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ABSTRACT

Previously, researchers established some frameworks, such as Morpheus [1], to specify a
compiler translation in a small language and prove the semantic preservation property of the
translation in the language under the assumption of sequential consistency. Based on the
Morpheus specification language, we extend the verification framework to prove the compiler
translation semantic preservation property in a large real-world programming language with
a real-world weak concurrency model. The framework combines four different pieces. First,
we specify a complete semantics of the K framework and a translation from K to Isabelle
as our basis for defining language specifications and proving properties about the specifica-
tions. Second, we define a complete operational semantics of LLVM in K, named K-LLVM,
including the specifications of all instructions and intrinsic functions in LLVM, as well as the
concurrency model of LLVM. Third, to verify the correctness of the K-LLVM operational
model, we create an axiomatic model, named hybrid axiomatic timed relaxed concurrency
model (HATRMM). The creation of HATRMM is to bridge the traditional C++ candidate
execution models [2, 3, 4] and the K-LLVM operational concurrency model. Finally, to
enhance our framework to prove the semantic preservation property in a relaxed memory
model, we define a new simulation framework, named Per Location Simulation (PLS). PLS
is suitable for proving semantic preservation property in a relaxed memory model.
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Chapter 1: INTRODUCTION

Compiler correctness is one of the most fundamental problems in programming, but the
term can actually be understood on two different levels. When someone talks about a com-
piler, e.g. GCC [5], being “buggy”, they are usually referring to a fault or unverified compiler
with the potential to transform correct high-level code into low-level code containing errors.
The problems appear in the low-level code, which is actually executed in a single-threaded
environment. They are easy to observe but not easy to fix. However, there is a second level
of compiler bugs, where multi-threaded programs are translated to low-level multi-core ar-
chitecture and executed. Users might run their multi-threaded programs many times before
observing some strange behaviors that the programs are not supposed to produce under the
assumptions of the high-level language. These extra behaviors result from differences in the
semantics of these two languages, e.g. because they have different concurrency models. For
example, some behaviors that are not allowed in an instruction sequence in the high-level
language, according to its concurrency model, occur in the compiled program because the
low-level language has a more flexible concurrency model. Gaining behaviors is generally
not desirable, and they can be classified as bugs. These behaviors can also invalidate the
analyses of codes, causing correctly written programs to execute incorrectly; these problems
may require considerable effort to detect and resolve.
Previously, Gunter and Rosu designed a formal framework in the VeriF-OPT project that

addresses part of the compiler correctness problem on the first level [6]. The framework
focused primarily on specifying compiler optimizations in a particular source language and
proving them correct. Gunter and Mansky also developed a specification language, Morpheus
[1], to specify and prove the correctness of compiler optimizations in Isabelle [7]. There are
three points to note about VeriF-OPT. First, it focuses on a domain specific language (Mor-
pheus). Even though the language is good for specifying properties related to control flow
graphs, it might not be adequate for specifying all compilation steps in a compiler. Specially,
it might not be able to specify all interesting compiler optimizations. For example, the Mor-
pheus language is not able to specify the thread-inlining optimization, i.e. executing two
threads’ programs in one sequentialized thread. Second, the previous compiler correctness
proof [1, 8] is based on a simple well-founded memory model. The proof strategy might not
work for a language based on a real-world relaxed memory model such as the C++ memory
model [2, 3]. Furthermore, the compiler correctness proof framework in the previous work
[1, 8] is based on a simple bi-simulation framework. It neither considers program executions
that lead to failure, nor does it include the extra program execution behaviors caused by a
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relaxed memory model.
In this thesis, we propose a framework, Morpheus+, that combines the Morpheus spec-

ification language with a system (IsaK) for defining concurrent language semantics and a
system for proving the per-simulation relation between two language specifications for a
particular transformation, in order to verify the compiler correctness for languages under a
real-world multi-threaded concurrency model, such as the relaxed concurrency model. The
primary goal of the project is to provide a memory-model-aware generalized framework for
proving the correctness of transformations, especially compiler optimizations, and will in-
clude: the IsaK [9, 10] and TransK [11] tools for connecting language specifications in K
to theories in Isabelle, a generic memory model that is able to define relaxed concurrency
models, such as the LLVM IR concurrency model; and a compiler correctness proof system
based on the Per-Location Simulation framework (PLS). We rely on K to easily define large
and real-world language specifications and on Isabelle to prove correctness properties about
the compilations between two languages. As an example of Morpheus+, we define compiler
optimizations based on the complete semantics of LLVM IR with its operational concurrency
model. Using PLS, we are able to prove the correctness of these compiler optimizations.
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Chapter 2: RELATED WORK

We provide here some related work of the Morpheus+ project.

2.1 COMPILER CORRECTNESS RELATED WORK

Compiler verification efforts date back at least to a 1973 paper by Morris [12]. Early efforts
include the construction of an interpreter for the Piton language in the Boyer-Moore theorem
prover [13, 14] and the verification of a compiler for a subset of the Gypsy language [15]. Also
notable is Elsa Gunter’s work in formalizing the syntax and semantics of SML, as well as its
module system, in HOL-90 (the predecessor to Isabelle) [16, 17]. The proof assistants Coq
[18] and Isabelle [19] have been the platform used for various significant formal verification
efforts, including several in the area of verified compilation. Early Isabelle projects included
an interpreter for a small functional language verified aginst its denotational semantics [20]
and a verified lexer [21]. More recent developments have included verification of a code
generation algorithm from SSA form [22], a bytecode verifier for the Java Virtual Machine
(JVM) [23], and compilers for substantial subsets of C [24, 25] and Java [26]. Gesellensetter et
al. [27] have also used a translation-validation approach in Isabelle to find bugs in GCC. The
Jinja project has formalized a significant subset of Java, including its concurrency model,
in Isabelle [28, 29]. Coq projects have included verification of the JavaCard smartcard
platform [30], development of a formally specified and executable JVM [31], verification of
an algorithm for sequentializing parallel assignments [32], verification of CPS transformations
for functional languages [33], and creation of a verified compiler for simply-typed lambda
calculus [34].
Perhaps the most impressive achievement in compiler verification to date is the CompCert

project, culminating in an end-to-end proved-correct compiler from a subset of C to Pow-
erPC machine code written entirely in Coq [35, 36, 37]. Though complete formal compiler
verification was previously considered near-impossible by the formal analysis community
(see [38]), the CompCert project has provided a powerful counterexample to this argument.
While it does not cover the entire C specification, the compiler does include a range of
real-world optimizations, and introduces a general method for proving correctness of opti-
mizations involving dataflow analysis. Further work on the project includes a framework
for adding new optimizations [39] and an extension for garbage collection [40], as well as a
C-like memory model for verifying pointer-based programs [41]. Ŝevčik et al. [42] are in the
process of developing an analogous compiler for a language including shared-memory con-
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currency, and have lifted the proofs of correctness for several of CompCert’s optimizations,
including constant propagation and common subexpression elimination, to the parallel case.
Blazy and Leroy [43] in the CompCert project have verified an optimizing compiler based on
CLight, including compilation steps and C-like modular systems. They used Coq to generate
a compiled code behaving exactly as described by the specification of the language. Other
projects based on CompCert include Appel’s, which combined program verification with a
verified compilation software tool chain [44].
Building on CompCert, the Verified Software Toolchain (VST) project [45] seeks to link via

formal methods the results of static analysis tools on high-level programs to the behavior of
compiled code. VST has a particular focus on concurrent programs, and has so far produced
several levels of operational semantics for a C-like source language with threads and locks,
as well as a versatile program logic called Concurrent Separation Logic [46]. Integration
of Morpheus with VST could potentially provide considerable benefits to both frameworks;
Morpheus would offer improved generality and modularity and easier links to other source
and target languages, while VST would offer an extensive set of tools and analysis approaches
for verification of properties on compiler specifications.
The PVS theorem prover has also been used in some compiler verification efforts, such as

a verification of peephole optimizations [47] and a framework for translation validation of
optimizations [48]. PVS has not generally been a popular target for formal verification of
compilers, perhaps due to the relatively large size of its trusted code base, but is potentially
a versatile framework for formal analysis of transformations.
The TRANS language that forms the core of our approach to compiler specification is

