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ABSTRACT

Distributed computing systems involve a network of devices or agents that use locally stored private in-

formation to solve a common problem. Distributed algorithms fundamentally require communication be-

tween devices leaving the system vulnerable to “privacy attacks” perpetrated by adversarial agents. In this

dissertation, we focus on designing privacy-preserving distributed algorithms for – (a) solving distributed

optimization problems, (b) computing equilibrium of network aggregate games, and (c) solving a distributed

system of linear equations. Specifically, we propose a privacy definition for distributed computation –

“non-identifiability”, that allow us to simultaneously guarantee privacy and the accuracy of the computed

solution. This definition involves showing that information observed by the adversary is compatible with

several distributed computing problems and the associated ambiguity provides privacy.

• Distributed Optimization: We propose the Function Sharing strategy that involves using correlated

random functions to obfuscate private objective functions followed by using a standard distributed op-

timization algorithm. We characterize a tight graph connectivity condition for proving privacy via non-

identifiability of local objective functions. We also prove correctness of our algorithm and show that we

can achieve privacy and accuracy simultaneously.

• Network Aggregate Games: We design a distributed Nash equilibrium computation algorithm for

network aggregate games. Our algorithm uses locally balanced correlated random perturbations to hide

information shared with neighbors for aggregate estimation. This step is followed by descent along the

negative gradient of the local cost function. We show that if the graph of non-adversarial agents is

connected and non-bipartite, then our algorithm keeps private local cost information non-identifiable

while asymptotically converging to the accurate Nash equilibrium.

• Average Consensus and System of Linear Equations: Finally, we design a finite-time algorithm

for solving the average consensus problem over directed graphs with information-theoretic privacy. We

use this algorithm to solve a distributed system of linear equations in finite-time while protecting the

privacy of local equations. We characterize computation, communication, memory and iteration cost of

our algorithm and characterize graph conditions for guaranteeing information-theoretic privacy of local

data.
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CHAPTER 1

INTRODUCTION

Distributed computing involves design and study of algorithms that allows a network of computers or de-

vices to solve a common problem. It often fundamentally depends on message passing over computer/device

networks or shared memory for communication and coordination of state variables or decisions. The infor-

mation exchange, while necessary for solving the common problem, may lead to adversarial devices learning

about private information stored at the computers. Consider a scenario, where an adversary corrupts

or takes control of a few devices in the network. Such an adversary may store and exploit the observed

information to estimate private data associated with non-corrupt devices. In this work, we are interested in

designing distributed algorithms that protect private data against such adversaries while solving the prob-

lem. Distributed computing systems have become pervasive in industrial and consumer Internet of Things

(IoT) networks [1], autonomous vehicles and ride-sharing applications [2], and distributed learning systems

for medical [3] and financial applications [4]. These systems increasingly operate on private and sensitive

information such as personal preference, medical and financial data. Consequently, we need to defended

distributed computing systems against privacy attacks by adversaries. In this dissertation, we consider

three fundamental distributed computing problems – (a) Distributed Optimization, (b) Network Games and

(c) Average Consensus – and focus on algorithms for solving them with provable privacy properties. We

briefly introduce these problems and provide motivating examples for designing privacy preserving solutions.

Distributed optimization involves a network of n devices, where each device has access to a local objective

function fi(x) and intends to collectively minimize the sum of local objective functions. Each device is

a computational agent connected with other devices via a communication network. That is, agents are

interested in solving the aggregate optimization problem

min
x∈X

n∑
i=1

fi(x), (1.1)

while any agent i has access to only local objective function fi(x).

Distributed machine learning has become a very popular information processing task in recent years

with applications in almost all walks of life. In a distributed machine learning scenario, partitions of the

dataset are stored with several different agents such as datacenters, personal computers or mobile devices
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and the loss function computed over the dataset stored at any agent i is represented by objective function

fi(x). Note, x denotes a vector of model parameters and fi(x) is loss computed by agent i for its dataset

given parameters x. Agents solve a distributed optimization problem in order to collaboratively learn

the most appropriate “model parameters”. This collaboration depends on information exchange between

agents, often via average consensus or gossip mechanisms. Interaction makes agents vulnerable to pri-

vacy attacks by adversarial agents. The datasets might contain healthcare records, location history, and

credit card transactions and leakage of data or its statistics can cause serious privacy breaches [5, 6]. This

prompts us to consider privacy as a critical requirement while designing distributed optimization algorithms.

Network aggregate games involve a system of n strategic and non-cooperative players, where each player i

is endowed with a private cost function fi(x
i, x) that depends on both local action/decision xi and aggregate

action/decision x =
∑n
i=1 x

i. Players’ objective is to minimize their own local cost. That is, each player i

tries to solve the following optimization problem,

min
xi∈X i

fi(x
i, x), where x =

n∑
i=1

xi. (1.2)

As the local cost function fi(x
i, x) is dependent on both local action/decision xi and aggregate ac-

tion/decision x, computing an equilibrium action requires communication between players. This information

exchange between the players may lead to adversarial players learning about private cost functions of other

players. These local cost functions depend on private and sensitive information necessitating design of

distributed equilibrium computation algorithms with in-built privacy.

Cournot competition [7] is a popular example of network aggregate game. Consider n corporations

competing to offer a commodity into the market, where the price of the product is inversely proportional

to the total quantity of the commodity available in the market. Corporations then solve a competitive

distributed optimization problem as described above in (1.2) with the cost function for player i defined as

fi(x
i, x) = ci(x

i)−xi(a−bx), where ci(·) represents the manufacturing cost and (a−bx) denotes the price of

the commodity depending only on the aggregate product available in the market x. The cost ci(·) depends

on private and sensitive information such as manufacturing processes, supply chains/logistics and protecting

the privacy of ci(·) is crucial. This requires us to design Nash equilibrium computation algorithms to solve

(1.2) with provable privacy guarantees.

Finally, we introduce the average consensus problem and distributed system of linear equations. We

consider a system of n agents, where each agent i has access to a private input xi and the goal is for each

agent to compute (1/n)
∑n
i=1 x

i while protecting the private inputs xi. Average consensus is a fundamental

primitive and has been used as an inner loop in several algorithms such as, distributed optimization [8, 9],

solving a system of linear equations [10, 11], solving network aggregate games [12, 13], and low rank matrix
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completion [14–17]. We also consider a horizontally partitioned system stored over a network of agents

similar to [10, 11]. Under this setup, each agent has access to a few linear equations, but not the entire

system of linear equations required for computing a solution. We are interested in designing a distributed

linear system solver that protects the privacy of local equations yet allows the agents to compute a solution.

Linear equations are fundamental in electrical network analysis, sensor networking, supply chain and logistics,

filtering and reinforcement learning.

1.1 Prior Work on Privacy in Distributed Computation

Focus on privacy issues in machine learning and data analytics has led to a surge of interest in design of

privacy-preserving distributed algorithms. The techniques proposed in the literature can be classified into

three groups – cryptographic methods, probabilistic methods such as differential privacy and transformation

based methods. While we will discuss these methods in great detail in the following chapters, we point out

some key deficits in literature and motivate the need of accuracy-aware privacy mechanisms.

Cryptographic methods exploit cryptographic primitives, such as symmetric key encryption and ho-

momorphic encryption, to encrypt private information before sharing it with neighboring agents. Use

of cryptographic protocols guarantees accuracy, however, the resulting high computational cost makes it

impractical for high-dimensional optimization problems. We are interested in designing computationally

lightweight algorithms. Moreover, cryptographic methods rely on computational hardness of certain math

problems and bounded rationality assumptions on the adversarial nodes. In this work, we focus on methods

that are independent of assumptions on computational capabilities of adversarial agents.

Differential privacy is a very popular notion of probabilistic privacy method [18, 19]. Differentially pri-

vate algorithms involve use of carefully designed random noise such that the distributions of information

observed by adversary are similar when the algorithm is run on similar private datasets. It is a strong

probabilistic privacy definition with remarkable properties such as composition lemma, post-processing

lemma and group privacy. The privacy is characterized by parameter ε. The smaller is the ε, the better is

the privacy guarantee. Differential privacy, however, suffers from a fundamental accuracy – privacy trade-

off. A superior privacy (smaller ε) leads to an inferior accuracy of the computation (larger errors). Some

applications demand accuracy due to their function or as a matter of regulation and this trade-off precludes

use of differential privacy mechanisms. In this work, we argue that by weakening the privacy definition and

exploiting communication network topology, we can circumvent this trade-off. The resulting privacy defini-

tion dubbed “Privacy via Non-identifiability” allows us to achieve both accuracy and privacy simultaneously.

Transformation methods involve transforming private problem information, while, ensuring that the
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solution is preserved. These methods by design ensure accuracy of computation. However, design of trans-

formation methods is specific to a problem and difficult to generalize to other problems. In this dissertation,

we exploit communication network topology to design generic transformation techniques.

We are interested in designing computationally lightweight, accuracy-aware and easy to generalize privacy

preserving distributed algorithms.

1.2 Summary of Contributions

Privacy Preserving Optimization Using Correlated Noise

In Chapter 2, we present Function Sharing (FS) methodology for private distributed optimization over

time-varying, directed and undirected graphs [20,21]. The FS strategy involves two steps:

1. Obfuscation Step: The Obfuscation Step involves a secure exchange of perturbation (noise) functions

with immediate neighbors. The perturbation functions are arbitrarily decided by an agent and behave

like noise in the functional space. Next, the private objective function fi(x) is transformed by using

perturbation functions and simple secure multiparty computing strategy to obtain new perturbed

objective functions f̃i(x).

2. Distributed Optimization Algorithm: Agents run an appropriate Distributed Optimization Algorithm,

such as Gradient-Push [9] for directed graphs and Distributed Gradient Descent [8] for undirected

graphs, over new perturbed objective functions f̃i(x).

We prove deterministic convergence of the iterates to an optimum of f(x) (true in every execution). We

provide rigorous privacy analysis of the function sharing strategy and show local objective functions are non-

identifiable. We show that the information observed by the adversary is compatible with a set of distributed

optimization problems. We characterize graph conditions that are necessary and sufficient to prove privacy

of local objective functions. We show that our algorithm is private and simultaneously converges to the

correct optimum (accuracy).

In Chapter 3, we consider distributed learning in the parameter server framework also known as the feder-

ated learning architecture. Under this setup, we consider several parameter servers that communicate with

each other and clients that each have private data and share ephemeral updates with the servers. We present

POLAR-SGD, Private Optimization and Learning Algorithm - Stochastic Gradient Descent, that protects

privacy of client data by obfuscating the updates transmitted by the clients. It is a synchronous protocol

where clients use correlated additive and multiplicative perturbations to obfuscate the stochastic gradient.

These obfuscated stochastic gradients are uploaded to multiple parameter servers, who then use consensus

iteration and projected stochastic gradient descent to learn predictive models. We prove convergence of
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POLAR-SGD under a few conditions on the perturbations. We also discuss privacy enhancement for poly-

nomial optimization problems. While other perturbation based algorithms such as differential privacy incur

accuracy loss due to privacy, we show that our algorithm solves the optimization problem accurately.

Privately Solving Network Aggregate Games Using Correlated Noise

In Chapter 4, we propose a distributed algorithm to privately compute the Nash equilibrium in aggregate

games where players communicate over a fixed undirected network [22]. Our algorithm exploits correlated

perturbation to obfuscate information shared over the network. We prove that our algorithm does not reveal

private information of players to an honest-but-curious adversary who monitors several nodes in the network.

In contrast with differential privacy based algorithms, our method does not sacrifice accuracy of equilibrium

computation to provide privacy guarantees.

Private, Finite-Time Consensus and Linear System of Equations

In Chapter 5 we present TITAN, privaTe fInite Time Average coNsensus, algorithm for solving an average

consensus problem over directed graphs, while protecting statistical privacy of private local data against

an honest-but-curious adversary [23]. Our algorithm uses distributed recovery primitives to solve average

consensus in finite-time that is dependent only on the total number of agents and the graph diameter.

We show that TITAN provides information theoretic privacy of local inputs against an honest-but-curious

adversary that corrupts at most τ nodes as long as the weak vertex-connectivity of the graph is at least

τ + 1. We exploit TITAN to solve a system of linear equations denoted as Az = b, which is horizontally

partitioned (rows in A and b) and stored over a network of n devices connected in a fixed directed graph. Our

proposed solution involves agents computing updates based on private data followed by executing TITAN to

aggregate this information quickly and privately to converge to the solution of Az = b. Our solver converges

to the least squares solution in finite rounds along with statistical privacy of local linear equations against an

honest-but-curious adversary provided the graph has weak vertex-connectivity of at least τ + 1. We perform

numerical experiments to validate our claims and compare our solution to the state-of-the-art methods by

comparing computation, communication and memory costs.
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CHAPTER 2

PRIVATE OPTIMIZATION OVER NETWORKS

2.1 Introduction

Distributed optimization involves a network of n agents that collaboratively optimize a global objective

function based solely on locally available information. For instance, consider a minimization problem with

the objective function defined as f(x) ,
∑n
i=1 fi(x), where an agent i has access to only the local objective

function fi(x). The goal is compute the optimum decision variable x∗ that minimizes f(x), i.e.

x∗ ∈ arg min
x∈X

n∑
i=1

fi(x). (2.1)

Distributed optimization setup has found applications in machine learning [24–27], resource allocation [28],

scheduling [29, 30], robotics and smart grid optimization [31]. Distributed optimization paradigm offers us

considerable benefits such as:

• Communication efficiency: As the size of model parameters or decision variable x is far smaller than

the actual dataset [32, 33], sharing x over a network incurs smaller communication costs as compared

to sharing the entire dataset.

• Scalability: Adding more agents or participants does not significantly change local communication,

computation or storage costs [33].

• Applicability to geo-distributed datasets: Datasets that are scattered over multiple data-farms or

geographically separated machines necessitate use of distributed algorithms [26,34].

As an example, consider a distributed machine learning scenario, where partitions of the dataset are stored

among several agents and the local objective function fi(x) at agent i may be a loss function computed over

the dataset stored at agent i. The agents are interested in learning “model parameters” or decision variable

“x” that minimizes the aggregate loss. In several applications, the optimization is performed over private

and sensitive user information. The datasets might include healthcare records, location history, and credit

card transactions, information that is deemed private and sensitive. Leakage of such data or its statistics

can lead to privacy breaches.
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Distributed optimization algorithms, however, require information exchange among agents in between

successive local gradient based updates to ensure correctness. This makes them vulnerable to privacy attacks

by adversarial agents and prompts us to consider privacy as a critical requirement while designing distributed

optimization algorithms [5,35]. In our prior work [36], we show that by corrupting a small fraction of agents

in the network, an adversary may learn the private (polynomial) objective functions of non-corrupted agents

up to a constant ambiguity. In this chapter, we present a distributed optimization algorithm that protects

agents’ private objective function against an adversary that corrupts a bounded fraction of agents in the

network, while ensuring accuracy of computed solution (2.1).

2.1.1 Related Work

Consensus based distributed optimization algorithms have become a popular choice for solving (2.1). These

iterative algorithms typically involve two steps: (1) information fusion and (2) local descent [37]. In the first

step, each agent fuses its own state estimate with the information (state estimates) received from neigh-

bors via convex averaging step. The second step involves a descent step using local gradient information.

Information fusion step ensures that the state estimates converge to a common value. It also ensures that

the local gradient based updates effectively drive the state estimates to the optimum of global optimiza-

tion problem. Many distributed optimization algorithms have appeared in the literature in recent years,

including sub-gradient descent [8,38], dual averaging [39], incremental algorithms [30,40], accelerated gradi-

ent [41–43], and ADMM [42]. Solutions to distributed optimization of convex functions have been proposed

for myriad scenarios involving directed graphs [9, 44], communication failures and losses [45], asynchronous

communication models [46–48], and fault tolerance [49]. Distributed optimization and learning algorithms

operate on increasingly private and sensitive data, consequently, research focus has shifted towards privacy

requirements. A few privacy preserving distributed optimization algorithms have been proposed in recent

years. In the next few paragraphs, we summarize some of these solutions. Privacy-preserving distributed

optimization algorithms can broadly be categorized into the following three groups.

Cryptographic Methods: These methods rely on hardness assumptions of certain math problems and

bounded computational capability assumptions on adversary to guarantee privacy. It implies that an

adversary cannot recover private information from the ciphertext generated by cryptographically private

method in a reasonable time frame. Cryptographic methods have been proposed to privately solve linear

programming problems [50] and general data mining problems [51]. More recently, partially homomorphic

encryption based methods have been explored aggressively [52–54]. Partial homomorphic encryption is

an encryption/decryption mechanism that allows computations to be performed on ciphertext (encrypted

input) and the resulting value when decrypted gives us the answer as if the computation (addition and

multiplication) had been performed on the un-encrypted input. However, cryptographic methods often
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are computationally expensive to implement [55] and are not suitable for high-dimensional optimization

problems such as machine learning.

Differentially Private and Probabilistically Private Methods: One of the popular probabilistic pri-

vacy mechanisms is differential privacy. It has been used extensively in industry in recent years1,2,3 [19,56,57].

Differential privacy involves use of specialized random perturbations to mask query result, in order to mini-

mize the probability of uncovering of specific records in a database based on query output. More specifically,

(ε, δ)−differential private algorithms guarantee that the ratio of distributions of observations for two ad-

jacent databases, differing in only one entry, is upper bounded by eε and fails with a small probability

density of δ. Differentially private distributed optimization methods have been extensively explored in re-

cent years [35,56,58–62]. Specifically, [35,56,62] study differential privacy with regards to machine learning

applications (neural networks). Prior work by researchers in [58, 60, 61] study differential privacy of local

objective functions in a distributed optimization problem over peer-to-peer network, while [59] explores

differential privacy in distributed optimization over client-server framework. Differential private methods,

however, suffer from a fundamental trade-off between privacy margin achieved (parameter ε) and the accu-

racy (∼ O(1/ε2)) of the computed solution [59, 61]. In this chapter, we present a weaker privacy definition

for networked optimization problems, that in addition to providing reasonable privacy will circumvent this

fundamental trade-off. Researchers have also explored other probabilistic notions of privacy such as (α, β)

data privacy proposed in [63,64].

Transformation based Methods: Transformation based methods are noncryptographic techniques that

involve converting a given optimization problem into a new problem via algebraic transformations such that

the solution of the new problem is the same as the solution of the old problem [65,66]. This enables agents

to conceal private data effectively while the quality of solution is preserved. Transformation approaches in

literature, however, cater only to a relatively small class of problems and are hard to generalize. In our prior

work [27], discussed in Chapter 3, we study private distributed optimization in client-server framework with

multiple coordinating servers. The clients send obfuscated (noisy) gradient updates to the servers while the

servers perform gradient descent over noisy updates followed by a secure consensus step. The obfuscated

updates sent to multiple servers each appear to have originated from a transformed objective function such

that the transformed functions add up to the private objective function. In this approach, multi-server

architecture is leveraged to develop an easy-to-generalize transformation technique.

1https://machinelearning.apple.com/research/learning-with-privacy-at-scale
2https://opensource.googleblog.com/2020/06/expanding-our-differential-privacy.html
3https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-

privacy/
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2.1.2 Our Contributions

The Function Sharing Approach: We propose “Function Sharing” (FS) methodology to perform privacy

preserving distributed optimization with guaranteed accuracy. The FS strategy uses correlated random

perturbations to obfuscate local objective functions followed by agents executing a standard, non-private

distributed optimization algorithm. We present a sketch of our approach below. The FS strategy involves:

1. Obfuscation Step: The Obfuscation Step involves a secure exchange of perturbation (noise) functions

with immediate neighbors. The perturbation functions are arbitrarily decided by an agent and

behave like random noise in the functional space. Next, agents use perturbation functions and use

a “zero-sum” secret sharing protocol to generate obfuscation functions. Finally, we add obfuscation

functions to the private objective function fi(x) and get new perturbed objective functions f̃i(x).

2. Distributed Optimization Algorithm: Agents run a standard, non-private distributed optimization

algorithm – such as Gradient-Push, GP, [9] or Distributed Gradient Descent, DGD, [8] – over new

perturbed objective functions, f̃i(x).

In this chapter, we present Function Sharing - Gradient Push Algorithm or FS-GP for private distributed

optimization over time-varying directed graphs and Function Shring - Distributed Gradient Descent or

FS-DGD for distributed optimization over undirected graphs. We present correctness, convergence and

privacy analysis for both algorithms.

Correctness and Convergence Analysis: We present the correctness and convergence analysis for FS-

GP and FS-DGD. We show that algorithm iterates converge to the exact optimum of the global optimization

problem (2.1) in each execution (deterministically).

Observe that the perturbed objective functions f̃i(x) may be non-convex as the agents may add non-

convex obfuscation functions in the obfuscation step. However, we show later in the chapter that our unique

design of the obfuscation step leads to the aggregate of perturbed objective functions being exactly f(x),

a convex function, i.e.
∑n
i=1 f̃i(x) = f(x). It leads us to a distributed optimization problem where agents

seek to minimize a convex aggregate function while only accessing potentially non-convex functions. We

call this problem minimizing a convex sum of non-convex functions [67]. This problem may be of general

interest as discussed in [68]. Kvaternik and Pavel in [68] solved a similar problem albeit with additional

assumption on f(x) being strongly convex and underlying graph being fixed and undirected. We solve this

problem in the fairly general scenario: we require the aggregate f(x) to be (only) convex and we consider

undirected and time-varying directed graphs. We prove that Gradient-Push algorithm [9] and Distributed

Gradient Descent [8] solves this problem over directed and undirected graphs respectively in order to show

convergence of FS-GP and FS-DGD algorithms.

Moreover, we show that the finite-time convergence rate for FS algorithms scales gracefully with the

strength of the perturbation (noise) functions [20, 69]. We characterize the finite-time convergence rate
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of FS-GP and FS-DGD to be O(log(T )/
√
T ), similar to the rates for original GP algorithm [9] and DGD

algorithm [8].

Privacy Definition and Analysis: We propose Privacy via Non-identifiability, a practical notion of

privacy for distributed computing. It involves proving that there exists a set of distributed optimization

problems that all lead to the same observed execution from adversary’s perspective. We provide rigorous

privacy analysis of the FS-GP and FS-DGD and guarantee Privacy via Non-identifiability of local objective

functions. We characterize necessary and sufficient graph connectivity conditions to prove that our algorithm

satisfies this notion of privacy and protects local objective functions of non-adversarial agents. We show

that our algorithms, FS-GP and FS-DGD, are private and simultaneously converge to the correct optimum

(accuracy).

Functional perturbations are also used in [60] for privacy preserving distributed optimization. They

examine adding differential private noise in functional space to their private objective functions resulting in

perturbed objective functions. The noise functions are not correlated (as opposed to our case) and hence do

not converge to the exact optimum in a deterministic sense.

Gupta in [70] further explored statistical privacy properties of Function Sharing strategy when the per-

turbation (noise) functions are drawn from Gaussian distribution. In [70], Gupta discussed an algorithm for

protecting the privacy of affine parts of objective functions. In our joint work with Gupta [21], we generalize

this analysis to protect higher order components of non-adversarial agents objective functions when solving

distributed optimization over undirected graphs.

Similar to our approach, correlated perturbations are used by Liu et al. in [71,72], however their method

of generating correlated noise is different. They use correlated noise to hide decision variable (state) from

adversaries in distributed computation at each step. We instead add perturbations to the objective function

which is a pre-processing operation performed only once. Our approach hence incurs lower computational

and communication overhead.

2.1.3 Organization

This chapter is organized as follows. In Section 2.2, we present the problem formulation, adversary model

and privacy definitions. We introduce Function Sharing methodology in Section 2.3. We discuss FS-GP

algorithm for private optimization over directed graphs in Section 2.3.1, present main results in Section 2.3.2

and provide proofs thereafter. Finally, we present FS-DGD algorithm for private optimization over undirected

graphs in Section 2.4.1 followed by its main results in Section 2.4.2 and proofs.
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2.2 Problem Setup: Assumptions, Adversary Model and Privacy Definition

We consider a synchronous system consisting of n agents (nodes) connected using a time-varying network of

communication links. The communication links are always reliable. Each agent i has access to its own private

objective function fi(x). The agents are interested in collaboratively minimizing the aggregate function f(x).

minimize
x∈Rd

f(x) ,
n∑
i=1

fi(x). (2.2)

The private objective functions fi : Rd → R are convex. Let [n] = {1, 2, . . . , n}. We optimize over

d−dimensional space Rd. We assume that the objective function gradients are bounded (with bound L > 0),

i.e. for each i ∈ [n],

‖∇fi(x)‖ ≤ L. (2.3)

The objective function gradients are Lipschitz continuous with constant N > 0, i.e.

‖∇fi(x)−∇fi(y)‖ ≤ N‖x− y‖,

for all i ∈ [n] and x 6= y. Let f∗ denote the optimal value of f(x) and let X ∗ denote the set of all optima of

f(x), i.e.

f∗ = inf
x
f(x) and X ∗ = {x | x ∈ Rd, f(x) = f∗}.

We assume that the set of optimum X ∗ is nonempty. Note ‖.‖ is Euclidean norm for vectors and the

Frobenius norm for matrices.

Let the set of agents be denoted by V; thus, |V| = n. Define Ek as a set of directed edges corresponding

to the communication links in the network at iteration k,

Ek =
{

(u, v) : u ∈ V sends message to v ∈ V, at iteration k
}
.

The communication network is represented using a graph Gk = (V, Ek) at iteration k. If Gk is a directed

graph, then Ek is a set of directed edges. Correspondingly, if Gk is undirected graph, then edge (i, j) ∈ Ek
implies edge (j, i) ∈ Ek and Ek becomes a set of undirected edges.

We define the neighborhood sets for a node i. The out-neighborhood set, N out
i (k), is the set of all nodes

that directly receive messages from node i (at iteration k). The in-neighborhood set, N in
i (k) is the set of all

nodes that send messages to node i. We include the node i in its own in-neighborhood and out-neighborhood
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sets. Specifically,

N out
i (k) = {j | (i, j) ∈ Ek} ∪ {i} and N in

i (k) = {j | (j, i) ∈ Ek} ∪ {i}.

As (i, i) /∈ Ek, we include it in the neighborhood sets individually. The out degree of a node i at iteration

k is defined as degik = |N out
i (k)|. We assume that every node i knows its out degree degik at iteration k.

For undirected graphs, the in-neighborhood and out-neighborhood sets are the same, i.e. N out
i = N in

i and

similarly the in-degree and out-degree are the same.

We will assume connectivity conditions of the graph G0 (considered for obfuscation step at iteration 0) that

are necessary and sufficient for guaranteeing privacy in Sections 2.3.2 and 2.4.2. We will impose additional

connectivity conditions on Gk for convergence analysis in Sections 2.3.2 and 2.4.2.

2.2.1 The Adversary Model

In this work we consider honest-but-curious adversary that is fairly common in the privacy literature [58–60].

Honest-but-curious adversaries are passive adversaries that capture, store and exploit observations to uncover

information private to other nodes. However, adversaries follow the protocols as prescribed. In this work, we

consider an honest-but-curious adversary, denoted by A, that can corrupt at most τ agents in the network.

Adversaries have access to all the states of the system, the graph topology and messages directly shared

with the corrupted agents. We will denote the set of corrupted nodes as A and the set of non-corrupted

nodes as H = V \ A. As discussed above, |A| ≤ τ . We consider privacy in synchronous setting which is

often more difficult than asynchronous setting where the unpredictability of messages may make it difficult

for adversary to break privacy.

2.2.2 Privacy Definition

We begin by describing a distributed optimization problem as a collection of local objective functions. Hence,

any set of n appropriate local objective functions defines a distributed optimization problem. Let F denote

a set of distributed optimization problems, each characterized by a collection of n objective functions that

satisfy – (a) convexity, (b) bounded gradients, (c) Lipschitz continuous gradients and (d) add to f(x). We

write F as

F =
{
{g1(x), . . . , gn(x)}|gi(x) is convex and gradients ∇gi(x) are bounded and

Lipschitz continuous, and

n∑
i=1

gi(x) = f(x)
}
.

Each element of set F , say {g1(x), . . . , gn(x)} corresponds to an instance of distributed optimization problem,

where the gi(x) is the local objective functions for each agent i and the aggregate objective function is f(x).
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Intuitively, we define privacy as the inability of the adversary to exactly guess the private objective function

given the adversary’s observation of the algorithm execution. In our scenario, we claim that the observations

made by the adversary are compatible with each instance of distributed optimization problems in set F .

Definition 1 (Privacy via Non-identifiability). If adversarial observations are same under two separate

executions, one with private objective functions fi(x) and the other with private objective functions gi(x) 6=

fi(x) for at least one i ∈ [n], then we state adversary’s observations are compatible with a problem instance

{g1(x), . . . , gn(x)} ∈ F . A distributed optimization algorithm satisfies privacy via non-identifiability, if the

information observed by the adversaries is compatible with any {gi(x)|i ∈ [n]} ∈ F .

2.3 Function Sharing Algorithm for Directed Networks

In this section, we will present the Function Sharing methodology. We will also present Function Sharing -

Gradient Push algorithm (FS-GP) for privacy-preserving distributed optimization on directed graphs, along

with key results and proofs.

The Function Sharing strategy is inspired by the so called Secure-Sum protocol proposed in [73] for

private aggregate computation over fully connected networks and generalized for private average consensus

over incomplete undirected graphs in [70]. These protocols involve using additive perturbations to hide

private information before running an distributed aggregation or averaging protocol. The perturbations are

carefully designed to add to zero over the network and this guarantees correctness of secure-sum protocol.

Distributed optimization problems also exhibit such an additive sub-structure and this motivates us to

exploit secure-sum type protocols for securing private information in distributed optimization.

The Function Sharing strategy, as alluded to in Section 2.1.2, is a two-step protocol. First, we perform a

pre-processing step that transforms private objective functions fi(x) to new perturbed objective functions

f̃i(x) (Obfuscation Step). This is followed by appropriate distributed optimization algorithm run by agents

where each agent uses its new perturbed objective function f̃i(x) as the objective function (Distributed

Optimization). We will detail each of the steps below.

We first present the obfuscation step that transforms fi(x) to f̃i(x). Initially, perturbation functions

are shared with neighboring agents in a secure manner possibly using encrypted messages or physical layer

encryption. Note that this is the only step that requires additional security measures. More precisely, each

agent i sends perturbation function Rij(x) to each out-neighbor j ∈ N out
i in a secure fashion.4 Consequently,

agent i also receives perturbation function Rli(x) from all in-neighbors l ∈ N in
i . The perturbation func-

tions are arbitrary and randomly picked functions satisfying gradient boundedness and Lipschitz continuous

4The obfuscation step is a pre-processing step that happens at k = 0. For brevity we will drop the time index from the
notation for neighborhood sets N in

i and N out
i , when discussing the neighborhood sets for obfuscation.
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gradients.

Next, each agent i computes perturbed objective function f̃i(x) by taking the private objective function

fi(x), adding all the received perturbation functions (Rli(x), l ∈ N in
i ) and subtracting all the transmitted

perturbation functions (Rij(x), j ∈ N out
i ). That is for each i ∈ [n], we have

f̃i(x) = fi(x) +
∑
l∈N ini

Rli(x)−
∑

j∈Nouti

Rij(x). (2.4)

This point onward (in the execution of the algorithm), each agent i uses the perturbed objective function

f̃i(x) in lieu of its private objective function fi(x).

The obfuscation step is followed by agents running appropriate and well known distributed optimization

algorithms such as Gradient-Push [9] and Distributed Gradient Descent [8]. These algorithms use only the

gradients of perturbed objective functions f̃i(x) to update local iterates followed by interleaved consensus

based averaging. We discuss specific algorithms in the next subsection.

Recall that we use perturbed objective functions in lieu of private objective functions and as such need to

relate perturbed objective functions to the original problem (2.1). We make the following key observations

that help establish this link and aid us in convergence analysis. First we show that, the aggregate objective

function f(x) is invariant under the obfuscation step. Specifically,

n∑
i=1

f̃i(x) =

n∑
i=1

fi(x) +

n∑
i=1

 ∑
l∈N ini

Rli(x)−
∑

j∈Nouti

Rij(x)

 =

n∑
i=1

fi(x) , f(x). (2.5)

Observe that each perturbation function Rij(x) is added to the objective function by an agent (in this case j)

and subtracted from the objective function by another agent (in this case i). It ensures that while computing

sum of all perturbed objective functions f̃i(x), the effect of perturbation (noise) functions get canceled and

the sum equals the sum of private objective functions f(x). We use this property to establish convergence.

The aggregate invariance property is key to ensure that Function Sharing based protocols guarantee privacy

and correctness (accuracy) simultaneously.

The perturbed objective function f̃i(x) may be non-convex and the aggregate invariance property above

only informs us that
∑n
i=1 f̃i(x) = f(x). Hence, the distributed optimization algorithm employed in Function

Sharing methodology (the second step) needs to distributedly minimize f(x) where each agent i has access to

possibly non-convex function f̃i(x). We call this problem minimizing a convex sum of non-convex functions

[67]. Conventional convergence analysis for GP and DGD algorithms however does not work for this scenario

as they crucially depend on each local function being convex. Here we cannot do that, but there is hope, in

that the aggregate objective function is convex and this structure can be exploited for convergence.
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Kvaternik and Pavel [68] addressed this problem albeit with stronger assumptions such as the aggregate

function being strongly convex and the graph being fixed and undirected. We consider reasonably weak

assumptions and require f(x) to be only convex and allow the graph to be time-varying and directed.5

Moreover, we show how this problem unintentionally leads to privacy in distributed optimization.

We observe, proving convergence of privatized (via obfuscation step) distributed optimization algorithm is

tantamount to the original distributed optimization algorithm being able to minimize a convex sum of non-

convex functions. We illustrate this while proving that FS-GP and FS-DGD (specific algorithms described

later) solves problem (2.1) and provides privacy via non-identifiability.

2.3.1 Function Sharing Algorithm for Directed Graph Scenario

We first consider the scenario where agents are connected in a time-varying, directed graphs. We propose

Function Sharing - Gradient Push (FS-GP, Algorithm 1) protocol for privacy preserving distributed opti-

mization over time-varying, directed networks. Our algorithm, FS-GP, essentially involves two steps. In the

first step, we perform obfuscation step to transform private objective functions, fi(x), to perturbed objec-

tive functions, f̃i(x) as described in (2.4). In the second step, we run Gradient-Push protocol, GP, proposed

in [9].

In line 1 (Algorithm 1) each node i sends function Rij(x) to out-neighbors j ∈ N out
i in a secure manner.

The noise functions Rij(x) are arbitrary functions satisfying gradient boundedness and Lipschitz continuous

gradients. Next (line 2, Algorithm 1), each node i obfuscates its private objective function fi(x) by adding all

received noise functions Rji(x) (j ∈ N in
i ) and subtracting all transmitted noise functions Ril(x) (l ∈ N out

i )

as defined in (2.4). This leads us to perturbed objective function, f̃i(x), stored at agent i (∀i ∈ [n]).

This is followed by each agent running the GP algorithm [9]. Each agent i stores states wik, x
i
k, z

i
k ∈ Rd and

scalar variable yik. The decision variable is initialized to a random value and the scalar variable is initialized

to 1 (i.e. yi0 = 1) for each agent i (line 3, Algorithm 1).

Next each agent i receives xjk/deg
j
k and yjk/deg

j
k that is broadcast by neighbors j ∈ N in

i (k). Agent i

updates wik by adding xjk/deg
j
k and updates yik by adding yjk/deg

j
k received from in-neighbors (lines 5-6,

Algorithm 1). The next two steps do not require any communication with neighbors. Agents first performs

a scaling operation to compute zik+1 (line 7, Algorithm 1). This scaled version of state zik converges to a

common point reaching average consensus. This is followed by a local gradient descent operation (line 8,

Algorithm 1) that uses the gradient of perturbed objective function computed at the scaled state zik. Note

that the step sizes αk, k ≥ 1, form a non-increasing sequence such that
∑∞
k=1 αk =∞ and

∑∞
k=1 α

2
k <∞.

