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Abstract

This dissertation addresses theoretical and numerical questions in nonlinear filtering theory for high di-

mensional, chaotic, multiple timescale correlated systems. The research is motivated by problems in the

geosciences, in particular oceanic or atmospheric estimation and climate prediction. As the capability and

need to further resolve the physics models on finer scales continues, greater spatial and temporal scales

become present and the dimension of the models becomes increasingly large. In the atmospheric sciences,

these models can be of the order O(109) degrees of freedom and require assimilation of the order O(107)

observations during a single day. The models are chaotic and the observing sensors may be correlated with

the physical processes themselves. The goal of the dissertation is to develop theoretical results that can

provide the mathematical justification for new filtering algorithms on a lower dimensional problem, and to

develop novel methods for dealing with issues that plague particle filtering when applied to high dimensional,

chaotic, multiple timescale correlated systems.

The first half of the dissertation is theoretical and addresses the question of approximating the continuous

time nonlinear filtering equation for a multiple timescale correlated system by an averaged filtering equation

in the limit of large timescale separation. The first result in this direction is within the context of a slow-fast

system with correlation between the slow process and the observation process, and when we are only interested

in estimating functions of the slow process. The main result is that we can retrieve a rate of convergence and

that there is a metric generating the topology of weak convergence, such that the marginal filter converges to

the averaged filter at the given rate in the limit of large timescale separation. The proof uses a probabilistic

representation (backward doubly stochastic differential equation) of the dual process to the unnormalized

filter, and sharp estimates on the transition density and semigroup of the fast process.

The second theoretical result of the dissertation addresses the same question for a broader problem,

where the slow signal dynamics include an intermediate timescale forcing. We prove that the marginal filter

converges in probability to the average filter for a metric that generates the topology of weak convergence.

The method of proof is by showing tightness of the measure-valued process, characterizing the weak limits,

and proving the limit is unique. The perturbation test function (also known as method of corrector) is used to

ii



deal with the intermediate timescale forcing term, where the corrector is the solution of a Poisson equation.

The second half of the dissertation develops filtering algorithms that leverage the theoretical results from

the first half of the thesis to produce particle filtering methods for the averaged filtering equation. We also

develop particle methods that address the issue of particle collapse for filtering on general high dimensional

chaotic systems. Using the two timescale Lorenz 1996 atmospheric model, we show that the reduced order

particle filtering methods are shown to be at least an order of magnitude faster than standard particle

methods. We develop a method for particle filtering when the signal and observation processes are correlated.

We also develop extensions to controlled optimal proposal particle filters that improve the diversity of the

particle ensemble when tested on the Lorenz 1963 model.

In the last chapter of the dissertation, we adopt a dynamical systems viewpoint to address the issue

of particle collapse. This time the goal is to exploit the chaotic properties of the system being filtered to

perform assimilation in a lower dimensional subspace. A new approach is developed which enables data

assimilation in the unstable subspace for particle filtering. We introduce the idea of future right-singular

vectors to produce projection operators, enabling assimilation in a lower dimensional subspace. We show

that particle filtering algorithms using dynamically generator projection operators, in particular the future

right-singular vectors, outperforms standard particle methods in terms of root-mean-square-error, diversity of

the particle ensemble, and robustness when applied to the single timescale Lorenz 1996 model.
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Chapter 1

Introduction and Motivation

The mathematical object of interest in filtering theory is a conditional probability distribution for an

unobserved signal process given indirect observations, which we refer to as the filter. In different contexts,

filtering is also known as data assimilation or estimation. The signal process may be taken as deterministic

or stochastic, but one assumes that the observation process is noisy. Efficient and accurate assimilation is

an important capability in many applications. It allows for informed decision making, synthesis of effective

control, and accurate future prediction of the model being estimated.

In this dissertation, we are driven by current issues in filtering for the geosciences (e.g., oceanic, atmospheric,

or climate problems), which is a slowly maturing field [Lee+19]. Models in this field have dynamics that are

chaotic, which means that small errors in the filter estimate grow exponentially with time. If observations

are sparse temporally and spatial (a commonality for problems in the geosciences) or excessively noisy, then

it may be hard to quell the error growth due to the chaotic stretching. The models are also high dimensional,

due to discretization of the governing partial differential equations into a system of ordinary differential

equations; global circulation models in the atmospheric and weather sciences can be of the order O(109)

degrees of freedom. The global circulation models can also receive on the order of O(107) observations during

a 6-12 hr timespan for assimilation. The size of such problems means that even linear data assimilation cannot

be solved adequately [Lee+19]. Additionally, these observations may be correlated with the environment (e.g.,

ocean buoys or unmanned aerial vehicles being actively disturbed by the ocean or atmosphere). Appropriately

accounting for this correlation can improve the data assimilation accuracy.

An additional property of the geoscience models is that they may possess multiple spatial and temporal

scales; a natural consequence due to the necessity of resolving the fundamental partial differential equations

accurately. Resolving the models on finer scales, for example convective processes, is becoming necessary

and hence more common [Yan+18]. The presence of multiple timescales leads to two issues for efficient

filtering. The first is that when the faster timescales correspond to smaller spatial scales, then the dimension

of the model increases more quickly for modeling the fast scale versus a slower scale. The second issue is

that stable numerical integration requires an integration step size that is bounded above by some factor
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Figure 1.1: (CO2) concentrations at Mauna Loa, Hawaii, and column CO2 mixing ratios dispersed by weather
systems within the large-scale flow in a 7-km global simulation with the Goddard Earth Observing System
Model, Version 5 (GEOS-5)[Put20]

of the fastest scale process (i.e., the problem becomes numerically stiff). Therefore simulating the model

becomes computationally burdensome over long time intervals, and the brute force solution is to provide

larger computational processing power.

As an example to visually understand the high dimensionality of such problems, as well as the spatial and

timescale variability and the associated computational requirements, we include an image by Willam Putnam

of NASA Goddard Space Flight Center’s Global Modeling and Assimilation Office [Put20] in Figure 1.1. The

primary purpose of the model is for understanding the dynamics of CO2 concentrations. It uses a 7 km

spatial scale with inclusion of modeling for aerosols (dust, sea salt, sulfate, and black and organic carbon),

trace gas concentrations (ozone, carbon monoxide, and carbon dioxide) and emissions downscaled to 10 km

using ancillary information such as power plant location, population density, and night-light information.

Simulating such a model required the NASA Discover supercomputer (480 2.8-GHz, 16-core Xeon Sandy

Bridge nodes). A simulation for May 2005 through June 2007 at 30 minute intervals required 75 days of

computation (13 million processor hours), with 4 petabytes of data output.

In this dissertation, we do not attempt to solve such large problems directly, but instead use such problems

as motivation to concentrate on proving fundamental theoretical results that can provide justification for

more efficient numerical methods in filtering theory. We are also interested in developing novel algorithms to

address the central issues with applying filtering in the geosciences.
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Our initial efforts will focus on the question of how to use the multiple timescales present in such models

to our advantage. We emphasize in Chapters 3 and 4, that if we have a multiple timescale system, and we are

only interested in estimation of the slow timescale process, then we should try to find a reduced order filter

that approximates the true filter, but with the fast timescales averaged out in an appropriate sense. The

reduced order filter should then be defined on a state space with dimension equal to that of the slow process.

Such a result does two things to improve the computational tractability of solving the filtering problem: 1. it

reduces the dimension of the filtering problem, and 2. it removes the stiffness property of the differential

equations by eliminating the timescale separation. In Chapters 3 and 4, we frame this problem in the context

of asymptotic analysis, where we considered the limit of large timescale separation. The results we prove

in these chapters provides the mathematical justification that enables practitioners to devise more efficient

methods for estimation of the slow process with small loss of accuracy–as demonstrated in Chapter 5 as well

as the work by Park et al. [PNY11], Kang and Harlim [KH12], Berry and Harlim [BH14], and Yeong et al.

[Yeo+20].

To prove that the filter converges to a reduced order filter, we make use of the assumption that an

averaging or homogenization result holds for our multiple timescale signal in the limit of large timescale

separation. The filter convergence will not be a trivial consequence of this assumption. In Chapter 2 we

provide the necessary background on the homogenization (and hence averaging) principles for the multiple

timescale signal. In the context of a correlated filtering problem, we derive the nonlinear evolution equation

driven by the observation process that describes the time evolution of the conditional probability distribution.

In Chapter 3 we consider the question of filter approximation in the limit of large timescale separation for

the case of a slow-fast dynamical system with correlation between the slow signal and observation processes.

We follow the approach taken by Imkeller et al. [Imk+13] to use a linear expansion of the dual process to the

unnormalized filter, and a probabilistic representation with backward doubly stochastic differential equations

(BDSDE) for terms in this linear expansion. The unnormalized filter is a measure-valued process and the dual

process, due to Pardoux [Par80], satisfies a backward stochastic partial differential equation. Therefore the

approach using BDSDEs gives a finite-dimensional representation upon which Grönwall’s lemma is applicable.

From this approach and the use of sharp estimates for the transition density and semigroup of the fast process

by Pardoux and Veretennikov [PV03], we are able to prove a rate of convergence of the filter to an averaged

version in the limit of large timescale separation. The convergence of the filter occurs almost surely in the

topology of weak convergence.

With Chapter 4 we consider a similar problem as the one addressed in Chapter 3, but this time we

allow for an intermediate timescale forcing to the slow signal process. The inclusion of the intermediate
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timescale prevents us from using the same mathematical approach of Chapter 3. We instead pursue an idea

that parallels the work of Kushner [Kus90, Chapter 6]. The main idea is to first show tightness of (signed)

measure-valued processes parameterized by the timescale separation parameter, which proves the existence of

weak limits. We then characterize those limits, showing they satisfy the averaged equation, and prove the

limit to be unique. The main result is that the filter converges in probability for a metric that generates the

topology of weak convergence.

The second half of the dissertation pivots to the development of numerical algorithms to realize the

theoretical results of Chapters 3 and 4, and to produce methods based on control, transportation, and

dynamical systems theory that further address the issues of filtering high dimensional chaotic systems. We

focus on the development of particle filtering methods, also known as sequential Monte Carlo methods.

Particle filtering is a general approach that can handle the nonlinear, non-Gaussian case. The central issue

with applying particle filters is that they suffer from particle collapse; this also goes by the name of particle

degeneracy or particle impoverishment. The issue is more pronounced in high dimensional systems; it is

a curse of dimensionality. It is for this reason that application of particle filters in the geosciences is still

in its infancy. Therefore the numerical algorithms that we develop in Chapters 5 and 6 are often aimed at

rectifying this issue.

We begin Chapter 5 with an overview of Bayesian filtering and introduce the sequential importance

sampling particle filter, which we will refer to as the standard particle filter. This filter is then modified

using the heterogenous multiscale method by E and Engquist [EE03] to create a reduced order filter for

the averaged filtering equation. We further enhance the reduced order filter by taking into account the

symmetric graph structure of models in the geosciences and the effects of correlation between the signal

and observation processes. Using a two timescale, stochastic version of the Lorenz ’96 model [Lor95], we

demonstrate that for a fixed accuracy, our reduced order methods perform an order of magnitude quicker

than the standard particle filter. We then enhance optimal proposal particle filtering algorithms, that control

particles to guide them to more representative locations at the observation time, with a tempering phase at

the time of assimilation (a transportation particle filter approach). These methods are tested on a stochastic

version of the Lorenz ’63 model [Lor63], where the efficacy of the controlled particle and tempering approach

is demonstrated.

In Chapter 6 we adopt a dynamical systems viewpoint to address the issue of particle collapse. We focus

on chaotic systems, which have a splitting of the tangent space corresponding to stable, neutral, and unstable

subspaces. The theme of the chapter is to perform data assimilation in the unstable subspace to reduce

the observation dimension and therefore mitigate particle collapse. Assimilation in the unstable subspace
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was made popular by Trevisan and colleagues [TDT10], but for the case of linear Gaussian estimation, and

therefore had a different justification for using such approaches. We use a similar projection framework

by Maclean and Van Vleck [MV19] to achieve this result, but generate our projection operators from both

finite-time Lyapunov vectors and singular vectors. We demonstrate the efficacy of our methods on the single

timescale Lorenz ’96 model in both weakly chaotic, non-Gaussian and strongly chaotic, near-Gaussian regimes.

Our projection particle filtering method using future right-singular vectors outperforms the standard particle

filtering approach in root-mean-square error, diversity of the particle ensemble, and robustness.

We end the dissertation with Chapter 7, which provides a summary of the problems addressed, our

approaches to solve them, and the main theoretical and numerical results. We also provide guidance for

future research on the topics of this dissertation.

5



Chapter 2

Nonlinear Filtering Theory

In this chapter, we introduce the problem of continuous time nonlinear filtering theory, which is concerned

with the computation of a conditional probability distribution π for an unobserved nonlinear signal process

X given an indirect nonlinear observation process Y . The signal process may be taken as deterministic or

stochastic, but one assumes that the observation process is noisy. For instance, consider (X,Y ) as a solution

to the following system of stochastic differential equations

dXt = b(Xt)dt+ σ(Xt)dWt,

dYt = h(Xt)dt+ dUt, Y0 = 0,

(2.0.1)

driven by independent Brownian motions W and U . The filter, π, is then a process taking values in the

space of probability measures. In particular, at time t > 0, πt is the conditional distribution of Xt given the

information Yt = σ({Ys | 0 ≤ s ≤ t}), the σ-algebra generated by Y up to time t. A useful characterization of

πt then comes from its action on integrable functions ϕ, πt(ϕ) = E [ϕ(Xt) | Yt], as the conditional expectation.

If the drift coefficient b, dispersion coefficient σ, or sensor function h in Eq. 2.0.1 are nonlinear, then the

problem of computing πt is said to be a nonlinear filtering problem.

In the sections to follow, we will develop the necessary tools to build towards a presentation of the

continuous time nonlinear filtering equations in the context of a multiple timescale signal process with

correlation between the observation process and the slow component of the signal process. The usage of the

multiple timescale and correlated noise filtering equations will be used in Chapters 3 and 4. There is also

great interest in filtering theory for discrete time signal or observation processes (i.e., sequences of random

variables). In Chapters 5 and 6 we will introduce numerical approaches for solving the nonlinear filtering

equations in the context of continuous time signal process and discrete time observation process. These

numerical methods will then be applied to test problems in Chapters 5 and 6.
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2.1 Multiple Timescale Correlated Systems

This section introduces the background and notation for the stochastic differential equations, their semigroups

and generators, to be considered in the dissertation. We start by introducing the multiple timescale correlated

system that will be consider in Chapter 4. A simpler version is considered in Chapter 3. Consider a filtered

probability space (Ω,F , (Ft)t≥0,Q) supporting a (w + v + u) real-valued Ft-adapted Brownian motion

(W,V,U). The signal and observation processes consist of the following SDEs,

dXε
t =

[
b(Xε

t , Z
ε
t ) +

1

ε
bI(X

ε
t , Z

ε
t )

]
dt+ σ(Xε

t , Z
ε
t )dWt,

dZεt =
1

ε2
f(Xε

t , Z
ε
t )dt+

1

ε
g(Xε

t , Z
ε
t )dVt,

dY εt = h(Xε
t , Z

ε
t )dt+ αdWt + βdVt + γdUt, Y ε0 = 0 ∈ Rd,

(2.1.1)

where b, bI : Rm × Rn → Rm, σ : Rm × Rn → Rm × Rw, f : Rm × Rn → Rn, g : Rm × Rn → Rn × Rv and

h : Rm × Rn → Rd are Borel measurable functions. The initial distribution of the signal process (Xε
0, Z

ε
0) at

t = 0 is denoted by Q(Xε0,Z
ε
0) and is assumed independent of the (W,V,U) Brownian motion. Q(Xε0,Z

ε
0) is also

assumed to have finite moments for all orders.

In Eq. 2.1.1, 0 < ε� 1 is a timescale separation parameter. Therefore Xε is a slow process and Zε is

the fast process. The slow process also possesses an intermediate timescale due to the intermediate drift

coefficient bI. We will also refer to the slow process as the coarse-grain process, and the fast process as the

fine-grain process. In Chapters 3 and 4, we consider the limit of the x-marginal of the nonlinear filter when

the timescale separation parameter tends to zero.

The presence of αdWt for α 6= 0 in the observation process implies that the observation process and the

slow process are correlated. Similarly, βdVt for β 6= 0 implies correlation between the observation and fast

process. We consider the case where α ∈ Rd×w, β ∈ Rd×v, γ ∈ Rd×u, and assume the following to be true

K ≡ αα∗ + ββ∗ + γγ∗ � 0, γγ∗ � 0, (2.1.2)

where � is the order relation implying that K, γγ∗ are positive definite, and γ∗ is the transpose of the matrix

γ. Eq. 2.1.2 implies the existence of a unique Rd×d 3 κ � 0 of lower triangular form, such that K = κκ∗ (see

for instance Proposition A.1.2). Hence there exists a unique κ−1 (see for instance Proposition A.1.3), such
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that we can define an auxiliary observation process

Y ε,κt =

∫ t

0

κ−1dY εs =

∫ t

0

κ−1h(Xε
s , Z

ε
s)ds+Bt, Y ε,κ0 = 0 ∈ Rd,

where

Bt = κ−1 (αWt + βdVt + γdUt) ,

is a standard Brownian motion under Q.

The filter, πε, is a condition distribution of the signal given the observation filtration. In particular, for a

fixed test function ϕ ∈ C2
b (Rm × Rn;R) and time t ∈ [0, T ], the filter can be characterized as

πεt (ϕ) = EQ [ϕ(Xε
t , Z

ε
t ) | Yεt ] , (2.1.3)

where Yεt ≡ σ({Y εs | s ∈ [0, t]}) ∨N : the first part is the σ-algebra generated by the observation process over

the interval [0, t], N is the Q negligible sets, and ∨ is the joining of the two σ-algebras (i.e., the σ-algebra

of the union). By the measurability of h, (Yεt )t≥0 is a subfiltration of (Ft)t≥0 and is complete with respect

to Q due to the joining of N at each time t. Assuming h is a measurable function, (Yεt )t≥0 will also be a

right-continuous filtration [BC09, Theorem 2.35, p.40],

Yεt =
⋂
s>t

Yεs , ∀t ≥ 0.

The filtrations generated by Y ε and Y ε,κ are equivalent (see for instance [Kal97, Lemma 1.13, p.7]), and

therefore either can be used in the definition of πε. Therefore in Chapters 3 and 4, where we will consider

the correlated noise case, we will work with a redefined observation process, which we define as follows: the

sensor function is redefined as h ← κ−1h, and α ← κ−1α, β ← κ−1β, γ ← κ−1γ, so that the observation

process can be redefined as

dY εt = h(Xε
t , Z

ε
t )dt+ dBt, Y ε0 = 0 ∈ Rd, (2.1.4)

where B = αW + βV + γU is a standard Brownian motion under Q and still correlated with W and V .
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2.1.1 Markov Transition Semigroups and Infinitesimal Generators

In the case where the coefficients of Eq. 2.1.1 are Lipschitz, the solutions to the SDEs satisfy strong existence

and uniqueness conditions, and are Markov processes with Feller semigroups, whose infinitesimal generators

are second order differential operators [Le 14, Chapter 8]. Because the signal process (Xε, Zε) is a Markov

process, it possesses a Markov transition semigroup (T εt )t≥0 (a collection of Markov transition kernels), such

that the following hold:

1. For every (x, z) ∈ Rm × Rn, T ε0 ((x, z), dx× dz) = δ(x,z)(dx× dz),

2. For every s, t ≥ 0 and measurable A ⊆ Rm × Rn,

T εt+s((x, z), A) =

∫
Rm×Rn

T εt ((x, z), dx′ × dz′)T εs ((x′, z′), A),

3. For every measurable A ⊆ Rm × Rn, the function (t, (x, z)) 7→ T εt ((x, z), A) is measurable with respect

to the σ-field B(R+)⊗ B(Rm × Rn).

The second condition is the Chapman-Kolmogorov identity and in the third condition, B is the Borel σ-algebra.

An important property of the Markov transition kernels T ε· is that their action on bounded measurable

functions ϕ : Rm × Rn → R, is the following:

T ε· ϕ(x, z) =

∫
Rm×Rn

ϕ(x′, z′)T ε· ((x, z), dx
′ × dz′),

where the subscript · indicates that the statement holds for any t ≥ 0. That is, T ε· maps the function ϕ to

a new function: T ε· ϕ : Rm × Rn → R. Because the semigroup (T εt )t≥0 is associated to the Markov process

(Xε, Zε), we can similarly characterize this action as

T εt ϕ(x, z) = EQ

[
ϕ
(
X
ε;(0,x)
t , Z

ε;(0,z)
t

)]
,

or if the probability measures induced by (Xε, Zε) possess a density with respect to Lebesgue measure µL,

we can write

T εt ϕ(x, z) =

∫
Rm×Rn

ϕ(x′, z′)pt(x
′, z′;x, z)µL(dx× dz).

Some clarification of the notation in the previous lines are that (X
ε;(0,x)
t , Z

ε;(0,z)
t ) is the solution to the signal

process of Eq. 2.1.1 at time t > 0 with deterministic initial conditions (x, z) at time 0. And pt(x
′, z′;x, z) is
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the transition density of the same process at time t > 0.

If the semigroup (T εt )t≥0 is a Feller semigroup, we have that: 1. T ε· (ϕ) ∈ C0(Rm × Rn;R) for all

ϕ ∈ C0(Rm × Rn;R), and 2. limt→0 |T εt ϕ − ϕ| = 0 for all ϕ ∈ C0(Rm × Rn;R), where C0 is the space of

continuous functions that vanish at infinity and | · | is the supremum norm [Le 14, p.158]. We can therefore

talk about the set of functions

D(Gε) =

{
ϕ ∈ C0(Rm × Rn;R)

∣∣∣∣ lim
t→0

T εt ϕ− ϕ
t

∈ C0(Rm × Rn;R)

}
,

and for every ϕ ∈ D(Gε) we then define

Gεϕ = lim
t→0

T εt ϕ− ϕ
t

.

Gε is called the generator of the Markov semigroup (T εt )t≥0, or analogously of the Markov process (Xε, Zε).

Still considering (T εt )t≥0 to be a Feller semigroup, we have that C2
c (Rm × Rn;R) ⊂ D(Gε) and for every

ϕ ∈ C2
c (Rm × Rn;R), we can characterize Gε as a linear second order differential operator [Le 14, p.222],

Gε(ϕ)(x, z) =

m∑
i=1

(
bi +

1

ε
bI,i

)
(x, z)

∂

∂xi
ϕ(x, z) +

1

2

m∑
i,j=1

(σσ∗)ij(x, z)
∂2

∂xi∂xj
ϕ(x, z)

+
1

ε2

n∑
i=1

fi(x, z)
∂

∂zi
ϕ(x, z) +

1

2ε2

n∑
i,j=1

(gg∗)ij(x, z)
∂2

∂zi∂zj
ϕ(x, z).

(2.1.5)

For future convenience, we identify components of the linear operator in Eq. 2.1.5 as follows,

GS(x, z) ≡
m∑
i=1

bi(x, z)
∂

∂xi
+

1

2

m∑
i,j=1

(σσ∗)ij(x, z)
∂2

∂xi∂xj
,

GI(x, z) ≡
m∑
i=1

bI,i(x, z)
∂

∂xi
,

GF (x, z) ≡
n∑
i=1

fi(x, z)
∂

∂zi
+

1

2

n∑
i,j=1

(gg∗)ij(x, z)
∂2

∂zi∂zj
,

GεS ≡
1

ε
GI + GS ,

Gε =
1

ε2
GF +

1

ε
GI + GS .

The operators can be can be thought of as generators in their own right. For instance, GF is the generator of

10



the process

dZxt = f(x, Zxt )dt+ g(x, Zxt )dVt, (2.1.6)

where x ∈ Rm is a fixed value. This process will be useful in the work of Chapters 3 and 4. The semigroup of

GF will be denoted (TF,xt )t≥0.

2.2 A Change of Probability Measure Transformation

The derivation of the evolutionary equation for πε typically proceeds in one of two ways. The first approach

uses a change of probability measure transformation so that the observation process becomes a Brownian

motion under the new probability measure (Girsanov’s theorem). From here, measure-valued process ρε can

be related to the probability measure-valued process πε by the Kallianpur-Striebel formula. An evolutionary

equation is then derived for ρε and by Itô’s formula, one retrieves the evolutionary equation for πε. The

evolutionary equation for ρε is known as the Zakai equation (or sometimes referred to as the Duncan-

Mortensen-Zakai equation in the literature) and will be derived in Section 2.3. The evolutionary equation for

πε is known as the Kushner-Stratonovich equation (or sometimes referred to as the Fujisaki-Kallianpur-Kunita

equation in the literature) and will be given in Section 2.4. This first approach is the tact we will take in

deriving the Kushner-Stratonovich equation. The second approach makes use of the realization that under

appropriate conditions, the process

Iεt = Y εt −
∫ t

0

πεs(h)ds,

is a Yεt -adapted Brownian motion under Q. The innovation process is then identified as the Brownian motion

driving the stochastic evolution equation for πε, and then identification of the terms in the Doob-Meyer

decomposition of πε yields the Kushner-Stratonovich equation (see for instance [BC09, Chapter 3.7, p.70]).

We now present the usual construction for the change of probability measure that will be necessary to

define the Zakai equation. Before doing so, let us provide the following notation: the usage of brackets such

as 〈h(Xε
s , Z

ε
s), dBs〉 will indicate the operation of the inner product, whereas the operation on two continuous

local martingales 〈M ε,M ε〉 indicates the operation of the quadratic variation; and lastly, we use | · | for

absolute value on scalar-valued arguments, euclidean norm for vector-valued arguments, and for the Frobenius

norm (i.e., |A| =
√

Tr(AA∗)) when matrix-valued arguments are given.

To define a new probability measure Pε � Q, absolutely continuous with respect to Q, for a fixed ε, we

11



start be defining the process,

Dε
t = exp

(
−
∫ t

0

〈h(Xε
s , Z

ε
s), dBs〉 −

1

2

∫ t

0

|h(Xε
s , Z

ε
s)|

2
ds

)
,

and assume that EQ
[∫∞

0
|h(Xε

s , Z
ε
s)|2ds

]
<∞. The continuous local martingale

M ε
t = −

∫ t

0

〈h(Xε
s , Z

ε
s), dBs〉,

then has the properties that Q-a.s. M ε
0 = 0 and 〈M ε,M ε〉∞ <∞.

If EQ [Dε
∞] = 1, then Dε will be a nonnegative uniformly integrable martingale and we can define Dε

∞

to be the density of the probability measure Pε with respect to Q. The classical condition that implies

EQ [Dε
∞] = 1 is Novikov’s condition (see for instance [Le 14, Theorem 5.23, p.137]),

EQ

[
exp

(
1

2
〈M ε,M ε〉∞

)]
<∞. (2.2.1)

It turns out that Pε is in fact mutually absolutely continuous with respect to Q, and our process Dε is

the Radon-Nikodym derivative of Pε with respect to Q restricted to the filtration Ft (see for instance [Le 14,

Proposition 5.20, p.132]),

Dε
t =

dPε

dQ

∣∣∣∣
Ft

= exp

(
−
∫ t

0

〈h(Xε
s , Z

ε
s), dBs〉 −

1

2

∫ t

0

|h(Xε
s , Z

ε
s)|

2
ds

)
.

Because Q � Pε, we also have

D̃ε
t ≡ (Dε

t)
−1 =

dQ
dPε

∣∣∣∣
Ft

= exp

(∫ t

0

〈h(Xε
s , Z

ε
s), dY

ε
s 〉 −

1

2

∫ t

0

|h(Xε
s , Z

ε
s)|

2
ds

)
.

Identifying Λt = −
∫ t

0
〈h(Xε

s , Z
ε
s), dBs〉 − 1

2

∫ t
0
|h(Xε

s , Z
ε
s)|

2
ds as a semimartingale, we get from Itô’s formula

for exp(Λt) the evolution equation for Dε
t and D̃ε

t ,

Dε
t = 1−

∫ t

0

〈Dε
sh(Xε

s , Z
ε
s), dBs〉,

D̃ε
t = 1 +

∫ t

0

〈D̃ε
sh(Xε

s , Z
ε
s), dY

ε
s 〉.

Novikov’s condition given in Eq. 2.2.1, is quite restrictive, requiring the consideration of the term

〈M ε,M ε〉∞. In practice we are only concerned with the case of finite time t > 0. Therefore it is useful in
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filtering to instead consider the condition for Dε to be a martingale for all t > 0, which is given by

EQ

[
exp

(
1

2
〈M ε,M ε〉t

)]
<∞, ∀t > 0.

Sufficient conditions for the this to be true are (see for example [BC09, Proposition 3.12, p.54])

EQ

[∫ t

0

|h(Xε
s)|2ds

]
<∞, EQ

[∫ t

0

D̃ε
s|h(Xε

s)|2ds
]
<∞, ∀t > 0.

2.2.1 Girsanov’s Theorem

An application of Girsanov’s theorem [Le 14, Theorem 5.22, p.134], now states that

Bt − 〈B,M〉t = Bt +

∫ t

0

h(Xε
s , Z

ε
s)ds = Y εt

is a Brownian motion under Pε. This fact will be useful in deriving the Zakai equation of Section 2.3. We

also note that in the case of correlation between the observation process and the signal process, the following

are Brownian motions under Pε,

W̃t = Wt − 〈W,M〉t = Wt +

∫ t

0

α∗h(Xε
s , Z

ε
s)ds,

Ṽt = Vt − 〈V,M〉t = Vt +

∫ t

0

β∗h(Xε
s , Z

ε
s)ds,

and therefore

dXε
t =

[
b(Xε

t , Z
ε
t ) +

1

ε
bI(X

ε
t , Z

ε
t )− σ(Xε

t , Z
ε
t )α
∗h(Xε

s , Z
ε
s)

]
dt+ σ(Xε

t , Z
ε
t )dW̃t,

dZεt =
1

ε2
f(Xε

t , Z
ε
t )dt−

1

ε
g(Xε

t , Z
ε
t )β
∗h(Xε

s , Z
ε
s)dt+

1

ε
g(Xε

t , Z
ε
t )dṼt,

are stochastic differential equations driven by the Brownian motion (W̃ , Ṽ ) under Pε.

2.2.2 The Kallianpur-Striebel Formula

Having defined the Radon-Nikodym derivatives Dε
t and D̃ε

t , we now explain how the normalized conditional

distribution πεt can be related to an unnormalized conditional distribution. Let us define ρε, an unnormalized

conditional distribution, with action on integrable functions ϕ as ρε(ϕ) = EPε
[
ϕ(Xε

t , Z
ε
t )D̃

ε
t | Yεt

]
. This

finite positive measure-valued process is related to the normalized conditional distribution through the

13



Kallianpur-Striebel formula,

πεt (ϕ) =
EPε

[
ϕ(Xε

t , Z
ε
t )D̃

ε
t | Yεt

]
EPε

[
D̃ε
t | Yεt

] =
ρεt(ϕ)

ρεt(1)
, ∀t ∈ [0,∞), Q,Pε-a.s.

For a derivation of the Kallianpur-Striebel formula, which can by thought of as an equivalent of Bayes’

theorem in our context (see for instance [BC09, Proposition 3.16, p.57]).

2.3 The Zakai Equation

The Zakai equation is the evolutionary equation for the unnormalized conditional distribution ρε. Derivations

of the equation can be found in the works of Bain and Crisan [BC09, Chapter 3.5, p.61] or Bensoussan [Ben04],

with an extension for the correlated case given in Bain and Crisan’s text [BC09, Chapter 3.8, p.73] using the

innovation process approach. In this section, we provide a non-standard proof with stronger assumptions on

the process D̃ε and the coefficients of the signal and observation processes (cf. [Han07, p.180]). We do this to

provide a more intuitive reference for the averaged Zakai equations that will arise in Chapters 3 and 4.

The derivation starts by considering the characterization of ρεt(ϕ) for a fixed test function ϕ ∈ C2
b (Rm ×

Rn;R) and times 0 < t ≤ T <∞,

ρεt(ϕ) = EPε
[
ϕ(Xε

t , Z
ε
t )D̃

ε
t | Yεt

]
.

Applying Itô’s formula to the product ϕ(Xε
t , Z

ε
t )D̃

ε
t yields,

ϕ(Xε
t , Z

ε
t )D̃

ε
t = ϕ(Xε

0, Z
ε
0)D̃ε

0 +

∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉+

∫ t

0

D̃ε
rGεϕ(Xε

r , Z
ε
r)dr

+

∫ t

0

〈D̃ε
r∇xϕ(Xε

r , Z
ε
r), σ(Xε

r , Z
ε
r)dW̃r〉+

∫ t

0

〈D̃ε
r

1

ε
∇zϕ(Xε

r , Z
ε
r), g(Xε

r , Z
ε
r)dṼr〉.

Now taking the conditional expectation of each side of the equation gives,

ρεt(ϕ) = ρε0(ϕ) + EPε

[∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉
∣∣∣∣Yεt ]+ EPε

[∫ t

0

D̃ε
rGεϕ(Xε

r , Z
ε
r)dr

∣∣∣∣Yεt ] (2.3.1)

+ EPε

[∫ t

0

〈D̃ε
r∇xϕ(Xε

r , Z
ε
r), σ(Xε

r , Z
ε
r)dW̃r〉

∣∣∣∣Yεt ]+ EPε

[∫ t

0

〈D̃ε
r

1

ε
∇zϕ(Xε

r , Z
ε
r), g(Xε

r , Z
ε
r)dṼr〉

∣∣∣∣Yεt ] ,
where ρε0(ϕ) = EQ [ϕ(Xε

0, Z
ε
0)] since there is no observation information at the initial time and D̃ε

0 = 1 almost

surely. The main task is to show that the conditional expectation can be interchanged with the stochastic
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and finite variation integrals to yield an evolution equation for ρε(ϕ) driven by the Brownian motion Y ε

(under Pε). Assume for the time being that each of the integrands are elements of L2
µL([0,t])×Pε , where µL is

Lebesgue measure on R+. We address the first stochastic integral of Eq. 2.3.1 by letting A ∈ Yεt and then by

Itô’s representation theorem, there exists a function F ∈ L2
µL([0,t])×Pε that is Yεt -adapted such that

1A = Pε(A) +

∫ t

0

〈Fr, dY εr 〉.

Then we have

EPε

[
1A

∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉
]

= Pε(A)EPε

[∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉
]

(2.3.2)

+ EPε

[∫ t

0

〈Fr, dY εr 〉
∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉
]
,

but the first term vanishes because the stochastic integral is a martingale. Then by Itô’s isometry, Fubini’s

theorem, the tower property of conditional expectation and again Fubini’s theorem,

EPε

[∫ t

0

〈Fr, dY εr 〉
∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉
]

= EPε

[∫ t

0

〈Fr, D̃ε
rϕh(Xε

r , Z
ε
r)〉dr

]
= EPε

[∫ t

0

〈Fr,EPε
[
D̃ε
rϕh(Xε

r , Z
ε
r)
∣∣∣Yεr]〉dr]

Repeating the same process from Eq. 2.3.2 by changing the integrand of the stochastic integral from

D̃ε
rϕh(Xε

r , Z
ε
r) to EPε

[
D̃ε
rϕh(Xε

r , Z
ε
r)
∣∣∣Yεr], we get the same result

EPε

[
1A

∫ t

0

〈EPε
[
D̃ε
rϕh(Xε

r , Z
ε
r)
∣∣∣Yεr] , dY εr 〉] = EPε

[∫ t

0

〈Fr,EPε
[
D̃ε
rϕh(Xε

r , Z
ε
r)
∣∣∣Yεr]〉dr] .

Because the statement holds for all A ∈ Yεt , by Kolmogorov’s characterization of conditional expectation, we

have that

EPε

[∫ t

0

〈D̃ε
rϕh(Xε

r , Z
ε
r), dY

ε
r 〉
∣∣∣∣Yεt ] =

∫ t

0

〈EPε
[
D̃ε
rϕh(Xε

r , Z
ε
r)
∣∣∣Yεr] , dY εr 〉 =

∫ t

0

〈ρεr(ϕh), dY εr 〉.

The same arguments apply for the time integral; an application of Fubini’s theorem and the tower property

of conditional expectation to the time integral of Eq. 2.3.1 gives

EPε

[∫ t

0

D̃ε
rGεϕ(Xε

r , Z
ε
r)dr

∣∣∣∣Yεt ] =

∫ t

0

EPε
[
D̃ε
rGεϕ(Xε

r , Z
ε
r)
∣∣∣Yεr] dr =

∫ t

0

ρεr(Gεϕ)dr.
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Let us now consider the terms

EPε

[∫ t

0

〈D̃ε
r∇xϕ(Xε

r , Z
ε
r), σ(Xε

r , Z
ε
r)dW̃r〉

∣∣∣∣Yεt ] and EPε

[∫ t

0

〈D̃ε
r

1

ε
∇zϕ(Xε

r , Z
ε
r), g(Xε

r , Z
ε
r)dṼr〉

∣∣∣∣Yεt ]

in Eq. 2.3.1, which are due to the signal and observation correlation. These terms are handled in a similar man-

ner as EPε
[∫ t

0
〈D̃ε

rϕh(Xε
r , Z

ε
r), dY

ε
r 〉
∣∣∣Yεt ], but we would like for the resulting stochastic integrals to be driven

by Y ε as opposed to W̃ or Ṽ . Therefore consider the term EPε
[∫ t

0
〈D̃ε

r∇xϕ(Xε
r , Z

ε
r), σ(Xε

r , Z
ε
r)dW̃r〉

∣∣∣Yεt ] (the

other correlation term follows the exact same logic), after applying the usual procedure starting from Eq.

2.3.2, we have

EPε

[∫ t

0

〈D̃ε
r∇xϕ(Xε

r , Z
ε
r), σ(Xε

r , Z
ε
r)dW̃r〉

∣∣∣∣Yεt ] =

∫ t

0

〈EPε
[
D̃ε
rσ
∗∇xϕ(Xε

r , Z
ε
r)
∣∣∣Yεr] , dW̃r〉

By the martingale representation theorem, there is a C ∈ R and H ∈ L2
µL([0,t])×Pε such that the left side of

this equation is

EPε

[∫ t

0

〈D̃ε
r∇xϕ(Xε

r , Z
ε
r), σ(Xε

r , Z
ε
r)dW̃r〉

∣∣∣∣Yεt ] = C +

∫ t

0

〈Hr, dY
ε
r 〉,

but C is just the expectation at the initial time, which is zero almost surely. Therefore the quadratic variation

with
∫ t

0
dY εr is

〈
∫ t

0

〈Hr, dY
ε
r 〉,
∫ t

0

dY εr 〉 =

∫ t

0

Hrdr.

Similarly, we have

〈
∫ t

0

〈EPε
[
D̃ε
rσ
∗∇xϕ(Xε

r , Z
ε
r)
∣∣∣Yεr] , dW̃r〉,

∫ t

0

dY εr 〉 =

∫ t

0

EPε
[
D̃ε
rασ

∗∇xϕ(Xε
r , Z

ε
r)
∣∣∣Yεr] dr,

which implies that Hr = EPε
[
D̃ε
rασ

∗∇xϕ(Xε
r , Z

ε
r)
∣∣∣Yεr] with equivalence up to indistinguishability. Hence,

EPε

[∫ t

0

〈D̃ε
r∇xϕ(Xε

r , Z
ε
r), σ(Xε

r , Z
ε
r)dW̃r〉

∣∣∣∣Yεt ] =

∫ t

0

〈ρεr(ασ∗∇xϕ), dY εr 〉.

Therefore we arrive at the Zakai evolution equation,

ρεt(ϕ) = ρε0(ϕ) +

∫ t

0

ρεs (Gεϕ) ds+

∫ t

0

〈ρεs(ϕh+ ασ∗∇xϕ+
1

ε
βg∗∇zϕ), dY εs 〉,

ρε0(ϕ) = EQ [ϕ(Xε
0, Z

ε
0)] .

(2.3.3)
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The assumption on the integrands being in L2
µL([0,t])×Pε and boundedness of D̃ε can be weakened. For

instance, by replacing D̃ε
t with

D̃ε,δ
t =

D̃ε
t

1 + δD̃ε
t

,

the same result can be proven and then the limit δ → 0 can be taken (see for instance [BC09, Chapter 3.3,

p.52] or [Ben04]).

2.4 The Kushner-Stratonovich Equation

In contrast to the Zakai equation, which is a linear evolution equation, the Kushner-Stratonovich equation is

nonlinear. Having derived the Zakai equation, we can simply apply Itô’s formula to the product relation given

by the Kallianpur-Striebel formula to yield the Kushner-Stratonovich equation. This yields the following for

the time evolution of the filter πε, acting on a test function ϕ ∈ C2
b (Rm × Rn;R),

πεt (ϕ) = πε0(ϕ) +

∫ t

0

πεs(Gεϕ)ds+

∫ t

0

〈πεs(ϕh+ ασ∗∇xϕ+
1

ε
βg∗∇zϕ)− πεs(ϕ)πεs(h), dY εs − πεs(h)ds〉,

πε0(ϕ) = EQ [ϕ(Xε
0, Z

ε
0)] .

(2.4.1)

In Chapters 3 and 4, we will make use of the Zakai equation’s linear form to show convergence results of

the filter to a lower dimensional version when filtering multiple timescale systems, and taking the timescale

separation parameter in the limit. Although we will work with the Zakai equation, the real objective is to

show the result for the solution of the Kushner-Stratonovich equation.
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Chapter 3

Quantitative Convergence of the
Filter Solution for Multiple Timescale
Nonlinear Systems with Coarse-Grain
Correlated Noise

In this chapter, we consider a problem of filter convergence to a reduced order filter when the signal and

observation processes take the following form,

dXε
t = b(Xε

t , Z
ε
t )dt+ σ(Xε

t , Z
ε
t )dWt,

dZεt =
1

ε2
f(Xε

t , Z
ε
t )dt+

1

ε
g(Xε

t , Z
ε
t )dVt,

dY εt = h(Xε
t , Z

ε
t )dt+ αdWt + γdUt, Y ε0 = 0 ∈ Rd.

(3.0.1)

As in the previous chapter, we assume that b : Rm×Rn → Rm, σ : Rm×Rn → Rm×Rw, f : Rm×Rn → Rn,

g : Rm × Rn → Rn × Rv and h : Rm × Rn → Rd are Borel measurable functions and the presence of

Rd×w 3 α 6= 0 indicates correlation between the observation and slow (coarse-grain) process. We additionally

assume that the initial distribution of the signal process (Xε
0, Z

ε
0) at t = 0 is denoted by Q(Xε0,Z

ε
0), is independent

of the (W,V,U) Brownian motion, and has finite moments for all orders. Besides the simplification of Eq.

3.0.1 from Eq. 2.1.1, we otherwise consider the same setup as in Section 2.1, including the redefinition of Y ε

as

dY εt = h(Xε
t , Z

ε
t )dt+ dBt, Y ε0 = 0 ∈ Rd, (2.1.4)

where B is a Brownian motion under Q.

Recall that πεt for t ≥ 0 acts on test functions ϕ ∈ C2
b (Rm×Rn;R) by integration πεt (ϕ) =

∫
ϕ(x, z)πεt (dx, dz).

When we are interested in estimating test functions of Xε only, i.e., ϕ ∈ C2
b (Rm;R), we consider the x-marginal

of πε,

πε,xt (ϕ) =

∫
ϕ(x)πεt (dx, dz). (3.0.2)
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The motivating question of this chapter then comes from the known result that if for every fixed x, the

solution Zx of

dZxt = f(x, Zxt )dt+ g(x, Zxt )dVt, (2.1.6)

is ergodic with stationary distribution µ∞(x), then under appropriate assumptions, the process Xε converges

in distribution to a Markov process X0 with infinitesimal generator GS in the limit as ε→ 0 [PSV76; PV03;

KY05; PS08]. Therefore, if we are only interested in statistics of Xε (i.e., estimation of test functions

ϕ : Rm → R), then it would be computationally advantageous to know if πε,x → π0 converges in an

appropriate sense to a lower dimensional filtering equation (π0
t being a random probability measure for each

time t on Rm). In this chapter, we show that this is indeed possible and in fact, one can retrieve a rate of

convergence.

Filtering theory has widespread application in many fields including various disciplines of engineering for

decision and control systems, the geosciences, weather and climate prediction. In many of these fields, it is

not uncommon to have physics based models with multiple timescales as seen in Eq. 3.0.1, and also have

the case where estimation of the slow process is solely of interest; for example the estimation of the ocean

temperature, which is necessary for climate prediction, but the ocean model may also be coupled to a fast

atmospheric model. Knowing that mathematically πε,x → π0 in the limit as ε→ 0, enables practitioners to

devise more efficient methods for estimation of the coarse-grain process without great loss of accuracy (see

Chapter 5 as well as [PNY11; KH12; BH14; Yeo+20]).