based on work by Lacey et al. [49, 50], and the original statement of TRANS is due to
Kalvala et al. [51]. More recently, Kalvala and Warburton have used the TRANS approach
to automatically find and fix bugs in Java programs [52]. Rather than using the formal
semantics of TRANS to verify program correctness, this approach intentionally uses TRANS
to change the semantics of programs, from potentially buggy programs (according to some
user-provided pattern for bugs) to more correct ones. Since this could potentially lead to
the introduction of bugs as well as their elimination, potential rewrites are not carried out
automatically, but are rather suggested to the user of the system as possible fixes. Thus, in
parallel with our work, TRANS is also being used as a software engineering tool for offering
bug fixes to Java programmers. The Morpheus language, based on the TRANS language,
allows users to specify program transformations and optimizations in a program that may
involve parallelism and using proof theories in the previous VeriF-OPT project to prove the
program optimizations correct under a semantics involving parallelism [1].
Cobalt [53] and Rhodium [54] are systems for specifying compiler optimizations developed
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in parallel with TRANS, and also inspired by Lacey’s work on optimizations and temporal
logic [49]. As in TRANS, optimizations are written as rewrites conditioned on temporal prop-
erties of the control-flow graph. Cobalt and Rhodium extend Lacey’s simple intermediate
language to handle more complex features such as pointers, dynamically allocated memory,
and recursive function calls. They also restrict the range of temporal formulae from general
CTL to a tightly constrained subset, which in practice has allowed them to prove soundness
of optimizations completely automatically. Optimix [55, 56] is another graph-rewriting-based
system for expressing compiler optimizations, developed prior to TRANS and with a less
compact method of establishing the conditions under which the rewrite should be performed.
In terms of functional programming languages (ML languages) and theorem provers, Mil-

ner, Tofte, Harper, and MacQueen [57] formalizes one of the most prominent and mathemat-
ical programming language specifications, whose formal and executable specifications were
given by Lee, Crary, and Harper [58], also by VanInwegen and Gunter [16], and by Maharaj
and Gunter [59]. In contrast to ML, formalizing other real world language specifications is a
challenge because they are designed without formalism in mind. There have been a number
of formal language specifications given in the HOL [60] and Coq [18]. For example, A small
step semantics of C in HOL was specified by Norrish [61], who proved substantial meta-
properties, but the specification has not been tested for conformance with implementations.
Many other projects were done on Coq, such as the VeLLVM project [62].

2.2 K RELATED WORK.

In this section, we discuss other work describing K semantics, and language specifications
defined in K, as well as order-sorted algebras.
Order-sorted algebras were first introduced systematically by Goguen et al. [63]. Many

people defined rewriting strategies, unifications and equational rules on top of order-sorted
algebras and further extended the operational semantics of order-sorted algebras [64, 65,
66, 67, 68]. Based on order-sorted algebras, Meseguer et al. [69, 70] developed rewriting
logic. A major contribution of rewriting logic is to contain the operational semantics of
order-sorted algebras. The core idea of rewriting logic is that it distinguishes equations from
rewriting rules – equations partition terms into equivalence classes while rewriting rules act
like traditional transition rules in structural operational semantics. Maude [71] implemented
the syntax and semantics of rewriting logic and provided several useful tools and applications
[72, 73, 74]. Another implementation of an order-sorted algebra is PROTOS(L) [75], which
has an operational semantics based on a polymorphic, order-sorted resolution.
K has a brief English description of its semantics and provides some examples in the K
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overview document [76]. In addition, there is a compiler implementation in Java to allow
users to define their language specifications and show traces of execution programs. The
compiler has almost fifty compilation steps, and eventually executes a program in a very
small core language that has no English description to describe its grammar or semantics.
In this sense, these K specifications are far from being formal. Matching Logic [77] is a logic
system that is built on top of K for reasoning about structures. The current invention of
Matching Logic is Reachability Logic [78, 79]. It is a seven rule proof system and is language
independent. It generalizes transitions of operational language specifications defined by users
and the Hoare triples of axiomatic semantics [80] to prove properties about programs in the
specifications, so that users do not need to define the axiomatic semantics of a specification.
There is an ongoing project by Moore [81] that transfers the K specifications to Coq [82]
and plans to prove properties of the programs of the specifications in Coq. The current
state is that Moore has managed to define a useful co-induction tool in Coq and prove some
properties by defining small language specifications in Coq. Big language specifications have
been defined in K including C [83], PHP [84], JavaScript [85], and Java [86]. They are
executable, have been validated by test banks, and, through the addition of some formal
analysis tools produced by K, have shown usefulness.
Goguen et al. [63] introduced a way of translating solely initial free (having no equations

or rules) order-sorted algebras to many-sorted ones. One recent attempt at translating
order-sorted algebras into many-sorted ones was made by Meseguer and Skeirik [87]. Their
algorithm provided a theoretical framework to translate order-sorted equations and rules to
many-sorted ones by generating (potentially exponentially many) new copies of transition
rules for each of the sorts subsorting to the ones in the original transition rules. In addition,
Li and Gunter [11] provided a new translation method to translate order-sorted algebras
into many-sorted ones, which is the theoretical foundation of our project.
The study of many sorted algebras has a long history. Their logic system was explored by

Wang [88]. Many well-known programming languages such as C, Java, LLVM, and Python
are based on them.

2.3 RUNTIME EXECUTION MODELS AND MEMORY MODELS

The idea to have an execution model that connects the runtime, instruction semantics and
memory model was inspired by real-world execution models. Mainly, we were enlightened
by the Tomasulo algorithm [89], and to a lesser extent by some current execution models
such as the MPC model by Perache et al. [90], the fractal model by Subramanian et al. [91],
and the copy or discard (CorD) execution model by Tian et al. [92]. Tomasulo’s algorithm
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is simple enough to act as a guideline for the execution model for our LLVM IR semantics
(K-LLVM). The other models are too complicated for our purposes, containing too many
details about hardware.
We are also helped by various memory models. Lamport probably was the first to define a

memory model weaker than sequential consistency for multi-threaded programs [93]. Adve
and Hill [94] started defining weak memory orders for memory operations. Focusing just
on hardware models: Ahamad et al. [95] axiomatized causal memory and proved some im-
portant theorems. Higham et al. [96] formalized SPARC and a number of simpler memory
models in both axiomatic and operational styles. Sevcik et al. created a formal verifica-
tion framework for a small C-like language [42]. The same group [97] later developed the
CompCertTSO to verify a compiler from CLight to X86 based on a relaxed memory model.
Mansky et al. [98] developed an axiomatization of the CompCert sequential consistency
memory model and combined the model with a subset of the LLVM language to verify the
correctness compiler optimizations.
In the SPARC documentation [99], an axiomatic style similar to the candidate execution

model was used. Alglave et al. [100] specified in great detail how to use a candidate execution
model to define relaxed memory models and provided several verification tools. The C11
memory model was designed by the C++ standards committee based on a paper by Boehm
and Adve [101]. Batty et al. formalized the C11 model with some improvements and proved
the soundness of its compilation to X86-TSO [2]. A number of papers [102, 103, 104, 105]
found that Batty et al.’s model enabled thin-air behaviors. Vafeiadis et al. [106] found many
other limitations in Batty et al.’s model and proposed ways to handle them. In 2016, Batty
et al. proposed a more concise model for sc atomics [107], but the model is stronger than
C11, and their sc fences are too weak. Much previous work [103, 108, 109, 110] focused
on a fragment of C++ concurrency. From this corpus, we select Lahav et al.’s SRA model
[110] to show the soundness of our acq/rel atomics. In 2017, Lahav et al. [3] defined a
comprehensive C++ model (RC11) based on all previous models, with extra extensions on
Batty et al.’s model. In Chapter 6, we discussed this model as a part of several topics.
The main limitations from our perspective with the model is that its OUT-OF-THIN-AIR
condition is too strong and rules out too many good executions. Many previous papers
[111, 112, 113] also proposed solutions for defining what are "good" out-of-thin-air behaviors.
These models were not in the axiomatic candidate execution fashion, and one of them (the
promising memory model [113]), which we have compared in Chapter 6, has been proved to
be represented by the IMMmodel [4]. Chakraborty and Vafeiadis [114] provided a concurrent
abstracted memory model for LLVM IR. It provided the semantics for a fragment of LLVM
IR memory operations while keeping the model stronger than Lahav et al.’s. The IMM
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model by Podkopaev et al. [4], based on RC11 and the promising memory model, defined its
OUT-OF-THIN-AIR property with a weaker one than the one in RC11. We have shown in
Chapter 6 that it is not suitable in handling many thin-air behaviors, and some of its control
dependency is too weak so it enables some thin-air behaviors. The essential difference is
that IMM is designed to provide a spiritual sample for people to understand how to compile
C++ to hardware code, while HATRMM is designed to be used by a PLS to prove properties
about a compiler.