Prior results show that for convex objective functions, the scaled variables zik+1 gets pushed towards each

other while the local gradient based update forces iterate zik+1 toward the optimum of aggregate function

f(x). In Section 2.3.4, we will show that zik+1 converges to minimizer of f(x) while only accessing non-convex

5We separately consider the scenario where we allow the communication network to be an undirected graph. We report
results in our technical report [67].
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Algorithm 1 Function Sharing - Gradient Push, FS-GP

Input: Each node i has access to fi(x).
Result: Iterates converge to x∗ ∈ arg min

x∈Rd

∑n
i=1 fi(x)

♦ Obfuscation Step
1: Each node i sends function Rij(x) to out neighbors j ∈ N out

i

2: Each node i perturbs its objective function to get new objective function f̃i(x)

f̃i(x) = fi(x) +
∑
j∈N ini

Rji(x)−
∑

l∈Nouti

Ril(x)

♦ Gradient-Push Algorithm is run at each node.
3: Initialize: xi0 ∈ X and yi0 = 1 for each node i
4: for Iteration number k = 0, 1, 2, . . . do

5: Update: wik+1 =
∑
j∈N ini (k)

xjk
degjk

6: Update: yik+1 =
∑
j∈N ini (k)

yjk
degjk

7: Update: zik+1 =
wik+1

yik+1

8: Update: xik+1 = wik+1 − αk+1∇f̃i(zik+1)
9: end for

functions f̃i(x).

2.3.2 Main Results and Discussion

We present the following three types of results – correctness, privacy via non-identifiability, and convergence

rate in this subsection followed by some discussion.

Correctness Results: Our correctness result guarantees that Algorithm 1 iterates converge to the optimizer

of f(x) provided that assumptions in Section 2.2 are satisfied. We also require that the directed graph is B-

strongly connected, implying that for some integer B > 0, the graph (V,∪(t+1)B−1
k=tB Ek) is strongly connected

for every t.

Theorem 1 (Correctness). Consider a distributed optimization problem satisfying assumptions from Sec-

tion 2.2. Assume that the graph Gk is B-strongly connected. Iterates zjk for FS-GP (Algorithm 1) converge

to an optimum x∗ ∈ X ∗ asymptotically.

Theorem 1 guarantees that the sequence of iterates generated by algorithm FS-GP converge to the opti-

mum. It outlines the fact that, although agents use perturbed objective functions, the agent states reach

the correct optimum. This can be credited to both, the push-sum based information fusion that averages in-

formation over the network and the fact that aggregate objective function is invariant under the obfuscation

step (2.5). Theorem 1 guarantees that privacy does not impact the correctness of the algorithm (accuracy).
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Privacy Results: We consider a set C of allowed objective functions that is closed under addition. We

select noise/perturbation functions Rij(x) also belong to the set of allowed functions. This ensures the

perturbed objective functions f̃i(x) ∈ C. The set of all feasible problems, F , is expressed as,

F =
{
{gi(x),∀i ∈ [n]}

∣∣∣ gi(x) is convex, gradients ∇gi(x) are bounded and Lipschitz continuous

and

n∑
i=1

gi(x) = f(x)
}
.

The obfuscation step ensures adversaries observe the obfuscated objective functions f̃i(x) and not the private

functions fi(x). Definition 1 states that an algorithm is private, if the adversarial observations are compatible

for all instances of optimization problem in set F .

Theorem 2. (Privacy via Non-identifiability) Let the communication graph at time zero be denoted as G0.

For FS-GP (Algorithm 1), the following statements hold.

(P1) For a non-corrupted node i, |N in
i (0) ∪ N out

i (0) \ {i}| ≥ τ + 1 is necessary and sufficient for privacy

of fi(x) as per Definition 1. In other words, the adversary cannot learn function fi(x).

(P2) Assume V is a strict subset of non-corrupt nodes and |A| ≤ τ , then

∣∣∣ (∪i∈VN in
i (0)

)
∪
(
∪i∈VN out

i (0)
)
\ V

∣∣∣ ≥ τ + 1, ∀ V ⊂ H,

is necessary and sufficient for privacy of
∑
i∈V fi(x) as per Definition 1. In other words, the adversary

cannot learn
∑
i∈V fi(x).

The graph connectivity conditions in Theorem 2 is intuitive. It essentially requires that any agent or group

of agents (that needs to be protected against adversaries) needs to have at least τ +1 neighbors. This allows

τ of the neighbors to be adversaries and still possess a non-adversarial neighbor. The inability of adversary

to figure out perturbation (noise) function corresponding to communication link connecting the group to its

non-adversarial neighbor provides privacy.

Theorem 2 characterizes the necessary and sufficient conditions for privacy via non-identifiability. How-

ever, even if the graph conditions are satisfied there are two important privacy limitations that need to

be discussed. We cannot protect the privacy of aggregate objective function f(x). This is a fundamental

limitation due to the correctness property of our algorithm. Adversary may estimate f(x) by observing

progress of the algorithm. They also have access to their own private objective functions
∑
i∈A fi(x). Using

these two quantities, adversary can estimate the aggregate objective function of all non-adversarial nodes,∑
i∈H fi(x). Observe that Theorem 2 allows for privacy-preservation of cumulative objective functions of a

set of nodes, however, such a set has to be a strict subset of non-adversarial nodes.
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Finite-Time Convergence Rate: The FS-GP algorithm provides privacy while guaranteeing accuracy,

however, it also degrades the convergence rate. For a learning rate of αk = 1/
√
k, in the following result, we

bound the finite time convergence rate of the function value at a running average ẑjk.

Theorem 3. Let estimates {zjk} be generated by FS-GP respectively with αk = 1/
√
k. For each j ∈ V, let

ẑjT+1 =
∑T
k=0 αk+1z

j
k+1∑T

k=0 αk+1
. Then,

f(ẑjT+1)− f(x∗) ≤ O
(
L̃2 log(T + 1)√

T + 1

)
.

Theorem 3 presents the finite time convergence rate. It provides a bound on the sub-optimality of function

value at ẑjT . The rate O(log(T )/
√
T ) is similar to that of original distributed GP [9]. However, L̃2 which

is the gradient bound over perturbed objective functions f̃i(x) appears instead of L2 (as seen in GP). The

perturbed objective functions have a larger gradient bound L̃ due to the noise functions that are added to

the private objective functions. This creates a slowdown in finite-time convergence and represents the price

of privacy in distributed optimization.

2.3.3 Proof of Theorem 2

Recall that function sharing based algorithm involves an obfuscation step that transforms private objective

functions fi(x) to perturbed objective functions f̃i(x) using noise functions Rij(x) as seen in (2.4). The

selection of noise functions Rij(x) has an impact on how effectively fi(x) can be hidden. As an example

consider that the objective function is a quadratic function and all noise functions are affine. Under this

scenario the affine noise functions cannot hide the coefficients of quadratic terms of the private objective

functions and result in privacy breach. Hence, we require that both fi(x) and f̃i(x) both appear similar.

Formally, let us consider that the set of allowed private objective functions C and addition operator (“+”)

forms an additive group [74]. Now, we pick the noise functions Rij(x) from the set of allowed private

objective function C. This ensures that the perturbed private objective functions f̃i(x), resulting from

addition between fi(x) and several Rij(x) also belong to the set of allowed functions C. This ensures that

fi(x) and f̃i(x) appear similar as discussed above.

We prove privacy via non-identifiability for Function Sharing approach or FS-GP algorithm (Theorem 2).

We use contradiction to prove necessity of graph connectivity conditions. On the other hand, we provide

a constructive method to show multiple instances of distributed optimization problem in F would lead to

the exact same algorithm execution under the connectivity condition on G0. This proves the sufficiency of

connectivity conditions on G0 for privacy via non-identifiability.

Proof. Necessity (P2): Recall that A represents the set of corrupted agents, H represents the set of

non-corrupted agents and V ⊂ H. We will prove the necessity of condition in P2 using contradiction. We

assume that,
∣∣∣ (∪i∈VN in

i (0)
)
∪ (∪i∈VN out

i (0)) \ V
∣∣∣ ≤ τ .
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First observe that
(
∪i∈VN in

i (0)
)

is the set of all in-neighbors of nodes in set V , and (∪i∈VN out
i (0)) is the

set of all out-neighbors of nodes in set V .

The set
((
∪i∈VN in

i (0)
)
∪ (∪i∈VN out

i (0)) \ V
)

includes all nodes that communicate with nodes in V .

Our assumption states that there are at most τ nodes in this set.

Consider that each node in
((
∪i∈VN in

i (0)
)
∪ (∪i∈VN out

i (0)) \ V
)

is an adversary. This is plausible

scenario since we allow at most τ adversaries. In this scenario, the adversaries have access to all the

perturbation functions Rij(x) and Rji(s) where i ∈ V and j 6∈ V . Under the adversary model, we assume

that the adversary can estimate
∑
i∈V f̃i(x) by observing the execution of the algorithm. Consider the

cumulative objective,
∑
i∈V fi(x),

∑
i∈V

f̃i(x) =
∑
i∈V

fi(x) +
∑
j∈N ini

Rji(x)−
∑

l∈Nouti

Ril(x)


=
∑
i∈V

fi(x) +
∑
i∈V

 ∑
j∈N ini \V

Rji(x)−
∑

l∈Nouti \V

Ril(x)

 . (2.6)

Observe that in (2.6), the adversary has access to both the perturbed objective functions
∑
i∈V f̃i(x) and

the perturbation functions shared by the nodes in set V . Hence, the adversaries can estimate
∑
i∈V fi(x).

The privacy of group cumulative objective function
∑
i∈V fi(x) is breached. This gives us the contradiction.

Hence
∣∣∣ (∪i∈VN in

i (0)
)
∪ (∪i∈VN out

i (0)) \ V
∣∣∣ ≥ τ + 1 is necessary.

Sufficiency (P2): We use a constructive approach to prove the sufficiency of the condition. We will show

that provided the condition is satisfied, there exist several instances of problem that can result in the exact

same observed execution.

First, observe that the condition
∣∣∣ (∪i∈VN in

i (0)
)
∪ (∪i∈VN out

i (0)) \ V
∣∣∣ ≥ τ + 1 (for all V ⊂ H) ensures

that any strict subset of the good (non-adversarial) nodes have more than τ+1 neighbors (both in-neighbors

and out-neighbors combined). Hence, V will have at least 1 non-adversarial neighbor (since we allow at most

τ adversaries). This ensures that the graph obtained by deleting adversarial nodes and incident edges is

weakly connected.

Under the adversary model, we conservatively assume that adversaries can estimate f̃i(x) for all i ∈ [n].

Adversaries also have access to the private objective function of all adversarial nodes fi(x) for i ∈ A and the

perturbation functions received and transmitted by adversaries Rij(x) when i ∈ A or j ∈ A. The adversaries

are also aware of the function obfuscation step performed by nodes (2.4).

Consider two instances of distributed optimization problem, P1 and P2, with private objective functions

fi(x)(i ∈ [n]) and f0
i (x)(i ∈ [n]) respectively, such that,

∑n
i=1 fi(x) =

∑n
i=1 f

0
i (x). Specifically, P1, P2 ∈ F .

We have two sets of noise functions Rij(x)(∀(i, j) ∈ E0) for P1 and Gij(x)(∀(i, j) ∈ E0) for P2, such that
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they lead to the exact same execution. Implying,

f̃i(x) , fi(x) +
∑
j∈N ini

Rji(x)−
∑

l∈Nouti

Ril(x)

, f0
i (x) +

∑
j∈N ini

Gji(x)−
∑

l∈Nouti

Gil(x). (2.7)

Next, we elaborate a method to compute the noise functions Gij(x) given f̃i(x), f0
i (x) and Rij(x), such

that, P1 and P2 will have same execution.

Note that since adversaries observe Rij(x) whenever i or j ∈ A, and hence, Gij(x) = Rij(x) if i ∈ A,

j ∈ A or both i, j ∈ A.

1. First we consider the graph with the adversarial nodes and incident edges removed. Let us call this graph

GH, with vertex set H and edge set EH.

2. Characterize the weakly connected graph GH.

(a) We call a graph Q = (VQ, EQ) a spanning pseudo-tree of GH, if it satisfies:

• VQ = H.

• |EQ| = |VQ| − 1 and EQ ⊆ EH.

• (VQ, EQ ∪ −EQ) is an undirected tree graph.

Note −EQ is same set of edges as EQ although with directions reversed and Q is a directed graph.

An alternate way to define Q can be to select EQ be the set of directed edges in GH such that (i) at

most one directed edge is chosen between any pair of node, and (ii) when their directions are ignored,

they form a spanning tree of GH.

(b) By our assumption, the graph connectivity condition ensures that GH is a weakly connected graph.

Hence, (H, EH ∪−EH) is a connected undirected graph. We know every connected undirected graph

(H, EH ∪ −EH) has a spanning tree. Identify the edges of that tree Etree. We identify the edges EQ
to be subset of Etree ∩ EH. This follows the fact that we are interested in Q being a directed graph.

(c) Identify a spanning pseudo-tree Q, as defined above in (a), of GH.

3. Design Gij(x) corresponding to the edges from GH.

(a) Design Gij(x) corresponding to edges in GH that are not in EQ.

• Select these Gij(x) to be arbitrary selected noise functions similar to the objective functions. They

can be randomly picked functions with bounded and Lipschitz gradients.

(b) Design Gij(x) corresponding to edges EQ of pseudo-tree Q.

• Observe that |EQ| = |VQ| − 1. In the event that Q has only two nodes, one node is the leaf node

and the other is root node.
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Figure 2.1: An example of construction used in proof. Consider a directed graph G0 with n = 8 nodes and
τ = 1 adversary (node 7). Step 1: Residual graph (H) is depicted in bold (the dotted edges and node are
adversarial and deleted from G0). Step 2: Construct spanning pseudo-tree Q = (VQ, EQ) where
VQ = {1, 2, 3, 4, 5, 6, 8}, EQ = {(8, 4), (5, 4), (5, 6), (6, 1), (1, 2), (8, 3)}) with root node i0 = 5 and leaf nodes
{2, 3}. Step 3 (a): Randomly pick G34(x), G32(x). Step 3 (b): Compute Gij(x) corresponding to the
spanning pseudo-tree Q as per Step 3 (b).

• We start with the leaf nodes of our spanning pseudo-tree.

• For each leaf node, the noise function corresponding to only one incident edge is undecided. We

decide the noise function for this link by solving (2.4) for the leaf node. Specifically consider i to

be the leaf node and j be its parent with a link connecting j to i.

Gji(x) = f̃i(x)− fi(x)−
∑

l∈N ini \{j}

Gli(x) +
∑

j∈Nouti

Gij(x).

The expression above leads to an exact Gji(x). This follows from the fact that
∑
l∈N ini \{j}

Gli(x)

and
∑
j∈Nouti

Gij(x) can be computed as noise functions Gli(x) (l 6= j) and Gij(x) is decided for

each j.

• Once we have performed the above mentioned process for each leaf node, we move on to the parent

nodes for each of the leaf nodes. Observe that these parent nodes also have only one incident edge

that does not have an assigned noise function. We repeat the above step, i.e. decide on the noise

function by solving (2.4) for the parent node.

• We keep following the procedure, recursively, until we reach the root node of the spanning pseudo-

tree. At the root node, there are no more noise functions that are left to be computed. So we need

to show that the noise functions selected in prior steps satisfy (2.4) at the root node.

(c) We will now show that the noise functions decided by our construction method satisfy (2.4) at the

root node. We begin by using the fact that (2.4) is satisfied at each node other than root node i0.
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Aggregating the expression for each node other than i0 we get,

∑
i6=i0

f̃i(x) =
∑
i 6=i0

f0
i (x) +

∑
i6=i0

 ∑
l∈N ini

Gli(x)−
∑

j∈Nouti

Gij(x)

 .

Next, we add and subtract the effective noise function at node i0, i.e. f̃i0 − fi0 , on right-hand side of

the above expression,

∑
i 6=i0

f̃i(x) =
∑
i 6=i0

f0
i (x) +

∑
i 6=i0

 ∑
l∈N ini

Gli(x)−
∑

j∈Nouti

Gij(x)

+

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)


︸ ︷︷ ︸

=0

−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)

 .

Recall that the aggregate of effective noise function at all nodes is exactly zero, i.e.
∑
i(f̃i − fi) = 0.

∑
i6=i0

f̃i(x) =
∑
i 6=i0

f0
i (x)−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)


=
∑
i 6=i0

f0
i (x)−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)

+ f0
i0(x)− f0

i0(x)

=
∑

f0
i (x)︸ ︷︷ ︸

f(x)

−f0
i0(x)−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)



= f(x)− f0
i0(x)−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)


=

n∑
i=1

f̃i(x)− f0
i0(x)−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)


−f̃i0(x) = −f0

i0(x)−

 ∑
l∈N ini0

Gli0(x)−
∑

j∈Nouti0

Gi0j(x)

 .

This expression is exactly the obfuscation step applied at root node i0 see (2.4). Consequently, the

noise functions computed by our algorithm are consistent and feasible.

We present an example to illustrate the above construction in Figure 2.1. We present an example of a

directed graph G0 with eight nodes and one adversary.
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We have constructed a set of perturbation functions Gij(x) such that when we perturb private objective

functions f0
i (x) using Gij(x) we will get f̃i(x), for each i ∈ [n]. This results in the execution for P1 and P2

being exactly the same. By selecting different f0
i (x), we can have several different distributed optimization

problems result in identical execution. This ensures that observations by an adversary are insufficient to

determine fi(x). This proves sufficiency of
∣∣∣ (∪i∈VN in

i (0)
)
∪ (∪i∈VN out

i (0)) \ V
∣∣∣ ≥ τ + 1 (for each

V ⊂ V\A) for privacy.

Necessity and Sufficiency (P1): The necessity and sufficiency proof for P1 are similar as above. The

necessity can be easily proven by contradiction. We assume that a node i has fewer than τ + 1 neighbors. If

the neighbors were adversarial then they would observe all the noise function shared by node i and shared to

node i and break privacy. The sufficiency proof requires an additional observation. If τ nodes are corrupted

by an adversary and removed from the graph it may fragment the graph into multiple components. So we

need to use the constructive method similar to above for each component.

2.3.4 Proof of Theorems 1 and 3

Recall, the obfuscation step (2.4) performed by agents transforms private objective functions to perturbed

objective functions f̃i(x) for all i ∈ [n]. Distributed optimization algorithm is run by the nodes over the

perturbed objective functions f̃i(x). Proving convergence of FS-GP essentially requires proving that GP

algorithm can distributedly minimize
∑n
i=1 f̃i(x) where each agent i has access to f̃i(x).

First, we observe from Section 2.3 that the perturbed objective functions, f̃i(x), may be non-convex

although their sum given by
∑n
i=1 f̃i(x) is convex. Recall that the private objective functions had bounded

gradients (bound L) and Lipschitz continuous gradients (constant N). The noise functions Rij(x) exchanged

between the nodes also have bounded and Lipschitz continuous gradients. This allows us to ensure that the

perturbed objective functions have bounded gradients and Lipschitz continuous gradients albeit with different

constants. That is ‖∇f̃i(x)‖ ≤ L̃ for each x ∈ Rd and ‖∇f̃i(x)−∇f̃i(x)‖ ≤ Ñ‖x− y‖ for each x 6= y.

The convergence analysis closely follows the convergence analysis of Gradient-Push in [9] and we borrow

a lemma from [9]. Our convergence analysis involves three key steps.

• First, we borrow an elementary result on disagreement in perturbed push-sum protocol from [9]. It

provides a bound on the disagreement between the state values (zik) and the state averages (xk). It allows

us to claim convergence of local iterates to a common value.

• Secondly, we construct the Iterate Lemma that relates the distance between the state average xk =
∑n
i=1 x

i
k

and the solution x∗ that minimizes f(x). As we will elaborate later, the key difference between our proofs

and the proofs in [9] lies in the proof for Iterate Lemma. We exploit Lipschitz continuity of gradients

to obtain an approximation of ∇f̃i(zik) in terms of ∇f̃i(xk) and an error that decays with time at a fast

enough rate. Hence sum of gradients can be approximated as sum of ∇f̃i(xk) and error. Next, we exploit
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the aggregate invariance under the obfuscation step (2.5), to express sum of the approximate gradient

as the gradient of f(x). This allows us to to construct an iterate lemma that is a non-negative almost

supermartingale.

• Finally, we invoke a result on convergence of non-negative almost supermartingales by Robbins and Sieg-

mund [75] and use the iterate lemma to prove convergence result (Theorem 1). We also characterize the

finite-time convergence rate of function value using the iterate lemma (Theorem 3).

Disagreement Lemma

First we consider the matrix Ak that captures the weights used in update equation for wik+1 and yik+1 (Lines

5 and 6 in Algorithm 1). We can define the [i, j]th entry of matrix Ak as,

Ak[i, j] =


1

degjk
j ∈ N in

i (k),

0 otherwise.

(2.8)

Observe that the sum of all entries in any column is 1. The term (1/degjk) appears for every i such that

j ∈ N in
i (k), i.e. degjk times. All entries of Ak are non-negative and sum of all entries in any column is

1 implying Ak matrix is a column stochastic matrix. This is fairly common when dealing with consensus

problem over directed graphs [9]. The product of transpose of the column stochastic matrices converges

to a stochastic vector linearly (see Lemma 2 in [9]). It is used to prove the following key result borrowed

from [9]. Lemma 1 presents bounds on the behavior of iterates of a perturbed push-sum algorithm. In

the context of distributed optimization and our algorithm, the gradient based updates can be considered

as the perturbations. We will use the claims in Lemma 1 to prove convergence of iterates at each agent

to a common value. However, the lemma is for scalar variables. So we will reproduce the lemma first

and discuss its applicability to our problem later. Consider perturbed push-sum protocol as presented

in [9]. Consider, ak = [a1
k, . . . a

n
k ]T where each aik is a scalar. Similarly, bk = [b1k, . . . b

n
k ]T , ck = [c1k, . . . c

n
k ]T

and dk = [d1
k, . . . d

n
k ]T . Recall Ak is a column stochastic matrix as defined in (2.8). Finally consider

εk = [ε1k, . . . , ε
n
k ] where εik is a scalar perturbation added by agent i at iteration k. The perturbed push-sum

protocol [9] can be written as:

ak+1 = Akbk,

ck+1 = Akck,

dik+1 =
aik+1

cik+1

, ∀i ∈ [n],

bk+1 = ak+1 + εk+1. (2.9)

Lemma 1 (Lemma 1, [9]). Consider the iterate cik for each node i generated by (2.9) and the graph sequence
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Gk to be B−strongly connected, then:

(a) For all k ≥ 1 we have,

|dik+1 − bk| ≤
8

δ

(
λk‖b0‖1 +

k∑
t=1

λk−t‖εt‖1

)
,

where bk = 1
n

∑n
i=1 b

i
k, δ ≥ 1

nnB
and λ ≤

(
1− 1

nnB

) 1
B .

(b) If limk→∞ εik = 0 for all i ∈ [n] then,

lim
k→∞

|dik+1 − bk| = 0, for all i ∈ [n].

(c) If {αk} is a non-increasing, positive scalar sequence, with
∑∞
t=1 αk|εik| <∞ ∀i,

∞∑
t=0

αk+1|dik+1 − bk| <∞, for all i ∈ [n].

Now observe the similarities between perturbed push sum protocol and push-gradient algorithm in FS-GP

(Algorithm 1). The perturbation ε represents gradient based update αk∇f̃i(x). We will elaborate this in

the proof of Theorem 1 later in this subsection.

Iterate Lemma

We construct the iterate lemma that relates the distance of the average state to the optimum over time

(iterations). As discussed before, the iterate lemma has structure similar to the result on the convergence

of almost supermartingales [75]. We will reproduce the deterministic version of the almost supermartingale

convergence result [8, 9, 20] first, followed by the iterate lemma.

Lemma 2 (Robbins-Siegmund, [75]). Let {Fk}, {Ek}, {Gk} and {Hk}, be non-negative, real sequences.

Assume that
∑∞
k=0 Fk <∞, and

∑∞
k=0Hk <∞ and

Ek+1 ≤ (1 + Fk)Ek −Gk +Hk.

Then, the sequence {Ek} converges to a non-negative real number and
∑∞
k=0Gk <∞.

Lemma 3 (Iterate Lemma). Consider the distributed optimization problem presented in Section 2.2. We

have for all v ∈ X and k > 0,

‖xk+1 − v‖2 ≤
(

1 + αk+1Ñ

(
max
j
‖xk − zjk+1‖

))
‖xk − v‖2 − 2

αk+1

n
(f(xk)− f(v))

+ α2
k+1L̃

2 + αk+1Ñ

(
max
j
‖xk − zjk+1‖

)
.
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Proof. Let us define x̃lk to be the vector in Rn which stacks up the lth entries of vectors xik for each node i.

That is, the jth entry of x̃lk is the lth entry of vector xjk. Similarly g̃lk is the vector in Rn which stacks up

the lth entries of vectors ∇f̃j(zjk) for each node j. And the jth entry of g̃lk is the lth entry of vector ∇f̃j(zjk).

We follow the xik+1 update equation from gradient-push protocol (Line 8 in Algorithm 1). We can rewrite

the equation using the above defined notation as follows

x̃lk+1 = Akx̃
l
k − αk+1g̃

l
k+1.

Note that Ak is a column stochastic matrix. Hence, 1TAk = 1T . Using this in above equation, we get, for

each l = 1, 2, . . . d,

1T x̃lk+1 = 1TAkx̃
l
k − αk+11

T g̃lk+1

=⇒ 1

n

n∑
j=1

x̃lk+1[j] =
1

n

n∑
j=1

x̃lk[j]− αk+1

n

n∑
j=1

g̃lk+1[j].

Observe that, the lth entry of xk is 1
n

∑n
j=1 x̃

l
k[j], and the above expression is rewritten as,

xk+1 = xk −
αk+1

n

n∑
j=1

gjk+1 = xk −
αk+1

n

n∑
j=1

∇f̃j(zjk+1). (2.10)

Consider an arbitrary vector v. Next we use (2.10) to get the following relation,

‖xk+1 − v‖2 = ‖xk −
αk+1

n

n∑
j=1

∇f̃j(zjk+1)− v‖2

≤ ‖xk − v‖2 +
α2
k+1

n2
‖

n∑
j=1

∇f̃j(zjk+1)‖2 − 2
αk+1

n
(xk − v)T

 n∑
j=1

∇f̃j(zjk+1)


≤ ‖xk − v‖2 + α2

k+1L̃
2 − 2

αk+1

n
(xk − v)T

 n∑
j=1

∇f̃j(zjk+1)

 , (2.11)

where we use ‖∇f̃j(x)‖ ≤ L̃ and ‖
∑n
j=1∇f̃j(z

j
k+1)‖ ≤ nL̃.

Note that at this step, one would invoke gradient inequality for convex functions (see [9] or [8]). However,

f̃j(x) is non-convex so we cannot use gradient inequality for convex functions directly. Recall the Lipschitz

continuity of gradients. We approximate the gradient ∇f̃j(zjk+1) as the gradient at average state ∇f̃j(xk)

plus an error.

∇f̃j(zjk+1) = ∇f̃j(xk) + ejk+1, (2.12)

where ‖ejk+1‖ ≤ Ñ‖xk − zjk+1‖ and Ñ is the Lipschitz constant of gradients ∇f̃j(x). This follows from the
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Lipschitz continuity of gradient. Next, we construct a bound on the last term from (2.11),

B = (xk − v)T

 n∑
j=1

∇f̃j(zjk+1)

 =

n∑
j=1

(xk − v)T
(
∇f̃j(xk) + ejk+1

)

= (xk − v)T

 n∑
j=1

∇f̃j(xk)


︸ ︷︷ ︸

B1

+

n∑
j=1

(xk − v)T
(
ejk+1

)
︸ ︷︷ ︸

B2

. (2.13)

Next, we individually construct bounds on B1 and B2. The first term B1 can be rewritten using the aggregate

invariance property 2.5 followed by using gradient inequality for convex functions to construct the bound

B1 = (xk − v)T

 n∑
j=1

∇f̃j(xk)

 = (xk − v)T (∇f(xk)) ≥ f(xk)− f(v). (2.14)

The bound on B2 is slightly tricky and requires some manipulation. We exploit Lipschitz continuity of

gradients as discussed above in (2.12) and the fact that 2‖a‖ ≤ ‖a‖2 + 1 for any a to get,

−B2 =

n∑
j=1

(v − xk)T
(
ejk+1

)
≤

n∑
j=1

‖v − xk‖‖ejk+1‖

≤
n∑
j=1

Ñ‖xk − v‖‖xk − zjk+1‖

≤ nÑ
(

max
j
‖xk − zjk+1‖

)
‖xk − v‖

≤ n

2
Ñ

(
max
j
‖xk − zjk+1‖

)(
1 + ‖xk − v‖2

)
. (2.15)

Using the bounds presented in (2.14) and (2.15) in the iterate relation in (2.11), we get,

‖xk+1 − v‖2 ≤ ‖xk − v‖2 + α2
k+1L̃

2 − 2
αk+1

n
(f(xk)− f(v)) + αk+1Ñ

(
max
j
‖xk − zjk+1‖

)(
1 + ‖xk − v‖2

)
≤
[
1 + αk+1Ñ

(
max
j
‖xk − zjk+1‖

)]
‖xk − v‖2 − 2

αk+1

n
(f(xk)− f(v))

+ α2
k+1L̃

2 + αk+1Ñ

(
max
j
‖xk − zjk+1‖

)
.

27



Proof of Theorem 1

Proof. The proof of Theorem 1 has two parts. First, we prove that the iterates from every node converge to

a common value, i.e. limk→∞ ‖zjk+1 − xk‖ = 0. Second, we prove that the common value, xk, converges to

an optimum x∗ ∈ X .

In what follows, we invoke Lemma 1 to show iterates form every node converge to the average value. Recall,

Lemma 1 was for scalars and we intend to invoke it for each coordinate separately. Moreover, ak represents

a coordinate of wk, bk represents a coordinate of xk, ck represents yk and dk represents a coordinate of zk.

Observe that the gradient updates decrease in magnitude as the number of iterations increases, i.e.

lim
k→∞

αk∇f̃i(zik) = 0 for each i and for each coordinate, since limk→∞ αk = 0. This satisfies the sufficient

condition in Lemma 1 (b). It guarantees that each coordinate of the iterate zik eventually tracks the average

xk for that coordinate, i,e, lim
k→∞

|zik+1[p] − xk[p]| = 0 for each p = 1, . . . , d, where zik+1[p], xk[p] represents

the pth coordinate of local iterate zik and aggregate xk. This also guarantees lim
k→∞

∑d
p=1 |zik+1[p]− xk[p]| =

lim
k→∞

‖zik+1 − xk‖1 = 0. For finite dimensional spaces, we have norm equivalence relations, i.e. if q lies in

finite dimensional space Rd then ‖q‖2 ≤ ‖q‖1. This directly gives us lim
k→∞

‖zik+1 − xk‖2 = 0. This proves the

first part of Theorem 1.

Before we move on to the proof of the second part we make another observation,

∞∑
k=1

αk‖αk∇f̃i(zik)‖2 =

∞∑
k=1

α2
k‖∇f̃i(zik)‖2 ≤ L̃

∞∑
k=1

α2
k <∞.

From the norm equivalence in finite dimensional spaces, we have for q ∈ Rd, ‖q‖1 ≤
√
d ‖q‖2. Using this

norm equivalence and the above expression we get,
∑∞
k=1 αk‖αk∇f̃i(zik)‖1 <∞. From the definition of ‖‖1,

this directly gives us
∑∞
k=1 αk|αk∇f̃i(zik)[p]| < ∞ for each p = 1, . . . , d. This is the sufficient condition

in Lemma 1 (c). It implies that
∑∞
k=0 αk|zik+1[p] − xk[p]| < ∞ for each i and for each p. By adding this

expression for each p we directly get
∑∞
k=0 αk‖zik+1 − xk‖1 < ∞. From norm equivalence we can state,∑∞

k=0 αk‖zik+1 − xk‖2 < ∞ for each i. Consequently, we can write
∑∞
k=0 αk maxi ‖zik+1 − xk‖2 < ∞. Note

that this term appears twice in the expression for Iterate Lemma.

The proof for second part is quite straightforward given Lemma 3 and the key observations made above.

Consider Lemma 3 with v = x∗ ∈ X ∗ and we get

‖xk+1 − x∗‖2 ≤
[
1 + αk+1Ñ

(
max
j
‖xk − zjk+1‖

)]
‖xk − x∗‖2 − 2

αk+1

n
(f(xk)− f(x∗)) + α2

k+1L̃
2

+ αk+1Ñ

(
max
j
‖xk − zjk+1‖

)
.

This has the exact same structure as the dissipation inequality in Lemma 2. Observe {f(xk) − f(x∗)}

is a scalar, non-negative and real sequence. First we use
∑∞
k=0 αk maxi ‖zik+1 − xk‖ < ∞ and αk+1 ≤

αk to show that
∑∞
j=0 αk+1 maxj ‖xk − zjk+1‖ < ∞. Moreover, we use these statements to show
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∑∞
j=0

(
α2
k+1L̃

2 + Ñαk+1

(
maxj ‖xk − zjk+1‖

))
< ∞ following

∑
k α

2
k < ∞ and

∑∞
k=0 αk maxi ‖zik+1 −

xk‖ < ∞. This satisfies the conditions in Lemma 2. We conclude,
∑∞
k=0 αk(f(xk) − f(x∗)) < ∞ and

limk→∞ ‖xk − x∗‖ exists and is finite. Since
∑∞
k=0 αk =∞ and the function f(x) is convex and continuous;

we conclude that lim infk→∞ f(xk) = f(x∗) and sequence {xk} converges to the optimum x∗ ∈ X ∗.

Combining both the statements we get that, each iterate zik tracks xk and the iterate average xk asymptoti-

cally converges to the optimizer x∗, implying that the iterates zik converge to the optimum asymptotically.

Proof of Theorem 3

Proof. The proof of Theorem 3 follows from Lemma 3 and a few elementary results on sequences and series.

We begin our analysis by considering the time weighted average of state x̂jT =
∑T
k=0 αk+1x

j
k∑T

k=0 αk+1
, along with

the fact that x̂T = 1
n

∑n
j=1 x̂

j
T =

∑T
k=0 αk+1xk∑T
k=0 αk+1

and the convexity of f(x), we get,

f(x̂T )− f∗ = f

(∑T
k=0 αk+1xk∑T
k=0 αk+1

)
− f∗

≤
∑T
k=0 αk+1f(xk)∑T

k=0 αk+1

− f∗

=

∑T
k=0 αk+1 (f(xk)− f∗)∑T

k=0 αk+1

. (2.16)

Next, we recall that the dissipation relation in Lemma 3 is η2
k+1 ≤ (1 +Fk)η2

k − cαk+1(f(xk)− f(x∗)) +Hk,

where c = 2/n and Fk, Hk are defined in Lemma 3. We can rearrange terms to get αk+1(f(xk)− f(x∗)) ≤

(1/c)
(
(1 + Fk)η2

k − η2
k+1 +Hk

)
. We use it to bound (2.16) as follows

f(x̂T )− f∗ ≤
∑T
k=0(1/c)

(
(1 + Fk)η2

k − η2
k+1 +Hk

)∑T
k=0 αk+1

. (2.17)

Canceling the telescoping terms in (2.17) and ignoring the negative term in the upper bound, we get

f(x̂T )− f∗ ≤ (1/c)

(
η2

0 +
∑T
k=0

(
Fkη

2
k +Hk

)∑T
k=0 αk+1

)
. (2.18)

Note that η2
0 depends only on the initialization the algorithm (xj0) and the optimizer (x∗). Given an

initialization, we can state that there exists D0 < ∞ such that η2
0 < D0. Theorem 1 we know that

limk→∞ η2
k = 0 implying that there exists a constant D1 such that η2

k < ε for all k ≥ D1. Consequently, there

exists D2 , max{η2
0 , η

2
1 , . . . , η

2
D1
, ε} that satisfies η2

k ≤ D2 < ∞ (Theorem 2.3.2, [76]). If αk+1 = 1/
√
k + 1,

we have from comparison test,
∑T
k=0 αk+1 ≥

√
T + 1. This along with (2.18), we get,

f(x̂T )− f∗ ≤ (1/c)
D0 +

∑T
k=0 (D2Fk +Hk)√
T + 1

. (2.19)
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We first construct a bound on
∑T
k=0 Fk. That is,

∑T
k=0 Ñαk+1 maxj ‖xk−zjk+1‖. Recall from equivalence

of norms in finite dimensional spaces, ‖q‖2 ≤ ‖q‖1 and ‖q‖1 ≤
√
d‖q‖2 for q ∈ Rd. We use the Lemma 1(a)

to simplify the bound. Let D = maxj maxp ‖xj0[p]‖1 and we have

T∑
k=0

Fk ≤
T∑
k=0

Ñαk+1 max
j
‖xk − zjk+1‖1

(a)

≤
T∑
k=0

Ñαk+1 max
j

d∑
p=1

|xk[p]− zjk+1[p]|

(b)

≤
T∑
k=1

Ñαk+1 max
j

[
d∑
p=1

8

δ

[
Dλk +

k∑
t=1

λk−tαt‖∇f̃j(zjt )‖1

]]
+ Ñα1 max

j
‖x0 − zj1‖1

(c)

≤
T∑
k=1

Ñαk+1 max
j

[
d∑
p=1

8

δ

[
Dλk +

k∑
t=1

λk−tαt‖∇f̃j(zjt )‖1

]]
+D3

(d)

≤ 8Ñd

δ

(
D

T∑
k=1

αk+1λ
k +
√
d L̃

T∑
k=1

αk+1

k∑
t=1

λk−tαt

)
+D3,

where (a) follows from the definition of ‖·‖1, we get (b) by using Lemma 1 (a) and we get (c) by defining D3 =

Ñα1 maxj ‖x0 − zj1‖1. Finally, we get (d) by using the observation that the perturbation is gradient based

update and the fact that ‖∇f̃j(zjt )‖1 ≤
√
dL̃. Recall, the proof of Theorem 1 in the prior section, we showed

that if λ < 1 then the series
∑
k αkλ

k converges for non-increasing αk. Let us set C0 = Dd
∑T
k=1 αk+1λ

k

and recall that αk+1 ≤ αt for all t ≤ k + 1, to get

T∑
k=0

Fk ≤
8Ñ

δ

(
C0 + d3/2L̃

T∑
k=1

k∑
t=1

λk−tα2
t

)
+D3. (2.20)

Note α2
t = 1/t following step-size definition.