There are several papers providing results for πε,x → π0 (or the associated unnormalized conditional

measure or density versions) on variations of the multiple timescale filtering problem. In the work by Park et

al. [PSN10], (Xε, Zε) is a two dimensional process with no drift in the fast component, no intermediate scale,

and no correlation. The authors made use of a representation of the slow component by a time-changed

Brownian motion under a suitable measure to yield weak convergence of the filter. Homogenization of the

nonlinear filter was studied by Bensoussan and Blankenship [BB86] and Ichihara [Ich04] by way of asymptotic

analysis on a dual representation of the nonlinear filtering equation. In these papers, the coefficients of the

signal processes are assumed to be periodic. The approach by Ichihara [Ich04] is novel as the first application

of backward stochastic differential equations for homogenization of Zakai-type stochastic partial differential

equations (SPDEs).

Convergence of the filter for a random ordinary differential equation with intermediate timescale and

perturbed by a fast Markov process was investigated by Lucic and Heunis [LH03]. Qiao [Qia19] investigated
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a two timescale problem with correlation between the slow process and observation process, but where the

slow dispersion coefficient does not depend on the fast process. The main result is that the filter converges in

L1 sense to the lower dimensional filter. An energy method approach was used by Zhang and Ren [ZR19] to

show the probability density of the reduced nonlinear filtering problem approximates the original problem

when the signal process has constant diffusion coefficients, periodic drift coefficients and the observation

process is only dependent on the slow process.

Convergence of the nonlinear filter is shown in a very general setting by Kleptsina et al. [KLS97], based

on convergence in total variation distance of the law of (Xε, Y ε). In the examples of Kleptsina et al. [KLS97],

the diffusion coefficient is not allowed to depend on the fast component.

In contrast to other papers on the convergence of the nonlinear filter for the multiple timescale problem,

Imkeller et al. [Imk+13] are able to provide a quantitative rate of convergence of ε for the two-timescale

non-correlated system. This is accomplished using a suitable asymptotic expansion of the dual of the Zakai

equation and then harnessing a probabilistic representation of the SPDEs in terms of backward doubly

stochastic differential equations. The approach by Imkeller et al. [Imk+13] is extended in this chapter to

cover the case of correlation between the observation process and the coarse-grain process. The analysis is

therefore similar, with the exception of additional methods to handle the components of the dual of the Zakai

equation due to the correlation and the final argument of the main proof.

Theorem (Main Result)

Under the assumptions stated in Theorem 3.2.1, for every p ≥ 1, T ≥ 0, there exists a C > 0 such that for

every ϕ ∈ C4
b (Rm;R),

EQ

[∣∣πε,xT (ϕ)− π0
T (ϕ)

∣∣p] ≤ εpC|ϕ|p4,∞.
In particular, there exists a metric d on the space of probability measures on Rm, such that d generates the

topology of weak convergence, and such that for every T ≥ 0, there exists C > 0 so that

EQ
[
d(πε,xT , π0

T )
]
≤ εC.

This chapter proceeds by first introducing some useful notation and definitions that will be used throughout.

We then state the averaged SDE, Kushner-Stratonovich and Zakai equations and provide the main theorem

result with full assumptions. We then introduce an idea by Pardoux [Par80] that lets us transform the

question of convergence for conditional distributions to one of solutions to backward stochastic partial

differential equations (BSPDE). These BSPDEs are linear second order parabolic PDEs and therefore, under
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the correct assumptions, have solutions given by BDSDEs. Having provided the necessary mathematical

machinery for the analysis, we then give preliminary estimates in Section 3.5 and the main analysis in Section

3.6. We conclude with some additional remarks. The results of this chapter have been made available in the

work by Beeson et al. [BNP20b].

3.1 Notation

In this section, we set a few definitions and assumptions that will be used throughout the chapter. We will

use N0 to denote {0, 1, 2, . . .} and N for {1, 2, . . .}. Let Hf denote the assumption that there exists a constant

C > 0, exponent α > 0 and an R > 0 such that for all |z| > R,

sup
x∈Rm

〈f(x, z), z〉 ≤ −C|z|α. (Hf )

Hf is a recurrence condition, which provides the existence of a stationary distribution, µ∞(x), for the process

Zx. Let Hg denote the assumption that there are 0 < λ ≤ Λ <∞, such that for any (x, z) ∈ Rm × Rn,

λI � gg∗(x, z) � ΛI, (Hg)

where � is the order relation in the sense of positive semidefinite matrices. Hg is a uniform ellipticity condition,

which provides the uniqueness of the stationary distribution. We will say that a function θ : Rm ×Rn → R is

centered with respect to µ∞(x), if for each x

∫
θ(x, z)µ∞(dz;x) = 0, ∀x ∈ Rm.

If ϕ(x, z) ∈ Ck,lb (Rm × Rn;Rn), then ϕ is k-times continuously differentiable in the x-component, l-times

continuously differentiable in the z-component, and all partial derivatives ∂l
′

z ∂
k′

x ϕ for 0 ≤ k′ ≤ k, 0 ≤ l′ ≤ l

are bounded. Let HF k,l for k, l ∈ N0 denote the following assumption:

f ∈ Ck,lb (Rm × Rn;Rn) and g ∈ Ck,lb (Rm × Rn;Rn×k). (HF k,l)

Similarly, let HSk,l for k, l ∈ N0 denote the assumption:

b ∈ Ck,lb (Rm × Rn;Rm) and σ ∈ Ck,lb (Rm × Rn;Rm×k), (HSk,l)
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and HOk,l for k, l ∈ N0 denote the assumption:

h ∈ Ck,lb (Rm × Rn;Rd). (HOk,l)

We use the notation k = (k1, . . . , km) ∈ Nm0 for a multiindex with order |k| = k1 + . . .+ km and define the

differential operator

Dk
x =

∂|k|

∂x1
k1 . . . ∂xkmm

.

Lastly, the relation a . b will indicate that a ≤ Cb for a constant C > 0 that is independent of a and b, but

that may depend on parameters that are not critical for the bound being computed.

3.2 Diffusion Approximation, the Averaged Filtering Equation,

and Main Theorem

The theory of homogenization of stochastic differential equations shows that if the process Zε,x,

dZε,xt =
1

ε2
f(x, Zε,xt )dt+

1

ε
g(x, Zε,xt )dVt, (3.2.1)

is ergodic with stationary distribution µ∞(x), then under appropriate conditions, in the limit ε → 0 the

process Xε converges in distribution to a Markov process X0 with infinitesimal generator

GS(x) ≡
m∑
i=1

bi(x)
∂

∂xi
+

1

2

m∑
i,j=1

aij(x)
∂2

∂xi∂xj
, (3.2.2)

where the averaged drift and diffusion coefficients are

b(x) ≡
∫
Rn
b(x, z)µ∞(dz;x), and a(x) ≡

∫
Rn
a(x, z)µ∞(dz;x).

Here we denote the diffusion coefficient a = σσ∗. We then define the averaged filter π0, which will Q-a.s. be

a probability measure-valued process satisfying the following evolution equation,

π0
t (ϕ) = π0

0(ϕ) +

∫ t

0

π0
s(GSϕ)ds+

∫ t

0

〈π0
s(ϕh+ ασ∗∇xϕ)− π0

s(ϕ)π0
s(h), dY εs − π0

s(h)ds〉,

π0
0(ϕ) = EQ

[
ϕ(X0

0 )
]
.

(3.2.3)
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The definitions of h, σ are

h(x) ≡
∫
Rn
h(x, z)µ∞(dz;x), and σ(x) ≡

∫
Rn
σ(x, z)µ∞(dz;x).

Note that π0
t is not exactly the conditional distribution for the averaged system X0. To contrast, the

equation for the filter of the averaged system is

πt(ϕ) = π0(ϕ) +

∫ t

0

πs(GSϕ)ds+

∫ t

0

〈πs(ϕh+ α
√
a
∗
∇xϕ)− πs(ϕ)πs(h), dY 0

s − πs(h)ds〉,

π0(ϕ) = EQ
[
ϕ(X0

0 )
]
.

(3.2.4)

Here Y 0 satisfies the equation,

Y 0
t =

∫ t

0

h(X0
s )ds+

∫ t

0

dBs.

To be explicit, the difference in Eq. 3.2.3 and Eq. 3.2.4 is that σ is used instead of
√
a and we drive the

system with Y ε instead of Y 0.

Having introduced the necessary definitions and equations, we can now state the main result fully.

Theorem 3.2.1

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , and HO8,4. Additionally, assume that the initial distribution

Q(Xε0,Z
ε
0) has finite moments of every order. Then for any p ≥ 1, T ≥ 0 we have that for every ϕ ∈ C4

b (Rm;R),

EQ

[∣∣πε,xT (ϕ)− π0
T (ϕ)

∣∣p] . εp|ϕ|p4,∞.

Further, there exists a metric d on the space of probability measures on Rm that generates the topology of

weak convergence, such that

EQ
[
d(πε,xT , π0

T )
]
. ε.

Proof. The proof of the first result is given by Corollary 3.6.1. The proof of the second result is from Lemma

3.6.9.

Before moving beyond this theorem statement, we provide some quick remarks.

Remark. From limε→0 EQ
[
d(πε,xT , π0

T )
]

= 0, we can retrieve convergence in probability,

lim
ε→0

Q
(
d(πε,xT , π0

T ) ≥ δ
)
≤ 1

δ
lim
ε→0

EQ
[
d(πε,xT , π0

T )
]

= 0, for each δ > 0.
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By the Borel-Cantelli lemma, we can choose (εn) so that πε,xn will a.s. converge weakly to π0. For instance,

take δn = 1/n and εn = 1/(n2n), which gives a summable series,

∞∑
n=1

Q
(
d(πεn,xT , π0

T ) ≥ δn
)
.
∞∑
n=1

1

2n
= 1.

Remark. Some quick comparisons to the main result by Imkeller et al. [Imk+13]. There the scaling for the

fast process was of order one, whereas in this chapter we use order two. Therefore, the rate of convergence is

the same in the two works. We simply use order two, since in Chapter 4, we will have an intermediate forcing

term of order one, and therefore we have the fast process of order two. The only difference in the conditions

of our Theorem 3.2.1 and the equivalent one by Imkeller et al. [Imk+13], is that we require σ ∈ C8,4
b instead

of C7,4
b . This extra regularity in the slow component of the function is due to the correlation between the

slow process and observation process, which then appears in our backward stochastic differential equations of

Section 3.6.

3.2.1 The Averaged Unnormalized Conditional Distribution

Motivated by the fact that πε can be related to the unnormalized conditional distribution ρε, and that ρε

satisfies a linear evolution equation (see Eq. 2.3.3), instead of the nonlinear equation for πε, we would like to

show the analogous result of Theorem 3.2.1 but with unnormalized conditional distributions (see definitions

below):

EQ

[∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

∣∣p] . εp|ϕ|p4,∞.

This will indeed work out, and will be stated and proven in Lemma 3.6.8. Therefore let us consider equivalent

definitions for the x-marginal πε,x and the averaged filter π0.

As we have considered the x-marginal of πε, we also consider the x-marginal of the unnormalized

conditional distribution when we are interested in ϕ ∈ C2
b (Rm;R),

ρε,xt (ϕ) =

∫
ϕ(x)ρεt(dx, dz).

ρε,x is related to πε,x through the Kallianpur-Striebel relation (see for instance Section 2.2.2),

πε,xt (ϕ) =
ρε,xt (ϕ)

ρε,xt (1)
, ∀t ∈ [0,∞), Q,Pε-a.s.
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It is easy to see that ρε(1) = ρε,x(1).

To relate the averaged (normalized) filter π0 to an unnormalized variant, we define the averaged unnor-

malized filter as the solution to the evolution equation

ρ0
t (ϕ) = ρ0

0(ϕ) +

∫ t

0

ρ0
s(GSϕ)ds+

∫ t

0

〈ρ0
s(ϕh+ ασ∗∇xϕ), dY εs 〉,

ρ0
0(ϕ) = EQ

[
ϕ(X0

0 )
]
,

where ϕ ∈ C2
b (Rm;R) are test functions. Again, note that this is not the Zakai equation for the averaged

system because we use σ instead of
√
a and drive the system with Y ε instead of Y 0.

We can relate π0 to ρ0 from the Kallianpur-Striebel formula,

π0
t (ϕ) =

ρ0
t (ϕ)

ρ0
t (1)

, ∀t ∈ [0,∞), Q,Pε-a.s.

The uniqueness of ρ0 follows from a result by Rozovskii [Roz91, Theorem 3.1, p.454]. We will use this result

in Lemma 4.5.4 of Chapter 4. For the purpose here, it will suffice for the coefficients of GS and h, σ to be C3
b

(see Lemma 4.5.4).

3.2.2 Representation of the Averaged Unnormalized Conditional Distribution

As explained with Eq. 3.2.4, π0 is not the filter for the averaged system, but instead an averaged filter. For

the same reason ρ0 is not the unnormalized conditional distribution for the averaged system, and therefore a

representation of this measure acting on ϕ ∈ C2
b test functions as conditional expectation requires a bit more

work. Such a representation will be necessary for the computation of some bounds.

First we introduce a signal process, that given appropriate conditions on the coefficients, give a repre-

sentation of ρ0 as we did in Section 2.3 for ρε. We require X0 to be a diffusion process with infinitesimal

generator GS . Therefore, consider the following SDE,

dX0
t = b(X0

t )dt+ (a(X0
t )− σσ∗(X0

t ))1/2dŴt + σ(X0
t )dWt, (3.2.5)

X0
0 ∼ QXε0 .

Here Ŵ is a new m-dimensional Brownian motion, independent of V,W,U under Q as well as independent

of the initial condition QXε0 . We note that the Cholesky factor (a(X0
t )− σσ∗(X0

t ))1/2 exists, since from an

application of Jensen’s inequality, one can show that a(x)− σσ∗(x) is positive semidefinite for each x ∈ Rm.

For this dispersion coefficient to be Lipschitz continuous, we require (a− σσ∗) ∈ C2
b (see for example [Str08,
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Lemma 2.3.3]). This condition will be made stronger for the uniqueness of the solution ρ0 (as we will shortly

see).

We now define the process

D̃0
t = exp

(∫ t

0

〈h(X0
s ), dY εs 〉 −

1

2

∫ t

0

∣∣h(X0
s )
∣∣2 ds) ,

and observe that based on the derivation in Section 2.3, we have a representation of ρ0 on C2
b test functions

as follows,

ρ0
t (ϕ) = EPε

[
ϕ(X0

t )D̃0
t | Yεt

]
.

Remark. An interesting observation regarding Eq. 3.2.5, is that we may have σ = 0, and this implies that

the SDE for the averaged filter may have no or less correlation than the original system.

3.3 Dual Process to the Unnormalized Conditional Distribution

We now introduce an idea by Pardoux [Par80] that is an important transition to the method of proof used in

this chapter. The idea is to define a function-valued process (i.e., solution of a stochastic partial differential

equation) for any fixed ϕ ∈ C2
b (Rm;R). The function-valued process will be the dual of ρε in an appropriate

sense.

First we observe that D̃ε
T can be written as

D̃ε
T = exp

(∫ T

0

〈h(Xε
s , Z

ε
s), dY

ε
s 〉 −

1

2

∫ T

0

|h(Xε
s , Z

ε
s)|

2
ds

)

= exp

(∫ T

t

〈h(Xε
s , Z

ε
s), dY

ε
s 〉 −

1

2

∫ T

t

|h(Xε
s , Z

ε
s)|

2
ds

)
exp

(∫ t

0

〈h(Xε
s , Z

ε
s), dY

ε
s 〉 −

1

2

∫ t

0

|h(Xε
s , Z

ε
s)|

2
ds

)
= D̃ε

t,T D̃
ε
t .

For this reason, we see that Q-a.s we have D̃ε
t,T = D̃ε

T (D̃ε
t)
−1.

Fixing ϕ ∈ C2
b (Rm;R), we then define the dual process at time t ∈ [0, T ] as

vε,T,ϕt (x, z) ≡ EPεt,x,z

[
ϕ(Xε

T )D̃ε
t,T

∣∣∣Yεt,T ] ,
where Pεt,x,z is the probability measure constructed from the procedure in Section 2.2 when (Xε

s , Z
ε
s) take the
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constant values (x, z) for s ∈ [0, t] and then follows the dynamics given by Eq. 3.0.1 for s > t. vε,T,ϕt (x, z) is

called the dual process, because for any t ∈ [0, T ] we have

ρε,xT (ϕ) = ρεt(v
ε,T,ϕ
t ), Pε-a.s.

That is, the composition ρεt(v
ε,T,ϕ
t ) is almost surely a constant value for any t ∈ [0, T ]. This also means that

ρε,xT (ϕ) = ρε0(vε,T,ϕ0 ) and therefore

ρε,xT (ϕ) =

∫
Rm×Rn

vε,T,ϕ0 (x, z)Q(Xε0,Z
ε
0)(dx, dz).

We can similarly define the dual process for ρ0 as

v0,T,ϕ
t (x) ≡ EPεt,x

[
ϕ(X0

T )D̃0
t,T | Yεt,T

]
,

with the same property that ρ0
T (ϕ) = ρ0

0(v0,T,ϕ
0 ). Again Pεt,x is the probability measure constructed from the

procedure in Section 2.2, but for the case where X0
s takes the constant value x for s ∈ [0, t] and then follows

the dynamics given by the generator in Eq. 3.2.2. The definition of D̃0
t,T in v0,T,ϕ

t is

D̃0
t,T = exp

(∫ T

t

〈h(X0
s ), dY εs 〉 −

1

2

∫ T

t

∣∣h(X0
s )
∣∣2 ds) ,

which is Q-a.s. equal to D̃0
t,T = D̃0

T (D̃0
t )
−1.

3.3.1 The Dual Process and Filter Convergence

We now show the usefulness of the dual process in showing the convergence of ρε,x → ρ0. We again fix

ϕ ∈ C2
b (Rm;R) and p ≥ 1. Then from Jensen’s inequality and Fubini’s theorem we have the following

relation,

EPε
[∣∣ρε,xT (ϕ)− ρ0

T (ϕ)
∣∣p] = EPε

[∣∣∣∣∫ vε,T,ϕ0 (x, z)− v0,T,ϕ
0 (x)Q(Xε0,Z

ε
0)(dx, dz)

∣∣∣∣p]
≤ EPε

[∫ ∣∣∣vε,T,ϕ0 (x, z)− v0,T,ϕ
0 (x)

∣∣∣pQ(Xε0,Z
ε
0)(dx, dz)

]
=

∫
EPε

[∣∣∣vε,T,ϕ0 (x, z)− v0,T,ϕ
0 (x)

∣∣∣p]Q(Xε0,Z
ε
0)(dx, dz).

This implies that if Q(Xε0,Z
ε
0)(dx, dz) is well behaved (e.g., finite moments of every order) then convergence of

the p-th moment of vε,T,ϕ0 (x, z)−v0,T,ϕ
0 (x) to zero will imply convergence of the p-th moment of ρε,xT (ϕ)−ρ0

T (ϕ)

to zero. We also make the reminder that integrating out the z component of Q(Xε0,Z
ε
0) yields Q

(X0
0 )

(i.e., Xε
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and X0 have the same initial distribution).

3.3.2 Evolution Equations for the Dual Process

To introduce the next step in the techniques to prove convergence of the marginalized filter to the reduced

order filter, we need to state the evolution equations for the dual processes vε,T,ϕ and v0,T,ϕ. Both processes

satisfy backward stochastic partial differential equations. To facilitate the reading, we use vε and v0 instead

of the more verbose vε,T,ϕ and v0,T,ϕ in most of what follows. When clarity is needed, we will use the explicit

notation.

The evolution equation for vε is given by

−dvεt = Gεvεtdt+ 〈vεth+ ασ∗∇xvεt , d
←−
B t〉, vεT = ϕ, (3.3.1)

where

∫
d
←−
B t will denote the backward Itô integral. And the process v0 is given by

−dv0
t = GSv0

t dt+ 〈v0
t h+ ασ∗∇xv0

t , d
←−
B t〉, v0

T = ϕ. (3.3.2)

The standard way of showing that these are indeed the evolution equations, is to show that the BSPDEs

have unique solutions in appropriate Sobolev spaces, and then apply Itô’s (or Itô-Wentzell’s) formula to verify

that indeed the process is dual to the unnormalized conditional distribution [Ver16, p.2]. The dual process

has also been addressed by Krylov and Rozovskii [KR82] and Rozovskii [Roz90], and plays a role in showing

convergence of particle approximations (summation of weighted Dirac distributions) to the normalized

conditional distribution [BC09, p.180]. Unlike the aforementioned efforts that assume the form of the dual

process from the beginning, Veretennikov [Ver16] uses a direct approach to derive the evolution equation for

the dual process.

3.3.3 Expansion of the Dual Process

Because vε satisfies a linear BSPDE, we can consider by superposition, an expansion of vε using v0 and a

corrector ψ and remainder R term. Using the following expansion

vεt (x, z) = v0
t (x) + ψt(x, z) +Rt(x, z),
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in Eq. 3.3.1 and introducing terms for Eq. 3.3.2, we define ψ and R to satisfy the following linear BSPDEs

−dψt =

[
1

ε2
GFψt + (GS − GS)v0

t

]
dt+ 〈v0

t (h− h), d
←−
B t〉+ 〈α(σ − σ)∗∇xv0

t , d
←−
B t〉, ψT = 0,

−dRt = (GεRt + GSψt)dt+ 〈(ψt +Rt)h, d
←−
B t〉+ 〈ασ∗∇x(ψt +Rt), d

←−
B t〉, RT = 0. (3.3.3)

Therefore to show convergence of the difference vε − v0, we can equivalently show convergence of ψ and

R to zero as ε→ 0:

EPε
[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ

t (x)
∣∣∣p] = EPε [|ψt(x, z) +Rt(x, z)|p] . EPε [|ψt(x, z)|p] + EPε [|Rt(x, z)|p] .

This will be our strategy in Section 3.6.

3.4 Probabilistic Representation of Stochastic PDEs

We will now show that we can find a probabilistic representation of the dual processes. This representation

will be given by backward doubly stochastic differential equations (BDSDEs), which are a generalization of

the Feynman-Kac solution, but for semilinear second order parabolic SPDEs. First let us state a result for

the classical solution of the dual processes, which are linear second order parabolic SPDEs of the general

form:

−dψ(ω, t, x) = Lψ(ω, t, x)dt+ f(ω, t, x)dt+ 〈g(ω, t, x) +G(ω, t, x)ψ(ω, t, x), d
←−
B t〉 (3.4.1)

+ 〈F (ω, t, x)∇xψ(ω, t, x), d
←−
B t〉,

ψ(T, x) = ϕ(ω, x),

where ψ : Ω× [0, T ]×Rm → R, f : Ω× [0, T ]×Rm → R, g : Ω× [0, T ]×Rm → Rd, G : Ω× [0, T ]×Rm → Rd,

F : Ω × [0, T ] × Rm → Rd×m and ϕ : Ω × Rm → R are all jointly measurable, and
←−
B t is a d-dimensional

standard backward Brownian motion. The generator given in Eq. 3.4.1 has the form

L(x) =

m∑
i=1

bi(x)
∂

∂xi
+

1

2

m∑
i,j=1

aij(x)
∂2

∂xi∂xj
,

where b : Rm → R and a : Rm → Sm×m are measurable (Sm×m denotes the space of symmetric positive

semidefinite matrices).

Once we have stated the results on BSPDEs, we will then give the BDSDE representation in Section 3.4.1.

29



We will need some definitions for the necessary conditions on the classical solution of the SPDEs. Let us

state those now, starting with the definition for the filtration F0,B
t,s : let 0 ≤ t ≤ s ≤ T ,

F0,B
t,s = σ({Bu −Bt | t ≤ u ≤ s}),

and let FBt,s be the completion of F0,B
t,s under Pε. The space of adapted random fields of polynomial growth

will be denoted by PT (Rm;Rn):

Definition 3.4.1. PT (Rm;Rn) is the space of random fields of polynomial growth

H : Ω× [0, T ]× Rm → Rn

that are jointly measurable in (ω, t, x) and for fixed (t, x), ω 7→ H(ω, t, x) is FBt,T -measurable. Further, for

fixed ω outside a null set, H has to be jointly continuous in (t, x), and it has to satisfy the following inequality:

For every p ≥ 1 there is Cp, q > 0, such that for all x ∈ Rm,

E
[

sup
0≤t≤T

|H(t, x)|p
]
≤ Cp(1 + |x|q).

We denote with Dk a definition concerning conditions on the coefficients of the generator L of the BSPDE:

Definition 3.4.2. We define the condition Dk to indicate that b ∈ Ckb (Rm;Rn), a ∈ Ckb (Rm;Sm×m), and a

is degenerate elliptic: For every ξ ∈ Rm and every x ∈ Rm,

〈a(x)ξ, ξ〉 =

m∑
i,j=1

aij(x)ξiξj ≥ 0,

or succintly a � 0.

We denote with Sk a definition concerning conditions on the coefficients (not including the generator) of

the BSPDE:

Definition 3.4.3. The condition Sk indicates that f and g are k-times continuously differentiable and the

partial derivatives up to order k are all in PT . G and F are (k + 1)-times continuously differentiable and

the partial derivatives up to order (k + 1) are all uniformly bounded in (ω, t, x). ϕ is k-times continuously

differentiable, and all partial derivatives of order 0 to k grow at most polynomially.
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Lemma 3.4.1

Assume Dk and Sk for some 3 ≤ k ∈ N. Additionally, assume the parabolic condition 2a− F ∗F � 0 holds.

Then Eq. 3.4.1 has a unique classical solution ψ in the sense that for every fixed ω outside a null set,

ψ(ω, ·, ·) ∈ C0,k−1([0, T ]× Rd;R), ψ and its partial derivatives are in PT (Rm;R), and ψ solves the integral

equation. If ψ̃ is any other solution of the integral equation, then ψ and ψ̃ are indistinguishable. If further

f, g and ϕ as well as their derivatives up to order k are uniformly bounded in (ω, t, x), then for any p > 0

there exist q > 0 and C > 0 (only depending on p, the dimensions involved, the bounds on a, b,G and F , and

on T ), such that for all |β| ≤ k − 1 and x ∈ Rm,

E
[
sup
t≤T
|Dβψ(t, x)|p

]
≤ C(1 + |x|q)E

[
|ϕ|pk,∞ + sup

t≤T
|f(t, ·)|pk,∞ + sup

t≤T
|g(t, ·)|pk,∞

]
.

Proof. This is a combination of Theorem 4.3.2 and Corollary 4.3.2 by Rozovskii [Roz90, p.170] (The

claimed bound is only given for the equation in unweighted Sobolev spaces, in Corollary 4.2.2. From there,

we can deduce the result for the weighted Sobolev case). The only thing we need to verify is that our

polynomial growth assumption on the coefficients is compatible with the Sobolev norm condition there. But

if θ ∈ PT (Rm;Rn), then for any p ≥ 1 there certainly is an r < 0 such that θ takes its values in the weighted

Lp-space with weight (1 + |x|2)r/2,

E
[

sup
0≤t≤T

∫
|θ(t, x)|p(1 + |x|2)r/2dx

]
≤ E

[∫
sup

0≤t≤T
|θ(t, x)|p(1 + |x|2)r/2dx

]
=

∫
E
[

sup
0≤t≤T

|θ(t, x)|p
]

(1 + |x|2)r/2ds

≤
∫
C(1 + |x|q)(1 + |x|2)r/2dx <∞,

for small enough r.

3.4.1 Backward Doubly Stochastic Differential Equations

The theory of backward doubly stochastic differential equations has its origin in the paper by Pardoux

and Peng [PP94]. Although it is possible to get a different representation of the solutions of Eq. 3.4.1 by

the method of stochastic characteristics [Roz90], one benefit of the BDSDE representation is that for fixed

(x, z) ∈ Rm × Rn, we will have a finite dimensional representation of ψ(x, z) and therefore will be able to

apply Grönwall’s lemma in the final step of Lemma 3.6.3, as part of the main analysis.
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A BDSDE is an integral equation of the form,

Yt = ξ +

∫ T

t

f(s, ·, Ys, Zs)ds+

∫ T

t

〈g(s, ·, Ys, Zs), d
←−
B s〉 −

∫ T

t

〈Zs, dWs〉, (3.4.2)

where f : [0, T ]×Ω×R ×Rn → R, g : [0, T ]×Ω×R ×Rn → Rd, and for fixed y ∈ R, z ∈ Rn, the processes

(ω, t) 7→ f(t, ω, x, z) and (ω, t) 7→ g(t, ω, x, z) are (FB0,T ∨FWT )⊗B(R)-measurable, and for every t, f(t, ·, x, z)

and g(t, ·, x, z) are Ft-measurable.

Let us clarify what we mean here by Ft. W is an n-dimensional standard Brownian motion that is

independent of B. We define the completed filtration generated by W for t ∈ [0, s] as FWt,s . Then we define

Ft as

Ft = FBt,T ∨ FWt .

Because of this definition, Ft is not a filtration; it is neither strictly increasing nor decreasing in t.

Let us now introduce some additional notation that will make it easier to explain the main results of

BDSDEs.

Definition 3.4.4. Let H2
T (Rm) be the space of measurable Rm-valued processes Y , such that Yt is Ft-

measurable for almost any t ∈ [0, T ] and

E

[∫ T

0

|Yt|2dt

]
<∞.

Definition 3.4.5. Let S2
T (Rm) be the space of continuous adapted Rm-valued processes Y , such that Yt is

Ft-measurable for every t ∈ [0, T ] and

E
[

sup
0≤t≤T

|Yt|2dt
]
<∞.

The pair (Y, Z) will be called a solution of Eq. 3.4.2 if (Y,Z) ∈ S2
T (R)×H2

T (Rn), and if the pair solves

the integral equation. We will also write BDSDEs in differential form at times, for example Eq. 3.4.2 in

differential form would be,

−dYt = f(t, ·, Yt, Zt)dt+ 〈g(t, ·, Yt, Zt), d
←−
B t〉 − 〈Zt, dWt〉.
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Observe that with suitable adaptations, all of the following results also hold in the multidimensional case

(i.e., Y ∈ Rm). We restrict to one-dimensional Y for simplicity and because ultimately we are only interested

in that case.

Pardoux and Peng [PP94] show that under the following conditions, Eq. 3.4.2 has a unique solution:

• ξ ∈ L2(Ω,FT ,Pε;R),

• for any (y, z) ∈ R × Rn, we have f(·, ·, y, z) ∈ H2
T (R) and g(·, ·, y, z) ∈ H2

T (Rd)

• f and g satisfy Lipschitz conditions and g is a contraction in z: there exists constants L > 0 and

0 < β < 1 such that for any (ω, t) and y1, y2, z1, z2,

|f(t, ω, y1, z1)− f(t, ω, y2, z2)|2 ≤ L(|y1 − y2|2 + |z1 − z2|2),

|g(t, ω, y1, z1)− g(t, ω, y2, z2)|2 ≤ L|y1 − y2|2 + β|z1 − z2|2.

Now we associate a diffusion X to the differential operator L given in Eq. 3.4.1. To do so, assume Dk is

satisfied for some k ≥ 2. Then σ ≡ a1/2 is Lipschitz continuous [Str08, Lemma 2.3.3]. Hence for every

(t, x) ∈ [0, T ]× Rm, there exists a strong solution of the SDE

Xt,x
s = x+

∫ s

t

b(Xt,x
s )ds+

∫ s

t

σ(Xt,x
s )dWs, for s ≥ t,

Xt,x
s = x for s ≤ t.

For the theory of BDSDEs, we must assume that F has the form F = ασ∗, and here we consider α ∈ Rd×m

a constant matrix. We then associate the following BDSDE to Eq. 3.4.1,

−dY t,xs = f(s,Xt,x
s )ds+ 〈g(s,Xt,x

s ) +G(s,Xt,x
s )Y t,xs + αZt,xs , d

←−
B t〉 − 〈Zt,xs , dWs〉.

Y t,xT = ϕ(Xt,x
T ).

Under the assumptions Sk and Dk for k ≥ 2, this equation has a unique solution. The tuple (Xt,x, Y t,x, Zt,x)

constitutes a forward backward doubly stochastic differential equation (FBDSDE).

Lemma 3.4.2

Assume Sk and Dk for k ≥ 3 and 2a− F ∗F � 0. Then the unique classical solution ψ of the BSPDE in Eq.

3.4.1 is given by ψ(t, x) = Y t,xt , where (Y t,x, Zt,x) is the unique solution of the BDSDE in Eq. 3.4.2.

Proof. See [PP94, Theorem 3.1, p.225].
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A final remark before we turn to preliminary estimates and the main analysis where we will use BDSDEs,

we will not be able to get an existence result for classical solutions of the SPDEs in Section 3.6 from the

theory of BDSDEs. This is due to the fact that for this we would need smoothness properties of a square root

of a. But even when a is smooth, in the degenerate elliptic case it does not need to have a smooth square

root (see for example [Str08, Lemma 2.3.3]). We will instead use the existence result by Rozovskii [Roz90]

stated in Lemma 3.4.1, and use the uniqueness result from Pardoux and Peng’s work [PP94] in our setting.

This works under Lipschitz continuity of a1/2, which we used previously.

3.5 Preliminary Estimates

In this section, we prove several preliminary estimates to be used in Section 3.6. We start with results for the

moments of the SDE solutions.

3.5.1 Estimates on SDE Solutions

Lemma 3.5.1

Assume that the drift coefficient b, and dispersion coefficient σ, of the slow motion Xε are bounded. Then for

any p ≥ 1, and every T > 0, there exists Cp > 0 such that

sup
(t,ε)∈[0,T ]×(0,1]

E [|Xε
t |p | (Xε

0, Z
ε
0) = (x, z)] ≤ Cp(1 + |x|p).

Proof. The result is trivial since we assume the coefficients to be bounded and consider finite T .

Lemma 3.5.2

Assume f is bounded and that f and gg∗ are Hölder continuous in z uniformly in x for some uniform

constant. Assume that the conditions Hf and Hg hold. Then for any p > 0 there exists Cp > 0 such that

sup
(t,ε,x)∈[0,∞)×(0,1]×Rm

E [|Zεt |p | (Xε
0, Z

ε
0) = (x, z)] ≤ Cp(1 + |z|p).

Proof. First consider a reparametrization of time t = ε2τ , and define Zετ ≡ Zεε2τ to yield the SDE,

dZετ = f(Xε
ε2τ , Z

ε
τ )dτ + g(Xε

ε2τ , Z
ε
τ )dV ετ ,

where the process V ετ = ε−1Vε2τ is a standard Brownian motion. Zε is asymptotically identical in law to Zx.
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We perform a second reparametrization of time (see either [Ver97, p.125] or [PV01, p.1063]) by defining,

κ(x, z) ≡ |〈g(x, z), z〉|/|z|, γε(τ) ≡
∫ τ

0

κ2(Xε
ε2s, Z

ε
s)ds,

τ ε(τ) ≡ (γε)−1(τ),

where (γε)−1 is the inverse of γε. Then defining (X̃ε
s , Z̃

ε
s) ≡ (Xε

ε2τε(s), Z
ε
τε(s)), we get an SDE with unit

diffusion,

Z̃εs = κ−2(X̃ε
s , Z̃

ε
s)f(X̃ε

s , Z̃
ε
s)ds+ κ−1(X̃ε

s , Z̃
ε
s)g(X̃ε

s , Z̃
ε
s)dṼ

ε
s ,

where Ṽ ε is a standard Brownian motion. Veretennikov [Ver97] shows that the solution of this unit diffusion

SDE still has the property of positive recurrence and therefore the estimate now follows from [Ver97, Lemma

1, p.117].

Lemma 3.5.3

Assume h is bounded, then for p ≥ 1 and t ∈ [0, T ],

sup
ε∈(0,1]

sup
t≤T

EPε
∣∣∣D̃ε

t

∣∣∣p <∞.
Proof. Let p ≥ 2 and N ∈ N, and define the stopping time,

τN ≡ inf{t | |D̃ε
t | ≥ N},

with τN (ω) =∞ if the set is empty. The stopped process D̃ε
t∧τN satisfies the following evolution equation,

D̃ε
t∧τN = 1 +

∫ t∧τN

0

D̃ε
s〈h(Xε

s , Z
ε
s), dY

ε
s 〉 = 1 +

∫ t

0

D̃ε
s∧τN 〈h(Xε

s∧τN , Z
ε
s∧τN ), dY εs 〉

and therefore by the Burkholder-Davis-Gundy inequality,

EPε
∣∣∣D̃ε

t∧τN

∣∣∣p ≤ 2p−1 + 2p−1EPε

(
sup
u≤t

∣∣∣∣∫ u

0

D̃ε
s∧τN 〈h(Xε

s∧τN , Z
ε
s∧τN ), dY εs 〉

∣∣∣∣)p
≤ 2p−1 + 2p−1CpEPε

(∫ t

0

|D̃ε
s∧τN |

2|h(Xε
s∧τN , Z

ε
s∧τN )|2ds

)p/2
.
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By boundedness of h, Hölder’s inequality, and Fubini’s theorem,

EPε
∣∣∣D̃ε

t∧τN

∣∣∣p ≤ 2p−1 + 2p−1Cp|h|p∞T p/2−1

∫ t

0

EPε |D̃ε
s∧τN |

pds.

Grönwall’s lemma now gives,

EPε
∣∣∣D̃ε

t∧τN

∣∣∣p ≤ 2p−1 exp
(

2p−1Cp|h|p∞T p/2
)
<∞.

Because the right hand side does not depend on N nor ε, bounded convergence gives us the estimate in the

limit N →∞. The case 1 ≤ p < 2 follows from Lp(Pε) ⊂ L2(Pε).

Lemma 3.5.4

Assume h is bounded, then for p ≥ 1 and t ∈ [0, T ],

sup
t≤T

EPε
∣∣∣D̃0

t

∣∣∣p <∞.
Proof. The argument follows the same line of reasoning as Lemma 3.5.3.

3.5.2 Estimates with the Fast Semigroup

In this section we provide estimates relating to the semigroup of the fast process.

Lemma 3.5.5

Assume HF k,l, with k ∈ N0, l ∈ N, and let θ ∈ Ck,j(Rm × Rn;R) for j ≤ l satisfy for some C, p > 0

∑
|α|≤k

∑
|β|≤j

|Dα
xD

β
z θ(x, z)| ≤ C(1 + |x|p + |z|p).

Then

(t, x, z) 7→ TF,xt (θ(x, ·)) (z) ∈ C0,k,j(R+ × Rm × Rn;R)

and there exist C1, p1 > 0, such that for all (t, x, z) ∈ [0,∞)× Rm × Rn

∑
|α|≤k

∑
|β|≤j

|Dα
xD

β
z T

F,x
t (θ(x, ·)) (z)| ≤ C1e

C1t(1 + |x|p1 + |z|p1).
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If the bound on the derivatives of θ can be chosen uniformly in x, that is,

∑
|α|≤k

∑
|β|≤j

sup
x
|Dα

xD
β
z θ(x, z)| ≤ C(1 + |z|p),

then the bound on the derivatives of TF,xt (θ(x, ·)) (z) is also uniform in x,

∑
|α|≤k

∑
|β|≤j

sup
x
|Dα

xD
β
z T

F,x
t (θ(x, ·)) (z)| ≤ C1e

C1t(1 + |z|p1).

Proof. Note that

TF,xt (θ(x, ·))(z) = E [θ(x, Zxt ) |Zx0 = z] = E [θ(Xt, Zt) | (X0, Z0) = (x, z)]

is the solution of Kolmogorov’s backward equation associated to (X,Z), where

Xt = X0,

Zt = Z0 +

∫ t

0

f(Xs, Zs)ds+

∫ t

0

g(Xs, Zs)dVs.

In this formulation, the first result is standard (see for instance [Str08, Corollary 2.2.8]) and the second

statement can be proven in the same way.

Lemma 3.5.6

Assume Hf , Hg and HF k,3 for k ∈ N0. Let θ ∈ Ck,0(Rm × Rn;R) satisfy for some C, p > 0,

∑
|γ|≤k

sup
x
|Dγ

xθ(x, z)| ≤ C(1 + |z|p).

Then

x 7→ µ∞(θ;x)(x′) =

∫
Rn
θ(x′, z)µ∞(dz;x) =

∫
Rn
θ(x′, z)p∞(z;x)dz ∈ Ckb (Rm;R).

Proof. From [PV03, Theorem 1, p.1170], we have that for any q > 0 there exists Cq > 0, such that,

∑
|γ|≤k

sup
x
|Dγ

xp∞(z;x)| ≤ Cq
1 + |z|q

.

Therefore if q is chosen large enough, and we differentiate p∞(z;x) under the integral sign, and using the

growth constraint on θ and its derivatives, we obtain the result.
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Lemma 3.5.7

Assume Hf , Hg and HF k,3 with k ∈ N0. Let θ ∈ Ck,1(Rm × Rn;R) satisfy the growth condition,

∑
|α|≤k

∑
|β|≤1

sup
x
|Dα

xD
β
z θ(x, z)| ≤ C(1 + |z|p),

for some C, p > 0 . Assume additionally that θ satisfies the centering condition,

∫
Rn
θ(x, z)µ∞(dz;x) = 0, ∀x ∈ Rm.

Then

(x, z) 7→
∫ ∞

0

TF,xt (θ(x, ·))(z)dt ∈ Ck,1(Rm × Rn;R),

and for every q > 0 there exists C ′, q′ > 0, such that,

∑
|α|≤k

∑
|β|≤1

∫ ∞
0

sup
x
|Dα

xD
β
z T

F,x
t (θ(x, ·))(z)|qdt ≤ C ′(1 + |z|q

′
).

Proof. For the proof, we use the representation

∫ ∞
0

TF,xt (θ(x, ·))(z)dt =

∫ 1

0

∫
Rn
θ(x, z′)pt(z

′;x, z)dz′dt+

∫ ∞
1

TF,xt (θ(x, ·))(z)dt.

Then the statement, ∫ ∞
0

TF,xt (θ(x, ·))(z)dt ∈ Ck,1(Rm × Rn;R),

follows from the existence of the derivatives on t ∈ [0, 1) from Lemma 3.5.5 and t ∈ [1,∞) from [PV03,

Theorem 2, p.1171]. Similarly, the bound on the growth of the derivatives of TF,xt (θ(x, ·))(z) given in

[PV03, Theorem 2, p.1171], formula (15) states: For any p1 > 0 there exist C1, p
′
1 > 0, such that for any

(t, x, z) ∈ [1,∞)× Rm × Rn,

∑
|α|≤k

∑
|β|≤1

∣∣∣Dα
xD

β
z T

F,x
t (θ(x, ·))(z)

∣∣∣ ≤ C1
1 + |z|p′1
(1 + t)p1

.

We combine this estimate with Lemma 3.5.5, from where we obtain for (t, x, z) ∈ [0,∞)× Rm × Rn

∑
|α|≤k

∑
|β|≤1

sup
x

∣∣∣Dα
xD

β
z T

F,x
t (θ(x, ·))(z)

∣∣∣ ≤ C2e
C2t(1 + |z|p2).
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We choose p1 such that qp1 > 1 and use the first estimate on [1,∞) and the second estimate on [0, 1). The

result follows.

Lemma 3.5.8

Assume Hf , Hg and HF k,3 with k ∈ N0. If HSk,1 holds, then b, σ, a ∈ Ckb . Similarly, if HOk,1 holds, then

h ∈ Ckb .

Proof. The result follows from Lemma 3.5.7.

3.5.3 Estimates for the Corrector Term

We now introduce a few lemmas that will help to streamline the main ideas in the analysis of the corrector

term given in Lemma 3.6.2.

Lemma 3.5.9

Assume that u ∈ C([0, T ] × Rm;R) and is an element of PT (Rm;R). Assume Hf , Hg and HF 0,3. Let

ψ ∈ C0,1
b (Rm × Rn;R). Assume additionally that ψ satisfies the centering condition,

∫
Rn
ψ(x, z)µ∞(dz;x) = 0, ∀x ∈ Rm.

Then given (x, z) ∈ Rm × Rn and t ∈ [0, T ], there exists q > 0 such that

E

[∣∣∣∣∣E
[∫ T

t

ψ(x, Zε,x;(t,z)
s )us(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. ε2p(1 + |z|q)E
[

sup
t≤s≤T

|us(x)|p
]
.

Here Zε,x is the diffusion process with generator 1
ε2GF (in particular, the Brownian motion driving Zε,x is

independent of the Brownian motion
←−
B t that generates the backward filtration FBt,T ).