2.4 LANGUAGE SPECIFICATIONS RELATED TO LLVM IR

Besides K-LLVM, other formal executable sematics for LLVM-IR include VeLLVM [115]
and the previous LLVM semantics in K [116]. VeLLVM was the first project to define a
relatively complete specification for the core of LLVM IR. It was defined in the theorem
prover Coq [18] and covered a core set of LLVM IR instructions. VeLLVM formalizes a
mechanized semantics for LLVM IR, its type system, and the properties of its SSA form.
It also has an interpreter extracted from Coq that ran 145 test programs and passed 134
of them. The memory model of VeLLVM is based on CompCert with newly developed
features that are specifically designed by the VeLLVM team for capturing the memory data
layout features in LLVM IR. Their model associates metadata to memory byte data fields,
so that an execution of a LLVM IR program can utilize the metadata. This feature is similar
to the memory data layout in K-LLVM (see Sec. 5.3.3). With VeLLVM, users can prove
properties about translations defined in LLVM IR. Many papers, such as [115, 117], have been
published about compiler correctness, memory models, and verification of compiler schemes
using VeLLVM. The LLVM semantics in K by Ellison and Lazar [116] is a prior work of
K-LLVM, and it provides many definitions for LLVM IR instructions for single-threaded
programs. The definition influencesK-LLVM, particularly the definition of LLVM’s syntax,
static semantics, and single-threaded dynamic semantics.
There are other pieces of work that are not meant to directly define the LLVM IR seman-

tics but influence K-LLVM. First, Lee et al. [115] investigated the LLVM IR undefined
behaviors with no concrete semantics for all undefined behaviors. Kang et al. [117] pro-
vided a model in C to support the inttoptr/ptrtoint casting operations and enabled the
correctness proofs of many LLVM optimizations that rely on certain memory provenance
model features that the previous CompCert model is not able to provide. The difference
between Kang et al.’s work and the handling of inttoptr/ptrtoint casting operations in
K-LLVM is that they focus more on the relations between the executions of such oper-
ations with respect to the memory and define the relations in terms of logical properties,
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whereas K-LLVM focuses more on the formalization of an abstract machine, and empha-
sizes different conceptual components finishing different tasks without communicating with
each other through "unofficial" channels. Ellison and Rosu [83] defined the full C semantics
with a simplified version of the CompCert model. Chakraborty and Vafeiadis [114] provided
a concurrent abstracted memory model for LLVM IR that focused on an abstraction of the
concurrent LLVM IR memory behaviors. Lee et al. [118] proposed a novel LLVM memory
model including a data layout and memory pointer provenance model based on a small set of
LLVM IR memory related instructions. Specially, they provide an algorithm for preventing
address guessing when the total number of possible allocations in a system is bounded. A
current challenge is the extension of that memory model to the full set of LLVM-IR mem-
ory related instructions. Memarian et al. [119] provided two pointer provenance models
for C/C++ languages and reconciled the ISO C standard. Similar to Lee et al.’s work,
Memarian et al. focused on creating better pointer provenance models for C/C++.
Other interesting work includes a JavaScript specification by Bodin et al. [120], and

formalized semantics of OCaml Light by Owens et al., which is built in Ott [121], which
provides an easy way to write specifications, and automatically translates them into HOL,
Isabelle, and Coq. Isabelle, HOL and Coq, being proof assistants, have a relatively steep
learning curve.
A lot of work has been done on formalized specifications in Java and C#: Eisenbach’s

formal Java semantics [122] and Syme’s HOL semantics [123] for Drossopoulou, the C# stan-
dard by Börger et al. [124], which is formally executable and uses abstract state machines,
and the executable Java specification by Farzan et al. [125].
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Chapter 3: BACKGROUND

Below we discuss the necessary background information for this paper, including the K
style rules that we use in this thesis.

3.1 PREVIOUS APPROACHES AND THEIR PROBLEMS

We first investigate what the available verification approaches for compiler correctness.
There are basically two kinds: proofs and validations. In terms of proofs, the TRANS
approach is the trend. The basic idea is to define a domain-specific language as the core,
and then build a proof infrastructure around it. The TRANS language developed by Kalvala
et al. [51] is one of the significant pieces of this approach. Mansky and Gunter constructed a
framework for the formal verification of compiler optimizations [126], which is an extension
of the TRANS work. They also developed a domain specific language, Morpheus [1], based
on temporal logic. It is used to express and verify properties over paths in transition systems.
It has been used for a long time to verify properties of programs. In contrast to traditional
first-order and higher-order logic systems, temporal logic systems have a built-in notion of
progress through time, and have “next” and “until” as first-class concepts. The two most
commonly used temporal logics are LTL [127], which is used to express properties on single
paths, and CTL [128], which is used to express properties on sets of paths and can be
thought as trees that branch over time. In the standard interpretations of both LTL and
CTL, programs are modeled as finite-state automata (FSA), and formulae are evaluated
over paths through the automata. In their Morpheus paper, Mansky and Gunter specified a
set of compiler optimizations on LLVM that included redundant store elimination and loop
peeling, and utilized the Isabelle semantics to verify the correctness of these optimizations
on a subset of LLVM – MiniLLVM. The generalized control flow graphs along with the
Morpheus paper allow users to describe transformations that may involve parallelism. In
the VeriF-OPT project [6], Mansky and Gunter specified a simulation framework for proving
compiler transformation correctness for language semantics involving parallelism[126], and
provided the supporting theories. In the paper, they described how to use a Morpheus-like
language (PTRANS was being developed into Morpheus) and its associated theories to verify
a reordering optimization on parallel programs. Their method relies on an analysis of the
use of locks in the target program.
The main trend in validation approaches is translation validation, in which each source

program is compared with the corresponding low-level output of the compiler, and checked to
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ensure that the translation preserved the property ϕ [38]. This approach treats the compiler
as a black box, producing unreliable output that must be verified every time. Individual
proofs are considerably more lightweight than any complete compiler verification, and may
often be performed automatically. Since its inception, this technique has been successfully
applied to optimizing compilers in various instances [38, 129, 130, 131, 132].
The Morpheus+ project uses the two approaches for different tasks. The problem with

the TRANS approach is that a domain specific language is often restricted. For example,
the Morpheus language is only good for specifying compiler optimizations within a program
that has a specific control flow graph. Some optimizations might not be able to be specified
by using Morpheus only, such as thread inlining optimization. Another problem with the
VeriF-OPT project is its simulation framework. The simulation framework is a traditional
one similar to the CompCert simulation framework. In Morpheus+, we specify the per-
location simulation framework to verify compiler optimizations based on real-world relaxed
memory model (Chapter 6). The Morpheus+ project also takes the validation trend into
account. It is typically hard to prove if a language specification achieves the spirit of the
original design. We use extensive program validation to test if the language specifications,
especially the source language specifications, meet the design spirit of the language designer
in K, as we have done to test K-LLVM.

3.2 MORPHEUS SYNTAX

Here we introduce the syntax of Morpheus. More details can be found at the work of
Mansky et al. [1]. The basic approach of the Morpheus specification language is modeled
after the TRANS language of Kalvala et al. [133]. Optimizations are specified as conditional
compositions of rewrites on a generalized control flow graph (GCFG) containing the pro-
gram’s code. The language is partitioned into three largely independent components: core
graph transformations (H below), conditions given in a variant of Computation Tree Logic
(CTL) (ϕ below), and a strategy language (T below) for building complex transformations
out of component transformations and conditions.
Intuitively, the rewrite portion of an optimization expresses the local transformation to be

made, the condition characterizes the situations in which the optimization should be applied,
and the strategy language allows us to build whole-system transformations out of collections
of local ones. Morpheus is a special-purpose language for the transformation of GCFGs, and
as such is parametrized by aspects of GCFGs, namely node names, node labels (program
instructions), and edge labels (marking control flow). Transformation specifications may
mention aspects of GCFGs concretely, but more generally, they use pattern variables that
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will be instantiated with control flow graph components in each specific application. We
will use the term "expressions" to refer to patterns built from both concrete entities and
metavariables (which will be instantiated with concrete entities when the transformation is
applied). We use the term metavariable (a) to refer to the variables in the patterns and
expressions in Morpheus transformations, as opposed to the concrete programming variables
that will be found in instructions.

