denote the top left coordinate of

the object, then

s′ ∼ N
(
N −M

2
,
N −M

8

)
, s = clip(s′, 0, N −M − 1)

t′ ∼ N
(
N −M

2
,
N −M

8

)
, t = clip(t′, 0, N −M − 1)

(5.4)

where clip(x, a, b) =


a, if x < a,

x, if a ≤ x ≤ b,

b, if x > b.

The object appears more often around the center of the image under the

Gaussian spatial prior.

In this experiment, we set N = 16,M = 5, C = 144. We generate two

datasets under Gaussian and uniform spatial distributions. Each dataset

has 10,000 training images and 20,000 test images. Using different network
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architectures described in Section 4.5.1, 4.5.2 and in 4.5.3, we train the

classification networks using the Adam optimizer with learning rate 0.001

for 60 epochs.

5.2 Simple Networks to Simulate Optimal Decision

Rule

Figure 5.2 shows the error probability versus the noise level σ in the

synthetic data setting using different classifier network architectures. The

networks is trained using the Adam optimizer with learning rate 0.01 for 60

epochs. The number of training samples varies between 100, 1,000, and

10,000 and the training samples are uniformly randomly selected from the

training set. The error probability of the networks, defined in (2.17), is

calculated over 20,000 independent test samples. The error bar in each

figure indicates 95% confidence level.

In each subfigure, there are two or three legends depending on the

network architecture:

1. network opt: The optimal decision rule.

2. network: The trained neural network with given number of training

samples.

3. network bestNN: The neural network with preassigned best weights.

The title of each subfigure indicates the name and the configuration of the

classifier network.

1. linear corr represents the fully connected neural network.

2. CNN 5 1 represents a 5× 5-kernel CNN. It consists of a single channel

convolution layer and a linear layer.

3. CNN 3 2 represents a 3× 3-kernel CNN. It consist of 2 convolution

layers with 2 channels and a linear layer.

4. CNN 3 2 nonlin represents a 3× 3-kernel CNN. It consist of 2

convolution layers with 2 channels, 2 ReLU layers and a linear layer.
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Gaussian spatial prior

Uniform spatial prior

Figure 5.2: Error probability versus noise level using different network
architectures. Top: the random object is generated under Gaussian spatial
prior. Bottom: the random object is generated under uniform spatial prior.

The title also contains the number of training samples used to train the

network, selecting from 100, 1000, and 10000.

With both Gaussian and uniform spatial prior, the networks with

preassigned weights have the same performance as the optimal decision rule,

which verifies the analysis in Section 4.5. For the trained networks, they all

perform the same or worse than their optimal decision rule counterpart,
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which is expected. As the number of training samples increases, an

improvement of the network performance is observed. Empirically, with

10,000 training samples, the CNN achieves performance similar to that of

the optimal decision rule evaluated by 10,000 test samples, but the fully

connected network requires more training samples. This result corroborates

the aforementioned sample complexities of each network architecture.

5.3 Summary

In this chapter, we compare the performance of the neural networks with

the optimal decision rule in the data domain. We experimentally show the

neural networks’ capability of selecting optimal parameters when given

enough training samples.
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CHAPTER 6

SYNTHETIC DATA NUMERICAL
EXPERIMENTS: OPTIMIZING THE

ACQUISITION

In this chapter, we compare the neural network’s performance for inference

tasks in the compressed domain, using different sensing schemes. We show

that the sensing matrix could be optimized as a parameter in the neural

network.

6.1 Compressed Classification Dataset

We build a synthetic multispectral dataset similar to the monochromatic

dataset. We again simulate a shift-invariant object of size M ×M
randomly appearing in an N ×N background, which is imaged for B

spectral bands. Let p ∈ RM×M×B denote the pixel values of the object in all

spectral bands. Each element pi,j,b can be set arbitrarily to imitate the

correlation between spectral bands, where i, j are spatial indices and b is

the indices of spectral bands. We set different pixel values of the object in

Section 6.1.3 and Section 6.1.4. The SNR for each pixel inside the object

can then be calculated, SNRi,j,b := 10 log(p2
i,j,b/σ

2). We use

SNRb := 10 log
(∑

i,j p
2
i,j,b/M

2σ2
)

to denote the SNR of b-th spectral band.

In this experiment, we set N = 16,M = 5, B = 8. We generate two

datasets under Gaussian or uniform distribution for the object location,

each having 10,000 training images and 5,000 test images. These two

datasets only differ in the distribution of the object position.

6.1.1 Compressed classification network training

We apply the line selection and band selection compressed sensing schemes

(illustrated in Section 3.2) and the DD-CASSI (illustrated in Section 3.3) to

this synthetic data and obtain the measurements y = Ax. We use the
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compressed classification network architecture shown in Figure 4.1, and use

the U-Net (Section 4.5.4) as the classifier network fθ. We use (4.31) and

(4.34) as the loss function for the line/band selection and DD-CASSI

schemes, respectively. We empirically choose λ1, the hyper-parameter in

(4.31) that controls the sparsity of the final scanning mask G(w), to range

from 0.001 to 0.1, so that the sparsity of G(w) ranges from 0.35 to 1.

We train the compressed classification network using the Adam optimizer

with learning rate 0.001. For a network with a tunable CS operator A, we

adopt a 2-stage training strategy: initialize the binary parameter wb

randomly such that its sparsity (number of 1s / total elements) is 0.5, train

the segmentation network fθ jointly with the parameter w for 60 epochs,

then fix w and train the U-Net fθ for another 60 epochs.

Note that in the line selection or band selection scheme, we do not have a

closed-form relationship between the sparsity of G(w) and the `0 penalty

coefficient λ1. Instead, to enable a fair comparison between the learned and

a random mask we generate for each λ1 a random mask that has the same

number of non-zeros as the learned mask.

6.1.2 Optimum decision rule benchmark

We use the optimal decision rule mentioned in Section 4.2 as a benchmark,

and compare the performance of the DNN to that of the optimal decision

rule. In order to examine the acquisition scheme learned in the DNN, we

use the learned mask A(ŵ) obtained from the trained neural network to

compress the data and apply the optimal decision rule to the

measurements, and compare the results against a random mask A(w).