Proof. Because us is measurable with respect to FBs,T and Zε,x;(t,z) is independent of B, we get from the

conditional expectation with respect to FBt,T and definition of the semigroup TF,x the following identity

E

[∫ T

t

ψ(x, Zε,x;(t,z)
s )us(x)ds

∣∣∣∣∣FBt,T
]

=

∫ T

t

E
[
ψ(x, Zε,x;(t,z)

s )
]
us(x)ds =

∫ T

t

TF,x(s−t)/ε2(ψ(x, ·))(z)us(x)ds.

Now taking the absolute value, using Hölder’s inequality, and removing |us(x)| from the integral by taking

the supremum over [t, T ] gives

∣∣∣∣∣
∫ T

t

TF,x(s−t)/ε2(ψ(x, ·))(z)us(x)ds

∣∣∣∣∣ . sup
t≤s≤T

|us(x)|
∫ T

t

∣∣∣TF,x(s−t)/ε2(ψ(x, ·))(z)
∣∣∣ ds. (3.5.1)
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Performing a time reparametrization and then using Lemma 3.5.7, we have for some q′ > 0,

sup
t≤s≤T

|us(x)|
∫ T

t

∣∣∣TF,x(s−t)/ε2(ψ(x, ·))(z)
∣∣∣ ds . ε2 sup

t≤s≤T
|us(x)|

∫ (T−t)/ε2

0

∣∣TF,xr (ψ(x, ·))(z)
∣∣ dr

. ε2 sup
t≤s≤T

|us(x)|
∫ ∞

0

∣∣TF,xr (ψ(x, ·))(z)
∣∣ dr

. ε2(1 + |z|q
′
) sup
t≤s≤T

|us(x)|.

Lastly, taking the p-th power and applying the expectation gives the desired result.

Lemma 3.5.10

Assume that u ∈ C([0, T ]×Rm;Rk) and is an element of PT (Rm;Rk) for k ≥ 1. Assume Hf , Hg and HF 0,3.

Let ψ ∈ C0,1
b (Rm × Rn;Rd×k). Assume additionally that ψ satisfies the centering condition,

∫
Rn
ψ(x, z)µ∞(dz;x) = 0, ∀x ∈ Rm.

Then given (x, z) ∈ Rm × Rn and t ∈ [0, T ], there exists q > 0 such that

E

[∣∣∣∣∣E
[∫ T

t

〈ψ(x, Zε,x;(t,z)
s )us(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. εp(1 + |z|q)E
[

sup
t≤s≤T

|us(x)|p
]
.

Here Zε,x is the diffusion process with generator 1
ε2GF (in particular, the Brownian motion driving Zε,x is

independent of the Brownian motion
←−
B t that generates the backward filtration FBt,T ).

Proof. Because us is measurable with respect to FBs,T and Zε,x;(t,z) is independent of B, we get from the

conditional expectation with respect to FBt,T and definition of the semigroup TF,x the following identity

E

[∫ T

t

〈ψ(x, Zε,x;(t,z)
s )us(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]

=

∫ T

t

〈E
[
ψ(x, Zε,x;(t,z)

s )
]
us(x), d

←−
B s〉

=

∫ T

t

〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x), d
←−
B s〉.

Now by application of the Burkholder-Davis-Gundy inequality we get

E

[∣∣∣∣∣
∫ T

t

〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x), d
←−
B s〉

∣∣∣∣∣
p]
≤ E

[(
sup
t≤r≤T

∣∣∣∣∣
∫ T

r

〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x), d
←−
B s〉

∣∣∣∣∣
)p]

. E

〈∫ T

t

〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x), d
←−
B s〉

〉p/2 .
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Computing the quadratic variation gives

〈∫ T

t

〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x), d
←−
B s〉

〉
=

∫ T

t

|TF,x(s−t)/ε2(ψ(x, ·))(z)us(x)|2ds. (3.5.2)

In the case that u is real-valued, the integrand is bounded by

|TF,x(s−t)/ε2(ψ(x, ·))(z)us(x)|2 = 〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x)〉 ≤ |us(x)|2|TF,x(s−t)/ε2(ψ(x, ·))(z)|2, (3.5.3)

where 〈β〉 is a short-hand notation for the inner product 〈β, β〉. Similarly, in the case where u is a vector

with values in Rk for some k > 1, then TF,x(s−t)/ε2(ψ(x, ·))(z) takes values in Rd×k. For temporary brevity, let

As ≡ TF,x(s−t)/ε2(ψ(x, ·))(z). Then by Lemma A.3.1 we have the same inequality for the integrand, but this

time |As|2 corresponds to the trace of the matrix A∗sAs and the inequality is multiplied by some constant C

that depends on the dimension of the problem.

Therefore using Eq. 3.5.3 in the quadratic variation of Eq. 3.5.2 and then taking the function |us(x)|

outside the integral by using its supremum value over [t, T ], we get

〈∫ T

t

〈TF,x(s−t)/ε2(ψ(x, ·))(z)us(x), d
←−
B s〉

〉
≤
∫ T

t

|TF,x(s−t)/ε2(ψ(x, ·))(z)|2|us(x)|2ds

= sup
t≤s≤T

|us(x)|2
∫ T

t

|TF,x(s−t)/ε2(ψ(x, ·))(z)|2ds.

We now perform a time reparametrization and use Lemma 3.5.7, so that for some q′ > 0 we get

sup
t≤s≤T

|us(x)|2
∫ T

t

|TF,x(s−t)/ε2(ψ(x, ·))(z)|2ds = ε2 sup
t≤s≤T

|us(x)|2
∫ (T−t)/ε2

0

|TF,xr (ψ(x, ·))(z)|2dr

= ε2 sup
t≤s≤T

|us(x)|2
∫ ∞

0

|TF,xr (ψ(x, ·))(z)|2dr

. ε2(1 + |z|q
′
) sup
t≤s≤T

|us(x)|2. (3.5.4)

To see that the last step still holds in the case that ψ is matrix-valued, consider the following relations

|TF,xr (ψ(x, ·))(z)|2 =

d∑
i=1

(
TF,xr (ψ(x, ·))(z)TF,xr (ψ(x, ·))(z)∗

)
ii

=

d∑
i,j=1

(
TF,xr (ψ(x, ·))(z)

)2
ij

=

d∑
i,j=1

|TF,xr (ψ(x, ·)ij)(z)|,

which shows that the same analysis holds, but now for a summation over the centered entries of ψ. Finally,

41



taking the p/2 power and applying the expectation to Eq. 3.5.4 gives the desired result.

3.6 Main Analysis

3.6.1 Moment Estimates for Dual Processes

In this section, we compute the main estimates for v0, ψ and R associated with an arbitrary fixed test function

ϕ ∈ C2
b . The estimates for ψ and R are then used in Section 3.6.2 to prove Theorem 3.2.1.

Lemma 3.6.1

Let 3 ≤ k ∈ N and assume b, a, ϕ ∈ Ckb and h, σ ∈ Ck+1
b . Then v0 ∈ C0,k−1([0, T ] × Rm;R), and for any

p ≥ 1 there exist q > 0, such that for all x ∈ Rm,

∑
|j|≤k−1

E
[

sup
0≤t≤T

|Dj
xv

0
t (x)|p

]
. (1 + |x|q)|ϕ|pk,∞.

In particular, v0 and all its partial derivatives up to order (0, k − 1) are in PT (Rm;R).

Proof. The result follows from Lemma 3.4.1. The only condition from Lemma 3.4.1 that is not immediately

obvious is the parabolic condition, 2a − σα∗ασ∗ � 0. This condition indeed holds for the same reason as

given in the paragraph below Eq. 3.2.5 and the fact that I − α∗α � 0, where I is the identity matrix (recall

that α was redefined in Section 2.1 as α← κ−1α, and note that (κ−1)∗ = (κ∗)−1).

Lemma 3.6.2

Let 3 ≤ k, l ∈ N and assume Hf , Hg, HF k,l, HSk,l, HOk,l, and that σ, a, b, h ∈ Ckb . Let v0 ∈ C0,k([0, T ]×

Rm;R), and assume that all its partial derivatives in x up to order k are in PT (Rm;R).

Then ψ ∈ C0,k−1,l−1([0, T ]×Rm×Rn;R), and ψ as well as its partial derivatives up to order (0, k−1, l−1)

are in PT (Rm × Rn;R). For any p ≥ 1 there exists q > 0, such that for any (x, z) ∈ Rm × Rn and any

ε ∈ (0, 1)

∑
|β|≤k−2

sup
0≤t≤T

E
[
|Dβ

xψt(x, z)|p
]
. εp(1 + |z|q)

∑
|β|≤k

E
[

sup
0≤t≤T

|Dβ
xv

0
t (x)|p

]
.

Proof. ψt(x, z) solves the following BSPDE

−dψt(x, z) =

[
1

ε2
GFψt(x, z) + (GS − GS)v0

t (x, z)

]
dt+ 〈v0

t (h− h)(x, z), d
←−
B t〉+ 〈α(σ − σ)∗∇xv0

t (x, z), d
←−
B t〉,

ψT (x, z) = 0.
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Existence of the solution ψ and its derivatives as well as the polynomial growth follow from Lemma 3.4.1.

From Lemma 3.4.2, the solution, ψt(x, z), has a representation in terms of a FBDSDE, ψt(x, z) = θt,x,zt .

Where θ is a component of the pair of processes (θ, γε) satisfying the BDSDE

−dθt,x,zs =
[
GS(x, Zε,x;(t,z)

s )− GS(x)
]
v0
s(x)ds

+ 〈v0
s(x)(h(x, Zε,x;(t,z)

s )− h(x)), d
←−
B s〉+ 〈α(σ(x, Zε,x;(t,z)

s )− σ(x))∗∇xv0
s(x), d

←−
B s〉

− 〈γε;(t,x,z)s , dVs〉,

θt,x,zT = 0,

(3.6.1)

and (x, Z
ε,x;(t,z)
s ) is a joint diffusion process with X

ε;(t,x)
s having the zero generator,

Xε;(t,x)
s = x, ∀ s ∈ [t, T ],

and Z
ε,x;(t,z)
s satisfying the stochastic differential equation

dZε,x;(t,z)
s =

1

ε2
f(x, Zε,x;(t,z)

s )ds+
1

ε
g(x, Zε,x;(t,z)

s )dVs, s ≥ t,

Zε,x;(t,z)
s = z, s ≤ t.

The second component of the pair (θt,x,zt , γ
ε;(t,x,z)
t ), has a representation as

γ
ε;(t,x,z)
t =

1

ε
g∗∇zψt(x, z).

For brevity, let us temporarily drop from the notation, superscripts and part of superscripts that indicate

initial conditions (for example, (t, x, z) and (t, z)).

Since ψt is FBt,T -measurable, so is θt, and therefore conditioning θt on FBt,T gives θt = E
[
θt
∣∣FBt,T ]. We

also observe that V and B are independent. Therefore, V is a Brownian motion in the larger filtration

(FVs ∨FBt,T )s∈[0,T ]. Hence, if we condition the integral version of Eq. 3.6.1, the stochastic integral will vanish.

Specifically, consider an application of the tower property of conditional expectation,

E

[∫ T

t

〈γεs, dVs〉

∣∣∣∣∣FBt,T
]

= E

[
E

[∫ T

t

〈γεs, dVs〉

∣∣∣∣∣FVt ∨ FBt,T
] ∣∣∣∣∣FBt,T

]
= 0.
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Therefore, we condition the integral form of Eq. 3.6.1 on FBt,T to get

θt = E

[∫ T

t

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x)ds

∣∣∣∣∣FBt,T
]

+ E

[∫ T

t

〈v0
s(x)(h(x, Zε,xs )− h(x)), d

←−
B s〉

∣∣∣∣∣FBt,T
]

+ E

[∫ T

t

〈α(σ(x, Zε,xs )− σ(x))∗∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]
.

(3.6.2)

Then we take the p-th moment, and separate terms on the right side of the equation by Hölder’s inequality

to get

E [|θt|p] . E

[∣∣∣∣∣E
[∫ T

t

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

(3.6.3)

+ E

[∣∣∣∣∣E
[∫ T

t

〈v0
s(x)(h(x, Zε,xs )− h(x)), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

(3.6.4)

+ E

[∣∣∣∣∣E
[∫ T

t

〈α(σ(x, Zε,xs )− σ(x))∗∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]
. (3.6.5)

The first term, Eq. 3.6.3, has an integrand that can be written as

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x) =

m∑
i=1

(b− b)i
∂

∂xi
v0
s(x, Zε,xs ) +

1

2

m∑
i,j=1

(a− a)ij
∂2

∂xi∂xj
v0
s(x, Zε,xs ),

which shows that this term is a summation of terms that fit the conditions of Lemma 3.5.9 (i.e., a centered

function driven by Zε,x and multiplied with a term that has the correct bounds and measurability properties)

and therefore we get for some q0 > 0 the following estimate for this term

E

[∣∣∣∣∣E
[∫ T

t

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. ε2p(1 + |z|q0)
∑

1≤|β|≤2

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] . (3.6.6)

The second term, Eq. 3.6.4, fits the assumptions of Lemma 3.5.10, and therefore we get for some q1 > 0

the following estimate for this term

E

[∣∣∣∣∣E
[∫ T

t

〈v0
s(x)(h(x, Zε,xs )− h(x)), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. εp(1 + |z|q1)E
[

sup
t≤s≤T

∣∣v0
s(x)

∣∣p] . (3.6.7)

Unlike the time integral term, we only get εp for this estimate because of the application of the Burkholder-

Davis-Gundy inequality in the proof of Lemma 3.5.10.

Lemma 3.5.10 also covers the case where the integrand of the stochastic integral is a matrix-vector product,
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as occurs in Eq. 3.6.5. Because each entry in Eq. 3.6.5 is centered and v0 meets the required conditions of

Lemma 3.5.10, we get for some q2 > 0 the following estimate

E

[∣∣∣∣∣E
[∫ T

t

〈α(σ(x, Zε,xs )− σ(x))∗∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. εp(1 + |z|q2)
∑
|β|=1

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] . (3.6.8)

Collecting the estimates from Eqs. 3.6.6, 3.6.7, and 3.6.8, we get for some q3 > 0 the following estimate

for the BDSDE solution,

E [|θt|p] . εp(1 + |z|q3)
∑
|β|≤2

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] . (3.6.9)

We will also need estimates of the first and second order derivatives of ψ in x for estimating the remainder

term R in Lemma 3.6.3 (see for instance Eq. 3.3.3). Therefore consider taking a first order derivative of Eq.

3.6.2, and then taking the p-th moment, and separating terms on the right side of the equation by Hölder’s

inequality,

E
[∣∣∣∣ ∂∂xk θt

∣∣∣∣p] . E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

(3.6.10)

+ E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

〈v0
s(x)(h(x, Zε,xs )− h(x)), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

(3.6.11)

+ E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

〈α(σ(x, Zε,xs )− σ(x))∗∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]
. (3.6.12)

Just as we dealt with Eq. 3.6.3 by first expanding the difference of the generators we can do the same for

Eq. 3.6.10 to get

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

.
∑

1≤|β|≤2

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

ψβ(x, Zε,xs )Dβ
xv

0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]
,

where ψβ is either an entry of b− b or 1
2 (a− a), and hence centered. Now following the same arguments as in
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the proof of Lemma 3.5.9, we are able to get for any multiindex 1 ≤ |β| ≤ 2,

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

ψβ(x, Zε,xs )Dβ
xv

0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

= E

[∣∣∣∣∣ ∂∂xk
∫ T

t

E
[
ψβ(x, Zε,xs )

]
Dβ
xv

0
s(x)ds

∣∣∣∣∣
p]

= E

[∣∣∣∣∣ ∂∂xk
∫ T

t

TF,x(s−t)/ε2(ψβ(x, ·))(z)Dβ
xv

0
s(x)ds

∣∣∣∣∣
p]
.

Distributing the derivative inside the time integral now gives (ignoring the p-th power and expectation for

clarity in the next argument)

∣∣∣∣∣ ∂∂xk
∫ T

t

TF,x(s−t)/ε2(ψβ(x, ·))(z)Dβ
xv

0
s(x)ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

t

∂

∂xk
TF,x(s−t)/ε2(ψβ(x, ·))(z)Dβ

xv
0
s(x)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

t

TF,x(s−t)/ε2(ψβ(x, ·))(z) ∂

∂xk
Dβ
xv

0
s(x)ds

∣∣∣∣∣ .
Estimates for both terms are now achieved by applying the procedure in the proof of Lemma 3.5.9 starting

from Eq. 3.5.1 onwards (and using the fact that Lemma 3.5.7 gives bounds for the derivative of the semigroup)

to get for some q4 > 0

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

[
GS(x, Zε,xs )− GS(x)

]
v0
s(x)ds

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. ε2p(1 + |z|q4)
∑

1≤|β|≤3

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] . (3.6.13)

Turning our attention now to Eq. 3.6.11, we follow the procedure of Lemma 3.5.10 to interchange the

conditional expectation and stochastic integration, and then because of HOk+1,l+1, we can interchange

ordinary differentiation and stochastic integration [Kar83], and distribute the derivative to get

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

〈v0
s(x)(h(x, Zε,xs )− h(x)), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. E

[∣∣∣∣∣
∫ T

t

〈 ∂
∂xk

v0
s(x)TF,x(s−t)/ε2((h− h)(x, ·))(z), d

←−
B s〉

∣∣∣∣∣
p]

+ E

[∣∣∣∣∣
∫ T

t

〈v0
s(x)

∂

∂xk
TF,x(s−t)/ε2((h− h)(x, ·))(z), d

←−
B s〉

∣∣∣∣∣
p]
.

Estimates for both terms on the right side of the equation now follow from the same arguments in the proof

of Lemma 3.5.10, starting from the application of the Burkholder-Davis-Gundy inequality (and again using
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the fact that Lemma 3.5.7 gives bounds for the derivative of the semigroup), to yield for some q5 > 0

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

〈v0
s(x)(h(x, Zε,xs )− h(x)), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. εp(1 + |z|q5)
∑
|β|≤1

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] . (3.6.14)

The last term to address is Eq. 3.6.12. Just as we did when handling Eq. 3.6.11, we follow the procedure

of Lemma 3.5.10 to interchange the conditional expectation and stochastic integration, and then because

of HOk+1,l+1 interchange ordinary differentiation and stochastic integration [Kar83], and distribute the

derivative to get

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

〈α(σ(x, Zε,xs )− σ(x))∗∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. E

[∣∣∣∣∣
∫ T

t

〈 ∂
∂xk

TF,x(s−t)/ε2(α(σ − σ)∗(x, ·))(z)∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣
p]

+ E

[∣∣∣∣∣
∫ T

t

〈TF,x(s−t)/ε2(α(σ − σ)∗(x, ·))(z) ∂

∂xk
∇xv0

s(x), d
←−
B s〉

∣∣∣∣∣
p]
.

Estimates for both terms on the right side of the equation now follow from the same arguments in the proof

of Lemma 3.5.10, starting from the application of the Burkholder-Davis-Gundy inequality (and again using

the fact that Lemma 3.5.7 gives bounds for the derivative of the semigroup), to yield for some q6 > 0

E

[∣∣∣∣∣ ∂∂xkE
[∫ T

t

〈α(σ(x, Zε,xs )− σ(x))∗∇xv0
s(x), d

←−
B s〉

∣∣∣∣∣FBt,T
]∣∣∣∣∣
p]

. εp(1 + |z|q6)
∑

1≤|β|≤2

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] . (3.6.15)

Collecting the estimates from Eqs. 3.6.13, 3.6.14, and 3.6.15 then yields for some q7 > 0

E
[∣∣∣∣ ∂∂xk θt

∣∣∣∣p] . εp(1 + |z|q7)
∑
|β|≤3

E
[

sup
t≤s≤T

∣∣Dβ
xv

0
s(x)

∣∣p] .
The procedure to take higher-order derivatives is the same as that for the first order derivatives (simply

involving more terms), and therefore taking the supremum of the estimates of these derivatives over [0, T ]
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and summing the terms, we get for some q > 0

∑
|β|≤k−1

sup
0≤t≤T

E
[∣∣Dβ

xθt
∣∣p] . εp(1 + |z|q)

∑
|β|≤k+1

E
[

sup
0≤t≤T

∣∣Dβ
xv

0
t (x)

∣∣p] .

Lemma 3.6.3

Let 3 ≤ k, l ∈ N and assume HF k,l, HSk,l, σ ∈ Ck+1,l+1
b , and HOk+1,l+1. Let ψ ∈ C0,k+2,l([0, T ]× Rm ×

Rn;R) and assume that all its partial derivatives up to order (0, k + 2, l) are in PT (Rm × Rn;R). Then for

any p > 2, we have that for any (x, z) ∈ Rm × Rn, ε ∈ (0, 1), and t ∈ [0, T ],

E [|Rt(x, z)|p] .
∑
|j|≤2

∫ T

t

E
[
E
[
|Dj

xψs(x
′, z′)|p

]
(x′,z′)=(X

ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds.

Proof. Rt(x, z) solves the following BSPDE

−dRt = (GεRt + GSψt)dt+ 〈(ψt +Rt)h, d
←−
B t〉+ 〈ασ∗∇x(ψt +Rt), d

←−
B t〉, RT = 0. (3.6.16)

Existence of the solution R and its derivatives as well as the polynomial growth all follow from Lemma 3.4.1.

The parabolic condition of Lemma 3.4.1 holds because I − α∗α � 0, where I is the identity matrix. From

Lemma 3.4.2, the solution, Rt(x, z), has a representation in terms of a FBDSDE, Rt(x, z) = θt,x,zt . Where θt

is the first component of the tuple of processes (θs, γ
ε
s, ηs) satisfying the BDSDE

−dθt,x,zs = GSψs(Xε;(t,x)
s , Zε;(t,z)s )ds

+ 〈ψsh(Xε;(t,x)
s , Zε;(t,z)s ), d

←−
B s〉+ 〈θt,x,zs h(Xε;(t,x)

s , Zε;(t,z)s ), d
←−
B s〉

+ 〈ασ∗∇xψs(Xε;(t,x)
s , Zε;(t,z)s ), d

←−
B s〉+ 〈αηt,x,zs , d

←−
B s〉

− 〈ηt,x,zs , dWs〉 − 〈γε;t,x,zs , dVs〉,

θt,x,zT = 0,

(3.6.17)

48



and (X
ε;(t,x)
s , Z

ε;(t,z)
s ) is a joint diffusion process satisfying the SDEs

dXε;(t,x)
s = b(Xε;(t,x)

s , Zε;(t,z)s )ds+ σ(Xε;(t,x)
s , Zε;(t,z)s )dWs, s ≥ t,

Xε;(t,x)
s = x, s ≤ t,

dZε;(t,z)s =
1

ε
f(Xε;(t,x)

s , Zε;(t,z)s )ds+
1√
ε
g(Xε;(t,x)

s , Zε;(t,z)s )dVs, s ≥ t,

Zε;(t,z)s = z, s ≤ t,

where we choose (W,V ) and B to be independent standard Brownian motions. This is necessary when

working with a stochastic representation of Eq. 3.6.16. The second and third components of the tuple

(θt,x,zt , γ
ε;(t,x,z)
t , ηt,x,zt ), have representations as

γ
ε;(t,x,z)
t =

1

ε
g∗∇zRt(x, z) and ηt,x,zt = σ∗∇xRt(x, z).

Let A be the integrand for the backward stochastic integral in Eq. 3.6.17; it takes the following definition

A = ψsh(Xε;(t,x)
s , Zε;(t,z)s ) + θt,x,zs h(Xε;(t,x)

s , Zε;(t,z)s ) + ασ∗∇xψs(Xε;(t,x)
s , Zε;(t,z)s ) + αηt,x,zs ,

or stripping function arguments and superscripts,

A = ψsh+ θsh+ ασ∗∇xψs + αηs.

We now consider the p-th moment of θt, which is (see for instance Corollary A.2.1, the multidimensional case

is given in Lemma A.2.1),

E [|θt|p] =

∫ T

t

E
[
p|θs|p−2θsGSψs

]
ds+

p(p− 1)

2

∫ T

t

E
[
|θs|p−2|A|2

]
ds

− p(p− 1)

2

∫ T

t

E
[
|θs|p−2|ηs|2

]
ds− p(p− 1)

2

∫ T

t

E
[
|θs|p−2|γs|2

]
ds.

(3.6.18)

Using the fact that θ, ψ are real-valued functions, and b, σ ∈ Ck,lb , applying Young’s inequality to the first

term on the right side of Eq. 3.6.18 yields,

∫ T

t

E
[
p|θs|p−2θsGSψs

]
ds ≤ p

2

∫ T

t

E [|θs|p] ds+
p

2

∫ T

t

E
[
|θs|p−2|GSψs|2

]
ds.

Now applying Hölder’s inequality, with p′ = p/(p− 2) > 1 and q′ = p/2 > 1 (as we have assumed p > 2), and
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then applying Young’s inequality (again with p′ and q′), the last term becomes,

p

2

∫ T

t

E
[
|θs|p−2|GSψs|2

]
ds ≤ p

2

(∫ T

t

E [|θs|p] ds

)1/p′ (∫ T

t

E
[
|GSψs|2q

′
]
ds

)1/q′

≤ p

2p′

∫ T

t

E [|θs|p] ds+
p

2q′

∫ T

t

E
[
|GSψs|2q

′
]
ds

=
p− 2

2

∫ T

t

E [|θs|p] ds+

∫ T

t

E [|GSψs|p] ds.

(3.6.19)

Application of Hölder’s inequality and the use of the boundedness of b and a, then the tower property of

conditional expectation, and lastly the Markov property of (Xε, Zε) gives the following bound for the last

term on the right side of Eq. 3.6.19,

∫ T

t

E [|GSψs|p] ds .
∫ T

t

∑
|j|≤2

E
[∣∣∣Dj

xψ(Xε;(t,x)
s , Zε;(t,z)s )

∣∣∣p] ds
=

∫ T

t

∑
|j|≤2

E
[
E
[∣∣∣Dj

xψ(Xε;(t,x)
s , Zε;(t,z)s )

∣∣∣p ∣∣∣FWs ∨ FVs ]] ds
=

∫ T

t

∑
|j|≤2

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds.

Therefore the first term on the right side of Eq. 3.6.18 is bounded by,

∫ T

t

E
[
p|θs|p−2θsGSψs

]
ds . (p− 1)

∫ T

t

E [|θs|p] ds

+

∫ T

t

∑
|j|≤2

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds.

(3.6.20)

Now addressing the second term on the right side of Eq. 3.6.18, expanding the inner product |A|2 = 〈A,A〉

and separating terms using Young’s inequality with values λ1, . . . , λ6 > 0 to be chosen later, we get

〈A,A〉 ≤
(

1 +
1

λ1
+

1

λ2
+

1

λ3

)
|ψsh|2 +

(
1 + λ1 +

1

λ4
+

1

λ5

)
|θsh|2

+

(
1 + λ2 + λ4 +

1

λ6

)
|ασ∗∇xψs|2 + (1 + λ3 + λ5 + λ6) |αηs|2,

50



Therefore the second term on the right side of Eq. 3.6.18 is bounded by

p(p− 1)

2

∫ T

t

E
[
|θs|p−2|A|2

]
ds ≤

(
1 +

1

λ1
+

1

λ2
+

1

λ3

)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|ψsh|2

]
ds (3.6.21)

+

(
1 + λ1 +

1

λ4
+

1

λ5

)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|θsh|2

]
ds (3.6.22)

+

(
1 + λ2 + λ4 +

1

λ6

)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|ασ∗∇xψs|2

]
ds (3.6.23)

+ (1 + λ3 + λ5 + λ6)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|αηs|2

]
ds. (3.6.24)

We now consider pairing the term given by Eq. 3.6.24 and the third term on the right side of Eq. 3.6.18,

(1 + λ3 + λ5 + λ6)︸ ︷︷ ︸
≡Λ

p(p− 1)

2

∫ T

t

E
[
|θs|p−2|αηs|2

]
ds− p(p− 1)

2

∫ T

t

E
[
|θs|p−2|ηs|2

]
ds

=
p(p− 1)

2

∫ T

t

E
[
|θs|p−2 (Λη∗sα

∗αηs − η∗s Id ηs)
]
ds

=
p(p− 1)

2

∫ T

t

E
[
|θs|p−2 (η∗s (Λα∗α− Id) ηs)

]
ds.

(3.6.25)

The matrix α∗α− Id ≺ 0 is constant and we can choose λ3, λ5, λ6 > 0, small enough such that Λα∗α− Id ≺ 0.

Turning our attention to the three terms of Eq. 3.6.21, 3.6.22, and 3.6.23, we use the same technique as

in Eq. 3.6.19 with |h|∞ <∞ on the first term (Eq. 3.6.21) to get

(
1 +

1

λ1
+

1

λ2
+

1

λ3

)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|ψsh|2

]
ds .

∫ T

t

E
[
|θs|p−2|ψsh|2

]
ds

.
∫ T

t

E [|θs|p] ds+

∫ T

t

∑
|j|≤0

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds. (3.6.26)

Similarly, again using |h|∞ <∞, Eq. 3.6.22 is bounded by

(
1 + λ1 +

1

λ4
+

1

λ5

)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|θsh|2

]
ds .

∫ T

t

E [|θs|p] ds. (3.6.27)

And now Eq. 3.6.23 using |σ|∞ <∞,

(
1 + λ2 + λ4 +

1

λ6

)
p(p− 1)

2

∫ T

t

E
[
|θs|p−2|ασ∗∇xψs|2

]
ds

.
∫ T

t

E [|θs|p] ds+

∫ T

t

∑
|j|≤1

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds. (3.6.28)
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Collecting the bounds of Eqs. 3.6.20, 3.6.25, 3.6.26, 3.6.27, and 3.6.28 we get for Eq. 3.6.18,

E [|θt|p] .
∫ T

t

E [|θs|p] ds+

∫ T

t

∑
|j|≤2

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds

+
p(p− 1)

2

∫ T

t

E
[
|θs|p−2 (η∗s (Λα∗α− Id) ηs)

]
ds

− p(p− 1)

2

∫ T

t

E
[
|θs|p−2|γs|2

]
ds.

Rearranging this equation gives

E [|θt|p]−
p(p− 1)

2

∫ T

t

E
[
|θs|p−2 (η∗s (Λα∗α− Id) ηs)

]
ds+

p(p− 1)

2

∫ T

t

E
[
|θs|p−2|γs|2

]
ds

.
∫ T

t

E [|θs|p] ds+

∫ T

t

∑
|j|≤2

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds.

From the fact that Λα∗α− Id ≺ 0, the subtraction of the second term on the left side of the equation is a

non-negative value. The third term on the left side of the equation is also non-negative, and therefore we can

drop them from the inequality to get

E [|θt|p] .
∫ T

t

E [|θs|p] ds+

∫ T

t

∑
|j|≤2

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds,

Now applying Grönwall’s lemma yields,

E [|θt|p] .
∫ T

t

∑
|j|≤2

E
[
E
[∣∣Dj

xψ(x′, z′)
∣∣p]

(x′,z′)=(X
ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds.

Using the fact that the solution to the BDSDE provides the classical solution to the BSPDE, Rt(x, z) = θt,x,zt ,

we get the desired result.

3.6.2 Estimates of Dual and Filter Error

We now complete the final estimates that lead to the proof of Theorem 3.2.1.

Lemma 3.6.4

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , HO8,4, and ϕ ∈ C7
b (Rm;R). Then for every p ≥ 1 there exists

q > 0, such that

sup
0≤t≤T

EPε
[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ

t (x)
∣∣∣p] . εp(1 + |x|q + |z|q)|ϕ|p4,∞.
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Proof. First we collect the conditions in reverse order of our main estimates.

(i) For the solution of R in Lemma 3.6.3, we require HF 3,3, HS3,3, σ ∈ C4,4
b , HO4,4, and ψ ∈ C0,5,3. The

polynomial growth will be satisfied.

(ii) For the solution of ψ ∈ C0,5,3 in Lemma 3.6.2, we require HF 6,4, HS6,4, HO6,4, and v0 ∈ C0,6.

The conditions on σ, a, b, and h will already be covered by the stronger conditions just stated. The

polynomial growth will also be satisfied. And we require Hf and Hg.

(iii) For the solution of v0 ∈ C0,6 in Lemma 3.6.1, we require b, a ∈ C7
b , that h, σ ∈ C8

b , and ϕ ∈ C7
b .

(iv) Using Lemma 3.5.8, for h, σ ∈ C8
b requires HF 8,3, HO8,1, and σ ∈ C8,1

b . And this also implies a ∈ C7
b .

For b ∈ C7
b , we need b ∈ C7,1

b . We also require Hf and Hg.

(v) Therefore the sufficient conditions are Hf , Hg, HF
8,4, b ∈ C7,4

b , σ ∈ C8,4
b , HO8,4, and ϕ ∈ C7

b .

Now we show the inequality result. Let p > 2. Because vε = v0 + ψ +R, we have

sup
0≤t≤T

EPε
[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ

t (x)
∣∣∣p] = sup

0≤t≤T
EPε [|ψt(x, z) +Rt(x, z)|p]

. sup
0≤t≤T

EPε [|ψt(x, z)|p] + sup
0≤t≤T

EPε [|Rt(x, z)|p] . (3.6.29)

Using Lemma 3.6.1 with Lemma 3.6.2 we have that the first term is bounded for q1, q2 > 0 by

sup
0≤t≤T

EPε [|ψt(x, z)|p] . εp(1 + |z|q1)
∑
|β|≤2

EPε

[
sup

0≤t≤T
|Dβ

xv
0
t (x)|p

]

. εp(1 + |z|q1)(1 + |x|q2)|ϕ|p2,∞. (3.6.30)

First making use of Lemma 3.6.2 in Lemma 3.6.3 we have that

EPε [|Rt(x, z)|p] .
∑
|j|≤2

∫ T

t

EPε
[
EPε

[
|Dj

xψs(x
′, z′)|p

]
(x′,z′)=(X

ε;(t,x)
s ,Z

ε;(t,z)
s )

]
ds

. EPε

∑
|j|≤2

sup
t≤s≤T

EPε
[
|Dj

xψs(x
′, z′)|p

]
(x′,z′)=(X

ε;(t,x)
s ,Z

ε;(t,z)
s )


. EPε

∑
|j|≤2

sup
0≤s≤T

EPε
[
|Dj

xψs(x
′, z′)|p

]
(x′,z′)=(X

ε;(0,x)
s ,Z

ε;(0,z)
s )

 .
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Now using the estimate of Lemma 3.6.1, we have for some q3, q4, q5, q6 > 0,

EPε [|Rt(x, z)|p] . εp sup
0≤t≤T

EPε

(1 + |Zεt |q3)
∑
|β|≤4

EPε

[
sup

0≤s≤T
|Dβ

xv
0
s(Xε

t )|p
] ∣∣∣∣∣∣ (Xε

0, Z
ε
0) = (x, z)


. εp sup

0≤t≤T
EPε [(1 + |Zεt |q3)(1 + |Xε

t |q4) | (Xε
0, Z

ε
0) = (x, z)] |ϕ|p4,∞

. εp sup
0≤t≤T

(1 + EPε [|Xε
t |q5 + |Zεt |q6 | (Xε

0, Z
ε
0) = (x, z)]) |ϕ|p4,∞.

The moment bounds for the processes (Xε, Zε), given in Lemmas 3.5.1 and 3.5.2, now gives

sup
0≤t≤T

EPε [|Rt(x, z)|p] . εp(1 + |x|q7 + |z|q7)|ϕ|p4,∞, (3.6.31)

for some q7 > 0. And therefore putting together the estimates of Eq. 3.6.30 and Eq. 3.6.31, and choosing a

different q > 0, yields the desired result for the case p > 2. For the case p ∈ [1, 2], we use Hölder’s inequality

with r > 2 to get the desired result,

EPε
[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ

t (x)
∣∣∣p] ≤ EPε

[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ
t (x)

∣∣∣rp]1/r . εp(1 + |x|q + |z|q)1/r|ϕ|p4,∞

. εp(1 + |x|q + |z|q)|ϕ|p4,∞,

since (1 + |x|q + |z|q) ≥ 1 and therefore (1 + |x|q + |z|q)1/r ≤ (1 + |x|q + |z|q).

We now show that the moment estimate of the difference of vε and v0 continues to hold under the original

measure Q.

Lemma 3.6.5

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , HO8,4, and ϕ ∈ C7
b (Rm;R). Then for every p ≥ 1 there exists

q > 0, such that

sup
0≤t≤T

EQ

[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ
t (x)

∣∣∣p] . εp(1 + |x|q + |z|q)|ϕ|p4,∞.

Proof. Performing a change of measure from Q to Pε, then an application of the Cauchy-Schwarz inequality,

and usage of Lemma 3.5.3 for the finiteness of the moments of the Radon-Nikodym derivative D̃ε
t yields the
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desired result,

EQ

[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ
t (x)

∣∣∣p] = EPε
[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ

t (x)
∣∣∣p D̃ε

t

]
≤ EPε

[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ
t (x)

∣∣∣2p]1/2

EPε

[(
D̃ε
t

)2
]1/2

. EPε

[∣∣∣vε,T,ϕt (x, z)− v0,T,ϕ
t (x)

∣∣∣2p]1/2

.

Lemma 3.6.6

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , HO8,4, and ϕ ∈ C7
b (Rm;R). Additionally, assume that the

initial distribution Q(Xε0,Z
ε
0) has finite moments of every order. Then for every p ≥ 1 there exists q > 0, such

that

EQ

[∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

∣∣p] . εp|ϕ|p4,∞.

Proof. The proof follows the same inequality relations as given in Section 3.3.1, but now with expectations

under Q. Specifically, we have

EQ

[∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

∣∣p] = EQ

[∣∣∣∣∫ vε,T,ϕ0 (x, z)− v0,T,ϕ
0 (x)Q(Xε0,Z

ε
0)(dx, dz)

∣∣∣∣p]
≤ EQ

[∫ ∣∣∣vε,T,ϕ0 (x, z)− v0,T,ϕ
0 (x)

∣∣∣pQ(Xε0,Z
ε
0)(dx, dz)

]
=

∫
EQ

[∣∣∣vε,T,ϕ0 (x, z)− v0,T,ϕ
0 (x)

∣∣∣p]Q(Xε0,Z
ε
0)(dx, dz).

And now by Lemma 3.6.5 and finite moments of every order for the initial distribution, we get the desired

result

EQ

[∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

∣∣p] ≤ εp|ϕ|p4,∞ ∫ (1 + |x|q + |z|q)Q(Xε0,Z
ε
0)(dx, dz) . εp|ϕ|p4,∞.

Lemma 3.6.7

Let p ≥ 1 and assume h is bounded. Then

sup
ε∈(0,1]

sup
0≤t≤T

(
EQ
[
|ρε,xt (1)|−p

]
+ EQ

[
|ρ0
t (1)|−p

])
<∞.

Proof. We first show the statement to be true for the term EQ [|ρε,xt (1)|−p]. Using our change of probability
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measure, application of the Cauchy-Schwarz inequality, and Lemma 3.5.3 gives

EQ
[
|ρε,xt (1)|−p

]
= EPε

[
|ρε,xt (1)|−pD̃ε

t

]
≤ EPε

[
|ρε,xt (1)|−2p

]1/2 EPε
[
|D̃ε

t |2
]1/2

. EPε
[
|ρε,xt (1)|−2p

]1/2
.

Now from the definition of ρε,xt (1) and applications of Jensen’s inequality (x 7→ x−2p is convex on R+), then

the tower property of conditional expectation yields

EPε
[
|ρε,xt (1)|−2p

]
= EPε

[∣∣∣EPε
[
D̃ε
t

∣∣∣Yεt ]∣∣∣−2p
]
≤ EPε

[∣∣∣D̃ε
t

∣∣∣−2p
]
.

Recalling that Dε
t =

(
D̃ε
t

)−1

, again using a change of measure, and lastly the finiteness of the moments of

Dε
t under Q (which follows from the same arguments as given in Lemma 3.5.3), gives the desired result

EPε

[∣∣∣D̃ε
t

∣∣∣−2p
]

= EPε
[
|Dε

t |
2p
]

= EQ

[
|Dε

t |
2p+1

]
≤ ∞. (3.6.32)

The proof of supε∈(0,1] sup0≤t≤T EQ
[
|ρ0
t (1)|−p

]
< ∞ is identical, but now making use of Lemma 3.5.4.

Lemma 3.6.8

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , HO8,4, and ϕ ∈ C7
b (Rm;R). Additionally, assume that the

initial distribution Q(Xε0,Z
ε
0) has finite moments of every order. Then for every p ≥ 1 there exists q > 0, such

that

EQ

[∣∣πε,xT (ϕ)− π0
T (ϕ)

∣∣p] . εp|ϕ|p4,∞.

Proof. We start by showing the following simple relation

πε,xT (ϕ)− π0
T (ϕ) = πε,xT (ϕ)− ρ0

T (ϕ)

ρ0
T (1)

= πε,xT (ϕ)
ρ0
T (1)

ρ0
T (1)

− ρ0
T (ϕ)

ρ0
T (1)

+
ρε,xT (ϕ)

ρ0
T (1)

−
ρε,xT (ϕ)

ρ0
T (1)

ρε,xT (1)

ρε,xT (1)

= πε,xT (ϕ)
ρ0
T (1)

ρ0
T (1)

− ρ0
T (ϕ)

ρ0
T (1)

+
ρε,xT (ϕ)

ρ0
T (1)

− πε,xT (ϕ)
ρε,xT (1)

ρ0
T (1)

=
ρε,xT (ϕ)− ρ0

T (ϕ)

ρ0
T (1)

− πε,xT (ϕ)
ρε,xT (1)− ρ0

T (1)

ρ0
T (1)

.

Therefore, using this manipulation, the fact that πε,x is Q-a.s. a probability measure, and an application of
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the Cauchy-Schwarz inequality, we have

EQ

[∣∣πε,xT (ϕ)− π0
T (ϕ)

∣∣p] = EQ

[∣∣∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

ρ0
T (1)

− πε,xT (ϕ)
ρε,xT (1)− ρ0

T (1)

ρ0
T (1)

∣∣∣∣p]
. EQ

[∣∣∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

ρ0
T (1)

∣∣∣∣p]+ |ϕ|p∞EQ

[∣∣∣∣ρε,xT (1)− ρ0
T (1)

ρ0
T (1)

∣∣∣∣p]
≤ EQ

[∣∣ρ0
T (1)

∣∣−2p
]1/2(

EQ

[∣∣ρε,xT (ϕ)− ρ0
T (ϕ)

∣∣2p]1/2 + |ϕ|p∞EQ

[∣∣ρε,xT (1)− ρ0
T (1)

∣∣2p]1/2) .
Now using Lemma 3.6.7 for the bound on EQ

[∣∣ρ0
T (1)

∣∣−2p
]

and Lemma 3.6.6 for the other terms, gives the

desired result.

Observing that the bound in the result of Lemma 3.6.8 only depends on |ϕ|p4,∞, even though the assumption

requires ϕ ∈ C7
b , encourages us to instead approximate a fixed test function ϕ ∈ C4

b by a sequence (ϕn ∈ C7
b )

in the | · |4,∞-norm, and take advantage of the fact that πε,xT and π0
T are Q-a.s. equal to probability measures.

Therefore we can relax this condition in Lemma 3.6.8 slightly with the following corollary.

Corollary 3.6.1

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , and HO8,4. Additionally, assume that the initial distribution

Q(Xε0,Z
ε
0) has finite moments of every order. Then for any p ≥ 1 we have that for every ϕ ∈ C4

b (Rm;R),

EQ

[∣∣πε,xT (ϕ)− π0
T (ϕ)

∣∣p] . εp|ϕ|p4,∞.

The next lemma shows that indeed we have weak convergence of πε,x to π0. First recall that a sequence

of functions (ϕi)i∈N is called convergence determining for the topology of weak convergence of probability

measures on Rm, if for a sequence (µn) of probability measures, and µ another probability measure, we have

lim
n→∞

µn(ϕi) = µ(ϕi),

for every i ∈ N, then µn converges weakly to µ.

Lemma 3.6.9

Assume Hf , Hg, HF 8,4, b ∈ C7,4
b , σ ∈ C8,4

b , and HO8,4. Additionally, assume that the initial distribution

Q(Xε0,Z
ε
0) has finite moments of every order. Then there exists a metric d on the space of probability measures
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on Rm that generates the topology of weak convergence, such that

EQ
[
d(πε,xT , π0

T )
]
. ε.

Proof. By [EK08, Theorem 3.4.5], given a sequence of convergence determining functions (ϕi)i∈N for the

topology of weak convergence of probability measures on Rm, one can define the following metric d on the

space of probability measures,

d(ν, µ) = d(ϕi)(ν, µ) =

∞∑
i=1

|ν(ϕi)− µ(ϕi)|
2i

,

that generates the topology of weak convergence. All that remains is to identify a sequence of convergence

determining functions. This will be satisfied for a countable algebra of functions (ϕi)i∈N that strongly

separates points in Rm. That is, for every x ∈ Rm and δ > 0, there exists i ∈ N, such that

inf
{y : |x−y|>δ}

|ϕi(x)− ϕi(y)| > 0.