H , add_node(π,B,(l1,π1),...,(ln,πn)) | add_node(π)
| relabel_node(π,B) | move_edge((π,l,π1),π2)

ϕ , true | p(−→x ) | ϕ ∧ ϕ | ¬ϕ | ∃ a. ϕ | AXϕ | AYϕ | EXϕ | EYϕ
| Aϕ Uϕ | Eϕ Uϕ | Aϕ Sϕ | Eϕ Sϕ

T , H | SATISFIED_AT π ϕ | NOT T | T\T | EXISTS a. T | T + T | T ; T | T *

Figure 3.1: The Morpheus Language

The syntax of Morpheus consists of actions (H), conditions (ϕ), and transformations (T )
(Fig. 3.1). The atomic actions H begin with add_node and remove_node, which add and
remove nodes that have no incoming edges. In the case of add_node, the addition only takes
place if the node description is well-formed as a CFG node (i.e., it has the right number
and kind of outgoing edges for its instruction label). The relabel_node action relabels an
existing node with a new instruction, as long as that new instruction is compatible with the
existing edge structure. The only action that operates directly on edges (rather than nodes)
is move_edge, which moves the destination of an edge from one node in the graph to another.
The conditions ϕ of Morpheus are based on First-Order CTL (FOCTL). Starting from a set of
atomic predicates p, they include all of the usual propositional and temporal operators. The
S (“since”) and Y (“yesterday”) operators are the past-time counterparts to the U (“until”)
and X (“next”) operators respectively; for instance, E ϕ1 S ϕ2 holds when there exists
some path backwards through the graph such that ϕ1 holds until a previous point at which
ϕ2 holds. The existential quantifier ∃ is used to quantify over metavariables in a formula:
these metavariables may then appear in the atomic predicates of a formula, enhancing the
expressive power of the conditions. At the top level, a transformation T combines conditions
and rewrites using strategies. Strategies are inherently non-deterministic, as is reflected
by their returning a set of possible transformed graphs. The simplest strategy is just to
perform an action H. The strategy SATISFIED_AT π ϕ acts as the identity transformation
if ϕ holds of the GCFG at the node π, and returns the empty set if ϕ fails to hold on π.
Thus SATISFIED_AT π ϕ acts as filter, allowing through only those GCFGs and nodes π
that satisfy ϕ. On the other hand, NOT T and T1\T2 allow us to deselect graphs by the
ability to perform a transformation. The transformation NOT T selects those graphs that
T cannot transform, i.e., those not in the domain of T , and deselects those that it can
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transform. The transformation T1\T2 restricts the output of T1 to those graphs that could
not be produced by T2, i.e., those not in the image of T2. Note the difference between
these two filters: NOT T filters based on the complement of the domain of a transformation,
while T1\T2 filters based on the complement of the range of a transformation. The strategy
EXISTS a. T binds a in T , limiting its scope to the free occurrences of a in the conditions
and actions of T . Finally, the constructs + and ; allow for choice between and sequencing
of two transformations respectively, and the iteration operator * allows for the repeated
application of a transformation any number of times.
For a simple example of a Morpheus transformation, assume we have a language of instruc-

tions that supports assign- ments and binary arithmetic expressions. In this setting, if we
have a variable assigned the result of applying an arithmetic operation to two constants, we
might want to replace the operation with its result. This can be done by the transformation
in Fig. 3.2.

simple_constant_folding(π) , EXISTS x a b c oper.
SATISFIED_AT π stmt( x = oper( a,b)) ∧ is_const(a) ∧ is_const(b) ∧ is_const(c)
∧eval(oper(a,b),c) ; relabel_node(π,x = c)

Figure 3.2: A Morpheus Example

This is an existentially quantified sequence of a condition and an action. (Note that oper is
a metavariable that will be bound to an arithmetic operator appearing in the program syntax,
and eval(e,c) is a predicate asserting that the expression e evaluates to the constant c.) We
may apply simple_constant_folding to a program with a node labeled diff = 10 - 2 ,
and the transformation will match π to (the name of) this node, x to diff , a to 10, b to 2,
oper to ( op - ), and c to 8 (because of the clause is (c,oper(a,b)) , and relabel the node
to diff = 8.

3.3 ISABELLE/HOL

Isabelle/HOL [19] is an interactive proof engine that allows users to prove properties
about language specifications. The basis of Isabelle is high-order typed λ-calculus (System
F). To prove that a theory in IsaK is equivalent to another one that was translated from the
theory in IsaK by TransK, we define a simple Isabelle (based on simple typed λ-calculus)
in Isabelle/HOL. A fragment of it is shown in Figure 3.3.
In Isabelle, we use a construct datatype to define a datatype. Variables beginning with

the symbol "’" are type variables such as the ’tyVar in the datatype isaType. Constructor
parameters begin with a capital letter, while type or function names begin with a lower case
one.
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datatype (’tyVar, ’tyConst) isaType =
TyVar ’tyVar
| TyConst "’tyConst" "(’tyVar, ’tyConst) isaType list"

datatype (’tyVar, ’iVar, ’cVar) isaTerm =
VarTm ’tyVar ’iVar | Const ’tyVar ’cVar
| App "(’tyVar, ’iVar, ’cVar) isaTerm" "(’tyVar, ’iVar, ’cVar) isaTerm"
| Lambda ’iVar ’tyVar "(’tyVar, ’iVar, ’cVar) isaTerm"

...
locale ITheory =
fixes TypeConsts :: "’tyConst set"
and Types :: "(’tyVar, ’tyConst) isaType set"
and FunType :: "’tyConst"

...
assumes funTypeRule : " ∀ a b . a ∈ Types ∧ a = TyConst FunType b =⇒ (length b = 2)"

...

Figure 3.3: A Simple Isabelle Theory

As in Standard ML, users are able to use the keywords primrec, fun and function

to define a function. The difference is that a primrec function has a fixed structure so
that it does not require termination proof; a fun function needs an automatic termination
proof from Isabelle; and a function labeled function requires a programmer termination
proof. Users are also able to use the keyword inductive to define transition rules for a
transition system. The keywords lemma and theorem allow users to define theorems about
datatypes, functions and inductive relations in Isabelle. The typical way to write theorems
is with a combination of first-order logic and high-order Isabelle variables. In Figure 3.3,
the assumption after funTypeRule provides a way to define a theorem in Isabelle. A locale

(Fig. 3.3) is a special way to define a parameterized theory in Isabelle. The body of a locale
is just a set of functions, inductive relations, or theorems. In the header of a locale, users
are able to use keyword fixes to provide the locale with a list of different global data,
while the keyword assumes can allow users to provide a list of assumptions that a system
needs to satisfy in order to use the locale. In Figure 3.3, there is only one assumption,
which means that any term with the constructor TyConst in the locale named ITheory

must have two children.

3.4 THE K FRAMEWORK

We will briefly introduceK in this subsection. K [76] is a rewrite-based executable semantic
framework in which programming languages, type systems and formal analysis tools can be
defined using configurations, computations and rules. For a given syntax and semantics of
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a language in K, K can generate an interpreter, as well as some formal analysis tools. Most
of the information about K here is from the work of Li and Gunter [9].

Figure 3.4: A Simple K Program

Figure 3.4 (a) shows how a syntactic definition is defined in K. It uses the assignment
operator (::=) to connect a target sort with a list of terminals or non-terminals. After
that, K automatically generates a kLabel name (having the sort KLabel) representing the
constructor and a sort KList term representing the argument list of the construct. Inside
the bracket, K allows users to define attributes, some of which have semantic meanings.
For example, the strict(1) attribute generates a pair of heat/cool rules for the first
non-terminal position of the construct. Two features that K uses to keep object language
specifications succinct are localization and concision. Localization means to allow users
to define language syntax by using conventional BNF annotated with semantic attributes,
while the semantics based on the language syntax is given as a set of reduction equations
and rules interpreted over a configuration, mentioning only those components accessed or
altered by the rule. Figure 3.4 (b) is a very simplified version of the K-LLVM and Kaskell
configuration. The configuration of a language is an algebraic structure of the program
states, organized as nested labeled cells, in XML formats, holding semantic information,
including the program itself. While the order of cells is irrelevant in a configuration (having
a Bag sort in K), the contextual relations between cells are relevant and must be preserved
by the rules defined by the users and subsequently "completed" by the compilation step
in K according to the configuration. Leaf cells represent pieces of the program state, like
a computation stack or continuation (e.g., k), environments (e.g., env), heaps (e.g., heap),
etc. A typical rule for reading a variable would be as in Figure 3.4 (c). There are three cells
in the rule: k, env and heap. The content of the k cell symbolizes a computation sequence
waiting to be performed, while the head element in the cell represents the next item to be
computed. The env cell contains a map of variables to location numbers, while the cell heap
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is a map of location numbers to expression values. The meaning of the above rule is that if
the next computation to be executed is a variable lookup expression X, then we locate X in
the environment to get its location number N in the location memory, and locate N in the
heap to find its expression value E. Then we transform the computation into that value, E;
the horizontal line represents a transition. A cell with no horizontal line means that it is
read but not changed during the transition.
Concision in rule Figure 3.4 (c) in K refers to the “···” operator, which represents portions