6.1.3 Homogeneous dataset

Experimental Setup

In multispectral imaging, different spectral bands often present a similar

silhouette but differ in details. In the first experiment, we imitate this

setting and vary the intensity of each spectral band. This is implemented by

choosing one random sample p:,:,0 ∈ RM×M from the uniform distribution,

pi,j,0 ∼ Uniform[0, 1],∀i ∈ [M ],∀j ∈ [M ] (6.1)
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(a) Sample image with 8 spectral bands

(b) Empirical mean of 0-th band under Gaussian spatial prior.

(c) Empirical mean of 0-th band under Gaussian spatial prior.

Figure 6.1: (a): One sample image input of the first compressive
classification experiment, for N = 16, B = 8,M = 5, σ = 0.01 and under
Gaussian spatial distribution. The object’s shape is the same across
spectral bands but its intensity varies.
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and setting all other spectral bands using

pi,j,b = αbpi,j,0, α > 1, for b = 1, . . . , B. (6.2)

The increasing intensity of spectral bands indicates the last spectral band is

least noisy. We set the coefficient α = 1.15 so that the average SNR of the

spectral bands differs by 9 dB between Band 0 and Band 7, with smaller

differences between other bands. As a consequence, the band selection

scheme under this setting should select the spectral bands with higher

intensity.

We generate two synthetic datasets under the Gaussian or uniform

spatial distribution. Figure 6.1a shows one sample of a synthetic

multispectral image x where spectral bands have varying intensities. Figure

6.1b shows the empirical mean of the 0th spectral band of 100 samples

under the Gaussian spatial prior and Figure 6.1b shows the same except

under the uniform spatial prior. Under the Gaussian prior, the object tends

to appear around the center more than under the uniform prior. As a

consequence, under the Gaussian spatial prior, we expect the line selection

scheme to select lines around the center.

Results and Discussion

Figure 6.2 and Figure 6.3 show the binary line pattern of the line

selection schemes under Gaussian and uniform spatial prior, respectively.

Each subfigure has size B ×N , and the x-axis represents the horizontal line

position while the y-axis represents spectral bands. The red and white

elements represent scanned lines and skipped lines, respectively. For

example, in the top left subfigure of Figure 6.2, the bottom and top two

lines are all skipped. These subfigures are arranged according to the

number of scanned lines (the number of lines, noise level σ and the sparsity

penalty coefficient λ1 are labelled in the title), except for the last row. The

last row of subfigures shows the heatmaps of the line patterns. In general,

under the Gaussian spatial prior, the selected lines appear more frequently

in the center. This validates the efficacy of the line selection scheme.

For both spatial priors, the learned line patterns allow line gaps within

the same spectral band (indicated by the white horizontal bars), but the

gaps rarely exceed the object side length M = 5. This ensures that at least

one line per band “hits” the object and helps identify its position. The gap
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Figure 6.2: The binary masks of the learned line selection scheme under
Gaussian distribution with different noise levels and λ1s. Last row: the
heatmap of selected lines.

arrangement also indicates that scanning interlacing lines between the

spectral bands is a good choice for the line selection scheme. For example,

scan the 1st, 5th, and 9th for the first spectral band, scan the 2nd, 6th, and

10th for the second spectral band, etc. This increases the probability that

multiple spectral bands are sensed per object location.

Figure 6.4 shows the error probability versus the noise level σ of the line

selection scheme under different spatial priors. There are two pairs of

legends in each subfigure.

1. random line or learned line: Prediction of the DNN using a

random line selection scheme or the learned line selection scheme.
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Figure 6.3: The binary masks of the learned line selection scheme under
Gaussian distribution with different noise levels and λ1s. Last row: the
heatmap of selected lines.

2. random line opt or learned line opt: Prediction of the optimal

decision rule, where the compressed data is obtained using a random

or the learned line selection’s mask.

The top and bottom subfigures in Figure 6.4 show the error probability

versus the noise levels under Gaussian spatial prior and uniform spatial

prior, respectively. In both Gaussian case and uniform case, the DNN

classifies better using the learned line selection mask than a random mask

at all noise levels. Also, the optimal decision rule with the same learned

lines selection’s mask G(w) yields lower error probability compared to a

random line mask. This suggests that a learned scheme does extract more
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Gaussian spatial prior

Uniform spatial prior

Figure 6.4: Error probability versus noise level using line selection as CS
scheme and different inference methods. In general, the number of selected
lines increases with the noise levels. Top: the object location follows
Gaussian spatial prior. Bottom: the object location follows uniform spatial
prior.

useful lines, rather than the effect being only due to a deeper DNN. It is

evident that the impact of learning the mask is greater for the Gaussian

distribution of the object position - perhaps because there is more to learn
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in this instance.

Surprisingly, in the case of a uniform distribution of the object position,

the DNN’s performance is even better than an optimal decision rule.

Because no method can outperform the optimal decision rule in terms the

error probability, for which it is optimal, we explored possible reasons for

this discrepancy. A computation of the empirical distribution of object

location in the numerical experiment revealed that the relative frequency of

the object location at various positions deviated by up to ±29% from the

uniform probability distribution of 1/(N −M + 1)2 per location. Because

the DNN was trained on the empirical probability, whereas the optimum

decision rule assumed a uniform distribution, the DNN gained “an unfair

advantage” over the optimum decision rule, thus enabling the DNN to

overperform at the higher noise levels, when the prior plays a greater role in

the decision.

Figure 6.5 shows the error probability of the band selection scheme.

There are three pairs of legends in each subfigure.

1. random band or learned band: Prediction of the DNN using a

random band selection or the learned band selection.

2. random band opt or learned band opt: Prediction of the optimal

decision rule (choose m = arg maxm p(Hm|x)), where the compressed

data is obtained using a random band selection’s mask or the learned

band selection’s mask.

3. optimal band or optimal band opt: Prediction of the DNN using

the optimal spectral bands or prediction of the optimal decision rule

using optimal spectral bands. The ‘optimal’ bands are defined as the

spectral bands that have higher SNRs.