We can rewrite d3/2L̃
∑T
k=1

∑k
t=1(λk−t/t) = d3/2L̃

∑T
k=1

(
(
∑T−k
j=0 λj)/k

)
≤ d3/2L̃

∑T
k=1(1/(1 − λ))/k ≤

C1 log(T + 1) + C1 where C1 = d3/2L̃/(1− λ). This gives us,

T∑
k=0

Fk ≤
8Ñ

δ
(C0 + C1 + C1 log(T + 1)) +D3.

Next, we move on to compute
∑T
k=0Hk. Recall from Lemma 3 that Hk = Fk + α2

k+1L̃
2.

T∑
k=0

Hk =

T∑
k=0

(
α2
k+1L̃

2 + Fk

)
=

T∑
k=0

Fk +

T∑
k=0

α2
k+1L̃

2 =

T∑
k=0

Fk +

T∑
k=0

L̃2

k + 1

≤

(
8Ñ

δ
(C0 + C1 + C1 log(T + 1)) +D3

)
+ L̃2 log(T + 1). (2.21)
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Together using (2.20) and (2.21) in (2.19) we get,

f(x̂T )− f∗ ≤ (1/c)
D0 + (1 +D2)

(
8Ñ
δ

(
C0 + d3/2L̃

∑T
k=1

∑k
t=1 λ

k−tα2
t

)
+D3

)
+ L̃2 log(T + 1)

√
T + 1

≤ O
(
L̃2 log(T + 1)√

T + 1

)
. (2.22)

Let us define ẑjT+1 =
∑T
k=0 αk+1z

j
k+1∑T

k=0 αk+1
. Finally, we use (2.22) to get,

f(ẑjT+1)− f∗ = f(ẑjT )− f(x̂T ) + f(x̂T )− f∗

(a)

≤ nL
∥∥∥∑T

k=0 αk+1z
j
k+1∑T

k=0 αk+1

−
∑T
k=0 αk+1xk∑T
k=0 αk+1

∥∥∥+O
(
L̃2 log(T + 1)√

T + 1

)
(b)

≤ nL

∑T
k=0 αk+1‖zjk+1 − xk‖√

T + 1
+O

(
L̃2 log(T + 1)√

T + 1

)
(c)

≤ O
(
L̃2 log(T + 1)√

T + 1

)
.

where (a) follows from (2.22) and the boundedness of objective function gradients, (b) follows from∑T
k=0 αk+1 ≥

√
T + 1 and (c) follows from

∑T
k=0 αk+1‖zjk+1 − xk‖ = 1

Ñ

∑T
k=0 Fk and (2.20).

2.4 Function Sharing Algorithm for Undirected Graphs

We presented Function Sharing based strategy for privacy preserving distributed optimization over undi-

rected graphs in [20]. We first present the algorithm followed by a review of some key results for FS-DGD

(Algorithm 2) and proofs. Note that we consider a slight modification to the distributed optimization prob-

lem in this section. Agents are interested in collaboratively minimizing the aggregate function f(x) over a

convex, non-empty and compact set X . That is agents solve,

minimize
x∈X

f(x) ,
n∑
i=1

fi(x), (2.23)

where agent i accesses local objective function fi(x).

2.4.1 Function Sharing - Distributed Gradient Descent

We propose Function Sharing - Distributed Gradient Descent (FS-DGD, Algorithm 2) protocol for privacy

preserving distributed optimization over undirected networks. FS-DGD essentially involves two steps. In the

first step we perform obfuscation to transform private objective function to perturbed objective function. In

the second step we run Distributed Gradient Descent protocol as described in [8].
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Algorithm 2 Function Sharing - Distributed Gradient Descent, FS-DGD [20]

Input: Each node j has access to fj(x).
Result: Iterates converge to x∗ ∈ arg min

x∈X

∑n
j=1 fj(x)

♦ Obfuscation Step
1: Each node j sends function Rji(x) to neighbors i ∈ Nj
2: Each node j perturbs its objective function to get new objective function f̃j(x)

f̃j(x) = fj(x) +
∑
i∈Nj

Rij(x)−
∑
i∈Nj

Rji(x)

♦ Distributed Gradient Descent Algorithm is run at each node.
3: Initialize: xj1 ∈ X for each j ∈ V.
4: for Iteration Number k = 1, 2, . . . do
5: Information Fusion: vjk =

∑
i∈Ni Bk[j, i]xik

6: Projected Gradient Descent:

xjk+1 = PX
[
vjk − αk∇f̃j(v

j
k)
]

7: end for

The obfuscation step (lines 1-2, Algorithm 2) is exactly the same as in directed graphs, if we view each

undirected edge as consisting of two directed edges. Next, agents run Distributed Gradient Descent where

each agent j uses f̃j(x) as the objective function. DGD uses a combination of consensus dynamics and

local gradient descent to distributedly find a minimizer of
∑n
j=1 f̃j(x). As shown on line 5 (Algorithm 2),

each agent performs a consensus step (also called information fusion), which involves computing a convex

combination of the state estimates. The resulting convex combination is denoted by vjk. Matrix Bk used in

this step is a doubly stochastic matrix [8], which can be constructed by the agents using previously proposed

techniques, such as Metropolis weights [77].

Agent j performs projected gradient descent step (line 6, Algorithm 2) involving descent from vjk along the

local objective function’s gradient ∇f̃j(vjk), followed by projection onto the feasible set X . This step yields

the new state estimate at agent j, namely, xjk+1. Note that this step differs from FS-GP algorithm presented

in Section 2.3.1. While we perform optimization over Rd in the optimization over directed graphs case, we

perform optimization over compact set X in the optimization over undirected graphs case. The step sizes

αk, are non-summable yet square summable, i.e.
∑
k αk =∞ and

∑
k α

2
k <∞.

Prior work [8] analyzes the convergence of DGD Algorithm for convex optimization problem, i.e. fi(x) is

convex for each i. The result states that the agents’ state estimate asymptotically reaches consensus on an

optimum in X ∗. We prove convergence of FS-DGD in Section 2.4.4. We show DGD algorithm solves convex

sum of non-convex functions [67] and this leads us to show that FS-DGD iterates converge to an optimizer

in X ∗ [20, 69].
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2.4.2 Main Results

We discuss correctness, privacy and finite-time rate results for FS-DGD algorithm. We consider the problem

defined in Section 2.2 along with the gradient boundedness and Lipschitz continuous gradient assumptions.

We assume that the graph Gk is strongly connected at each k.6 We also assume that the decision set X is

convex, compact and non-empty.

Theorem 4 (Correctness of FS-DGD, [20]). Consider a distributed optimization problem and assumptions

from Section 2.2. Assume that the graph Gk is strongly connected at each k. Iterates xjk for FS-DGD

(Algorithm 2) converges to an optimum x∗ ∈ X ∗ asymptotically.

Theorem 4 guarantees that the sequence of iterates generated by FS-DGD converge to the optimum. Theo-

rem 4 guarantees that privacy does not impact the correctness of the algorithm (accuracy).

We can show that FS-DGD preserves privacy of local objective functions as per Definition 1. If the local

objective functions belong to a set closed under addition, then we can design set of distributed optimization

problems similar to F in Section 2.3.2 such that the adversarial observations are compatible with all problems

in set F .

Theorem 5. (Privacy via Non-identifiability of FS-DGD, [20]) Consider the communication graph at time

zero, G0.

(P1) Let i be a non-adversarial node, then minimum degree of G0 ≥ τ + 1 is necessary and sufficient for

privacy of fi(x) as per Definition 1. In other words, the adversary cannot learn fi(x).

(P2) Assume that I is a strict subset of non-adversarial nodes, then vertex connectivity of G0, κ(G0) ≥ τ+1,

is necessary and sufficient for privacy of nodes in I as per Definition 1. In other words, the adversary

cannot learn
∑
i∈I fi(x).

The privacy result in Theorem 5 for undirected graphs has a similar structure as Theorem 2. We require the

graph to have a vertex connectivity of at least τ + 1 for privacy. This condition is tight. Intuitively, privacy

demands that each agent or group of agents have at least τ + 1 neighbors, so that even if τ of them are

adversarial there is significant ambiguity due to perturbation (noise) function shared between non-adversarial

neighbor. However, as discussed in Section 2.3.2, the correctness property of our algorithm precludes any

privacy protection afforded to aggregate objective function f(x). We also forgo the privacy protections that

could be provided to the group of all non-adversarial agents i.e. V \ A.

2.4.3 Proof of Theorem 5

Proof. Necessity (P2):

6This can be further relaxed to B-connectedness but we have not explicitly considered it here.
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Let us assume that κ(G0) ≤ τ . Hence, if τ nodes are deleted (along with their edges) the graph becomes

disconnected to form components I1 and I2. Let the adversarial nodes be denoted by the set {1, . . . , τ}.

Now consider that τ nodes, that we just deleted, are corrupted by an adversary. Agents generate correlated

noise function using obfuscation step. All the perturbation functions Sji(x) shared by nodes in I1 (with

agents outside I1) are observed by the adversary. Under our adversary model, an adversary may estimate

the true objective function easily by using

∑
l∈I1

fl(x) =
∑
l∈I1

f̂l −

 j=τ∑
j=1,i∈I1

Sji(x)−
j=τ∑

j=1,i∈I1

Sij(x)

 .

This gives us contradiction. Hence, κ(G0) > τ is necessary.

Sufficiency (P2): We present a constructive method to show that given an execution and corresponding

observations, any distributed optimization problem in F is compatible with the execution.

We conservatively assume that the adversary can observe the obfuscated functions, f̂i(x), the private

objective functions of corrupted nodes fa(x) (a ∈ A) and noise functions transmitted from and received by

each of the corrupted agents are denoted by SaJ and SKa (J ∈ Na and K such that a ∈ NK , for all a ∈ A).

Since the corrupted nodes also follow the same protocol (Algorithm 2), the adversary is also aware of the

fact that the private objective functions have been obfuscated by function sharing approach, i.e.

f̂i(x) = fi(x) +
∑

k:i∈Nk

Ski(x)−
∑
j∈Ni

Sij(x)

One can rewrite this transformation approach, using signed incidence matrix of bidirectional graph G

[78, 79]

f̂ = f + BS, (2.24)

where f̂ =
[
f̂1(x), f̂1(x), . . . , f̂n(x)

]T
is a n× 1 vector of obfuscated functions f̂i(x) for i = {1, 2, . . . , n}, and

f =
[
f1(x), f1(x), . . . , fn(x)

]T
is a n × 1 vector of private (true) objective functions, fi(x). Moreover, B is

the incidence matrix and S is the vector of noise functions Sij(x). Notice, B =
[
BC ,−BC

]
, where BC (of

dimension n × |E|/2) is the incidence matrix of a directed graph obtained by considering only one of the

directions of every bidirectional edge in graph G.7 Each column of B represents a directed communication

link between any two agents. Hence, any bidirectional edge between agents i and j is represented as two

directed links, i to j, (i, j) ∈ E and j to i (j, i) ∈ E and corresponds to two columns in B. S represents a

|E|×1 vector consisting of functions Sij(x). Each entry in vector S, function Sij(x) corresponds to a column

7This represents an orientation of graph G [78].
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of B which, in turn corresponds to link (i, j) ∈ E ; and similarly, function Sji(x) corresponds to a different

column of B which, in turn corresponds to link (j, i) ∈ E . Note that `th row of column vector S corresponds

to `th column of incidence matrix B.

We will show that, two different sets of true objective functions (f and fo) belonging to F and correspond-

ingly two different set of arbitrary functions (S and G), can lead to exactly same execution and observations

for the adversary.8 We want to show that both these cases can result in same obfuscated objective functions

f̂ = f + BS = fo + BG. (2.25)

We will show that given any set of private objective functions fo, suitably selecting arbitrary functions

Gij(x) corresponding to links incident at non-adversarial agents, it is possible to make fo indistinguishable

from original private objective functions f , solely based on the execution observed by the corrupted nodes.

We do so by determining entries of G, which are arbitrary functions that are dissimilar from Sij(x) when i

and j are both non-adversarial. The design G such that the obfuscated objective functions f̂ are the same

for both situations.

Since corrupted nodes observe arbitrary functions corresponding to edges incident to and from them, we

set the arbitrary functions corresponding to edges incident on corrupted nodes as Gka(x) = Ska(x) and

arbitrary functions corresponding to edges incident away the corrupted nodes as Gaj(x) = Saj(x) (where

k : a ∈ Nk and j ∈ Na, for all a ∈ A). Now, we define G̃ as the vector containing all elements of G

except those corresponding to the edges incident to and from the corrupted nodes.9 Similarly, we define B̃

to be the new incidence matrix obtained after deleting all edges that are incident on the corrupted nodes

(i.e. deleting columns corresponding to the links incident on corrupted nodes, from the old incidence matrix

B). We subtract Gaj(x) and Gka(x) (∀ a ∈ A) by subtracting them from [̂f − fo] in (2.25) to get effective

function difference denoted by [̂f − fo]eff as follows,

[̂f − fo] = BG = f − fo + BS,

[̂f − fo]eff = [̂f − fo]−
∑
a∈A

 ∑
k:a∈Nk

Gka(x)−
∑
j∈Na

Gaj(x)

 = B̃G̃, (2.26)

where if b entries of G were fixed then G̃ is a (|E| − b) × 1 vector and B̃ is a matrix with dimension

n × (|E| − b).10 The columns deleted from B correspond to the edges that are incident to and from the

corrupted nodes. Hence, B̃ represents the incidence of a graph with these edges deleted.

We know from the κ(G0) > τ of the graph, that B̃ connects all the non-adversarial agents into a connected

8f and fo are dissimilar and arbitrarily different.
9The only entries of G, that are undecided at this stage are included in G̃. These are functions Gi,j(x) such that i, j are

both non-adversarial.
10Total number of edges incident to and from corrupted nodes is b. We fixed them to be the same as corresponding entries

from S, since the adversary can observe them.
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component.11 Since, the remaining edges form a connected component, the edges can be split into two

groups. A group with edges that form a spanning tree over the good nodes (agents) and all other edges in

the other group (see Remark 1 and Figure 2.2). Let B̃ST represent the incidence matrix of the spanning

tree and G̃ST represents the arbitrary functions corresponding to the edges of the spanning tree.12 B̃EE

represents the incidence matrix formed by all other edges and G̃EE represents the arbitrary functions related

to all other edges. We get from (2.26),

[̂f − fo]eff =
[
B̃ST B̃EE

]G̃ST

G̃EE

 = B̃STG̃ST + B̃EEG̃EE. (2.27)

We now arbitrary assign functions to elements of G̃EE and then compute the arbitrary weights for G̃ST. We

know that the columns of B̃ST are linearly independent, since B̃ST is the incidence matrix of a spanning

tree (cf. Lemma 2.5 in [80]). Hence, the left pseudoinverse of B̃ST exists; and B̃†STB̃ST = I, giving us the

solution for G̃ST, 13,14

G̃ST = B̃†ST

[
[̂f − fo]eff − B̃EEG̃EE

]
. (2.28)

Using the construction shown above, for any fo we can construct G such that the execution as seen by

corrupted nodes is exactly the same as the original problem where the objective is f and the arbitrary

functions are S. An honest-but-curious adversary cannot distinguish between two executions involving fo

and f leading to privacy claim.

Necessity (P1): The proof of necessity here (for P1) follows the proof of necessity for P2. We prove this

statement by contradiction. Assume that a node i has degree τ and we have |A| = τ adversaries.

Agents generate correlated noise function as shown in the obfuscation step. All the perturbation functions

Sji(x) shared by agent i (with agents in neighborhood of i) are observed by the adversary. Hence, the true

objective function is easily estimated by using,

fi(x) = f̂i −

j=τ∑
j=1

Sji(x)−
j=τ∑
j=1

Sij(x)

 .

This gives us contradiction. Hence, degree > τ is necessary.

Sufficiency (P1): We can use a construction similar to the sufficiency proof for P2. Instead of considering all

11The adversarial nodes become disconnected due to the deletion of edges incident on corrupted nodes (previous step).
12Its columns correspond to the edges that form spanning tree.
13A† represents the pseudoinverse of matrix A.
14An alternate way to look at this would be to see that B̃T

STB̃ST represents the edge Laplacian [81] of the spanning tree.

The edge Laplacian of an acyclic graph is non-singular and this also proves that left-pseudoinverse of B̃ST exists.
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(b) Step-1. Fix GA ,l and Gl,A .
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(c) Step-2. Arbitrarily select GEE.
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(d) Step-3. Solve for GST using (2.28).

Figure 2.2: An example of construction used for proving Theorem 5. Network has n = 7 nodes and a
adversary with τ = 2 corrupted nodes. The graph satisfies κ(G) > 2.

objective functions f , we consider fi(x). Note that deleting adversarial agents may lead to fragmented graph

components. We need to run the construction procedure mentioned above for each connected component.

In what follows, we summarize the construction used in our sufficiency proof. This method allows one to

construct similar execution for many different sets of private objective functions.

Remark 1 (Method for Constructing G). We present an example for the construction used in the above

proof. Let us consider a system of n = 7 agents communicating under a topology with κ(G) > 2 (see

Figure 2.2a). An adversary with two corrupted nodes (A = {6, 7}, τ = 2) is a part of the system. We can

divide the task of constructing G into three steps:

1. Fix Gal and Gla (links incident on corrupted nodes) to be the corresponding entries in S.
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2. Arbitrarily select the noise/perturbation functions corresponding to non spanning tree edges (GEE).

3. Solve for the functions corresponding to the spanning tree (GST) using (2.28).

We first follow Step 1 and fix Gka = Ska and Gaj = Saj (where k : a ∈ Nk and j ∈ Na, for all a ∈ A).

Step 1 follows form the fact that the adversary observes Ska and Saj, and hence they need to be same in

both executions. This is followed by substituting the known entries in G and subtract them from the left-

hand side as shown in (2.26). This corresponds to the deletion of all incoming and outgoing edges from the

corrupted nodes. The incidence matrix of this new graph is denoted by B̃. The edges in the new graph can

be decomposed into two groups - a set containing edges that form a spanning tree and a set that contains all

other edges. This is seen in Figure 2.2c where the red edges are all the remaining links (incidence matrix,

B̃EE); and Figure 2.2d where the green edges form a spanning tree (incidence matrix, B̃ST) with Agent 1 as

the root and all other non-adversarial agents as its leaves (agents 2, 3, 4, 5).

2.4.4 Proof of Theorem 4

The proofs for FS-DGD follow similar structure as the proofs for FS-GP. We begin with disagreement lemma,

followed by an iterate lemma and convergence result. Let ρ be the smallest non-zero entry of Bk, the doubly

stochastic weight matrix used for consensus based averaging. We define transition matrix product, Φ(k, s),

as the product of doubly stochastic weight matrices Bk, i.e. ∀ k ≥ s > 0

Φ(k, s) = BkBk−1 . . . Bs+1Bs.

We first note two important results from literature. The first result relates to convergence of non-negative

sequences (Lemma 4) and the second result describes the linear convergence of transition matrix to 1
n11T

(Lemma 5).

Lemma 4 (Lemma 3.1, [38]). Let {ζk} be a non-negative scalar sequence. If
∑∞
k=0 ζk <∞ and 0 < β < 1,

then
∑∞
k=0

(∑k
j=0 β

k−jζj

)
<∞.

Lemma 5 (Corollary 1, [82]). Let the graph G be connected, then,

1. limk→∞ Φ(k, s) = 1
n11T for all s > 0.

2. |Φ(k, s)[i, j]− 1
n | ≤ θβ

k−s+1 for all k ≥ s > 0, where θ = (1− ρ
4n2 )−2 and β = (1− ρ

4n2 ).

Lemma 6 (Disagreement Lemma, [20]). Consider the FS-DGD algorithm, let G be connected, then for θ < 1,

β < 1 and doubly stochastic matrices Bk, we have,

max
j∈V
‖xjk+1 − xk+1‖ ≤ nθβk max

i∈V
‖xi1‖+ nθL̃

k∑
l=2

βk+1−lαl−1 + 2αkL̃.
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Observe that the Disagreement Lemma (Lemma 1 in [20]) uses L+ ∆ instead of L̃. They are the same and

elaborate the effect of noise function on the gradient bound for perturbed objective functions.

Proof. Define for all j ∈ V and all k,

zjk+1 = xjk+1 −
n∑
i=1

Bk[j, i]xik (2.29)

=⇒ xjk+1 = zjk+1 +

n∑
i=1

Bk[j, i]xik. (2.30)

We then unroll the iterations to get xjk+1 as a function of zjk+1, and xik and doubly stochastic weight matrix

at current and previous iteration,

xjk+1 = zjk+1 +

n∑
i=1

[
Bk[j, i]

(
zik +

n∑
l=1

Bk−1[i, l]xlk−1

)]
.

We perform the above mentioned unrolling successively and use the definition of transition matrix Φ(k, s),

xjk+1 = zjk+1 +

n∑
i=1

Φ(k, 1)[j, i]xi1 +

k∑
l=2

[
n∑
i=1

Φ(k, l)[j, i]zil

]
. (2.31)

Note that Φ(1, 1) = B1. We verify the expression for k = 1, and we get the relationship xj2 = zj2 +∑n
i=1 Φ(1, 1)[j, i]xi1.

We can write the relation for iterate average, xk, and use doubly stochastic nature of Bk to get,

xk+1 =
1

n

n∑
j=1

xjk+1 =
1

n

n∑
j=1

(
n∑
i=1

Bk[j, i]xik + zjk+1

)
=

1

n

 n∑
i=1

 n∑
j=1

Bk[j, i]

xik +

n∑
j=1

zjk+1


= xk +

1

n

n∑
j=1

zjk+1 = x1 +
1

n

k+1∑
l=2

n∑
j=1

zjl . (2.32)

Using relations for xk+1 (2.32) and xjk+1 (2.31) to get an expression for the disagreement. We further use

the property of norm ‖
∑
a‖ ≤

∑
‖a‖, ∀a, to get,

‖xjk+1 − xk+1‖ ≤
n∑
i=1

∣∣∣∣ 1n − Φ(k, 1)[j, i]

∣∣∣∣ ‖xi1‖+

k∑
l=2

n∑
i=1

∣∣∣∣ 1n − Φ(k, l)[j, i]

∣∣∣∣ ‖zil‖+ ‖zjk+1‖+
1

n

n∑
i=1

‖zik+1‖.

(2.33)

We use Lemma 5 to bound terms of type
∣∣ 1
n − Φ(k, l)[j, i]

∣∣ and maxi∈V ‖xi1‖ to bound ‖xi1‖, to get,

‖xjk+1 − xk+1‖ ≤ nθβk max
i∈V
‖xi1‖+ θ

k∑
l=2

βk+1−l
n∑
i=1

‖zil‖+ ‖zjk+1‖+
1

n

n∑
i=1

‖zik+1‖. (2.34)
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We now bound each of the norms ‖zjk‖, using the fact that vjk ∈ X , the non-expansive property of projection

operator and gradient boundedness,

‖zjk+1‖ = ‖PX [vjk − αk
(
∇f̃j(vjk)

)
]− vjk‖

≤ αk‖∇f̃j(vjk)‖

≤ αkL̃. (2.35)

Note that we used the gradient boundedness of perturbation objective functions to obtain the above relation.

Combining (2.34) and (2.35),

max
j∈V
‖xjk+1 − xk+1‖ ≤ nθβk max

i∈V
‖xi1‖+ nθL̃

k∑
l=2

βk+1−lαl−1 + 2αkL̃.

Next, we develop an iterate lemma to construct a bound on distance between iterate and optimum.

Lemma 7 (Iterate Lemma, [20]). Consider the distributed optimization problem presented in Section 2.2.

Let η2
k =

∑n
j=1 ‖x

j
k − y‖2 and δjk = xjk − xk. We have for all v ∈ X and k > 0,

η2
k+1 ≤ (1 + Fk) η2

k − 2αk (f(vk)− f(y)) +Hk,

where Fk = αkÑ maxj∈V ‖δjk‖ and Hk = 2αkn
(
L̃+ Ñ

2

)
maxj∈V ‖δjk‖+ α2

knL̃
2.

Observe that Iterate lemma (Lemma 2 in [20]) as seen before uses L+ ∆ instead of L̃.

Proof. To simplify analysis, we adopt the following notation,

η2
k =

n∑
j=1

‖xjk − y‖
2, (2.36)

ξ2
k =

n∑
j=1

‖vjk − y‖
2. (2.37)

Note, ηk and ξk are both functions of y, however for simplicity we do not explicitly show this dependence.

Moreover, we also use the notation δjk = xjk − xk.

Note, PX [y] = y for all y ∈ X . Using the non-expansive property of the projection operator, and the

projected gradient descent in FS-DGD algorithm to get,

‖xjk+1 − y‖
2 = ‖PX

[
vjk − αk

(
∇f̃j(vjk)

)]
− y‖2 ≤ ‖vjk − αk

(
∇f̃j(vjk)

)
− y‖2

= ‖vjk − y‖
2 + α2

k‖∇f̃j(v
j
k)‖2 − 2αk

(
∇f̃j(vjk)

)T
(vjk − y). (2.38)
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Now we add the inequalities (2.38) for all agents j = 1, 2, . . . , n followed by using expressions for ηk and ξk

(2.36), (2.37). Next we use the boundedness of gradients, to get the following inequality,

η2
k+1 ≤ ξ2

k +

n∑
j=1

α2
k‖∇f̃j(v

j
k)‖2 − 2αk

n∑
j=1

(
∇f̃j(vjk)

)T
(vjk − y)

≤ ξ2
k +

n∑
j=1

α2
kL̃

2 − 2αk

n∑
j=1

(
∇f̃j(vjk)

)T
(vjk − y)

η2
k+1 ≤ ξ2

k + α2
knL̃

2 − 2αk

n∑
j=1

(∇f̃j(vjk))T (vjk − y). (2.39)

We use consensus relationship used for information fusion. We know that in D-dimension the consensus

step can be rewritten using Kronecker product of D-dimension identity matrix (ID) and the doubly stochastic

weight matrix (Bk) [83]. Consider the following notation of vectors. We use bold font to denote a vector

that is stacked by its coordinates. As an example, consider three vectors in R3 given by a = [ax, ay, az]
T ,

b = [bx, by, bz]
T , c = [cx, cy, cz]

T . Let a be a vector of a, b and c stacked by coordinates, then it is

defined as a = [ax, bx, cx, ay, by, cy, az, bz, cz]
T . Similarly we can write stacked model parameter vector

as, xk = [x1
k[1], x2

k[1], . . . , xnk [1], x1
k[2], x2

k[2], . . . , xnk [2], . . . , x1
k[D], . . . , xnk [D]]T . Next, we write the consensus

term using the new notation and Kronecker products and compare norms of both sides (2-norm),

vk = (ID ⊗Bk)xk (2.40)

vk − y = (ID ⊗Bk)(xk − y)

‖vk − y‖22 = ‖(ID ⊗Bk)(xk − y)‖22

≤ ‖(ID ⊗Bk)‖22‖(xk − y)‖22. (2.41)

We use the property of eigenvalues of Kronecker product of matrices. The eigenvalues of ID ⊗ Bk are

essentially D copies of eigenvalues of Bk. Since Bk is a doubly stochastic matrix, its eigenvalues are upper

bounded by 1. Recall that ‖A‖2 =
√
λmax(A†A) where A† represents the conjugate transpose of matrix

A and λmax represents the maximum eigenvalue. Observe that ID ⊗ Bk is a doubly stochastic matrix and

(ID⊗Bk)†(ID⊗Bk) is also doubly stochastic matrix since product of two doubly stochastic matrices is also

doubly stochastic. Clearly, ‖(ID ⊗Bk)‖22 = λmax((ID ⊗Bk)†(ID ⊗Bk)) ≤ 1,15 allowing us to show

ξ2
k = ‖vk − y‖22 ≤ ‖(xk − y)‖22 = η2

k. (2.42)

15An alternate way to prove this inequality would be to follow the same process used to prove (2.46) except that we start
with squared terms and use the doubly-stochasticity of Bk. We include this proof in Appendix H in [69].
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Merging the inequalities in (2.42) and (2.39), we get,

η2
k+1 ≤ η2

k + α2
knL̃

2−2αk

n∑
j=1

(∇f̃j(vjk))T (vjk − y)︸ ︷︷ ︸
Λ

. (2.43)

Typically, at this step one would use convexity of f̃j(x) to simplify the term Λ in (2.43). However, since

f̃j(x) can be non-convex we need to follow a few more steps before we arrive at the iterate lemma.

Consider the iterates vjk, the average vk , (1/n)
∑n
j=1 v

j
k and the deviation of iterate from the average,

qjk = vjk − vk. (2.44)

We now derive a simple inequality here that will be used later.

‖qjk‖ = ‖vjk − vk‖ = ‖
n∑
i=1

Bk[j, i]xik − vk‖

(a)
= ‖

n∑
i=1

Bk[j, i]xik − xk‖

(b)

≤
n∑
i=1

Bk[j, i]‖xik − xk‖

≤

(
n∑
i=1

Bk[j, i]

)
max
i∈V
‖xik − xk‖

(c)

≤ max
i∈V
‖xik − xk‖, (2.45)

where (a) follows from the fact that xk = vk, (b) from ‖
∑
i ai‖ ≤

∑
i ‖ai‖ for all ai and (c) follows from

column stochasticity of Bk. Note that similarly, we can derive another inequality that will be used later.

n∑
j=1

‖vjk − y‖
(a)
=

n∑
j=1

‖
n∑
i=1

Bk[j, i]xik − y‖

(b)
=

n∑
j=1

‖
n∑
i=1

Bk[j, i]
(
xik − y

)
‖

(c)

≤
n∑
j=1

n∑
i=1

Bk[j, i]‖xik − y‖

=

n∑
i=1

 n∑
j=1

Bk[j, i]

 ‖xik − y‖
(d)

≤
n∑
i=1

‖xik − y‖, (2.46)

where (a) follows from information fusion (consensus step) in FS-DGD, (b) follows from Bk being row stochas-
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tic, (c) from ‖
∑
i ai‖ ≤

∑
‖ai‖ for all ai and finally (d) follows from column stochasticity of Bk.

We use gradient Lipschiztness assumption and write the following relation,

∇f̃j(vjk) = ∇f̃j(vk) + ljk, (2.47)

where ljk is the (vector) difference between gradient computed at vjk (i.e. ∇f̃j(vjk)) and the gradient computed

at vk (i.e. ∇f̃j(vk)). Next, we bound the vector ljk, using Lipschitzness of gradients of perturbed functions,

max
j∈V
‖ljk‖ = max

j∈V
‖∇f̃j(vjk)−∇f̃j(vk)‖

≤ max
j∈V

Ñ‖vjk − vk‖ (2.48)

(a)

≤ Ñ max
j∈V
‖xjk − xk‖, (2.49)

where (a) follows from two facts, xk = vk and ‖vjk − vk‖ ≤ maxi∈V ‖xik − xk‖, see (2.45).

We use above expressions to bound the term Λ, in (2.43). We use vjk = vk + qjk from (2.44) and the

gradient relation in (2.47) to get,

Λ = −2αk

n∑
j=1

(∇f̃j(vjk))T (vjk − y) = 2αk

n∑
j=1

[
(∇f̃j(vk) + ljk)T (y − vk − qjk)

]
= 2αk [T1 + T2 + T3] ,

where T1 =

n∑
j=1

(
∇f̃j(vk)

)T
(y − vk), T2 =

n∑
j=1

(
∇f̃j(vk)

)T
(−qjk), and

T3 =

n∑
j=1

(ljk)T (y − vk − qjk) =

n∑
j=1

(ljk)T (y − vjk).

Individually T1, T2 and T3 can be bound as follows,

T1
(a)
=

n∑
j=1

(
∇f̃j(vk)

)T
(y − vk) = ∇f(vk)T (y − vk)

(b)

≤ f(y)− f(vk), (2.50)

where (a) follows from aggregate invariance property of obfuscation step as seen in (2.5) and (b) follows from

convexity of f(x).

Next we bound T2 as follows,

T2 =

n∑
j=1

(
∇f̃j(vk)

)T
(−qjk)

(a)

≤
n∑
j=1

‖∇f̃j(vk)‖‖(−qjk)‖

(b)

≤ L̃nmax
j∈V
‖qjk‖

(c)

≤ L̃nmax
j∈V
‖xjk − xk‖ = L̃nmax

j∈V
‖δjk‖, (2.51)
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where (a) follows from Cauchy-Schwarz Inequality, (b) follows boundedness of obfuscated objective function

gradients and (c) uses expression (2.45). Finally,

T3=

n∑
j=1

(ljk)T (y − vjk)

(a)

≤ max
j∈V
‖ljk‖

n∑
j=1

‖vjk − y‖

(b)

≤ Ñ

(
max
j∈V
‖qjk‖

) n∑
j=1

‖vjk − y‖

(c)

≤ Ñ

(
max
j∈V
‖xjk − xk‖

) n∑
j=1

‖vjk − y‖

(d)

≤ Ñ

(
max
j∈V
‖xjk − xk‖

) n∑
j=1

‖xjk − y‖


(e)

≤ Ñ

2

(
max
j∈V
‖δjk‖

) n∑
j=1

(
1 + ‖xjk − y‖

2
) , (2.52)

where (a) follows from property of norm, (b) follows from (2.48), (c) follows (2.45), (d) follows from (2.46)

and (e) follows from the definition of δjk and 2‖a‖ ≤ 1 + ‖a‖2 to bound term T3.

We combine the bounds on T1, T2 and T3 from (2.50), (2.51) and (2.52) to get,

Λ ≤ 2αk(f(y)− f(vk)) + 2αknL̃max
j∈V
‖δjk‖+ αkÑ max

j∈V
‖δjk‖

 n∑
j=1

(
1 + ‖xjk − y‖

2
)

≤ −2αk (f(vk)− f(y)) + 2αknL̃max
j∈V
‖δjk‖+ αkÑ max

j∈V
‖δjk‖

[
n+ η2

k

]
. (2.53)

Recall from (2.43),

η2
k+1 ≤ η2

k + α2
kn(L̃)2−2αk

n∑
j=1

(∇f̃j(vjk)− ejk)T (vjk − y)︸ ︷︷ ︸
Λ

. (2.54)

We replace Λ with its bound from (2.53), and use the fact that xk = vk to we replace, f(vk) with f(xk),

η2
k+1 ≤ η2

k + α2
kn(L̃)2 − 2αk (f(vk)− f(y)) + 2αkn(L̃) max

j∈V
‖δjk‖+ αkÑ max

j∈V
‖δjk‖

[
n+ η2

k

]
≤
(

1 + αkÑ max
j∈V
‖δjk‖

)
η2
k − 2αk (f(vk)− f(y)) + 2αkn(L̃+

Ñ

2
) max
j∈V
‖δjk‖+ α2

knL̃
2

≤ (1 + Fk) η2
k − 2αk (f(xk)− f(y)) +Hk, (2.55)

where Fk = αkÑ maxj∈V ‖δjk‖ and Hk = 2αkn(L̃+ Ñ
2 ) maxj∈V ‖δjk‖+ α2

knL̃
2.
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We first state a claim about asymptotic behavior of iterates xjk and correspondingly of maxj ‖δjk‖. The

claim is then used to prove Theorem 4.