of cells that are irrelevant, and it could have different types depending on the context. This
unconventional notation including its two features is useful in terms of allowing users to
write less. The rule in Figure 3.4 (c) would be written out as the traditional rewrite rule
(also allowed in K) shown in Figure 3.4 (e), which still relies on the K configuration, but
without localization and concision. We need to add the top cell T and a variable B with
its sort Bag in the rule to indicate irrelevant program state pieces. Computations in the k

cell are separated by “y” (a built-in sort KItem list concatenation operator in K), which is
now observable. κ, ρ1, ρ2, ρ3, and ρ4 take the place of “···”. The most important thing to
notice is that many parts of the rule are duplicated on the right-hand side. Duplication in a
definition can lead to subtle semantic errors if users are not careful to synchronize changes
in their specifications in multiple places. In a big language like C, Java or LLVM IR, the
configuration structure is very complicated, and requires including more cells than a typical
rule needs to mention. These intervening cells are automatically inferred in K, which keeps
the rules more succinct. Figure 3.4 (d) shows another way of defining rules in K. A rule
that does not mention any cell structure means that it matches the content of the head of
the k cell. X :Int in the rule means that a variable X has sort Int . The keyword requires is
a way of introducing a condition expression in a rule. Figure 3.4 (f) shows an equation in
K. An equation forms an equivalence relation for two groups of ground terms represented
by the parameterized terms on the two sides of the equation. In the example, we equate the
ground terms represented by exp( X ) with those represented by aExp( X ).
Modularity is another important feature of K. Its module system can be classified as a set

of separate files whose contents might not be related. In fact, the rules in Figure 3.4 could be
put in a single module by adding a module name. In defining specifications, users usually do
not need to modify the existing rules to add a new feature to the language. K maintains this
feature by structuring its configuration as nested cells and by allowing users to design their
specification rules by only mentioning the cells that are needed in those rules, indeed only
the portions of those cells. For example, the above rule only refers to the k, env, and heap

cells, while the entire configuration contains other cells (Figure 3.4 (b)). The modularity of
K not only allows users to create a compact and humanly readable specification, but also
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speeds up the semantics development process. For example, the above lookup rule does not
change, even though a new cell is added to the configuration to support a new feature. The
modular system of K also allows users to develop syntax and rules incrementally by defining
a syntactic construct in one K module with rules containing the construct in different K
modules.
Another important feature of K is the inherent support of non-determinism. K is based on

rewriting logic [134], so users can easily define, execute, and reason about non-deterministic
specifications in K. One example is the execution of multi-threaded programs in K-LLVM
[135]. The execution of multi-threaded programs inK-LLVM results in two different thread
cells, which represent two thread processes with their environment information. Typically,
when we have two threads, we need to talk about the multi-threaded behaviors that occur
when interleaving threads. By using the ksearch command in K, one can see the final results
of executing the Thread-1 and Thread-2 programs with interleaving. By setting a proper
step number and flag for the ksearch , one can also get the results of all traces of interleaved
threads. In addition, by using the krun command, K fixes an order (the lexicographical
order of the rule text) and produces a single trace for executing a K-LLVM program. In
K-LLVM, We can use ksearch to collect the set of all final results, compare it with the
set of expected results defined by the Pthread library, and see if the second one contains the
first one.
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Chapter 4: THE SEMANTICS OF K AND ITS TRANSLATION TO
ISABELLE

We introduce the semantics of K (IsaK) and a translation procedure (TransK) from
language specifications defined in IsaK to transformed specifications in Isabelle. K is a
domain specific language that takes a language specification as an input and generates an
interpreter for the specification, including an execution engine to show trace behaviors of
a program in the specification. There is a rich body of published work on K itself [136],
and specifications given in K, such as the Java semantics [86], the Javascript semantics [85],
the PHP semantics [84] and the C semantics [83, 137]. Despite the success of K, there are
issues. While there have been a number of papers published concerning theorems related to
K, there is no source sufficiently complete to define the complete syntax and semantics of K,
or allow for rigorous proofs of properties of the languages defined in K. In addition, while
K supports specific tools for analyzing programs in a language defined in K, it provides
very little support for formal reasoning about the languages it defines. Finally, the fact
that early versions of K had features that were dropped in intermediate versions, only to be
reintroduced in the latest versions, and different versions have displayed different behaviors
unveils the fact that researchers in the K community do not have a consensus on what K
is. As an answer for these problems, we have created a complete formal semantics of K
clarifying different aspects and features of K.
Our contribution, a full, formal language specification of K, called IsaK, addresses these

concerns and forms the foundation of tools for the maintenance, revision, and expansion of K.
We also define a shallow embedding of K into Isabelle (Sec. 4.5), named TransK, and prove
that the embedded K specification in Isabelle bi-simulates it original K specification in IsaK
(Sec. 4.6) for any specification defined in K, so we now can define a language specification
in K and prove theorems about the specification in Isabelle. See Sec. 4.2 and 4.3.2 for more
details.
Several benefits accure from our work. To the best of our knowledge, IsaK is the first

complete semantics of K. Other than the two simple descriptions of K [76] and [138], there
are no resources talking about its syntax or semantics. Indeed, allK implementations contain
some undesirable behaviors, so it is hard for us to learn the exact meanings of K operators.
In the process of defining K, we needed to constantly interview the K team to understand
the meanings of the K operators and look at the Java source code of the K implementation
to understand how K was being defined, which was a time-consuming task.
To the best of our knowledge, TransK is the first translation process from an order-

sorted algebraic system (K) to a many-sorted one (Isabelle). Previously, we have defined the
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general concepts for translating order-sorted terms into many-sorted ones [11]. TransK is
the first complete formation of these general concepts on real-world systems (K and Isabelle).
The result of translating specifications defined in K into Isabelle theories is the sudden
marriage of the programming language field and the theory proving field. Now, we are
able to define a formal language specification and learn about the formal meaning of the
language in IsaK, then translate it into an Isabelle theory through TransK and prove
inductive theories about the whole language in Isabelle. Before TransK, no K tools were
able to handle this job. We want to define language specifications in K because of how
much faster it is than defining them in Isabelle directly, and the several complete real-world
specifications [83, 84, 85, 86, 137] in K are the proof. We want to prove theorems about such
specifications in the theory translated by TransK because it is a lot simpler and clearer
than the representations of these specifications in IsaK. See Sec. 4.5.2 for one example. All
IsaK and TransK programs and theorems have been formalized and proved in Isabelle in
the following link: https://github.com/liyili2/KtoIsabelle, and the implantation of
TransK is defined as a Java and Ocaml combined program.

4.1 A BREIF OVERVIEW OF ISAK

We briefly discuss K’s current semantic layout. The formal semantics as it is presented in
IsaK is divided into two parts: static and dynamic semantics. The static semantics takes
as input the frontend-AST (FAST) representation of a user-defined language specification
(K/IsaK theory) or programs that are allowed by the specification. Through the translation
process in the static semantics, which performs computations that can be done statically
(referred to as compile-time operations), the K/IsaK theory in FAST is processed and
translated into a representation in backend-AST format (BAST). Then the type checking
step in the static semantics outputs a type-checked BAST, which is passed to the dynamic
semantics for execution. We first discuss some features of K through an example below.

4.1.1 An Example K Specification (Theory)

Here, we introduce K as a language specification platform with the ability to automatically
generate an interpreter for a specification. The operational behavior of the K specification
language contains four major steps: parsing, language compilation, sort checking, and se-
mantic rewriting. Parsing itself comes in two phases: one to learn the grammar of the object
language (the programming language being defined), and the second to incorporate that
grammar into the grammar of K for parsing the definitions of the rules and semantic objects
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defining the executable behavior of programs in the object language. These parsers trans-
late the concrete syntax for both K and the object languages defined therein into concrete
syntax, eliminating mixfix syntax and other syntactic sugar in the process. The language
compilation, sort checking and semantic rewriting are the major steps in IsaK. Here, we
briefly introduce what a K specification (theory) looks like.