We require these functions to be C4
b . The following collection of functions satisfies all these conditions and

therefore completes the proof,

{
exp

(
−

n∑
i=1

qi(x− xi)2

)∣∣∣∣∣n ∈ N, qi ∈ Q+, xj ∈ Qm
}
.

3.7 Remarks on Intermediate Timescale

In this section, we provide a brief overview of the difficulties encountered in the approach of this chapter

when applied to the broader multiple timescale correlated system that will be dealt with in Chapter 4. A

different approach will be needed in the next chapter, and we will not be able to get a rate of convergence.

But we can still show that the x-marginal filter converges in probability to the averaged filter.

Specifically, the averaged SDE in Chapter 4 is more complicated due to the intermediate scale forcing

term bI. Without jumping too far ahead in notation, the generator of X0 will become G† = GS + G̃. Let us

consider the non-correlated case for simplicity and recall the notation Gε and GI from Chapter 2.
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The dual equation for vε is then given by,

−dvεt =

(
1

ε2
GF +

1

ε
GI + GS

)
vεtdt+ 〈vεth, d

←−
B t〉, vεT = ϕ,

and the process v0 will be given by,

−dv0
t = (GS + G̃)v0

t dt+ 〈v0
t h, d

←−
B t〉, v0

T = ϕ.

Because of the intermediate timescale, we need to consider a larger expansion of vε,

vεt (x, z) = v0
t (x) + u1(x, z) + ψt(x, z) +Rt(x, z).

A sensible splitting of terms (having considered some ideas on perturbation expansions from the text of

Pavliotis and Stuart [PS08], this was deemed the best out of a few arrangements) is then,

−dv0
t = (GS + G̃)v0

t dt+ 〈v0
t h, d

←−
B t〉, v0

T = ϕ,

−du1
t =

1

ε2
GFu1

tdt+
1

ε
GIv0

t dt, ψT = 0,

−dψt =
1

ε2
GFψtdt+ (GS − GS)v0

t dt+

(
1

ε
GIu1

t − G̃v0
t

)
dt, ψT = 0,

−dRt = GεRt +

(
1

ε
GI + GS

)
ψtdt+ GSu1

tdt+ 〈v0
t (h− h), d

←−
B t〉+ 〈(u1

t + ψt +Rt)h, d
←−
B t〉, RT = 0.

From the first equation, we get the standard bound from Lemma 3.4.1. One is then able to get the term

E|u1|p bounded by εp (not getting ε2p due to the ε−1GIu0
t forcing). Difficulty then arises with the term ψ,

since looking forward to the R term, where application of Grönwall’s lemma would again be desired, would

require having ψ bounded by ε(1+δ) for some δ > 0. This is an issue with the second forcing term in ψ.

Additionally, the centered term (h− h) on the right side of the R equation will require a technique that must

be used in Chapter 4 and yields at best a logarithmic rate of convergence.
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Chapter 4

Approximation of the Filter Equation
for Multiple Timescale Nonlinear
Systems with Correlated Noise

In this chapter, we consider a problem of filter convergence to a reduced order filter when the signal and

observation processes take the following form,

dXε
t =

[
b(Xε

t , Z
ε
t ) +

1

ε
bI(X

ε
t , Z

ε
t )

]
dt+ σ(Xε

t , Z
ε
t )dWt,

dZεt =
1

ε2
f(Xε

t , Z
ε
t )dt+

1

ε
g(Xε

t , Z
ε
t )dVt,

dY εt = h(Xε
t , Z

ε
t )dt+ αdWt + γdUt, Y ε0 = 0 ∈ Rd,

(4.0.1)

where b, bI : Rm × Rn → Rm, σ : Rm × Rn → Rm × Rw, f : Rm × Rn → Rn, g : Rm × Rn → Rn × Rv and

h : Rm × Rn → Rd are Borel measurable functions. As before, the presence of Rd×w 3 α 6= 0 indicates

correlation between the observation and slow (coarse-grain) process. And we again assume that the initial

distribution of the signal process (Xε
0, Z

ε
0) at t = 0 is denoted by Q(Xε0,Z

ε
0), is independent of the (W,V,U)

Brownian motion, and to have finite moments of every order.

Besides the literature provided at the start of Chapter 3, we need to mention the work of nonlinear filter

approximation by Kushner [Kus90, Chapter 6]. The approach, or main steps, of showing weak convergence of

the marginalized filter to an averaged filter is similar to that work. Although Kushner [Kus90, Chapter 6]

only considers a two timescale jump-diffusion process. The signal process does not include an intermediate

forcing, as we do here. There is also no consideration of correlation between signal and observation processes

in his work [Kus90, Chapter 6]. In the work by Kushner [Kus90, Chapter 6], the difference of the actual

unnormalized conditional measure and the reduced conditional measure converges to zero in distribution.

Standard results then yield convergence in probability of the fixed time marginals. The method of proof is by

averaging the coefficients of the SDEs for the unnormalized filters and showing that the limits of both filters

satisfy the same SDE, which possess a unique solution.

In our attempt at approaching the broader multiple timescale correlated filtering problem for nonlinear

systems, we have to modify the approach by Kushner [Kus90, Chapter 6]. At this time, it does not appear
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that anyone else has successfully dealt with the broader problem, as addressed in this chapter. For this we

make use of the perturbed test function approach where the correctors are solutions of Poisson equations. We

make use of the sharp results on existence, regularity and growth of the transition densities and semigroups

associated with the process Zx and Poisson equations for the corrector terms from the work by Pardoux

and Veretennikov [PV03]. To show tightness of the measure-valued filtering solutions, we make use the work

by Jakubowski [Jak86] which gives conditions for tightness of probability measures on path spaces with

ranges being completely regular topological spaces. A lemma providing a sufficient condition to one of the

requirements by Jakubowski [Jak86] is also given. The main result of the chapter is the following:

Theorem (Main Result of Chapter)

Recall that πε,x is the x-marginal of the conditional distribution πε and π0 is the conditional distribution for

the averaged filter equation (see for instance Eqs. 2.1.3, 3.0.2, and 4.3.1). Then under the assumptions stated

in Theorem 4.3.1, πε,x → π0 in probability.

We now provide an outline of this chapter. In the next section, Section 4.1, we quickly re-state some

notation from Chapter 3 for convenience and provide a new definition that will be useful for stating results.

Then in Section 4.2, we provide the form of the generator G† for the averaged diffusion process and this

is used in Section 4.3, which states the averaged filtering equations and the main theorem result with full

assumptions detailed. After this, we move to Section 4.4, which provides preliminary estimates which are

needed for the main estimates. The next section, Section 4.5, provides the existence of weak limits of the

probability measure induced by the signed measured-valued process ρε,x − ρ0, as well as the characterization

of this process and the uniqueness of its limit. At the end of Section 4.5, the main result for convergence of

ρε,x − ρ0 is stated alongside a lemma that proves the convergence of πε,x − π0. We close the chapter with

Section 4.6, which points out a correction for [PV03, Theorem 2, p.1171], and hence why the assumptions

needed for Theorem 4.3.1 are not as relaxed as what might first be expected when using the estimates by

Pardoux and Veretennikov [PV03]. The results of this chapter have been made available in the work by

Beeson et al. [BNP20a].

4.1 Notation

Let us recall some notation and definitions from Chapter 3. We use N0 to denote {0, 1, 2, . . .} and N for

{1, 2, . . .}. We use Hf to denote the assumption that there exists a constant C > 0, exponent α > 0 and an
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R > 0 such that for all |z| > R,

sup
x∈Rm

〈f(x, z), z〉 ≤ −C|z|α. (Hf )

Hf is a recurrence condition, which provides the existence of a stationary distribution, µ∞(x), for the process

Zx. We use Hg to denote the assumption that there are 0 < λ ≤ Λ <∞, such that for any (x, z) ∈ Rm ×Rn,

λI � gg∗(x, z) � ΛI, (Hg)

where � is the order relation in the sense of positive semidefinite matrices. Hg is a uniform ellipticity condition,

which provides the uniqueness of the stationary distribution. We will say that a function θ : Rm ×Rn → R is

centered with respect to µ∞(x), if for each x

∫
θ(x, z)µ∞(dz;x) = 0, ∀x ∈ Rm.

Recall the use of the notation k = (k1, . . . , km) ∈ Nm0 for a multiindex with order |k| = k1 + . . .+ km and

define the differential operator

Dk
x =

∂|k|

∂x1
k1 . . . ∂xkmm

.

We will use the notation Hi,j+α to specify the regularity and boundedness of f and gg∗,

f ∈ Ci,j+αb (Rm × Rn;Rn), gg∗ ∈ Ci,j+αb (Rm × Rn;Rn×n), i, j ∈ N, α ∈ (0, 1), (Hi,j+α)

where ϕ(x, z) ∈ Ci,j+αb denotes that ϕ has i bounded derivatives in the x-component, j bounded derivatives

in the z-component, and all derivatives ∂j
′

z ∂
i′

x ϕ for 0 ≤ i′ ≤ i, 0 ≤ j′ ≤ j are α-Hölder continuous in z

uniformly in x.

4.2 Homogenization of Stochastic Differential Equations

In this section, we state the main result on the theory of homogenization of SDEs. The result is that if the

process Zε,x,

dZε,xt =
1

ε2
f(x, Zε,xt )dt+

1

ε
g(x, Zε,xt )dVt, (4.2.1)
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is ergodic with stationary distribution µ∞(x), then under appropriate conditions, in the limit ε → 0 the

process Xε converges in distribution to a Markov process X0 with infinitesimal generator,

G† ≡ GS + G̃,

where

GS(x) ≡
m∑
i=1

bi(x)
∂

∂xi
+

1

2

m∑
i,j=1

aij(x)
∂2

∂xi∂xj
,

b(x) ≡
∫
Rn
b(x, z)µ∞(dz;x),

a(x) ≡
∫
Rn
a(x, z)µ∞(dz;x),

a = σσ∗, and

G̃(x) ≡
m∑
i=1

b̃i(x)
∂

∂xi
+

1

2

m∑
i,j=1

ãij(x)
∂2

∂xi∂xj
,

b̃(x) ≡
∫
Rn

(
∇xG−1

F (−bI)
)
bI(x, z)µ∞(dz;x),

ã(x) ≡
∫
Rn

(
bI ⊗ G−1

F (−bI)
)

(x, z) +
(
G−1
F (−bI)⊗ bI

)
(x, z)µ∞(dz;x),

where G−1
F (−bI) is the solution of a Poisson equation.

4.3 The Averaged Filtering Equation and Main Theorem

We can now define the averaged filter π0, a probability measure-valued process satisfying the following

evolution equation,

π0
t (ϕ) = π0

0(ϕ) +

∫ t

0

π0
s(G†ϕ)ds+

∫ t

0

〈π0
s(ϕh+ ασ∗∇xϕ)− π0

s(ϕ)π0
s(h), dY εs − π0

s(h)ds〉,

π0
0(ϕ) = EQ

[
ϕ(X0

0 )
]
.

(4.3.1)

The definitions of h and σ are

h(x) ≡
∫
Rn
h(x, z)µ∞(dz;x), σ(x) ≡

∫
Rn
σ(x, z)µ∞(dz;x).

We now give the main result of the chapter with full conditions.
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Theorem 4.3.1

Assume that f and g satisfy Hf and Hg, that bI is centered with respect to µ∞(x) for each x and that

Q(Xε0,Z
ε
0) has finite moments of every order. Additionally, assume either a. high regularity conditions or b.

low regularity with uniform ellipticity:

a. H4,2+α holds for α ∈ (0, 1); for each z, b(·, z), σ(·, z) ∈ C3, and bI(·, z) ∈ C4; that b and bI are Lipschitz

in z, and σ is globally Lipschitz in z; that b, bI, σ satisfy the growth conditions

|b(x, z)|+ |bI(x, z)|+ |σσ∗(x, z)| ≤ C(1 + |z|)β ,
2∑
|k|=1

∣∣Dk
xb(x, z)

∣∣+
∣∣Dk

xσσ
∗(x, z)

∣∣ ≤ C(1 + |z|q),

3∑
|k|=1

∣∣Dk
xbI(x, z)

∣∣ ≤ C(1 + |z|q),

for some β < −2 and q > 0; that h is bounded in (x, z), h(·, z) ∈ C3 for each z, and h is globally Lipschitz

in z.

b. a+ ã � 0 uniformly in x; H2,2+α holds for α ∈ (0, 1); for each z, b(·, z), bI(·, z), σ(·, z) ∈ C2; that b and bI

are Lipschitz in z, and σ is globally Lipschitz in z; that b, bI, σ satisfy the growth conditions

|b(x, z)|+ |bI(x, z)|+ |σσ∗(x, z)| ≤ C(1 + |z|)β ,
2∑
|k|=1

∣∣Dk
xb(x, z)

∣∣+
∣∣Dk

xbI(x, z)
∣∣+
∣∣Dk

xσσ
∗(x, z)

∣∣ ≤ C(1 + |z|q),

for some β < −2 and q > 0; h is bounded in (x, z), that h is globally Lipschitz in (x, z). If a � 0, which

implies a+ ã � 0, then the Lipschitz condition in z for b, bI can be relaxed to α-Hölder continuity.

Then there exists a metric d on C([0, T ];P (Rm)), the space of continuous processes from [0, T ] to the space

of probability measures on Rm, that generates the topology of weak convergence, such that πε,x → π0 in

probability.

Proof. From Theorem 4.5.1 and Lemma 4.5.5 we get πε,x − π0 ⇒ 0 as ε → 0. πε,x and π0 are random

variables in the space C([0, T ];P (Rm)). We define a continuous bounded metric d on this space that generates

the topology of weak convergence as follows,

d(µ, ν) = 1 ∧ ( sup
0≤t≤T

d̃(µt, νt)),
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where d̃ is the metric defined in the proof of Lemma 3.6.9 (see [Jak86] for a generalization of this idea for

Skorohod topologies). The metric d̃ is translation invariant and generates the topology of weak convergence

on P (Rm). Therefore d inherits the translation invariant property from d̃. From weak convergence of πε,x−π0

in the space of signed measures and translation invariance of d, we have

lim
ε→0

EQ
[
d(πε,x, π0)

]
= lim
ε→0

EQ
[
d(πε,x − π0, 0)

]
= 0.

And therefore we retrieve convergence in probability,

lim
ε→0

Q
(
d(πε,x, π0) ≥ δ

)
≤ 1

δ
lim
ε→0

EQ
[
d(πε,x, π0)

]
= 0, for each δ > 0.

4.3.1 The Averaged Unnormalized Filtering Equations

As we did in Chapter 3, we now provide the unnormalized filter definitions. When ϕ ∈ C2
b (Rm;R), we

consider the x-marginal,

ρε,xt (ϕ) =

∫
ϕ(x)ρεt(dx, dz).

ρε,x is related to πε,x through the Kallianpur-Striebel relation,

πε,xt (ϕ) =
ρε,xt (ϕ)

ρε,xt (1)
, ∀t ∈ [0,∞), Q,Pε-a.s.

which is easy to see since ρεt(1) = ρε,xt (1).

As we did at the end of Section 3.2, we define the averaged unnormalized filter as the solution of the

following SPDE

ρ0
t (ϕ) = ρ0

0(ϕ) +

∫ t

0

ρ0
s(G†ϕ)ds+

∫ t

0

〈ρ0
s(ϕh+ ασ∗∇xϕ), dY εs 〉,

ρ0
0(ϕ) = EQ

[
ϕ(X0

0 )
]
,

(4.3.2)

where ϕ ∈ C2
b (Rm;R) are test functions. And then by the Kallianpur-Striebel formula we relate the averaged

(normalized) filter π0 to the unnormalized variant,

π0
t (ϕ) =

ρ0
t (ϕ)

ρ0
t (1)

, ∀t ∈ [0, T ], Q,Pε-a.s.
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The uniqueness of ρ0 follows from the same assumptions and proof to be given in Lemma 4.5.4.

We will later show in Lemma 4.5.5 that under appropriate assumptions, weak convergence of ρε,x − ρ0 to

zero will imply weak convergence of πε,x − π0 to zero, and therefore we can focus on showing convergence of

the unnormalized difference for the main analysis.

Representation of the Averaged Unnormalized Conditional Distribution

We now give a representation of ρ0 as a conditional expectation following the approach in Section 3.2.2. The

only difference here is that our SDE must have generator G†. Therefore the following will suffice to give the

correct equation for ρ0,

dX0
t =

[
b(X0

t ) + b̃(X0
t )
]
dt+ ã1/2(X0

t )dW̃t + (a(X0
t )− σσ∗(X0

t ))1/2dŴt + σ(X0
t )dWt, (4.3.3)

where W̃ and Ŵ are new m-dimensional independent Brownian motions, independent of V,W,U under Q as

well as independent of the initial condition QXε0 . All the same considerations as required in Section 3.2.2 are

again required here, only in this chapter we allow for more relaxed conditions on the coefficients. The details

of which are provided in Lemma 4.5.4.

A similar remark as that given in Section 3.2.2 is warranted here. It is as follows:

Remark. An interesting observation regarding Eq. 4.3.3, is that we may have σ = 0, and this implies that

the SDE for the averaged filter may have less correlation than the original system, or even none at all.

Now as we did in Section 3.2.2, we define the process

D̃0
t = exp

(∫ t

0

〈h(X0
s ), dY εs 〉 −

1

2

∫ t

0

∣∣h(X0
s )
∣∣2 ds) ,

and the conditional expectation

ρ0
t (ϕ) = EPε

[
ϕ(X0

t )D̃0
t | Yεt

]
.

4.4 Preliminary Estimates

In this section we provide several preliminary estimates that will be needed for the main analysis. Some

additional comments regarding notation are first introduced and then some assumptions are defined.

As done in Chapter 3, we will use the relation a . b to indicate a ≤ Cb for a constant C > 0 that

is independent of a and b, but that may depend on parameters that are not critical for the bound being
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computed. We will use the notation TF,x for the semigroup of Zx, and denote processes with Zε,x;(s,z) to

represent the process Zε,x started at time s at z ∈ Rn. We will say that a function θ(x, z) is centered with

respect to µ∞ (the family of invariant measures parameterized by x ∈ Rm) if

∫
Rn
θ(x, z)µ(dz;x) = 0, ∀x ∈ Rm.

Let HL denote the assumption that for each K > 0, there exists a constant CK such that for all x, x′ ∈ Rm,

|z| ≤ K:

|b(x, z)− b(x′, z)|+ |bI(x, z)− bI(x′, z)|+ |σ(x, z)− σ(x′, z)| ≤ CK |x− x′|. (HL)

Let HP denote the assumption that there exists K,α, p1, p2 > 0 such that for all (x, z) ∈ Rm × Rn:

|b(x, z)| ≤ K(1 + |x|)(1 + |z|p1), (HP )

|σ(x, z)| =
√

Tr(σσ∗(x, z)) ≤ K(1 + |x|1/2)(1 + |z|p2).

Note that from HP we have |σ(x, z)| . 1 + |x|+ |z|2p2 and hence implies a linear growth in x and polynomial

growth in z. Also from HP , |σσ∗(x, z)| . (1 + |x|2 + |z|4p2).

Let HI denote the assumption that for some K, p > 0, bI satisfies the following growth condition,

∑
|α|≤2

sup
x∈Rm

|Dα
x bI(x, z)| ≤ K(1 + |z|p). (HI)

The next result is from [PV03, p.1172] and provides the result that Xε ⇒ X0 in the limit ε→ 0.

Theorem 4.4.1

Let (Xε, Zε) satisfy the stochastic differential equations of Eq. 4.0.1 with initial conditions (Xε
0, Z

ε
0) = (x, z) ∈

Rm × Rn for each ε ∈ (0, 1). Assume Hf , Hg, H2,2+α for α ∈ (0, 1), HL, and HP . Let bI ∈ C2,α satisfy HI

and be centered with respect to µ∞. Further, assume that bI is centered with respect to µ∞. Then for any

T > 0, the process Xε converges weakly in the limit ε→ 0, to the Markov process X0 with generator G†.

Proof. See remarks in Section 4.6 and [PV03, p.1172].
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4.4.1 Estimates with the Fast Semigroup

Lemma 4.4.1

Assume Hk,l, with k ∈ N0, l ∈ N, and let θ ∈ Ck,j(Rm × Rn;R) for j ≤ l satisfy for some C, p > 0

∑
|α|≤k

∑
|β|≤j

|Dα
xD

β
z θ(x, z)| ≤ C(1 + |x|p + |z|p).

Then

(t, x, z) 7→ TF,xt (θ(x, ·)) (z) ∈ C0,k,j(R+ × Rm × Rn;R)

and there exist C1, p1 > 0, such that for all (t, x, z) ∈ [0,∞)× Rm × Rn

∑
|α|≤k

∑
|β|≤j

|Dα
xD

β
z T

F,x
t (θ(x, ·)) (z)| ≤ C1e

C1t(1 + |x|p1 + |z|p1).

If the bound on the derivatives of θ can be chosen uniformly in x, that is,

∑
|α|≤k

∑
|β|≤j

sup
x
|Dα

xD
β
z θ(x, z)| ≤ C(1 + |z|p),

then the bound on the derivatives of TF,xt (θ(x, ·)) (z) is also uniform in x,

∑
|α|≤k

∑
|β|≤j

sup
x
|Dα

xD
β
z T

F,x
t (θ(x, ·)) (z)| ≤ C1e

C1t(1 + |z|p1).

Proof. The proof is given in Lemma 3.5.5.

Lemma 4.4.2

Assume Hf , Hg and Hk,2+α for α ∈ (0, 1), and k ∈ N0. Let θ ∈ Ck,0(Rm ×Rn;R) satisfy for some C, p > 0,

∑
|γ|≤k

sup
x
|Dγ

xθ(x, z)| ≤ C(1 + |z|p).

Then

x 7→ µ∞(θ;x)(x′) =

∫
Rn
θ(x′, z)µ∞(dz;x) =

∫
Rn
θ(x′, z)p∞(z;x)dz ∈ Ckb (Rm;R).

Proof. From [PV03, Theorem 1, p.1170], we have that for any q > 0 there exists Cq > 0, such that,

∑
|γ|≤k

sup
x
|Dγ

xp∞(z;x)| ≤ Cq
1 + |z|q

.
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Therefore if q is chosen large enough, and we differentiate p∞(z;x) under the integral sign, and using the

growth constraint on θ and its derivatives, we obtain the result.

Lemma 4.4.3

Assume Hf , Hg and Hk,2+α for α ∈ (0, 1) and k ∈ N0. Let j ∈ {0, 1}, and θ ∈ Ck,j+α(1−j)(Rm × Rn;R)

satisfy the growth condition,

∑
|α|≤k

∑
|β|≤j

sup
x
|Dα

xD
β
z θ(x, z)| ≤ C(1 + |z|p),

for some C, p > 0 . Assume additionally that θ satisfies the centering condition,

∫
Rn
θ(x, z)µ∞(dz;x) = 0, ∀x ∈ Rm.

Then

(x, z) 7→
∫ ∞

0

TF,xt (θ(x, ·))(z)dt ∈ Ck,j(Rm × Rn;R),

and for every q > 0 there exists C ′, q′ > 0, such that,

∑
|α|≤k

∑
|β|≤j

∫ ∞
0

sup
x
|Dα

xD
β
z T

F,x
t (θ(x, ·))(z)|qdt ≤ C ′(1 + |z|q

′
).

Proof. For the proof, we use the representation

∫ ∞
0

TF,xt (θ(x, ·))(z)dt =

∫ 1

0

∫
Rn
θ(x, z′)pt(z

′;x, z)dz′dt+

∫ ∞
1

TF,xt (θ(x, ·))(z)dt.

Then the statement, ∫ ∞
0

TF,xt (θ(x, ·))(z)dt ∈ Ck,j(Rm × Rn;R),

follows from the existence of the derivatives on t ∈ [0, 1) from Lemma 4.4.1 and t ∈ [1,∞) from [PV03,

Theorem 2, p.1171]. Similarly, the bound on the growth of the derivatives of TF,xt (θ(x, ·))(z) given in

[PV03, Theorem 2, p.1171], formula (15) states: For any p1 > 0 there exist C1, p
′
1 > 0, such that for any

(t, x, z) ∈ [1,∞)× Rm × Rn,

∑
|α|≤k

∑
|β|≤1

∣∣∣Dα
xD

β
z T

F,x
t (θ(x, ·))(z)

∣∣∣ ≤ C1
1 + |z|p′1
(1 + t)p1

.
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We combine this estimate with Lemma 4.4.1, from where we obtain for (t, x, z) ∈ [0,∞)× Rm × Rn

∑
|α|≤k

∑
|β|≤j

sup
x

∣∣∣Dα
xD

β
z T

F,x
t (θ(x, ·))(z)

∣∣∣ ≤ C2e
C2t(1 + |z|p2).

We choose p1 such that qp1 > 1 and use the first estimate on [1,∞) and the second estimate on [0, 1). The

result follows.

4.4.2 Estimates on SDE Solutions

The following lemma is given in Chapter 3, but we include the statement for ease of reference.

Lemma 4.4.4

Assume f is bounded and that f and gg∗ are Hölder continuous in z uniformly in x for some uniform

constant. Assume that the conditions Hf and Hg hold. Then for any p > 0 we have

sup
(t,ε,x)∈[0,∞)×(0,1]×Rm

E [|Zεt |p | (Xε
0, Z

ε
0) = (x, z)] . 1 + |z|p.

Proof. The proof is given in Lemma 3.5.2.

Lemma 4.4.5

Assume the conditions Hf , Hg and H2,2+α for some α ∈ (0, 1); that b, σ are bounded for all (x, z); and that

bI ∈ C2,1(Rm × Rn;Rm) that satisfies the centering condition,

∫
Rn
bI(x, z)µ∞(dz;x) = 0,

where µ∞(x) is the unique stationary distribution for the process Zx, and that for some C, q1 > 0, it has the

following growth condition,

∑
|α|≤2

∑
|β|≤1

sup
x
|Dα

xD
β
z bI(x, z)| ≤ C(1 + |z|q1).

Then for every p ≥ 2 there exists q > 0 such that for 0 ≤ r < t <∞

E
∣∣∣∣1ε
∫ t

r

bI(X
ε
s , Z

ε
s)ds

∣∣∣∣p . εp(1 + |z|q) + (t− r)p−1(1 + εp)

∫ t

r

1 + E|Zεs|qds

+ (t− r)(p/2)−1(1 + εp)

∫ t

r

1 + E|Zεs|qds.
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Proof. We start by considering the solution of the following backward partial differential equation,

−∂sψs(x, z) =
1

ε2
GFψs(x, z) +

1

ε
bI(x, z), ψt(x, z) = 0.

The solution of which is given by a Feynman-Kac representation,

ψs(x, z) = E
∫ t

s

1

ε
bI(x, Z

ε,x;(s,z)
r )dr =

1

ε

∫ t

s

TF,x(r−s)/ε2 (bI(x, ·)) (z)dr = ε

∫ (t−s)/ε2

0

TF,xu (bI(x, ·)) (z)du,

where TF,x is the semigroup associated with the process Zx and a change of time has been used in the last

equality relation. Then since bI satisfies the conditions of Lemma 4.4.3, we have

∑
|α|≤2

∑
|β|≤1

sup
s∈[0,t]

|Dα
xD

β
zψs(x, z)|p . εp(1 + |z|q2),

for some q2 > 0. Applying Itô’s formula to ψt(x, z) gives,

0 = ψr(x, z) +
1

ε2

∫ t

r

GFψs(Xε
s , Z

ε
s)ds+

1

ε

∫ t

r

∇zψs(Xε
s , Z

ε
s)g(Xε

s , Z
ε
s)dVs

+

∫ t

r

GεSψs(Xε
s , Z

ε
s)ds+

∫ t

r

∇xψs(Xε
s , Z

ε
s)σ(Xε

s , Z
ε
s)dWs

− 1

ε2

∫ t

r

GFψs(Xε
s , Z

ε
s)ds−

1

ε

∫ t

r

bI(X
ε
s , Z

ε
s)ds.

Eliminating terms and rearranging simplifies to

1

ε

∫ t

r

bI(X
ε
s , Z

ε
s)ds = ψr(x, z) +

∫ t

r

GSψs(Xε
s , Z

ε
s)ds+

1

ε

∫ t

r

∇xψs(Xε
s , Z

ε
s)bI(X

ε
s , Z

ε
s)ds

+
1

ε

∫ t

r

∇zψs(Xε
s , Z

ε
s)g(Xε

s , Z
ε
s)dVs +

∫ t

r

∇xψs(Xε
s , Z

ε
s)σ(Xε

s , Z
ε
s)dWs.

The first term will contribute,

E|ψr(x, z)|p ≤ sup
s∈[0,t]

|ψs(x, z)|p . εp(1 + |z|q2).

From the boundedness of b and σ we have for the second term

E
∣∣∣∣∫ t

r

GSψs(Xε
s , Z

ε
s)ds

∣∣∣∣p ≤ (t− r)p−1|b|p∞
∫ t

r

E |∇xψs(Xε
s , Z

ε
s)|

p
ds+ (t− r)p−1|σ|p∞

∫ t

r

E
∣∣∇2

xψs(X
ε
s , Z

ε
s)
∣∣p ds

. (t− r)p−1(|b|p∞ + |σ|p∞)εp
∫ t

r

1 + E |Zεs|
q2 ds.
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For the third term,

|∇xψs(Xε
s , Z

ε
s)bI(X

ε
s , Z

ε
s)|

p ≤ |∇xψs(Xε
s , Z

ε
s)|p|bI(Xε

s , Z
ε
s)|p . εp (1 + |Zεs|q2) (1 + |Zεs|q1)

p

and therefore

E
∣∣∣∣1ε
∫ t

r

∇xψs(Xε
s , Z

ε
s)bI(X

ε
s , Z

ε
s)ds

∣∣∣∣p . (t− r)p−1

∫ t

r

1 + E |Zεs|
q3 ds.

The stochastic integrals follow in a similar manner after application of the Burkholder-Davis-Gundy inequality,

and the boundedness of σ and g,

E
∣∣∣∣∫ t

r

∇xψs(Xε
s , Z

ε
s)σ(Xε

s , Z
ε
s)dWs

∣∣∣∣p = E

(
sup
u∈[r,t]

∣∣∣∣∫ u

r

∇xψs(Xε
s , Z

ε
s)σ(Xε

s , Z
ε
s)dWs

∣∣∣∣
)p

≤ CpE
(∫ t

r

|∇xψs(Xε
s , Z

ε
s)σ(Xε

s , Z
ε
s)|

2
ds

)p/2
≤ Cp(t− r)(p/2)−1εp|σ|p∞

∫ t

r

1 + E|Zεs|q2ds.

The bound for the other stochastic integral follows in the same manner,

E
∣∣∣∣1ε
∫ t

r

∇zψs(Xε
s , Z

ε
s)g(Xε

s , Z
ε
s)dVs

∣∣∣∣p ≤ Cp(t− r)(p/2)−1|g|p∞
∫ t

r

1 + E|Zεs|q2ds.

Collecting all the terms, now yields the desired result.

Lemma 4.4.6

Assume the same setup as Lemma 4.4.5, then for every p ≥ 2 there exists q > 0 such that for T > 0

sup
(t,ε)∈[0,T ]×(0,1]

E [|Xε
t |p | (Xε

0, Z
ε
0) = (x, z)] . 1 + |x|p + |z|q.

Proof. Since b and σ are bounded, we get,

E|Xε
t |p . 1 + E|Xε

0|p + E
∣∣∣∣∫ t

0

1

ε
bI(X

ε
s , Z

ε
s)ds

∣∣∣∣p .
Using the result of Lemma 4.4.5 for the moment of the intermediate scale forcing and then Lemma 4.4.4 for
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the moment of the fast process, we get

E|Xε
t |p . E|Xε

0|p + εp(1 + E|Zε0|q) + (1 + εp)

∫ t

0

1 + E|Zεs|qds . E|Xε
0|p + (1 + εp)(1 + E|Zε0|q).

Repeating the proof, but conditioning on (Xε
0, Z

ε
0) = (x, z) gives the desired result.

Lemma 4.4.7

Assume the same setup as Lemma 4.4.5, then for |t− s| ≤ 1 and p ≥ 2, there exists a q ≥ 0 such that

E [|Xε
t −Xε

s |p | (Xε
0, Z

ε
0) = (x, z)] . εp(1 + |z|q) + (t− s)p/2(1 + εp)(1 + |z|q).

Proof. Without loss of generality, assume s < t.

E [|Xε
t −Xε

s |p] . (t− s)p−1

∫ t

s

E |b(Xε
u, Z

ε
u)|p du+ E

∣∣∣∣1ε
∫ t

s

bI(X
ε
u, Z

ε
u)du

∣∣∣∣p + E
∣∣∣∣∫ t

s

σ(Xε
u, Z

ε
u)dWu

∣∣∣∣p
≤ (t− s)p|b|p∞ + (t− s)p/2|σ|p∞ + E

∣∣∣∣1ε
∫ t

s

bI(X
ε
u, Z

ε
u)du

∣∣∣∣p .
Now using Lemmas 4.4.5 and 4.4.4, we have

E [|Xε
t −Xε

s |p] . (t−s)p+(t−s)p/2+εp(1+E|Zε0|q)+(t−s)p(1+εp)(1+E|Zε0|q)+(t−s)p/2(1+εp)(1+E|Zε0|q)

. εp(1 + E|Zε0|q) + (t− s)p/2(1 + εp)(1 + E|Zε0|q).

Repeating the proof, but conditioning on (Xε
0, Z

ε
0) = (x, z) gives the desired result.

Lemma 4.4.8

Assume h is bounded, then for p ≥ 2 and T > 0,

sup
ε∈(0,1]

sup
t≤T

EPε
∣∣∣D̃ε

t

∣∣∣p <∞ and sup
t≤T

EPε
∣∣∣D̃0

t

∣∣∣p <∞.
Further, for |t− s| < 1, we have

sup
ε∈(0,1]

EPε
∣∣∣D̃ε

t − D̃ε
s

∣∣∣p . Cp(t− s)p/2|h|p∞ <∞.
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Proof. We have that D̃ε
t satisfies

D̃ε
t = 1 +

∫ t

0

D̃ε
s〈h(Xε

s , Z
ε
s), dY

ε
s 〉.

Using the boundedness of h, the first result now follows from an application of the Burkholder-Davis-Gundy

inequality and Grönwall’s lemma. The same proof applies for the moment bound of D̃0. The bound for the

increment now follows,

EPε
∣∣∣D̃ε

t − D̃ε
s

∣∣∣p = EPε

∣∣∣∣∫ t

s

D̃ε
u〈h(Xε

u, Z
ε
u), dY εu 〉

∣∣∣∣p
≤ Cp(t− s)(p/2)−1

∫ t

s

EPε
[∣∣∣D̃ε

u

∣∣∣p |h(Xε
u, Z

ε
u)|p

]
du . Cp(t− s)p/2|h|p∞ <∞.

4.4.3 Estimates using the Poisson Equation

Theorem 4.4.2

Consider the Poisson equation,

Gu(x, z) = −ψ(x, z),

where x ∈ Rm is a parameter, G is the generator

G(x, z) ≡
n∑
i=1

fi(x, z)
∂

∂zi
+

1

2

n∑
i,j=1

(gg∗)ij(x, z)
∂2

∂zi∂zj
,

and ψ ∈ Ck,α for k ≥ 1 and α > 0. Assume that f, g satisfy the assumptions of Hf , Hg and Hk,2+α. Let

µ∞(x) be the unique stationary distribution of Zx for each fixed x ∈ Rm, and assume that ψ is centered for

each x ∈ Rm,

∫
Rn
ψ(x, z)µ∞(dz;x) = 0.
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Further, assume the growth conditions

|ψ(x, z)| ≤ C0(1 + |z|)β ,
k∑
|j|=1

∣∣Dj
xψ(x, z)

∣∣ ≤ C1(x)(1 + |z|q),

for some β < −2 and q > 0. Then the solution of the Poisson equation exists, belongs to the Sobolev space

∩p∈(1,∞)W
2
p,loc, is unique up to an additive constant such that for any x the centering condition

∫
Rn
u(x, y)µ∞(dz;x) = 0

holds, the solution satisfies u(·, z) ∈ Ck for any z, and the following holds true from some q′, q′′ and some

constants C2, C3(x),

|u(x, z)| ≤ C2,

k∑
|j|=1

|Dj
xu(x, z)| ≤ C3(x)(1 + |z|q

′
),

|∇x∇zu(x, z)| ≤ C3(x)(1 + |z|q
′′
).

Proof. This is a combination of Proposition 1 and Theorem 3 by Pardoux and Veretennikov [PV03], but

restricted for our needs.

Lemma 4.4.9

Assume Hf , Hg and Hk,2+α for α ∈ (0, 1) and k ∈ N0. Let b, σ, h ∈ Ck,0 and satisfy for some C, p > 0,

∑
|γ|≤k

sup
x

(|Dγ
xb(x, z)|+ |Dγ

xσ(x, z)|+ |Dγ
xh(x, z)|) ≤ C(1 + |z|p).

Then b, σ, a, h ∈ Ckb .

Proof. The result follows from Lemma 4.4.2.

Lemma 4.4.10

Assume Hf , Hg and Hj,2+α for α ∈ (0, 1). Let bI ∈ Cj,α for j ∈ N is centered with respect to µ∞(x) for all
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x, with the growth condition

|bI(x, z)| ≤ C0(1 + |z|)β ,
j∑
|i|=1

∣∣Di
xbI(x, z)

∣∣ ≤ C(1 + |z|q),

for β < −2. Then ã ∈ Cjb and b̃ ∈ Cj−1
b .

Proof. The result for ã follows from the fact that the assumptions on bI give G−1
F (−bI)(·, z) ∈ Cjb for each z

by Theorem 4.4.2 and the rest then follows from Lemma 4.4.2. For b̃, again from Theorem 4.4.2, we have

that |∇xG−1
F (−bI)| . (1 + |z|q) and ∇xG−1

F (−bI)(·, z) ∈ Cj−1 for each z, and therefore can use Lemma 4.4.2

to get the desired result.

4.4.4 Estimates of the Unnormalized Conditional Distribution

Lemma 4.4.11

Assume ρ0 satisfies Eq. 4.3.2, that h is bounded, and ϕ ∈ C2
b (Rm;R). Then for p ≥ 2,

EQ sup
t≤T
|ρ0
t (ϕ)|p <∞.

Proof. Since ϕ is bounded, we have ρ0
t (ϕ) ≤ |ϕ|∞ρ0

t (1) and therefore we aim to show EQ supt≤T |ρ0
t (1)|p <∞.

Applying EQ supt≤T | · |p to the evolution equation for ρ0
t (1) gives

EQ sup
t≤T
|ρ0
t (1)|p . EQ

∣∣ρ0
0(1)

∣∣p + EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρ0
s(ϕh), dY εs 〉

∣∣∣∣p .
The first term is simply,

EQ
∣∣ρ0

0(1)
∣∣p = 1.

For the stochastic integral, application with the Burkholder-Davis-Gundy inequality, Hölder’s inequality, and

Fubini’s theorem gives

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρ0
s(ϕh), dY εs 〉

∣∣∣∣p . T (p/2)−1

∫ T

0

EQ |ρ0
s(ϕh)|pds.
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Using the boundedness of ϕh and Lemma 4.4.8, the integrand is bounded by,

EQ |ρ0
s(ϕh)|p ≤ EQ

[
EPε

[
|ϕh(X0

s )D̃0
s |p
∣∣∣Yεs]]

= EPε
[
D̃0
sEPε

[
|ϕh(X0

s )D̃0
s |p
∣∣∣Yεs]] ≤ 1

2
EPε

(
D̃0
s

)2

+
1

2
|ϕh|2p∞EPε

(
D̃0
s

)2p

<∞.

Lemma 4.4.12

Assume ρε satisfies Eq. 2.3.3 and that h is bounded. Then for p ≥ 2,

sup
ε∈(0,1]

EQ sup
t≤T
|ρεt(1)|p <∞.

Proof. From Eq. 2.3.3 we get,

sup
ε∈(0,1]

EQ sup
t≤T
|ρεt(1)|p . sup

ε∈(0,1]

EQ |ρε0(1)|p + sup
ε∈(0,1]

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(h), dY εs 〉
∣∣∣∣p .

The analysis now follows the same arguments as Lemma 4.4.11, but using boundedness of h and Lemma

4.4.8.

4.5 Existence, Characterization and Uniqueness of Weak Limits

Let S(Rm) be the space of finite signed Borel measures on Rm with the weak topology induced by Cb(Rm;R),

and C([0, T ];S(Rm)) the space of continuous paths with values in S(Rm) endowed with the topology of

uniform convergence. For each ε, we denote the C([0, T ];S(Rm))-valued random variable ζε ≡ ρε,x − ρ0, the

difference of the x-marginal and averaged filter. With this notation, now define the ε-parameterized family of

Borel probability measures (P ε) on C([0, T ];S(Rm)), to be those induced by (ζε),

P ε(·) = Q
(

(ζε)
−1

(·)
)
.

We will need to prove a uniform concentration condition1 of the collection (P ε) for the proof of the

existence of weak limits of (ζε). In the context of our problem, the uniform concentration condition is the

following:

1This is sometimes referred to as compact confinement condition in the literature.
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Definition 4.5.1 (Uniform Concentration Condition). (P ε) is said to satisfy the uniform concentration

condition if for each δ > 0, there exists a compact set Kδ ⊂ S(Rm) such that

P ε(C([0, T ];Kδ)) ≥ 1− δ, ∀ε. (4.5.1)

We now prove a lemma that provides a sufficient condition for the uniform concentration condition.

Lemma 4.5.1

The uniform concentration condition holds if for some p > 0 and continuous M : Rm → (0,∞) with

lim|x|→∞M(x) =∞, we have

sup
ε

EQ sup
t≤T

(|ζεt | (M))
p
<∞. (4.5.2)

Here |ζεt | is the total variation measure of ζεt .

Proof. We first show that for C > 0, the set

K = {µ ∈ S(Rm) | |µ|(M) ≤ C}

is tight. Given δ > 0, choose R > 0 large enough such that inf |x|≥RM(x) ≥ C/δ. Then denoting

Aδ = B(0, R) ⊂ Rm, the closed ball centered at the origin with radius R, we have that for any µ ∈ K

|µ|(Acδ) = |µ|(1|·|>R) ≤ |µ|
((

δ

C
M

)
1|·|>R

)
≤ δ

C
|µ|(M) ≤ δ

C
C = δ.

This shows that K is tight. Moreover, since M is bounded from below by some m > 0, we have

sup
µ∈K
|µ|(1) ≤ 1

m
sup
µ∈K
|µ|(M) ≤ C

m
,

and therefore K is bounded in total variation norm. Since S(Rm) with the weak topology induced by

Cb(Rm;R) is Polish, we have by Prokhorov’s theorem that K is relatively compact. Further, by Fatou’s

lemma for weak convergence, K is also closed and therefore compact.

Given δ > 0, choose C > 0 large enough so that

supε∈(0,1] EQ supt≤T (|ζεt | (M))
p

Cp
< δ.
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Defining our compact set Kδ = {µ ∈ S(Rm) | |µ|(M) ≤ C}, we have

Q (ζε /∈ C([0, T ];Kδ)) ≤ Q
(

sup
t≤T
|ζεt |(M) > C

)
≤

supε∈(0,1] EQ supt≤T (|ζεt | (M))
p

Cp
≤ δ.

The next result uses Lemma 4.5.1 to prove that (P ε) is tight.

Lemma 4.5.2

Assume that f and g satisfy the assumptions of Hf , Hg and H2,2+α for α ∈ (0, 1), and that b, σ, h are

bounded. Let bI ∈ C2,α be centered with respect to µ∞(x) for each x, and satisfy the growth conditions

|bI(x, z)| ≤ C(1 + |z|)β ,
2∑
|i|=1

∣∣Di
xbI(x, z)

∣∣ ≤ C(1 + |z|q),

for some β < −2 and q > 0. Assume that Q(Xε0,Z
ε
0) has finite moments of every order. Then the ε-

parameterized family of Borel probability measures (P ε) is tight.

Proof. To prove the statement, we follow criteria provided in [Jak86, Theorem 3.1, p.276], which gives

conditions for a family of Borel probability measures on D([0, T ];E), càdlàg path space with E a completely

regular topological space with metrizable compacts, to be tight. C([0, T ];S(Rm)) is viewed as a subset

of D([0, T ];S(Rm)), and S(Rm) with the weak topology induced by C2
b (Rm;R) is Polish and therefore a

completely regular topological space with metrizable compacts.