Claim 8 (Consensus). All agents asymptoticaly reach consensus, i.e. for all i ∈ [n], j ∈ [n],

lim
k→∞

max
j
‖δjk‖ = 0 and lim

k→∞
‖xik − x

j
k‖ = 0.

Proof. We begin with the iterate disagreement relation in Lemma 6,

max
j∈V
‖δjk+1‖ ≤ nθβ

k max
i∈V
‖xi1‖︸ ︷︷ ︸

V1

+nθL̃

k∑
l=2

βk+1−lαl−1︸ ︷︷ ︸
V2

+2αkL̃︸ ︷︷ ︸
V3

. (2.56)

The first term V1 decreases exponentially with k. Hence, for any ε > 0, ∃ K1 = dlogβ
ε

3nθmaxi∈V ‖xi1‖
e such

that, ∀k > K1, we have V1 < ε/3.

For given ξ = ε(1 − β)/6βnθL̃, ∃K2 such that, αk < ξ, ∀ k ≥ K2, due to the non-increasing property of

αk and
∑
k α

2
k <∞. Observe that,

k−1∑
i=1

(
αiβ

k−i) =
(
α1β

k−1 + . . .+ αK2−1β
k−K2+1

)︸ ︷︷ ︸
A

+
(
αK2

βk−K2 + . . .+ αk−1β
1
)︸ ︷︷ ︸

B

.

We can bound the terms A and B individually as follows,

A = α1β
k−1 + α2β

k−2 + . . .+ αK2−1β
k−K2+1

(a)

≤ α1(βk−1 + . . .+ βk−K2+1)

≤ α1β
k−K2+1

(
1− βK2−1

1− β

)
(b)

≤ α1β
k−K2+1

1− β
, (2.57)

where (a) follows α1 ≥ αi ∀ i ≥ 1 and (b) follows 0 ≤ β < 1. Moreover,

B = αK2
βk−K2 + . . .+ αk−1β

1

(a)
< ξβ

(
1− βk−K2

1− β

)
(b)

≤ ξβ

1− β
, (2.58)

where (a) follows αi < ξ, ∀i ≥ K2 and (b) follows 0 ≤ β < 1. The right side of inequality in (2.57) is

monotonically decreasing in k (β < 1) with limit 0 as k → ∞. Hence ∃K3 > K2 such that A < ε/6nθL̃,

∀ k ≥ K3. We know αi < ξ = ε(1 − β)/6βnθL̃ for all k ≥ K2. Hence, following (2.58), B ≤ ξβ
1−β =
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εβ(1−β)

6(1−β)βnθL̃
< ε/6nθL̃, for all k ≥ K2. Hence, ∃K4 = max{K2,K3} such that V2 = nθL̃(A+B) < ε/3 for all

k > K4.

The third term in (2.56), V3, decreases at the same rate as αk. Hence, for any ε > 0, ∃ K6 = min{k|αk <
ε

6L̃
}, such that ∀k > K6, we have V3 < ε/3.

We have convergence based on ε − δ definition of limits. For any ε > 0, there exists Kmax =

max{K1,K5,K6} such that maxj∈V ‖δjk‖ ≤ V1 + V2 + V3 < ε for all k ≥ Kmax. This implies that,

lim
k→∞

max
j∈V
‖δjk‖ = lim

k→∞
max
j∈V
‖xjk − xk‖ ≤ 0.

Since, maxj∈V ‖δjk‖ ≥ 0, the above statement implies limk→∞maxj∈V ‖δjk‖ = limk→∞maxj∈V ‖xjk−xk‖ = 0.

Now note that limk→∞maxj∈V ‖xjk − xk‖ = 0 =⇒ limk→∞ ‖xjk − xk‖ = 0 ∀j. Hence, we can also show

that the following relationship holds,

lim
k→∞

‖xjk − x
i
k‖ = lim

k→∞
‖(xjk − xk) + (xk − xik)‖

(a)

≤ lim
k→∞

(‖xjk − xk‖+ ‖xk − xik‖)

= lim
k→∞

‖xjk − xk‖+ lim
k→∞

‖xk − xik‖

= 0,

where (a) follows from Triangle inequality.

Since, ‖xjk − xik‖ ≥ 0, for all i, j, the above statement implies limk→∞ ‖xjk − xik‖ = 0.

Proof of Theorem 4

Proof. We prove convergence using Lemma 2. We begin by using the relation between iterates given in

Lemma 7 with y = x∗ ∈ X ∗, and for k ≥ 1,

η2
k+1 ≤ (1 + Fk) η2

k − 2αk (f(xk)− f(y)) +Hk. (2.59)

Note, that Fk, Hk and f(xk)− f(x∗) are scalar, real, and non-negative sequences. We check if the above

inequality satisfies the conditions in Lemma 2 viz.
∑∞
k=1 Fk <∞ and

∑∞
k=1Hk <∞. Fk and Hk are defined

in Lemma 7 (2.55).

We first show that
∑∞
k=1 αk maxj∈V ‖δjk‖ < ∞ using the expression for state disagreement from average
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given in Lemma 6. We have,

∞∑
k=1

αk max
j∈V
‖δjk‖ = α1 max

j∈V
‖δj1‖+

∞∑
k=1

αk+1 max
j∈V
‖δjk+1‖

≤ α1 max
j∈V
‖δj1‖︸ ︷︷ ︸

U0

+nθmax
i∈V
‖xi1‖

∞∑
k=1

αk+1β
k

︸ ︷︷ ︸
U1

+nθL̃

∞∑
k=1

αk+1

k∑
l=2

βk+1−lαl−1︸ ︷︷ ︸
U2

+ 2L̃

∞∑
k=1

αkαk+1︸ ︷︷ ︸
U3

. (2.60)

The first term U0 is finite since maxj∈V ‖δj1‖ and α1 are both finite. The second term U1 can be shown to

be convergent by using the ratio test. We observe that,

lim sup
k→∞

αk+2β
k+1

αk+1βk
= lim sup

k→∞

αk+2β

αk+1
< 1⇒

∞∑
k=1

αk+1β
k <∞,

since αk+1 ≤ αk and β < 1. Now we move on to show that U2 is finite. It follows from αk ≤ αl when l ≤ k,

and Lemma 4 and
∑
k α

2
k <∞,

∞∑
k=1

αk+1

k∑
l=2

βk+1−lαl−1 ≤
∞∑
k=1

k∑
l=2

βk+1−lα2
l−1 <∞.

U3 is finite because U3 ≤ 2(L+ ∆)
∑∞
k=1 α

2
k <∞. Since we have shown, U1 <∞, U2 <∞, and U3 <∞, we

conclude
∑∞
k=1 αk maxj∈V ‖δjk‖ <∞.

Clearly,
∑∞
k=1 Fk <∞ and

∑∞
k=1Hk <∞, since we proved that

∑∞
k=1 αk maxj∈V ‖δjk‖ <∞ and we know

that
∑
k α

2
k <∞. We can now apply Lemma 2 and conclude

∑∞
k=1 2αk (f(x)− f(x∗)) <∞.

We use
∑∞
k=1 2αk (f(x)− f(x∗)) < ∞ to show the convergence of the iterate-average to the optimum.

Since we know
∑∞
k=1 αk =∞, it follows directly that lim infk→∞ f(xk) = f(x∗) = f∗.

Also note that Lemma 2 states that η2
k has a finite limit. Let limk→∞ η2

k = ηx∗ (∀x∗ ∈ X ∗). We have,

lim
k→∞

η2
k = lim

k→∞

n∑
i=1

‖xik − x∗‖2 = lim
k→∞

n∑
i=1

‖xk + δik − x∗‖2

= lim
k→∞

n∑
i=1

[
‖xk − x∗‖2 + ‖δik‖2 + 2(xk − x∗)T δik

]
= lim
k→∞

[
n‖xk − x∗‖2 +

n∑
i=1

‖δik‖2 + 2(xk − x∗)T
(

n∑
i=1

δik

)]
(a)
= n lim

k→∞
‖xk − x∗‖2 + lim

k→∞

n∑
i=1

‖δik‖2

(b)
= n lim

k→∞
‖xk − x∗‖2 , η2

x∗ ,

where (a) follows from definition of xk and
∑
i δ
i
k = 0, and (b) follows from consensus result Claim 8. From

the statement above, we know limk→∞ ‖xk − x∗‖ =

√
η2
x∗
n . This, along with lim infk→∞ f(xk) = f(x∗)
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proves that xk converges to a point in X ∗.

We know from Claim 8 that the agents agree to a parameter vector asymptotically (i.e. xjk → xik, ∀i 6= j

as k → ∞). Hence, all agents agree to the iterate average. This along with the convergence of iterate-

average to an optimal solution gives us that all agents converge to a point in optimal set X ∗ (i.e. xjk → x∗ ∈

X ∗, ∀j, as k →∞). This completes the proof of Theorem 4.

2.5 Conclusions

We present function sharing FS methodology that involves an obfuscation step followed by a standard dis-

tributed optimization algorithm. The obfuscation step transforms private objective functions fi(x) to f̃i(x)

in order to hide the private objective functions fi(x). The obfuscation step requires only one round of secure

function transmission resulting in low computational and communication overheads. FS algorithms satisfy

privacy via non-identifiability (Definition 1) for protecting privacy of local objective functions for individ-

ual nodes and group of nodes. Moreover, we show that FS algorithms allow both privacy and correctness

(accuracy) to be achieved simultaneously.

We propose FS-GP, a privacy-preserving distributed optimization algorithm for time-varying directed

graphs. We prove asymptotic convergence of iterates to the optimum (Theorem 1). We also characterize the

finite-time convergence rate for FS-GP (Theorem 4) and show that it is similar to rate achieved by GP [9].

The privacy provided by FS-GP algorithm is dependent only on connectivity of G at time 0 (obfuscation

step). We show that any strict subset of non-adversarial nodes, needs to have at least τ + 1 neighbors

(necessary and sufficient) for privacy (Theorem 2). The finite-time convergence rate O(L̃2 log(T )/
√
T ) has

a multiplicative factor of L̃2 instead of L2. As the Lipschitz constant for perturbed objective function L̃ is

larger than that of original functions L, this results in a slowdown of convergence rate. This is the price we

pay for privacy.

We propose FS-DGD, a privacy-preserving distributed optimization algorithm for undirected graphs. We

prove asymptotic convergence of iterates to the optimum (Theorem 4). We also characterize necessary and

sufficient conditions for privacy of local objective functions (Theorem 5).
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CHAPTER 3

PRIVATE OPTIMIZATION FOR FEDERATED LEARNING

3.1 Introduction

Machine learning has recently found applications in increasingly many fields ranging from personal preference

predictions to finance and healthcare. Machine learning algorithms are powered by rich datasets. These

datasets are often highly sensitive and demand strict privacy protections. It has becoming increasingly

important to design algorithms and systems that will honor privacy considerations. In this chapter we

present a synchronous distributed learning and optimization algorithm with privacy properties for parameter

server architecture.

In a distributed learning scenario, the data is segregated among several machines, possibly mobile devices

[84]. Clients compute updates based on local data and iteratively improve the model. This quest to find the

best predictive model, essentially implies solving the following optimization problem,

find x∗ ∈ arg min

C∑
i=1

fi(x),

where fi(x) is the local objective function of a client i, known only to client i (1 ≤ i ≤ C). The vector x

parameterizes the predictive model and x∗ represents the best “model parameters”. The objective function

of agent i is the loss function over the dataset stored at agent i for model parameters x. Observe that often

the data stored at a client is large and gradient update computation is very expensive. In such a scenario,

one may replace the gradient update with an unbiased estimator of the gradient. This is usually done by

dividing the dataset into several batches and then randomly picking a batch to represent the dataset for

gradient computation. The gradient computed over a batch is called stochastic gradient. It is an unbiased

estimate of gradient and used in its place in learning algorithms.

Distributed optimization is often attractive due to the reduced communication requirements, since the

agents (clients) communicate updates that are often much smaller in size than each agent’s local dataset

that characterizes its local objective (loss) function. Moreover, distributed methods provide scalability with

respect to number of participants and naturally fit the fragmented and segregated data sources [26,32,33].

However, the updates transmitted by the clients often can give strong indications of the dataset (loss

function) that generated the update and hence classical optimization algorithms are vulnerable to privacy
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violations [35].

In this chapter we present POLAR-SGD (Private Optimization and Learning Algorithm - Stochastic

Gradient Descent) that protects privacy by obfuscating the updates transmitted by the clients. In particular,

we use correlated additive and multiplicative perturbations to obfuscate the stochastic gradient provided

by clients. Introduction of perturbation helps clients protect the privacy of their information while the

correlated nature of perturbations helps us maintain correctness.

3.1.1 Our Contributions

We present POLAR-SGD (Private Optimization and Learning Algorithm - Stochastic Gradient Descent). It

is a synchronous protocol where clients use correlated additive and multiplicative perturbations to obfuscate

the stochastic gradient. These obfuscated stochastic gradients are uploaded to multiple parameter servers,

who then use consensus iteration and projected stochastic gradient descent to learn predictive models.

We prove convergence of POLAR-SGD under a few conditions on the perturbations. While other pertur-

bation based algorithms such as differential privacy incur accuracy loss due to privacy, we show that our

algorithm solves the optimization problem correctly. We also discuss privacy characteristics of POLAR-SGD

for polynomial objective functions.

3.2 Problem Formulation

We first review the system architecture, distributed learning problem and some preliminaries on distributed

learning in client-server models.

3.2.1 System Architecture

We consider a modified parameter server architecture as depicted in Figure 3.1. Our system consists of S

parameter servers (also referred to as “servers”) and C clients. As discussed in Section 3.1, client i represents

a computer that has access to its private data and corresponding loss function fi(x). Parameter server J

maintains a copy of the model xJ , but does not store private data.

The clients receive latest model parameters from the parameter servers and the clients in turn transmit

updates computed using local private data to improve the latest model estimate. We also assume that

each client communicates with more than one parameter servers in every iteration. The parameter servers

communicate with each other every few iterations. We assume that parameter servers form a fully connected

graph whenever they wish to exchange models (parameter vector) with each other.

We will assume synchronous and fault-free execution of protocol at all clients and parameter servers. This

architecture was analyzed in our prior work in [85] and explored via numerical experiments by Hsieh et al.

in [34], although [34] does not address privacy as we do.
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1 𝐶…

PS-2

PS-3

2

Figure 3.1: Multiple Parameter Server Architecture. Blue squares represent parameter servers and servers
are connected in a fully connected graph topology. Orange squares represent clients. Servers behave as
coordinating entities and keep track of latest model parameters. Clients store private datasets and store
loss functions.

3.2.2 Learning Problem

The central problem here is to build a predictive model based on private local information. We translate

this into a distributed optimization problem as discussed below.

The machine learning model is parameterized as a d-dimensional vector x ∈ Rd. The set of all feasible

model parameters is denoted as X , which is a convex, compact subset of Rd i.e. x ∈ X ⊂ Rd.

We assume that the objective function at client i, denoted as fi(x) is convex. We also assume that the

gradients denoted as ∇fi(x) are Lipschitz. We discuss relaxing the Lipschitz continuous assumption later.

The learning problem is formally presented below.

Problem 1. Distributed learning implies finding a minimizer to objective f(x) ,
∑C
i=1 fi(x).

Find x∗ ∈ arg min
x∈X

f(x).

3.2.3 Privacy Model

Before we discuss the privacy model, we will review the basic non-private learning algorithm for parameter

server architecture shown in Figure 3.2. The algorithm involves iteratively running the following steps:

• Clients download latest model parameters xk from parameter server and compute gradient of local objec-

tive function ∇fi(xk).

• Clients upload gradients ∇fi(xk) to the server.

• Server performs projected gradient descent using the sum of all received gradients,
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Figure 3.2: System with single parameter server [25].

xk+1 ← PX
[
xk − αk

∑C
i=1∇fi(xk)

]
,

where αk is suitably chosen step size and PX is the projection operator.

Note that the basic parameter server algorithm discussed above and depicted in Figure 3.2 directly exposes

local gradients to the parameter server. If the server were an honest but curious adversary, the server could

use these gradients to infer membership of specific data points in the client’s private local datasets. In fact,

observing even a part of gradient can potentially leak membership information about specific data points or

a class of data points that are used for training.

In this work we will assume that multiple parameter servers are available and at most one of the parameter

servers is an honest-but-curious adversary (this can be easily generalized to multiple honest but curious

adversaries). The parameter servers are often controlled by corporations that provide machine learning as

a service that want to learn the best possible machine learning model. However, they may be interested in

uncovering private individual data. Our algorithm will protect private data against such honest-but-curious

parameter server(s).

Notation: Time is indexed as as {i, k}. The first index i denotes the number of gradient based descent

steps performed since last consensus and the second index refers to the number of consensus operations. We

consider consensus to happen after every ∆ gradient-based updates. Let Nh denote the servers that can

communicate with client h.

3.3 POLAR-SGD Algorithm

We reviewed the basic distributed optimization algorithm for parameter server framework [25]. It can be

described as iterative projected gradient descent algorithm where the gradients are collected at a central pa-

rameter server. In what follows, we present POLAR-SGD for distributed optimization for multiple parameter

server architecture shown in Figure 3.1.
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3.3.1 Algorithm

We first present a sketch of the POLAR-SGD algorithm.

Algorithm Sketch:

1. In the POLAR-SGD algorithm, clients download latest model parameters from one or more servers

and compute stochastic gradients at these values.

2. Clients then obfuscate the stochastic gradients using multiplicative and additive perturbations (detailed

later in the section). These obfuscated stochastic gradients are uploaded to the server(s). A client may

communicate with any subset of available servers.

3. Each server uses the received stochastic gradients to perform a projected gradient descent update of

model parameters stored at the server.

4. Servers periodically perform a secure consensus iteration over the model parameters.

POLAR-SGD algorithms for Clients and Servers are presented as Algorithms 3 and 4 respectively.

POLAR-SGD Client: At each iteration {i, k}, the client first requests the latest model parameters, xJi,k

from parameter servers J (Line 5, Algorithm 3). Clients receive model parameters and use them for gradient

computation.

We define three variants of POLAR-SGD based on the model parameters used for stochastic gradient

computation (Line 6, Algorithm 3).

1. Minimum-wait: The model parameters that are received first are used by the client (Line 7, Algo-

rithm 3), i.e. if model parameters from server I are received first by client h then,

uJ,hi,k = xIi,k, for each J ∈ Nh. (3.1)

Note that I may be different for different clients and may be dependent on iteration {i, k}. However,

we abuse the notation and drop the dependence of I on client h and time {i, k}. As we select the

parameters that arrive first we call this algorithm minimum-wait variant of POLAR-SGD. This variant

is robust to delays in few communication links.

2. Client-averaged: All received model parameters are averaged and used for gradient computation (Line

8, Algorithm 3),

uJ,hi,k =
1

Nh

∑
I∈Nh

xIi,k for each J ∈ Nh. (3.2)
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Algorithm 3 POLAR-SGD: Client h

1: Input: xJi,k, ∆, NSteps

2: Result: Upload Obfuscated Gradient - gJ,hi,k
3: for k = 1 to NSteps do
4: for i = 0 to ∆-1 do
5: Download xJi,k from servers J ∈ Nh
6: Compute uJ,hi,k based on algorithm variant

7: minimum-wait: uJ,hi,k = xIi,k (I ∈ Nh) OR

8: client-averaged: uJ,hi,k = 1
|Nh|

∑
I∈Nh x

I
i,k OR

9: basic: uJ,hi,k = xJi,k
10: Compute Stochastic Gradient:

gh(uJ,hi,k , ξ
h
i,k) = ∇fh(uJ,hi,k , ξ

h
i,k)

11: Select Perturbations for each server J ∈ Nh:
W J,h
i,k , dJ,hi,k

12: Compute Obfuscated Stochastic Gradient (gJ,hi,k ):

gJ,hi,k =
(
Wi,k[J, h]gh(uJ,hi,k , ξ

h
i,k) + dJ,hi,k

)
13: Upload Obfuscated Stochastic Gradient to Servers J ∈ Nh:

gJ,hi,k
14: end for
15: end for

Use of average parameter ensures that we only compute one stochastic gradient per iteration (similar

to minimum-wait), however, this requires complete download of parameters from several servers, i.e.

a client must wait for the slowest server.

3. Basic: In this variant, each received model parameter is used by the client (Line 9, Algorithm 3), i.e.

uJ,hi,k = xJi,k. (3.3)

Clients compute one stochastic gradient per downloaded model parameter. This results in larger com-

putational cost for clients and hence is not preferred. This is also not robust to delays in communication

links as the client needs to wait for the slowest server.

Next, each client h computes stochastic gradient using its private local objective function at the parameter

value u (Line 9, Algorithm 3). Clients use a standard technique to compute stochastic gradients. Each client

divides its local dataset into several batches and at each iteration picks a batch uniformly at random.

Gradient of the loss function is then computed over this selected batch. We denote this stochastic gradient

as gh(uJ,hi,k , ξ
h
i,k), where ξhi,k represents the randomness due to batch selection by a client h at iteration {i, k}.

Clients then obfuscate the stochastic gradient using additive and multiplicative perturbations. We select

these perturbations in the Line 11, Algorithm 3 and use these steps to compute the obfuscated gradient in

Line 12, Algorithm 3. The obfuscated gradient uploaded by client h to server J at time {i, k}, denoted as

54



gJ,hi,k , is defined as

gJ,hi,k =
(
Wi,k[J, h]gh(uJ,hi,k , ξ

h
i,k) + dJ,hi,k

)
, (3.4)

where Wi,k[J, h] is the multiplicative perturbation and dJ,hi,k is the additive perturbation assigned by client h

to server J at time {i, k}.

The multiplicative (Wi,k[J, h]) and additive (dJ,hi,k ) perturbations are arbitrary so long as they satisfy

Symmetric Learning and Bounded Update Conditions elaborated below.

Symmetric Learning Condition (SLC) ensures that over a period of ∆ gradient descent steps, the

multiplicative perturbations assigned by clients are equal and that the additive perturbations sum to zero.

Assumption 1 (SLC). Equal multiplicative perturbations are assigned to updates from every client over a

period of ∆ steps. Formally, we have M > 0 such that for each client h,

M ,
S∑
J=1

(
∆−1∑
i=0

Wi,k[J, h]

)
.

Also, the additive perturbations add to zero for all {i, k} for each client h.

S∑
J=1

dJ,hi,k = 0.

Bounded Update Condition (BUC), ensures that the multiplicative and additive perturbations are

bounded.

Assumption 2 (BUC). The sum of absolute value of multiplicative weights over ∆ steps is upper bounded

by a finite constant (0 < M <∞). Formally, for each client h

S∑
J=1

(
∆∑
i=1

|Wi,k[J, h]|

)
≤M.

Also, the additive perturbations are bounded by 0 < Y <∞.

‖dJ,hi,k ‖ ≤ Y.

Finally, in Line 13 Algorithm 3, each client h uploads the obfuscated stochastic gradient gJ,hi,k to server J .

This completes the client algorithm for POLAR-SGD.

POLAR-SGD Server: Any parameter server J performs two tasks – (1) using received gradients to

perform projected stochastic gradient descent and (2) perform secure consensus over model parameters from

all servers.
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Algorithm 4 POLAR-SGD: Parameter Server J

1: Input: xJ0,1, αk, ∆, NSteps

2: Result: x∗ = arg min
x∈X

∑C
i=1 fi(x)

3: for k = 1 to NSteps do
4: for i = 0 to ∆-1 do
5: xJi+1,k = PX

[
xJi,k − αk

∑C
h=1 g

J,h
i,k

]
6: end for
7: Secure Average Consensus performed for each coordinate p = {1, . . . , d}:
8: Server J send RJ,L[p] ∼ U [0, 2S|X [p]|] to each neighboring server L

and receives RL,J [p] ∼ U [0, 2S|X [p]|] from each neighboring server L

9: Compute AJ [p] =
(
xJ∆,k[p] + |X [p]|+

∑
LRL,J [p]−

∑
LRJ,L[p]

)
(mod 2S|X [p]|)

10: Send AJ [p] to all neighboring servers

11: Compute xJ0,k+1[p] = 1
S

[(∑S
I=1A

I [p]
)

(mod 2S|X [p]|)
]
− |X [p]|

12: end for

At every iteration {i, k}, parameter server J uses the obfuscated stochastic gradients gJ,hi,k received from

clients h at iteration {i, k} to perform projected stochastic gradient descent (Line 5, Algorithm 4),

xJi+1,k = PX

(
xJi,k − αk

C∑
h=1

gJ,hi,k

)
, (3.5)

where αk is the step size. We assume that {αk} is monotonically non-increasing, positive sequence with∑
k αk =∞ and

∑
k α

2
k <∞.

The servers perform secure consensus over the model parameters (Lines 8-11, Algorithm 4) after every

∆ gradient based updates. The secure multi-party computing based private consensus is perfromed using

algorithm in [73] for each coordinate.

Let p ∈ {1, . . . , d} denote a coordinate. We represent pth coordinates of xJ0,k and X as xJ0,k[p] and X [p]

respectively. If xJ0,k[p] ∈ [a, b] as xJ0,k lies in compact set X , then let |X [p]| represent max(|a|, |b|). For

each coordinate p, we add |X [p]| to the model parameters xJ0,k[p] to translate the model parameters to non-

negative regime. We subtract |X [p]| in the last step to ensure correctness. Each server J sends uniformly

distributed random vectors RJ,L to each neighbor server L. Servers then add received random vectors and

subtract transmitted random vectors to the translated model parameters followed by a modulo operation.

As discussed in [73], the private consensus algorithm uses wrap-around feature of modulo arithmetic and

uniformly distributed (U) noise to provide information theoretic privacy while computing sum/average over

a fully connected graph.

The analysis from [73] proves that observations of AJ from other servers do not leak information about

xJ∆,k. If the servers are connected in a complete network (fully connected graph), then average consensus is

reached in one iteration and the inputs are private (information - theoretic privacy) [73].
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3.3.2 POLAR-SGD Variants

We introduced minimum-wait, client-averaged and basic variants of POLAR-SGD. As we discussed,

minimum-wait is a superior algorithm variant as it is robust to delays by the slowest servers and only

requires one stochastic gradient computation in each iteration. The client-averaged variant needs to wait

for the servers that are slowest to respond, however, involves only one stochastic gradient computation. The

basic variant is the least attractive as it needs to wait for the slowest server and requires multiple stochastic

gradient calculations.

3.4 Main Results and Discussion

3.4.1 Correctness

We first show that the iterates of POLAR-SGD converge to the optimum. Theorem 6 states that any variant

of POLAR-SGD that uses the perturbations satisfying SLC and BUC (Assumptions 1,2), converges to the

optimum asymptotically with probability 1.

Theorem 6 (Correctness). Let fh(x) be convex functions and gradients ∇fh(x) be bounded and Lipschitz

continuous for each h. The iterates generated by any POLAR-SGD variants Minimum-wait, Client-averaged

or Basic satisfying SLC and BUC (Assumptions 1, 2) converge to the solution of Problem 1 in X ∗ with

probability 1.

The symmetric learning condition ensures that each client assigns the same aggregate weight to its stochas-

tic gradient thereby guaranteeing accuracy of computed solution. The bounded update condition ensures

that the obfuscated stochastic gradients are close enough to the exact stochastic gradient. The notion

of privacy that we provide is weaker than differential privacy, and as a consequence we circumvent the

trade-off between accuracy and privacy. The privacy and correctness are independent and can be achieved

simultaneously. However, we do observe a slowdown in the convergence rate.

In this chapter, we only consider differentiable objective functions. However, if the objective functions are

non-differentiable, we may still use POLAR-SGD. Our paper [27] presents convergence results for POLAR-

SGD where we use stochastic sub-gradients instead. The result states that we can still correctly solve

the problem as long as the sub-gradients are bounded and we use either minimum-wait or client-averaged

variants of POLAR-SGD with symmetric learning condition satisfied at each {i, k}. This implies that if∑S
J=1Wi,k[J, h] = M and

∑S
J=1 |Wi,k[J, h]| ≤ M for each client h at any {i, k}, then the iterates converge

to the optimum with probability 1 asymptotically even when fh(x) are non-differentiable. The proofs are

very similar to those in these paper with a required modification to the proof of iterate lemma. We elaborate

on this in our paper and its technical report [27,86].
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In this chapter, we focus on performance of algorithm that uses stochastic gradient based updates. If

the stochastic gradients are replaced by gradients, computed over entire local dataset by clients, similar

correctness and privacy claims hold. We report the results and analysis in technical report [85].

3.4.2 Privacy

The claim asserts that private gradients are private against honest-but-curious adversaries.

Claim 9. A honest but curious adversary server J can only observe gJ,hi,k from any client h.

Information is observed by adversarial parameter server via two sources – (1) gradient estimate received from

client and (2) information exchanged between different servers. Obfuscation via additive and multiplicative

perturbations protects the gradients gh(x) from honest-but-curious parameter servers. Private consensus

(adapted from [73]) protects the model parameters from a curious adversary using wrap-around feature of

modulo arithmetic. The parameters exchanged by servers appear to be uniformly distributed similar to

the noise added by agents. The component of gradient received by servers other than J is hence protected

against honest-but-curious adversarial servers.

Consider special case where each local objective function fh(x) is polynomial of bounded degree (p). We

can design additive and multiplicative weights (Step 10, Algorithm 3) in order to ensure that obfuscated

gradient gJ,hi,k appears to be a gradient of a fake polynomial (∇fJh (x)) of bounded degree (p). The symmetric

learning condition ensures the obfuscated gradients from a client add to the correct gradient and this permits

us to write
∑
J f

J
h (x) = fh(x). The correctness results for polynomial optimization follow from the analysis

above (Theorem 6). The gradient updates appear to be from a fake polynomial, creating an ambiguity and

protecting the privacy of local objective functions (Claim 9).

We make an important note about the privacy of aggregate cost function f(x). As we solve the problem

correctly, an adversary may learn the exact cost function by observing the progress of the algorithm execution.

This is even more apparent when we consider that the secure sum protocol protects the updates received from

each client but not the aggregate update. An adversary may monitor the aggregate update to reconstruct

f(x). As we saw in Chapter 2, correctness/accuracy preserving mechanisms suffer from this fundamental

privacy limitation.

3.5 Analysis and Discussion

We will begin by first restating all the assumptions used in the analysis and proofs. Next, we prove some

elementary results and finally present proof for Theorem 6. The proofs will be slightly different for the three

variants of POLAR-SGD and we will specifically discuss the differences for each variant. Next, we develop

a couple of key lemmas to prove correctness results.
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3.5.1 Notation and Assumptions

Let Fi,k denote the σ-algebra, σ(ξh[i,k];∀h) generated by the stochastic choice of batches until the time step

{i, k} (note, ξh[i,k] = (ξh0,0, . . . , ξ
h
∆−1,0, ξ

h
0,1, . . . , ξ

h
∆−1,1, . . . , ξ

h
0,k−1, . . . , ξ

h
∆−1,k−1, ξ

h
0,k, . . . , ξ

h
i,k)). Fi,k denotes

the history of all stochastic gradients uploaded by clients. Clearly Fi,k ⊂ Fj,m whenever k < m or k = m

and i < j. This follows directly from the construction of σ−algebra. Observe that the randomness appears

from the gradient computation step (batch selection). The multiplicative and additive weights are arbitrary

(possibly random) but they balance-out due to symmetric learning condition.

We will next review important assumptions required for analysis. Recall that the set of all feasible model

parameters, denoted as X , is a convex, compact subset of Rd (d is the dimension). The local objective

functions fi(x) are convex and the gradients are norm-bounded.

Assumption 3. Objective functions fi : X → R, are convex functions for all i. Thus, f(x) ,
∑C
h=1 fh(x)

is also a convex function.

We consider differentiable objective functions and we make an assumptions on gradients being Lipschitz

(Assumption 4).

Assumption 4 (Differentiable Objective Functions). The differentiable functions fi(x) satisfy the following

conditions,

1. The gradients of objective functions are norm-bounded, i.e. ∃L > 0, such that, ‖∇fh(x)‖ ≤ L, ∀x ∈ X

and ∀h. The stochastic gradients are also norm-bounded, i.e. ‖gh(x, ξ)‖ ≤ L for all x ∈ X and ∀ ξ.

2. The gradients of objective functions are Lipschitz, i.e. ∃N > 0, such that, ‖∇fh(x) − ∇fh(y)‖ ≤

N‖x− y‖, ∀h and ∀x 6= y ∈ X .

We first state a result on convergence of non-negative almost supermartingales by Robbins and Siegmund

(Theorem 1, [75]). This lemma provides a methodology to prove convergence of most distributed optimization

algorithms and we exploit this in our work too.

Lemma 10. Let (Ω, F,P) be a probability space and let F1 ⊂ F2 ⊂ . . . be a sequence of sub σ-fields of

F . Let uk, vk and wk, k = 0, 1, 2, . . . be non-negative Fk-measurable random variables and let {γk} be a

deterministic sequence. Assume that
∑∞
k=0 γk <∞ a.s., and

∑∞
k=0 wk <∞ a.s. and

E[uk+1|Fk] ≤ (1 + γk)uk − vk + wk,

holds with probability 1. Then, the sequence {uk} converges to a non-negative random variable and∑∞
k=0 vk <∞ almost surely.

The well-known non-expansive property (cf. [87]) of Euclidean projection onto a non-empty, closed, convex
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set X , is represented by the following inequality, ∀ x, y ∈ X ,

‖PX [x]− PX [y]‖ ≤ ‖x− y‖. (3.6)

This non-expansive property of the projection operator is used extensively in our analysis.

Recall that we assumed the parameter servers to form a fully connected network topology in Section 3.2.

We need this assumption to use secure-sum protocol for secure averaging among servers similar to [73]. This

aids our privacy analysis significantly. However, for convergence we do not need the server graph to be fully

connected. We will prove convergence under the weaker assumption of connected server graph. We will

assume that at each consensus step, we use convex averaging using a doubly stochastic matrix [8, 88].1 At

every consensus iteration we assume that the local convex averaging protocol can be written as a doubly

stochastic matrix B0,k. We abuse the notation and drop the first time index, i.e. we denote the matrix B0,k

as Bk. We will prove convergence when the consensus is performed over incomplete yet connected server

graph. The results hold for scenario when the parameter servers form a fully connected graph.

We borrow transition matrix analaysis result from [82]. We define transition matrix product (Φ(k, s)) as

the product of doubly stochastic weight matrices, Φ(k, s) = BkBk−1 . . . Bs, (∀ k ≥ s ≥ 0). We use analysis

from [82] to claim linear convergence of all transition matrix entries Φ(k, s)[j, i] to 1/S. That is, ∀ k ≥ s ≥ 0,∣∣∣∣Φ(k, s)[i, j]− 1

S

∣∣∣∣ ≤ θβk−s+1,

where θ = (1 − ρ
4S2 )−2 and β = (1 − ρ

4S2 ) depend only on graph topology. Note, ρ is the smallest nonzero

entry in matrix Bk for any k.2

3.5.2 Convergence Analysis

Disagreement Lemma

First we construct a bound on the disagreement between the parameters at any server J and the average,

denoted by δJk , defined below,

δJk = xJ0,k − x0,k. (3.7)

1In a fully connected topology, the doubly stochastic matrix Bk is just a matrix with all entries being exactly equal to 1/S.
Moreover, consensus happens in one step using the secure sum protocol. The analysis using doubly stochastic weight matrices
is not required.

2Due to fully connected graph (of parameter servers), at every consensus iteration, the parameter servers compute average
of its model parameters. However, this assumption is not strictly required for correctness. The correctness results are correct
even if the parameter server graph is merely connected at every consensus iteration. Hence, we will analyze the harder scenario,
and assume that the parameter servers form a connected graph. Obviously if the parameter servers have a fully connected
topology the correctness results hold.
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We get a deterministic bound. We use bounds on the stochastic gradients to compute the bound on ‖δJk+1‖.

The first term shows the geometric decrease of initial disagreement among parameter servers. The other two

terms reflect the effect of stochastic gradient based updates.

Lemma 11. The sequence generated by POLAR-SGD following the symmetric learning and bounded update

conditions, satisfies,

max
J
‖δJk+1‖ ≤ Sθβk+1 max

I
‖xI0,0‖+ 4αk∆C(ML+ Y ) + 2θ∆SC(ML+ Y )

k∑
l=1

βk+1−lαl−1.