Figure 4.1: A Summary of K By IMP

Fig. 4.1 contains a small language specification, named IMP, with most of its syntax and
some semantic definitions. In IMP, all program variables are heap ones that can be shared
through different threads. In K, the keyword syntax introduces a finite set of syntactic
definitions, separated by "|", such as the definition of the sort Exp. Each syntactic definition
is a list of names. The names in Sans serif font are non-terminals (sorts), while the names
in tt font are terminals. A syntactic definition (e.g. Exp ::= Var) introducing only a
singleton sort defines a subsort relation subsorting the singleton sort (Var) to the target sort
(Exp). The subsort definition that subsorts sorts to KResult defines the evaluation result
sorts in a specification. Other kinds of syntactic definitions introduce syntactic definitions
as user defined terms used to express rules and programs. Every real syntactic definition
(not subsorting) creates a prefix AST format like KLabel (KList), where the KLabel term
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acts as the constructor automatically generated from the terminals and the structure of
the definition, and the KList term is the argument list generated from the non-terminals
of the definition. K allows users to define attributes (written in brackets e.g. [strict] in
Fig. 4.1), some of which have semantic meanings. For example, the strict(2) attribute (in
the definition: Var := Exp [strict(2)]) means to generate a pair of heating/cooling rules for
the second non-terminal position of the term created by the definition. We show an example
pair of heating/cooling rules for the first non-terminal position of the "/" operator in Fig. 4.1.
The [strict] attribute without any numbers indicates there is a pair of heating/cooling
rules generated for each non-terminal position in the definition. "y" is a list concatenation
operator for connecting the computation sequence in a k cell, while "�" is a special builtin
operation in K representing the removal of a redex subterm from a term and the creation of
a "hole" waiting to be filled. The syntax definitions in a K theory are compiled by the IsaK
static semantics (Sec. 4.2) into a sort set, a symbol table, a subsort relation and several
heating/cooling rules as inputs for the IsaK dynamic semantics in Sec. 4.3.
The initial configuration of a specification is an algebraic structure of the program states,

organized as nested, labeled cells, in XML formats that hold semantic information, including
the program itself (prefixing by the $ operator in Fig. 4.1). While the order of cells in a
configuration is irrelevant, the contextual relations between cells are relevant and must be
preserved by rules defined by users and subsequently "completed" in the compilation step
in K according to the configuration. In a trace evaluation, each step of computation should
produce a result state that "matches" the structure of the initial configuration, meaning
that the cell names, sorts of cells, and structural relations of the cells are the preserved in
the result states and the initial configuration. Leaf cells represent pieces of the program
state, like computation stacks or continuations (e.g., k), environments (e.g., env), heaps
(e.g., heap), etc. The content in each cell in an initial configuration has dual roles. It is the
initial value defined for the computation and also defines the sort of the cell content. For
example, the key cell in the IMP configuration in Fig. 4.1 is defined as 0 and sort Int; during
an evaluation, the cell’s initial value is 0, and in every state of the evaluation, its content
has sort Int. The last part of Fig. 4.1 provides an example program in IMP combined with
its initial configuration. After evaluating the initial configuration by rule (c) in IMP, the
contents of several cells are updated, but the structure relations and sorts of the cells do not
change during the evaluation.
Fig. 4.1 also contains a set of IMP rules. The simplest form of rules, such as rule (b),

describe behaviors that can happen in the first element position in a k cell, without men-
tioning any cells and without mentioning the tail of the computation list of the k cell. A
little more complicated form of rules, such as rules (heat) and (cool), mention the tail
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of the computation list (connecting by "y"). They describe behaviors that can happen in
a k cell, especially the relationship among different positions in the computation list. In
BAST format, these two kinds of rules are compiled to the same form (K rules). The most
complicated form of rules, such as rule (a), are typical configuration rules in K and they
describe interactions among different device components in a system. For example, rule (a)
is reading from a value in the main memory (the heap cell) for a variable in the k cell through
an local stack (env). The “···” operator in these rules represents portions of cells that are
irrelevant. This unconventional notation allows users to write less.
In this thesis, we focus on the dynamic semantics of K. All these unconventional configu-

ration rules are assumed to be compiled to a standard form (BAST form) by the IsaK static
semantics (Sec. 4.2), and the dynamic semantics is defined based on the compiled format.
For example, the rule (a) is compiled to rule (j). In translating (a) to (j), we would
need to add the cells T, thread, threads in rule (j) and the variables C1 and C2 with its
sort Bag, to indicate the irrelevant program state pieces. Computations in the k cell are
separated by "y", which is now observable in (j). The κ and ρ1, ρ2, ρ3, and ρ4 fill in the
place corresponding to the “···” in rule (a).
InK, configuration rules are also powerful enough to manipulate language device resources.

For example, rules (d) and (e) create or finish a thread by adding or deleting a thread cell.
These are handled by rewriting an empty Bag place (.Bag) to a new cell thread (rule (d)),
or rewriting a thread cell to an empty place (rule (e)). In K, this is allowed only if the
specific cell in the initial configuration (e.g. the configuration in Fig. 4.1) is marked as "∗".
K also allows users to write equational rules, named function rules. The format is like the

fresh definition in Fig. 4.1. Its syntactic definition (e.g. fresh) is labeled by an attribute
function, and then the rules whose left-hand top-most constructor is the same as the KLabel
term syntactic definition are recognized by K to be the function rules under the function
definition. The left-hand-side of a valid function rule has argument sorts subsorting to the
argument sorts defined in the function definition, and the target sort of the right-hand-
side subsorts to the target sort of the definition. All these rules are compiled to standard
BAST forms (described in Sec. 4.3.1) and stored in a rule set as the input for IsaK dynamic
semantics.

4.1.2 Challenges of Defining K Specification

Several formidable challenges are faced by the IsaK project. First, other than the two
simple descriptions of K [76] and [138], there are no resources talking about its syntax and
semantics, as we have mentioned in the beginning of the Chapter.
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Second, the K implementations usually contain a front-end language and a back-end lan-
guage that perform different tasks. The allowed syntactic definitions for users in the K
front-end is strictly larger than the allowed syntactic definitions in the K back-end. More
precisely, there are some constructs and semantic rules in K that users think they can define
but are in fact not supported by K. K implementations sometimes produce no error messages
or warnings about these limits, so users have no way to figure out if there is something wrong
in their specifications or there are some problems in K. For example, in the configuration
[86], we can see that the class cell is associated with the key word *, and in the class cell,
the methodDec cell is also labeled with the key word *. This means that it can have multiple
class cells and methodDec cells when we define a Java rule or evaluate a Java program by
using this rule in K. When we interpret Java programs in K, we find that a rule mentioning
two nested cells both having the key word * is actually not valid in K, even if someone
can define two such cells nested together in a rule. If users define this kind of rule in their
specifications and use krun to run the testing programs, once the program triggers the rule,
krun crashes immediately without giving any valid error messages. More surprisingly, if
users write a Java rule to add a method definition to a specific class (a cell with *), and run
their testing programs, when krun triggers the rule the first time, it works, but it fails the
second time in the current K implementation. Users will have no clue what is going on here.
The problem is a poor design decision made by the K team. In their early K implementation
in Maude, the nested cell feature was supported. When they implemented K in Java, they
decided not to support this feature because it would slow down the generated interpreter for
a language specification in K. However, since some big languages such as Java have used
this feature, they decided to partially support it in their Java implementation, but gave no
information on the boundaries of what is and is not allowed for it.
Third, the path compiling from the front-end language in K to the back-end one is not so

clear. In the implementation of K 4.0 (in Java), there are 48 compilation steps to compile the
front-end language to the back-end one. These 48 steps have different tasks. To understand
the different tasks, and combine all of them in IsaK is a tough job to do.
Fourth, one of the best features of K is the modularity system, but it is also one of the

hardest to understand in K. Resolving the modularity in each rule is a compilation step in
the K implementation. The basic idea of the compilation step is to take the configuration
in a language specification, compare it with a given rule, and fill the missing pieces in the
rule to make the rule "complete". The problem is that adding the missing pieces is not so
trivial. For example, there are two ways to define a rule for removing the existence of all
holding locks in a thread based on the Java configuration [86] in Fig. 4.2.
At first glance, people might think that the left-hand side rule (Rule 1) and the right-hand
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Figure 4.2: An Example Configuration From The Java Semantics [86]

side rule (Rule 2) are the same in Fig. 4.2, but they are not. Rule 1 means that in a given
thread with id X , we remove all its holds. Rule 2 means that for a given thread with id X ,
except the tid cell, we discard all the program states in the thread and initialize them with
the ones in the initial configuration, such as the one in Figure 4.1. Specifically, we remove
all locks in the holds cell. The main problem here is that the “···” is not a simple syntactic
sugar when it is associated with K cells. The compilation of the “···” in the K cells level
desires a well-defined algorithm to accomplish this problem properly.
Nevertheless, even if these challenges are many and hard, IsaK is defined without com-

promise and includes every feature of K.