Specifically, let F be the natural injection of C2
b (Rm;R) into its double dual. This collection satisfies

criteria for [Jak86, Theorem 3.1, p.276], i.e., it is a collection of continuous functions that separate points in

S(Rm), and is closed under addition (i.e., f, g ∈ F, then f + g ∈ F). Then to each f ∈ F associate a map

f̃ ∈ F̃, characterized as follows,

f̃ : C([0, T ];S(Rm)) −→ C([0, T ];R)

µ 7−→ f ◦ µ.

The conditions for tightness by Jakubowski [Jak86, Theorem 3.1, p.276] then states that (P ε) is tight if and

only if the following two conditions are satisfied:
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(i) For each δ > 0 there is a compact set Kδ ⊂ S(Rm) such that

P ε(C([0, T ];Kδ)) > 1− δ, ∀ε

(ii) The family (P ε) is F-weakly tight, i.e., for each f ∈ F the family (P ε ◦ (f̃−1)) of probability measures

on C([0, T ];R) is tight.

The proof of (i) will follow from Lemma 4.5.1, which provides a sufficient condition for the uniform

concentration condition. To prove the lemma, we define M(x) = (1 + |x|2)1/2, let p ≥ 2 and check that the

following condition holds,

sup
ε∈(0,1]

EQ sup
t≤T

(|ζεt | (M))
p
<∞. (4.5.2)

Note that M(x) satisfies the conditions for Lemma 4.5.1 and has bounded first and second order derivatives,

∣∣∣∣ ∂∂xiM(x)

∣∣∣∣ =

∣∣∣∣ xi
M(x)

∣∣∣∣ . 1,∣∣∣∣ ∂2

∂xi∂xj
M(x)

∣∣∣∣ =

∣∣∣∣− xixj
M(x)3

+
δij
M(x)

∣∣∣∣ . 1

M(x)
. 1.

Directly estimating, we have

sup
ε∈(0,1]

EQ sup
t≤T

(|ζεt |(M))
p

= sup
ε∈(0,1]

EQ sup
t≤T

(
ρε,xt (M) + ρ0

t (M)
)p

. sup
ε∈(0,1]

EQ sup
t≤T
|ρε,xt (M)|p + EQ sup

t≤T

∣∣ρ0
t (M)

∣∣p .
Dealing with each term separately, we first address supε∈(0,1] EQ supt≤T (ρε,xt (M))

p
. To handle the singular

term (the intermediate drift) in the slow process, we perturb M by a corrector term. Define the perturbed

test function,

M ε(x, z) = M(x) + εχ(x, z),

with χ(x, z) the solution of the Poisson equation,

GFχ = −GIM.

The Poisson equation is well-posed with the right hand side satisfying the conditions of Theorem 4.4.2 (recall

that bI has the correct decay in the z variable), and therefore the regularity and bounds of χ come from
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Theorem 4.4.2. Specifically,

|χ(x, z)| . 1,

2∑
|i|=1

|Di
xχ(x, z)| . (1 + |z|q

′
),

for some q′ > 0. Using the identity ρεt(M
ε) = ρε,xt (M) + ερεt(χ), we have the representation

ρε,xt (M) = −ερεt(χ) + ρε0(M ε) +

∫ t

0

ρεs(GSM)ds+

∫ t

0

ρεs(GIχ)ds+ ε

∫ t

0

ρεs(GSχ)ds

+

∫ t

0

〈ρεs(Mh+ ασ∗∇xM), dY εs 〉+ ε

∫ t

0

〈ρεs(χh+ ασ∗∇xχ), dY εs 〉.

And therefore,

EQ sup
t≤T
|ρε,xt (M)|p . εpEQ sup

t≤T
|ρεt(χ)|p + EQ |ρε0(M ε)|p

+ EQ

∫ T

0

|ρεs(GSM)|p ds+ EQ

∫ T

0

|ρεs(GIχ)|p ds+ εpEQ

∫ T

0

|ρεs(GSχ)|p ds

+ EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(Mh), dY εs 〉
∣∣∣∣p + EQ sup

t≤T

∣∣∣∣∫ t

0

〈ρεs(ασ∗∇xM), dY εs 〉
∣∣∣∣p

+ εpEQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(χh), dY εs 〉
∣∣∣∣p + εpEQ sup

t≤T

∣∣∣∣∫ t

0

〈ρεs(ασ∗∇xχ), dY εs 〉
∣∣∣∣p .

(4.5.3)

By the boundedness of χ and application of Lemma 4.4.11, the first term of Eq. 4.5.3 is

sup
ε∈(0,1]

EQ sup
t≤T
|ρεt(χ)|p . sup

ε∈(0,1]

EQ sup
t≤T

ρεt(|χ|)p . sup
ε∈(0,1]

EQ sup
t≤T

ρεt(1)p <∞.

For the second term of Eq. 4.5.3, we have

EQ |ρε0(M ε)|p = EQ

∣∣∣EPε
[
M ε(Xε

0, Z
ε
0)D̃ε

0

∣∣∣Yε0]∣∣∣p = EQ |EQ [M ε(Xε
0, Z

ε
0)]|p

≤
∫
|M ε(x, z)|pQ(Xε0,Z

ε
0)(dx, dz) .

∫
M(x)p + εp|χ(x, z)|pQ(Xε0,Z

ε
0)(dx, dz),

and therefore

sup
ε∈(0,1]

EQ |ρε0(M ε)|p <∞.

Where we used the boundedness of χ and the fact that we have finite moments of every order for Q(Xε0,Z
ε
0).

From the boundedness of b, σ,Dγ
xM , for |γ| ∈ {1, 2}, Lemmas 4.4.8 and 4.4.11, we have for the third term of
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Eq. 4.5.3

sup
ε∈(0,1]

EQ

∫ T

0

|ρεs(GSM)|p ds ≤ |GSM |p∞ sup
ε∈(0,1]

EQ sup
t≤T

ρεs(1)pds <∞.

For the fourth term of Eq. 4.5.3

EQ

∫ T

0

|ρεs(GIχ)|p ds .
∫ T

0

EPε
[
(D̃ε

s)
2
]1/2

EPε

[∣∣∣GIχ(Xε
s , Z

ε
s)D̃

ε
s

∣∣∣2p]1/2

ds

≤
∫ T

0

EPε
[
(D̃ε

s)
2
]1/2

EPε

[(
D̃ε
s

)4p
]1/4

EPε
[
|GIχ(Xε

s , Z
ε
s)|

4p
]1/4

ds.

And we have

sup
ε∈(0,1]

EPε
[
|GIχ(Xε

s , Z
ε
s)|

4p
]
. sup
ε∈(0,1]

EPε [1 + |Zεs|q] . 1 + sup
ε∈(0,1]

EQ [|Zε0|q] <∞, (4.5.4)

for some q > 0, and therefore

sup
ε∈(0,1]

EQ

∫ T

0

|ρεs(GIχ)|p ds . sup
ε∈(0,1]

∫ T

0

EPε
[
|GIχ(Xε

s , Z
ε
s)|

4p
]1/4

ds <∞.

By the same arguments as for the fourth term, we have that the fifth term of Eq. 4.5.3 is bounded uniformly

in ε,

sup
ε∈(0,1]

EQ

∫ T

0

|ρεs(GSχ)|p ds <∞.

The first stochastic integral, sixth term of Eq. 4.5.3, is handled with application of the Burkholder-Davis-

Gundy inequality, Hölder’s inequality, and Fubini’s theorem on the first line and then a change of measure,

the Cauchy-Schwarz inequality, and Hölder’s inequality to give

sup
ε∈(0,1]

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(Mh), dY εs 〉
∣∣∣∣p . sup

ε∈(0,1]

∫ T

0

EQ |ρεs(Mh)|p ds

. sup
ε∈(0,1]

∫ T

0

EPε
[
(D̃ε

s)
2
]1/2

EPε
[
|ρεs(Mh)|2p

]1/2
ds.

And by further application of the Cauchy-Schwarz inequality, Hölder’s inequality, boundedness of h, Lemma
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4.4.6 for some q > 0, and finite moments of all orders for Q(Xε0,Z
ε
0), we get

sup
ε∈(0,1]

EPε
[
|ρεs(Mh)|2p

]1/2
≤ sup
ε∈(0,1]

EPε
[
(D̃ε

s)
4p
]1/4
|h|p∞EPε

[
|M(Xε

s)|
4p
]1/4

. sup
ε∈(0,1]

EPε
[
(1 + |Xε

s |2)2p
]1/4

. sup
ε∈(0,1]

(
1 + EPε

[
|Xε

s |4p
])1/4

. sup
ε∈(0,1]

(
1 + EQ

[
|Xε

0|4p + (1 + ε4p)(1 + |Zε0|q)
])1/4

<∞.

Because ασ∗∇xM is bounded and by Lemma 4.4.11, the seventh term of Eq. 4.5.3 is bounded uniformly in ε,

sup
ε∈(0,1]

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(ασ∗∇xM), dY εs 〉
∣∣∣∣p . ∫ T

0

sup
ε∈(0,1]

EQ |ρεs(ασ∗∇xM)|p ds <∞.

Similarly using the boundedness of χh, the eighth term of Eq. 4.5.3 is bounded uniformly in ε,

sup
ε∈(0,1]

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(χh), dY εs 〉
∣∣∣∣p <∞.

Making use of the boundedness of σ, the polynomial growth of ∇xχ in z, and the finite moments of all orders

for Q(Xε0,Z
ε
0), the last term of Eq. 4.5.3 is

sup
ε∈(0,1]

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(ασ∗∇xχ), dY εs 〉
∣∣∣∣p . ∫ T

0

sup
ε∈(0,1]

EQ |ρεs(ασ∗∇xχ)|p ds

.
∫ T

0

sup
ε∈(0,1]

EPε
[
|ασ∗∇xχ(Xε

s , Z
ε
s)|

4p
]1/4

ds .
∫ T

0

sup
ε∈(0,1]

EPε
[
|∇xχ(Xε

s , Z
ε
s)|

4p
]1/4

ds

.
∫ T

0

sup
ε∈(0,1]

(1 + EPε [|Zεs|
q
])

1/4
ds .

∫ T

0

sup
ε∈(0,1]

(1 + EQ [|Zε0|
q
])

1/4
ds <∞.

This completes the calculation that supε EQ supt≤T |ρ
ε,x
t (M)|p <∞. We now show that EQ supt≤T

∣∣ρ0
t (M)

∣∣p <
∞. We have,

EQ sup
t≤T

∣∣ρ0
t (M)

∣∣p . EQ
∣∣ρ0

0(M)
∣∣p +

∫ T

0

EQ
∣∣ρ0
s(G†M)

∣∣p ds
+ EQ sup

t≤T

∣∣∣∣∫ t

0

〈ρ0
s(Mh), dY εs 〉

∣∣∣∣p + EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρ0
s(ασ

∗∇xM), dY εs 〉
∣∣∣∣p .
(4.5.5)

By Lemmas 4.4.9 and 4.4.10, we have that b, σ, h, ã and b̃ are all bounded functions. Therefore, similar

arguments as for ρε show that the right side of Eq. 4.5.5 is finite.

We now prove (ii), the F-weak tightness condition. Let ϕ ∈ C2
b (Rm;R). There are two conditions that
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must be checked for each fixed ϕ ∈ F. The first one is a boundedness condition,

lim
N→∞

sup
ε

Q(|ζε0(ϕ)| ≥ N) = 0,

which is trivially satisfied since ζε0(ϕ) = EQ [ϕ(Xε
0)]− EQ

[
ϕ(X0

0 )
]

= 0. The second one is an equicontinuity

condition–for each δ > 0 and η > 0 there are ∆ > 0 and j <∞ such that

Q

(
sup
|t−s|≤∆

|ζεit (ϕ)− ζεis (ϕ)| ≥ δ

)
≤ η, ∀i ≥ j. (4.5.6)

A sufficient condition for Eq. 4.5.6 is the following–there are µ, β, γ > 0 and K <∞ such that

EQ |ζεit (ϕ)− ζεis (ϕ)|µ ≤ K|t− s|1+β + εγi , ∀i. (4.5.7)

We now show that Eq. 4.5.7 is true. Let µ = 4, ε > 0 and ϕε = ϕ+ εχ, where χ solves the Poisson equation,

GFχ = −GIϕ.

From ζεt (ϕ) = ρε,xt (ϕ)− ρ0
t (ϕ) and ρεt(ϕ

ε) = ρε,xt (ϕ) + ρεt(εχ) we have

|ζεt (ϕ)− ζεs(ϕ)|4 . |ρεt(ϕε)− ρεs(ϕε)|4 + |ρ0
t (ϕ)− ρ0

s(ϕ)|4 + |ρεt(εχ)− ρεs(εχ)|4. (4.5.8)

Working on the first term in this inequality,

EQ |ρεt(ϕε)− ρεs(ϕε)|4 . EQ

∣∣∣∣∫ t

s

ρεu(GSϕ+ GIχ+ εGSχ)du

∣∣∣∣4 + EQ

∣∣∣∣∫ t

s

〈ρεu(ϕεh+ ασ∗∇xϕε), dY εu 〉
∣∣∣∣4

. (t− s)3

∫ t

s

EQ |ρεu(GSϕ+ GIχ+ εGSχ)|4 du+ (t− s)
∫ t

s

EQ |ρεu(ϕεh+ ασ∗∇xϕε)|4 du. (4.5.9)

First term of Eq. 4.5.9,

∫ t

s

EQ |ρεu(GSϕ+ GIχ+ εGSχ)|4 du .
∫ t

s

EQ |ρεu(GSϕ)|4 + EQ |ρεu(GIχ)|4 + EQ |ρεu(εGSχ)|4 du.

By the boundedness of b, σ,Dk
xϕ for |k| ≤ 2 and Lemma 4.4.8, we have the first term bounded by

∫ t

s

EQ |ρεu(GSϕ)|4 du . (t− s).
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By the boundedness of b, σ, the polynomial growth of bI, D
k
xχ in z, for |k| ≤ 2 and Lemma 4.4.8, we have by

the same arguments as Eq. 4.5.4

∫ t

s

EQ |ρεu(GIχ)|4 du+

∫ t

s

EQ |ρεu(εGSχ)|4 du . (t− s) + ε4(t− s) = (1 + ε4)(t− s).

And therefore we have,

∫ t

s

EQ |ρεu(GSϕ+ GIχ+ εGSχ)|4 du . (1 + ε4)(t− s).

The second term of Eq. 4.5.9 is bounded as follows,

∫ t

s

EQ |ρεu(ϕεh+ ασ∗∇xϕε)|4 du .
∫ t

s

EQ |ρεu(ϕh)|4 + EQ |ρεu(εχh)|4 du

+

∫ t

s

EQ |ρεu(ασ∗∇xϕ)|4 + EQ |ρεu(εασ∗∇xχ)|4 du

. (1 + ε4)(t− s) + EQ |ρεu(εασ∗∇xχ)|4 du,

by boundedness of h, σ, χ,Dk
xϕ for |k| ≤ 2, and Lemma 4.4.8. The last term is bounded by . ε4(t− s) due

to boundedness of σ and polynomial growth of ∇xχ in z and finite moments of all orders for Q(Xε0,Z
ε
0), and

therefore

∫ t

s

EQ |ρεu(ϕεh+ ασ∗∇xϕε)|4 du . (1 + ε4)(t− s).

The expectation of the second term in Eq. 4.5.8 is,

EQ |ρ0
t (ϕ)− ρ0

s(ϕ)|4 . EQ

∣∣∣∣∫ t

s

ρ0
u(G†ϕ)du

∣∣∣∣4 + EQ

∣∣∣∣∫ t

s

〈ρ0
u(ϕh+ ασ∗∇xϕ), dY εu 〉

∣∣∣∣4
. (t− s)3

∫ t

s

EQ
∣∣ρ0
u(G†ϕ)

∣∣4 du+ (t− s)
∫ t

s

EQ
∣∣ρ0
u(ϕh+ ασ∗∇xϕ)

∣∣4 du
. (t− s)4 + (t− s)2,

where we use the boundedness of h, σ and the coefficients of G†, which is a result of Lemmas 4.4.9 and 4.4.10,

and the boundedness of Dk
xϕ for k ≤ 2.

Using the fact that χ is bounded and Lemma 4.4.11, the last term of Eq. 4.5.8 is bounded by

EQ |ρεt(εχ)− ρεs(εχ)|4 . ε4EQ
[
ρεt(1)4 + ρεs(1)4

]
. ε4.
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Lastly, since we are interested in the case (t− s) < 1, we satisfy Eq. 4.5.7 with µ = 4, β = 1 and γ = 4.

Now that (P ε) has been shown to be tight, we need to show that this collection is weakly relatively

compact and therefore any subsequence of (ε) will converge to a weak limit. The fact that (P ε) is weakly

relatively compact is given by the following corollary.

Corollary 4.5.1

Every subsequence of the ε-parameterized family of probability measures (P ε) induced on path space

C([0, T ];S(Rm)) by ζε, has a weak limit.

Proof. From Lemma 4.5.2, (P ε) is tight. Because C([0, T ];S(Rm)) is Hausdorff, since it is metrizable by

[Jak86, Proposition 1.6iii, p.267] because S(Rm) is Polish, this implies that (P ε) is relatively compact (see for

instance [KX95, Theorem 2.2.1, p.56]). Therefore each sequence of (P ε) has a convergent subsequence.

Given a subsequence of (ε), we now let ζ be the limit point and characterize this limit point in the next

lemma.

Lemma 4.5.3

Assume that f, g satisfy the assumptions of Hf , Hg and H2,2+α. Let b, bI, a ∈ C2,α and satisfy the growth

conditions

|b(x, z)|+ |bI(x, z)|+ |a(x, z)| ≤ C(1 + |z|)β ,
2∑
|k|=1

∣∣Dk
xb(x, z)

∣∣+
∣∣Dk

xbI(x, z)
∣∣+
∣∣Dk

xa(x, z)
∣∣ ≤ C(1 + |z|q),

for some β < −2 and q > 0. Let bI be centered with respect to µ∞(x) for each x. Assume h is bounded and

globally Lipschitz in (x, z). Let σ be globally Lipschitz in z. And assume that Q(Xε0,Z
ε
0) has finite momentsz

of every order. Then any limit point ζ of (ζε) satisfies the equation,

ζt(ϕ) =

∫ t

0

ζs(G†ϕ)ds+

∫ t

0

〈ζs(ϕh+ ασ∗∇xϕ), dYs〉, ζ0(ϕ) = 0, Q-a.s. uniformly in t ∈ [0, T ].

Proof. With an abuse of notation, let ε be an element of the subsequence (ε), assume ϕ ∈ C2
b (Rm;R), and

consider the perturbed test function,

ϕε(x, z) = ϕ(x) + εχ(x, z) + ε2χ̃(x, z),
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where χ and χ̃ solve the Poisson equations,

GFχ = −GIϕ,

GF χ̃ = −
(
GS − GS

)
ϕ−

(
GIχ− GIχ

)
.

From Theorem 4.4.2, we have

|χ(x, z)|+ |χ̃(x, z)| . 1,

2∑
|i|=1

|Di
xχ(x, z)|+ |Di

xχ̃(x, z)| . (1 + |z|q
′
),

for some q′ > 0. Because ρε,xt (ϕ) = ρεt(ϕ
ε)− ρεt(εχ)− ρεt(ε2χ̃), we have

ζεt (ϕ) = −ρεt(εχ)− ρεt(ε2χ̃) + ρε0(ϕε)− ρ0
0(ϕ) +

∫ t

0

ρεs(Gεϕε)ds−
∫ t

0

ρ0
s(G†ϕ)ds

+

∫ t

0

〈ρεs(ϕεh+ ασ∗∇xϕε), dY εs 〉 −
∫ t

0

〈ρ0
s(ϕh+ ασ∗∇xϕ), dY εs 〉. (4.5.10)

When expanded, the Lebesgue integral for ρεs(Gεϕε) becomes,

∫ t

0

ρεs(Gεϕε)ds =

∫ t

0

ρε,xs (GSϕ)ds+

∫ t

0

ρε,xs (GIχ)ds

+ ε

∫ t

0

ρεs(GSχ)ds+ ε

∫ t

0

ρεs(GIχ̃)ds+ ε2
∫ t

0

ρεs(GSχ̃)ds.

The term ρε0(ϕε)− ρ0
0(ϕ) is,

ρε0(ϕε)− ρ0
0(ϕ) = ρε,x0 (ϕ) + ρε0(εχ) + ρε0(ε2χ̃)− ρ0

0(ϕ)

= ρε0(εχ) + ρε0(ε2χ̃).

And we group all terms of first order in ε involving χ into Oχ(ε),

Oχ(ε) = −ρεt(εχ) + ρε0(εχ) + ε

∫ t

0

ρεs(GSχ)ds+ ε

∫ t

0

〈ρεs(χh+ ασ∗∇xχ), dY εs 〉.

Similarly, let the terms of first and second order in ε involving χ̃ be grouped into Oχ̃(ε),

Oχ̃(ε) = −ρεt(ε2χ̃) + ρε0(ε2χ̃) + ε

∫ t

0

ρεs(GIχ̃)ds+ ε2
∫ t

0

ρεs(GSχ̃)ds+ ε2
∫ t

0

〈ρεs(χ̃h+ ασ∗∇xχ̃), dY εs 〉.
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Eq. 4.5.10 now becomes,

ζεt (ϕ) =

∫ t

0

ζεs(GSϕ)ds+

∫ t

0

ρε,xs (GIχ)ds+Oχ(ε) +Oχ̃(ε)

+

∫ t

0

〈ρεs(ϕh+ ασ∗∇xϕ), dY εs 〉 −
∫ t

0

〈ρ0
s(ϕh+ ασ∗∇xϕ), dY εs 〉. (4.5.11)

Next, consider the equivalence of the following terms

∫ t

0

ρε,xs (GIχ)ds =

∫ t

0

ρε,xs (G̃ϕ)ds.

This follows since ∇⊗2
x ϕ = ∇x∇xϕ is symmetric, and therefore,

〈∇⊗2
x ϕG−1

F (−bI), bI〉 =

m∑
i,j=1

∂2ϕ

∂xi∂xj
G−1
F (−bI)ibI,j

=

m∑
i,j=1

∂2ϕ

∂xi∂xj

(
1

2
(G−1
F (−bI)⊗ bI)ij +

1

2
(bI ⊗ G−1

F (−bI))ij
)
,

which leads to the following,

GIχ(x) =

∫
Rn
〈∇xχ, bI〉(x, z)µ∞(dz;x) =

∫
Rn
〈∇⊗2

x ϕG−1
F (−bI) +

(
∇xG−1

F (−bI)
)∗∇xϕ, bI〉(x, z)µ∞(dz;x)

= 〈∇xϕ(x),

∫
Rn

(
∇xG−1

F (−bI)
)
bI(x, z)µ∞(dz;x)〉+

∫
Rn
〈∇⊗2

x ϕG−1
F (−bI), bI〉(x, z)µ∞(dz;x)

= G̃ϕ(x).

Using this equivalence, adding and subtracting the term,
∫ t

0
〈ρε,xs (ϕh + ασ∗∇xϕ), dY εs 〉, then Eq. 4.5.11

becomes,

ζεt (ϕ) =

∫ t

0

ζεs(G†ϕ)ds+

∫ t

0

〈ζεs(ϕh+ ασ∗∇xϕ), dY εs 〉+Oχ(ε) +Oχ̃(ε)

+

∫ t

0

〈ρεs(ϕh+ ασ∗∇xϕ), dY εs 〉 −
∫ t

0

〈ρε,xs (ϕh+ ασ∗∇xϕ), dY εs 〉.

Therefore

EQ sup
t≤T

∣∣∣∣ζεt (ϕ)−
∫ t

0

ζεs(G†ϕ)ds−
∫ t

0

〈ζεs(ϕh+ ασ∗∇xϕ), dY εs 〉
∣∣∣∣2 . EQ sup

t≤T
|Oχ(ε)|2 + EQ sup

t≤T
|Oχ̃(ε)|2

+ EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(ϕ(h− h)), dY εs 〉
∣∣∣∣2 + EQ sup

t≤T

∣∣∣∣∫ t

0

〈ρεs(α(σ − σ)∗∇xϕ), dY εs 〉
∣∣∣∣2 . (4.5.12)
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From the boundedness of b, σ, a, h, the growth conditions on Dk
xχ for |k| ≤ 2, and the finite moments of

all orders for Q(Xε0,Z
ε
0), we have that

lim
ε→0

EQ sup
t≤T
|Oχ(ε)|2 = 0.

Similarly, from the boundedness of b, σ, a, h, the growth conditions on Dk
xχ̃ for |k| ≤ 2 and bI, and the finite

moments of all orders for Q(Xε0,Z
ε
0), we have that

lim
ε→0

EQ sup
t≤T
|Oχ̃(ε)|2 = 0.

Our focus now shifts to showing that

lim
ε→0

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(ϕ(h− h)), dY εs 〉
∣∣∣∣2 = 0, and lim

ε→0
EQ sup

t≤T

∣∣∣∣∫ t

0

〈ρεs(α(σ − σ)∗∇xϕ), dY εs 〉
∣∣∣∣2 = 0. (4.5.13)

Let ψh(x, z) ≡ ϕ(h − h)(x, z) and ψσ(x, z) ≡ α(σ − σ)∗∇xϕ(x, z). Because ψh and ψσ are both centered

with respect to µ∞(x) for each x, globally Lipschitz in (x, z), and bounded in (x, z), we let ψ represent either

ψh or ψσ and perform the same analysis for both.

Applying the Burkholder-Davis-Gundy inequality to either term in Eq. 4.5.13, we get

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(ψ), dY εs 〉
∣∣∣∣2 . EQ

∫ T

0

|ρεs(ψ)|2 ds = EQ

∫ T

0

∣∣∣EPε
[
ψ(Xε

s , Z
ε
s)D̃

ε
s

∣∣∣Yεs]∣∣∣2 ds. (4.5.14)

We now follow the argument by Kushner [Kus90, Chapter 6] to partition the domain of the time integral

into intervals of length at most 0 < δ � 1, where δ = δ(ε) will later be chosen as a function of ε. Let

N =
⌊
T
δ

⌋
∈ N0 such that T = Nδ +O(δ). Then we have,

EQ

∫ T

0

∣∣∣EPε
[
ψ(Xε

s , Z
ε
s)D̃

ε
s

∣∣∣Yεs]∣∣∣2 ds = EQ

N−1∑
i=0

∫ ti+1

ti

∣∣∣EPε
[
ψ(Xε

s , Z
ε
s)D̃

ε
s

∣∣∣Yεs]∣∣∣2 ds
+ EQ

∫ T

Nδ

∣∣∣EPε
[
ψ(Xε

s , Z
ε
s)D̃

ε
s

∣∣∣Yεs]∣∣∣2 ds.
with ti+1 − ti = δ, ∀i. We now consider a single time integral from [ti, ti+1]. For simplicity and clarity, let us

use the notation [t, t+ δ] instead. The analysis for the remainder term, over the interval [Nδ, T ], will follow

from the same arguments.

We introduce terms to the conditional expectation with arguments Xε
t and D̃ε

t fixed at the initial time of
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the integral over [t, t+ δ], to get,

∣∣∣EPε
[
ψ(Xε

s , Z
ε
s)D̃

ε
s

∣∣∣Yεs]∣∣∣2 .
∣∣∣EPε

[
(ψ(Xε

s , Z
ε
s)− ψ(Xε

t , Z
ε
s))D̃

ε
s

∣∣∣Yεs]∣∣∣2 (4.5.15)

+
∣∣∣EPε

[
ψ(Xε

t , Z
ε
s)(D̃

ε
s − D̃ε

t)
∣∣∣Yεs]∣∣∣2 +

∣∣∣EPε
[
ψ(Xε

t , Z
ε
s)D̃

ε
t

∣∣∣Yεs]∣∣∣2 .
The first term on the right side of Eq. 4.5.15, by way of Jensen’s inequality and Fubini’s theorem on the first

line, a change of measure, the Cauchy-Schwarz inequality, Jensen’s inequality, and the tower property of

conditional expectation on the second line, contributes

EQ

∫ t+δ

t

∣∣∣EPε
[
(ψ(Xε

s , Z
ε
s)− ψ(Xε

t , Z
ε
s))D̃

ε
s

∣∣∣Yεs]∣∣∣2 ds ≤ ∫ t+δ

t

EQEPε

[∣∣∣(ψ(Xε
s , Z

ε
s)− ψ(Xε

t , Z
ε
s)) D̃

ε
s

∣∣∣2 ∣∣∣∣Yεs] ds
≤
∫ t+δ

t

EPε

[(
D̃ε
s

)2
]1/2

EPε

[∣∣∣(ψ(Xε
s , Z

ε
s)− ψ(Xε

t , Z
ε
s)) D̃

ε
s

∣∣∣4]1/2

ds.

By Lemma 4.4.8, EPε

[(
D̃ε
s

)2
]1/2

<∞, and by application of the Cauchy-Schwarz inequality and then the

Lipschitz property of ψ, we get

EPε

[∣∣∣(ψ(Xε
s , Z

ε
s)− ψ(Xε

t , Z
ε
s)) D̃

ε
s

∣∣∣4]1/2

≤ EPε
[
|ψ(Xε

s , Z
ε
s)− ψ(Xε

t , Z
ε
s)|

8
]1/4

EPε

[(
D̃ε
s

)8
]1/4

. EPε
[
|Xε

s −Xε
t |

8
]1/4

.

ψ is globally Lipschitz in x, since each of the components of ψ are either globally Lipschitz in x or have a

bounded derivative in x. Lemma 4.4.7 gives

EPε
[
|Xε

s −Xε
t |

8
]1/4

.
(
ε8(1 + EPε |Zε0|q) + δ4(1 + ε8)(1 + E [|Zε0|q])

)1/4
,

for some q ≥ 0, and therefore by the finite moments of Q(Xε0,Z
ε
0), the first term of Eq. 4.5.15 is bounded by,

EQ

∫ t+δ

t

∣∣∣EPε
[
(ψ(Xε

s , Z
ε
s)− ψ(Xε

t , Z
ε
s))D̃

ε
s

∣∣∣Yεs]∣∣∣2 ds . δ(ε8 + δ4(1 + ε8))1/4. (4.5.16)

The second term of Eq. 4.5.15 similarly contributes,

EQ

∫ t+δ

t

∣∣∣EPε
[
ψ(Xε

t , Z
ε
s)(D̃

ε
s − D̃ε

t)
∣∣∣Yεs]∣∣∣2 ds ≤ ∫ t+δ

t

EQEPε

[∣∣∣ψ(Xε
t , Z

ε
s)(D̃

ε
s − D̃ε

t)
∣∣∣2 ∣∣∣∣Yεs] ds

≤
∫ t+δ

t

EPε

[(
D̃ε
s

)2
]1/2

EPε

[∣∣∣ψ(Xε
t , Z

ε
s)(D̃

ε
s − D̃ε

t)
∣∣∣4]1/2

ds.
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We now use the boundedness of ψ to get

EPε

[∣∣∣ψ(Xε
t , Z

ε
s)(D̃

ε
s − D̃ε

t)
∣∣∣4]1/2

≤ |ψ|2∞EPε

[∣∣∣D̃ε
s − D̃ε

t

∣∣∣4]1/2

.

Lemma 4.4.8 gives EPε

[∣∣∣D̃ε
s − D̃ε

t

∣∣∣4]1/2

. δ and therefore

EQ

∫ t+δ

t

∣∣∣EPε
[
ψ(Xε

t , Z
ε
s)(D̃

ε
s − D̃ε

t)
∣∣∣Yεs]∣∣∣2 ds . δ2. (4.5.17)

Recall the last term in Eq. 4.5.15,

EQ

∫ t+δ

t

∣∣∣EPε
[
ψ(Xε

t , Z
ε
s)D̃

ε
t

∣∣∣Yεs]∣∣∣2 ds.
We first consider adding and subtracting the following term within the conditional expectation,

ψ(Xε
t , Ẑ

ε,Xεt
s )D̃ε

t ,

where Ẑε,X
ε
t is the process satisfying Eq. 4.2.1, but with fixed random initial condition x = Xε

t . Then we

have

EQ

∫ t+δ

t

∣∣∣EPε
[
ψ(Xε

t , Z
ε
s)D̃

ε
t

∣∣∣Yεs]∣∣∣2 ds . EQ

∫ t+δ

t

∣∣∣EPε
[
ψ(Xε

t , Ẑ
ε,Xεt
s )D̃ε

t

∣∣∣Yεs]∣∣∣2 ds
+ EQ

∫ t+δ

t

∣∣∣EPε
[(
ψ(Xε

t , Z
ε
s)− ψ(Xε

t , Ẑ
ε,Xεt
s )

)
D̃ε
t

∣∣∣Yεs]∣∣∣2 ds. (4.5.18)

Concentrating on the second term of Eq. 4.5.18,

EQ

∫ t+δ

t

∣∣∣EPε
[(
ψ(Xε

t , Z
ε
s)− ψ(Xε

t , Ẑ
ε,Xεt
s )

)
D̃ε
t

∣∣∣Yεs]∣∣∣2 ds . ∫ t+δ

t

EPε

[∣∣∣ψ(Xε
t , Z

ε
s)− ψ(Xε

t , Ẑ
ε,Xεt
s )

∣∣∣8]1/4

ds

.
∫ t+δ

t

EPε

[
EPε

[∣∣∣ψ(Xε
t , Z

ε
s)− ψ(Xε

t , Ẑ
ε,Xεt
s )

∣∣∣8 ∣∣∣∣FXεt ∨ FZ
ε

t

]]1/4

ds

.
∫ t+δ

t

EPε

[
EPε

[∣∣∣ψ(x, Zε;(t,x,z)s )− ψ(x, Ẑε,x;(t,z)
s )

∣∣∣8 ∣∣∣∣ (x, z) = (Xε
t , Z

ε
t )

]]1/4

ds.

From the global Lipschitz property of ψ in the z-component, we have the following estimate,

EPε

[∣∣∣ψ(x, Zε;(t,x,z)s )− ψ(x, Ẑε,x;(t,z)
s )

∣∣∣8] . EPε

[∣∣∣Zε;(t,x,z)s − Ẑε,x;(t,z)
s

∣∣∣8] .
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In what follows, we use the notation (Xε;(t,x), Zε;(t,z)) for the pair process realized by Zε;(t,x,z). Similarly, we

use Xε;(t,x,z) when we must make clear that we are referring to the first entry of the pair (Xε;(t,x), Zε;(t,z))

which satisfies Eq. 4.0.1. The previous inequality is then bounded as follows,

EPε

[∣∣∣Zε;(t,x,z)s − Ẑε,x;(t,z)
s

∣∣∣8] .
δ7

ε16

∫ t+δ

t

EPε
∣∣∣f(Xε;(t,x)

s , Zε;(t,z)s )− f(x, Ẑε,x;(t,z)
s )

∣∣∣8 ds+
δ3

ε8

∫ t+δ

t

EPε
∣∣∣g(Xε;(t,x)

s , Zε;(t,z)s )− g(x, Ẑε,x;(t,z)
s )

∣∣∣8 ds
.

δ7

ε16

∫ t+δ

t

EPε
∣∣∣f(Xε;(t,x)

s , Zε;(t,z)s )− f(x, Zε;(t,z)s )
∣∣∣8 + EPε

∣∣∣f(x, Zε;(t,x,z)s )− f(x, Ẑε,x;(t,z)
s )

∣∣∣8 ds
+
δ3

ε8

∫ t+δ

t

EPε
∣∣∣g(Xε;(t,x)

s , Zε;(t,z)s )− g(x, Zε;(t,z)s )
∣∣∣8 + EPε

∣∣∣g(x, Zε;(t,x,z)s )− g(x, Ẑε,x;(t,z)
s )

∣∣∣8 ds
≤ δ3

ε8

(
δ4

ε8
|∇xf |8∞ + |∇xg|8∞

)∫ t+δ

t

EPε
∣∣∣Xε;(t,x,z)

s − x
∣∣∣8 ds

+
δ3

ε8

(
δ4

ε8
|∇zf |8∞ + |∇zg|8∞

)∫ t+δ

t

EPε
∣∣∣Zε;(t,x,z)s − Ẑε,x;(t,z)

s

∣∣∣8 ds.
From Lemma 4.4.7, for some q ≥ 0, we get

∫ t+δ

t

EPε
∣∣∣Xε;(t,x,z)

s − x
∣∣∣8 ds . δε8(1 + |z|q) + δ5(1 + ε8)(1 + |z|q).

Let

η(ε, δ) ≡
(
δ8

ε16
+
δ4

ε8

)
.

Therefore Grönwall’s lemma gives us

EPε

[∣∣∣Zε;(t,x,z)s − Ẑε,x;(t,z)
s

∣∣∣8] . η(ε, δ)
(
ε8 + δ4(1 + ε8)

)
exp(η(ε, δ))(1 + |z|q).

For further brevity, let us define

F(ε, δ) ≡ η(ε, δ)
(
ε8 + δ4(1 + ε8)

)
exp(η(ε, δ)).

Therefore the second term in Eq. 4.5.18 is bounded by

EQ

∫ t+δ

t

∣∣∣EPε
[(
ψ(Xε

t , Z
ε
s)− ψ(Xε

t , Ẑ
ε,Xεt
s )

)
D̃ε
t

∣∣∣Yεs]∣∣∣2 ds . ∫ t+δ

t

EPε [F(ε, δ)(1 + |Zεt |q)]
1/4

ds

. δF(ε, δ)1/4(1 + EPε
[
|Zε0|q

′
]
)1/4 . δF(ε, δ)1/4. (4.5.19)
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For the first term on the right hand side of Eq. 4.5.18, we condition the centering term on a larger

filtration H = Yεs ∨ FX
ε

t ∨ FZεt , and then use the fact that σ(Ẑ
ε,Xεt
s ) ∨ Yεt ∨ FX

ε

t ∨ FZεt is independent of

σ(Y εr − Y εt ; r ∈ [t, s]) under Pε and that (Xε
t , Ẑ

ε,Xεt
s ) is Markov in the larger filtration Yεs ∨ FX

ε

t ∨ FZεs to

yield,

EQ

∫ t+δ

t

∣∣∣EPε
[
ψ(Xε

t , Ẑ
ε,Xεt
s )D̃ε

t

∣∣∣Yεs]∣∣∣2 ds = EQ

∫ t+δ

t

∣∣∣EPε
[
EPε

[
ψ(Xε

t , Ẑ
ε,Xεt
s )

∣∣∣H] D̃ε
t

∣∣∣Yεs]∣∣∣2 ds
= EQ

∫ t+δ

t

∣∣∣EPε
[
EPε

[
ψ(x, Ẑε,x;(t,z)

s )
∣∣∣ (x, z) = (Xε

t , Z
ε
t )
]
D̃ε
t

∣∣∣Yεs]∣∣∣2 ds.
Applications of Jensen’s inequality, the Cauchy-Schwarz inequality, the tower property of conditional

expectation, Lemmas 4.4.8 and 4.4.3 then give the estimate,

EQ

∫ t+δ

t

∣∣∣EPε
[
EPε

[
ψ(x, Ẑε,x;(t,z)

s )
∣∣∣ (x, z) = (Xε

t , Z
ε
t )
]
D̃ε
t

∣∣∣Yεs]∣∣∣2 ds
.
∫ t+δ

t

EPε

[∣∣∣EPε
[
ψ(x, Ẑε,x;(t,z)

s )
∣∣∣ (x, z) = (Xε

t , Z
ε
t )
]∣∣∣8]1/4

ds =

∫ t+δ

t

EPε

[∣∣∣TF,x(s−t)/ε2(ψ(Xε
t , ·))(Zεt )

∣∣∣8]1/4

ds

= ε2
∫ δ/ε2

0

EPε
[∣∣TF,xu (ψ(Xε

t , ·))(Zεt )
∣∣8]1/4 du ≤ ε2 ∫ ∞

0

EPε
[∣∣TF,xu (ψ(Xε

t , ·))(Zεt )
∣∣8]1/4 du

. ε2 (1 + EPε [|Zεt |
q
])

1/4
. ε2

(
1 + EQ

[
|Zε0|

q′
])1/4

. ε2. (4.5.20)

Collecting all our bounds for Eq. 4.5.14, that is Eqs. 4.5.16, 4.5.17, 4.5.19, and 4.5.20, and accounting for

the discretization of the time integral into N segments, which results in T/δ times the estimates, we have

EQ sup
t≤T

∣∣∣∣∫ t

0

〈ρεs(ψ), dY εs 〉
∣∣∣∣2 . (ε8 + δ4(1 + ε8))1/4 + δ + F(ε, δ)1/4 +

ε2

δ
. (4.5.21)

If we choose δ(ε) = ε2(− ln ε)p with p ∈ (0, 1/8), then limε→0+ δ(ε) = 0 (see Lemma A.3.2) , and F(ε, δ)→ 0

(see Lemma A.3.3), which completes the proof.

Lemma 4.5.4

Under either of the assumptions:

a. the coefficients of G† and h, σ are C2+α
b , for some α ∈ (0, 1), or

b. a+ ã � 0 uniformly in x and the coefficients of G† and h, σ are Cαb , for some α ∈ (0, 1),

the finite signed Borel measure-valued process ζ, has the unique solution ζt = 0, Q-a.s. ∀t ∈ [0, T ].
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Proof. Our objective is simply to show that

ζt(ϕ) =

∫ t

0

ζs(G†ϕ)ds+

∫ t

0

〈ζs(ϕh+ ασ∗∇xϕ), dYs〉, ζ0(ϕ) = 0,

is a Zakai equation, since uniqueness then follows from [Roz91, Theorem 3.1, p.454].

Let X0 be the diffusion process with infinitesimal generator G†. In particular, consider the following

system of equations,

dX0
t =

[
b(X0

t ) + b̃(X0
t )
]
dt+ ã1/2(X0

t )dW̃t + (a(X0
t )− σσ∗(X0

t ))1/2dŴt + σ(X0
t )dWt, (4.3.3)

dYt = h(X0
t )dt+ αdWt + γdBt,

where αdWt+γdBt is a standard Brownian motion, W̃ , Ŵ ,W,B are independent standard Brownian motions

under Q. This system of equations yield a Zakai equation of the desired form after the change of measure

given by Dt = exp(−
∫ t

0
〈h(X0

s ), αdWs + γdBs〉 − 1
2

∫ t
0
|h(X0

s )|2ds) is performed.

Theorem 4.5.1

Assume that f and g satisfy Hf and Hg, that bI is centered with respect to µ∞(x) for each x and that Q(Xε0,Z
ε
0)

has finite moments of every order. Additionally, assume either:

a. H4,2+α holds for α ∈ (0, 1); for each z, b(·, z), σ(·, z) ∈ C3, and bI(·, z) ∈ C4; that b and bI are Lipschitz

in z, and σ is globally Lipschitz in z; that b, bI, σ satisfy the growth conditions

|b(x, z)|+ |bI(x, z)|+ |σσ∗(x, z)| ≤ C(1 + |z|)β ,
2∑
|k|=1

∣∣Dk
xb(x, z)

∣∣+
∣∣Dk

xσσ
∗(x, z)

∣∣ ≤ C(1 + |z|q),

3∑
|k|=1

∣∣Dk
xbI(x, z)

∣∣ ≤ C(1 + |z|q),

for some β < −2 and q > 0; that h is bounded in (x, z), h(·, z) ∈ C3 for each z, and h is globally Lipschitz

in z.

b. a+ ã � 0 uniformly in x; H2,2+α holds for α ∈ (0, 1); for each z, b(·, z), bI(·, z), σ(·, z) ∈ C2; that b and bI
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are Lipschitz in z, and σ is globally Lipschitz in z; that b, bI, σ satisfy the growth conditions

|b(x, z)|+ |bI(x, z)|+ |σσ∗(x, z)| ≤ C(1 + |z|)β ,
2∑
|k|=1

∣∣Dk
xb(x, z)

∣∣+
∣∣Dk

xbI(x, z)
∣∣+
∣∣Dk

xσσ
∗(x, z)

∣∣ ≤ C(1 + |z|q),

for some β < −2 and q > 0; h is bounded in (x, z), that h is globally Lipschitz in (x, z). If a � 0, which

implies a+ ã � 0, then the Lipschitz condition in z for b, bI can be relaxed to α-Hölder continuity.

Then ζε = ρε,x − ρ0 ⇒ 0 as ε→ 0.

Proof. This follows from Corollary 4.5.1–the existence of weak limits of the probability measures induced on

path space by ζε, Lemma 4.5.3–the characterization of the limit points, and Lemma 4.5.4 on the uniqueness

of the limiting evolution equation.