The proof is the same for all variants of POLAR-SGD. Since we bound the effect of stochastic updates

provided by clients, the disagreement lemma is a deterministic statement for all variants of POLAR-SGD.

Proof. We first begin by defining an auxiliary variable, zJk+1,

zJk+1 = xJ0,k+1 −
S∑
I=1

Bk[J, I]xI0,k

=⇒ xJ0,k+1 = zJk+1 +

S∑
I=1

Bk[J, I]xI0,k. (3.8)

The variable zJk tries to capture the effect of updates to the model parameters. We unroll the iterations to

write xJ0,k+1 as a function of xJ0,k−1 and zIk,

xJ0,k+1 = zJk+1 +

S∑
I=1

[
Bk[J, I]

(
zIk +

S∑
l=1

Bk−1[I, l]xl0,k−1

)]
. (3.9)

We perform the unrolling equation successively and use the definition of transition matrix Φ(k, s),

xJ0,k+1 = zJk+1 +

S∑
I=1

Φ(k, 0)[J, I]xI0,0 +

k∑
l=1

[
S∑
I=1

Φ(k, l)[J, I]zIl

]
. (3.10)

Next we write the expression for iterate average.

x0,k+1 =
1

S

S∑
I=1

xI0,k+1 =
1

S

S∑
J=1

[
zJk+1 +

S∑
I=1

Bk[J, I]xI0,k

]
=

1

S

[
S∑
I=1

(
S∑
J=1

Bk[J, I]

)
xI0,k +

S∑
J=1

zJk+1

]

= x0,k +
1

S

S∑
J=1

zJk+1 = x0,0 +
1

S

k+1∑
l=1

S∑
J=1

zJl . (3.11)

We use expression for xJ0,k+1 (3.10) and x0,k+1 (3.11) and linear convergence of transition matrix to 1/S
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using transition matrix analysis from [82], to get,

‖xJ0,k+1 − x0,k+1‖ = ‖

[
S∑
I=1

Φ(k, 0)[J, I]xI0,0 − x0,0

]
+

[
k∑
l=1

[
S∑
I=1

Φ(k, l)[J, I]zIl

]
− 1

S

k+1∑
l=1

S∑
I=1

zIl

]
+ zJk+1‖

≤
S∑
I=1

∣∣∣∣∣Φ(k, 0)[J, I]− 1

S

∣∣∣∣∣‖xI0,0‖+

k∑
l=1

S∑
J=1

∣∣∣∣∣Φ(k, l)[J, I]− 1

S

∣∣∣∣∣‖zIl ‖+ ‖zJk+1‖+
1

S

S∑
I=1

‖zIk+1‖

≤ Sθβk+1 max
I
‖xI0,0‖+ θ

k∑
l=1

βk+1−l
S∑
I=1

‖zIl ‖+ ‖zJk+1‖+
1

S

S∑
I=1

‖zIk+1‖. (3.12)

Next we bound the norm of auxiliary variable ‖zJk+1‖. Recall that xJ0,k+1 =
∑S
I=1Bk[J, I]xI∆,k and we have

‖zJk+1‖ = ‖xJ0,k+1 −
S∑
I=1

Bk[J, I]xI0,k‖ = ‖
S∑
I=1

Bk[J, I]xI∆,k −
S∑
I=1

Bk[J, I]xI0,k‖ ≤ max
I
‖xI∆,k − x0,k‖.

We use projected gradient descent update equation to get a bound. Observe that the following expression

would differ for variants of POLAR-SGD. However, as seen in (3.16), we use the bound on stochastic gradient

to compute the bound on auxiliary variable zjk as follows,

xI∆,k − xI0,k =

∆−1∑
t=0

(xIt+1,k − xIt,k)

(a)
=

∆−1∑
t=0

(
eIt − αk

C∑
h=1

gI,ht,k

)

= −αk
∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
+

∆−1∑
t=0

eIt , (3.13)

where (a) follows from the definition of the projection error, eIt , defined as the correction introduced by the

projection operator eIt = xIt+1,k −
(
xIt,k − αk

∑C
h=1 g

I,h
t,k

)
. We first construct a bound on the gradient based

update as follows

‖
C∑
h=1

gI,ht,k ‖ ≤
C∑
h=1

‖gI,ht,k ‖

≤
C∑
h=1

‖Wt,k[I, h]g(uI,ht,k , ξ
h
t,k) + dI,ht,k ‖

≤ C max
h
{‖Wt,k[I, h]g(uI,ht,k , ξ

h
t,k) + dI,ht,k ‖}

(a)

≤ C
(
ML+ Y

)
, (3.14)

where (a) follows from boundedness of perturbations |Wt,k[J, h]| ≤M, and ‖dI,ht,k ‖ ≤ Y and gradient bound-

edness ‖g(uJ,ht,k , ξ
h
t,k)‖ ≤ L (Assumption 4). Since both xIt+1,k and xIt,k belong in X , the projection error is
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bounded by the gradient based update, i.e.

‖eIt ‖ ≤ αk‖
C∑
h=1

gI,ht,k ‖
(a)

≤ αkC
(
ML+ Y

)
, (3.15)

where (a) follows from bound on gradient update as expressed in (3.14). Using this bound on projection

error we get,

‖zJk+1‖ ≤ max
I
‖xI∆,k − x0,k‖ ≤ ‖ − αk

∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
+

∆−1∑
t=0

eIt ‖

≤ ‖ − αk
∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
‖+ ‖

∆−1∑
t=0

eIt ‖

(a)

≤ ‖ − αk
∆−1∑
t=0

[
C∑
h=1

gI,ht,k

]
‖+

∆−1∑
t=0

αkC
(
ML+ Y

)
≤ αk

∆−1∑
t=0

‖

[
C∑
h=1

gI,ht,k

]
‖+ αk∆C(ML+ Y )

(b)

≤ αk

∆−1∑
t=0

C(ML+ Y ) + αk∆C(ML+ Y ) ≤ 2αk∆C(ML+ Y ), (3.16)

where (a) follows from (3.15) and (b) follows from (3.14).

Now we use (3.16) to rewrite (3.12),

‖xJ0,k+1 − x0,k+1‖ ≤ Sθβk+1 max
I
‖xI0,0‖+ θ

k∑
l=1

βk+1−l
S∑
I=1

‖zIl ‖+ ‖zJk+1‖+
1

S

S∑
I=1

‖zIk+1‖

≤ Sθβk+1 max
I
‖xI0,0‖+ θ

k∑
l=1

βk+1−l
S∑
I=1

2αl−1∆C(ML+ Y ) + 2αk∆C(ML+ Y )

+
1

S

S∑
I=1

2αk∆C(ML+ Y )

≤ Sθβk+1 max
I
‖xI0,0‖+ 2θS∆C(ML+ Y )

k∑
l=1

βk+1−lαl−1 + 4αk∆C(ML+ Y ).

Finally we use maxJ ‖δJk+1‖ = maxJ ‖xJ0,k+1 − x0,k+1‖ and above expression to prove,

max
J
‖δJk+1‖ ≤ Sθβk+1 max

I
‖xI0,0‖+ 2θS∆C(ML+ Y )

k∑
l=1

βk+1−lαl−1 + 4αk∆C(ML+ Y ).

Note that the disagreement lemma expression is relevant because we assume a connected graph for servers

(not fully connected) for proving convergence. If we have a fully connected graph then, we will have exact

average at every consensus step and the disagreement would be exactly zero at every iteration.
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Iterate Lemma

The lemma below provides a bound on the distance between the iterates and a point y ∈ X .

Lemma 12. Let η2
k ,

∑S
J=1 ‖xJ0,k − y‖2 for y ∈ X and δJk = xJ0,k − x0,k. The sequence generated by

POLAR-SGD following symmetric learning and bounded update conditions, satisfies for all y ∈ X ,

E[η2
k+1|F0,k] = (1 +Ak)η2

k − 2Mαk(f(x0,k)− f(y)) +Bk,

Ak = 4 1
Sα

2
kN∆C2M(ML + Y ) + 2 1

SαkNCM maxJ ‖δJk ‖, and Bk = α2
k

(
C2

1 + 4N∆C2M(ML+ Y )
)

+

2αkNCM maxJ ‖δJk ‖+ 2αkC(ML+ ∆Y ) maxJ ‖δJk ‖.

The iterate lemma provides a dissipation inequality that has similar structure in Lemma 10. The proof of

Lemma 12 differs slightly for each POLAR-SGD variants and we discuss it in the following proof.

Proof. First we define the distance between an iterates and a point y ∈ X as follows,

η2
k+1 ,

S∑
J=1

‖xJ0,k+1 − y‖2

=

S∑
J=1

∥∥∥∥∥
S∑
I=1

Bk[J, I]xI∆,k − y

∥∥∥∥∥
2

(a)
=

S∑
J=1

∥∥∥∥∥
S∑
I=1

Bk[J, I]
(
xI∆,k − y

) ∥∥∥∥∥
2

(b)

≤
S∑
J=1

S∑
I=1

Bk[J, I]‖
(
xI∆,k − y

)
‖2

(c)

≤
S∑
J=1

‖xJ∆,k − y‖2,

where (a) and (c) follow from doubly stochastic nature of Bk and (b) follows non-negativity of matrix Bk.

Next we use the projected gradient descent update equation to rewrite the above expression in terms of

iterates xJ∆−1,k. This is followed by unrolling the expression further to include prior iterates, i.e.,

η2
k+1

(a)

≤
S∑
J=1

‖xJ∆,k − y‖2

(b)
=

S∑
J=1

‖PX

[
xJ∆−1,k − αk

C∑
h=1

gJ,h∆−1,k

]
− y‖2

(c)

≤
S∑
J=1

‖xJ∆−1,k − αk
C∑
h=1

gJ,h∆−1,k − y‖
2

≤
S∑
J=1

‖xJ∆−1,k − y‖2 + α2
k

[
‖

C∑
h=1

gJ,h∆−1,k‖
2

]
− 2αk

[
C∑
h=1

gJ,h∆−1,k

]T [
xJ∆−1,k − y

]
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(d)

≤
S∑
J=1

‖xJ0,k − y‖2 + α2
k

∆−1∑
t=0

[
‖

C∑
h=1

gJ,ht,k ‖
2

]
− 2αk

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJt,k − y

]
≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJt,k − y

] , (3.17)

where (a) follows from the doubly stochastic matrix Bk, (b) follows from the projected sub-gradient descent

step, (c) follows from non-expansive property of projection operator and gJ,ht,k = Wt,k[J, h]g(uJ,ht,k , ξ
h
t,k) + dJ,ht,k ,

and (d) follows from the unrolling ‖xJ∆−1,k − y‖2 over iterations {∆− 2, k}, {∆− 3, k}, . . . , {0, k}.

Next we rewrite xJt,k− y as xJt,k− y = xJ0,k− y−αk
∑t−1
i=0

∑C
h=1 g

J,h
i,k +

∑t−1
i=0 e

J
i following the analysis from

(3.13). We plug this expression into the above expression (3.17) to get,

η2
k+1 ≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y − αk

t−1∑
i=0

C∑
h=1

gJ,hi,k +

t−1∑
i=0

eJi

]
≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]
+2αk

S∑
J=1

∆−1∑
t=1

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥
∥∥∥∥∥− αk

t−1∑
i=0

C∑
h=1

gJ,hi,k +

t−1∑
i=0

eJi

∥∥∥∥∥︸ ︷︷ ︸
Π

. (3.18)

We will first simplify Π,

Π = 2αk

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥
∥∥∥∥∥− αk

t−1∑
i=0

C∑
h=1

gJ,hi,k +

t−1∑
i=0

eJi

∥∥∥∥∥
(a)

≤ 2αk

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥ (2αk∆C(ML+ Y )
)

≤ 4α2
k∆C(ML+ Y )

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥ ≤ 4α2
k∆C(ML+ Y )

S∑
J=1

∆−1∑
t=0

∥∥∥∥∥
C∑
h=1

gJ,ht,k

∥∥∥∥∥
(b)

≤ 4α2
k∆C(ML+ Y )

S∑
J=1

∆−1∑
t=0

C(ML+ Y )

≤ 4α2
kS∆2C2(ML+ Y )2, (3.19)

where (a) follows from (3.14) and (3.15) and (b) follows from the gradient bound (3.14).

We plug the bound on Π found in (3.19) in (3.18),

η2
k+1 ≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

‖gJ,ht,k ‖
2

]
− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]+ 4α2
kS∆2C2(ML+ Y )2.

Here, we use boundedness assumption on the stochastic gradient (sub-gradient) and both SLC and BUC
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(Assumptions 1, 2, and 4). Hence the expression is valid for all variants of POLAR-SGD.

Recall the definition of σ-algebra generated by random choice of batches used for stochastic gradient

computation denoted by F0,k. Note E[η2
k|F0,k] = η2

k follows from definition of F0,k. We take expectation of

both sides of the expression conditioned on F0,k,

E[η2
k+1|F0,k] ≤ η2

k + α2
k

S∑
J=1

∆−1∑
t=0

[
C∑
h=1

E[‖gJ,ht,k ‖
2|F0,k]

]
− 2αk

S∑
J=1

∆−1∑
t=0

E

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]
|F0,k


+ 4α2

kS∆2C2(ML+ Y )2

≤ η2
k + α2

kC
2
1 − 2αk

S∑
J=1

∆−1∑
t=0

E

[ C∑
h=1

gJ,ht,k

]T [
xJ0,k − y

]
|F0,k

 , (3.20)

where C2
1 =

∑S
J=1

∑∆−1
t=0

[∑C
h=1 E[‖gJ,ht,k ‖2|F0,k]

]
+ 4S∆2C2(ML + Y )2 < ∞ follows from boundedness of

stochastic gradients and square summability property of step-size αk. Note that clients sample batches

uniformly for computing stochastic gradient. As ξ is drawn from uniform distribution,

E[gJ,ht,k |F0,k] = E[Wt,k[J, h]g(uJ,ht,k , ξ
h
t,k) + dJ,ht,k |F0,k] = Wt,k[J, h]∇fh(uJ,ht,k ) + dJ,ht,k , (3.21)

where u = uht,k is the downloaded model by client h. Note that the above equality is valid for all vari-

ants of POLAR-SGD: (a) basic, (b) client-averaged and (c) minimum-wait. Substituting equality (3.21) in

expression (3.20) we get,

E[η2
k+1|F0,k] ≤ η2

k + α2
kC

2
1 −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(uJ,ht,k ) + dJ,ht,k

]T [
xJ0,k − y

]
︸ ︷︷ ︸

Λ

. (3.22)

Next we estimate a bound on Λ defined in (3.22),

Λ = −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(uJ,ht,k ) + dJ,ht,k

]T [
xJ0,k − y

]
= −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(uJ,ht,k ) + dJ,ht,k

]T [
x0,k + δJk − y

]
= −2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(uJ,ht,k ) + dJ,ht,k

]T
[x0,k − y]


− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(uJ,ht,k ) + dJ,ht,k

]T [
δJk
] , (3.23)

where recall δJk = xJ0,k − x0,k. Observe that since u is different depending upon the POLAR-SGD variant.
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And hence the proof differs for different variants of the algorithm. However we will first discuss the differ-

ences and then provide a unified proof for the claims. We will first use gradient Lipschitzness (Assumption 4)

to establish the following gradient approximations and use them in the proof. Since the same quantity can

be used to upper bound the gradient approximation error, lJ,ht,k = ∇fh(uJ,ht,k )−∇fh(x0,k), the proof follows a

similar structure and the same super-martingale expression is valid for all three variants of POLAR-SGD.

Case 1: Basic variant: For the basic variant where u = xJt,k. We assume that the gradients are Lipschitz,

and hence we can write, ∇fh(xJt,k) = ∇fh(x0,k) + lJ,ht,k , where ‖lJ,ht,k ‖ ≤ N‖xJt,k − x0,k‖. Next we define

‖lh0,k‖ = maxJ,t ‖lJ,ht,k ‖ and construct a bound on it,

‖lh0,k‖ = max
J,t
‖lJ,ht,k ‖ = max

J,t
‖∇fh(xJt,k)−∇fh(x0,k)‖

(a)

≤ N max
J,t
‖xJt,k − x0,k‖

(b)

≤ N max
J,t
‖xJt,k − xJ0,k‖+N max

J
‖xJ0,k − x0,k‖

(c)

≤ 2αkN∆C(ML+ Y ) +N max
J
‖δJk ‖, (3.24)

where (a) follows from Lipschitzness of ∇fh(x), (b) follows Triangle inequality and (c) follows from (3.16).

Finally,

‖lh0,k‖ ≤ 2αkN∆C(ML+ Y ) +N max
J
‖δJk ‖. (3.25)

Case 2: Minimum-wait variant: For the minimum-wait variant where uJ,ht,k = xIt,k for some I ∈ Nh.

We assume that the gradients are Lipschitz, and hence we can write, ∇fh(xIt,k) = ∇fh(x0,k) + lI,ht,k , where

‖lI,ht,k ‖ ≤ N‖xIt,k − x0,k‖. Next we define ‖lh0,k‖ = maxI,t ‖lI,ht,k ‖ and construct a bound on it,

‖lh0,k‖ = max
I,t
‖lI,ht,k ‖ = max

I,t
‖∇fh(xIt,k)−∇fh(x0,k)‖

(a)

≤ N max
I,t
‖xIt,k − x0,k‖

(b)

≤ N max
I,t
‖xIt,k − xI0,k‖+N max

I
‖xI0,k − x0,k‖

≤ 2αkN∆C(ML+ Y ) +N max
I,t
‖δIk‖

‖lh0,k‖ ≤ 2αkN∆C(ML+ Y ) +N max
I
‖δIk‖, (3.26)

where (a) follows from Lipschitzness of ∇fh(x) and (b) follows from Triangle inequality.

Case 3: Client-averaged variant: For the client-averaged variant where uJ,hi,k = 1
|Nh|

∑
I∈Nh x

I
t,k. We
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assume that the gradients are Lipschitz, and hence we can write, ∇fh(u) = ∇fh(x0,k) + lht,k, where ‖lht,k‖ ≤

N‖u− x0,k‖. Next we define ‖lh0,k‖ = maxt ‖lht,k‖ and construct a bound on it,

‖lh0,k‖ = max
t
‖∇fh(u)−∇fh(x0,k)‖

(a)

≤ N max
t
‖u− x0,k‖

≤ N max
t
‖ 1

|Nh|
∑
I∈Nh

(
xIt,k − xI0,k

)
‖+N‖ 1

|Nh|
∑
I∈Nh

(
xI0,k − x0,k

)
‖

≤ N max
t

max
I
‖xIt,k − xI0,k‖+N max

I
‖xI0,k − x0,k‖

≤ 2αkN∆C(ML+ Y ) +N max
I
‖δIk‖

‖lh0,k‖ ≤ 2αkN∆C(ML+ Y ) +N max
I
‖δIk‖, (3.27)

where (a) follows from Lipschitzness of ∇fh(x).

Observe that the bound on ‖lJ,ht,k ‖ is the same for each POLAR-SGD variants. Next we will use the bound

on ‖lh0,k‖ developed in (3.25), (3.26) and (3.27) to rewrite the expression for Λ in (3.23) as follows,

Λ = 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]
(
∇fh(x0,k) + lJ,ht,k

)
+ dJ,ht,k

]T
[y − x0,k]


− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h](∇fh(uJ,ht,k )) + dJ,ht,k

]T [
δJk
]

= 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(x0,k) + dJ,ht,k

]T
[y − x0,k]


︸ ︷︷ ︸

T1

+ 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h] lJ,ht,k

]T
[y − x0,k]


︸ ︷︷ ︸

T2

−2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h](∇fh(uJ,ht,k )) + dJ,ht,k

]T [
δJk
]

︸ ︷︷ ︸
T3

= T1 + T2 + T3.

We will next construct each of the individual bounds on T1, T2 and T3. We begin with T1,

T1 = 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h]∇fh(x0,k) + dJ,ht,k

]T
[y − x0,k]
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= 2αk

 C∑
h=1

[
S∑
J=1

(
∆−1∑
t=0

Wt,k[J, h]

)
∇fh(x0,k) +

∆−1∑
t=0

(
S∑
J=1

dJ,ht,k

)]T [y − x0,k]

(a)
= 2αk

 C∑
h=1

[
S∑
J=1

(
∆−1∑
t=0

Wt,k[J, h]

)
∇fh(x0,k)

]T [y − x0,k]

(b)
= 2αk

(
C∑
h=1

[M∇fh(x0,k)]
T

)
[y − x0,k]

(c)

≤ −2αkM (f(x0,k)− f(y)) , (3.28)

where (a)− (b) follow from symmetric learning conditions of additive and multiplicative perturbations and

(c) follows from the fact that f(x) =
∑C
i=1 fh(x) is a convex function. Next we bound T2,

‖T2‖ =

∥∥∥∥∥2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h] lJ,ht,k

]T
[y − x0,k]

∥∥∥∥∥
≤

∥∥∥∥∥2αk

S∑
J=1

∆−1∑
t=0

([
C∑
h=1

Wt,k[J, h] lJ,ht,k

])∥∥∥∥∥‖y − x0,k‖

≤ 2αk

([
C∑
h=1

(
S∑
J=1

(
∆−1∑
t=0

|Wt,k[J, h]|

))
max
J,t
‖lJ,ht,k ‖

])
‖y − x0,k‖

(a)

≤ 2αk

([
C∑
h=1

M max
J,t
‖lh0,k‖

])
‖y − x0,k‖

(b)

≤ 2αk

(
CM

[
2αkN∆C(ML+ Y ) +N max

J
‖δJk ‖

])
‖y − x0,k‖

≤ 4α2
kN∆C2M(ML+ Y )‖x0,k − y‖+ 2αkNCM max

J
‖δJk ‖‖x0,k − y‖, (3.29)

where (a) follows from bounded update condition of multiplicative perturbations and (b) follows (3.25) and

(3.27). Observe that for any positive a, a2 + 1 ≥ 2a. Additionally, we use the fact that ‖x0,k − y‖2 =

‖ 1
S

∑S
J=1(xJ0,k − y)‖2 ≤ 1

S

∑S
J=1 ‖xJ0,k − y‖2 = 1

S η
2
k to update the bound on T2,

‖T2‖ ≤ 4α2
kN∆C2M(ML+ Y )‖x0,k − y‖+ 2αkNCM max

J
‖δJk ‖‖x0,k − y‖

≤ 4α2
kN∆C2M(ML+ Y )(1 + ‖x0,k − y‖2) + 2αkNCM max

J
‖δJk ‖(1 + ‖x0,k − y‖2)

≤ 4α2
kN∆C2M(ML+ Y )(1 +

1

S
η2
k) + 2αkNCM max

J
‖δJk ‖(1 +

1

S
η2
k). (3.30)

Finally we construct a bound on T3,

‖T3‖ =

∥∥∥∥∥− 2αk

S∑
J=1

∆−1∑
t=0

[ C∑
h=1

Wt,k[J, h](∇fh(uJ,ht,k )) + dJ,ht,k

]T [
δJk
]∥∥∥∥∥
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≤ 2αk

∥∥∥∥∥
C∑
h=1

[(
S∑
J=1

∆−1∑
t=0

|Wt,k[J, h]|

)
max
h,t
‖∇fh(uJ,ht,k )‖+

∆−1∑
t=0

S∑
J=1

|dJ,ht,k |

]T [
δJk
] ∥∥∥∥∥

(a)

≤ 2αk

C∑
h=1

∥∥∥∥∥
[
M max

h,t
‖∇fh(uJ,ht,k )‖+

∆−1∑
t=0

S∑
J=1

|dJ,ht,k |

]∥∥∥∥∥
∥∥∥∥∥ [δJk ]

∥∥∥∥∥
(b)

≤ 2αkC(ML+ ∆Y ) max
J
‖δJk ‖, (3.31)

where (a)− (b) follow from bounded update conditions for multiplicative and additive perturbations.

We combine the bounds on T1, T2 and T3 to get a bound on Λ,

Λ ≤− 2αkM (f(x0,k)− f(y)) + 4α2
kN∆C2M(ML+ Y )(1 +

1

S
η2
k) + 2αkNCM max

J
‖δJk ‖(1 +

1

S
η2
k)

+ 2αkC(ML+ ∆Y ) max
J
‖δJk ‖. (3.32)

We use this bound in our iterate relation:

E[η2
k+1|F0,k] ≤ η2

k + α2
kC

2
1 + Λ

≤ η2
k + α2

kC
2
1 − 2αkM (f(x0,k)− f(y)) + 4α2

kN∆C2M(ML+ Y )(1 +
1

S
η2
k)

+ 2αkNCM max
J
‖δJk ‖(1 +

1

S
η2
k) + 2αkC(ML+ ∆Y ) max

J
‖δJk ‖

≤ (1 +Ak) η2
k − 2αkM (f(x0,k)− f(y)) +Bk, (3.33)

where Ak = 4 1
Sα

2
kN∆C2M(ML+ Y ) + 2 1

SαkNCM maxJ ‖δJk ‖ and Bk = α2
kC

2
1 + 4α2

kN∆C2M(ML+ Y ) +

2αkNCM maxJ ‖δJk ‖+ 2αkC(ML+ ∆Y ) maxJ ‖δJk ‖. This proves the iterate lemma.

Proof of Theorem 6

Note that the expression in iterate lemma has similar structure as dissipation inequality in Lemma 10 and we

exploit this to prove convergence. We observe that Ak (respectively γk in Lemma 10) is a random sequence

albeit with a deterministic bound. We can make similar statement about Bk. The randomness in both Ak

and Bk is a result of the term maxJ ‖δJk ‖ being a stochastic quantity due to the use of stochastic gradient

updates. However, the deterministic upper bound on the disagreement between model parameters and the

average as established in Lemma 11 allows us to show
∑
k Ak < ∞ and

∑
k Bk < ∞ easily. We first prove

that
∑
k αk maxJ ‖δJk ‖ <∞ a.s. and use it to prove that

∑
k Ak <∞ and

∑
k Bk <∞. Invoking Lemma 10

we conclude that
∑
k αk(f(x0,k) − f(y)) < ∞ and limk→∞ ηk exists. We can prove convergence of iterate

average to the optimum with probability 1. This proves Theorem 6. We reproduce the entire proof below.

Proof. We use almost supermartingale convergence result (Lemma 10) from [75]. First observe that the

expression in iterate lemma (Lemma 12) has the desired structure as seen in Lemma 10. We consider
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Lemma 10 with y = x∗ and consequently η2
k represents the distance of server iterates from the optimum. We

can do this as the set of optimum is included in the feasible set, i.e. X ∗ ⊂ X . Recall f(x∗) = f∗ notation.

We have,

E[η2
k+1|F0,k] = (1 +Ak)η2

k − 2αkM(f(x0,k)− f(x∗)) +Bk. (3.34)

Recall that Ak and Bk are non-negative, real sequences. As f(x0,k) − f(x∗) ≥ 0, it is also a non-negative,

real sequence. Next we observe that we need to show
∑
k Ak < ∞ and

∑
k Bk < ∞ to be invoke Robbins-

Siegmund lemma (Lemma 10). Our first step is to prove
∑
k Ak <∞ and

∑
k Bk <∞.

We begin by showing that
∑
k αk maxJ ‖δJk ‖ <∞ using disagreement lemma (Lemma 11) as follows,

∑
k

αk max
J
‖δJk ‖ = α1‖δJ1 ‖+

∞∑
k=1

αk+1 max
J
‖δJk+1‖

(a)

≤ α1‖δJ1 ‖

+

∞∑
k=1

(
Sαk+1θβ

k+1 max
I
‖xI0,0‖+ 4αk+1αk∆C(ML+ Y ) + 2αk+1θ∆SC(ML+ Y )

k∑
l=1

βk+1−lαl−1

)
(b)

≤ α1‖δJ1 ‖︸ ︷︷ ︸
U0

+Sθmax
I
‖xI0,0‖

∞∑
k=1

αk+1β
k+1

︸ ︷︷ ︸
U1

+ 4∆C(ML+ Y )

∞∑
k=1

α2
k︸ ︷︷ ︸

U2

+ 2θ∆SC(ML+ Y )

∞∑
k=1

αk+1

k∑
l=1

βk+1−lαl−1︸ ︷︷ ︸
U3

, (3.35)

where (a) follows from Lemma 11 and (b) follows from αk ≥ αk+1.

First observe that U0 <∞ due to compact feasible set and U2 <∞ since
∑
k α

2
k <∞ from assumptions

on step size. Moreover, it is easy to see that U1 < ∞. This follows from the ratio test for convergence of

series,

lim
k→∞

sup
αk+2β

k+2

αk+1βk+1
= lim
k→∞

sup
αk+2β

αk+1
< 1 =⇒

∞∑
k=1

αk+1β
k+1 <∞.

We observe the fact that
∑∞
k=1 αk+1

∑k
l=1 β

k+1−lαl−1 ≤
∑∞
k=1

∑k
l=1 β

k+1−lα2
l−1 from the fact that αk+1 ≤

αl−1. And use Lemma 3 from [38], to conclude U3 <∞. Thus
∑
k αk maxJ ‖δJk ‖ <∞.

We use the fact that
∑
k αk maxJ ‖δJk ‖ <∞ and

∑
k α

2
k <∞ to conclude

∑
k Ak <∞ and

∑
k Bk <∞,

∑
k

Ak =
∑
k

(
4

1

S
α2
kN∆C2M(ML+ Y ) + 2

1

S
αkNCM max

J
‖δJk ‖

)
= 4

1

S
N∆C2M(ML+ Y )

∑
k

α2
k + 2

1

S
NCM

∑
k

αk max
J
‖δJk ‖ <∞,
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∑
k

Bk =
∑
k

(
α2
k

(
C2

1 + 4N∆C2M(ML+ Y )
)

+ 2αkC(ML+ ∆Y ) max
J
‖δJk ‖+ 2αkNCM max

J
‖δJk ‖

)
=
(
C2

1 + 4N∆C2M(ML+ Y )
)∑

k

α2
k + (2NCM + 2C(ML+ ∆Y ))

∑
k

αk max
J
‖δJk ‖.

We use an argument similar to observed in [38]. Using Lemma 10 we conclude that the sequence η2
k

converges to a non-negative random variable and
∑
k αk(f(x0,k) − f∗) < ∞ with probability 1. From

the disagreement lemma we know that the iterates converge towards each other. Using the fact that∑
k αk(f(x0,k) − f∗) < ∞,

∑
k αk = ∞, and the continuity of objective function f(x) we can conclude

that the iterate average x0,k must converge to X ∗ with probability 1 and hence the iterates must also

converge to X ∗ with probability 1.

3.5.3 Privacy Analysis

Proof of Claim 9

Proof. The fundamental reason for privacy in POLAR-SGD is the fact that clients use arbitrary multiplica-

tive and additive perturbations when a stochastic gradient estimate is uploaded to the parameter server.

While a balancing gradient estimate is uploaded to other parameter servers (due to SLC, Assumption 1),

the secure consensus protocol used by parameter servers (POLAR-SGD Server Algorithm, Algo. 4) ensures

that no honest-but-curious parameter server can estimate the balancing (sub)gradient estimate during the

consensus iteration. The consensus protocol in Algorithm 4 is information theoretically secure due to the

wrap-around feature of modulo arithmetic [73]. Hence, the most that an honest-but-curious parameter server

can learn about a client is through directly received gradients (Claim 9).

As discussed above there are two possible methods of violating privacy. The first being direct observation

of received gradient from a specific client and the second being information about gradient sent to a differ-

ent server leaking during consensus. The received gradients are perturbed by multiplicative and additive

arbitrary perturbations. The additive perturbation hides gradients especially when the gradient is close to

zero (since W [J, h]gh(u, ξ) will be close to zero too). This protects gradients from direct observation from an

adversary. Note that the perturbations are arbitrary and unknown to the adversary, protecting the stochas-

tic gradients. No information leakage happens during consensus as we use secure multi-party computation

based private consensus algorithm to average model parameters [23,73].

It is important to note that, while private objective functions owned by individual clients are protected

against honest-but-curious adversaries, the overall cost function f(x) is not. Consider a scenario where

∆ = 1, where projected descent and consensus steps occur alternatively. As the private consensus step

computes the exact average, an adversary can estimate the effect of stochastic gradients on servers other

than itself. This along with stochastic gradient directly received from a client, an adversary can estimate
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the gradient of the whole function, violating the privacy of f(x).

3.5.4 Extensions

We assume that a parameter server is adversarial. This can be extended to multiple (τ) adversarial parameter

servers scenario, however this requires that clients upload gradients to at least τ + 1 parameter servers.

We make an assumption that the parameter servers form a fully connected graph. This assumption allows

us to use secure consensus scheme from [73] and prove privacy with relative ease. If the parameter servers

are not fully connected but only connected we can claim correctness following our analysis Section 3.5.2,

however, the privacy analysis is expected to be difficult.

Moreover, it is easy to extend POLAR-SGD to have coordinate wise different multiplicative weights.

Under mild additional conditions like per coordinate satisfaction of symmetric learning and bounded update

condition we can extend the correctness results. We discuss this in our technical report [85].

3.6 Experimental Validation

In this section we empirically validate POLAR-SGD. We consider linear regression problem on a large

synthetic dataset. We consider 100000 data points partitioned among C = 100 clients. Our system consists

of S = 5 parameter servers. The clients upload gradients to more than one parameter server in each iteration

and the servers form a fully connected graph and perform secure consensus ever ∆ iterations.

If dataset Di is stored at client i, then we write the local objective function at client i as,

fi(x) =
∑
l∈Di

‖xTal − bl‖2,

where (al, bl) are data points belonging to Di. And the overall objective function becomes

f(x) =
∑
i

fi(x) =

C∑
i=1

∑
l∈Di

‖xTal − bl‖2.

We consider multiplicative perturbations and additive perturbations that satisfy SLC and BUC with

parameters M = 5 and M = 50. We consider three values of ∆ = {10, 20, 50} and compare performance.

We also compare performance of POLAR-SGD with respect to non-private algorithm and show the trade-off

between privacy and convergence speed. Note that we use batch size of 10 samples for computing stochastic

gradients in each iteration.

Figure 3.3 shows the sub-optimality of iterates with respect to iterations. First observe that POLAR-SGD

iterates converge (in function value) to the optimum for each ∆. Observe that the non-private algorithm

presented earlier converges much faster than POLAR-SGD. As expected, with higher ∆, it takes more
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Figure 3.3: Sub-optimality v/s iterations.

iterations for multiplicative and additive perturbations to average out and hence it take longer to converge.

In case of smaller ∆’s (like 10 and 20) the iterates follow the general trend of the non-private algorithm

very closely. However with larger ∆ the function sub-optimality may increase as compared to the starting

sub-optimality for few iterations.

3.7 Conclusion

In this chapter we consider privacy preserving distributed optimization algorithm for a multiple parameter

server architecture. Our algorithm uses additive and multiplicative weights to perform gradient obfuscation.

The parameter servers use a secure consensus protocol to average the model parameters with privacy. We

show correctness of our algorithm and discuss privacy for polynomial objective functions. We show that

privacy and accuracy coexist in our framework. We also experimentally validate our algorithm on the linear

regression problem.
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CHAPTER 4

PRIVATE EQUILIBRIUM COMPUTATION ALGORITHM FOR

NETWORK AGGREGATE GAMES

4.1 Introduction

Aggregate games are non-cooperative games in which a player’s payoff or cost depends on its own actions

and the sum-total of the actions taken by other players. In a Cournot oligopoly for example, firms compete

to supply a product in a market with a price-responsive demand with a goal to maximize profit. A firm’s

profit depends on its production cost as well as the market price, where the latter only depends on the

aggregate quantity of the product offered in the market by all firms. Aggregate games are widely studied in

the literature, e.g., see [89, 90]. Multiple strategic interactions in practice admit an aggregate game model,

e.g., Cournot competition models for wholesale electricity markets in [91–93], supply function competition in

general economies see [90], communication networks in [94,95] and common agency games in [96]. Aggregate

games are often potential games and a pure-strategy Nash equilibrium can be guaranteed to exist. In this

dissertation, we present an algorithm for networked players to compute such an equilibrium in a distributed

fashion that maintains the privacy of players’ cost structures.

Players in a networked game can only communicate with neighboring players in a communication graph.

Distributed algorithms for computing Nash equilibrium in networked games have a rich literature, e.g.,

see [13, 97–100]. The obvious difficulty in computing equilibrium strategy arises due to the inability of a

player to observe the aggregate decision. Naturally distributed Nash computation proceeds via iterative

estimation of the aggregate decision followed by local payoff maximization (or cost minimization) with a

given aggregate estimate. References [13,100] exploit consensus based averaging, [13,97] explore gossip based

averaging, and [99] employs gradient play along with acceleration for aggregate estimation over networks.