The top and bottom subfigures in Figure 6.5 show the error probability

versus different noise levels under Gaussian spatial prior and uniform

spatial prior, respectively. Again, for both priors, the learned CS scheme

outperforms a random CS scheme. However, error probabilities with the

learned band selection mask are higher than with the optimal bands,

because the DNN does not always learn the optimal bands. This implies

that the binary layer in the DNN is harder to train than the rest of the
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Gaussian spatial prior

Uniform spatial prior

Figure 6.5: Error probability versus noise level under different CS schemes
and different inference methods. In general, the number of selected bands
increases with the noise level. Top: the random object is generated under
Gaussian spatial prior. Bottom: the random object is generated under
uniform spatial prior.

continuous classifier CNN and we cannot guarantee that the optimal bands

get selected every time.

We again observe, under the uniform spatial prior, that the DNN does
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even better than the optimal decision rule at the higher noise levels. Our

explanation is the same as that given for Figure 6.4.

From Figure 6.5 and Figure 6.4, we can see that the line selection scheme

generally performs better than the band selection scheme because the

former has more degrees of freedom (DOF).

6.1.4 Inhomogeneous dataset

Experimental Setup

Figure 6.6: One sample image input of the second compressive classification
experiment, when N = 16, B = 8,M = 5, σ = 0.01, α = 1.3.

In the second experiment, we keep the dimension N = 16,M = 5, B = 8

the same and only change the pixel values of the object pi,j,b. In medical

imaging applications, one “spectral band” could represent one chemically

stained image, which presents features distinct from another band,

differently stained. To imitate these uncorrelated spectral bands, we set

pi,j,b ∼ αbUniform[0, 1] independently, where α = 1.3. Figure 6.6 shows one

sample image in this setting. As before, the pixel’s intensity increases with

the spectral bands but the contrast between spectral bands is stronger than

in the previous homogeneous dataset.

Results and Discussion

Figure 6.7 shows the error probability in log scale versus noise levels of

the line selection scheme under different spatial priors. The legends are the
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Gaussian spatial prior

Uniform spatial prior

Figure 6.7: Error probability (in log scale) versus noise level using line
selection as CS scheme and different inference methods. In general, the
number of selected lines increases with the noise level. Top: the object
location follows Gaussian spatial prior. Bottom: the object location follows
uniform spatial prior.

same as in Figure 6.4. The learned line selection mask outperforms a

random mask at all noise levels.

Figure 6.8 shows the error probability versus noise levels of the band
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Gaussian spatial prior

Uniform spatial prior

Figure 6.8: Error probability versus noise level under different CS schemes
and different inference methods. In general, the number of selected lines
increases with the noise level. Top: the random object is generated under
Gaussian spatial prior. Bottom: the random object is generated under
uniform spatial prior.

selection scheme. We select optimal bands according to the SNR of each

band. The legends in each subfigure are the same as in Figure 6.5. Figure

6.8 again shows that the learned band selection mask is superior to a
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random mask. In the uniform spatial prior case, the performance of the

DNN with the learned band selection is closer to that of a random band

selection. But the performance of optimal decision rule with the learned

band selection is almost as good as that of the optimal bands. This implies

that the DNN is indeed learning which bands are better to scan with, and

the “selection” becomes easier as the coefficient α increases and the SNR of

each band has larger deviation.

Figures 6.9 and 6.10 further corroborate that the learned band mask in

the DNN approaches the optimal selection. There are 8 subfigures in Figure

6.9 and the legends inside each subfigure are similar. For the top left

subfigure, the two legends represent

1. DNN: learned − optimal: The difference between the prediction

error rates of different DNNs trained using the learned band selection

mask vs. using the optimal bands.

2. DNN: random − learned: The difference between the prediction

error rates of different DNNs trained using a random band selection

mask vs. using the learned bands.

In the top left subfigure of Figure 6.9, as the noise level σ increases, the

difference between the error rates with a learned mask vs. a random mask

increases, which implies that the DNN is able to learn a relatively effective

band selection even in the high noise regime. At the same time, the

difference between the error rates the learned mask vs. the optimal mask

also increases, which means that in the high noise regime, the learned

selection of spectral bands is less likely to approach the optimal band

selection.

For the top right subfigure of Figure 6.9, the two legends are

1. opt rule: learned − optimal: The difference between the

prediction error rates of the optimal decision rule using the learned

band selection mask vs. the optimal bands.

2. opt rule: random − learned: The difference between the

prediction error rates of the optimal decision rule using a random

band selection mask vs. the optimal bands.
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Figure 6.9: Difference of error probability using different classification
methods and number of selected bands, under Gaussian spatial prior.
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Figure 6.10: Difference of error probability using different classification
methods and number of selected bands, under uniform spatial prior.
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The trends of stacked bars are similar to the top left subfigure of Figure 6.9

and corroborate the effectiveness of the learned mask when used in

conjunction with the optimal decision rule.

Each row of subfigures in Figure 6.9 represents the results obtained with

the same setting for the hyperparameter λ1 that controls the sparsity of the

scanned bands, and hence they have the same number (listed in the title of

the subfigure) of selected bands. In the left column of subfigures in Figure

6.9, the orange bar represents the prediction error rates difference between

DNNs using a random and the learned selection mask, while the blue bar

represents the difference between DNN using a learned and the optimal

selection mask. The right column subfigures shows the corresponding

differences in prediction error rates of the optimal decision rule that is

adapted to the corresponding band selection mask.

Comparison of the four subfigures in the left column of Figure 6.9 reveals

that as the number of selected bands decreases, the ratio of blue bar over

the total bar (call it “blue ratio”) often decreases under the same noise

level. A lower blue ratio indicates that a learned band selection scheme is

closer to the optimal bands. When the number of selected bands decreases,

the orange bar increases dramatically and the blue ratio decreases

accordingly, indicating that the DNN is selecting the spectral bands more

effectively when the required number of measurements is smaller. This

agrees with our intuition: When the budget of band scanning is small, a

carefully chosen measurement based on the data distribution is favorable.

Conversely, when the budget, or the number of measurements, is not

limited, then the theory of CS guarantees perfect recovery with high

probability.

Figure 6.10 shows the corresponding results for the case that the object

location follows the uniform distribution. In the top left subfigure, we can

see that the blue ratio is very high, but in the top right subfigure, the

optimal decision rule’s error rate using learned bands is still very close to

that using optimal bands. The trend of orange bars with respect to number

of selected bands using the optimal decision rule is still the same.