4.2 THE STATIC SEMANTICS OF ISAK

We briefly introduce the static semantics of K in this section and will discuss some design
issues of K, especially K modularity, localization and concision features in the next section.
The static semantics of K describes how we compile away the localization, concision and
modularity features of K to a uniformed backend AST. It contains several phases, as listed
in Figure 4.3. Each phase digs deeper into the syntactic structure of K and either performs
a set of transformations over the user-defined K specifications or applies some checks on the
input FAST of the specifications.
We assume that there is an external parser that parses user-input K object language

specifications and object level programs to a FAST format. The parser is divided into two
phases. In the first phase, it uses ocamllex and ocamlyacc (variants of lex and yacc for
Ocaml) to read all syntactic definitions in a given specification, and then generates a symbol
table based on the syntactic definitions. In the second phase, it uses the symbol table to
generate lexers and parsers in the formats of ocamllex and Dypgen (a general LR parser) to
parse rewrite rules and programs for the specification. The two-phase parser is a direct copy
of the K parser (SDF-to-K adapter [139]) and is intended to be suitable for the OCaml-based
K implementation extracted directly from IsaK in Isabelle.
After the parsing, the static semantics takes as input the FAST representation of a user-
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defined language specification or programs that are allowed in the specification. Through the
translation process in the static semantics, which performs computations that can be done
statically (referred to as compile-time operations), the specification in FAST is processed
and translated into a representation in BAST. Then the sort adjustment step in the static
semantics outputs a sort-adjusted BAST, which is passed to the dynamic semantics for
execution.

Figure 4.3: The structure of IsaK

Symbol Table Generation. In this phase, a symbol table is acquired from the syntactic
definitions of a object specification, a database is formed for later phases to use, and a
program parser is generated to parse object level programs. This symbol table is accumulated
across all modules.

Dealing with Attributes and Heat/Cool Rules Generation. K provides syntactic
and semantic attributes to allow for more succinct specifications, which are part of the
concision feature and allow users to write less. For example, if we define an division operator
as Figure 4.1 (a), the strict attribute associated with the above syntactic definition means
that a pair of heat and cool rules for the first non-terminal argument position is generated
in Fig. 4.4.

Figure 4.4: Heat/Cool Rule Examples
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The rule on the left (Fig. 4.4) takes a term X :Exp / Y :Exp, and splits it into a redex
X :Exp and a context � + Y :Exp, provided that the term X :Exp is not a subsort of KResult .
The rule on the right merges a KResult redex term X :KResult and a context � + Y :Exp
back to a term X :KResult + Y :Exp. As shown in the example in the previous paragraph,
specifying a strict attribute in K is the same as generating a pair of heat/cool rules.
The heat/cool rules in K work by separating context and redex in the evaluation context
framework. A heat rule splits a term into a redex and a context with a hole (�) in the
specified position, and moves the redex to the front of the kCell, provided that the redex
does not have a sort that is a subsort of KResult . A cool rule moves a KResult redex back
into the � in the context and merges them into a term without �. In the later section, we
will see that the meaning of a heat/cool rule pair might change due to the extention of
KResult sort in different modules of a K specification.
In this phase, we also take care of other syntactic attributes (associated with syntactic

definitions) and semantic attributes (associated with rewrite rules) by grouping and collecting
the parsed input language specification pieces. For example, if a syntactic definition is labeled
with a function attribute, which is called a function operator (its kLabel name is called
a function kLabel), we collect all rules across all modules whose left-hand side top-most
kLabel name is the same as this definition, store all these rules in a set and label them as
belonging to the function operator.

Subsort Graph Generation. In this phase, we collect all subsort information defined in
a specification and form it into a graph. In K, the only way to define a subsort relation is
to use a syntactic definition as Fig. 4.5.

syntax Exp ::= Int

Figure 4.5: A Subsort Definition Example

In the example in Fig. 4.5, sort Int is defined to be a subsort of sort Exp. K has a very
special subsort structure. First, the subsort relation in a K specification is antisymmetric and
transitive. Second, the sorts K , KLabel , KList , Set , List , Map and Bag are K built-in sorts
representing the respective K built-in terms. Users cannot define subsort relations involving
these built-in sorts; otherwise, the specification is not well-formed. Third, the built-in sort
KItem, representing the elements in a sort K (sort K means a list of KItem), is a subsort
of the sort K implicitly, while all other user-defined sorts in a specification are subsorts of
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KItem implicitly. Finally, users can define subsorts of the built-in sort KResult representing
the evaluation result terms of an execution. However, those user-defined sorts that have
not been defined to be subsorts of KResult through transitivity are implicit supersorts of
KResult . Indeed, KResult is also a subsort of KItem implicitly.
We need to generate the subsort graph by combining the user-defined subsort relations

and the implicit subsort relations above. In addition, we also need to apply checks, such
as the well-formedness check above, to reject ill-formed specifications. Another important
check is to see if there are cycles in the subsort graph, and reject those specifications as well.

Applying Validity Checks. In this phase, several checks are applied to a specification
to rule out ill-formed specifications and programs. A lot of these checks are related to the
improvement of K due to design issues in modularity, localization and concision features in
Section 4.4.1. The first important check is to ensure that the kLabel names are used in
a uniformly consistent manner. Second, users cannot define any new syntactic constructs
or subsorts to the built-in sorts K , KLabel , KList , Set , List , Map and Bag , except with a
function attribute. Third, at most one of the function, strict and
textttseqstrict attributes is allowed to appear in a syntactic definition. Without this restric-
tion, a syntactic definition could be both a function and generate heat/cool rules, which is
not sound in K. Also, the specified natural number for a strict attribute cannot exceed
the total number of non-terminal positions in the syntactic definition it is associated with.
Finally, any two user-defined lists cannot have the same target sort. For example, the two
syntactic definitions in Fig. 4.6 cannot appear in the same specification because they are
adding two user defined lists with two different element sorts to the same target sort Exp.

syntax Exp ::=List{ Int ,"," } syntax Exp ::=List{ Bool ,"," }

Figure 4.6: Forbidden Example List Definition in K

Transformation. We will select some important transformation steps to discuss here.
Interesting readers can refer to our technical report [10] to get more information. There are
some rewrite rules and programs that users are able to write down in FAST, but they have
no meanings in K because the semantics of K terms are only defined if the terms can be
written in BAST and the transformation from FAST to BAST is a partial function. The
process of transforming FAST to BAST is both a transformation and a narrowing process.
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If a FAST term is transformable, we have a corresponding BAST term; if not, we reject the
input specification or program.

Figure 4.7: Transformation Examples

The first step in the transformation process is to rule out some terms permissible in FAST
but invalid in BAST. For example, Figure 4.7 (a) shows a rule that will be rejected in the
transformation process because its LHS contains nested K rewrite operators (⇒). Usually,
a rule will be translated into a five tuple format that BAST adopts. In BAST, the five
tuple includes the rule label field indicating the type of the rule for execution, the pattern
representing the LHS of the rule, the expression representing the RHS of the rule, the
condition expression representing the condition of the rule, and a boolean flag indicating if
the rule is a transition rule, which determines if the rule is part of multi-threaded behaviors
in an object specification. For example, if we have a rule in Figure 4.1 (d), what we get in
the BAST form is a tuple in Fig. 4.8.