4.1.1 Our Contributions

Algorithms for equilibrium computation were not designed with privacy in mind. We show in Section 4.2.5,

that an honest-but-curious adversary can compromise a few nodes in the network and observe the sequence

of estimates to infer other players’ payoff or cost structures for the algorithm in [13]. In other words,

information that allows distributed equilibrium computation can leak players’ sensitive private information

to adversaries.
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Distributed equilibrium computation algorithms require aggregate estimates to update their own actions.

Our proposed algorithm obfuscates local aggregate estimates before sharing them with neighbors. The

obfuscation step involves players adding correlated perturbations to each outgoing aggregate estimate. The

perturbations are designed such that they add to zero for each player. The received perturbed aggregate

estimates are averaged by each player and used for updating strategy using local projected gradient descent.

Our main result (Theorem 7) reveals that obfuscation via correlated perturbations prevents an adversary

from accurately learning cost structures provided the network satisfies appropriate connectivity conditions.

Players converge to exact Nash equilibrium asymptotically. In other words, we simultaneously achieve both

privacy and accuracy in distributed Nash computation in aggregate games. This is in sharp contrast to

differentially private algorithms where trade-offs between accuracy and privacy guarantee are fundamental,

e.g., see [61].

Simulations in Section 4.4 validate our results and corroborate our intuition that obfuscation slows down

but does not impede the convergence of the algorithm.

4.2 Equilibrium Computation in Aggregate Games and the Lack of
Privacy

We begin by introducing a networked aggregate game. We then present an adversary model and show that

prior distributed equilibrium computation algorithms leak private information of players. This exposition

motivates the development of privacy-preserving algorithms for equilibrium computation in the next section.

4.2.1 The Networked Aggregate Game Model

Consider a game with n players that can communicate over a fixed undirected network with reliable lossless

links. Model this communication network by graph G(V, E), where each node in V := {1, . . . , n} denotes a

player. Two players i and j can communicate with each other if and only if they share an edge in E , denoted

as (i, j) ∈ E . Call Ni the set of neighbors of node i and i ∈ Ni by definition.

Player i can take actions in a convex compact set X i ⊆ Rd, where R denotes the set of real numbers.

Define X as the Minkowski (set) sum of X i’s and

x :=

n∑
j=1

xj , (4.1)

as the aggregate action of all players. For convenience, define x−i :=
∑
j 6=i x

i. We assume that ∩ni=1X i

is non-empty. For an action profile (x1, . . . , xn), player i incurs a cost that takes the form fi(x
i, x) :=

fi
(
xi, xi + x−i

)
. This defines an aggregate game in that the actions of other players affect player i only

through the sum of actions of all players, x.
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Each player i ∈ V thus seeks to solve

minimize fi(x
i, xi + x−i),

subject to xi ∈ X i.
(4.2)

For each i ∈ V, assume that fi(x
i, y) is continuously differentiable in (xi, y) over a domain that contains

X i × X . Furthermore, for each i ∈ V, let xi 7→ fi(x
i, x) be convex over X i and the gradient ∇xifi be

uniformly L-Lipschitz, i.e., ∃ L > 0 such that,

‖∇xifi(xi, u)−∇xifi(xi, u′)‖ ≤ L‖u− u′‖, (4.3)

for all u, u′ in X , xi in X i. Throughout, ‖ · ‖ stands for the `2-norm of its argument. Define X := ×ni=1X i

and the gradient map

φ(x) :=


∇x1f1(x1, x)

...

∇xnfN (xn, x)

 , (4.4)

for x := (x1ᵀ, x2ᵀ, . . . , xn
ᵀ
)ᵀ ∈ X . Assume throughout that φ is strictly monotone over X , i.e.,

[φ(x)− φ(x′)]
ᵀ

(x− x′) > 0, (4.5)

for all x, x′ ∈ X and x 6= x′. Denote this game in the sequel by game(G, {fi,X i}i∈V).

To provide a concrete example, consider the well-studied Nash-Cournot game (see [7]) among n suppliers

competing to offer into a market for a single commodity where the price p varies with demand D as p(D) :=

a−bD. Supplier i offers to produce xi amount of goods within its production capability modeled as X i ⊆ R+.

Here R+ denotes the set of non-negative real numbers. To produce xi, supplier i incurs a cost of ci(x
i),

where ci is increasing, convex and differentiable. Each supplier seeks to maximize its profit, or equivalently,

minimize its loss. The loss of supplier i is

fi(x
i, x) = ci(x

i)− xip(x) = ci(x
i)− xi(a− bx).

4.2.2 Equilibrium Definition and Existence

An action profile (x1
∗, . . . x

n
∗ ) defines a Nash equilibrium of game(G, {fi,X i}i∈V) in pure strategies, if

fi
(
xi∗, x

i
∗ + x−i∗

)
≤ fi

(
xi, xi + x−i∗

)
,
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for all xi ∈ X i and i ∈ V.

The networked aggregate game, as described above, always admits a unique pure strategy Nash equilib-

rium. See Theorem 2.2.3 in [101] for details. Given that an equilibrium always exists, prior literature has

studied distributed algorithms for players to compute such an equilibrium.

4.2.3 Prior Algorithms for Distributed Nash Computation

We now describe the distributed algorithm for Nash equilibrium computation from [13]. This algorithm

iteratively solves game(G, {fi,X i}i∈V). In Section 4.2.5, we demonstrate that adversarial players can infer

private information about cost structures fi’s from observing a subset of the variables during equilibrium

computation using that algorithm. While we only study the algorithm in [13], our analysis can be extended

to those presented in [97–100].

Recall that players in game(G, {fi,X i}i∈V) do not have access to the aggregate decision. To allow equi-

librium computation, let players at iteration k maintain estimates of the aggregate decision x as v1
k, . . . , v

n
k ,

initialized as, vi0 = xi0 for each player i. At discrete time steps k ≥ 0, each player transmits its own estimate

of the aggregate decision to its neighbors and updates its own action as follows,

v̂ik =

n∑
j=1

Wijv
j
k, (4.6a)

xik+1 = projX i
[
xik − αk∇xifi(xik, nv̂ik)

]
, (4.6b)

vik+1 = v̂ik + xik+1 − xik. (4.6c)

Here, projX i stands for projection on X i, and αk is a common learning rate of all players.

The algorithm has three steps. First, player i computes a weighted average of the estimates of the

aggregate received from its neighbors in (4.6a), where W is a symmetric doubly-stochastic weighting matrix.

The sparsity pattern of the matrix follows that of graph G, i.e.,

Wij 6= 0 ⇐⇒ (i, j) ∈ E .

Second, player i performs a projected gradient update in (4.6b) utilizing the weighted average of local

aggregate decision v̂ik in lieu of the true aggregate decision x. Finally, players update their own estimate of

aggregate average in (4.6c) based on its local decision xik and its update xik+1.

4.2.4 Adversary Model and Privacy Definition

Consider an adversary A that compromises the players in A ⊆ V. A is equipped with unbounded storage and

computational capabilities, and has access to all information stored, processed locally and communicated to
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any compromised players at all times. We define adversary model using the information available to A.

(A) For a compromised node i ∈ A, A knows all local information fi, x
i
k, vik, v̂ik and information received

from neighbors of i i.e., vjk for j ∈ Ni at each k ≥ 0.

(B) A knows the algorithm for equilibrium computation and its parameters {αk} and W .

(C) A observes aggregate decision xk, i.e.
∑n
i=1 x

i
k per (4.1), at each k.

What does A seek to infer? The dependency of a player’s cost on the player’s own actions encodes private

information. In the Cournot competition example, this dependency is precisely supplier i’s production cost

– information that is business sensitive. A seeks to exploit information sequence observed from compromised

players to infer private information of other players. Intuitively, privacy implies inability of A to infer private

cost functions.

Denote the set of non-adversarial nodes by Ac := V \A. Call G(Ac) the restriction of G to Ac obtained by

deleting the adversarial nodes. See Figure 4.1 for an illustration. For this example, A monitors all variables

and parameters pertaining to player 5, but seeks to infer the functions f1, . . . , f4.

Figure 4.1: Illustration of G and G(Ac). Here, A = {5} and Ac = {1, 2, 3, 4}.

Let Π denote the set of all permutations over all non-adversarial nodes in Ac. Define the collection of

games

F :=
{
game(G, {fπ(i),X π(i)}i∈V)

∣∣∣ π ∈ Π
}
.

Thus, F comprises the games where the cost functions and strategy sets of non-adversarial players are

permuted. All games in F have the same aggregate strategy x∗ at Nash equilibrium. Next, we utilize F to

define privacy.

Definition 2 (Privacy via Non-identifiability). Consider a distributed algorithm used to compute the Nash

equilibrium of game(G, {fi,X i}i∈V). If execution observed by adversary A is consistent with all games in F ,

then the algorithm is private.

We define privacy as the inability of A to distinguish between games in F . Even if A knew all possible costs

exactly–which is a tall order–our privacy definition implies that A cannot associate such costs to specific

players.
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4.2.5 Privacy Breach in Algorithm (4.6)

Consider a Cournot competition among five players connected according to G in Figure 4.1, where A has

compromised player 5. Assume that the equilibrium of the game lies in the interior of each player’s strategy

set. Recall that A stores observed information at each k and processes it to infer private cost information

ci(xi). We argue how A can compute cost functions c1(·), . . . , c4(·) up to a constant.

• We first show privacy breach for player 4. A observes {v1
k, v

3
k, v

4
k, v

5
k} at each k ≥ 0. A uses v3

k, v4
k, v5

k

and W to compute v̂4
k using (4.6a). Moreover, A uses (4.6c) to compute,

x4
k+1 − x4

k = v4
k+1 − v̂4

k.

• For large enough k, the step-size αk is small enough to ensure that the output after projection is

approximately the gradient based update,1

projX i
[
xik − αk∇xifi(xik, nv̂ik)

]
≈ xik − αk∇xifi(xik, nv̂ik).

At such large k, A uses (4.6b) along with (x4
k+1 − x4

k) and αk to calculate ∇x4f4(x4
k, nv̂

4
k). Even

if the above inequality is satisfied only approximately, an adversary may still learn an estimate of

∇x4f4(x4
k, nv̂

4
k) within an error ball.

• A uses information about structure of loss function i.e. f4(x4, x) = c4(x4) − x4(a − bx), along with

∇x4f4(x4
k, nv̂

4
k), v̂4

k, xk and game parameters a, b to learn c′4(x4
k). Several observations of (x4

k, c
′
4(x4

k))

allows A to learn the private cost c4 upto a constant. The exact number of observations needed depends

directly on structure of cost c4, e.g. three observations for quadratic, four observations for cubic, and

five observations for quartic c4(x).

• We showed that privacy breach for player 4, the same analysis can be used for players 1, 2 and 3 with

an additional step. A observes xk, which is exactly 1
n

∑
i v
i
k (Lemma 2 in [13]). A computes

v2
k = nxk − (v1

k + v3
k + v4

k + v5
k).

Since {v2
k} is available for each k ≥ 0, A uses same process as above to show privacy breach for players

1, 2 and 3.

For algorithm (4.6), A uncovers all private cost functions ci(·) for an example aggregate game. Next, we

design an algorithm that protects privacy of players’ private information in the sense of Definition 2 against

A.
1This follows from the definition of projection operator as used on convex sets, specifically, if X is a convex compact set

then projX (x) = x for all x ∈ X . In this instance, we argue that if αk is small enough, xik lies in the interior of X i implies

xik − αk∇xifi(x
i
k, nv̂

i
k) ∈ X i and lets us show that projection operator behaves like an identity operator.

80



4.3 Our Algorithm and Its Properties

We propose and analyze Algorithm 5 that computes Nash equilibrium of game(G, {fi,X i}i∈V) in a distributed

fashion. The main result (Theorem 7) shows that the algorithm asymptotically converges to the equilibrium.

Attempts by A to recover each player’s cost structure, however, remain unsuccessful.

The key idea behind our design is the injection of correlated noise perturbations in the exchange of local

estimates of the aggregate decision. Different neighbors of player i receive different estimates of the aggregate

decision. The perturbations added by any player i add to zero. While A may still infer the true aggregate

decision, the protocol does not allow the adversary to correctly infer the players’ iterates or the gradients

of their costs with respect to their own actions. Our assumption on network connectivity requires G(Ac) be

connected and non-bipartite. Under these conditions A cannot monitor all outgoing communication channels

from any player. We further show that one can design noises in a way that A’s observations are consistent

with all games in F , making it impossible for him to uncover cost for any specific player.

Throughout, assume that W is a doubly stochastic that follows the sparsity pattern of G. Further, assume

that all non-diagonal, non-zero entries of W are identically δ < 1
n−1 .

At each time k, player i generates correlated random numbers {rijk } satisfying riik = 0 and
∑
j∈Ni r

ij
k = 0.

Player i then adds αkr
ij
k to vik to generate vijk , the estimate sent by player i to player j, according to (4.9).

Let r denote the collection of r’s for all players across time. Call r the obfuscation sequence.

Each node i computes weighted average of received aggregate estimates vjik to construct its own estimate

aggregate decision nv̂ik, following (4.10). Players perform projected gradient descent using local decision

estimate xik, gradient of cost function ∇xifi(xik, nv̂ik), and non-summable, square-summable step size αk (see

(4.7)) to arrive at an improved local decision estimate xik+1 using (4.11). Players then update their local

aggregate estimate using the change in local decision estimate xik+1 − xik per (4.12).

The properties of our algorithm are summarized in the next result. The proof is included in Section 4.5.

Theorem 7. Consider a networked aggregate game defined as game(G, {fi,Xi}i∈V). If G(Ac) is connected

and non-bipartite, then Algorithm 5 is private as per Definition 2. Moreover, if the obfuscation sequence is

bounded, then Algorithm 5 asymptotically converges to a Nash equilibrium of the game.

The convergence properties largely mimic that of distributed descent algorithms for equilibrium compu-

tation. The locally balanced and bounded nature of the designed noise together with decaying step-sizes

ultimately drown the effect of the noise. Computing balanced yet bounded perturbations can be achieved us-

ing secure multiparty computation protocols described in [20,36,73]. Our assumption on G(Ac) is such that

given two games F, F̃ from F and an obfuscation sequence r, we are able to design a different obfuscation

sequence r̃, such that the execution of F perturbed with r generates identical observables as F̃ perturbed

with r̃. The connectivity among non-adversarial players in Ac is key to the success of our algorithm design.

Convergence speed depends on the size of the perturbations. We investigate this link experimentally in
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Algorithm 5 Private Distributed Nash Computation

Input: Player i knows fi(x
i, x), X i, and δ. Consider a non-increasing non-negative sequence α that satisfies

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞. (4.7)

Initialize: For i ∈ V, vi0 = xi0 = x ∈ ∩iX i.

For k ≥ 0, players i ∈ V execute in parallel:

1: Construct |Ni| random numbers {rijk }, satisfying

riik = 0 and
∑
j∈Ni

rijk = 0. (4.8)

2: Send obfuscated aggregate estimates vijk to j ∈ Ni, where

vijk = vik + αkr
ij
k . (4.9)

3: Compute weighted average of received estimates vjik as

v̂ik =

n∑
j=1

Wijv
ji
k . (4.10)

4: Perform a projected gradient descent step as

xik+1 = projX i [x
i
k − αk∇xifi(xik, nv̂ik)]. (4.11)

5: Update local aggregate estimate as

vik+1 = v̂ik + xik+1 − xik. (4.12)

Section 4.4, but leave analytical characterization of this relationship for future work.

Remark 2. Observe that we can select random perturbations, rijk , to be gradients of a random function,

pij(x), computed at local strategy estimate xik, i.e. rijk = ∇pij(xik). If agent i designs these random functions,

{pij(x), j ∈ Ni}, locally to satisfy
∑
j∈Ni p

ij(x) = 0, then the random perturbations computed by using

gradients will satisfy locally balanced property required in (4.8). Moreover, as each X i is a compact set by

assumption, the random perturbations computed as gradients of random functions will be bounded.

In what follows, we compare our algorithm and its properties to other protocols for privacy preservation.

Comparison with Differentially Private Algorithms: Differentially private algorithms for computing

Nash equilibrium of potential games have been studied in [102, 103]. The algorithm in [102] executes a

differentially private distributed mirror-descent algorithm to optimize the potential function. Experiments

reveal that a trade-off arises between accuracy and privacy parameters, i.e., the more privacy one seeks, the

less accurate the final output of the algorithm becomes. Such a tradeoff is a hallmark of differentially private

82



algorithms, e.g., see [61]. Our algorithm on the other hand does not suffer from that limitation. The privacy

guaranteed in our work is weaker as some information, such as the aggregate action (x), is exactly observed.

Notice that our definition of privacy is binary in nature. That is, an algorithm for equilibrium computation

can either be private or non-private. We aim to explore properties of our algorithmic architecture with notions

of privacy that allow for a degree of privacy and compare them with differentially private algorithms.

Comparison to Cryptographic Methods: Authors in [104] use secure multiparty computation to com-

pute Nash equilibrium. Such an approach guarantees privacy in an information theoretic sense. This protocol

provides privacy guarantees along with accuracy, similar to our algorithmic framework. However, crypto-

graphic protocols are typically computationally expensive for large problems (see Section V in [55]), and are

often difficult to implement in distributed settings.

Comparison to Private Distributed Optimization: Our earlier work in [20] has motivated the design

of Algorithm 5. While our prior work seeks privacy-preserving distributed protocols to cooperatively solve

optimization problems, the current chapter focuses on non-cooperative games. Protocols in [20] advocate

use of two sets of perturbations – perturbations that cancel over the network and perturbations that cancel

locally. Just network-wide balanced noise design is not appropriate for networked games for two reasons.

First, players must agree on noise design strategy, a premise that requires cooperation and may be unac-

ceptable in non-cooperative games like aggregate game considered here. Second, perturbing local functions

fi’s, even if the changes cancel in aggregate, can alter the equilibrium of the game.

Privacy in Client-Server Architecture: This work considers players communicating over a peer-to-peer

network. However, engineered distributed systems often have a client-server architecture. Presence of a

central server entity allows for easy aggregate computation. However, privacy is sacrificed if the param-

eter server is adversarial. We have investigated privacy preservation for distribution optimization in this

architecture in [27], where we use multiple central servers instead of one, a subset of which can be adversar-

ial. We believe our algorithm design and analysis in [27] can be extended to deal with private equilibrium

computation for aggregate games in client-server framework.

4.4 A Numerical Experiment

Consider a Cournot competition with n = 10 players over G described in Figure 4.2. Player i’s cost is given

by

ci(x
i) = ζi,2(xi)2 + ζi,1(xi).
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Figure 4.2: Communication network for Cournot network example on n = 10 players.
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Figure 4.3: Iterates of Algorithm 5 versus the Algorithm in (4.6) for ∆ = {10, 20, 30, 50}.

The cost coefficients are drawn randomly from

ζi,2 ∼ unif[0, 1/2], ζi,1 ∼ unif[0, 1],

for each i. The strategy sets are identically X i = [0, 5] for each i. Choose δ = 1
10 that parameterizes the

matrix W . Let the price vary with demand D as

p(D) = 6− 1

10
D.

We initialize the algorithm with xi0 = 1 identically for all players i. We use secure multi-party computing

technique in [20] to design obfuscation sequence r that satisfies (4.8) and

|rijk | ≤ ∆.

The trajectory of the average distance of xik’s from xi∗ across players with αk := (k + 1)0.51 is shown in

Figure 4.3.

Our algorithm converges to the equilibrium similar to the non-private algorithm in (4.6). However, its

convergence is slower as seen in Figure 4.3. The slowdown is especially pronounced for large ∆’s and is an

artifact of perturbations added by players to obfuscate information from the adversary. Thus, our algorithm

design achieves privacy and asymptotic convergence to equilibrium, but sacrifices speed of convergence. An
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analytical characterization of the slowdown defines an interesting direction for future work.

4.5 Privacy Analysis and Proof of Theorem 7

4.5.1 Proving Algorithm 5 is Private

Recall that G(Ac) is the graph over non-adversarial nodes Ac. Suppose Ac has M nodes. Let I, J be two

players in Ac and

F := (fi,X i)i∈V , F̃ := (f̃i, X̃ i)i∈V ,

be two games in F such that F̃ is identical to F , except that costs and strategy sets of players I and J are

switched:

f̃I = fJ , f̃J = fI , X̃ I = X J , X̃ J = X I .

For convenience, define π : V → V as the permutation that encodes the switch, i.e.,

π(I) = J, π(J) = I, and π(i) = i for all i 6= I, J.

Consider the execution of Algorithm 5 on F with obfuscation sequence r used in (4.9), and xj0 initialized

as xj0 = x ∈ ∩ni=1X i, for each j = 1, . . . , n,

E(F, r, x ) := {(xik, vik, v̂ik) for i ∈ V, k ≥ 0}.

We require all players to initialize their actions/decisions with the same value. We prove that there exists an

obfuscation sequence r̃ such that execution E(F̃ , r̃, x ) of Algorithm 5 on game F̃ with obfuscation sequence

r̃ and xj0 initialized at x (for each j = 1, . . . , n), is identical to E(F, r, x ), from A’s perspective. An arbitrary

permutation over Ac is equivalent to a composition of a sequence of switches among two players in Ac. As a

result, the algorithm execution on games in F can be made to appear identical from A’s standpoint, proving

the privacy of Algorithm 5.

In the rest of the proof, we show how to construct r̃ that ensures E(F̃ , r̃, x ) and E(F, r, x ) appear identical

to A.

Adversary observes {xjk, v
j
k, v̂

j
k} for all j ∈ A at each k ≥ 0. Adversary also observes all messages exchanged

with a corrupted node.

All perturbations utilized by corrupted nodes j ∈ A are same in both executions,

r̃jik = rjik for all j ∈ A. (4.13)

All messages received by corrupted nodes j ∈ A from non-corrupted nodes i ∈ Ac, denoted by vijk , are
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identical for both executions to be exactly the same, i.e.,

ṽijk = vijk ⇐⇒ ṽik + αkr̃
ij
k = vik + αkr

ij
k

⇐⇒ αkr̃
ij
k = vik + αkr

ij
k − ṽ

i
k.

(4.14)

Adversary observes xk for each k ≥ 0. Enforcing

x̃ik = x
π(i)
k , ṽik = v

π(i)
k , ̂̃vik = v̂

π(i)
k , (4.15)

and resulting in x̃k = xk. Recall, the non-diagonal, non-zero entries of W matrix are δ and we get,

̂̃vik = v̂
π(i)
k

⇐⇒
∑
j∈Ni

Wij(ṽ
j
k + αkr̃

ji
k ) =

∑
j∈Nπ(i)

Wπ(i)j(v
j
k + αkr

jπ(i)
k )

⇐⇒
∑

j∈Ni∩Ac
r̃jik =

1

αkδ

∑
j∈Nπ(i)

Wπ(i)j(v
j
k + αkr

jπ(i)
k )− 1

αkδ

∑
j∈Ni

Wijv
π(j)
k −

∑
j∈Ni∩A

r̃jik . (4.16)

The obfuscation used by each player i ∈ Ac is locally balanced, and hence, we have

∑
j∈Ni

r̃ijk = 0 ⇐⇒
∑

j∈Ni∩Ac
r̃ijk = −

∑
j∈Ni∩A

r̃ijk . (4.17)

Let γ be a vector of dimension 2|Ec|, where Ec is the set of all edges in the graph restricted to non-corrupted

nodes, i.e. Ec = E(G(Ac)). γ is a vector of r̃ijk ’s for i, j ∈ Ac ordered as follows – r̃ijk for all (i, j) ∈ Ec oriented

opposite to the edges in B matrix, see (4.18), followed by r̃jik , where (j, i) ∈ Ec are oriented in the same

direction as the edges in B matrix. In the sequel, let 1 denote a vector of ones of appropriate dimension.

Let M = |Ac| be the number of non-corrupted nodes. For graph G(Ac), define its oriented incidence matrix

B (dimension M × |Ec|) (see [78] for definition and details) as follows,

Bij =


1 if node i is head of edge j,

−1 if node i is tail of edge j,

0 otherwise,

(4.18)

for each edge j ∈ Ec.

The adjacency matrix A (dimension M ×M), degree matrix D (diagonal matrix with dimension M ×M),
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and the normalized graph Laplacian matrix L (dimension M ×M) as,

Aij =

1 if (i, j) is edge in G(Ac),

0 otherwise,

(4.19)

D = diag(A1), (4.20)

L = I −D−1/2AD−1/2. (4.21)

Using the notation z+ := max{z, 0} and z− := z+−z for a scalar z, define B+ and B− as the matrices obtained

from B, applying the respective operator componentwise. That is, B+ = [(Bij)+] and B− = [(Bij)−]. We

will use this notation to rewrite (4.16) - (4.17) as a system of linear equations.

First, recall (4.16) for each i ∈ Ac,

∑
j∈Ni∩Ac

r̃jik =
1

αkδ

∑
j∈Nπ(i)

Wπ(i)j(v
j
k + αkr

jπ(i)
k )− 1

αkδ

∑
j∈Ni

Wijv
π(j)
k −

∑
j∈Ni∩A

r̃jik . (4.22)

Observe, that the left-hand side of the above expression is a linear combination (addition) of r̃jik for all

j ∈ Ni ∩ Ac with i ∈ Ac. These are elements of unknown vector γ. The right-hand side has three

summation terms; the first term is exactly known from the first execution, the second term is exactly known

given permutation π and first execution, and the third term is known following r̃jik = rjik (for i ∈ Ac and

j ∈ Ni ∩ A) from (4.13). Consequently, the right-hand side for each constraint in (4.22) is exactly known

for each of the M constraints, one for each i ∈ Ac, and stored in vector ξ1. The left-hand side for each

linear constraint involves perturbations received by i ∈ Ac consequently they can be encoded using unsigned

adjacency matrix as [B− B+] γ. We can rewrite M linear equations, given by (4.22) for each i ∈ Ac, as

[B− B+] γ = ξ1.

Next, recall (4.17) for each i ∈ Ac,

∑
j∈Ni∩Ac

r̃ijk = −
∑

j∈Ni∩A
r̃ijk . (4.23)

As before, the left-hand side is a linear combination (addition) of r̃ijk , with i ∈ Ac and j ∈ Ni ∩ Ac. The

right-hand side is a combination of r̃ijk for i ∈ Ac and j ∈ Ni ∩A, which are known given first execution and

permutation π as per (4.14). The left-hand side for each linear constraint involves perturbations transmitted

by i ∈ Ac consequently they can be encoded using unsigned adjacency matrix as [B+ B−] γ. We can

rewrite M constraints, one linear equation as given above in (4.23) for each i ∈ Ac, as a system of linear

equations given by,

[B+ B−] γ = ξ2,
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where ξ2 represents the stacked right-hand side residuals for each constraint (4.23).

We define matrix T and vector ξ as follows,

T =

B− B+

B+ B−

 and ξ =

ξ1

ξ2

 . (4.24)

The stacked linear equations (4.22) and (4.23) are rewritten using matrix T and vector ξ as,

B− B+

B+ B−

 γ =

ξ1

ξ2

 =⇒ T γ = ξ, (4.25)

where T is defined above as per (4.24), γ is the vector of unknown r̃ij (i and j both belong to Ac), and ξ is

formed using the residual terms from (4.23) - (4.22) as per (4.24). The expression Tγ = ξ brings out the fact

that unknown r̃ij (i, j ∈ Ac) are constrained to be in a linear sub-space characterized by linear equations

given by Tγ = ξ.

From the Rouché-Capelli Theorem, if rank (T ) = rank ([T |ξ]) then the system of linear equations has at

least one solution. We will prove that

rank T = rank (T | ξ) = 2M − 1, (4.26)

to show that Tγ = ξ admits at least one solution. This will imply that there exists at least one set of r̃ that

lead to E(F̃ , r̃, x ) and E(F, r, x ) being exactly the same from A’s perspective. In what follows, we show graph

conditions in Theorem 7 allow us to directly prove the above statement leading to the proof of sufficiency of

graph conditions for privacy.

First, notice

(1
ᵀ | − 1ᵀ

)

B− B+

B+ B−

 =
(
−1ᵀ

B | 1ᵀ
B
)

= 01×2M , (4.27)

proving that rows of T are not linearly independent. This directly gives us that rank T ≤ 2M − 1.

Next, we show that rank T ≥ 2M − 1. To that end, we have

rank T
(a)
= rank (TT

ᵀ
)

(b)
= rank

B−Bᵀ
− +B+B

ᵀ
+ B−B

ᵀ
+ +B+B

ᵀ
−

B+B
ᵀ
− +B−B

ᵀ
+ B−B

ᵀ
− +B+B

ᵀ
+
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(c)
= rank

D A

A D


(d)
= rank D + rank (D −AD−1A)

(e)
= M + rank (IM −D−1/2AD−1AD−1/2)

(f)
= M + rank (IM − (IM − L)2)

(g)
= M + rank (2L− L2)

(h)

≥ M + rank L︸ ︷︷ ︸
=M−1

+rank (2IM − L)−M

(i)
= M − 1 + rank (2IM − L)

= 2M − 1, (4.28)

where IM is the M ×M identity matrix.

Here, (a) follows from the fact that if T is a matrix of real numbers then rank (T ) = rank (T ᵀ) =

rank (TT ᵀ) = rank (T ᵀT ). Next, we use the definition of T from (4.25) to get (b). We use the definition of

B+, B−, D,A to get (c). We use Guttman rank additivity formula to get (d). Specifically if

A =

A1 A2

A3 A4

 ,
then the Guttman rank additivity formula gives, rank (A) = rank (A4)+rank (A1−A2A

−1
4 A3), and applying

it to our situation we get rank (T ) = rank (D) + rank (D −AD−1A) as shown in (d).

Recall, D is a diagonal matrix of size M ×M (see (4.20)) and consequently D is rank M (full rank). We

use the fact that for any matrix Y , rank (DY ) = rank (Y D) = rank (Y ), to get (e) as shown below,

rank (D −AD−1A) = rank (D1/2IMD
1/2 −AD−1A)

= rank (D1/2
(
IM −D−1/2AD−1AD−1/2

)
D1/2)

(∗)
= rank (D1/2

(
IM −D−1/2AD−1AD−1/2

)
)

(∗)
= rank

(
IM −D−1/2AD−1AD−1/2

)
,

where the last two equality relations, labeled as (*), follow from the fact that D is a full rank matrix.

Next, we use the definition L = IM −D−1/2AD−1/2 from (4.21) along with following algebraic manipu-

lation,
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IM − (IM − L)2 = IM − IM − L2 + 2L

= 2L− L2

= 2(IM −D−1/2AD−1/2)−
(
IM −D−1/2AD−1/2

)2

= 2(IM −D−1/2AD−1/2)−
(
IM − 2D−1/2AD−1/2 +D−1/2AD−1AD−1/2

)
= IM −D−1/2AD−1AD−1/2,

to get rank (IM −(IM −L)2) = rank (IM −D−1/2AD−1AD−1/2), i.e. (f). Moreover, we also see rank (IM −

D−1/2AD−1AD−1/2) = rank (2L− L2) following the above analysis giving us equality (g).

We use Sylvester’s rank inequality to get,

rank ((2IM − L)L) ≥ rank (2IM − L) + rank (L)−M,

allowing us to show (h). We use the fact that the normalized graph Laplace matrix (see definition (4.21)) is

rank deficient by 1 for connected graphs (as for our graph G(Ac)). Moreover, since G(Ac) is not bipartite,

the eigenvalues of L are strictly less than 2, according to Lemma 1.7 in [105]. This allows us to conclude

that 2IM −L does not have any zero eigenvalues and rank (2IM −L) = M and we get (i). Thus, (4.27) and

(4.28) together yield rank T = 2M − 1.

For the augmented matrix (T | ξ), we have

2M − 1 ≤ rank (T | ξ) ≤ 2M. (4.29)

In the above relation, the inequality on the left follows from our earlier proof that rank T = 2M − 1. The

one on the right follows from the fact that the augmented matrix has 2M rows. We demonstrate that rows

of (T | ξ) are linearly dependent to conclude (4.26). From (4.27), we deduce(
1
ᵀ | − 1ᵀ)

(T | ξ) =
(
0 | 1ᵀ

ξ1 − 1ᵀ
ξ2
)
.

Now, we show 1T ξ1 − 1T ξ2 = 0 to conclude the proof. In the following, |Z| represents the cardinality of a

set Z.

1T ξ1 − 1T ξ2

=
1

αkδ

∑
i∈Ac

∑
j∈Nπ(i)

Wπ(i)j(v
j
k + αkr

jπ(i)
k )− 1

αkδ

∑
i∈Ac

∑
j∈Ni

Wijv
π(j)
k −

∑
i∈Ac

∑
j∈Ni∩A

r̃jik +
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk

=
1

αkδ

∑
i∈Ac

 ∑
j∈Nπ(i)

Wπ(i)jv
j
k −

∑
j∈Ni

Wijv
π(j)
k


︸ ︷︷ ︸

:=Q1

+
∑
i∈Ac

∑
j∈Nπ(i)

r
jπ(i)
k −

∑
i∈Ac

∑
j∈Ni∩A

r̃jik +
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk︸ ︷︷ ︸
:=Q2

= Q1 +Q2,
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where we have used riik = 0 and Wij = δ for (i, j) ∈ E and i 6= j. Utilizing π(i) = i, for all i 6= I, J , we can

simplify Q1 as,

αkQ
1 =

1

δ

∑
i∈Ac

 ∑
j∈Nπ(i)

Wπ(i)jv
j
k −

∑
j∈Ni

Wijv
π(j)
k


=

1

δ

∑
i∈Ac

∑
j∈Nπ(i)

Wπ(i)jv
j
k −

1

δ

∑
i∈Ac

∑
j∈Ni

Wijv
π(j)
k

=
1

δ


∑

i∈Ac\{I,J}

∑
j∈Ni

Wijv
j
k +

i=I︷ ︸︸ ︷∑
j∈NJ

WJjv
j
k +

i=J︷ ︸︸ ︷∑
j∈NI

WIjv
j
k︸ ︷︷ ︸∑

i∈Ac
∑
j∈Ni

Wijv
j
k

−
1

δ

∑
i∈Ac

∑
j∈Ni

Wijv
π(j)
k

=
1

δ

∑
i∈Ac

∑
j∈Ni

Wijv
j
k −

1

δ

∑
i∈Ac

∑
j∈Ni

Wijv
π(j)
k

=
1

δ

∑
i∈Ac

 ∑
j∈Ni∩A

Wijv
j
k −

∑
j∈Ni∩A

Wijv
π(j)
k

+
1

δ

∑
i∈Ac

 ∑
j∈Ni∩Ac

Wijv
j
k −

∑
j∈Ni∩Ac

Wijv
π(j)
k


(a)
=

1

δ

∑
i∈Ac

 ∑
j∈Ni∩Ac

Wijv
j
k −

∑
j∈Ni∩Ac

Wijv
π(j)
k


=

1

δ

∑
i∈Ac

Wiiv
i
k +

∑
j∈Ni∩Ac\{i}

Wijv
j
k

−
Wiiv

π(i)
k +

∑
j∈Ni∩Ac\{i}

Wijv
π(j)
k


=

1

δ

∑
i∈Ac

(1− (|Ni| − 1)δ) vik +
∑

j∈Ni∩Ac\{i}

δvjk


− 1

δ

∑
i∈Ac

(1− (|Ni| − 1)δ) v
π(i)
k +

∑
j∈Ni∩Ac\{i}

δv
π(j)
k


=
∑
i∈Ac

(1

δ
− |Ni|+ 1

)(
vik − v

π(i)
k

)
+

∑
j∈Ni∩Ac\{i}

(
vjk − v

π(j)
k

)
=

(
|NI ∩ Ac \ {I}|+

1

δ
− |NI |+ 1

)(
vIk − vJk

)
+

(
|NJ ∩ Ac \ {J}|+

1

δ
− |NJ |+ 1

)(
vJk − vIk

)
αkQ

1 = (|NI ∩ Ac \ {I}| − |NI |)
(
vIk − vJk

)
+ (|NJ ∩ Ac \ {J}| − |NJ |)

(
vJk − vIk

)
,

where (a) follows from the fact that vjk = v
π(j)
k ,∀j ∈ A.
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Next, we simplify Q2 as

Q2 =
∑
i∈Ac

∑
j∈Nπ(i)

r
jπ(i)
k −

∑
i∈Ac

∑
j∈Ni∩A

r̃jik +
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk

=


∑

i∈Ac\{I,J}

∑
j∈Nπ(i)

r
jπ(i)
k +

i=I︷ ︸︸ ︷∑
j∈NJ

rjJk +

i=J︷ ︸︸ ︷∑
j∈NI

rjIk︸ ︷︷ ︸∑
i∈Ac

∑
j∈Ni

rjik

−
∑
i∈Ac

∑
j∈Ni∩A

r̃jik +
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk

=
∑
i∈Ac

∑
j∈Ni

rjik −
∑
i∈Ac

∑
j∈Ni∩A

r̃jik +
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk

=
∑
i∈Ac

∑
j∈Ni∩Ac

rjik +
∑
i∈Ac

∑
j∈Ni∩A

rjik −
∑
i∈Ac

∑
j∈Ni∩A

r̃jik︸ ︷︷ ︸
=0 as per (4.13)

+
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk

(a)
=
∑
i∈Ac

∑
j∈Ni∩Ac

rjik +
∑
i∈Ac

∑
j∈Ni∩A

r̃ijk

(b)
=
∑
i∈Ac

∑
j∈Ni∩Ac

rjik +
∑
i∈Ac

∑
j∈Ni∩A

[
1

αk
(vik − v

π(i)
k ) + rijk

]

=
∑
i∈Ac

 ∑
j∈Ni∩Ac

rjik +
∑

j∈Ni∩A
rijk

+
∑
i∈Ac

∑
j∈Ni∩A

[
1

αk
(vik − v

π(i)
k )

]

(c)
=
∑
i∈Ac

∑
j∈Ni

rijk


︸ ︷︷ ︸

=0

+
∑
i∈Ac

∑
j∈Ni∩A

[
1

αk
(vik − v

π(i)
k )

]

(d)
=

1

αk

∑
i∈Ac

|Ni ∩ A|(vik − v
π(i)
k )

Q2 =
1

αk
|NI ∩ A|

(
vIk − vJk

)
+

1

αk
|NJ ∩ A|

(
vJk − vIk

)
.