Compressed Classification with the DD-CASSI CSI system

As an alternative to the simple band and line selection schemes, we use

the DD-CASSI scheme (described in Section 3.3) to sense the image. We

wish to determine whether the increased number of DOF available in the
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m = 1

m = 2

m = 4

Figure 6.11: Error probability versus noise levels under DD-CASSI CS with
a random mask or the learned masks. Top: number of snapshot m = 1.
Middle: number of snapshot m = 2. Bottom: number of snapshots m = 4.

DD-CASSI scheme offers improved error rates. We train the DNN jointly

with the linear CS layer of the DD-CASSI.
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Recall (Section 4.2) that for DD-CASSI we do not implement the exact

optimal decision rule, because we replace the matrix (AAT )−1 by the

identity. We therefore refer to this decision rule as the suboptimal decision

rule.

Figure 6.11 shows the error rates of the DNN and of the suboptimal

decision rule versus noise levels using the DD-CASSI scheme with a random

or the learned mask. Each subfigure shows the error rates with a different

number of snapshot m. There are four legends in each subfigure.

1. random mask or learned mask : Prediction of the DNN with a

random mask or with the learned mask.

2. random mask opt or learned mask opt : Prediction of the suboptimal

decision rule with a random mask or the mask learned with the DNN.

In Figure 6.11, the mask learned with the DNN provides a substantial

improvement over the random mask in the prediction of both the DNN and

the suboptimal decision rule at all noise levels. This suggests that the

DNN’s output can be used as a metric for the mask’s ability to extract

classification information not only for this DNN, but also more generally.

As could be expected, as the number of snapshots increases, the gap

between the learned mask and a random mask in both the DNN and the

optimal decision rule shrinks, implying that the higher the data

compression ratio, the more effective the learned mask will be compared to

a random mask.

Less expected is the near invariance of the error rates of the DNN to the

noise level with both a random mask and the learned mask. One possible

explanation might be that the architecture of the U-Net is not suitable to

resolve the image compressed by the DD-CASSI system.

6.2 Compressed Segmentation

6.2.1 Segmentation for size varying object

We generate a synthetic segmentation dataset, where every multispectral

image contains a size-varying object. Similar to the aforementioned

73



compressed classification dataset, each N ×N pixel B-band multispectral

image has a square object whose pixels are Gaussian independently

distributed with the same per-band variance σ2. The mean of square object

are randomly chosen with equal probability 1/C from one of C fixed means,

corresponding to the different classes and each square has size Mc ×Mc.

The background pixel values are Gaussian independently distributed with

the same per band variance σ2, and correspond to the (C + 1)th class. The

object is placed at random so as to be fully contained in the background, in

one of the (N −Mc + 1)2 possible locations. Image pixels are therefore

drawn from one of C + 1 classes. The segmentation task is to separate the

object from the background and assign a label to each of the N2 pixels to

indicate their class.

In this experiment, we set N = 16, B = 8, C = 6,Mc varying from 5 to

10. We set the shape of the object the same in all spectral bands, but the

intensity differs. We choose C random samples from

pi,j,0 ∼ Uniform[0, 1]Mc×Mc , and set the other spectral bands as

pi,j,k = αkpi,j,0 with α = 1.15. This fixed set of C means is used for all data

in all the experiments. Figure 6.12 shows two sample images with 8

spectral bands in the low noise regime.

Similar to compressed classification, we generate two datasets under

Gaussian or uniform spatial distribution for the object location, each having

20,000 training images and 2,000 test images. We train the compressed

segmentation network (Figure 4.1) using the Adam optimizer with learning

rate 0.001. For a network with tunable CS operator A, we adopt a 2-stage

training strategy as in the compressed classification network.

Results and Discussion

Figure 6.13 and Figure 6.14 shows the learned line selection masks

similar to Figure 6.2, 6.3. Again, the selected lines are clustered in the

center under the Gaussian distribution. The line gaps in the learned masks

are slightly larger compared to the previous two figures, because the object

size from some class are varying and the largest object side length in this

dataset is 10.

We use three metrics defined in section 2.5 to evaluate the performance

of the DNN and the optimal decision rule, namely, mean

Intersection-Over-Union (mIOU), pixel-wise accuracy, and error probability.

The third metric is not commonly used in segmentation tasks, but we use
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(a) Sample image with 8 spectral bands

(b) Sample image with 8 spectral bands

Figure 6.12: Top: One sample image input of the compressive segmentation
experiment, when N = 16, B = 8, C = 5,Mc = 5, σ = 0.01. Bottom:
another sample image input Mc = 9.

this metric as a reference, since the optimal decision rule is supposed to

yield a lower error probability compared to any other methods.

Figure 6.15 shows the mIOU, accuracy and error probability versus noise

level σ using the line selection scheme. The legends in these figures are.

1. random line or learned line: Prediction of DNN using a random

line selection scheme or the learned line selection scheme.

2. random line opt or learned line opt: Prediction of the optimal
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Figure 6.13: The binary masks of the learned line selection scheme under
Gaussian distribution with different noise levels and λ1s. Last row: the
heatmap of selected lines.

decision rule, where the compressed data is obtained using a random

line selection’s mask or the learned line selection’s mask.

The top and bottom row of subfigures of Figure 6.15 show results under

Gaussian spatial prior and uniform spatial prior, respectively. Comparison

of the top and bottom row reveals that the learned line selection scheme is

able to improve the DNN’s performance significantly on segmentation

tasks, and this improvement is also observed in the optimal decision rule.

Similar to classification, the difference between learned and random lines is

larger under Gaussian spatial prior than uniform.

Figure 6.16 shows the mIOU, accuracy and error probability using the
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Figure 6.14: The binary masks of the learned line selection scheme under
Gaussian distribution with different noise levels and λ1s. Last row: the
heatmap of selected lines.

band selection scheme. The legends in each subfigure are:

1. random band or learned band: Prediction of DNN using a random

band selection scheme or the learned band selection scheme.

2. random band opt or learned band opt: Prediction of the optimal

decision rule, where the compressed data is obtained using a random

band selection’s mask or the learned band selection’s mask.