Lemma 4.5.5

Let ρε be a solution of Eq. 2.3.3 and ρ0 a solution of Eq. 4.3.2. Assume that h, h and the coefficients of G†

are bounded. If ρε,x − ρ0 ⇒ 0 as ε→ 0, then πε,x − π0 ⇒ 0.

Proof. Let ϕ ∈ C2
b (Rm;R) and t ∈ [0, T ], then

(πε,x − π0)t(ϕ) =
ρε,xt (ϕ)

ρε,xt (1)
− ρ0

t (ϕ)

ρ0
t (1)

=
(ρε,x − ρ0)t(ϕ)

ρε,xt (1)
+ π0

t (ϕ)
(ρ0 − ρε,x)t(1)

ρε,xt (1)
.

The weak convergence of (πε,x − π0)t now follows from the estimate

lim
δ→0

inf
ε>0

Q
(

inf
t≤T

ρε,xt (1) > δ

)
= 1,

and the fact that ϕ is bounded and π0
t is almost surely equal to a probability measure.

4.6 Remark on Conditions for the Fast Semigroup

The purpose of this section is to clarify why necessary conditions in this chapter are sometimes at odds with

Theorems 2 and 3 by Pardoux and Veretennikov [PV03, p.1171], which are used in this chapter for a number

of propositions and theorems listed below. Specifically, in the work by Pardoux and Veretennikov [PV03],

the condition in Theorems 2 and 3 are given as H1,2+α (there are actually two scenarios to consider, but in

this chapter we only consider one of them, which is the one just quoted). In particular, only one continuous
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derivative in the x-component is ever needed in the coefficients f and g to be able to take k ≥ 1 derivatives

of the new function under the semigroup TF,x(ϕ), where ϕ ∈ Ck for instance. Because the Poisson solution

of [PV03, Theorem 3, p.1171] is proven based on Theorem 2, the same condition of H1,2+α shows up there,

even if k ≥ 1 derivatives of the Poisson solution are desired. A counter example as to why this condition is

insufficient is given next.

4.6.1 Counter Example

Let g(x, z) = g(x) depend only on x and let f(x, z) = −z. Then the fast process is

dZxt = −Zxt dt+ g(x)dBt,

and therefore Zx is an Ornstein-Uhlenbeck process (in particular Gaussian), and hence satisfies the recurrence

condition for [PV03, p.1171]. We can choose g to satisfy the uniform ellipticity condition as well, assume this

to be true. If Zx0 = z, then

Zxt = e−tz +

∫ t

0

e−(t−s)g(x)dBs ∼ N
(
e−tz,

g(x)2

2
(1− e−2t)

)
,

and thus the transition density at time t in z, having started from (x, z′) at the initial time is

pt(z, z
′;x) = r

(
g(x)2

2
(1− e−2t), z′ − e−tz

)
,

where r(s, y) is the Gaussian density with variance s, evaluated in y. Consider now the test function

ψ(x, z) = cos(z), which is infinitely smooth in x (and in z). Note that for Y ∼ N (µ, g2) we have

E[cos(Y )] =
1

2
E[eiY + e−iY ] =

1

2

(
eiµ−

1
2 g

2

+ e−iµ−
1
2 g

2
)

= e−
1
2 g

2

cos(µ),

and therefore the semigroup (notation from [PV03, p.1171]) is

pt(z, ψ;x) = Ez[cos(Zxt )] = exp

(
−1

2

g(x)2

2
(1− e−2t)

)
cos(e−tz).

If g2 /∈ C2, then this function is not C2 in x.
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4.6.2 List of Changes

The condition should be Hk,2+α, and we use this condition in this chapter instead of the one given by Pardoux

and Veretennikov [PV03]. The difference in the requirements of various propositions and theorems are subtle,

but listed here for reference:

(i) Theorem 4.4.1, H1,2+α has become H2,2+α.

(ii) Theorem 4.4.2, H1,2+α has become Hk,2+α.

(iii) Lemma 4.4.10, H1,2+α has become Hj,2+α.

(iv) Theorem 4.5.1, for a.) H3,2+α has become H4,2+α. This was a result of needing the third derivative in

x of b̃, which required the fourth derivative in x of the Poisson solution G−1
F (bI).

A final remark, is that Lemma 4.4.3 is not affected by this, because there we are also using the density

result of [PV03, Theorem 1, p.1170], which is correct and requires stronger conditions than [PV03, Theorem

2, p.1171]. This is also the reason why necessary conditions in Chapter 3 were not affected (also because that

chapter did not require the solution of the Poisson equations and already had stronger conditions for the

uniqueness of the Zakai equation).
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Chapter 5

Standard and Optimal Proposal
Particle Methods for Multiple
Timescale, Correlated Systems

From this chapter onwards, we turn our attention to numerical methods for solution of the filtering equation.

Unlike the theory of Chapters 2, 3, and 4, where a continuous time observation process was considered, in

this chapter and the next, we are interested in the discrete time observation sequence scenario. We still

consider the signal to be a continuous time process. This format of filtering problem is presented in Section

5.1. It is a natural choice for many problems, including those in the geosciences.

In this chapter and the next, we are driven by current issues in estimation for the geosciences, where

models are chaotic and of very high dimension; at the very largest scales, they can be of the order O(109)

degrees of freedom and require assimilation of O(107) observations during a single day. The models naturally

have multiple timescales and spatial scales that can be considered, as well as symmetry in the modeling of

the dynamics and possibility for correlation in the noise between the model and the observation process.

A trend in the geosciences is that the continual increase in the resolution of the models has begun

to necessitate the need for modeling convective processes [Yan+18]. This has raised new issues on the

assimilation side because most assimilation implementations in weather centers are based on Kalman updates

or a smoothing method called 4D-var. Although these approaches may allow for nonlinear dynamics, they

assume linear Gaussian updates for assimilating the observations. The new regime in which the geosciences

is entering is one that is inherently nonlinear, non-Gaussian, and may require assimilation techniques more

flexible for representing multimodal distributions [Car+18].

Particle filters, also known as sequential Monte Carlo methods, are general and theoretically could fill

this need. Though it is known that particle filters suffer from degeneracy conditions, in particular in high

dimensions [Sny+08; SBM15]. Because of the promising capabilities of particle filters, a great deal of research

has been and is currently being performed on improvements to the approach [Lee+19]. This chapter and the

next aim to provide several useful frameworks and algorithms that may be extended with further research

to aid in this ever challenging problem of efficient and accurate estimation of key state variables in the

geosciences. The methods discussed are general, and can be applied to areas outside of the geosciences–we
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simply use this field of science as motivation. We focus solely on particle filters because of their generality

and potential. Some positive results beyond that in research are already being attained, with particle filters

starting to take a role in actual numerical weather prediction [Pot16; PWR19].

We start this chapter by providing a background on Bayesian filtering for the continuous time signal,

discrete time observation case. This is done in Section 5.1 and finishes with a standard sequential importance

sampling particle filter algorithm. We then turn to the consideration of filtering a multiple timescale system in

Section 5.2. To do so, we first introduce the heterogenous multiscale method (HMM) for integrating multiple

timescale processes. We then introduce a multiple timescale model that will be useful in demonstrating

the methods. In the next section we introduce the homogenized hybrid particle filter (HHPF), which uses

the HMM for filtering multiple timescale systems. We then provide remarks on alternative approaches for

efficient filtering of multiple timescale systems. Results from Section 5.2 appeared in [BN19b], and Section

5.3.1 contains results from [BN19a]. Section 5.4 then discusses the handling of the correlated noise scenario;

these results appear in [Bee+18]. We finish with Section 5.5, which presents particle methods that aim to

addresses the issue of particle degeneracy in high dimensional problems by guiding the particles to more

representative state values; the results of this section appear in [Yeo+20]. The ensemble of these methods are

more likely to lose their diversity and therefore may not be representative of the actual posterior distribution.

An attempt at mitigating this problem is then made by using a tempering scheme on the likelihood update

procedure.

5.1 Bayesian Filtering

We consider the following formulation for the problem of data assimilation for a system with a continuous

time stochastic signal process, a discrete time noisy observation process, and nonlinear coefficients,

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ Rm, (5.1.1)

Ytk = h(Xtk) + ξtk , Y0 = 0 ∈ Rd. (5.1.2)

X is the unobserved signal process, W a standard Brownian motion taking values in Rm, (Ytk)k∈N a sequence

of observations that are available at increasing times (tk), and (ξtk)k∈N a sequence of independent Gaussian

random variables with zero mean and covariance R ∈ Rd×d. It is assumed that W and ξ are independent. X

takes values in Rm with deterministic initial condition x, b is referred to as the drift coefficient and σ the

dispersion coefficient. Y takes values in Rd with deterministic initial condition zero and h is known as the

sensor function. For conciseness, we will simply use the subscript k in lieu of tk for the remainder of the
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chapter (and also in Chapter 6).

Our goal in this chapter is to compute the posterior distribution, πk|k, for each time tk. Here πk|k is the

condition distribution of Xk given Yk, the collection of all observations up to and including Yk. To clarify

notation, if we wrote πj|k, this would correspond to the posterior distribution of Xj given Yk. Knowledge of

the posterior distribution allows us to calculate any statistic of Xk,

πk|k(ϕ) = E [ϕ(Xk) | Yk] , (5.1.3)

where ϕ is a statistic of interest, with a common interest being simply the indicator function. When we want

to emphasis the observation history that we are conditioning on, we will use the following notation for the

posterior distribution,

πk|k(ϕ) = πk(ϕ|Yk).

Given the posterior distribution at tk, one can define the prior distribution at tk+1 from the Chapman-

Kolmogorov relation,

πk+1|k(x|Y) ≡
∫
Rm

ρk+1|k(x|x′)πk|k(dx′|Y),

where ρ is the probability transition function from tk to tk+1.

The update of the posterior at time tk+1 can now be accomplished by Bayes’ formula,

πk+1(x|Yk+1) =
fk+1(Yk+1|x)πk+1(x|Yk)∫

Rm fk+1(Yk+1|x)πk+1(dx|Yk)
, (5.1.4)

where fk+1(Yk+1|x) is the likelihood at time tk+1 of observing Yk+1 given the state x. Lastly, because we

assume the independence of the sequence (ξk), (Yk) is a Markov process and it suffices to consider just the

latest observation Yk instead of the entire history Yk for the prior and posterior distributions.

5.1.1 Sequential Importance Sampling

Ultimately, we would like to be able to sample from πk|k at each time tk to calculate statistics as in Eq. 5.1.3.

Although we cannot do this directly, we can use the principle of importance sampling to approximate this

action.

In importance sampling, we consider the problem where π is a distribution that is difficult to sample
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from, yet proportional to a distribution, ψ, that is easy to evaluate, π ∝ ψ. We then assume that there

exists a distribution q, called the importance or proposal distribution, that is easy to sample from and is

absolutely continuous with respect to π, denoted as q � π. Being absolutely continuous with respect to

another distribution implies that there is a density representation of q with respect to π. Hence, we define

the importance weights w ≡ ψ/q, so that π ∝ wq.

The use of sequential importance sampling is common in particle filtering approaches, which we follow in

Section 5.1.2. The technique is also useful for more advanced methods that aim to approximate the optimal

proposal, such as the approach presented in Section 5.5.1.

5.1.2 The Sequential Importance Sampling Particle Filter (PF)

Recall Eq. 5.1.4, but consider writing the update equation without explicit representation of the normalizer,

πk+1(x|Yk+1) ∝ fk+1(Yk+1|x)πk+1(x|Yk).

Then applying the principle of importance sampling in this setting, we have

πk+1(x|Yk+1) ∝ wkqk+1(x),

where

wk =
fk+1(Yk+1|x)πk+1(x|Yk)

qk+1(x)
.

Now we can approximate the posterior distribution as a weighted collection of Dirac distributions. In

particular, consider an ensemble of independent particles indexed by a set A = {1, . . . , N}, N ∈ N, with the

particles evolving according to the signal process in Eq. 5.1.1. Each particle represents a stochastic realization

of the signal process. We denote the set of values that the particles take in the signal state space at time tk

as Axk and the values by individual particles with similarly notation Axk(j) for j ∈ A. The probability of each

particle representing the true signal process at time t is given by the set of time-varying weights {wjt}j∈A.

Then the posterior distribution is approximated at time tk by a weighted sum of Dirac distributions,

πk(ξ|Yk) =
∑
j∈A

wjkδ
j
k(ξ),

where δjk has support on the singleton given by Axk(j), and wjk ∈ [0, 1] with
∑
j∈A w

j
k = 1 for each tk.
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For convenience, we now make a common choice for the importance distribution, setting qk+1(x) equal

to the prior distribution. Then given a posterior distribution πk(x|Yk) at time tk, the importance (prior)

distribution is simply

qk+1(x) = πk+1(x|Yk) =
∑
j∈A

wjkδ
j
k+1(x).

And the posterior distribution at tk+1 is,

πk+1(x|Yk+1) =
∑
j∈A

wjk+1δ
j
k+1(x) ∝

∑
j∈A

wjkfk+1(Yk+1|x)δjk+1(x).

Therefore, when new observation data is available, the weights are updated according to

wjk+1 ∝ w
j
kfk+1(Yk+1|Axk+1(j)).

Since
∑
j∈A w

j
k = 1 for each tk, these new weights must be normalized. Note that in the case where our

observation is a Gaussian process, as defined by Eq. 5.1.2, then denoting ∆Yk+1(x) ≡ Yk+1 − h(x), the

weights are updated according to,

wjk+1(x) ∝ wjk exp

(
−1

2
∆Yk+1(x)TR−1∆Yk+1(x))

)
. (5.1.5)

Although we consider the discrete time observation case in this dissertation, one can easily show that

re-weighting the particles in the continuous time case with a Radon-Nikodym derivative (e.g., D̃ from Section

2.2) that is discretized in time (due to numerical purposes), results in the same update of the weights as Eq.

5.1.5 (see for instance [Yeo17, p.35]).

Application of particle filters to high dimensional, stiff, or chaotic systems may suffer from divergence

or degeneracy conditions. The main issue of degeneracy, also going by the name of particle collapse, is

characterized by a situation when one particle has nearly all the weight after a small number of assimilations.

That is, for one j ∈ A, wjk ' 1 and wik � 1 for A 3 i 6= j. The a priori selection of an optimal proposal

distribution would be helpful in addressing this problem, but often not possible. A technique that can

provide a remedy is resampling. Intuitively, this just means that particles with large weights are multiplied

and those with small weights are eliminated. We refer the reader to the literature [GSS93; Dou98; DM00;

Aru+02] for more details regarding resampling, importance sampling and other concepts associated with

basic particle filters. In this dissertation, we will use the universal (systematic) resampling technique (see
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for instance [Aru+02, p.180]). The resampling technique is used when an approximation to the effective

sampling size Neff,k ≈ 1/
∑
j∈Ak(wjk)2, introduced by Bergman [Ber99] and Liu et al. [LC98], falls below

some user specified threshold. If this occurs after updating the weights, then a resampling process occurs

before normalization.

In summary, our standard particle filter (PF) algorithm, that will be used in our numerical simulations

has the following recursive structure:

Particle Filter (PF) Algorithm

1. At time tk, set wjk = 1/N , ∀j ∈ A and

πk(x|Yk) =
∑
j∈A

wjkδ
j
k(x).

2. Generate the prior at tk+1 by advecting each particle under the signal dynamics given by Eq. 5.1.1,

πk+1(x|Yk) =
∑
j∈A

wjkδ
j
k+1(x).

3. Update the particle weights according to

wjk+1 ∝ w
j
kfk+1(Yk+1|Axk+1(j)).

4a. If Neff,k is below a threshold (indicating particle degeneracy), then apply universal resampling and set

wjk+1 = 1/N, ∀j ∈ A.

4b. Otherwise, let |w|2 be the l2 norm of the weights and re-normalize each

wjk+1 ← wjk+1/|w|2.

5.2 Multiple Timescales

In this section, we consider how to leverage the theoretical results of Chapters 3 and 4 in a real application.

Recall our multiple timescale equations for the signal process from Chapter 3 (we make comments later in
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the section regarding the handling of the intermediate timescale case),

dXε
t = b(Xε

t , Z
ε
t )dt+ σ(Xε

t , Z
ε
t )dWt, (3.0.1)

dZεt =
1

ε
f(Xε

t , Z
ε
t )dt+

1√
ε
g(Xε

t , Z
ε
t )dVt,

where ε � 1 is the timescale separation parameter (note the difference in scaling parameter compared to

Chapter 3, that we will use throughout the rest of the dissertation). The main computational difficulty

with numerical filtering algorithms that solve for πεt in the multiple timescale case, is that the integration

step size during the predictor step of the filtering algorithm needs to be less than the timescale separation

parameter, ε� 1, for numerical stability. In the context of the problems in Chapters 3 and 4, where we are

only interested in resolving functions of the slow states Xε
t , and when for each fixed x, Zε,xt is ergodic and

converges rapidly to its stationary distribution, then numerical algorithms have been developed to reduce the

computational complexity of simulating the slow signal dynamics with various tradeoffs in accuracy. The

heterogenous multiscale method (HMM) [EE03; E+07; FV04] outlines an algorithm for efficient multiscale

integration leveraging stochastic averaging. Analysis proving weak and strong convergence theorems for

the algorithm are provided by E et al. [ELV05]. In contrast, deterministic and stochastic parameterization

approaches [Wil05; CV08] using autoregressive processes and Markov chain models respectively, have been

used to replace the fast scales when the structure of the signal dynamics allow, resulting in a simpler model

for the slow signal.

In the filtering context, the HMM has been leveraged in ensemble based filters. In particular the use of

HMM in particle filtering methods is outlined and demonstrated by a number of authors [PNY11; YPN11;

Lin+12] and below in Section 5.3, with the ensemble Transform Kalman filter [BEM01] by Harlim [Har11], as

well as Kang and Harlim [KH12] for the ensemble Kalman filter. The problem of how to improve the updated

representation of the fast scales in the HMM when the fast scales are not mixing or the scale separation is

not large have been handled by Harlim [Har11] and Kang and Harlim [KH12] with a pseudo-observation and

solution of an inverse problem.

In this section, we assume sufficient timescale separation and that Zε,xt is ergodic and converges exponen-

tially fast to its stationary distribution. Based on these assumptions, we make use of the results in Chapters

3 and 4 that provide the theoretical justification for the HHPF algorithm presented in Section 5.3. In Section

5.3.1 we explain how specific structure in multiple scale problems can be potentially exploited to reduce

online computational complexity while maintaining a fixed accuracy of filtering on the slow states.
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5.2.1 The Heterogenous Multiscale Method

We define the necessary notation and briefly explain HMM in this section. The reader is referred to the

work by E et al. [ELV05] for additional details. The numerical motivation for HMM, is that the stability of

simulating the signal process (Xε
t , Z

ε
t ) of Eq. 3.0.1 requires an integration step size, δm, which must be smaller

than ε. The key idea of HMM is to integrate (x, Zεt ), that is the fast process with fixed Xε
t = x, with an

integration step size δm < ε for a small period of time ∆m > δm and with a finite number of realizations R ∈ N.

We call ∆m the fast-macro step size. From this simulation, a transition density µ∆m
(z;x, z0) is constructed

and should be close to µ∞(z;x). Then the averaged coefficients of Section 3.2 can be approximated, so that

filtering can be applied to the evolution equation governing the filtering process–the Kushner-Stratonovich

or Zakai equation. Since µ∞(z;x) is dependent on x, the averaged coefficients must be recalculated, but

on larger time-scales then ∆m. We denote ∆M ≥ ∆m, the slow-macro step size, which is the interval of

time upon which the transition density µ∆m(z;x, z0) and hence coefficients b, a, σ, h are assumed to hold

accurately. During this time-interval a slow-integration step size δM > δm is used to integrate the averaged

SDE with generator GS .

In the case that HMM is to be applied to the signal model with intermediate timescale forcing (e.g., Eq.

4.0.1), then the averaged SDE has generator G† = GS + G̃. To get the drift b̃, and diffusion ã coefficients of

G̃, we need the solution of the Poisson equation G−1
F (bI)(x, z) integrated against the stationary distribution

µ∞(dz;x). Solving the Poisson equation with standard numerical methods for PDEs on even a subset of

Rm×Rn is not tenable if m+n is greater than even dimension three. Therefore a probabilistic representation

is useful. The solution of the Poisson equation on Rm × Rn has the representation

G−1
F (bI)(x, z) =

∫ ∞
0

∫
Rn
bI(x, z

′)pt(dz
′;x, z)dt.

From the exponential convergence of the transition density pt(z
′;x, z) to the stationary distribution µ∞(x)

(or density p∞(z, x)) and the property that bI is centered with respect to µ∞(x), it is suggestive that the

Poisson equation solution could be approximated by integrating bI against the transition density from the

initial time up to the final time ∆m.

5.2.2 The Lorenz 1996 Model

The Lorenz ’96 model was originally introduced by Lorenz [Lor95] to mimic multiscale mid-latitude atmospheric

dynamics for an unspecified scalar meteorological quantity. A latitude circle is divided into K = 6 sectors,
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and each sector is subdivided into J = 9 subsectors, with the following dynamics in each sector:

dXk
t = (Xk−1

t (Xk+1
t −Xk−2

t )−Xk
t + F +

hx
J

J∑
j=1

Zk,jt )dt

dZk,jt =
1

ε

(
Zk,j+1
t (Zk,j−1

t − Zk,j+2
t )− Zk,jt + hzX

k
t

)
dt

(5.2.1)

where k = 1, . . . ,K and j = 1, . . . , J . A visual representation of this model is provided in Figure 5.1. Xk
t

represents a slow-scale atmospheric variable at time t in the k-th sector. In this chapter, we use the version

of the model by Fatkullin and Vanden-Eijnden [FV04], but with different values for K and J . This version

of the model was also used by Kang and Harlim [KH12]. In Eq. 5.2.1, the nonlinear, linear and slow scale

effects in the fast dynamics are all of order one. In this setting, Fatkullin and Vanden-Eijnden [FV04] showed

that the fast scale dynamics display ergodic properties such that the averaging technique can be used to

average out the fast dynamics when we are only interested in the slow dynamics (coarse-grained dynamics).

In Eq. 5.2.1, F is a slow-scale forcing, and hx, hz are coupling terms.

Figure 5.1: A recreation of a similar image by Wilks [Wil05], that provides a visualization of the two timescale
Lorenz ’96 model.

The dynamics of unresolved modes can be represented by adding forcing in the form of stochastic terms

(see for example [MTV01; MTV03]). The use of stochastic terms to represent nonlinear self-interaction effects

at short timescales in the unresolved modes is appropriate if we are only interested in the coarse-grained

dynamics occurring in the long, slow timescale. This is called stochastic consistency by Majda et al. [MTV03].
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Considering Eq. 5.2.1, where only quadratic nonlinearity is present in the fast process, the motivation behind

adding stochastic forcing is to model higher-order self-interaction effects.

Particle filtering is improved if there is some noise in the dynamics, and a stochastic signal will be required

for the nudged particle method mention in Section 5.5.1. For these reasons, as well as for the reason of

stochastic consistency, let us write Eq. 5.2.1 in a standard form with additive stochastic forcing,

dXε
t = b(Xε

t , Z
ε
t )dt+ σxdWt, Xε

t ∈ R6,

dZεt =
1

ε
f(Xε

t , Z
ε
t )dt+

1√
ε
σzdVt, Zεt ∈ R54,

(5.2.2)

and consider discrete time, sparse observations,

Y εtk = Xε
tk

+ Utk , and Utk ∼ N (06×1,∆t Id.6×6).

Following the work of Beeson and Namachchivaya [BN19b], we now fix our model parameters, for the

purpose of understanding the behavior of Eq. 5.2.1 and making comparisons with the numerical solution

of the averaged dynamics. Let the simulation parameters be: ε = 1E-2, F = 10, (hx, hz) = (−1, 1), σx, σz

sparse square matrices with 1 along the diagonal and 0.05 on the first two sub and super-diagonals, K = 6

and J = 9. Hence (Xt, Zt) ∈ R6 ×R54 and the averaged dynamics have X0
t ∈ R6, so a state space dimension

a 10th of the original. Figure 5.2 illustrates the behavior of a generic slow state X1
t (shown in orange), the

fast states in the 1st sector, that is Z1,1
t , . . . , Z1,9

t (shown in gray), and the fast scale forcing that enters Eq.

5.2.1 for the X1
t component (shown in light blue); the fast scale forcing is (hx/J)

∑J
j=1 Z

1,j
t .

Due to the symmetry of the model, it is sufficient to look at one sector to get a glimpse of the qualitative

behavior of the dynamics. According to Lorenz [Lor95], the time scale used here, T = 20, is approximately

equivalent to mimicking 100 days in ‘real’ time. The solution shown in Figure 5.2 was produced by integrating

the initial conditions with an Euler-Maruyama integration scheme with a step size of δ = 1E-4.

The parameters we use in this chapter are slightly different from those Fatkullin and Vanden-Eijnden

[FV04]. Therefore we should confirm the applicability of HMM to our problem. We do this numerically,

setting the relevant simulation parameters to R = 1, δm = 1E-4, δM = 1E-2, ∆m = 5δm, and ∆M = 10δM .

With these parameters, and the same initial conditions as used in Figure 5.2, we get the result shown in

Figure 5.3 when integrating with HMM using the Euler-Maruyama integration schemes for both the fast and

slow-scale processes. After some time, the qualitative behavior seen in Figure 5.2 and Figure 5.3 are quite

different, but Figure 5.4 and Figure 5.5 show us that on shorter time scales (the first 0.8 time units of the

simulations), the dynamics of the numerically averaged X0
t are indeed near the original Xt.
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Figure 5.2: Direct numerical solution of the Lorenz ’96 model: X1
t in orange, Z1,1

t . . . , Z1,9
t in gray, and the

fast scale forcing (hx/J)
∑J
j=1 Z

1,j
t on X1

t in light blue.

Figure 5.3: An HMM solution of the Lorenz ’96 model: X0,1
t in orange, R = 1 realizations of Z1,1

t . . . , Z1,9
t

with fixed X0
t in gray, and the averaged fast scale forcing on X0,1

t in light blue.
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Figure 5.4: Direct numerical solution of the Lorenz ’96 model: X1
t in orange, Z1,1

t . . . , Z1,9
t in gray, and the

fast scale forcing (hx/J)
∑J
j=1 Z

1,j
t on X1

t in light blue.

Figure 5.5: An HMM solution for the Lorenz ’96 model: X0,1
t in orange, R = 1 realizations of Z1,1

t . . . , Z1,9
t

with fixed X0
t in gray, and the averaged fast scale forcing on X0,1

t in light blue.
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The fact that the numerically averaged solution is close on shorter time scales is sufficient in the filtering

context of sparse in-time observations if the observations occur before the Xt and X0
t solutions separate too

much. For instance, in Sections 5.3.2 and 5.4 we will assume that the observations come every ∆t = 10δM ,

which is ∆t = 0.1 for our parameters. The solutions Xt and X0
t are certainly visually close in Figure 5.4 and

Figure 5.5 over the time interval [0, 0.1]. The update step at t = 0.1 in filtering will then improve the estimate

of Xt at time t = 0.1 and therefore limit the separation that may have occurred over the interval [0, 0.1].

A more rigorous numerical verification that HMM is appropriate for our model comes from two inves-

tigations: 1. comparing the effective (stationary) density associated with X0
t with the x-marginal of the

transition density of Xε
t with our time scale separation parameter ε = 1E-2, and 2. showing that the (x, Zεt )

process converges exponentially to it’s invariant distribution, regardless of initial condition on Zεt = z ∈ Rn.

Technically, we should see this last result occur within a time interval of length ∆m, which implies that the

application of HMM is well founded for our choice of parameter. Again, in the context of filtering, we are

able to relax this last requirement and still effectively filter.

For the first investigation, Figure 5.6 provides a numerical confirmation that Eq. 5.2.1 with ε = 1E-2

produces Xε
t with a marginal density close to the effective density for X0

t . Specifically, Figure 5.6 compares

the marginal density of the first slow component X1
t for ε = 1E-2 and 1E-3, which are nearly the same,

implying that the statistics for the dynamics of Xε
t with ε = 1E-2 is close to X0

t . Because of the symmetry of

the signal model of Eq. 5.2.1, all slow components Xk
t have the same marginal density, hence comparing

against only the X1
t marginal density is appropriate.

In Figure 5.7 we show the marginal density of the first component of the fast process for four different

simulations. For this analysis, we simulate the full model from a randomly generated initial condition to

eliminate transient effects. Then we fix the slow process Xε
t = x and simulate the fast process for randomly

generated Zε0, where each component of Zε0 is chosen according to N (0, 1); normal distribution with mean

zero and variance one. Figure 5.7 shows the convergence of the transition densities µ15·∆m(z;Xε
0 = x, Zε0) for

the first component of Zεt ; showing that on a macro step of 15∆m we have sufficient convergence from most

initial states of Zε0. When using HMM in our estimation implementation of HHPF, we can in fact relax the

condition for convergence of the transition densities and still effectively filter. Hence why we will use a macro

step of only ∆m in Sections 5.3.2 and 5.4.
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Figure 5.6: Simulation of Eq. 5.2.2. Shown in gray is the X1
t (i.e., first component) marginal density when

ε = 1E-2 and similarly in light blue the X1
t marginal density when ε = 1E-3.

Figure 5.7: Transition densities of the first component of Zεt : µ15·∆m(z;Xε
0 = x, Zε0), for randomly generated

Zε0; the first component of Zε0 is shown as Z1
0 in the legend for four different simulations. Xε

0 = x is a fixed
slow state.
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5.3 Homogenized Hybrid Particle Filter (HHPF)

HHPF differs from regular particle filtering in the sense that particles are used to represent X0 instead of

(Xε, Zε). Hence the particles and their weights approximate the reduced order filter π0
t . The numerical

integration of the particles Axt (j) under the SDE with generator GS requires multiscale integration techniques

to approximate the averaged drift and diffusion coefficients. Similarly, multiscale techniques are needed for

the averaged observation coefficient,

h(x) ≡
∫
h(x, z)µ∞(dz;x), (5.3.1)

for observation and updating of the particle weights {wjt}j∈A. Additional details on HHPF are given in

several papers [PNY11; YPN11; Lin+12]; here we simply summarize the algorithm steps:

Homogenized Hybrid Particle Filter (HHPF) Algorithm

1. Same as (PF) step 1)

2. Apply the HMM multiscale integration technique and compute the averaged coefficients b, a1/2, h.

3. Generate the prior at tk+1 by advecting each particle under the homogenized signal dynamics given by

the generator GS .

4. Same as (PF) step 3) but using h in the likelihood distribution.

5. Same as (PF) steps 4a) and 4b)

5.3.1 Exploiting Model Symmetry and Parameterizations

In addition to assuming scale separation and ergodicity of Zε,xt , if our signal dynamics has certain structural

properties, then it may be advantageous to move some of the online computations related to resolving the

transition density µ∆m
(z;x, z0) or averaged coefficients offline. As a first step, if µ∆m

(z;x, z0)→ µ∞(z;x)

fast enough, then one could consider precomputing an approximation to the map

ψ(x) : Rm −→M(Rn)

(x) 7−→ µ∞(z;x).

Here M(Rn) is the space of measures on Rn. A naive approach here would most likely be computationally

intractable unless x ∈ Rm is of small dimension or the dynamics are simple - the reason being that one may
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need an immense amount of storage and pre-processing to well approximate ψ(x). And in this case, one

would still have to calculate b, a, h online.

If we further consider that the coefficients of the slow signal and observation can be written in the following

form,

b(Xε
t , Z

ε
t ) = b1(Xε

t ) + b2(Xε
t )b3(Zεt ),

σ(Xε
t , Z

ε
t ) = σ1(Xε

t ) + σ2(Xε
t )σ3(Zεt ),

h(Xε
t , Z

ε
t ) = h1(Xε

t ) + h2(Xε
t )h3(Zεt ),

(5.3.2)

then all computations of the averaged coefficients can also be moved offline to a pre-processing mode -

removing a potentially costly numerical integration online. Still the fact that Rm may be of high dimension

could be problematic. The next property is therefore quite useful.

Multiscale problems often have a natural subgrid structure, where a subset of the fast states only couple

to a single slow state, and this same slow state is the only slow state coupled to the subset of fast states.

For instance, the first slow state X1
t may be solely coupled to J fast states Z1,1

t , . . . , Z1,J
t and the other slow

states {Xk
t }. And similarly X2

t solely coupled to Z2,1, . . . , Z2,J
t and {Xk

t }. In contrast, Zk,jt is only dependent

on Xk
t and any other Zk,j

′

t in its sector. This is the form of the Lorenz ’96 model, which will be tested in

Section 5.3.2. This form is important because building on the previous observations and assumptions, implies

that ψ can simplify to a one-dimensional map,

ψf (x) : R −→ R

(x) 7−→
∫
f(z)µ∞(dz;x),

yielding an averaged coefficient or forcing for the averaged dynamics. For example, take b3(Zεt ) in Eq. 5.3.2.

Our mapping would then yield ψb3(x) =
∫
b3(z)µ∞(dz;x).

The approximation of ψf (x) may be accomplished by a number of ways, for example: polynomial

regression, learning methods (e.g., neural networks), or a simple table lookup approach (i.e., regression with

simple functions). Although slightly less numerically efficient than a polynomial regression, we use a table

lookup in Section 5.3.2 for simplicity and because the timing difference for our test problem would not have

been significant. Using this approach, we modify the HHPF algorithm and designate it as eHHPF.
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Efficient Homogenized Hybrid Particle Filter (eHHPF) Algorithm

1. Offline pre-computation of data to approximate

ψb3(x), ψσ3σ∗3
(x), ψσ3(x), ψh3(x).

2. Possible offline data compression of

ψb3(x), ψσ3σ∗3
(x), ψσ3

(x), ψh3
(x).

3. Same as (PF) step 1)

4. Generate the prior at tk+1 by advecting each particle under the homogenized signal dynamics given by

the generator GS , evaluating

ψb3(x), ψσ3σ∗3
(x), ψσ3

(x),

as necessary.

5. Same as (PF) step 3) with evaluation of ψh3
(x) for the likelihood distribution.

6. Same as (PF) steps 4a) and 4b)

7. Return to Step 3)

Before we demonstrate some numerical filtering results, we return to comparing the dynamics of the

Lorenz ’96 model when direct numerical integration, HMM, and the averaging method of this section are

used. In Figures 5.8, 5.9, and 5.10 we illustrate the behavior of a generic slow state X1
t (shown in orange), the

fast states (if applicable) in the 1st sector, that is Z1,1
t , . . . , Z1,9

t (shown in gray), and the fast scale forcing

that enters Eq. 5.2.1 for the X1
t component (shown in light blue). Again, due to the symmetry of the model,

it is sufficient to look at one sector to get a glimpse of the qualitative behavior of the dynamics. For all

analysis in this chapter, we use an Euler-Maruyama integration scheme. Figure 5.8 shows the behavior of

the direct numerical simulation with an integration step size of 1E-4. Figure 5.9 is the HMM method with

parameters R = 1, δm = 1E-4, δM = 1E-2, ∆m = 5δm, and ∆M = 10δM . And lastly, Figure 5.10 depicts

integration of X0
t using an integration step size of 1E-2 and calling ψη1 to produce the fast forcing on X1

t .

According to Lorenz [Lor95], the time scale used here, T = 10, is approximately equivalent to mimicking 50

days in ‘real’ time.
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Figure 5.8: Direct numerical simulation of the Lorenz ’96 model: X1
t in orange, Z1,1

t . . . , Z1,9
t in gray, and

the fast scale forcing η1
t on X1

t in light blue.

Figure 5.9: An HMM simulation of the Lorenz ’96 model: X1
t in orange, Z1,1

t . . . , Z1,9
t in gray, and the fast

scale forcing η1
t on X1

t in light blue.

5.3.2 Application to the Lorenz 1996 Model

We now provide some simulation comparisons between the various particle filtering algorithms thus far

discussed. In the simulations that follow, we run each for T = 20. Recall that we will take observations

every ∆t = 10δM , which is ∆t = 0.1 for our parameters. In total we consider 12 experiments each with 24

simulations, the results and pertinent parameters are given in Tables 5.1, 5.2, and 5.3. In each of those tables,
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Figure 5.10: A solution of the Lorenz ’96 model using pre-computed ψη(x): X1
t in orange and the sampled

fast scale forcing ψη1 on X1
t in light blue.

the average root-mean squared error (RMSE) is calculated as,

RMSE =

√√√√T/∆t∑
k=1

∣∣Xε
tk
− E

[
Xε
tk

]∣∣2
2
, (5.3.3)

and used to quantify the accuracy of the filtering algorithm. The average simulation run-time and number of

particles is also given.

Starting with the results in Table 5.1, one can see that the HHPF algorithm yields a greater than ten time

speed up over PF, but with degraded accuracy when the number of particles is held constant. Doubling the

number of particles gives the HHPF almost a ten time speed up and accuracy on par with PF. Following the

same procedure with our eHHPF algorithm, we attain better performance than the HHPF algorithm in terms

of both accuracy and computational efficiency. In particular the 32 particle case only requires two-thirds the

run-time of HHPF and still yields an average RMSE that is lower.

Table 5.1: Filtering application of PF, HHPF, and eHHPF to the Lorenz ’96 model.
Filter PF HHPF HHPF eHHPF eHHPF

# Particles 16 16 32 16 32
RMSE 1.84 2.90 1.80 2.34 1.67

Run-Time 859 s 73.6 s 90.0 s 59.3 s 63.5 s

The algorithm, eHHnPF, used in Table 5.2 has not yet been given. To be clear, it is a combination of the

nPF algorithm given in Section 5.5.1 and the eHHPF stated in this section. The main idea in Section 5.5.1 is
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that the particles can be controlled (nudged), hence the subscript n in the naming convention. The prefix of

‘e’ is then the equivalent method of eHHPF, but with this particle control feature. One key drawback of

this method is that it can be numerically expensive, yet this is offset by the fact that a smaller ensemble of

particles is required to have low RMSE.

Of interest was whether the eHHnPF algorithm could further decrease run-time with comparable accuracy

to the eHHPF 32 particle case. The nudged algorithm does require the solution of the tangent map and hence

has a larger computational overhead per particle, yet requires less total particles to achieve a similar average

RMSE. Comparing Tables 5.1 and 5.2, shows that the eHHnPF algorithm with eight particles is comparable

in accuracy to eHHPF with 32 particles. It may be that on problems that are inherently more chaotic than

the test problem considered in this work, that the nudged method would ultimately prove superior. The

Lorenz ’96 problem gains additional positive Lyapunov exponents, that grow in magnitude, as the forcing F

becomes larger; resulting in a more chaotic system. Hence more extensive testing could be carried out on the

Lorenz ’96 model to provide a greater comparison.

Table 5.2: Filtering application of eHHnPF to the Lorenz ’96 model.
Filter eHHnPF eHHnPF

# Particles 8 16
RMSE 1.80 1.49

Run-Time 64.6 s 70.0 s

An interesting question is whether the problem at hand really requires filtering methods that account for

the fast scales. That is, given a sufficient number of particles, could the PF algorithm be applied directly to

the slow scale dynamics, but ignoring the fast scale, and hence fast scale forcing. We designate this algorithm

as PFX and show the results in Table 5.3. The results indicate that indeed attempting to filter with the

standard PF algorithm, and without accounting for the effects of the fast states on the slow states, one can

not adequately reduce the RMSE. We only carry out the simulations up to 192 particles, since already at

that point the eHHPF and eHHnPF algorithms are superior in both run-time and average RMSE.

Table 5.3: Filtering application of PF to the Lorenz ’96 model with fast forcing neglected.
Filter PFX PFX PFX PFX PFX

# Particles 16 32 64 128 192
RMSE 5.88 4.55 3.46 2.37 2.56

Run-Time 57.6 s 58.5 s 61.7 s 67.56 s 73.7 s

The last observation we make of our results is that the process of approximating the normalized fast

forcing on the slow states by ψη results in a particle ensemble with potentially worse overall statistics. In
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Figure 5.11: PF showing the signal Xε,1
t (first component) in black, the estimate EXε,1

t in orange, observations
in green, particles in light blue.

Figure 5.12: eHHPF showing the signal Xε,1
t (first component) in black, the estimate EXε,1

t in orange,
observations in green, 16 particles in light blue.

particular the particles are not as diffusive. This can be seen by comparing a snapshot of a representative

solution of the PF in Figure 5.11 to the eHHPF in Figure 5.12, both with the same number of particles. A

similar trend is seen in the HHnPF algorithm and becomes slightly more pronounced in the eHHnPF. This

potential deficiency could be mitigated by constructing ψη to also approximate higher order moments besides

just the mean of η.
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5.4 Correlated Noise

Neither the PF nor HHPF algorithms already described provide details of how we should account for

correlation between the sensor and signal noise in the discrete time observation process; that is an observation

process of the form,

Ytk = h(Xtk) +

∫ tk

tk−1

αdWs + γUtk , (5.4.1)

with α 6= 0 and γ � 0. Following the PF algorithm, when we select the proposal distribution as the prior

distribution, then we must derive the likelihood distribution for updating the particle weights. In this section,

we derive the likelihood for this case and demonstrate a numerical implementation of it on the Lorenz ’96

model.

5.4.1 Likelihood for Correlated Sparse Observation

To derive the likelihood distribution, consider discrete time signal and observation processes of the form,

xj = fj(xj−1) +Gjvj−1,

...

xk−1 = fk−1(xk−2) +Gk−1vk−2, (5.4.2)

xk = fk(xk−1) +Gkvk−1,

yk = hk(xk) + ek.

As before, subscript indices indicate times, xk is the signal process, yk the observation process, and {vj} is a

sequence of independent Gaussian random variables. The sequence {ej} are also Gaussian, but correlated

with {vj}; specifically, the random variable ek is correlated with vj−1, . . . , vk−1. Figure 5.13 provides a

pictorial representation of Eq. 5.4.2.
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Figure 5.13: A pictorial representation of Eq. 5.4.2 with arrows between vj and ek indicating sensor-signal
correlation.

The noises vj−1, . . . , vk−2, vk−1, ek are jointly Gaussian,



vj−1

...

vk−2

vk−1

ek


∈ N


0,



Qj−1 . . . 0 0 Sj,k

0
. . . 0 0

...

0 0 Qk−2 0 Sk−1,k

0 0 0 Qk−1 Sk,k

STj,k . . . STk−1,k STk,k Rk




,

with Qj the covariance matrix associated with vj , Rk with ek and Sj,k the covariance of vj−1 and ek for

instance.

For simplicity of discussion, let us assume f = fj and h = hj , ∀j. Also, define Ĝj ≡ GjQj−1G
T
j ,

Ŝj,k ≡ GjSj,k, and

R ≡



Ĝj . . . 0 0 Ŝj,k

0
. . . 0 0

...

0 0 Ĝk−1 0 Ŝk−1,k

0 0 0 Ĝk Ŝk,k

ŜTj,k . . . ŜTk−1,k ŜTk,k Rk


=

 Q̃ S̃

S̃T Rk

 .
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The probabilistic description of the state space model is then given by,

p





xj

xj+1

...

xk

yk



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xj−1


= N





f(xj−1)

E [f(xj)]

...

E [f(xk−1)]

E [h(xk)]


,R



= N


E [f(Xj−1:k)]

E [h(xk)]

 ,

 Q̃ S̃

S̃T Rk


 ,

where we used the notation Xj−1:k to be the vector (xk, . . . , xj−1). We will need the following lemma on

conditional Gaussian distributions.

Lemma 5.4.1

Let X,Y be two vectors with jointly Gaussian distribution:

X
Y

 ∼ N

µx
µy

 ,

Pxx Pxy

Pyx Pyy




Then the conditional Gaussian distribution for Y given X = x is Gaussian distributed,

(Y |X = x) ∼ N
(
µy + PyxP

−1
xx (x− µx), Pyy − PyxP−1

xx Pxy
)
.

Using Lemma 5.4.1, the likelihood p(yk|xk, xk−1, . . . , xj−1) is,

p(yk|xk, xk−1, . . . , xj−1) ∝ N
(
h(xk) + S̃T Q̃−1(Xj−1:k − f(Xj−1:k)), Rk − S̃T Q̃−1S̃

)
.

As we have already seen in this chapter, a continuous time signal does become discrete once we apply a

numerical filtering algorithm to the problem (i.e., we are forced to numerically integrate and therefore the

continuous time signal becomes a discrete time process). For instance, our application of an Euler-Maruyama

integration scheme means that each Euler step can be thought of as one line from Eq. 5.4.2. It is in this sense

that we will apply the results of this subsection with PF and HHPF to solve the correlated filtering problem.

For a simple two-dimensional example demonstrating correlated filtering with the aforementioned methods,

see the work of Beeson et al. [Bee+18]. For the reader interested in algorithms for the continuous time signal
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and observation case with correlated sensor noise, see the work of Crisan [Cri06], where a branching particle

filter is presented for solution of the Zakai equation.