Here, (a) follows from rjik = r̃jik for all j ∈ A from (4.13). The equality in (b) follows from (4.14) and (4.15),

(c) from (4.17), and (d) from the properties of permutation π. Combining the expressions for Q1 and Q2,

we get

Q1 +Q2 =
1

αk
[|NI ∩ Ac \ {I}| − |NI |]

(
vIk − vJk

)
+

1

αk
[|NJ ∩ Ac \ {J}| − |NJ |]

(
vJk − vIk

)
+

1

αk
|NI ∩ A|

(
vIk − vJk

)
+

1

αk
|NJ ∩ A|

(
vJk − vIk

)
= 0,

where the last line leverages the relation,

|Ni ∩ A|+ |Ni ∩ Ac \ {i}| = |Ni| − 1,
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for i = I, J . This completes the proof of privacy of our algorithm.

4.6 Convergence Analysis and Correctness

Recall, x∗ = (x1
∗, . . . , x

n
∗ ) is the Nash equilibrium action profile for players i = 1, . . . , n. Also, following the

definition of a Nash equilibrium, we know that x∗ = (x1
∗, . . . , x

n
∗ ) is a fixed point for the gradient based

update equation, i.e. xi∗ = projX i [x
i
∗ − αk∇xifi(xi∗, x∗)].

The non-expansiveness of the projection operator yields,

‖xik+1 − xi∗‖2 = ‖projX i [x
i
k − αk∇xifi(xik, nv̂ik)]− xi∗‖2

= ‖projX i [x
i
k − αk∇xifi(xik, nv̂ik)]− projX i [x

i
∗ − αk∇xifi(xi∗, x∗)]‖2

≤ ‖xik − xi∗ − αk(∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗))‖2

= ‖xik − xi∗‖2 + α2
k‖∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗)‖2︸ ︷︷ ︸

:=T i1

− 2αk(∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗))
ᵀ
(xik − xi∗)︸ ︷︷ ︸

:=T i2

. (4.30)

Owing to the compactness of X ’s, gradients ∇xifi are bounded. Such a bound, together with Triangle

inequality, yields an upper bound on T i1 as follows,

T i1 = α2
k‖∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗)‖2

(a)

≤ α2
k

(
‖∇xifi(xik, nv̂ik)‖+ ‖∇xifi(xi∗, x∗)‖

)2
(b)

≤ α2
kC

2, (4.31)

where (a) follows from Triangle inequality and (b) follows from the fact that ‖∇xifi‖ is bounded.

We define the following two quantities

yk :=
1

n

n∑
i=1

vik and C ′ := max
i

max
x∈X i

‖x− xi∗‖, (4.32)

and bound T i2 as,
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T i2 = 2αk(∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗))
ᵀ
(xik − xi∗)

(a)
= 2αk(∇xifi(xik, nv̂ik)−∇xifi(xik, nyk) +∇xifi(xik, nyk)−∇xifi(xi∗, x∗))

ᵀ
(xik − xi∗)

(b)
= 2αk

[
∇xifi(xik, nv̂ik)−∇xifi(xik, nyk)

]ᵀ
(xik − xi∗)

+ 2αk
[
∇xifi(xik, nyk)−∇xifi(xi∗, x∗)

]ᵀ
(xik − xi∗)

(c)

≥ −2αk‖∇xifi(xik, nyk)−∇xifi(xik, nv̂ik)‖ ‖xik − xi∗‖

+ 2αk
[
∇xifi(xik, nyk)−∇xifi(xi∗, x∗)

]ᵀ
(xik − xi∗)

(d)

≥ −2αkLn‖yk − v̂ik‖ ‖xik − xi∗‖+ 2αk
[
∇xifi(xik, nyk)−∇xifi(xi∗, x∗)

]ᵀ
(xik − xi∗)

(e)

≥ −2αkLnC
′‖yk − v̂ik‖+ 2αk

[
∇xifi(xik, nyk)−∇xifi(xi∗, x∗)

]ᵀ
(xik − xi∗). (4.33)

In the above expression, (a) follows from adding and subtracting∇xifi(xik, nyk) term and (b) is the expansion

of the inner product. We use Cauchy-Schwarz inequality to get (c) and use the Lipschitz continuity of

∇xifi(xik, ·) to get (d). Finally, (e) follows from the definition of C ′ from (4.32). To further simplify the

bounds on T i2, we show that nyk = xk using induction as follows. For k = 0, the relation follows from

vi0 = xi0. Assume that it holds for k = 0, . . . ,K, i.e., nyK = xK . Then, we have

nyK+1 =

n∑
i=1

viK+1

(a)
=

n∑
i=1

(
v̂iK + xiK+1 − xiK

)
(b)
=

n∑
i=1

 n∑
j=1

Wij

(
vjK + αKr

ji
K

)
+ xiK+1 − xiK


(c)
=

n∑
j=1

n∑
i=1

Wij︸ ︷︷ ︸
=1

vjK + δαK

n∑
j=1

n∑
i∈Nj

rjiK︸ ︷︷ ︸
=0

+ xK+1 − xK

(d)
= nyK + xK+1 − xK

= xK+1, (4.34)

where (a) follows from (4.12), (b) from (4.9), (c) from the doubly stochastic nature of W and (4.8). Finally,

(d) follows from the induction hypothesis.

Substitute nyk = xk in (4.30) and combine that with (4.31) and (4.33). The result, can be written as

‖xik+1 − xi∗‖2 ≤ ‖xik − xi∗‖2 + α2
kC

2 + 2αkLnC
′‖yk − v̂ik‖

− 2αk(∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗))
ᵀ
(xik − xi∗). (4.35)
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We sum the expression (4.35) over i ∈ V to get,

n∑
i=1

‖xik+1 − xi∗‖2 ≤
n∑
i=1

‖xik − xi∗‖2 + α2
knC

2 + 2αkLnC
′
n∑
i=1

‖yk − v̂ik‖

− 2αk

n∑
i=1

(∇xifi(xik, nv̂ik)−∇xifi(xi∗, x∗))
ᵀ
(xik − xi∗)

‖xk+1 − x∗‖2
(a)

≤ ‖xk − x∗‖2 + α2
knC

2 + 2αknLC
′
n∑
i=1

‖yk − v̂ik‖

− 2

n∑
i=1

αk
[
∇xifi(xik, xk)−∇xifi(xi∗, x∗)

]ᵀ
(xik − xi∗)

(b)
= ‖xk − x∗‖2 + α2

knC
2︸ ︷︷ ︸

U1
k

+ 2αknLC
′
n∑
i=1

‖yk − v̂ik‖︸ ︷︷ ︸
U2
k

− 2αk [φ(xk)− φ(x∗)]
ᵀ

(xk − x∗)︸ ︷︷ ︸
U3
k

. (4.36)

In the above expression (4.36), we get inequality (a) using a few simple relations, ‖xk+1 − x∗‖2 =∑n
i=1 ‖xik+1 − xi∗‖2 and ‖xk − x∗‖2 =

∑n
i=1 ‖xik − xi∗‖2 (property of norm). We prove equality (b), us-

ing the definition of φ(x) in (4.4) and the expansion of inner product. Specifically,

(φ(xk)− φ(x∗))
ᵀ
(xk − x∗) =

n∑
i=1

[(
∇xifi(xik, xk)−∇xifi(xi∗, x∗)

)ᵀ
(xik − xi∗)

]
.

Observe that (4.36) has the same structure as the dissipation inequality in the convergence result for

non-negative, almost supermartingales (cf. Lemma 13 below, reproduced from [75]).

Lemma 13 (Theorem 1, [75]). Let {Fk}, {Ek}, {Gk} and {Hk}, be non-negative, real sequences. Assume

that
∑∞
k=0 Fk <∞, and

∑∞
k=0Hk <∞ and

Ek+1 ≤ (1 + Fk)Ek −Gk +Hk.

Then, the sequence {Ek} converges to a non-negative real number and
∑∞
k=0Gk <∞.

Consider, Ek = ‖xk − x∗‖2, Fk = 0, Gk = U3
k , Hk = U1

k +U2
k , where U1

k , U
2
k and U3

k are defined in (4.36).

Observe that (4.36) can be rewritten using this notation to exactly achieve the dissipation inequality in

Lemma 13. We will now show that Ek, Gk, Hk satisfy conditions presented in Lemma 13.

First, observe Ek is a norm of distance between local action estimate and Nash equilibrium and is non-

negative by definition. Moreover, notice the assumption on strict monotonicity of φ(x) in (4.5) ensures

Gk = U3
k is positive (non-negative). U1

k is a square term and hence non-negative and U2
k is a the sum of

norms of several terms making them non-negative. As a result Hk = U1
k +U2

k is non-negative. Next, we need
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to show
∑
kHk =

∑
k(U1

k + U2
k ) <∞. In order to show this, we bound one of the terms on the right-hand

side of (4.36) using the next result.

Lemma 14.
∑∞
k=0 αk

∑n
i=1 ‖yk − v̂ik‖ <∞, for all i ∈ V.

The proof for this lemma relies on the doubly stochastic nature of W and properties of obfuscation sequences

from (4.8). We provide a detailed proof in Section 4.8.

Recall, the learning step-sizes, αk satisfy non-summability, i.e.
∑
k αk = ∞ and square summability∑

k α
2
k <∞ leads us to conclude

∑
k U

1
k <∞. Additionally, notice that Lemma 14 guarantees

∑
k U

2
k <∞.

Together they give us
∑
kHk =

∑
k(U1

k + U2
k ) <∞.

Together conditions – (a) {Ek}, {Hk}, {Gk} are non-negative sequences and (b)
∑
kHk =

∑
k U

1
k +U2

k <

∞, along with dissipation inequality (4.36) allow us to invoke Lemma 13 and infer that ‖xk−x∗‖2 converges

and

∞∑
k=0

αk [φ(xk)− φ(x∗)]
ᵀ

(xk − x∗) <∞. (4.37)

Next, we will show that together, ‖xk − x∗‖2 converges and
∑∞
k=0 αk [φ(xk)− φ(x∗)]

ᵀ
(xk − x∗) < ∞,

allow us to show that xk converges to x∗. We use the following steps to prove this.

1. Let Φ(xk) := [φ(xk)− φ(x∗)]
ᵀ

(xk − x∗), then lim infk→∞ Φ(xk) = 0.

• Recall from (4.5) that due to strict monotonicity of φ(x), we know that Φ(xk) > 0, for all xk 6= x∗.

• The learning rate αk is non-summable, i.e.,
∑
k αk =∞, see (4.7).

• Observe from (4.37) and the above two statements we have lim infk→∞Φ(xk) = 0.

2. There exists a sub-sequence {xk`}` of xk such that lim`→∞ Φ(xk`) = 0.

• The sequence {xk}k lies within X , a compact set, and hence xk remains bounded.

• We know from the Bolzano-Weierstraß Theorem that any bounded sequence has a convergent

sub-sequence. We select a convergent sub-sequence {xk`}` of {xk}k along which Φ(·) goes to zero,

i.e. lim`→∞ Φ(xk`) = lim infk→∞ Φ(xk) = 0.

3. The sub-sequence {xk`}` converges to x∗.

• Strict monotonicity of φ ensures Φ(xk) > 0 for all xk 6= x∗ and Φ(x∗) = 0. As lim`→∞Φ(xk`) = 0,

we know that lim`→∞ xk` = x∗.

4. The sequence {xk}k converges to x∗, i.e. limk→∞ xk = x∗.

• Recall, from invocation of Lemma 13 we know ‖xk − x∗‖ converges.

• From point 3. presented above, we know that {‖xk` − x∗‖}` converges to zero.
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• We know from Theorem 2.5.2 of [76], that sub-sequences of a convergent sequence converge to

the same limit as the original sequence.

• As {‖xk` − x∗‖}` is a sub-sequence of {‖xk − x∗‖}k, we use the three statements described above

to conclude that {‖xk − x∗‖}k also converges to zero.

• That is, the sequence {xk}k converges to x∗ or equivalently limk→∞ xk = x∗.

4.7 Conclusions

In this chapter, we considered aggregate games played by agents that communicate over a network, each with

private information. We showed that distributed algorithms for equilibrium computation in the literature are

not designed with privacy requirements in mind, and consequently leak private information about players

against honest-but-curious adversaries. Our proposed algorithm for NE computation exploits correlated

perturbations to obfuscate aggregate estimates shared over the network. The algorithm asymptotically

converges to the Nash Equilibrium. If the graph connecting non-adversarial players is connected and not

bipartite, we show that our algorithm protects private information of non-adversarial players.

4.8 Proof of Lemma 14

Let us consider

T ik = xik − xik−1, (4.38)

and we observe

yk = y0 +

k∑
s=1

(ys − ys−1) =
1

n

 n∑
i=1

vi0 +

k∑
s=1

n∑
j=1

T js

 . (4.39)

The first equality follows from telescoping series argument. The second equality follows from the fact that

yk , 1
n

∑n
i=1 v

i
k = 1

n

∑n
i=1 x

i
k, proved using induction argument in (4.34).

Next, we build a expression for v̂jk using the aggregate update relation, (4.10) from Algorithm 5, and use

it to get an expression for vjk. We consider

His =

n∑
j=1

Wijr
ji
s , (4.40)

and observe thatHis is the effective noise/perturbation added by player i at iteration s. Recall, T ik = xik−xik−1
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from (4.38). Next, we build the following equality,

vik+1

(a)
= v̂ik + xik+1 − xik

(b)
= v̂ik + T ik+1

(c)
=

n∑
j=1

Wijv
ji
k + T ik+1

(d)
=

n∑
j=1

Wij(v
j
k + αkr

ji
k ) + T ik+1

(e)
=

n∑
j=1

Wijv
j
k + αkHik + T ik+1 (4.41)

(f)
=

n∑
j=1

Wij


n∑
l=1

Wjlv
l
k−1 + αk−1H

j
k−1 + T jk︸ ︷︷ ︸

vjk from (4.41)

+ αkHik + T ik+1

=

n∑
j=1

Wij

(
n∑
l=1

Wjlv
l
k−1

)
+ αk−1

n∑
j=1

WijH
j
k−1 +

n∑
j=1

WijT
j
k + αkHik + T ik+1

(g)
=

n∑
l=1


n∑
j=1

WijWjl︸ ︷︷ ︸
W 2
il

 vlk−1 + αk−1

n∑
j=1

WijH
j
k−1 +

n∑
j=1

WijT
j
k + αkHik + T ik+1

(h)
=

n∑
l=1

W 2
ilv

l
k−1 + αk−1

n∑
j=1

WijH
j
k−1 +

n∑
j=1

WijT
j
k + αkHik + T ik+1

(i)
=

n∑
l=1

W 2
il


n∑
t=1

Wltv
t
k−2 + αk−2H

l
k−2 + T lk−1︸ ︷︷ ︸

vlk−1 from (4.41)

+ αk−1

n∑
j=1

WijH
j
k−1 +

n∑
j=1

WijT
j
k + αkHik + T ik+1

=

n∑
t=1

W 3
itv

t
k−2 + αk−2

n∑
l=1

W 2
ilH

l
k−2 +

n∑
l=1

W 2
ilT

l
k−1 + αk−1

n∑
j=1

WijH
j
k−1 +

n∑
j=1

WijT
j
k + αkHik + T ik+1

(j)
=

n∑
l=1

W k+1
il vl0 +

k∑
s=1

αs−1

n∑
j=1

W k−s+1
ij Hjs−1 +

k∑
s=1

n∑
j=1

W k−s+1
ij T js + αkHik + T ik+1. (4.42)

Here, (a) follows from (4.12), (b) follows from (4.38), (c) follows from (4.10), (d) follows from (4.9) and

(e) follows from the definition (4.40). Moreover, (f) follows from recursively using an expression of vjk from

(4.41). (g) follows from the matrix multiplication formula. If C = AA where A is a n×n square matrix, then

Cij = W 2
ij =

∑n
l=1AilAlj . Note that W 2

il represents the (i, l)th entry of matrix W 2. Equality (h) follows

directly from (g). For clarity of exposition we unroll vlk−1 further using (4.41) to show (i). We recursively

keep doing this until we unroll all iterations until k = 0 to get the expression (j).
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Recall from (4.40), the definition Hjk =
∑n
l=1Wjlr

lj
k and observe that

∑n
j=1H

j
k =

∑n
j=1

∑n
l=1Wjlr

lj
k .

Since the non-zero weight (Wij) corresponding to edge (i, j) is always δ, we have

n∑
j=1

n∑
l=1

Wjlr
lj
k = δ

n∑
j=1

n∑
l=1

rljk = δ

n∑
l=1

∑
j∈Nl

rljk

 = 0,

following the locally balanced property of perturbations (4.8). This implies, (1/n)
∑n
j=1H

j
k = 0 for any k.

This implies that the sum of effective noise/perturbation added by players is zero, or the effective noise is

correlated and adds to zero over the network. Using this, we subtract (1/n)
∑n
j=1H

j
k = 0 from (4.42), to

get,

vik+1 =

n∑
l=1

W k+1
il vl0 +

k∑
s=1

αs−1

n∑
j=1

(
W k−s+1
ij − 1

n

)
Hjs−1 +

k∑
s=1

n∑
j=1

W k−s+1
ij T js + T ik+1 + αkHik.

Rearranging a few terms in this expression, using (4.12), gives us,

v̂ik = vik+1 − T ik+1

=

n∑
l=1

W k+1
il vl0 +

k∑
s=1

n∑
j=1

W k−s+1
ij T js +

k∑
s=1

αs−1

n∑
j=1

(
W k−s+1
ij − 1

n

)
Hjs−1 + αkHik. (4.43)

Observe that, ‖T is‖ = ‖xis − xis−1‖ is bounded as follows, using the fact that gradients of cost function are

bounded,

‖T is‖ = ‖PX i [xis−1 − αs−1∇xifi(xis−1, nv̂
i
s−1)]− xis−1‖

≤ ‖xis−1 − αs−1∇xifi(xis−1, nv̂
i
s−1)− xis−1‖

≤ αs−1C. (4.44)

And, as W is row stochastic and ‖rjik ‖ ≤ ∆, we have,

‖Hi
k‖ = ‖

n∑
j=1

Wijr
ji
k ‖ ≤ ‖∆‖. (4.45)

We subtract (4.39) from (4.43) and take norm of both sides, to get

‖yk − v̂ik‖ ≤
n∑
l=1

‖W k+1
il − 1

n
‖‖vl0‖+

k∑
s=1

n∑
j=1

‖W k−s+1
ij − 1

n
‖‖T js ‖

+

k∑
s=1

αs−1

n∑
j=1

‖W k−s+1
ij − 1

n
‖‖Hjs−1‖+ αk‖Hik‖,
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and further use the geometric convergence of product of doubly stochastic transition matrices [82] and the

bounds on ‖T js ‖ in (4.44) and ‖Hj
s‖ in (4.45), to get,

‖yk − v̂ik‖ ≤ θβkMn+ θnC

k∑
s=1

βk−sαs−1 + θn∆

k∑
s=1

βk−sαs−1 + ∆αk,

where θ > 0 and 0 < β < 1 are dependent only on the weight matrix W , and M = maxl∈N ‖vl0‖.

Finally, we show that
∑
k αk‖yk − v̂ik‖ <∞ for all i ∈ V. First observe,

αk‖yk − v̂ik‖ ≤ θnMαkβ
k + θn(C + ∆)

k∑
s=1

βk−sαkαs−1 + ∆α2
k

≤ θnMαkβ
k︸ ︷︷ ︸

U1
k

+ θn(C + ∆)

k∑
s=1

βk−sα2
s−1︸ ︷︷ ︸

U2
k

+ ∆α2
k︸︷︷︸

U3
k

. (αs−1 ≥ αk, provided s− 1 ≤ k)

Now observe that
∑
k αk‖yk − v̂ik‖ ≤

∑
k(U1

k + U2
k + U3

k ) and we will individually show that
∑
k U

1
k < ∞,∑

k U
2
k <∞ and

∑
k U

3
k <∞ to prove our lemma.

We use the ratio test from [106] to show that
∑
k U

1
k <∞. We consider limk→∞

U1
k+1

U1
k

= limk→∞
αk+1β

k+1

αkβk
≤

β < 1. This follows from the fact that αk ≥ αk+1 for each k and β < 1. As limk→∞
U1
k+1

U1
k
< 1 we know that

the series is convergent and
∑
k U

1
k <∞.

We exploit Lemma 3.1 from [38]. Recall, {α2
k} is a non-negative sequence with

∑
k α

2
k < ∞ and 0 <

β < 1. Using Lemma 3.1 from [38], we get,
∑
k

(∑k
j=0 β

k−j(αj)
2
)
< ∞. Consequently,

∑
k U

2
k = θn(C +

∆)
∑
k

(∑k
s=1 β

k−sα2
s−1

)
= θn(C + ∆) 1

β

∑
k

(∑k
s=1 β

k−(s−1)α2
s−1

)
< ∞. Here, the last equality follows

from a multiplication and division by β(β > 0).

We get
∑
k U

3
k < ∞ directly following the square-summable nature of step-size following (4.7). We have

hence showed that
∑
k(U1

k + U2
k + U3

k ) < ∞ implying,
∑
k αk‖yk − v̂ik‖ < ∞ for each i ∈ V. This directly

gives us
∑
k αk

∑n
i=1 ‖yk − v̂ik‖ <∞ as the number of players is finite.

100



CHAPTER 5

PRIVATE AND FINITE-TIME ALGORITHM FOR SOLVING A

DISTRIBUTED SYSTEM OF LINEAR EQUATIONS

5.1 Introduction

Consider a system of linear equations,

Az = b, (5.1)

where z ∈ Rd is the d-dimensional solution to be learned, and A ∈ Rp×d, b ∈ Rp×1 encode p linear equations

in d-variables. The system of linear equations is horizontally partitioned and stored over a network of n

devices. Each device i ∈ {1, . . . , n} has access to pi linear equations denoted by

Aiz = bi, (5.2)

where Ai ∈ Rpi×d and bi ∈ Rpi×1. For instance, in Figure 5.1 we show a network of n = 5 nodes and

horizontal partitioning of p = 15 linear equations in d = 5 variables using colored blocks. In this chapter, we

consider an honest-but-curious adversary that corrupts at most τ devices/nodes in the network and exploits

observed information to infer private data. We are interested in designing a fast, distributed algorithm that

solves problem (5.1), while, protecting privacy of local information (Ai, bi) against such an honest-but-curious

adversary.

Solving a system of linear algebraic equations is a fundamental problem that is central to analysis of

electrical networks, sensor networking, supply chain management and filtering [107–109]. Several of these

applications involve linear equations being stored at geographically separated devices/agents that are con-

nected via a communication network. The geographic separation between agents along with communication

constraints and unavailability of central servers necessitates design of distributed algorithms. Recently, sev-

eral articles have proposed distributed algorithms for solving (5.1), [10, 11, 110–114] to name a few. In this

work, we specifically focus on designing private methods that protect sensitive and private linear equations

at each device/agent.

As an example, consider a network of n imperfect and imprecise sensors. Each sensor takes measurements

to estimate the location of an object, parameterized by z = [a, b, c] ∈ R3. Each sensors records measurements
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Figure 5.1: Directed network with n = 5 nodes and 1 adversary. A and b are horizontally partitioned and
stored at n nodes. Local information is private to the nodes.

that expressed as a linear equation in a, b, c. Solving the system of linear equation formed by aggregating

observations from all sensors leads us to an estimate of location. The coefficients of the linear equations store

private information such as the location, model type etc. of the sensors. We need a distributed algorithm

to solve the system of linear equations while protecting the privacy of coefficients of linear equations.

Literature has explored several approaches to solving a distributed system of linear equations. Authors

in [108] formulated the problem as a parameter estimation task. Consensus or gossip based distributed

estimation algorithms are then used to solve (5.1). Interleaved consensus and local projection based methods

are explored in [10, 11, 110]. These direct methods, involving locally feasible iterates that move only along

the null space of local coefficient matrix Ai, converge exponentially fast. One can also view solving (5.1)

as a constrained consensus [115] problem, where agents attempt to agree to a variable z such that local

equations at each agent are satisfied. Problem (5.1) can also be formulated as a convex optimization problem,

specifically linear regression, and solved using plethora of distributed optimization methods as explored

in [111]. Authors augment their optimization based algorithms with a finite-time decentralized consensus

scheme to achieve finite-time convergence of iterates to the solution. In comparison, our approach is not

incremental and only needs two steps – (a) computing local updates, followed by, (b) fast aggregation and

exact solution computation. Our algorithm converges to the unique least squares solution in finite-time and

additionally guarantees information-theoretic privacy of local data/equations (Ai, bi).

Few algorithms focus on privacy of local equations (Ai, bi). In this chapter, we design algorithms with prov-

able privacy properties. One can leverage vast private optimization literature by reformulating problem (5.1)

as a least-squares regression problem and use privacy preserving optimization algorithms [20,27,55,58,59,61]

on the resulting strongly convex cost function. Differential privacy is employed in [58,59] for distributed con-

vex optimization, however, it suffers from a fundamental privacy - accuracy trade-off [61]. Authors in [53,55]

use partially homomorphic encryption for privacy. However, these methods incur high computational costs

and unsuitable for high-dimensional problems. A Secure Multi-party Computation (SMC) based method

for privately solving system of linear equations is proposed in [116], however, this solution requires a central
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Crypto System Provider for generating garbled circuits. In this work, we design a purely distributed solu-

tion. Liu et al. propose a private linear system solver in [71, 72], however, as we discuss in Section 5.4.1,

our algorithm is faster, requiring fewer iterations. Our prior work [20, 27] proposes non-identifiability over

equivalent problems as a privacy definition and algorithms to achieve it. It admits privacy and accuracy

guarantees simultaneously, however, it uses a weaker adversary model that does not know distribution of

noise/perturbations used by agents.

In this chapter, we consider statistical privacy from [117, 118]. This definition of privacy allows for a

stronger adversary that knows distribution of random numbers used by agents and has unbounded computa-

tional capabilities. We call this definition information-theoretic because additional observations do not lead

to incremental improvement of adversarial knowledge about private data. Algorithms in [117, 118] provide

algorithms for private average consensus over undirected graphs. We generalize their work to solve the

problem over directed graphs and show finite-time convergence guarantee.

Our Contributions:

Algorithm: We present an algorithm, TITAN (privaTe fInite Time Average coNsensus), that solves an

average consensus problem over directed graphs in finite-time, while protecting statistical privacy of local

inputs. It involves a distributed Obfuscation Step to hide private inputs, followed by a distributed recovery

algorithm to collect all perturbed inputs at each node. Agents then compute exact average using the

recovered perturbed inputs. We further leverage TITAN to solve Problem (5.1) in finite time with strong

statistical privacy guarantees.

Convergence Results: We show that TITAN converges to the exact average in finite time that depends only

on the number of nodes and graph diameter. We show that graph being strongly connected is sufficient for

convergence. Moreover, algorithm needs to know only an an upper bound on the number of nodes and graph

diameter. We do not require out-degree of nodes to be known, a limitation commonly observed in push-sum

type methods [119], for solving average consensus over directed graphs. TITAN based solver converges to

the unique least squares solution of (5.1) in finite time.

Privacy Results: We show that TITAN provides statistical privacy of local inputs as long as weak vertex

connectivity of communication graph is at least τ + 1. This condition is also necessary and hence tight.

Consider two problems (5.1) characterized by (A, b) and (A′, b′), such that rows of (A, b) and (A′, b′) stored

at corrupted nodes are identical and the least squares solution for both systems is the same. For such a pair

of problems, our privacy guarantee implies that the distribution of observations made by the adversary is

identical.
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5.2 Problem Formulation

Consider a group of n agents/nodes connected in a directed network. We model the directed communication

network as a directed graph G = (V, E), where V = {1, 2, . . . , n} denotes the set of nodes and E denote

reliable, loss-less, synchronous and directed communication links.

Recall, we are interested in solving a system of linear equations, problem (5.1), that is horizontally

partitioned and stored at n agents. Each agent i has access to private pi linear equations in d variables

denoted by (5.2). Equivalently our problem formulation states that each agent i has access to private data

matrices (Ai, bi) that characterize (5.2). In this work, we assume that our system of linear equations in (5.1)

admits a unique least squares solution, i.e. ATA matrix is full rank. If an exact solution for (5.1) exists, then

it matches the least squares solution. Let ls-sol(A, b) denote the unique least squares solution of Az = b. We

wish to compute z∗ , ls-sol(A, b) that solves the collective system Az = b, while, protecting privacy of local

data (Ai, bi). Next, we discuss the adversary model, privacy definition and few preliminaries.

5.2.1 Adversary Model and Privacy Definition

We consider an honest-but-curious adversary, that follows the prescribed protocol, however, is interested in

learning private information from other agents. The adversary can corrupt at most τ nodes and has access

to all the information stored, processed and received by the corrupted nodes. Let us denote the corrupted

nodes as A. We assume the adversary and corrupted nodes have unbounded storage and computational

capabilities.

The coefficients of linear equations encode private and sensitive information. In the context of robotic

or sensor networks, the coefficients of linear equations conceal sensor observations and measurements –

information private to agents. In the context of supply chain management and logistics, linear equations

are used to optimize transport of raw-materials, and the coefficients of linear equations often leak business

sensitive information about quantity and type of raw-materials/products being transported by a company.

Mathematically, adversary seeks to learn local coefficient matrices (Ai, bi) corresponding to any non-corrupt

agent i.

Privacy requires that the observations made by the adversary do not leak significant information about the

private inputs. We use the definition of information-theoretic or statistical privacy from [117,118] for average

consensus over private inputs {xi}ni=1. Let ViewA({xi}ni=1) denote the set of random variables denoting the

observations made by a set of adversarial nodes A given private inputs {xi}ni=1.

Definition 3. An algorithm is A−private, if for all inputs {xi}ni=1 and {yi}ni=1, such that xi = yi for all

i ∈ A and
∑n
i=1 x

i =
∑n
i=1 y

i, the distributions ViewA({xi}ni=1) and ViewA({yi}ni=1) are the same.

The definition implies that the observations made by the adversary have the same probability distributions

for both private inputs xi and yi, making them statistically indistinguishable for adversary A.
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We borrow the privacy definition for average consensus as elaborated above to formally define statistical

privacy for our problem as follows. Let A[i, :] denote the ith row of matrix A and b[i] denote the ith element

of column vector b, where A and b characterize the set of linear equations from (5.1). Let ViewA((A, b))

be the random variable denoting the observations made by set of adversarial nodes A given private inputs

(A, b).

Definition 4. A distributed protocol is A-private if for all (A, b) and (A′, b′), such that A[i, :] = A′[i, :],

b[i] = b′[i] for all equations i stored at agents in A, and ls-sol(A, b) = ls-sol(A′, b′), the distributions of

ViewA((A, b)) and ViewA((A′, b′)) are identical.

Intuitively, for all systems of equations (A′, b′), such that linear equations stored at A are the same and

ls-sol(A, b) = ls-sol(A′, b′), observations made by the adversary will have the same distribution, making the

system of linear equations statistically indistinguishable from adversary A’s perspective.

5.2.2 Notation and Preliminaries

For each node i ∈ V, we define in-neighbor set, N in
i , as the set of all nodes that send information to node

i; and out-neighbor set, N out
i , as the set of all nodes that receive information from node i. Let δ(G) denote

the diameter of graph G, and B denote the incidence matrix of graph G. We define the incidence matrix as,

Bij =


−1 if node i is the tail of edge j ∈ E ,

1 if node i is the head of edge j ∈ E ,

0 otherwise,

(5.3)

for i ∈ V and j ∈ E . Let {⊥}m denote an m-dimensional empty vector. Let U [a, b) be uniform distribution

over [a, b).

Modular arithmetic, typically defined over a finite field of integers, involves numbers wrapping around

when reaching a certain value. In this work, we use real numbers and define an extension of modular

arithmetic over reals:

Definition 5. Consider a real interval [0, a) ∈ R. We define mod(x, a) ∈ [0, a) as the remainder obtained

when x is divided by a and the quotient is an integer. That is, mod(x, a) = x−bx/aca, where b·c is the floor

function and bx/ac is the unique integer such that mod(x, a) ∈ [0, a).

Modulo operator satisfies useful properties as detailed below. The proofs are included in the appendix.

Remark 3. Modular arithmetic over reals satisfies following properties for all real numbers {yi}i and integers

q and a.

1. mod(
∑q
i=1 y

i, a) = mod(
∑q
i=1 mod(yi, a), a).

2. If y ∈ (0, a), then mod(−y, a) = a−mod(y, a). If y = 0, then mod(−y, a) = −mod(y, a) = 0.
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5.3 TITAN - Private Average Consensus

In this section, we develop TITAN, an algorithm for solving distributed average consensus with provable

statistical privacy and finite-time convergence. In Section 5.4, we will use TITAN to solve Problem (5.1)

with statistical privacy of local data (Ai, bi) and finite-time convergence to z∗.

Consider a simple average consensus problem over n agents connected using directed graph G. Each node

i ∈ V has access to private input xi ∈ [0, a). The objective is to compute average (1/n)
∑n
i=1 x

i, while,

protecting statistical privacy of inputs xi (see Section 5.2.1).

TITAN involves an obfuscation step to hide private information and generate obfuscated inputs. This

is followed by several rounds of Top-k consensus primitive for distributed recovery of perturbed inputs.

Consequently, we exploit modulo aggregate invariance property of the obfuscation step and locally process

perturbed inputs to arrive at desired average. The obfuscation step guarantees statistical privacy of inputs,

while, the distributed recovery and local computation of average are key to finite-time convergence of the

algorithm. We detail each of the steps below.

Algorithm 6 TITAN
(
{xi}ni=1, T, k, n

)
Input: {xi}ni=1, where xi ∈ [0, a) ∀i ∈ V, T , k
Output: x = (1/n)

∑n
i=1 x

i

Initialize: Node i initializes yi = {⊥}n, Ii = {⊥}n

Obfuscation Step

1: Node i sends random numbers rij ∼ U [0, na) to each out-neighbor j ∈ N out
i

2: Node i constructs perturbation ti,

ti = mod

 ∑
j∈N ini

rji −
∑

j∈Nouti

rij , na

 . (5.4)

3: Each node i perturbs private input,

x̃i = mod(xi + ti, na). (5.5)

Distributed Recovery using Top-k Primitive

4: Each node i ∈ V runs Top-k primitive dn/ke times
5: for ` = 0, 1, . . . , dn/ke − 1
6:

(
yi[`k + 1 : (`+ 1)k], Ii[`k + 1 : (`+ 1)k]

)
= Top-k

((
{x̃i}ni=1 \ yi[1 : `k], {i}ni=1 \ Ii[1 : `k]

)
, T
)

7: Return: x = (1/n)mod(
∑n
l=1 y

i[l], na)
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Obfuscation Step

The obfuscation step is a distributed method to generate network correlated noise that vanishes under modulo

operation over the aggregate. First, each node i sends uniform random noise rij ∼ U [0, na) to out-neighbors

N out
i and receives rli from in-neighbors l ∈ N in

i (Line 1, Algorithm 6).