3. optimal band or optimal band opt: Prediction of DNN or the

prediction of the optimal decision rule using the optimal bands. The
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Gaussian

Uniform

Figure 6.15: mIOU, accuracy and error probability versus noise levels using
the line selection scheme when λ1 = 0.01. Top row: mIOU, accuracy and
error probability under Gaussian spatial prior. Bottom row: the same
except under uniform spatial prior.

Gaussian

Uniform

Figure 6.16: mIOU, accuracy and error probability versus noise levels using
the band selection when λ1 = 0.01. Top row: results under Gaussian spatial
prior. Bottom row: results under uniform spatial prior.

’optimal’ bands are defined as the spectral bands that have higher

SNRs.

The top and bottom rows show the results under Gaussian spatial prior and
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uniform spatial prior, respectively. Again, a learned CS scheme outperforms

a random CS scheme. In terms of the error probability, the performance of

a DNN combined with the learned band selection is very close to that of a

DNN with the optimal bands, in both Gaussian and uniform spatial prior.

This indicates that a learned band mask pursued by a DNN is indeed

optimizing the bands using the deep segmentation network as a final metric.

6.2.2 Segmentation for simple squares

We generate another dataset where the images only contain a simple

square. Each N ×N pixel B-band multispectral image has an M ×M
(M � N) pixel square object whose pixels are Gaussian independently

distributed with the same per-band variance σ2 and a common mean

spectrum sc ∈ RB drawn with equal probability 1/C from one of C fixed

means, corresponding to the different classes. The background pixels are

Gaussian independently distributed with the same per band variance σ2,

and correspond to a separate class. The object is placed at random so as to

be fully contained in the background, in one of the (N −M + 1)2 possible

locations. Image pixels are therefore drawn from one of C + 1 classes.

Let c denote the class of the object, m denote the spatial location of the

object, and Rm ∈ {0, 1}N×N denote the coverage of the object, where 1

indicates the object and 0 indicates the background. Then the

mathematical formulation of the synthetic image is:

x = Rm ⊗ sc ∼ P (m)⊗N (sc, σ
2I) (6.3)

This problem can be treated as a classification problem, because there are

in total C(N −M + 1)2 possible images. Equation (4.19), the optimal

decision rule of compressed classification, now becomes:

c∗,m∗ = arg min
c,m

−2σ2 log(P (m))

+ (Ax− A(Rm ⊗ sc))T (AAT )−1(Ax− A(Rm ⊗ sc))
(6.4)

In this experiment, we set N = 16, B = 8, C = 6,M = 6 and use the

same three metrics to evaluate the performance of the DNN and the

optimal decision rule.
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Results and Discussion

Gaussian

Uniform

Figure 6.17: mIOU, accuracy and error probability versus scan ratios using
the line selection scheme when σ = 1.8. Top row: mIOU, accuracy and
error probability under Gaussian spatial prior. Bottom row: the same
except under uniform spatial prior.

Figure 6.17 shows the mIOU, accuracy and error probability using the

line selection scheme, when the scan ratio varies from 0.1 to 1. The legends

in each subfigure are the same as in Figure 6.4. For both object location

priors, the DNN classifies better using the learned line selection than a

fixed random line selection at all scan ratios. But when the scan ratio

reaches 1, the error rates of the DNN is much larger than that of the

optimal decision rule while the mIOU and accuracy of the DNN and the

optimal decision rule are close because these metrics do not have one-to-one

correspondence. This observation indicates that this U-Net structure may

not be the most suitable segmentation network for such a simple dataset.

Figure 6.18 shows the accuracy and mIOU of the band selection scheme.

Here too we observe a slight improvement of the learned band selection

scheme over a random one. Notice that the accuracy and mIOU in the

band selection scheme are slightly lower than those of line selection due to

fewer DOF in the former CS scheme.
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Gaussian

Uniform

Figure 6.18: mIOU, accuracy and error probability versus scan ratios using
the band selection scheme when σ = 1.8. Top row: mIOU, accuracy and
error probability under Gaussian spatial prior. Bottom row: the same
except under uniform spatial prior.

6.2.3 Summary

In this chapter, we optimize a physically constrained CS scheme together

with the DNN for classification and semantic segmentation tasks. Using

several synthetic datasets, we demonstrate that this deep neural network

architecture is able to learn a CS acquisition mask that is not only better

than a random mask that is often adopted in the compressed sensing

literature, but is also interpretable. Furthermore, the DNN’s prediction can

be close to that of a known optimal decision rule when performing inference

in the compressed domain.
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CHAPTER 7

NUMERICAL EXPERIMENTS ON REAL
MULTISPECTRAL DATASET

7.1 Tumor Biopsy Multispectral Dataset

In this chapter we report on the results of using the multispectral image

segmentation scheme of the previous chapters to segment a clinical

multispectral image data set. This tumor biopsy multispectral dataset is

obtained using Fourier-transform infrared (FTIR) spectroscopic imaging.

This dataset contains 99 19-spectral-band images with wavenumbers

ranging from 984 cm−1 to 1765 cm−1. Each image’s size varies

(approximately 700× 700 pixels) and contains one disk-shaped tissue

biopsy. After the IR images of biopsy are acquired, one oncologist expert

labels a small fraction of the images with different cell types such as

epithelium, stroma, and their subtypes. A single-pixel classifier is trained

based on these small-amount labels, and this classifier is then applied to all

images to create full labels for segmentation. There are in total seven

semantic classes: benign epithelium, malignant epithelium, loose stroma,

dense stroma, desmoplastic stroma, background and the other types of cells.

7.2 Benchmark Segmentation Network in the Data

Domain

The goal of the segmentation task is to map each pixel of the biopsy image

to its cell type label. We use a U-Net to train a segmentation network on

fully scanned images to obtain a benchmark, and denote this trained U-Net

as f0. This fully scanned data is preprocessed by lower-clipping the voxel

values to 0 and subsequently z-scored. The voxel values below 0 are due to

measuring noise and the z-scoring is a common preprocessing step for
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biometric data [68]. In the z-scoring step, the empirical mean and empirical

standard deviation are calculated for each band separately because the

tumor biopsy image has varying intensities at different wavelengths.

The U-Net structure is shown in Figure 4.3 and the detailed description

can be found in Section 4.5.4.