5.4.2 Application to the Lorenz 1996 Model

In this section we apply the PF, HHPF, and HHnPF algorithms to a correlated sensor-signal noise filtering

problem of the Lorenz ’96 model with continuous time signal and discrete time observation. We use the same

Lorenz ’96 model and HMM parameters as given in Section 5.2.2, and Eq. 5.2.1, in the form of Eq. 5.2.2.

For the observation process, we use Eq. 5.4.1 with (tk) the observation times and in the non-correlated case,

α ≡ 0m×m, γ ≡ σx,

and in the correlated case,

α ≡ 1√
2
σx, γ ≡ 1√

2
σx.

The choice of α, γ in Eq. 5.4.1 means that in both the non-correlated or correlated case, the observation

has the same statistics. Here we define h ≡ Idm×m, an m ×m identity matrix that acts on x ∈ Rm by

matrix-vector multiplication. In the case of the homogenized hybrid particle filters, the sensor function h(·),

is a function of X0
tk

.

As before, in the simulations that follow, we use an observation step size ∆t = 10δM = 0.1 and total

simulation time of T = 20, which approximately corresponds to 0.5 and 100 ‘real’ days according to Lorenz

[Lor95]. The deterministic Lorenz ’96 model investigated by Lorenz [Lor95] has an error doubling time

of approximately 1.6 ‘real’ days. In all simulations, the true signal is correlated, but we will conduct one

experiment with the HHPF filter assuming a sensor-signal model of the non-correlated type (i.e., α = 0m×m

and γ = σx). In all but one simulation, we use N = 16 particles, with an effective number of Neff = 8. For

one HHnPF experiment we will use N = 8 and Neff = 4. In total, we consider 5 experiments with their

defining parameters given in Table 5.4. Each experiment consisting of 24 simulations. The average RMSE

is calculated according to Eq. 5.3.3, and is shown for each experiment in Table 5.4 alongside the average

simulation run-time.

Figure 5.14 shows the result of the PF applied to the Lorenz ’96 problem over the time interval [0, 20].

The average RMSE was 1.52 and average simulation time 1,019 seconds. With the exception of the interval

[1, 2.5], the PF with 16 particles is able to track well Xε,1
t ; the first component of Xε

t , but at the expense of

long simulation times. In Figures 5.15 and 5.16 we show the corresponding result for the HHPF experiments,
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Figure 5.14: PF, α = γ = σx/
√

2, N = 16, Neff = 8. Top graph: the signal Xε,1
t (first component) in black,

the estimate EXε,1
t in orange, observations in green. Bottom graph: RMSE in light blue.

Figure 5.15: HHPF, α = 0, γ = σx, N = 16, Neff = 8. Top graph: the signal Xε,1
t (first component) in black,

the estimate EXε,1
t in orange, observations in green. Bottom graph: RMSE in light blue.

and in Figures 5.18 and 5.17 the results when nudging is used.

As one might expect, the use of HHPF results in a slight degradation in the accuracy of the estimate

of the signal in comparison to the PF for a fixed number of particles, but with a significant reduction in

simulation run-time. For instance, Table 5.4 shows that the HHPF simulations result in more than a ten

time speed-up over the PF. The result shown in Figure 5.15 has the least accurate tracking of the signal out
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Figure 5.16: HHPF with α = γ = σx/
√

2, N = 16, Neff = 8. Top graph: the signal Xε,1
t (first component) in

black, the estimate EXε,1
t in orange, observations in green. Bottom graph: RMSE in light blue.

Figure 5.17: HHnPF with α = γ = σx/
√

2, N = 16, Neff = 8. Top graph: the signal Xε,1
t (first component) in

black, the estimate EXε,1
t in orange, observations in green. Bottom graph: RMSE in light blue.

of all experiments. This is expected, since this experiment does not model the correlated sensor-signal noise

and filters on the homogenized dynamics. Figure 5.16 shows that an improvement in accuracy for the same

run-time can be made by using the correlated algorithm in Section 5.4.1.

Figure 5.17 depicts the type of improvement in tracking that using nudging provides over HHPF. The

HHnPF solution in Figure 5.17 uses the same number of particles as the HHPF simulations, N = 16, and
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Figure 5.18: HHnPF with α = γ = σx/
√

2, N = 8, Neff = 4. Top graph: the signal Xε,1
t (first component) in

black, the estimate EXε,1
t in orange, observations in green. Bottom graph: RMSE in light blue.

uses four realizations for calculation of the Feynman-Kac formulas in Eqs. 5.5.5 and 5.5.6. The calculation of

the control, which is calculated once over each observation interval–and held fixed, results in a slower average

run-time of 159 seconds per simulation, but with a much improved RMSE of the coarse-grain states. Figure

5.18 is also an HHnPF simulation, but with the number of particles reduced to N = 8, which still results in

good tracking due to the nudging of the particles, and a reasonable run-time of 110 seconds per simulation

on average; the RMSE average of 1.30 is still lower than that of the PF average RMSE.

Table 5.4: Filtering results for various filter algorithms applied to the Lorenz ’96 model. RMSE integrated
over time, and filter run-time (per simulation) averaged over 24 experiments.

Experiment 1st 2nd 3rd 4th 5th
Filter PF HHPF HHPF HHnPF HHnPF
Neff 8 8 8 8 4
N 16 16 16 16 8

α σx/
√

2 0 σx/
√

2 σx/
√

2 σx/
√

2

γ σx/
√

2 σx σx/
√

2 σx/
√

2 σx/
√

2
RMSE 1.52 2.47 2.10 1.11 1.30

Run-Time 1019 s 85 s 85 s 159 s 110 s

In Figures 5.19 - 5.23, we provide a magnified view of the interval [2.5, 7.5] for the estimate of the signal

in Figures 5.14 - 5.18. Besides showing the signal, estimate of the signal, and observations in these figures, we

also show the history of the particles (shown in light blue). The error in the observation of the signal is more

apparent in these figures. One can also see when re-sampling occurs; a rapid collapse of particles far from
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the observations to locations closer to the observation at observation times. The diffusion of the particles

between observation times, partly exacerbated by the chaotic property of the model, is also apparent. In

Figures 5.22 and 5.23, the particle traces in light blue show that although we apply control to the particles

to nudge them towards observations, the running cost associated with applying control in Eq. 5.5.1 means

that the control is not allowed to dominate the true dynamics by too much.

Figure 5.19: PF with α = γ = σx/
√

2, N = 16, Neff = 8. The signal Xε,1
t (first component) in black, the

estimate EXε,1
t in orange, observations in green, particles in light blue.

Figure 5.20: HHPF with α = 0, γ = σx, N = 16, Neff = 8. The signal Xε,1
t (first component) in black, the

estimate EXε,1
t in orange, observations in green, particles in light blue.

The last figure that we include is of the effective number Neff , of the solutions shown in Figures 5.14,
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Figure 5.21: HHPF with α = γ = σx/
√

2, N = 16, Neff = 8. The signal Xε,1
t (first component) in black, the

estimate EXε,1
t in orange, observations in green, particles in light blue.

Figure 5.22: HHnPF with α = γ = σx/
√

2, N = 16, Neff = 8. The signal Xε,1
t (first component) in black,

the estimate EXε,1
t in orange, observations in green, particles in light blue.

5.16, 5.17; having simulation parameters corresponding to the 1st, 3rd, and 4th experiments in Table 5.4

respectively. Figure 5.24 shows the effective number at observation times for these simulations. Since we

set the threshold of Neff equal to eight, this implies that for all three of these simulations, re-sampling

occurred after every observation. The other simulations, corresponding to the results in Figures 5.15 and

5.18, re-sampled on most, but not every observation. It is interesting that even with nudging, Figure 5.24

shows that the HHnPF approach on the Lorenz ’96 model still results in significant resampling.
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Figure 5.23: HHnPF with α = γ = σx/
√

2, N = 8, Neff = 4. The signal Xε,1
t (first component) in black, the

estimate EXε,1
t in orange, observations in green, particles in light blue.

Figure 5.24: The effective number Neff at observation times versus time. PF shown in black, HHnPF in
orange, and HHPF in light blue. Values below 8 indicate re-sampling occurs.

5.5 Optimal Proposal Particle Filtering and Tempering

The choice of the prior as the proposal distribution in the particle filter described in Section 5.1.2, is convenient,

but suboptimal. If one can more closely approximate the optimal proposal (the proposal density that gives a

minimal variance of the weights [DdG01]), then using this distribution will yield a better approximation of

the posterior distribution. In this section, we describe a method to construct an approximation of the optimal

proposal by solving an optimal control problem for the steering of the particles toward the observations,
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but staying mostly true to the natural dynamics. This method was developed in a series of papers [Lin+12;

Lin+14; Yeo+20], and is similar in concept, but quite different from a number of other efforts to exploit the

optimal proposal technique [Lee10; CMT10].

Additionally, we improve the diversity of the particle samples by combining the controlled particle

technique with tempering of the likelihood [Nea96; MDJ06; BCJ14]. This combined method is then compared

against another optimal proposal technique that introduces a control on the particle–the relaxation method

by van Leeuwen [Lee10]. The strengths of the optimal control technique described in this chapter is further

illustrated on the chaotic and nonlinear Lorenz ’63 model.

5.5.1 The Nudged Particle Filter (nPF)

The construction of what will be called the nudged particle filter (nPF), begins by modifying the dynamics of

the particles by introducing a time-varying control term ut. Each particle will then be advected under the

following dynamics,

dX̂t = b(X̂t)dt+ utdt+ σ(X̂t)dWt, (5.5.1)

where we use the ·̂ symbol to distinguish a solution obeying the controlled dynamics as opposed to the natural

dynamics given in Eq. 5.1.1. For t ∈ [tk, tk+1], the control is chosen to minimize the cost functional:

J(tk, x, u) ≡ EX̂xtk

[
1

2

∫ tk+1

tk

u(s)TQ(X̂s)
−1u(s)ds+ g

(
Ytk+1

, X̂tk+1

)]
,

where EX̂xtk
is the expectation with respect to the probability measure of the process that starts at X̂x

tk
= x

at time tk, Q(x) = σσT (x) and

g(y, x) ≡ 1

2
(y − h(x))TR−1(y − h(x)), (5.5.2)

with R the variance of the observation noise. For brevity in what follows, we suppress the argument of Q.

The solution of this optimal control problem is given by the Hamilton-Jacobi-Bellman equation [FS06,

Chapter 4.3, p.155],

−∂V
∂t

+H(t, x,DxV,D
2
xV ) = 0,

V (tk+1, x) = g(Yk+1, x),
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where V (t, x) ≡ infu J(t, x, u) for t ∈ [tk, tk+1] is the value function and

H(t, x, p, P ) ≡ sup
u

[
−(b(x) + u)T p− 1

2
uTQ−1u− 1

2
tr(QP )

]
,

is the Hamiltonian of the control problem. The optimal control is

u(t, X̂t) = −Q∇xV (t, X̂t). (5.5.3)

Solving for u(t, X̂t) in Eq. 5.5.3 requires the solution of the gradient of the value function, which in turn

requires the solution of a second order nonlinear partial differential equation (PDE). Yet, as shown by Yeong

et al. [Yeo+20], one can perform a log transformation, V (t, x) = − log Φ(t, x), to transform the nonlinear

PDE to a linear PDE, which may then be solved by the Feynman-Kac formula. The optimal control is then

expressed by

u(t, X̂t) =
1

Φ(t, X̂t)
Q∇xΦ(t, X̂t). (5.5.4)

This first linear PDE only yields Φ(t, x) and hence the value function, and one still needs to solve for the

gradient, which in general can be found with the Clark-Ocone formula from Malliavin calculus. A simplifying

case is when the signal variance, Q, is constant (i.e., additive forcing). Yeong et al. [Yeo+20] showed that a

second Feynman-Kac formula can then be leveraged to yield the gradient information.

Let gk+1(x) ≡ g(Yk+1, η
t,x
k+1), then the first Feynman-Kac formula gives the solution,

Φ(t, x) = Et,x
[
e−gk+1(x)

]
. (5.5.5)

Whereas the second application of Feynman-Kac gives,

∇xΦ(t, x) = −Et,x
[
e−gk+1(x)e

∫ tk+1
t (∇xb(ηt,xs ))T ds∇xgk+1(x)

]
. (5.5.6)

In both cases, Et,x is the expectation with respect to the sample paths η generated by

dηt,xs = b(ηt,xs )ds+ σdUs, ηt,xt = x, (5.5.7)

where U is a standard Brownian motion independent of the previously mentioned random processes.

Because the particles of the nPF algorithm will follow the controlled dynamics given by Eq. 5.5.1, instead
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of the natural dynamics of Eq. 5.1.1, the weights of the particles must be adjusted to account for the control.

In continuous time dynamics, the change of weight is given by a Radon-Nikodym derivative dµj/dµ̂j for

particle j, where µj is the measure on path space generated by a process following the dynamics given by Eq.

5.1.1 and µ̂j is the measure on the path space generated by a process following the dynamics prescribed by

Eq. 5.5.1. The change in weights for the j-th particle at time tk+1 is then given by

wjk+1 ∝ w
j
kfk+1(Yk+1|Axk+1(j))

dµj

dµ̂j
(tk+1, X̂

j
tk,tk+1

),

where

dµj

dµ̂j
(tk+1, X̂

j
tk,tk+1

) = exp

(
−
∫ tk+1

tk

v(s, X̂j
s )T dBs −

1

2

∫ tk+1

tk

v(s, X̂j
s )T v(s, X̂j

s )ds

)
, (5.5.8)

and

v(s, X̂j
s ) ≡ −σ∇xV (s, X̂j

s ).

Some final remarks are that the nPF algorithm requires noise in the signal process to facilitate the change

of measure defined by Eq. 5.5.8, whereas the PF algorithm can be applied to deterministic systems. For

further insight and remarks into the nPF algorithm, we direct the interested reader to the work of Yeong et

al. [Yeo+20].

Nudged Particle Filter (nPF) Algorithm

1. At time tk, set wjk = 1/N , ∀j ∈ A and

πk(x|Yk) =
∑
j∈A

wjkδ
j
k(x).

2. Collect the observation Yk+1.

3. For each particle, advect to tk+1 under the controlled dynamics–solving for the control given by Eq.

5.5.4 using Eqs. 5.5.5 and 5.5.6 with realizations following the dynamics of Eq. 5.5.7.

4. While advecting the particles, update the particle weights using Eq. 5.5.8. Let ŵjk+1 be the prior weight

updated due to the Radon-Nikodym derivative from time tk to tk+1.
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5. Denote the (optimal proposal) prior at tk+1 by

πk+1(x|Yk) =
∑
j∈A

ŵjk+1δ
j
k+1(x).

6. Update the particle weights according to

wjk+1 ∝ ŵ
j
k+1fk+1(Yk+1|Axk+1(j)).

7. See the PF algorithm 4a. and 4b. regarding resampling and normalization.

5.5.2 Insight on the Nudged Particle Filter

Some useful comments regarding step 3. of the implementation of the nPF algorithm is that the control can

be calculated for each integration step of the advection, but this often proves too costly and unnecessary

for sparse in-time observations. One can specify a coarser partition of the time interval [tk, tk+1], calculate

a control based on the initial time of each part of the partition and hold this control constant across that

part. The nPF algorithm is numerical more complex in comparison to the standard PF algorithm because

of step 3., where the control must be calculated for each of these part of the time partition and for a user

specified number of realizations for each of these controls. The improvement in filtering capability means

that the nPF can drastically reduce the number of particles necessary to avoid degeneracy and therefore

quickly becomes advantageous in comparison to the standard particle filter.

Besides the tradeoff of the increased complexity per particle versus a smaller ensemble size for the nudged

particle filter, there are other issues that arise when using the controlled particle framework. If handled

correctly, the nPF can be a superior method to the standard PF. To illustrate some of these remarks, we show

in Figure 5.25 a simulation of the PF method on the Lorenz ’63 model (to be introduced in Section 5.5.4).

Figure 5.25 shows the discrete time observations in green and the paths of the particle ensemble. Each

path being an individual particle. The paths are colored according to the weight that each particle has

relative to the ensemble average. Therefore in Figure 5.25, we see that times between observations where

a path is colored white indicates that its weight is neutral. If all paths are white, then the ensemble has

particles all of the same weight. This is the ideal situation for a well balanced ensemble (it has perfect

diversity of the particles). Characteristic of the PF method is that the particle weights are constant between

observations and only change after the application of the likelihood function and resampling.

In Figure 5.26, we show the same simulation, but this time using the nPF algorithm. The first striking
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Figure 5.25: Time history of relative particle weights for a simulation of PF on the Lorenz ’63 model (see
Section 5.5.4). Observations are shown in green. Particles that are blue have essentially zero weight relative
to the rest of the ensemble. A color of white indicates an average weight relative to the ensemble, and coloring
of red indicates the particle is overweighted relative to the rest of the ensemble.

difference is that for the majority of the time, the ensemble weights are quite imbalanced, with some particles

heavily weighted and otherwise essentially meaningless. The particles also have weights that change between

observations, and therefore an evenly balanced ensemble can quickly become unevenly weighted shortly after

an observation time. The weights of the particles are lowered due to any nudging that they perform to correct

their trajectories so that the expected final location at the next observation time is appropriately closer to

the actual observation. This will result in a better weight update at observation time and this action is not

visually apparent from this figure (but see comment below regarding Figure 5.27, which does illustrate the

effect of the observation time weight update).

An important remark to make when comparing Figure 5.25 and Figure 5.26 is that the nPF particles

are able to strongly correct their trajectories when needed (and as expected by the method). But this can

result in the particles having a very low weight. Because we are working with a discrete and finite number

system (floating point system) when performing numerical simulations, and because of the presence of taking

exponential and logarithms at various times in the algorithms of PF and nPF, there is the real danger of

having a particle that gets assigned a NaN (not a number) weight (i.e., the particle should have a nearly
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Figure 5.26: Time history of relative particle weights for a simulation of nPF on the Lorenz ’63 model
(see Section 5.5.4). Observations are shown in green. Particles that are blue have essentially zero weight
relative to the rest of the ensemble. A color of white indicates an average weight relative to the ensemble,
and coloring of red indicates the particle is overweighted relative to the rest of the ensemble.

zero weight, but underflow occurs and then an undefined operation). This issue is not of great concern

for the PF method, unless a very small ensemble is being used. But due to the nudging (Radon-Nikodym

derivative), it is much more pronounced for the nPF method. And therefore any implementation of nPF

needs to appropriately account for the fact that particles may “die” or “vanish” between observations if

the nudging control is allowed to be too large. This issue is especially pronounced when applied to chaotic

systems (e.g., the Lorenz ’63 model). Hence, it has been found that some saturation on the ability for a

particle to nudge may be needed (i.e., once a particles weight crosses a threshold, additional nudging control is

not allowed). In the same sense, another approach that has been tried is to only allow control during certain

subintervals of the time between observations (e.g., the first or second half of the time between observations).

The explicit accounting of the weights and avoidance of this issue in the optimal control problem would be

an interesting and useful future endeavor.

We include in Figure 5.27 the comparison of the effective sample size for the simulations shown in Figures

5.25 and 5.26. The simulations had an ensemble sample size of 6 particles and we used an effective sample

size threshold of 3 (i.e., resampling occurs if Neff drops below 3). Figure 5.27 shows that both filters require
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re-sampling after most observations. The average Neff in both cases indicates that about 1 or 2 particles at

any given time have almost all the weight.

(a) PF (b) nPF

Figure 5.27: Time history (at observation time) of effective sample size (number) for a simulation of PF and
nPF on the Lorenz ’63 model (see Section 5.5.4).

5.5.3 Relaxed Particle Filter (rPF)

Another particle filtering method using a nudging term to steer particles towards observations has been

considered by van Leeuwen [Lee10]. In the interval between available observations [tk, tk+1], particles

are steered by an exponential function dependent on the time within the interval, such that the steering

magnitude is proportional to the signal noise covariance and the distance of the particle locations from the

next observation. The method by van Leeuwen [Lee10] also includes a procedure to make particle weights

almost equal immediately before the time step of the next available observation, which minimizes the weights

variance for the entire sample. We apply this particle filtering method in Section 5.5.5 alongside the PF and

nPF methods.

Chorin et al. [CMT10] take a different, more general approach to constructing an optimal importance

sampling density, in which particles with high posterior probabilities are selected using the standard Gaussian

distribution. For the i-th particle, let Gi be a specified function on the state space, related to the posterior as

e−Gi(A
x
i (k)) = fk(Yk|Axi (k))ρk|k−1(Axi (k)|Axi (k − 1)).

Let ξ be a standard Gaussian random variable. The objective is to determine a map ξ → x, such that

Gi(x)−minGi(x) = 1
2ξ
T ξ. The corresponding x that satisfies this map (specified by the relation between
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Gi and ξ) is chosen as the new location of the i-th particle. Since ξ is Gaussian, the highly likely values of

ξ are in the neighborhood of 0, and these values of ξ will map to states near the minimum of Gi, which is

where high posterior probability of the i-th particle occurs.

5.5.4 The Lorenz 1963 Model

We will apply the rPF method as well as tempering in Section 5.5.5 to the well known Lorenz ’63 model. We

introduce a stochastic variant of that model in this section and provide the parameters that will be used

later in the simulations. A stochastic Lorenz ’63 system [Lor63] is given by

d


xt

yt

zt

 =


−σ σ 0

ρ −1 0

0 0 −β



xt

yt

zt

 dt+


0

−xtzt

xtyt

 dt+ σxdWt, (5.5.9)

where σ = 10, ρ = 28 and β = 8
3 . We have added standard Brownian motion noise W to the system in Eq.

5.5.9, with variance σxσ
∗
x. The choice of σx, the observation sequence Ytk , and sensor matrix H are defined

as,

σx =


2 1 0.5

1 2 1

0.5 1 2

 , Ytk = H


xtk

ytk

ztk

+Btk , and H =

[
1 0 0

]
.

We set the observation covariance to be Btk ∼ N (0, 2I3×3) for all k = 1, 2, . . . Simulation of Eq. 5.5.9 is

taken as the truth, with observations recorded every 0.4 time units.

The deterministic system is chaotic, with one positive Lyapunov exponent λ = 0.9065. This means that

a small initial perturbation ε0 grows as εt = ε0e
λt. Let us denote the error doubling time as τd (i.e. the

amount of time that is required for a small error to double in size). Then solving ετd = 2ε0, gives the error

doubling time of τd = 0.76 time units. Therefore, in the experiments shown in this section, the time between

observations is slightly more than half the error doubling time.

5.5.5 Tempering

In previous sections, we have seen that an accurate estimate can be obtained based on sample mean from a

concentrated family of particles (e.g., the nPF algorithm performance), but we often desire a diverse sample

to properly capture the distribution of the true signal. The approximation of the effective sample size serves
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as a metric to indicate the level of diversity in the sample. In this section, we leverage the work on tempering

of the likelihood [Nea96; MDJ06; BCJ14], combining tempering with the optimal particle filter algorithm

and testing on the Lorenz ’63 model, to show that the sample of the optimal particle filter algorithm can be

improved while maintaining an accurate estimate of the hidden signal process. We also further clarify the

strengths of the optimal particle filter algorithm in comparison to a similar optimal proposal method, the

relaxation method by van Leeuwen [Lee10; Lee11], which was briefly mentioned near the end of Section 5.5.3.

Figure 5.24 demonstrates that the optimal particle filter algorithm does not maintain a diverse sample of

particles, and hence often requires resampling after the particle weights are weighted by the likelihood in the

Bayesian update. The concept of tempering of the likelihood is succinctly described in the recent review by

van Leeuwen et al. [Lee+19]. Tempering of the likelihood falls under the category of transportation particle

filters, where one considers a transformation of the particles from the prior to the posterior that does not

necessarily take place in one step. In this approach, one considers a factorization of the likelihood as

f(y|x) = f(y|x)γ1 . . . f(y|x)γm , γj > 0, ∀j ∈ {1, . . .m}, and

m∑
j=1

γj = 1.

Algorithmically, one modifies the prior weights based on the likelihood f(y|x)γ1 , performs a re-sampling,

and then repeats until the last factor f(y|x)γm is applied. The intuition behind such a method is that the

re-weighting by the likelihood is gradual and particles that may not be very near to the observation are not

immediately killed off, leading to a low effective sample size. As van Leeuwen et al. [Lee+19] mentions in

their work, the resampled particles between re-weightings with the likelihood factors require some ”jittering”

or noise to be added, otherwise particles will be supported on the same state. Rigorously, one should make

sure the perturbations of the re-sampled particle preserve the approximation of the posterior distribution. In

the testing demonstrated in this section, we perturb the re-sampled particles by adding a random variable

sampled from a standard normal distribution to the particle state. Although not rigorous, the approximation

used here seems reasonable, since the noise is not too large in relation to the scaling of the problem and the

observation noise is normally distributed.

To demonstrate the improvements gained by combining the optimal particle filtering algorithm with

tempering of the likelihood, we test on the Lorenz ’63 model. Since we will also compare against the relaxation

method used by van Leeuwen [Lee10], we have selected the problem parameters to be the same as those

tested in that work. We use 20 particles and re-sampling will occur if the effective sample size drops below 10.

The initial condition is the same as that by van Leeuwen [Lee10]. Lastly, an RK4 integrator is used for the

drift integration and the direction of control for nudging of the particles is constant for every 0.04 time-units.
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The relaxation method similarly nudges the particles toward the observation by introducing control to

the particle signal dynamics. For this method, the control in the signal dynamics takes the form,

Xtj = f(Xtj ) + β̂tj +K
[
Ytk −H(Xtj )

]
,

where tk−1 < t∗ < tj < tk and t∗ = tk−1 + (tk − tk−1)/2. Therefore tj is some integration step in the second

half of the interval between the observations occurring at tk−1 and tk. The term β̂tj , is a noise that does not

have to be the same as the original noise in the signal process. The matrix K is a gain matrix that is selected

to provide sufficient nudging of the particle at Xtj towards the observation Ytk . A central difference between

this scheme and the optimal particle filter algorithm is that the nudging in the relaxation method does not

consider where the particle is expected to arrive at time tk, when the observation will occur, instead nudging

based on its current state toward the observation. The optimal particle filtering algorithm is better suited

for chaotic nonlinear problems in this sense, because it does account for the nonlinear flow and expected

divergence due to any intrinsic chaotic stretching.

Figure 5.28 shows a typical result of the relaxation method with two different values of the gain matrix

K, and where Q = 2σx. In particular, the solution in Figure 5.28(b) shows that if the gain matrix is too

large, the method results in an estimated path of the signal that clearly disobeys the nonlinear dynamics of

the problem; it over-nudges the particles towards the observation. Some of this behavior is seen in Figure

5.28(a), but it is less nuanced.

Figure 5.29 shows the results of a typical optimal particle filter algorithm on the same problem as in

Figure 5.28, with Figure 5.29(b) not using tempering of the likelihood and Figure 5.29(a) using tempering of

the likelihood applied in eight steps, each step with an exponent of 1/8. From this example, the mean of

the particles may accumulate a larger error with the tempering of likelihood approach, but the spread of

the particles is also increased, improving diversity, and the nudging of the optimal particle filter is able to

successful bring the family of particles back towards the true signal path.

Table 5.5 summarizes the result of 32 trials of the standard particle filter (PF), the relaxation particle

filter (rPFK)–where K denotes the value of the gain matrix, the relaxation particle filter with tempering

(rPFK,t), the nudged particle filter using only one particle realization for calculation of the control nPF,

and the tempered nudged particle filter nPFt (again with only one particle realization for calculation of

the control). All tempering refers to eight steps, each with an exponent of 1/8. The average RMSE in the

table is the average expected at each integration step. The main conclusion is that increasing the gain of

the relaxation method does not result in a lower average RMSE in comparison to nPF, nor the tempered
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version nPFt, and results in an estimated signal path that can strongly violate the natural dynamics of the

problem. The table also shows that the tempering of the likelihood results in a significant increase in the

effective sample size of the optimal particle filter algorithm, while forfeiting a modest amount of accuracy for

estimation of the mean.
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(b) Relaxation with K = 300 Q

Figure 5.28: Relaxation method applied to the Lorenz ’63 model. True signal shown in black, particles in
light blue, mean of the particles in orange, and observation in green.
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(b) nPFt, with eight equal tempering steps

Figure 5.29: Optimal particle filter method without and with tempering of the likelihood applied to the
Lorenz ’63 model. True signal shown in black, particles in light blue, mean of the particles in orange, and
observation in green.
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Table 5.5: Average RMSE at each integration step, averaged over 32 experiments.
Filter PF rPF25Q rPF25Q,t rPF300Q nPF nPFt

RMSE 12.28 7.66 7.58 6.71 5.79 6.51
Neff 10.88 14.98 16.95 17.07 7.49 11.90

Figure 5.30: Time history of relative particle weights for a simulation of rPF on the Lorenz ’63 model
(see Section 5.5.4). Observations are shown in green. Particles that are blue have essentially zero weight
relative to the rest of the ensemble. A color of white indicates an average weight relative to the ensemble,
and coloring of red indicates the particle is overweighted relative to the rest of the ensemble.

Before moving onto the next chapter, we return to our comparison of the PF and nPF method on the

Lorenz ’63 model, which compared their typical particle weight history and Neff values. Specifically, we

look at the particle weight history of the rPF method on the same problem and show the result in Figure

5.30. In comparison to the PF and nPF weight histories, we see that the rPF is able to achieve a result

somewhere between the two. That is, the ensemble is often balanced or only slightly imbalanced, and yet

when particles truly are on the wrong course, they can correct by applying control. Of course a downside

of rPF versus nPF was just highlighted in the previous example, which shows that rPF does require some

tuning upfront (selection of the gain matrix), whereas nPF is essentially hands-off (i.e., nPF is more aware of

the dynamical systems properties and therefore the algorithm shouldn’t need tuning if the objective function

was appropriate). In Figure 5.31, we make a comparison of the effective sample size of the rPF and nPF

simulations. Showing that indeed the better balanced ensemble of Figure 5.30 translated to a higher Neff
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(a) rPF with K = 25 Q (b) nPF

Figure 5.31: Time history (at observation time) of effective sample size (number) for a simulation of rPF and
nPF on the Lorenz ’63 model (see Section 5.5.4).

that required less re-sampling after observations.
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Chapter 6

Particle Filtering and High
Dimensional Chaotic Systems

In this chapter, we combine tools from the study of chaotic dynamical systems with nonlinear non-Gaussian

data assimilation algorithms to produce novel particle filtering algorithms, where the use of dynamical

information improves both the accuracy of estimation of the unknown state as well as improves the diversity

of the particles that collectively represent the posterior distribution. Unlike past efforts of assimilation in the

unstable subspace, we focus not on the deterministic signal and low observation noise case, but instead on

the case of moderate signal and observation noise. Filtering algorithms using finite-time Lyapunov vectors,

left-singular vectors, and a novel concept of future right-singular vectors, to project observations onto reduced

subspaces are developed and tested against two regimes of the single scale Lorenz ’96 model–a weakly chaotic,

non-Gaussian regime and a strongly chaotic, near-Gaussian regime. As modeling in the geosciences continue

to improve resolution and fidelity of finer physical processes, the models are requiring data assimilation

techniques that can handle the fully nonlinear, non-Gaussian case and represent multimodal distributions in

high dimensional spaces. This chapter contributes to pushing the boundary of nonlinear data assimilation

by aiming to improve particle filtering algorithms for high dimensional chaotic systems. The results of this

chapter have appeared in [BS20].

6.1 Introduction

The approach taken in this chapter follows a thread of logic started by Trevisan et al. [TDT10; PCT13]

for deterministic signal processes with low observation noise and for the linear Gaussian assimilation case.

Through these and several other works, the terminology of assimilation in the unstable subspace (AUS) took

hold. The idea is to perform the assimilation step in a subspace so as to improve the filtering method in

some way. In the case of Trevisan’s efforts, this meant decreased run-time and simpler algorithm setup. They

showed that modifying an extended Kalman filter (EKF) with AUS resulted in filtering nearly as well as

the standard EKF, and that 4D-var with AUS was a slight improvement in estimation capability as well as

numerical efficiency. Bocquet and Carrassi [BC17] have extended these ideas to an iterative ensemble Kalman
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smoother (IEnKS) and have tested on cases with moderate observation noise. Most recently, efforts to bring

these ideas across to particle filtering have begun [Lee+18; MV19], still in the case of deterministic signal,

low observation noise, and like the other works, only using finite-time Lyapunov vectors–to be explained in

Section 6.2. In the linear Gaussian case, it has been shown that the AUS has theoretical convergence results

[TP11; Boc+17]

In this chapter, we take a step to remedy the divergence and degeneracy issues of particle filters by using

the local geometry defined from unstable, neutral, and stable subspaces of the chaotic system that we are

performing filtering on. In Section 6.2 we will review the background on Lyapunov exponents and vectors

and Oseledets’ subspaces that provide this geometric splitting of the tangent bundle. We then proceed to

discuss related finite-time variants of Lyapunov exponents and vectors that also approximate local subspaces

where error growth occurs fastest. Section 6.3 will introduce a parameterized chaotic model that is often used

in testing of new assimilation methods, and will be our testbed model for numerical investigation in Section

6.4. In Section 5.1.2 we provided the theory and algorithms behind standard sequential importance sampling

particle filtering, and in Section 5.5.1, the nudged particle filter method that performs well for chaotic systems

was introduced. Variants of these two approaches will be constructed in Section 6.3.3, such that they use

assimilation in the unstable subspace. We finish this chapter by analyzing the performance of the various

filtering methods in Section 6.4 and provide many useful statements regarding potential improvements in

Section 6.5.

6.2 Lyapunov Exponents, Vectors, and Variants

Lyapunov exponents and their associated vectors provide a powerful tool to characterize dynamical systems,

in particular ergodic systems. We briefly recall the main ideas of the theory to set notation and stage for the

ideas to be used in this chapter.

Consider a dynamical system defined by a flow ϕ : M × R →M on a smooth Riemannian manifold M .

For concreteness, one can consider a deterministic process given by,

dXt = b(Xt)dt, X0 = p ∈M, (6.2.1)

then the orbit (Xt)t∈I , for some I ⊂ R interval, is equivalent to the flow evaluated at p for t ∈ I; that is,

(ϕt(p))t∈I .

Denote the tangent bundle as TM ≡
∐
p∈M TpM , where p ∈M and hence TM is the disjoint union of

the tangent spaces TpM at each point p ∈M . The elements v ∈ TpM are tangent vectors. Let Dϕt denote
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the differential of the flow map from time zero to time t. Dϕt(p) has the action of moving tangent vectors

from TpM to tangent vectors at Tϕt(p)M . Define the Lyapunov exponent at (p, v) ∈ TM as follows:

λ : TM −→ R (6.2.2)

(p, v) 7−→ λ(p, v) ≡ lim
t→∞

1

|t|
ln ‖Dϕt(p)v‖,

with the condition that the limit exists.

Oseledets’ multiplicative ergodic theorem [Ose68] states that if (ϕ,M, µ) is an ergodic dynamical system

with µ an ergodic measure on M for which ϕ, a diffeomorphism, is a measure preserving map, then there are

constant numbers,

λ1(p) > · · · > λr(p),

with multiplicities mr(p), . . . ,m1(p), and a splitting of the tangent space,

TpM = E1
p ⊗ · · · ⊗ Erp

such that

Eiϕt(p) = Dϕt(p)E
i
p

λi = lim
t→±∞

1

|t|
ln ‖Dϕt(p)vi‖,

for all 1 ≤ i ≤ r, vi ∈ Eip and the result holds for µ-a.e. p ∈ M . Further, the sum of the multiplicities

mi equal dim(M). Hence, on a finite dimensional space, we can characterize the asymptotic behavior of

infinitesimal perturbations for almost every point using a finite number of constant values and a subspace

filtration of the tangent space. The Lyapunov vectors1 are then defined as a basis of the subspaces that

are covariant under Dϕt in the sense that the Lyapunov vector vi associated with λi will map forward or

backward in time to the subspace Eiϕt . The above result can also be extended to random dynamical systems

(see for instance [Arn03]).

The number of positive Lyapunov exponents sets a lower bound on the dimension of the subspace of the

tangent space that any predictive or assimilation method should account for. The numerical generation of

the Lyapunov exponents and vectors is well described in several papers [Ben+80; WS07; KP12; Gin+13].

1Also referred to as covariant Lyapunov vectors by some authors, for the purpose of distinguishing from finite-time Lyapunov
vectors.
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6.2.1 Dimension of the Attractor and Entropy

When the chaotic system is dissipative, solutions will eventually reside on an attractor. The dimension of the

attractor, and hence the minimum number of degrees of freedom needed to describe a point on it, can be well

approximated by the Kaplan-Yorke2 dimension [Fre+83]. Let j ∈ (1, . . . , r) correspond to the largest index

such that
∑j
i=1 λjmj > 0. Then the Kaplan-Yorke dimension is given by


dim(M), if

∑j
i=1mi = dim(M),

∑j
i=1mi − 1

λj+1

∑j
i=1 λimi, otherwise.

A similarly important characterization of a chaotic dynamical system is given by the definition of the

metric entropy, or Kolmogorov-Sinai entropy, which measures the rate of increase in dynamical complexity as

the system evolves with time. Pesin [Pes77] and Ruelle [Rue78] proved relations linking metric entropy and

the positive Lyapunov exponents. The general case given by Ruelle is,

hµ(ϕ) ≤
∫
M

∑
i∈J

λi(p) dim(Eip)µ(dp), (6.2.3)

where hµ(ϕ) is the metric entropy of (ϕ,M, µ) (see [BP02, p.130] for a definition), and J is the index set

corresponding to positive Lyapunov exponents. Pesin [Pes77] showed that there is no wasted expansion in

conservative systems–all expansion goes into the creation of entropy, that is, if µ is equivalent to Lebesgue

measure (i.e., µ� µL), then we have an equality in Eq. 6.2.3. In the case of dissipative systems, as considered

in this chapter, the invariant measure of interest is called a Sinai-Ruelle-Bowen (SRB) measure. Ledrappier

and Young [LY84] showed that when λ1 > 0, equality in Eq. 6.2.3 holds if and only if µ is an SRB measure.

In a subsequent paper, they showed that in the case of random diffeomorphisms of a compact manifold, that

if µ� µL and λ1 > 0 then again equality of Eq. 6.2.3 holds [LY88]; which reinforces the idea that evolution

in the unstable Lyapunov subspace explains the uncertainty in prediction, and motion in the stable directions

is inconsequential. We will use this last result in Section 6.3 alongside the characterization of SRB measures

as the zero-noise limit [You13] to rationalize the calculation of the Kolmogorov-Sinai entropy.

6.2.2 Finite-Time Lyapunov Exponents and Vectors

As readily seen from Eq. 6.2.2, the definition of Lyapunov exponents and vectors is in the limit as time tends

to infinity, but more often in applications one is interested in a finite-time interval. In that case, a similar

2Also referred to as the Lyapunov dimension
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definition can be given,

λt(p, v) ≡ 1

|t|
ln ‖Dϕt(p)v‖,

for any t ∈ [0,∞). In this case, we do not have Oseledets’ result and must consider the base point when

calculating the finite-time Lyapunov exponent.

The numerical calculation of the finite-time Lyapunov exponents and vectors can be achieved following

a QR based algorithm by Benettin et al. [Ben+80]. To do so, one calculates the fundamental matrix

Dϕδt ∈ Rm×m by integrating an orthogonal set of basis vectors Q0 under the tangent linear dynamics for a

small time interval δt and then applying a QR decomposition of Dϕδt, which yields an orthogonal matrix Q1

of basis vectors and an upper triangular matrix R1. The new orthogonal matrix Q1 is in turn integrated

forward and another QR decomposition is performed. This is continued until the desired final finite-time

is reached. The final orthogonal matrix Q∗ provides a basis for the final tangent space and the finite-time

Lyapunov exponents can be calculated based on the history of matrices (Ri). Because of the use of a modified

Gram-Schmidt procedure to produce Qi during each QR decomposition, the finite-time Lyapunov vectors are

sometimes referred to as Gram-Schmidt vectors.

Of importance is the fact that the first finite-time Lyapunov vector will tend toward the maximal covariant

Lyapunov vector. Further, the finite-time Lyapunov vectors provide a splitting of the tangent space at the

final time into an associated unstable, neutral, and stable subspace with respect to their associated finite-time

Lyapunov exponents. For these reasons, finite-time Lyapunov exponents and vectors have been the choice for

defining the unstable and neutral subspaces used in assimilation in the unstable subspace methods [TDT10;

PCT13; BC17; MV19].

6.2.3 Singular Vectors of the Fundamental Matrix

In this chapter, we look instead to a different set of vectors that similarly define subspaces corresponding

to local dynamics that expand or contract. These vectors are called singular vectors due to the numerical

operation by which they are retrieved from the decomposition of a matrix. Although any matrix will do, let

us consider the fundamental matrix Dϕt(p) ∈ Rm×m along an orbit ϕt(p) from time zero to time t. This

matrix can always be decomposed into the following,

Dϕt(p) = UΣV T ,
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where U is a unitary matrix of left-singular vectors of Dϕt(p) and V a unitary matrix of right-singular vectors.

Σ is a diagonal matrix with non-negative elements along the diagonal called singular values and denoted by

(σi)i∈{1,...,m}. The singular values are ordered: σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Having decomposed a matrix A into its singular valued decomposition (SVD), A = UΣV T , one can

interpret the mapping of a vector ξ under Aξ as performing three operations: 1. V T rotates ξ into a new

coordinate frame, 2. Σ expands or contracts V T ξ along the canonical directions of this new frame, 3. U

rotates the expanded or stretched vector back to the original coordinate frame. A second convenient notation

for the SVD is A =
∑
i σi · ui ⊗ vi, which emphasis that fact that the SVD will map the vectors vi to ui and

stretch by the factor σi. If σi > 1, then expansion occurs, and similarly σi < 1 corresponds to contraction.

Because of the ordering of (σi), this implies an ordering of the vectors from the domain which are stretched

the most–with v1 being the direction that is extended the most.

In this chapter, we use the singular vectors to perform our assimilation in a subspace corresponding

to instability. In particular, we will use the right-singular vectors of the future observation interval. Both

choices are novel and prove effective on a model with moderate signal and observation noise, despite the fact

that all stability indices, including singular vectors, are only true for describing infinitesimal growth. One

study from the literature that provides motivation for the use of singular vectors instead of Lyapunov vectors

comes from a paper by Norwood et al. [Nor+13], where they compared the behavior and predictive quality

of Lyapunov vectors, singular vectors and bred vectors on the Lorenz ’63 model as well as a coupled Lorenz

’63 model. One of the central results is that singular vectors grew much faster and were the most accurate

predictors of regime change.

6.3 The Single Timescale Lorenz 1996 Model

The chaotic model that will be used in this chapter to explore ideas of nonlinear non-Gaussian data assimilation

with projection operators onto unstable and neutral subspaces is the single timescale Lorenz ’96 model,

which was first introduced by Lorenz [Lor95] to study predictability of atmospheric dynamics. One will

recognize this is the same model as given in Section 5.2.2, but without the fast scale. The model is not

derived from physical laws, but simply mimics properties of geophysical models such as energy-preserving

advection, damping and forcing. The model is given by

dXj
t = (Xj−1

t (Xj+1
t −Xj−2

t )−Xj
t + F )dt, (6.3.1)
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where j ∈ {0, . . . , J} and the model has a periodic boundary condition X0
t = XJ

t for all t. With J = 40,

one can think of X as representing an unspecified scalar meteorological quantity equally spaced along a

midlatitude belt of approximately 30,000 km, thereby giving the model the correct synodic scale to mimic

Rossby waves. Because the model mimics this atmospheric feature, Lorenz suggests that one consider 0.05

time units to equate to a 6 hour interval, which is common to assume when choosing parameters for data

assimilation trials. We will do the same in this chapter.

As shown by Majda et al. [AG05], the model can vary from weak to strongly chaotic and turbulent based

on the strength of the forcing F . Decorrelation times also suggest the model to be ergodic. Because the model

mimics geophysical process and can be varied in resolution as well as dynamical characteristics, the model

has become a regular testbed for demonstrating new data assimilation methods–as we do in this chapter.

The data assimilation algorithm described in Section 5.5.1 requires that the dynamical process to be

estimated is a stochastic process. For this reason and because modelers are increasingly using stochastic

models in practice, we will consider a variant of the Lorenz ’96 model with an additive noise term. First

consider Eq. 6.3.1 in the abstract form of Eq. 6.2.1, then we will consider the stochastic Lorenz ’96 model,

which we will refer to as Lorenz ’96 from here forward, as

dXt = b(Xt)dt+ σdWt, (6.3.2)

where W is a standard Brownian motion taking values in R40 and Q ≡ σσT = I is simply the identity matrix.