Next, each agent i computes perturbation ti using (5.4) (Line 2, Algorithm 6). Observe that due to the

modulo operation, each perturbation ti satisfies ti ∈ [0, na).

Finally, agent i adds perturbation ti to its private value xi and performs a modulo operation about na to

get the perturbed input, x̃i, as seen in (5.5) (Line 3, Algorithm 6). Observe that x̃i ∈ [0, na).

We now show the modulo aggregate invariance property of the obfuscation mechanism described above.

Notice that each noise rij is added by node j to get tj (before modulo operation) and subtracted by node i

to get ti (before modulo operation). This gives us,

mod

(
n∑
i=1

ti, na

)
(a)
= mod

 n∑
i=1

mod

 ∑
j∈N ini

rji −
∑

j∈Nouti

rij , na

 , na


(b)
= mod

 n∑
i=1

 ∑
j∈N ini

rji −
∑

j∈Nouti

rij

 , na
 (c)

= mod(0, na) = 0. (5.6)

In the above expression, (a) follows from definition of ti in (5.4), (b) follows from property 1 in Remark 3,

and (c) is a consequence of perturbation design in (5.4). We call this as modulo aggregate invariance of the

obfuscation step.

Distributed Recovery via Top-k Consensus Primitive

We perform distributed recovery of perturbed inputs, that is, we run a distributed algorithm to “gather”

all perturbed inputs ({x̃i}ni=1) at each node. After the completion of this step, each node i will have access

to the entire set of perturbed inputs {x̃i}ni=1. Top-k consensus primitive is a method to perform distributed

recovery.

The Top-k consensus primitive is a distributed protocol for all nodes to agree on the largest k inputs in

the network. In TITAN, we run the Top-k consensus primitive and store the resulting list of top-k perturbed

inputs. We then run Top-k primitive again while excluding the perturbed inputs recovered from prior

iterations. Executing Top-k consensus primitive successively dn/ke times leads us to the list of all perturbed

inputs in the network (Lines 4–6, Algorithm 6).

Top-k Consensus Primitive: Recall, each node i has access to a perturbed input x̃i and an unique identifier

i. The Top-k consensus is a consensus protocol for nodes to agree over k largest input values and associated

node id’s with ties going to nodes with larger id. Formally, the algorithm results in each node agreeing on

{(x(1), . . . , x(k)), (i(1), . . . , i(k))}, where x(1) ≥ . . . ≥ x(k) ≥ x(k+1) ≥ . . . ≥ x(n) is the ordering of private
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Algorithm 7 Top-k consensus: Top-k({(xi, i)}ni=1,T )

Input: {(xi, i)}ni=1, T , k
Output: {(x(1), . . . , x(k)), (i(1), . . . , i(k))}
Initialization: Node i initializes two k dimensional vectors Li = {xi,⊥, . . . ,⊥} and `i = {i,⊥, . . . ,⊥}

1: for t = 1, . . . , T :
2: Node i sends Li and `i to out-neighbors N out

i

3: Each node i ∈ V performs:
4: for z = 1, . . . , k :
5: Li+[z] = max(Li ∪j∈N ini Lj \ (∪z−1

s=1L
i
+[s]))

6: `i+[z] = id corresponding to Li[z]
. . . Ties go to node with larger id

7: Li = Li+ and `i = `i+

8: Return: {Li, `i} → {(x(1), . . . , x(k)), (i(1), . . . , i(k))}

inputs {xj}nj=1 and i(k) denote the ids corresponding to x(k) for each k. Ties go to nodes with larger id,

implying, if x(j) = x(j+1) then i(j) > i(j+1).

Each node i stores an estimate of k largest inputs and their id’s denoted by Li and `i respectively. These

vectors, Li and `i, are initialized with local private input and own agent id respectively (Line 1, Algorithm 7).

At each iteration t = 1, . . . , T , agent i share their estimates Li and `i to out-neighbors and receives Lj

and `j from in-neighbors j ∈ N in
i (Line 3, Algorithm 7). Agent i sets Li+ equal to the k largest values of

available inputs, that is Li and ∪j∈N ini L
j ; and sets `i+ as id’s corresponding to the entries in Li+ (Lines 5–6,

Algorithm 7). In case of ties, that is several agents having the same input, the tie goes to agent with larger

id. Next, agents update the local estimate of top k entries as Li = Li+ and `i = `i+ (Line 8, Algorithm 7).

This process of selection of largest perturbed input and it’s id is repeated T times. As stated in Theorem 8,

each Li and `i converge to the Top-k values and associated id’s respectively provided that T ≥ δ(G), the

graph diameter.

Recall, that running Top-k consensus primitive dn/ke times, successively, allows each node to recover

perturbed inputs {x̃i}ni=1. Agents then add the perturbed inputs recovered by Top-k consensus algorithm

and exploit modulo aggregate invariance property of obfuscation step to exactly compute the average (Line

7, Algorithm 6), x = (1/n)mod(
∑n
l=1 y

i[l], na).

5.3.1 Results and Discussion

Correctness Guarantee: We first begin by a correctness result for the Top-k consensus primitive. It is a

consequence of convergence of max consensus over directed graphs.

Theorem 8 (Correctness of Top-k). If G is a strongly connected graph with diameter δ(G) and T ≥ δ(G),

then Li = Lj = {x(1), . . . , x(k)}, `i = `j = {I(1), . . . , I(k)}, for each i, j ∈ V, for the Top-k consensus
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algorithm.

The result establishes a lower bound on parameter T for correctness of Top-k consensus primitive. If δ(G)

is not exactly known, we can set T to be any upper bound on δ(G), without worrying about correctness.

The ability of Top-k protocol to recover k largest perturbed inputs leads us to the correctness guarantee for

TITAN. As a consequence of Theorem 8, we can conclude that dn/ke successive execution of Top-k primitive

over perturbed inputs leads to recovery of all perturbed inputs at each node. Moreover, we use the modulo

aggregate invariant property of the obfuscation step, implying,

mod

(
n∑
i=1

x̃i, na

)
=

n∑
i=1

xi. (5.7)

We prove this in Section 5.6. Consequently, perturbed inputs allows us to compute the correct aggregate

and average. The following result formally states this result:

Theorem 9 (Correctness of TITAN). If G is strongly connected and T ≥ δ(G), then TITAN (Algorithm 6)

converges to the exact average of inputs x = 1
n

∑n
i=1 x

i in finite time given by T dn/ke.

Note, for finite-time convergence, we only need G to be strongly connected. The time required for convergence

is dependent only on number of agents n,1 parameter T (an upper bound on graph diameter δ(G)) and

parameter k. The proofs are presented in detail in Section 5.6.1.

Privacy Guarantee: The privacy guarantee is a consequence of the obfuscation step used in TITAN. Let

G = (V, E) be the undirected version of G. More specifically, G has the vertex set V = V and the edge set

E contains an undirected edge between any two nodes u and v if a directed edge (u, v) ∈ E or (v, u) ∈ E .

Consequently, G is undirected. We define weak vertex-connectivity of a directed graph G as the vertex-

connectivity of its undirected variant G. Weak vertex-connectivity of G is κ(G), where κ denotes the

vertex-connectivity. We show that provided the weak vertex-connectivity of G is at least τ + 1, TITAN

preserves statistical privacy of input.

Theorem 10 (Privacy of TITAN). If weak vertex-connectivity κ(G) ≥ τ + 1 and G is strongly connected,

then TITAN is A-private against any set of adversaries A such that |A| ≤ τ .

Note, we require G to be both strongly connected and possess weak vertex-connectivity of at least τ + 1

for achieving both finite-time correctness and statistical privacy guarantees. Strong connectivity of G is

required for achieving average consensus (correctness). Moreover, the weak vertex-connectivity condition

is also necessary and can be showed similar to the Proof of Theorem 2 in [69]. Consequently, the weak

vertex-connectivity together with strong connectivity condition is tight. The proofs are included later in the

chapter in Section 5.6.2.

1If agents know only an upper bound ñ ≥ n, then we can run TITAN on inputs xi = 1 for each i ∈ V while using ñ instead
of n and a = 2. Finally, by computing mod(

∑
i x̃

i, ña) we recover n exactly.
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Memory Costs: Top-k primitive requires each node to maintain vectors Li and `i in addition to recovered

perturbed inputs. Overall the memory required per node is (2k + n)d units, where d is the dimension of

input xi. This is larger as compared to standard average consensus methods [120] and ratio consensus

methods [121] that require d and 2d units respectively. Observe the trade-off between Memory Overhead

and Convergence Time. As k increases from 1 to n, the convergence time decreases from Tn to T , while the

memory overhead (per node) increases from (2 + n)d to 3nd.

Communication Costs: The obfuscation step requires node i to send |N out
i |d messages. Moreover, Top-k

algorithm involves exchange of Li and `i by each node. This additionally requires 2k|N out
i |T dn/ked messages

in total. Together, the communication overhead for node i is |N out
i | (2kT dn/ke+ 1) d. Total communication

cost (per node) is largely independent of k, as total information exchanged over entire execution does not

change with k.

Comparison with FAIM: Oliva et al. propose FAIM, finite-time average-consensus by iterated max-consensus,

in [122]. TITAN is a generalized form of FAIM and we can recover a statistically private version of FAIM

by setting k = 1. Our work, in addition to finite-time average consensus, is directed toward protecting

statistical privacy of local information.

5.4 Private Solver for System of Linear Equations

In this section, we develop a solver (Algorithm 8) employing TITAN to privately solve problem (5.1).

The least squares solution to system of linear equations (5.1) can be expressed in closed form as,

(ATA)−1AT b. If an exact solution to (5.1) exists then the least squares solution matches it. Moreover, as

the equations are horizontally partitioned, we can rewrite,

ATA =

n∑
i=1

ATi Ai and AT b =
n∑
i=1

ATi bi. (5.8)

Consequently, solution to system of linear equations can be computed by privately aggregating ATi Ai and

ATi bi separately over the network and computing,

z∗ =

(
n∑
i=1

ATi Ai

)−1( n∑
i=1

ATi bi

)
. (5.9)

Privately computing z∗ is equivalent to agents privately aggregating ATi Ai and ATi bi over the directed

network followed by locally computing x∗ using (5.9).

We assume, w.l.o.g, that each entry in matrix local updates ATi Ai and ATi bi lies in [0, a), where a >

largest entry in matrices ATi Ai and ATi bi. Next, in Algorithm 8, we run TITAN on each entry of matrices
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{ATi Ai}ni=1 to get update matrix X, run TITAN on each entry of vector {ATi bi}ni=1 to get update vector Y .

We select T ≥ δ(G) and a parameter k ≤ n following the discussion in Section 5.3.1. As a consequence of

Theorem 9, the algorithms terminate in finite time and X = 1
n

∑n
i=1A

T
i Ai and Y = 1

n

∑n
i=1A

T
i bi. Finally,

we use (5.9) to compute the least squares solution.

5.4.1 Results and Discussion

Correctness and Privacy: Our solution (Algorithm 8) involves using TITAN on each entry of matrices, ATi Ai

and ATi bi. As a consequence of Theorem 9, we know that provided G is strongly connected and parameter

T ≥ δ(G), we get accurate estimate of
∑n
i=1A

T
i Ai and

∑n
i=1A

T
i bi in finite time. Using (5.9), we compute

solution z∗, and as a result we have solved (5.1) accurately in finite time. From Theorem 10, provided

κ(G) ≥ τ + 1, TITAN preserves the statistical privacy of local inputs (ATi Ai, A
T
i bi), equivalently preserves

the statistical privacy of (Ai, bi), against any adversary that corrupts A subject to |A| ≤ τ .

Comparison with Relevant Literature: Liu et al. propose a privacy mechanism, an alternative to the obfus-

cation mechanism in TITAN, and augment it to gossip algorithms for privately solving average consensus.

This private average consensus is used along with direct method [10] to arrive at a private linear system

solver. However, it requires agents to reach complete consensus between successive direct projection based

steps. This increases the number of iterations needed to solve the problem and significantly increases com-

munication costs as the underlying method [10] is only linearly convergent. Distributed Recovery phase in

TITAN also requires complete consensus, but we do it in finite time using Top-k primitive, and it is only

performed once.

Authors in [111] propose a finite-time solver for solving (5.1). However, under this protocol an arbitrarily

chosen node/agent observes states for all nodes, and the observations are used compute the exact solution.

This algorithm was not designed to protect privacy of local information and consequently leads to large

privacy violations by the arbitrarily chosen node. Algorithm 8 solves (5.1) in finite time, while additionally

protecting statistical privacy of local equations. Moreover, the algorithm in [111] is computationally expen-

sive – requiring matrix singularity checks and kernel space computation. In comparison, our algorithm is

inexpensive and the most expensive step is matrix inversion in (5.9), that needs to be performed only once.

Algorithm 8 Private Solver for Problem (5.1)

Input: {ATi Ai, ATi bi}ni=1 and a > the largest entry of [ATi Ai A
T
i bi] over all i ∈ {1, 2, . . . , n}

Output: z∗

1: Each node i ∈ V runs TITAN over each entry of ATi Ai and ATi bi
2: Compute: X = TITAN({ATi Ai}ni=1, T, k, n)
3: Compute: Y = TITAN({ATi bi}ni=1, T, k, n)

4: Return: z∗ = (nX)−1(nY )
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Direct methods [10,110], constrained consensus applied to linear systems [115] and distributed optimization

methods applied to linear regression [43, 123, 124] are only linearly convergent, while, we provide superior

finite-time convergence guarantee. Finite-time convergence of underlying consensus is critical for statistically

private mechanisms such as the one in TITAN and the algorithms from [117,118]. These mechanisms rely on

modulo arithmetic, if we add them to a linearly convergent solver which outputs in-exact average/aggregate,

then performing modulo operation over the in-exact output, in final step, may arbitrarily amplify errors.

Improving Computational Efficiency: In our approach, each node computes an inverse,
(∑n

i=1A
T
i Ai

)−1
,

which takes O(d3) computations. Note, this inverse is not performed on private data. We can reduce

computational cost by allowing one node to perform the inversion followed by transmitting the solution to

all nodes either by flooding protocol or sending it over a spanning-tree of G.

5.5 Numerical Experiments

In this section, we perform two numerical experiments to validate Algorithm 8. First, we conduct a simple

simulation over the problem defined in Figure 5.1 and show that update matrices ATi Ai observed by the

adversary appear to be random (Lemma 17). Second, we run a large scale experiment with synthetic data,

with n = 100, p = 10000 and d = 100.

We have n = 5 nodes, with p = 15 linear equations in d = 5 variables being stored over five nodes (three

equations each) as shown in Figure 5.1. We generated A and b matrices by drawing their entries from a

Gaussian distribution (mean = 0 and variance = 2) and verified ATA is full rank. We executed Algorithm 8

at each node. We select parameter T = n ≥ δ(G) = 4, k = n = 5, and a = 20. The algorithm solves the

problem exactly in T = 6 iterations. Note G is strongly connected and has a weak vertex-connectivity of 2.

Consequently, both accuracy and statistical privacy are guaranteed by Theorems 9 and 10. The perturbed

update matrices generated after obfuscation step in TITAN are received by adversary node 1 and shown

in Figure 5.2. We map the numerical values of each entry in the matrix to a color using standard python

colormaps. Figure 5.2 shows that the perturbed updates are starkly different from private updates and

appear random.

Consider a large scale system with n = 100 agents and p = 10000 equations in d = 100 variables that are

horizontally partitioned for each agent to have pi = 100 equations (∀i ∈ V). The coefficients of the linear

equations are synthetically generated via a Gaussian process and admit a unique least squares solution. The

graph G is a directed ring with graph diameter δ(G) = n− 1 = 99 and κ(G) = 2. We run Algorithm 8 with

parameters T = n ≥ δ(G) and k = 10. We consider an honest-but-curious adversary that corrupts at most

one agent and from κ(G) = 2 we guarantee statistical privacy of local data (Ai, bi). The algorithm converges

to the solution in 1000 iterations.
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Figure 5.2: Inputs xi = ATi Ai and yi = ATi bi for i ∈ V and perturbed inputs x̃i and ỹi. The perturbed
inputs appear to be random and very different from the private inputs.

5.6 Analysis and Proofs

5.6.1 Convergence Analysis

We first prove correctness of Top-k consensus primitive.

Proof of Theorem 8. In the Top-k consensus algorithm, each agent/node tries to keep track of the largest k

inputs observed until then. As T ≥ δ(G), each one of the k largest inputs, i.e., x(1), . . . , x(k), reaches each

node in the network. Consequently, each nodes’ local states Li and `i converge to the k largest inputs in

the network and associated id’s.

Next, we prove correctness of TITAN in finite-time.

Proof of Theorem 9. The correctness result in Theorem 9 follows from two key statements: (1) TITAN output

is exactly equal to x = (1/n)
∑n
i=1 x

i, and (2) TITAN converges in finite time. We prove both the statements

next.

(1) Recall from Line 9 in Algorithm 6, that TITAN outputs (1/n)mod(
∑n
i=1 y

i, na), where {yi}ni=1 are

obtained by running Top-k algorithm dn/ke times on perturbed inputs {x̃i}ni=1. The Top-k algorithm suc-

cessively picks the k largest entries and ensures that yi = x̃(i) for i = 1, . . . , n, following Theorem 8. Conse-

quently,
∑n
i=1 y

i =
∑n
i=1 x̃

(i) =
∑n
i=1 x̃

i and the output reported by TITAN is (1/n)mod
(∑n

i=1 x̃
i, na

)
. We
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use properties of modulo function to get,

mod

(
n∑
i=1

x̃i, na

)
= mod

(
n∑
i=1

mod(xi + ti, na), na

)
(a)
= mod

(
n∑
i=1

(xi + ti), na

)
(b)
= mod

(
n∑
i=1

xi, na

)
=

n∑
i=1

xi. (5.10)

Recall, (a) follows from Remark 3, (b) follows from
∑n
i=1 t

i = 0, and final equality follows from xi ∈ [0, a),∑n
i=1 x

i ∈ [0, na) and Definition 5. We have proved TITAN computes the exact aggregate and consequently

the average.

(2) The Top-k protocol involves T = δ̃ ≥ δ(G) iterations where nodes share the largest k values that they

have encountered. From Theorem 8, Top-k converges to the largest k perturbed inputs. We need to run

dn/ke iterations of Top-k consensus. Consequently, the total iterations for complete execution is T dn/ke.

5.6.2 Privacy Analysis

The privacy analysis presented here is similar in structure to [117, 118]. The key difference lies in the

graph condition required for privacy. Similar to the work in [117] on undirected graphs, we observe that

perturbations can be written using individual random numbers exchanged between the nodes, denoted by

r, and the incidence matrix B for directed graphs too. This observation helps us re-use several results

from [117]. Recall, the noise shared on edge e = (i, j) ∈ E , is denoted as rij and it is uniformly distributed

over [0, na). Perturbations ti constructed using (5.4) can be written as t = mod(Br, na), where B is the

incidence matrix of G and r is the vector of rij ordered according to the edge ordering in columns of B. If

G is strongly connected then G is weakly connected and G is connected.

Lemma 15. If G is connected then t is uniformly distributed over the set

{q|q ∈ [0, na)n and mod(1Tq, na) = 0}.

Proof. We assume G is weakly connected or G is connected. Consequently, G has at least n−1 directed edges.

Also recall that B is the incidence matrix of graph G and rank (B) = n − 1 following Theorem 8.3.1, [78].

The rank condition allows us to infer – (a) ∃ n− 1 columns of B that are linearly independent and (b) Br

spans a (n− 1)−dimensional subspace of [0, na)n.

Let G0 = (V, E0) be the graph with V nodes and E0 ⊂ E be a set of n− 1 edges such that the columns of

B-matrix corresponding to edges in E0 are linearly independent. Such a set E0 exists since rank (B) = n−1.

Let B0 be the incidence matrix of graph G0. By construction of E0, rank (B0) = n− 1 and the columns of

B0 are linearly independent. Recall, rank (B) = rank (B0) = n− 1 and consequently the columns of B can
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be written as a linear combination of columns of matrix B0. We express the perturbation vector t as,

t
(a)
= mod(Br, na) (5.11)

(b)
= mod

(∑
e∈E

B∗,ere, na

)
(5.12)

(c)
= mod

∑
e∈E0

B∗,ere +
∑

g∈E\E0
B∗,grg, na

 (5.13)

(d)
= mod

∑
e∈E0

B∗,ere +
∑

g∈E\E0

(∑
e∈E0

µgeB∗,e

)
rg, na

 (5.14)

(e)
= mod

∑
e∈E0

B∗,e

re +
∑

g∈E\E0
µge rg

 , na

 (5.15)

(f)
= mod


∑
e∈E0

B∗,e mod

re +
∑

g∈E\E0
µge rg, na


︸ ︷︷ ︸

∼ U [0,na)n−1

, na

 (5.16)

(g)
= mod

(∑
e∈E0

B∗,eqe, na

)
(5.17)

(h)
= mod

(∑
e∈E0

B0
∗,eqe, na

)
, where q ∼ U [0, na)n−1. (5.18)

Note, (a) follows from the definition of perturbations from (5.4), (b) follows directly from the definition

of matrix and vector multiplication, and (c) follows from (b) by separately collecting all perturbations

corresponding to edges in E0 and edges in E \ E0.

Recall that each element in r is drawn from U [0, na). Moreover, (d) follows the fact that columns of B that

correspond to edges not in E0 can be expressed as a linear combination of columns of B corresponding to edges

in E0. That is, B∗,g =
∑
e∈E0 µ

g
eB∗,e, ∀g ∈ E \E0. (e) follows from algebraic simplification of equality (5.14).

We get (f) by using Remark 3 on (5.15). Specifically we use mod(
∑
i y
i, na) = mod(

∑
imod(yi, na), na)

over terms in (5.15) to get (f). Finally, we define qe = mod
(
re +

∑
g∈E\E0 µ

g
e rg, na

)
for each e ∈ E0 in

(5.16) to get equality (g). Moreover, we prove q ∼ U [0, na)n−1 next.

We use the fact that Bi,e ∈ {−1, 0, 1} to observe that µge ∈ {−1, 0, 1}. Consequently, we can show

re +
∑
g∈E\E0 µ

g
e rg involves addition or subtraction of uniformly random variables re and rg for g ∈ E \ E0.

Next we use Remark 3 to get,

mod

re +
∑

g∈E\E0
µge rg, na

 = mod

mod(re, na) +
∑

g∈E\E0
mod(µge rg, na), na

 . (5.19)
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Note that rg ∼ U [0, na) leading to mod(rg, na) = rg. In the right-hand side expression we use Remark 3 as

follows, if µge = −1, then

mod(µgerg, na) =

−rg if rg = 0,

na− rg if rg ∈ (0, na).

Consequently, if µge = −1 then mod(µgerg, na) is uniformly distributed over U [0, na). This is also trivially

true if µge = 1. The right-hand side expression in (5.19) is an addition of several uniformly distributed

random variables. These random variables are uniformly distributed over the set [0, na). Finally, we note

that taking modulo over a sum of uniformly random variables gives a uniform random variable. This allows

us to show that each qe for all e ∈ E0 is uniformly distributed over [0, na). Note that re is independent for

each e ∈ E0 and consequently qe is independent for each e ∈ E0. Consequently, q ∼ U [0, na)n−1.

Finally, recall B∗,e = B0
∗,e for each e ∈ E0. Thus, (h) follows from the definition of B0 matrix or E0

edge set. Thus we can state that perturbations used by TITAN can be written as t = mod(B0q, na), where

q ∼ [0, na)n−1.

Finally, we will show that if t = mod(B0q, na) with q ∼ [0, na)n−1, then t is uniformly distributed over

those vectors in [0, na)n that satisfy mod(1T t, na) = 0 in the following claim. This claim completes the

correctness of Lemma 15.

Claim 16. Recall the definition of E0 and B0 presented at the begining of proof. If t = mod(B0q, na) and

q ∼ U [0, na)n−1 then, t is uniformly distributed over [0, na)n subject to constraint mod(1T t, na) = 0.

Proof. We will first show that, t = mod(B0q, na) = 0 if and only if q = 0n−1. We use this to show that

for each q ∼ U [0, na)n−1 there exists a unique t ∼ U [0, na)n subject to mod(1T t, na) = 0. Consequently, as

q ∼ U [0, na)n−1 we show that t is uniformly distributed over [0, na)n subject to mod(1T t, na) = 0.

(1) We prove - If q = 0n−1 then t = mod(B0q, na) = 0n.

Proof - If q = 0n−1, then t = mod(B0q, na) = mod(0n, na) = 0. QED.

(2) We prove - If t = mod(B0q, na) = 0n then q = 0n−1.

Proof - t = mod(B0q, na) = 0n =⇒
∑
e∈E0 B

0
i,eqe = kina where ki is an integer. Recall, B0

i,e = {−1, 0, 1}

and G0 has n−1 edges and G0 is acyclic graph. Consequently, qe = 0 for all edges e incident to or from a leaf

node. We recursively move from the leaf nodes to their parent nodes. Each such parent node has on non-leaf

neighbor and qe corresponding to the edge corresponding to the non-leaf neighbor also has to be 0. At the

root node, all incident edges (to and from) are already fixed to 0. Consequently, t = 0n =⇒ qe = 0n−1.

QED.
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Next, we prove that mod(B0q1, na) = mod(B0q2, na) if and only if q1 = q2. Observe that,

mod(B0q1, na) = mod(B0q2, na)

mod(B0q1, na)−mod(B0q1, na) = mod(B0q2, na)−mod(B0q1, na)

0 = mod(B0q2, na)−mod(B0q1, na)

0 = mod(mod(B0q2, na)−mod(B0q1, na), na)

0 = mod(B0(q2 − q1), na). (5.20)

From the above statement (5.20) and the fact that t = 0n ⇐⇒ q = 0n−1, we get, mod(B0q1, na) =

mod(B0q2, na) if and only if q1 = q2. As a consequence we can state that for each q there is a unique

mapping of t. And as q is uniformly distributed over [0, na)n−1, we have t is uniformly distributed over

[0, na)n subject to mod(1T t, na) = 0. This completes the proof of Claim 16.

Claim 16 proves that t is uniformly distributed over [0, na)n−1 subject to mod(1T t, na) = 0. This

concludes the proof of Lemma 15.

Using the above property of perturbations, t, we can show that perturbed inputs appear to be uniformly

random, as described in the next lemma.

Lemma 17. If G is connected then the effective inputs x̃ are uniformly distributed over the set

{q|q ∈ [0, na)n and mod(1Tq, na) =

n∑
i=1

xi}.

Proof. Let X̃,X and T represent the random vectors of agents obfuscated inputs, private inputs and per-

turbations respectively. Let fX̃ , fX and fT denote the probability distribution of the respective random

variables.

Recall x̃i = mod
(
(xi + ti), na

)
and the fact that ti and xi are independent. We have,

fX̃(x̃|X = x) = fT (T = t = mod((x̃− x), na)).

As G is connected, following Lemma 15, we have t = mod((x̃−x), na) is uniformly distributed over [0, na)n,

subject to mod(
∑n
i=1 t

i, na) = 0. That is, we have fT (T = mod((x̃−x), na)) = constant for any x̃ ∈ [0, na)n,

given mod(1T x̃, na) = 1Tx.

We have that fX̃(x̃|X = x) = constant for all x̃ ∈ [0, na)n implying that the perturbed input appears to

be uniformly distributed over [0, na)n subject to mod(1T x̃, na) = 1Tx.

Recall, A is the set of honest-but-curious adversaries with |A| ≤ τ . Also recall, adversarial nodes ob-

serve/store all information directly received and transmitted.
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Additional Notation: Let H = V \ A denote the set of honest nodes and EH ⊆ E is the set of all edges

from G that are between two honest nodes. Let the incidence matrix be partitioned as B = [BH BA], where

BH are columns of B corresponding to edges in EH and BA are columns of B corresponding to edges in

EA = E \ EH. Let Be represent the eth column of B, Bi,e represent the [i, e]th entry of matrix B and re

denote the eth entry of vector r.

Proof of Theorem 10. Let GH = (H, EH) denote the subgraph induced by honest nodes. Let BH denote the

oriented incidence matrix of graph GH. If vertex connectivity κ(G) ≥ τ + 1, implying that deleting any τ

nodes from G does not disconnect the graph, then, GH is connected.

The information accessible to an adversary, defined as ViewA, consists of the private inputs of corrupted

agents, perturbed inputs of honest agents and the random numbers transmitted or received by corrupted

nodes. We denote it as,

ViewA(x) = {{x̃i|i ∈ H}, {xi|i ∈ A}, {re|e ∈ EA}},

where EA = E \ EH.

In order to prove privacy as per Definition 3, we intend to prove that the probability distributions of

ViewA(x) and ViewA(y) are identical, for any two inputs x, y such that xi = yi for all i ∈ A and
∑
i∈V x

i =∑
i∈V y

i.

First, we note that the perturbations can be expressed as, ti = mod
(∑

e∈EH∪EA Bi,ere, na
)
. Using Re-

mark 3 we can equivalently write,

ti = mod(tiH + tiA, na), (5.21)

where tiH = mod
(∑

e∈EH Bi,ere, na
)

and tiA = mod
(∑

e∈EA Bi,ere, na
)
.

Next we use Lemma 15. As GH is connected, we have, {tiH}i∈H is uniformly distributed over [0, na)|H|

subject to

mod

(∑
i∈H

tiH, na

)
= 0. (5.22)

We can equivalently write {tiH}i∈H is uniformly distributed over [0, na)|H| and subject to

mod(
∑
i∈H

(
∑
e∈EH

Bi,ere), na) = 0.

We also use Lemma 15 on graph G. As G is connected, we have, {ti}i∈V is uniformly distributed over
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[0, na)n subject to,

mod

( ∑
i∈H∪A

ti, na

)
= 0. (5.23)

Using (5.21), (5.22), and (5.23) we get,

0 = mod

( ∑
i∈H∪A

ti, na

)
(5.24)

= mod

(
mod

(∑
i∈H

tiH + tiA, na

)
+ mod

(∑
i∈A

tiH + tiA, na

)
, na

)
, (5.25)

Thus, we can state that the perturbations {ti}i∈H are uniformly distributed over [0, na)|H| subject to

mod(
∑
i∈H t

i, na) = −mod(
∑
i∈A t

i, na). Moreover, recall that re ∼ U [0, na) for each e ∈ E . Also note

that adversary observes ti = mod(
∑
e∈EA Bi,ere, na) for each i ∈ A.

Using Lemma 17, if GH is connected, we get,

fX̃H(x̃H|xH, {re|e ∈ EA}) = constant,

for all x̃H ∈ [0, na)|H| that satisfies mod(
∑
i∈H x̃i,ma) = mod(

∑
i∈H xi, na).

If xi = yi for i ∈ A and
∑
i∈V x

i =
∑
i∈V y

i, then we can write, using Lemma 17, if GH is connected, we

get,

fX̃H(x̃H|yH, {re|e ∈ EA}) = constant,

for all x̃H ∈ [0, na)|H| that satisfies mod(
∑
i∈H x̃

i, na) = mod(
∑
i∈H y

i, na). That is,

fX̃H(x̃H|xH, {re|e ∈ EA}) = fX̃H(x̃H|yH, {re|e ∈ EA}),

and equivalently,

fViewA(x)({x̃H, {re|e ∈ EA}}) = fViewA(y)({x̃H, {re|e ∈ EA}}).

5.7 Conclusion

We presented TITAN, a finite-time, private algorithm for solving distributed average consensus. We show

that TITAN converges to the average in finite-time that is dependent only on graph diameter and number

of agents/nodes. It also protects statistical privacy of inputs against an honest-but-curious adversary that
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corrupts at most τ nodes in the network, provided weak vertex-connectivity of graph is at least τ + 1. We

use TITAN to solve a horizontally partitioned system of linear equations in finite-time, while, protecting

statistical privacy of local equations against an honest-but-curious adversary.

5.8 Proof of Remark 3

Proof. 1. For each i = 1, . . . , q, we have mod(yi, a) = yi − aki, where ki is an integer. This follows directly

from the definition of modular arithmetic over real numbers (Definition 5). We use this relation to get,

mod

(
q∑
i=1

mod(yi, a), a

)
= mod

(
q∑
i=1

(yi − aki) , a

)

= mod

(
q∑
i=1

yi − a

(
q∑
i=1

ki

)
, a

)
(a)
= mod

(
q∑
i=1

yi, a

)
.

We get (a) following Definition 5 to get mod(x+ ka, a) = mod(x, a) for all integers k.

2. Observe that the modulo operator is defined as mod(y, a) = y − aby/ac. Next, we observe the following,

mod(y, a) + mod(−y, a) = y − aby/ac+ (−y − ab−y/ac)

= −a (by/ac+ b−y/ac)
(a)
= −a (by/ac − (by/ac+ 1))

= a,

where (a) follows from the property of floor functions (b·c) and the fact that y ∈ (0, a). This gives us,

mod(−y, a) = a−mod(y, a) whenever y ∈ (0, a).

Quite trivially, we also observe, if y = 0, then mod(−y, a) = −mod(y, a) = 0.
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH DIRECTIONS

6.1 Dissertation Summary

In this dissertation, we explore privacy issues in both peer-to-peer network model and multiple parameter

server model for a host of distributed computing problems. Specifically, we focus on algorithms that leverage

network architecture and correlated random perturbations to simultaneously guarantee privacy and accuracy.

Distributed Optimization: We consider a distributed optimization problem. Our proposed solution

involves a pre-processing step that leverages correlated random functions to obfuscate private objective

functions, followed by, a standard distributed optimization problem. We propose FS-GP and FS-DGD for

privacy preserving distributed optimization over directed and undirected graphs respectively. We prove

deterministic and asymptotic convergence of both algorithms to the exact solution. We also characterize

a finite-time rate degradation due to the pre-processing (obfuscation) step. We show that weak vertex

connectivity of at least τ + 1 (directed graphs) and vertex connectivity of at least τ + 1 (undirected graphs)

are necessary and sufficient graph condition for privacy via non-identifiability of local objective functions.

Network Aggregate Games: We propose a solution that uses locally balanced (correlated) random per-

turbations to hide private actions/decisions before sharing them with neighbors. Our algorithm converges

to the unique Nash equilibrium of the network aggregate game asymptotically. We show that if the graph

formed by non-corrupted nodes connected and non-bipartite then any permutation of private cost functions

appears the same to an adversary (non-identifiability).

System of Linear Equations: We first propose TITAN, an average consensus algorithm with finite-

time convergence and information-theoretic privacy guarantees. Our solver for distributed system of linear

equations requires each agent to compute an update based on local equations followed by private aggregation

using TITAN. We show that our solution converges in finite time that depends only on the total number of

agents and graph diameter.
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6.2 Future Research Directions

The Function Sharing algorithms (FS-GP and FS-DGD) proposed in Chapter 2 can guarantee privacy of local

objective functions. However, it requires additional work to characterize right set of perturbation or noise

functions for highly non-convex optimization problems such as deep learning and reinforcement learning.

Distributed recovery based average consensus algorithms, such as TITAN, provide finite-time convergence

over fixed graphs. However, design of recovery based average consensus algorithms over time-varying graphs

is not straight forward and needs additional work. Several application areas involve time-varying commu-

nication topologies and we need to extend our work to allow for distributed computing over time-varying

directed graphs.
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[40] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Incremental stochastic subgradient algorithms for convex
optimization,” SIAM Journal on Optimization, vol. 20, no. 2, pp. 691–717, 2009.

[41] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient methods,” IEEE Transactions
on Automatic Control, vol. 59, no. 5, pp. 1131–1146, 2014.

[42] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the ADMM in decentral-
ized consensus optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761,
2014.

[43] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for decentralized consensus
optimization,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[44] C. Xi and U. A. Khan, “On the linear convergence of distributed optimization over directed graphs,”
arXiv:1510.02149, 2015.

[45] C. N. Hadjicostis, N. H. Vaidya, and A. D. Domı́nguez-Garćıa, “Robust distributed average consensus
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