7.3 Compressed Segmentation Networks

The line and band selection compressed sensing schemes, introduced in

Section 3.2, are used to compressively sense the images. The compressed

segmentation network is shown in Figure 4.1, where the segmentation

network fθ is a U-Net and the loss function of the line and band selection

schemes is (4.31). We empirically choose the hyperparameter λ1 in (4.31) to

range from 0.01 to 100.

We adopt a two-stage training strategy for tunable sensing matrix A(w):

initialize the binary parameter wb randomly such that its sparsity (number

of 1s / total elements) is 0.5, train the segmentation network fθ jointly with

the parameter w using the Adam optimizer with learning rate 0.001, for 150

epochs, then fix w and train the U-Net fθ for another 150 epochs. In order

to compare the effects of a learned sensing scheme versus a random one, we

train the same network but with a random fixed w. For a fair comparison,

the U-Net is trained with the same setting for 150 epochs for a random

sensing scheme.

To compare with the traditional reconstruction + inference pipeline

(called “composite network”), we used the composite network described in

Section 4.6.1, and its block diagram is shown in Figure 4.4. Similar to the

compressed segmentation network, we train gθ of a tunable and a fixed

sensing matrix A(w) with the Adam optimizer and learning rate 0.001 for

300 epochs and 150 epochs, respectively.

We also use MTL network, introduced in Section 4.6.2, to predict the

semantic labels. Figure 4.5 shows the block diagram of the MTL network.

We train the hζ , fθ of tunable and fixed A(w) with the same optimizer and

learning rate for 300 epochs and 150 epochs, respectively.
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7.3.1 Preliminary results

We conduct experiments on the CS segmentation network on 16× 16 small

patches. We divide 99 tumor cell images to a 80-image training set and a

19-image test set. Then we extract 10,000 16× 16× 19 patches from the

training set and 1,000 patches of the same size from the test set. In the

following, we use pixel-wise segmentation accuracy and mean IoU to

evaluate the performance of each network architecture.

Figure 7.1 shows the preliminary results of line and band selection

schemes of the compressed segmentation network. When the scan ratio

reaches 0.3, the learned band selection is able to perform as well as fully

scanned data. However, the accuracy or mIOU is not ideal for practical

purposes.

Figure 7.2 and 7.3 show two segmentation examples of the test images

using compressed segmentation network with the learned band selection.

The test image is divided into small non-overlapping patches and the

network provides the predicted semantics for each patch. The final

segmentation of the image simply stitches all the patches together. We can

see there are some artifacts around the edge of patches, yielding a grid-like

artifact. This motivates us to use larger patches to reduce the discontinuity

around the edge.

7.4 Results and Evaluations

To overcome the artifacts due to small patch size, We divide these 99

images to an 80-image training set and a 19-image test set, and extract

10,000 64× 64× 19 patches from the training set and 1,000 patches of the

same size from the test set. The 64× 64 patch captures more complex

image structures. In this section, we present results on the compressed

segmentation network, the composite network and the MTL network.

Figures 7.4 and 7.5 show two examples of segmentation output using

compressed segmentation network with the line selection scheme. The

grid-like artifact observed in Figure 7.2 and 7.3 is nearly invisible and the

trained compressed segmentation network for larger patch is able to

produce smoother boundaries between cell types.

Figure 7.6 shows the accuracy and mIOU of each network versus different
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Figure 7.1: Segmentation accuracy (Top) and mean IoU (Bottom) of the
trained network using the learned or a random band selection and the line
selection CS scheme.
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scan ratios for the band selection CS scheme: The black line is the

benchmark accuracy of a segmentation U-Net trained on fully scanned

data. The blue dotted line and blue solid line represent a random and the

learned band selection scheme for MTL network, respectively. The green

dotted line and green solid line represent a random and the learned band

selection compressed segmentation network, respectively. The red dotted

line and red solid line are for the composite network. As the scan ratio

increases, it is natural that the accuracy of all three kinds of networks

approaches that of the fully scanned data. From this figure, MTL network

performs the best because it eavesdrops the ground truth image. The

compressed segmentation network performs nearly the same as the MTL

network (accuracy difference < 5% for the learned band selection and < 1%

for random band selection). Composite segmentation network performs

significantly worse as the reconstruction network’s goal is not aligned with

the ultimate goal of segmentation. The accuracy of the composite network

drops around 5% for both the learned and a random band selection for scan

ratio ranging from 0.1 to 0.8. Finally, we can see that the learned band

selection, at most times, is slightly better than a random band selection.

Figure 7.7 shows the accuracy and mIOU of three networks for line

selection compressed scheme. The color codes are the same and we also

observe the ranking of accuracy of the networks is the same. On average,

MTL and CS network accuracies exceed that of the composite network by

around 3%. Also, the learned line selection scheme is always better than a

random line scheme when the scan ratio exceeds 0.2.

7.5 Summary

In this chapter, we optimize a physically constrained CS scheme together

with the DNN for semantic segmentation tasks on a real tumor biopsy

dataset. With three different network architectures, we demonstrate that

the physically constrained CS acquisition scheme, jointly with network

training, can be improved more than a random acquisition scheme. We also

test the effect of the patch size of the image in segmentation and verify that

a larger patch size helps to capture more complex image structures.
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Figure 7.2: One example of tumor cell image segmentation. Left: ground
truth. Right: predicted labels.
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Figure 7.3: Another example of tumor cell image segmentation. Left:
ground truth. Right: predicted labels.
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Figure 7.4: One example of tumor cell image segmentation. Left: ground
truth. Right: predicted labels.
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Figure 7.5: Another example of tumor cell image segmentation. Left:
ground truth. Right: predicted labels.
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Figure 7.6: Segmentation accuracy (Top) and mean IoU (Bottom) of
different networks with learned or random masks in band selection
compressed sensing scheme.
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Figure 7.7: Segmentation accuracy (Top) and mean IoU (Bottom) of
different networks with learned or random masks in line selection
compressed sensing scheme.
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CHAPTER 8

CONCLUSION

In this thesis, we study performing inference in compressed domain for

multispectral images and optimizing optical acquisition schemes jointly

with the inference network. We first introduce the compressed sensing (CS)

theory which is the foundation of CS imaging systems for multispectral

images. Since using the traditional CS imaging system, the reconstruction

and prediction pipeline is wasteful in terms of computation power and the

prediction accuracy strongly depends on the quality of the reconstruction,

we explored the possibility of making inference directly on the compressed

domain for realizable optical CS imaging systems for multispectral images.