We write Eq. 6.3.2 with σ to improve the generality of the theory in Section 5.1. Modeling physical processes

with stochastic terms is becoming more relevant as a technique to capture unmodeled smaller scale processes

that have been removed or truncated from the original process. Therefore, one can rationalize the term,

σdWt, as capturing these unmodeled processes.

Our earlier reference to the result by Ledrappier and Young [LY88] regarding a relation between

Kolmogorov-Sinai entropy and Lyapunov exponents required the random diffeomorphisms of a compact

manifold. We do not have a compact manifold, but a recurrent condition is sufficient to replace this condition,

and Eq. 6.3.1 will satisfy this–one needs that for some r > 0 any state x outside of a sufficiently large ball,

we have 〈b(x), x/|x|〉 < −r|x|. This condition provides the existence of a stationary distribution and the

strict positive definiteness of Q provides uniqueness.
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6.3.1 Weakly Chaotic, Non-Gaussian Regime

In Section 6.4, we will be interested in exploring the efficacy of the data assimilation algorithms developed

in Sections 5.1.2, 5.5.1, and 6.3.3. First, we will consider the capability of the algorithms when applied to

a weakly chaotic system that mimics synodic scale dynamics and for which one can show to be strongly

non-Gaussian in its modes. Setting the Lorenz ’96 model with F = 5 achieves exactly this case [AG05].

A solution of the deterministic equations, Eq. 6.3.1, for F = 5 is shown in Figure 6.1 and contrasts with a

single realization of Eq. 6.3.2 with F = 5 and the same initial conditions. We use an RK4 integrator for the

deterministic case and RK4-Maruyama for stochastic integration, both with a step size of 1E-2. A Lanczos

interpolation scheme has been used to enhance visualization. The ability of the signal noise to disrupt the

more coherent patterns of the deterministic case is clear. The bottom axis provides a time change to what

we call Lyapunov time λ1t, with λ1 being the top (maximal) Lyapunov exponent.

Dynamical Characterization

Using the ideas and results of Section 6.2, we can provide a characterization of the dynamical system based

on the Lyapunov exponents. In particular, a simulation of 100 time units, with modified Gram-Schmidt

regularization every 0.1 time units, and F = 5 yields the following:

• Largest Lyapunov exponent: λ1 = 0.397

• Error doubling time: 1.745

• Number of strictly positive Lyapunov exponents: 9

• Number of neutral, λ ∈ [-1E-2, 1E-2], exponents: 2

• Number of strictly negative Lyapunov exponents: 31

• Kaplan-Yorke dimension: 15.429

• Kolmogorov-Sinai entropy: 1.297.

The dynamical characterization of the model just given indicates that: 1. it is a chaotic model, 2. the

average amount of time for error to double due to stretching is 1.745 time units, 3. ensemble methods (i.e.,

particle based filtering methods) should require on average 9 to 11 particles to span the unstable and neutral

subspaces, 4. but the attractor dimension is approximated by Kaplan-Yorke and suggests a higher number of

15 to 16.
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Figure 6.1: Depiction of the dynamics of the Lorenz ’96 model with F = 5 and J = 40. The top x-axis
provides time in the natural units of the Lorenz ’96 model, while the bottom x-axis provides the Lyapunov
time λ1t.

Figure 6.2: Depiction of a stochastic realization of the Lorenz ’96 model with F = 5, J = 40 and Q = I. The
top x-axis provides time in the natural units of the Lorenz ’96 model, while the bottom x-axis provides the
Lyapunov time λ1t, with λ1 calculated from the deterministic model.
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6.3.2 Strongly Chaotic, Near-Gaussian Regime

A perhaps more widely benchmarked parameterization of the Lorenz ’96 model is with F = 8. In this case, the

model is nearly-Gaussian, but strongly chaotic. As F approaches 16, the model becomes fully turbulent. Our

motivation to also test in the strongly chaotic regime is due to the increasing resolution in numerical weather

prediction and hence need to model convective scale processes (see for instance [Yan+18; Car+18]). This is

part of the motivation for greater capability with particle filters–alongside the non-Gaussian multimodal case.

We again contrast a deterministic simulation of Lorenz ’96 with a stochastic realization in Figures 6.3

and 6.4. Because the model is strongly chaotic, it is slightly harder to discern the change in patterns of the

flow between the two simulations. The legend in Figures 6.3 and 6.4 are capped to the minimal and maximal

same values based on Figure 6.3 results, but it is clear that the stochastic realization seems to saturate more

at the minimal and maximal values due to the random fluctuations.

Dynamical Characterization

Again, using the ideas and results of Section 6.2, we can provide a characterization of the dynamical system

based on the Lyapunov exponents and compare against those for the F = 5 case. A simulation of 100 time

units, with modified Gram-Schmidt regularization every 0.1 time units, yields the following when F = 8:

• Largest Lyapunov exponent: λ1 = 1.753

• Error doubling time: 0.395

• Number of strictly positive Lyapunov exponents: 14

• Number of neutral, λ ∈ [-1E-2, 1E-2], exponents: 0

• Number of strictly negative Lyapunov exponents: 26

• Kaplan-Yorke dimension: 27.218

• Kolmogorov-Sinai entropy: 10.805.

The F = 8 has a much larger maximal Lyapunov exponent, resulting in an error doubling time that would

equate to approximately 2 days using the typical 0.05 time-units to 6 hour conversion. In the strongly chaotic

regime, the unstable subspace and dimension of the attractor are much greater, implying the need for a larger

ensemble to adequately capture the posterior distribution.
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Figure 6.3: Depiction of the dynamics of the Lorenz ’96 model with F = 8 and J = 40. The top x-axis
provides time in the natural units of the Lorenz ’96 model, while the bottom x-axis provides the Lyapunov
time λ1t.

Figure 6.4: Depiction of a stochastic realization of the Lorenz ’96 model with F = 8, J = 40 and Q = I. The
top x-axis provides time in the natural units of the Lorenz ’96 model, while the bottom x-axis provides the
Lyapunov time λ1t, with λ1 calculated from the deterministic model.
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6.3.3 Projected Particle Filtering

In this section, both the PF and nPF algorithms given in Sections 5.1.1 and 5.1.2 are expanded into new

filtering algorithms using various projections onto associated unstable subspaces. All of the aforementioned

algorithms are then tested and compared on the Lorenz ’96 model in Section 6.4.

As previously remarked, particle filters suffer from filter divergence and degeneracy. The nPF algorithm

remedies the divergence issue by adding a nudging term to the particles that ensure their ability to move to

a more appropriate neighborhood of the observation and therefore avoid receiving an extremely low weight

during the likelihood update (see step 3. of the PF algorithm, step 6. of the nPF algorithm). In the case

where observation noise is quite low, for example R is a diagonal matrix with small values, then particles are

heavily penalized for being moderately far from the observations in the likelihood update. Numerically, the

low observation noise case is often quite worse, because underflow can occur, due to the finite floating point

precision, and therefore, particles can attain a weight of zero–what we refer to as a dead particle. More often,

after the re-weighting of the particles (see step 4. of the PF algorithm, step 7. of the nPF algorithm), one

particle has most of the weight, whereas the others are nearly zero. This is the case of particle degeneracy or

particle collapse.

As shown by Snyder et al. [Sny+08; SBM15] through simplifying asymptotic analysis, one needs an

exponentially increasing number of particles, dependent on the dimension of the observation space, to avoid

such collapse. Experience with simulations in the finite-time case, mean that such a scaling is not quite as

bad. It does lend credence to the idea of minimizing the observation space dimension and therefore reducing

the chance of degeneracy, as well as promoting a more diverse, evenly weighted population of particles. It is

with this motivation, as well as the theoretical result of the asymptotic convergence of the support of the

covariance matrix in the case of linear Gaussian data assimilation to the unstable subspace [TP11; Boc+17],

that we consider the projection of our observations into a reduced subspace and applying assimilation–the

likelihood update–in this reduced space. A further remark is that with projecting the observation to a

subspace, one expects to lose information that may be valuable, but if the subspace is chosen appropriately,

the amount of information may be insignificant and the ability to assimilate in a lower dimensional space will

out-weight the loss of said information.

Projection Operators

We now describe the projection of the observation error and finish with describing how we modify the PF

and nPF algorithms to use such projections. We follow a similar thread of ideas as outlined in the projection

framework by Maclean and Van Vleck [MV19]. Because we will only construct dynamical vectors that are
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orthogonal, for instance, the finite-time Lyapunov vectors or left, right-singular vectors in Section 6.2, we will

only be concerned with orthogonal projection operators using the dynamical information.

First, let S ∈ Rm×n be a matrix with orthogonal columns and m > n. Then an orthogonal projection

operator from Rm to the subspace of dimension n spanned by the columns of S is given by P = SST . Based

on the dynamical vectors discussed in Section 6.2, S could be the vectors of the finite-time Lyapunov vectors

associated with positive and neutral exponents, or similarly the left or right-singular vectors associated with

singular values indicating directions of expansion. An oblique projection operator is needed if one is to use

the covariant Lyapunov vectors, since these are in general non-orthogonal.

Consider H to be a linear sensor function and ε = y − Hx to be the observation error. Because our

projection operator P just defined is a mapping in the dynamical state space, we must map the observation

error to this space. This is easily accomplished by defining a normalized projection factor Ĥ = HT (HHT )−1.

In the case that H = I, the identity matrix, as considered in Section 6.4, then Ĥ = I trivially. The projected

observation error is then ε̂ = Ĥε.

Combining the mapping from observation space with the projection into a reduced subspace of the

state space, we define the following projection factor, Ŝ ≡ ST Ĥ, which can be used to define a projected

observation covariance R̂ ≡ ŜRŜT , that will be used in the following algorithms.

Particle Filters with Finite-Time Lyapunov Vectors

Using the projection operators described in Section 6.3.3, we now construct a particle filter algorithm

that uses the finite-time Lyapunov exponents and vectors generated between observations to reduce the

effective observation dimension. Given the posterior distribution at time tk, let p be the expected state. The

QR algorithm described in Section 6.2 is then used to continually orthogonalize the fundamental matrix

Dϕtk+1
(tk, p), providing a final orthogonal matrix S̃ ∈ Rm×m and m finite-time Lyapunov exponents. We

now define S to be the subset of S̃ of columns corresponding to the positive finite-time Lyapunov exponents.

If no positive finite-time Lyapunov exponents exists during an observation interval–unlikely in the high

dimensional and strongly chaotic case–then we choose the first column of S̃ for defining S. Following the

projection operator construction given in Section 6.3.3, we redefine the likelihood update in the PF and nPF

algorithms (steps 3. and 6. respectively) to be,

wjk+1 ∝ w
j
k exp

(
−1

2
ε̂T R̂−1ε̂

)
. (6.3.3)
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Particle Filters with Future Right-Singular Vectors

The novelty of the algorithm described in this section is twofold: 1. we build our projection operators based

on singular vectors, and more importantly, 2. we use a future set of right-singular vectors to do so. What is

meant by future right-singular vectors is that if the current posterior is for time tk, the next observation is at

time tk+1, then we generate the fundamental matrix from time tk+1 to tk+2 driven by an orbit with initial

condition being the observation received at time tk+1, and then extract the right-singular vectors from this

fundamental matrix. Similar to the idea of the nPF algorithm, we are using the observation at the next time

to produce some control over the particle filtering algorithm, in this instance the projection of the observation

to a reduced subspace. The reasoning for using the future right-singular vectors, is that the subspace spanned

by the subset of these vectors corresponding to positive growth, will be the directions where error will grow

most over the future observation interval. Therefore emphasizing the importance of particles that perform

well in that reduced subspace should promote a healthier collection of particles at the tk+2 observation.

Just as in the algorithm using the finite-time Lyapunov vectors, we set S to be the columns of V –the

right-singular vectors of Dϕtk+2
(tk+1, yk+1)–corresponding to the singular values taking values greater than

one. And in the rare case that no singular values correspond to growth, we again select just the leading

right-singular vector. Following the general procedure, the new likelihood update is the same as that in Eq.

6.3.3.

Particle Filters with Left-Singular Vectors

For a final comparison of projection operators, we also consider the use of the left-singular vectors, but

generated from the current time tk to the observation time tk+1. Like the finite-time Lyapunov vectors, the

left-singular vectors corresponding to singular values of growth will span a subspace at the observation time

to which the largest growth in error will be mapped. Hence, the desire to use left-singular vectors is to

emphasis weighting of particles at observation time based on directions where error would have had the most

relative growth.

6.4 Application to the Single Timescale Lorenz 1996 Model

In this section, we perform numerical experiments of the various particle filtering approaches. We do this

on both the weakly chaotic, non-Gaussian form of the Lorenz ’96 model, as well as the strongly chaotic,

near-Gaussian regime. In both cases, we use moderate signal and observation noise, Q = R = I. And use

a sensor matrix H = I, implying that all states are observed. Observations occur every ∆t = 0.05 time
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units, corresponding to 6 hours, and we simulate for tf = 20 time units, or 100 days. The threshold for

resampling occurs when Neff falls below N/2, half the number of particles. We trial each particle filtering

algorithm on 96 simulations and compute averages based on these results. An RK4 integrator is used for

deterministic integration (e.g., to compute the finite-time Lyapunov vectors or singular vectors) and an

RK4-Maruyama scheme is applied for stochastic integration, both with a step size of 1E-2. In the case of the

nPF algorithms, we use four control steps between observations with two realizations per particle to calculate

control. We denote algorithms using the finite-time Lyapunov vectors for projection with the superscript ·?,

the left-singular vectors with ·†, and the future right-singular vectors with ·‡. Lastly, the root-mean-square

error (RMSE) at time t is given by,

RMSE(t) =
√
〈Xt − EXt〉,

where Xt is the true solution. The average RMSE over time is then 1
M

∑M
i=1 RMSE(ti), where M is the total

number of integration steps.

6.4.1 Results of the Weakly Chaotic, Non-Gaussian Regime

We first consider the case where F = 5 for the Lorenz ’96 model. We set the number of particles to N = 8,

slightly less than the number of positive Lyapunov exponents.

Figures 6.5 and 6.6 show the absolute mean error of a typical single simulation using the PF and nPF

algorithms for this case. Any absolute error above three is saturated for the figures. Vertical streaks, that

appear as “artifacts”, are an indication of resampling occurring at those times. As expected, Figure 6.6 shows

that the nPF performance is a clear improvement over the PF algorithm shown in Figure 6.5.

Table 6.1 provides a comparison of the average RMSE, average effective sample size and total run-time

of the PF, PF‡, nPF, and nPF‡ algorithms. What is clear from the results in this table is that the nPF

algorithm is able to provide a much improved tracking of the mean over the PF algorithm, but with only

slightly improved effective sample size. In both cases of the PF and the nPF algorithms, the addition of using

the future right-singular vectors (i.e., the PF‡ and nPF‡ algorithms) provided a noticeable improvement

in the average RMSE and effective sample size. Although this required additional run-time due to the

computation of the fundamental matrix, SVD decomposition and associated linear algebra for the projection

operations, the offset is likely worth it–as opposed to increasing the number of particles in the non-projection

based algorithms. It should be further noted that the extra run-time required in these simulations was not

optimized, with every particle performing the SVD decomposition, and all associated linear algebra for the
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Figure 6.5: The absolute error between the true state and the mean state for a single simulation of the
Lorenz ’96 model with F = 5 using the PF algorithm. The average RMSE for this simulation was 10.85. The
top x-axis provides time in the natural units of the Lorenz ’96 model, while the bottom x-axis provides the
Lyapunov time λ1t.

Figure 6.6: The absolute error between the true state and the mean state for a single simulation of the
Lorenz ’96 model with F = 5 using the nPF algorithm. The average RMSE for this simulation was 4.31. The
top x-axis provides time in the natural units of the Lorenz ’96 model, while the bottom x-axis provides the
Lyapunov time λ1t.
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projection operations, and hence, this extra run-time could be substantially decreased.

Table 6.1: Results for 96 simulations of filtering on the Lorenz ’96 model with F = 5, using 8 particles and
∆t = 0.05. The average rank of the right-singular value projection operators was 14.6, in comparison to the
dimension Lorenz ’96 at N = 40. The average RMSE for the observation error was 1.41.

Filter PF PF‡ nPF nPF‡

Avg. RMSE 14.3 13.8 4.66 4.56
Avg. Neff 2.00 2.51 2.48 2.86

Total Run-Time 170 s 429 s 2140 s 2404 s

Table 6.2 provides some further comparisons for just the PF algorithm with the various projection

operators, the nPF case yielding similar trends. The result shows that only the future right-singular vectors

(PF‡) were able to both reduce RMSE and improve Neff . It is important that both occur, since it is possible

to have the ensemble diverge slightly from the truth, resulting in a worse RMSE and yet improved Neff–this

would appear to be the case of the finite-time Lyapunov vector (PF?) algorithm. The left-singular vector

algorithm (PF†) also follows this trend, but to a lesser extent. The fact that the average rank of the projection

(Avg. Proj. Rank) created from finite-time Lyapunov vectors is so much smaller than the singular vectors is

surprising, yet in-line with the observation by Norwood et al. [Nor+13] that the singular vectors react much

quicker to growth and contraction.

Table 6.2: Results for 96 simulations of filtering on the Lorenz ’96 model with F = 5, using 8 particles and
∆t = 0.05. The average RMSE for the observation error was 1.41.

Filter PF PF? PF† PF‡

Avg. RMSE 14.3 20.7 15.3 13.8
Avg. Neff 2.00 4.62 2.26 2.51

Avg. Proj. Rank — 1.8 14.8 14.6
Total Run-Time 170 s 272 s 461 s 429 s

The slightly longer run-time of the left-singular vector case versus the right-singular vector is due to the

fact that the average projection rank is slightly higher for the left-singular vector case and therefore the linear

algebra is on average slightly more expensive. Because an SVD routine is not required for the finite-time

Lyapunov vector algorithm (PF?), it is substantially faster than either the PF† or PF‡ algorithms. In the

case of the nPF? or nPF† algorithms, it may be possible to improve run-time a bit further than nPF‡, since

the fundamental matrix must be generated for each realization of the nudging control in Eq. 5.5.6 and hence,

it may be possible to use this matrix or an expectation of this matrix instead of generating an additional

approximation for each observation interval.
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6.4.2 Results of the Strongly Chaotic, Near-Gaussian Regime

For the case where F = 8, we set the number of particles to N = 16. This is slightly more than the number

of positive Lyapunov exponents, but far less than the Kaplan-Yorke dimension.

The results of the PF, nPF and algorithm variants using the future right-singular vectors is shown in

Table 6.3. The difficulty of filtering this strongly chaotic system with so few particles is apparent by the

extra entry in the table labeled Dead Simulations. In the case of the PF algorithm, 17 of the 96 simulations

did not finish because at some observation, all the particles had weights zero or essentially zero, such that

nothing significant could be said about the statistics at that time nor could a meaningful resampling occur.

The ability for the PF‡ simulation to solve all 96 cases is a reflection that the assimilation occurring in the

reduced subspace spanned by the future right-singular vectors was indeed beneficial to improving the effective

sample size of the ensemble. Though the quality of filtering with the PF variants is insufficient with 16

particles, we include Table 6.4 to show that both finite-time Lyapunov vectors (PF?) and left-singular vectors

(PF†) similarly improve overall filtering performance by also avoiding dead simulations, though neither have

an RMSE as low as the right-singular vector case. Both finite-time Lyapunov vectors and left-singular vectors

improve the effective sample size. The PF? algorithm has a much higher effective sampling size than the

other variants, but unless RMSE is also lowered, the value of Neff is not as meaningful.

Table 6.3: Results for 96 simulations of filtering on the Lorenz ’96 model with F = 8, using 16 particles and
∆t = 0.05. For the projected filters, indicated by ·‡, the average rank of the projection operator was 15.6, in
comparison with the dimension Lorenz ’96 at N = 40. The average RMSE for the observation error was 1.41.
An asterisk in the results identifies that the average (or total run-time) was only taken for those simulations
that completed.

Filter PF PF‡ nPF nPF‡

# Dead Simulations 17 0 0 0
Avg. RMSE 26.5* 26.2 7.25 6.38

Avg. Neff 1.71* 2.15 2.56 3.29
Total Run-Time 290* s 941 s 4322 s 4969 s

Table 6.4: Results for 96 simulations of filtering on the Lorenz ’96 model with F = 8, using 16 particles and
∆t = 0.05. The average RMSE for the observation error was 1.41. An asterisk in the results identifies that
the average (or total run-time) was only taken for those simulations that completed.

Filter PF PF? PF† PF‡

# Dead Simulations 17 0 0 0
Avg. RMSE 26.5* 29.7 27.9 26.2

Avg. Neff 1.71* 4.22 1.97 2.15
Avg. Proj. Rank — 5.8 15.7 15.6
Total Run-Time 290* s 463 s 955 s 941 s
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Returning to the results of Table 6.3, the trend for the nPF and nPF‡ is similar to that for the case

of F = 5 shown in Table 6.1. In particular, the use of the future right-singular vectors is able to improve

RMSE and Neff in a significant manner with modest additional computation time–that again could be further

improved.

6.5 Remarks

The aim of this chapter was to improve data assimilation methods for high dimensional chaotic problems,

which increasingly is the reality of analysts performing assimilation in the geosciences. For instance, as the

resolution of atmospheric models improves, convective processes must be included in numerical weather

predictions. In turn, the need for fully nonlinear non-Gaussian assimilation methods is increasing. Particle

filtering is a flexible and general assimilation approach that can handle the fully nonlinear non-Gaussian

regime, but suffers in high dimensional systems due to particle collapse. When the system is chaotic and

dissipative, the true process will tend toward an attractor, which often is of much smaller dimension. In this

case, which is believed to be very common in the geosciences, we aim to use the properties and geometry of

the chaotic system to remedy the issue of particle collapse and improve the filtering accuracy.

This chapter has presented for the first time the application of assimilation in the unstable space for

particle filters on models with moderate signal and observation noise. The case of deterministic signal and

mostly low observation noise has been previously worked on by others [TDT10; PCT13; BC17; Lee+18;

MV19], all of which have focused on the finite-time Lyapunov vectors. In this chapter, we also demonstrated

the ability of singular vectors for the first time in the context of assimilation in the unstable subspace, and

show a very interesting result when we use the novel idea of future right-singular vectors. The result is

surprising since for 1. neither the finite-time Lyapunov vectors nor left-singular vectors show the same

improvement, 2. all the vectors are technically related to infinitesimal growth behavior, but our model was

noisy and in one case strongly chaotic. At the same time, results by Norwood et al. [Nor+13] have shown

that singular vectors react very quickly to dynamical regime change, and therefore, it should not be overly

surprising that the right-singular vectors performed well. In the end, what set apart the finite-time Lyapunov

vectors and left-singular vectors from the right-singular vectors was the interval of time over which they were

generated. Hence, the emphasis on the future vectors is a key conclusion from the chapter as well.

The chapter additionally combined the dynamical systems techniques with the controlled particle filtering

method (nPF). The nudged particle filter is implicitly aware of the chaotic dynamics since an optimal control

problem is formulated and solved to choose the amount and direction of nudging; this requires realizations of
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the signal process, and therefore, the chaotic dynamics affect the choice of control. Furthermore, the need to

calculate the fundamental matrix in Eq. 5.5.6 implies that information regarding the unstable subspace is also

explicitly present in the calculation and further investigation of this matter as well as nudging in the unstable

subspace may provide additional avenues to improve the effective sampling size of the nudged particle filter

and the numerical efficiency of the algorithm when combined with projections onto the finite-time Lyapunov

vectors or left-singular vectors. Numerical trials of a reduced terminal cost function, g in Eq. 5.5.2, by way

of the projection operators presented in this chapter, was conducted but showed no improvement for the

future right-singular vectors and a slight deterioration in results for the finite-time Lyapunov vectors and

left-singular vectors.
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Chapter 7

Conclusions

This dissertation has taken both a theoretical and numerical approach to answering questions that will be

useful for improving data assimilation methods for high dimensional, multiple timescale, chaotic systems

that may have correlation between the signal and observation processes. The first half concentrated on the

theoretical question of filter convergence in the limit of large timescale separation. The second half of the

dissertation developed filtering algorithms to realize the theoretical results, as well as address issues for

particle filtering in high dimensional chaotic systems.

Chapters 3 and 4 addressed the question of filter convergence in the context of multiple timescale nonlinear

systems that may have correlation between the slow signal and observation processes. The specific question

was whether the marginal normalized conditional distribution converges to a lower dimensional version in the

limit of large timescale separation.

The system considered in Chapter 3 consisted of a slow and fast signal process, with correlation between

the slow signal process and observation process. The main result from that chapter, is that indeed we can

show convergence and even a rate of convergence. We show that for fixed test functions, the difference of

the filters acting on the test functions converge in Lp with a rate of εp (the fast process is of order two

relative to the order one slow process). From this we constructed a metric that generates the topology of

weak convergence on the space of probability measures on Rm and got a rate for weak convergence of ε. It

is straightforward from this rate to then get convergence in this metric almost surely. We showed at the

end of this chapter that it does not seem possible to get the same result using our approach of BSPDEs and

BDSDEs for the case of a multiple timescale problem possessing an intermediate timescale forcing in the slow

process or when correlation between the fast signal and observation processes exist.

The same questions as raised by Imkeller et al. [Imk+13] and Yeong et al. [Yeo17], regarding the restrictive

conditions on the coefficients of the signal and observation processes, are still true in our work. In particular,

the assumptions of the main theorem in Chapter 3 rules out the case of linear models. The limiting step in

weakening the conditions in this approach is the use of the classical results for SPDEs. Echoing the remarks

by Imkeller et al. [Imk+13]: weak solutions may not help improve the conditions much, using viscosity
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solutions or relying entirely on probabilistic arguments may help, but it does not seem possible to then get a

rate of convergence. The constant C that appears in the main theorem is dependent on the time interval

considered, the bounds on the coefficients, and the exponent p. Future efforts may want to consider whether

methods from stability of nonlinear filters can be of use in this regard (see for instance [CR11, Chapter 4]).

In Chapter 4 we again addressed the question of filter convergence for the multiple timescale correlated

problem, but this time with consideration for an intermediate timescale forcing on the slow process. This

required a new approach, and our technique paralleled that by Kushner [Kus90, Chapter 6]. We considered

the difference of the marginal filter and the averaged filter as a random variable in the space of continuous

time paths from [0, T ] to the space of signed measures on Rm, C([0, T ];S(Rm)). We showed that the ε-

parameterized family of induced measures is tight, and therefore that weak limit points exist. This made use of

the work by Jakubowski [Jak86]. We characterized the limiting equation of the signed measure-valued process

and showed that it possesses a unique solution using the work of Rozovskii [Roz91]. The aforementioned

steps made use of the method of perturbed test function (also known as method of corrector), where the

corrector is a solution to a Poisson equation, to handle the intermediate timescale forcing term. The end

result shows that in probability, the filter weakly converges to an averaged filter.

Although the necessary conditions for the main theorem in Chapter 4 are weaker than those in Chapter 3,

we still have the issue that they are too strong, such that linear models could not be considered with the

result. This time the restriction comes from the results on the transition densities, semigroups and Poisson

solutions developed by Pardoux and Veretennikov [PV03] (see Section 4.6, which provides some remarks

regarding a correction for the stated results by Pardoux and Veretennikov [PV03] on semigroup and Poisson

solutions, and therefore also the diffusion approximation result there). Some of the conditions required by

Rozovskii [Roz91] on uniqueness of the Zakai equation also provide barriers to weakening conditions on our

main theorem. Because the results in Pardoux and Veretennikov [PV03] rely on PDE arguments instead of

probabilistic ones, there may be an opportunity to relax the conditions in Chapter 4 if the same results by

Pardoux and Veretennikov [PV03] can be attained in a different manner. If one is willing to consider the case

of the fast process not driven by the slow process, then the probabilistic arguments from an earlier paper by

Pardoux and Veretennikov [PV01] could possibly be extended to achieve this result.

With Chapters 5 and 6, we turned to the development of numerical algorithms for filtering equations

applied to high dimensional, chaotic, multiple timescale and correlated problems. In particular, we focused on

the development of particle filtering methods (otherwise known as sequential Monte Carlo methods). The new

contributions of Chapter 5 included: 1. an outline of how to extend the HMM and HHPF algorithms to the

multiple timescale case with intermediate scale forcing; 2. algorithms to address the question of alternative
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ways to model the fast scale effects on the slow process, and demonstrating one way that is advantageous

for models having a symmetric graph structure for their system of equations (common for many geoscience

problems); 3. results on how to incorporate the effect of the correlated noise case for continuous time signal,

discrete time observation on particle filtering algorithms; 4. insights into the behavior of the nudged particle

filter and a best practices guideline for implementation; 5. a comparison of the nudged particle filter and the

relaxed particle filter by van Leeuwen [Lee10]; 6. demonstration of tempering of the likelihood for optimal

proposal particle filtering.

The results of Tables 5.1, 5.2, and 5.3 demonstrated that on the Lorenz ’96 model, the fast scale effect

on the slow process cannot be neglected and that our multiple timescale algorithms were 10 to 12-times

faster while achieving the same accuracy of estimation in comparison to traditional standard particle filtering.

Test results on a correlated signal-sensor variant of the Lorenz ’96 problem were shown in Table 5.4, and

demonstrates that our derivation on how to account for the correlated noise ensures that accurate filtering

can be achieved. In the final sections of the chapter, we compared our nudged particle filtering algorithm,

with and without tempering of the likelihood, against the relaxed particle filter by van Leeuwen [Lee10]

on the Lorenz ’63 model. We show in Table 5.5 that our nudging approach yields a lower RMSE for the

same number of particles and that tempering of the likelihood benefits both algorithms, but more so for the

relaxed particle filter.

Future directions from Chapter 5 should include looking at the full development of the HHPF algorithm

to the multiple timescale problem with intermediate scale forcing. The work in Section 5.3.1 raises the

question of how stochastic parameterizations for high dimension multiple timescale models can be improved.

Importantly, we showed in that section that ignoring the fast scale contribution in the Lorenz ’96 model is

not a tractable approach when filtering with temporally sparse observations. Hence the effects of the fast

scale need to be accounted for to attain useful estimates. Current efforts by the greater academic community

on topics regarding compressive sensing and machine learning may play a useful role here. Regarding the

optimal proposal particle filters, an interesting proposition would be to consider the inclusion of a constraint

on the relative particle weights in the optimal control problem for the nudged particle filter.

In Chapter 6 we addressed the issue of particle collapse in high dimensional chaotic systems by leveraging

the properties of the chaotic system to find a subspace to perform the likelihood update of the particles

(i.e., effectively reducing the dimension of the problem from the point of view of the particle collapse issue).

Taking a cue from previous work on assimilation in the unstable subspace for Kalman filter based approaches,

we developed several novel approaches for assimilation in the unstable subspace for particle filters. We

demonstrate this approach on the moderate signal and observation noise case, which does not seem to have
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been reported in the literature. We demonstrated the ability of using singular vectors for the first time in the

context of assimilation in the unstable subspace, and show a very interesting result when we use the novel

idea of future right-singular vectors.

On the weakly chaotic, non-Gaussian regime of the single scale Lorenz ’96 model, we demonstrated the

capabilities of our assimilation in the unstable subspace methods. In particular, the methods using the future

right-singular vectors were capable of reducing the RMSE and increasing the effective sample size versus the

standard particle filtering approaches (see Tables 6.1 and 6.2). Testing on a strongly chaotic, near-Gaussian

regime variant of the Lorenz ’96 model showed that the aforementioned approaches were even more valuable,

since our projected particle methods prevented complete collapse of the filtering distribution (see Tables 6.3

and 6.4), which was common in the standard particle filtering approach.

In Chapter 6 we additionally combined the dynamical systems techniques with the controlled particle

filtering method (nPF). The need to calculate the fundamental matrix in the nPF algorithm implies that

information regarding the unstable subspace is shared across the nPF algorithm and projected particle

methods, and therefore there is future potential to produce a method that better leverages the shared

information of both.

A comparison with the inherently nonlinear bred vectors by Toth and Kalnay [TK93] would also be an

interesting extension to the work presented in Chapter 6. A last remark on interesting future developments

would be an effort to combine the novel ideas of Chapter 6 with local particle filtering approaches. Local

particle filters are the analogy of local ensemble Kalman filter methods developed by Ott et al. [Ott+04] and

are an extremely active topic in both research and applications at the current time [Pot16; PWR19].
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Appendix

A.1 Inverses and Factorizations of Symmetric Positive Definite

Matrices

Proposition A.1.1

If K � 0 and K = K∗, then ∃!K−1.

Proof. The existence proof is quite basic, we just use the fact that there is always an SVD factorization.

Hence K = UΣV ∗ and then K−1 = V Σ−1U∗, which is well posed since Σ is a diagonal matrix with positive

values (we only used the fact that K was positive definite).

For uniqueness, we first note that ∃!L such that K = LL∗ and L is positive definite, therefore ∃L−1.

Again we make use of the SVD factorization, but this time of L = UΣV ∗. Then

L−1 = V Σ−1U∗.

Now ∃K−1, since it is positive definite, and therefore properties of matrix multiplication give

K−1 = (L∗)−1L−1.

Note that K−1 must be symmetric and whats more, positive definite. Now assume that G is also an inverse

of K. Then GK = I, where I is the unit matrix. But then we have the following,

GK = I

GLL∗ = I

G = (L∗)−1L−1

= K−1
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Proposition A.1.2

Let A = A∗, A � 0, then ∃!L such that A = LL∗ and the following is true,

(
L−1

)∗
= (L∗)

−1
,

that is the operations of ·−1 and ·∗ commute on lower triangular positive definite matrices.

Proof. From the properties of A, we have by Proposition A.1.1, that ∃!A−1 which is symmetric and positive

definite. Hence, ∃!J such that A−1 = JJ∗. At the same time, A−1 = (L∗)−1L−1. From uniqueness of

J = (L∗)−1 and J∗ = L−1. Taking the transpose of the last relation J = (L−1)∗, which gives the desired

result:

J = (L∗)−1 = (L−1)∗.

Proposition A.1.3

If L � 0 is a lower triangular matrix, then ∃!L−1 � 0, and L−1 is lower triangular.

Proof. A direct way to prove the result is to construct the first two rows of L−1 by hand and then follow the

procedure by induction to see that the structure is lower triangular (i.e., the same basic technique that could

be used to show that the inverse exists). For instance let Lij be the i-th row and j-th column entry of L.

Then the first entry of (L−1)11 = 1/L11 exists and is unique. At the second step of construction, one has

L11 L21

0 L22


L−1

21

L−1
22

 =

0

1

 .
The solution exists since the matrix on the left side of the equation is invertible from L � 0. And this solution

is unique, since the matrix is full rank. This procedure can be continued until completion.

A.2 Extension of Itô’s Formula

The following Lemma A.2.1 and subsequent Corollary A.2.1, are extensions of the Itô formula for the case of

backward doubly stochastic differential equations (cf. [PP94, Lemma 1.3, p.213]).
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Lemma A.2.1

Let θ to be the first component of the pair solution (θ, η) to the backward doubly stochastic differential equation

θt = θT +

∫ T

t

Fds+

∫ T

t

GdBs −
∫ T

t

ηdWs.

Assume the general case of θt taking values in Rk. Here B is a Rb backward Brownian motion, which is

independent of the Rw forward Brownian motion W . The dispersion coefficients G, η are matrices with values

in Rk×b and Rk×w respectively. Let (·, ·) be the standard Euclidean inner product on Rk, | · | the induced

norm, and 〈·, ·〉 the quadratic variation. Then we have the following for |θ|p for p > 2

|θt|p = |θT |p +

∫ T

t

(
p|θs|p−2θs,Fds

)
+

∫ T

t

(
p|θs|p−2θs,GdBs

)
−
∫ T

t

(
p|θs|p−2θs, ηdWs

)
+
p

2

∫ T

t

|θs|p−2 Tr(GG∗)ds+
p(p− 2)

2

∫ T

t

|θs|p−4 (GG∗θs, θs) ds

− p

2

∫ T

t

|θs|p−2 Tr(ηη∗)ds− p(p− 2)

2

∫ T

t

|θs|p−4 (ηη∗θs, θs) ds.

Further, if the stochastic integrals are martingales and if θT = 0 a.s., the p-th moment of θ is

E [|θt|p] =

∫ T

t

E
[(
p|θs|p−2θs,F

)]
ds

+
p

2

∫ T

t

E
[
|θs|p−2 Tr(GG∗)

]
ds+

p(p− 2)

2

∫ T

t

E
[
|θs|p−4 (GG∗θs, θs)

]
ds

− p

2

∫ T

t

E
[
|θs|p−2 Tr(ηη∗)

]
ds− p(p− 2)

2

∫ T

t

E
[
|θs|p−4 (ηη∗θs, θs)

]
ds.

(cf. [PP94, Lemma 1.3, p.213])

Proof. We first rearrange the evolution equation for θ to get,

θT = θt −
∫ T

t

Fds−
∫ T

t

GdBs +

∫ T

t

ηdWs.

Then note that

∇θ|θ|p = ∂θ(θ, θ)
p/2 = pθ(θ, θ)(p/2)−1 = p|θ|p−2θ

∇⊗2
θ |θ|

p = p|θ|p−2 Id +p(p− 2)|θ|p−4θθ∗,

= p|θ|p−4
(
|θ|2 Id +(p− 2)θθ∗

)
.
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Then for p > 2, we can apply Itô’s formula to yield

|θT |p = |θt|p +

∫ T

t

(
p|θs|p−2θs, dθs

)
+

1

2

∫ T

t

k∑
i,j

p|θs|p−4
(
|θs|2 Id +(p− 2)θsθ

∗
s

)
i,j
〈dθis, dθjs〉

= |θt|p −
∫ T

t

(
p|θs|p−2θs,Fds

)
−
∫ T

t

(
p|θs|p−2θs,GdBs

)
+

∫ T

t

(
p|θs|p−2θs, ηdWs

)
− 1

2

∫ T

t

k∑
i,j

p|θs|p−4
(
|θs|2 Id +(p− 2)θsθ

∗
s

)
i,j

(GG∗)i,j ds

+
1

2

∫ T

t

k∑
i,j

p|θs|p−4
(
|θs|2 Id +(p− 2)θsθ

∗
s

)
i,j

(ηη∗)i,j ds.

Using the fact that
k∑
i,j

Idi,j(GG∗)i,j = Tr(GG∗),

and
k∑
i,j

(θθ∗)i,j(GG∗)i,j = (GG∗θ, θ),

we can simplify the terms coming from the quadratic variation to get

|θT |p = |θt|p −
∫ T

t

(
p|θs|p−2θs,Fds

)
−
∫ T

t

(
p|θs|p−2θs,GdBs

)
+

∫ T

t

(
p|θs|p−2θs, ηdWs

)
− p

2

∫ T

t

|θs|p−2 Tr(GG∗)ds− p(p− 2)

2

∫ T

t

|θs|p−4 (GG∗θs, θs) ds

+
p

2

∫ T

t

|θs|p−2 Tr(ηη∗)ds+
p(p− 2)

2

∫ T

t

|θs|p−4 (ηη∗θs, θs) ds.

Rearranging, we get the useful expression

|θt|p = |θT |p +

∫ T

t

(
p|θs|p−2θs,Fds

)
+

∫ T

t

(
p|θs|p−2θs,GdBs

)
−
∫ T

t

(
p|θs|p−2θs, ηdWs

)
+
p

2

∫ T

t

|θs|p−2 Tr(GG∗)ds+
p(p− 2)

2

∫ T

t

|θs|p−4 (GG∗θs, θs) ds

− p

2

∫ T

t

|θs|p−2 Tr(ηη∗)ds− p(p− 2)

2

∫ T

t

|θs|p−4 (ηη∗θs, θs) ds.

If the stochastic integrals in this expression are martingales (e.g., using the Burkholder-Davis-Gundy
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inequality), then we get the following for the expectation of |θt|p,

E [|θt|p] = E [|θT |p] +

∫ T

t

E
[(
p|θs|p−2θs,F

)]
ds

+
p

2

∫ T

t

E
[
|θs|p−2 Tr(GG∗)

]
ds+

p(p− 2)

2

∫ T

t

E
[
|θs|p−4 (GG∗θs, θs)

]
ds

− p

2

∫ T

t

E
[
|θs|p−2 Tr(ηη∗)

]
ds− p(p− 2)

2

∫ T

t

E
[
|θs|p−4 (ηη∗θs, θs)

]
ds.

Further, in the case where θT = 0 a.s., then this equation simplifies further to

E [|θt|p] =

∫ T

t

E
[(
p|θs|p−2θs,F

)]
ds

+
p

2

∫ T

t

E
[
|θs|p−2 Tr(GG∗)

]
ds+

p(p− 2)

2

∫ T

t

E
[
|θs|p−4 (GG∗θs, θs)

]
ds

− p

2

∫ T

t

E
[
|θs|p−2 Tr(ηη∗)

]
ds− p(p− 2)

2

∫ T

t

E
[
|θs|p−4 (ηη∗θs, θs)

]
ds,

which proves the desired results.

Corollary A.2.1

Assume the same setup as Lemma A.2.1, but for the case θt ∈ R. B and W may still be multidimensional

Brownian motions. Then the same result there becomes,

|θt|p = |θT |p +

∫ T

t

p|θs|p−2θsFds+

∫ T

t

(
p|θs|p−2θsG, dBs

)
−
∫ T

t

(
p|θs|p−2θsη, dWs

)
+
p(p− 1)

2

∫ T

t

|θs|p−2|G|2ds− p(p− 1)

2

∫ T

t

|θs|p−2|η|2ds.

Further, if the stochastic integrals are martingales and if θT = 0 a.s., the p-th moment of θ is

E [|θt|p] =

∫ T

t

E
[
p|θs|p−2θsF

]
ds+

p(p− 1)

2

∫ T

t

E
[
|θs|p−2|G|2

]
ds− p(p− 1)

2

∫ T

t

E
[
|θs|p−2|η|2

]
ds.

A.3 An Inequality and Limits

Lemma A.3.1

Let A ∈ Rd×m and θ ∈ Rm, then

|Aθ|2 = 〈Aθ,Aθ〉 = 〈A∗Aθ, θ〉 . |θ|2 Tr(A∗A). (A.3.1)
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Proof. Expanding the left side of Eq. A.3.1, we get

(A∗Aθ, θ) =

m∑
i,j

θiθj〈A:,i, A:,j〉.

If i = j, then each term is simply

θiθi〈A:,i, A:,i〉.

If i 6= j, then application of Young’s inequality to each term gives,

θiθj〈A:,i, A:,j〉 = 〈θiA:,i, θjG:,j〉 ≤
βi,j
2
θ2
i 〈A:,i, A:,j〉+

1

2βi,j
θ2
j 〈A:,j , A:,i〉.

Putting all the terms together yields the desired result.

Lemma A.3.2

Let p > 0, q ∈ R, then

lim
ε→0+

εp(− ln ε)q = 0

Proof. In the case q ≤ 0 the result is trivial since both εp and (− ln ε)q tend to zero as ε→ 0+. Therefore,

consider the case q > 0. We apply L’Hopital’s rule with f = (− ln ε)q, g = ε−p, such that f/g = εp(− ln ε)q.

Then the derivatives of f and g with respect to ε are,

∂f

∂ε
= f ′ = −qε−1(− ln ε)q−1, and

∂g

∂ε
= g′ = −pε−p−1.

Therefore

f ′

g′
=
q

p
εp(− ln ε)q−1.

If q − 1 ≤ 0, then the result follows. Otherwise repeated application will eventually give (− ln ε)q−k for some

k ∈ N such that q − k ≤ 0 and then the result follows.

Lemma A.3.3

Let p ∈ (0, 1/8), δ(ε) = ε2(− ln ε)p, then

lim
ε→0+

(
δ8

ε16
+
δ4

ε8

)
(ε8 + δ4(1 + ε8)) exp

(
δ8

ε16
+
δ4

ε8

)
= 0.
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Proof. We first expand the expression with the choice of δ(ε) to get,

(
(− ln ε)8p + (− ln ε)4p

)
(ε8 + ε8(− ln ε)4p + ε16(− ln ε)4p) exp

(
(− ln ε)8p + (− ln ε)4p

)
.

Expanding and distributing the terms, we identify the term that would be most limiting for convergence to

zero,

(− ln ε)12pε8 exp
(
(− ln ε)8p + (− ln ε)4p

)
. ε7 exp

(
2(− ln ε)8p

)
.

Since 8p < 1, for all sufficiently small ε > 0 we have,

exp
(
2(− ln ε)8p

)
≤ exp (−2 ln ε) = ε−2,

and therefore

lim
ε→0+

ε7 exp
(
2(− ln ε)8p

)
≤ lim
ε→0+

ε5 = 0.
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