Next, we present the optimal decision rule to perform compressed

detection, classification and segmentation in a simple data setting. To

compare a learned neural network performance with the optimal decision

rule, we propose three neural network architectures that are guaranteed to

achieve the optimal decision rule. We compare the performance of a neural

network with the optimal decision rule in the data domain with a synthetic

dataset. We experimentally show the neural networks’ capability of

learning the optimal weights and show the lower bound of the sample

complexity of each network architecture empirically.

Finally, we connect the existing realizable optical compressed sensing

imaging systems designed for multispectral images and their forward

process of data acquisition to a deep neural network. We optimize the

physically constrained CS scheme together with the DNN for classification

and semantic segmentation tasks and compare the performance of DNN to

that of the optimal decision rule. We show the DNN is able to learn an

interpretable CS acquisition mask and the performance of DNN is close to

that of the optimal decision rule with moderate compression ratio on

multiple synthetic datasets. We verify the improvement of the acquisition

scheme over a random one on a tumor biopsy dataset.
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Several interesting questions are still left open for future work. One

challenging problem lies in the fundamental information limits of the CSI

system in inference tasks. It would be interesting to study the fundamental

bounds of the inference performance versus the number of measurements

and the complexity of the inference task. In addition, we are also interested

in the difference between the learned acquisition scheme from DNN and the

underlying truly optimal acquisition scheme.
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APPENDIX A

APPENDIX

A.1 Fabry-Perot Etalon (FPE)

FPE is typically made of a transparent plate with two reflecting surfaces

with reflection coefficients r1, r2, and its transmission spectrum as a

function of wavelength exhibits peaks of large transmission corresponding

to resonances of the etalon. Suppose the separation of two surfaces is l

(which can be tuned), then the round-trip travel time is τRT = 2l/c, where c

is the speed of light. The transmission of FPE is a function of frequency ν:

T (ν) =

(
1− |r1|2

) (
1− |r2|2

)
(1− |r1r2|)2 + 4 |r1r2| sin2 (πντRT + φ)

(A.1)

The relative transmission is periodic with period = 1/τRT :

T (ν)

maxν T (ν)
=

(1− |r1r2|)2

(1− |r1r2|)2 + 4 |r1r2| sin2 (πντRT + φ)
(A.2)

With respect to wavelength λ, the relative transmission is:

T (λ)

maxλ T (λ)
=

(1− |r1r2|)2

(1− |r1r2|)2 + 4 |r1r2| sin2 (πcτRT/λ+ φ)
(A.3)
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A.2 DD-CASSI Optimal Decision Rule

The forward model of DD-CASSI described in Section 3.3 is

y = Axvec ∈ RK×HW

where A : RB×HW → RK×HW

A =

 (1TB ⊗ I)diag([(c
(1)
1 )T , . . . , (c

(1)
B )T ]T )

. . .

(1TB ⊗ I)diag([(c
(K)
1 )T , . . . , (c

(K)
B )T ]T )


(A.4)

where I denotes an identity operator of size HW ×HW ,

c(k) ∈ {0, 1}(H+B−1)W denotes the DMD pattern for k-th snapshot,

xvec = [ ~x1
T , . . . , ~xB

T ]T ∈ RB×HW denotes the flattened multispectral image

cube, and vector ~xb ∈ RHW represents the vectorized b-th spectral band

image slice.

Note that the action of A on the image tensor x ∈ RB×H×W can be

separated to independent actions on image matrices x(·, ·, w) for all

w ∈ [W ], as shown in Figure 3.2. For simplicity, we consider one such image

matrix x(·, ·, w) for w = 1 in the following calculation. We use

Ak : RB×H → RH , which corresponds to the k-th block row in A, to denote

the linear DD-CASSI operator for kth snapshot, and use

c = c(k) ∈ {0, 1}H+B−1 to denote the corresponding binary DMD pattern in

kth snapshot. Recalling (3.3), ci , c[i : i+H − 1] ∈ {0, 1}H is a sliding

window of size H from the DMD pattern, which encodes the image’s ith

spectral band. The forward operator Ak maps a matrix x ∈ RB×H to RH :

(Akx)i = 〈x:,i, ci〉 =
B∑
b=0

xb,ici+b, for i = 1, . . . , H (A.5)

To find the adjoint operator ATk of Ak, for x ∈ RB×H , y ∈ RH we have

〈Akx, y〉 = 〈x,ATk y〉
H−1∑
i=0

yi(Akx)i =
H−1∑
i=0

yi

B−1∑
b=0

xb,ici+b =
H−1∑
i=0

B−1∑
b=0

xb,iyici+b
(A.6)
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So (ATk y)b,i = yici+b. Now we have

(AkA
T
k y)i =

B−1∑
b=0

ci+b(A
T
k y)b,i =

B−1∑
b=0

c2
i+byi = yi

B−1∑
b=0

ci+b (A.7)

The last step is because the elements of c are binary. It follows that AkA
T
k

is an H ×H diagonal matrix,

AkA
T
k = diag(ρ), (A.8)

where ρi =
∑B−1

b=0 ci+b

Now combining the all K snapshots, we can write

(AkA
T
j y)i =

B∑
b=0

c
(k)
i+b(A

T
j y)b,i = yi

B∑
b=0

c
(k)
i+bc

(j)
i+b (A.9)

It follows that AkA
T
j is also an H ×H diagonal matrix

AkA
T
j = diag(ρk,j), ρk,ji =

B−1∑
b=0

c
(k)
i+bc

(j)
i+b (A.10)

Now we have

AAT =


A1A

T
1 . . . A1A

T
K

...
. . .

...

AKA
T
1 . . . AKA

T
K

 =


diag(ρ1,1) . . . diag(ρ1,K)

...
. . .

...

diag(ρK,1) . . . diag(ρK,K)

 (A.11)

The optimal decision rule (4.19) for the DD-CASSI system involves

finding the inverse of the matrix AAT , whose size is KHW ×KHW . We

use instead a suboptimal decision rule for DD-CASSI scheme, which is

easier to implement:

i∗ = arg min
i

H−1∑
h=0

W∑
j=0

K∑
k=0

(y − Axi)2
h,j,k − 2σ2 log(πi)

= arg min
i
‖y − Ax‖2

2 − 2σ2 log(πi)

(A.12)
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A.3 Detection in the Compressed Domain: Error

Probability Upper and Lower Bounds

From (4.2), we have

p (y|H1)

p (y|H0)
= exp

(
1

2σ2

(
yT (σ2AAT )−1y − (y − Ax)T (σ2AAT )−1(y − Ax)

))
= exp

(
1

σ2

(
yT (σ2AAT )−1Ax− 1

2
xTAT (σ2AAT )−1Ax

))
(A.13)

It follows that the likelihood ratio test (4.12) is equivalent to

xTARy
H1

≷
H0

‖PATx‖2

2
+ σ2 log(

π0

π1

) (A.14)

where AR , AT (AAT )−1 is the right inverse of A, and PAT , ARA is the

orthonormal projection matrix onto the row space of A. Since

y|H0 ∼ N (0, σ2AAT ) and y|H1 ∼ N (Ax, σ2AAT ), we can compute the

exact error probability for a given sensing matrix A:

Pe = π0P (H1 accepted | H0) + π1P (H0 accepted | H1)

= π0Q

(
‖PATx‖2

2σ
+
σ log(π0/π1)

‖PATx‖2

)
+ π1Q

(
‖PATx‖2

2σ
− σ log(π0/π1)

‖PATx‖2

) (A.15)

where Q is the Q-function for normal distribution. When π0 = π1 = 1/2,

this expression reduces to (4.24) for C = 2.

To analyze the error probability in the case of a random sensing matrix,

we follow the approach of Davenport et al. [55] and apply

Johnson-Lindenstrauss (JL) lemma (Theorem 1) to concentrate the

probability.

If matrix A has a uniformly random row space of dimension m satisfying

the condition in (4.7), then we have

‖PATx‖2

2σ
+
σ log(π0/π1)

‖PATx‖2

≥ (1− ε)
√

SNRm

2
+

log(π0/π1)

(1 + ε)
√

SNRm

‖PATx‖2

2σ
− σ log(π0/π1)

‖PATx‖2

≥ (1− ε)
√

SNRm

2
− log(π0/π1)

(1− ε)
√

SNRm

(A.16)
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where SNRm = m
n

SNR, SNR =
‖x‖22
σ2 . Using the Chernoff upper bound on

Q-function,

Q(x) ≤ exp(−x2/2) (A.17)

the error probability has the upper bound stated below. Without loss of

generality, let π0 ≥ π1.

Pe ≤ π0 exp

(
−
(

(1− ε)2SNRm

8
+

log2(π0/π1)

2(1 + ε)2SNRm

+
(1− ε) log(π0/π1)

2(1 + ε)

))
+ π1 exp

(
−
(

(1− ε)2SNRm

8
+

log2(π0/π1)

2(1− ε)2SNRm

− log(π0/π1)

2

))
(A.18)

To derive a corresponding lower bound, we use the following result by

Chang et al. [69], which provides a Chernoff-type lower bound for erfc

function.

Theorem 3. The function f(x) = α exp(βx) is a lower bound of erfc(x) if

β > 1 and 0 < α ≤
√

2e

π

√
β − 1

β
(A.19)

Recalling that the Gaussian Q-function is related to the erfc function by

Q(x) =
1

2
erfc

(
x√
2

)
, x ≥ 0 (A.20)

we choose α = 0.5, β = 1 and obtain the Chernoff-type lower bound for the

Q-function:

Q(x) ≥ exp(−x2) (A.21)

The error probability hence has the lower bound:

Pe ≥ π0 exp

(
−
(

(1 + ε)2SNRm

4
+

log2(π0/π1)

(1− ε)2SNRm

+
(1 + ε) log(π0/π1)

(1− ε)

))
+ π1 exp

(
−
(

(1 + ε)2SNRm

4
+

log2(π0/π1)

(1 + ε)2SNRm

− log(π0/π1)

))
(A.22)

For π0 = π1 = 0.5, the upper and lower bounds simplify to

exp

(
−(1 + ε)2SNRm

4

)
≤ Pe ≤ exp

(
−(1− ε)2SNRm

8

)
(A.23)
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A.4 Classification in the Compressed Domain: Error

Probability Upper Bound

We derive an upper bound of error probability. Denoting the true

underlying hypothesis by Ht, we have y ∼ N (Axt, σ
2AAT ) and

P (Error occurs | Ht)

= P (t 6= arg min
m

(y − Axm)T (AAT )−1(y − Axm)− 2σ2 log(πm) | Ht)

= P
(
∃` 6= t, (y − Ax`)T (AAT )−1(y − Ax`)− 2σ2 log(π`)

≤ (y − Axt)T (AAT )−1(y − Axt)− 2σ2 log(πt) | Ht

)
≤
∑
` 6=t

P
(

2yT (AAT )−1A(xt − x`)

≤ xtPATxt − x`PATx` + 2σ2 log

(
π`
πt

)
| Ht

)
=
∑
` 6=t

Q

−‖PAT (xt − x`)‖2
2 + 2σ2 log

(
πt
π`

)
2σ‖PAT (xt − x`)‖2


=
∑
6̀=t

Q

−‖PAT (xt − x`)‖2

2σ
+

σ log
(
πt
π`

)
‖PAT (xt − x`)‖2


(A.24)

because yT (AAT )−1A(xt − x`) ∼ N (xTt PAT (xt − x`), σ2‖PAT (xt − x`)‖2
2)

under hypothesis Ht. The total error probability can then be

upper-bounded:

Pe ≤
C∑
t=1

πt
∑
6̀=t

Q

−‖PAT (xt − x`)‖2

2σ
+

σ log
(
πt
π`

)
‖PAT (xt − x`)‖2

 (A.25)

Under uniform priors, πi = 1
C
,∀i, the error probability upper bound reduces

to

Pe ≤
1

C

C∑
t=1

∑
`6=t

Q

(
−‖PAT (xt − x`)‖2

2σ

)
(A.26)
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