(KNormal, X : Int / Y : Int , X : Int /Int Y : Int , Y : Int 6= 0, true)

Figure 4.8: BAST FORM of A Symbol Table Entry

Recall in Section 3.4, we says that the configuration of an object language specification
represents the program state that is necessary to describe the behaviors of the specification.
Executing a program of a specification in K actually means that we apply semantic rules
to a program state and generate a sequence of computations (or a set of sequences if we
want to see multi-threaded behaviors). The generation of the initial program state is just
to combine an object program with the configuration together. For example, if we define
the configuration in Figure 4.1 (b), and our program is 1 + 2 + 3, the initial state is
generated as Figure 4.7 (b). The cell class is replaced with a term .Bag as prescribed by
the configuration because it is attributed with * keyword in the configuration which indicates
that it should start with zero occurrences.
Before we transform a semantic rule in FAST to the tuple format in BAST as we described

in Fig. 4.8, if the rule contains sort Bag terms (representing cells or the configuration), we
need to perform a step called configuration concretization. It is the most difficult part of
the transformation, because it mixes the localization and concision features together. The
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solution requires a combined process of splitting, "completing" and translating terms of sort
Bag . The goal of the configuration concretization step is to regularize each rule involving
sort Bag terms to a form where it only involves one rewrite operator, and the rule is spitted
into a LHS and a RHS which have no rewrite operators inside them, and both the LHS and
RHS are completed by filling those missing cells according to the configuration.

Figure 4.9: Configuration Concretization Example

As we have seen in Section 3.4, the key difficulty is that the combination of a “···” operator
in a sort Bag term and a rewrite operator cannot be understood as simple syntactic sugar
for writing less cell information and term rewriting from left to right. The detail of the
transformation algorithm is listed in the technical report [10]. There are two main tasks.
First, the algorithm needs to compare a Bag rule with the configuration, find cells containing
“···” operators in the Bag rule and replace those operators with correct values based on
the configuration. Second, we need to split a Bag rule to have clear left-hand and right-
hand sides. Figure 4.9 shows an example displaying the most important features of the
transformation. We first locate all the rewrite operators (⇒) and their subterms in a rule, and
take the left-hand sides of these (⇒) terms as patterns and right-hand sides as expressions.
If there is a “···” in a pattern, we replace it with a variable with the correct sort indicated
by the configuration, like the U :Bag variable in Figure 4.9 (b). For each “···” operator in
an expression, we replace it with the correct terms according to the configuration, like the
<.K> in Figure 4.9 (b). After finishing filling patterns and expressions, we put patterns in
the pattern side and expressions in the expression side of the generated rule, and compare
both sides and the remaining pieces with the configuration, and fill the gaps with variables
or corresponding cells, like the cells classes, T, C :Bag and X :Bag in Figure 4.9 (b).

Type Checking. The type checking step should probably be named "sort checking" since
it checks sort correctness for terms. There is a small difference between a K theory and an
IsaK theory. There are five different kinds of rules that users are allowed to define in a
BAST-formed K theory: function, K, configuration, anywhere, and macro rules. With these
rules in a theory, the type system in K does not guarantee the type preservation property.
To make a type-safe system, we disallow the anywhere and macro rules in an IsaK theory.
By dropping these two kinds of rules, the type system for IsaK becomes very simple: a
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type system appearing in simple-type λ-calculus with subtyping. We show type preservation
property for the type system (see Sec. 4.3.2).

Term Normalization. Normalization is a process that happens after sort adjustment,
to apply idempotent and functional equational rules to any subterms of rules and program
states having the sort Set and Map. The process is to get rid of redundant child elements
of Set or Map subterms and make sure every Map term is functional. Normalization also
happens after sort checking when doing a pattern matching in the dynamic semantics.

4.3 THE DYNAMIC SEMANTICS OF ISAK

Here, we introduce the IsaK dynamic semantics based on the BAST term transformed
from the static semantics in Sec. 4.2. Given an IsaK theory and a program belonging to the
theory, the IsaK dynamic semantics produces a trace of the program execution according
to the semantic rules in the theory. In the rest of the paper, we will name an IsaK theory
to mean an IsaK theory in BAST.
To facilitate the presentation, some useful relations derived from a relation (R) include

the reflexive (R?), transitive (R+), and reflexive-transitive (R∗) closures. [A] is the identity
relation for a set A. A×B is the cross product of sets A and B, and × binds tighter than ∪.
Some notation conventions in the paper are provided in Fig. 4.10 and 4.12. For example, s
ranges over sorts and c ranges over KLabel , etc. In these figures, every name in Chancery font
is a type in Isabelle we defined for an IsaK component; every name in Sans-serif font is a
sort or configuration (of type CName) in a IsaK theory; everything in tt font is a construct
programmers can use in IsaK, including constructors and terms, and everything in Italics
is a variable representing a term in IsaK.

4.3.1 IsaK Sorts and BAST Syntax

We first introduce the syntactic formulation of a given IsaK theory in BAST before we
introduce the semantics of evaluating a program for a theory. Syntactically, every IsaK
theory is expressed as a tuple of (Ψ,v,Υ,∆), where Ψ is a set of sort names and (Ψ,v) is
a poset, Υ is a symbol table and ∆ is a set of Rule terms, which will be introduced later in
the section. v is a subsort relation built on pairs of sorts in Ψ. We have restrictions on Ψ

and v in Fig. 4.10
Every sort is disjointly either a user-defined sort (UsrSort) or a built-in sort (BuiltinSort).

Each sort in ResultSort is either Bool, or a user-defined sort that can be the sort of the result
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Sorts
SystemSort , {K,KItem,KList, List, Set,Map,Bag}
BuiltinSort , SystemSort ∪ {Bool}
RName ⊆ UsrSort BuiltinSort ∩ UsrSort = ∅
ResultSort , RName ∪ {Bool}

s ∈ Ψ , UsrSort ∪ BuiltinSort
Sort/Subsort Sat Properties
(Ψ,v) is a poset
v ⊇ (UsrSort × {KItem}) ∪ {(KItem,K)}
∀s1 s2. s1 ∈ {KList, List, Set,Map,Bag} ∧ s1 v s2 ⇒ s1 = s2

Figure 4.10: IsaK Sorts and Subsorts

of a computation, like Int (see Fig. 4.1). There are several restrictions on v. For example,
sort K is an upper bound of UsrSort , while KItem is the supremum of the same set. The
elements in {KList, List, Set,Map,Bag} are incomparable under v; and SystemSorts are not
result sorts.
Additionally, in the original K, when a result sort is declared, the sort is subsorted to a

special sort KResult. This formalization causes a problem in the type (sort) system soundness
inK: a term with a result sort can be rewritten to another result-sorted term, but the position
holding the term is defined to hold one of the sorts but not the other one. For example,
assume that x has value true in the heap, and we want to compute x/1. By applying rules
(heat) and (a) in Fig. 4.1, the result is the term: true y (�/1). Since true is a KResult
term, we can use rule (cool) in Fig. 4.1 to rewrite the term to true/1. This term is clearly
ill-typed. In an evaluation in a K theory, this feature makes some rule applications result in
type-errors that cannot make any further evaluations, but the K type (sort) system cannot
detect this error in the theory. In IsaK, we discard the KResult sort and view the sorts
subsorting to KResult as defining a set of result sorts. We use the predicate isKResult,
whose meaning is the membership of ResultSort . We replace every place in a K theory that
describes a term subsorting to KResult with an isKResult predicate on the term. Thus, the
subsort relation of KResult in a K theory is replaced in IsaK by the checking of a property on
terms by isKResult. For example, the sort enforcement of KResult in rule (cool) becomes
the one in Fig. 4.11.

v:Exp y � / y y tl⇒ v / y y tl when isKResult(v)

Figure 4.11: A Correct Cool Rule with Property KResult Enforcement Predicate

We now describe IsaK terms through the symbol table Υ. Any term in IsaK satisfies the
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grammar defined in Isabelle in Fig. 4.12. The symbol table (Υ) is a translated product of the
IsaK static semantics in Sec. 3, and each of its entries describes a syntactic definition for a
specific constructor. This is represented as a tuple of a target sort (s), a list of argument sorts
(sl), a set of symbol names (CS) representing a set of constructors that is either a singleton
set of a KLabel term or set of many KLabel terms (generated from user defined tokens,
like variable names and integers), and a Boolean value (b) indicating if the constructor is a
function constructor. For a given IsaK theory, the constructors (having the type KLabel )
appearing in the AST tree of a term must be a constructor name (Symbol ) in an entry of Υ.
For a given symbol table entry (s, sl, CS, b), the sort information for the constructor c ∈ CS
is sl→ s. A valid term in an IsaK theory satisfies the following definition.

Definition 4.1. Given a symbol table Υ, a term is a valid IsaK term iff every subterm
(having the form c(c1, ..., cn)::s) appearing in the AST of the term satisfies the following:

• If c1, ..., cn is an empty list, then s is a supersort of the sort of c in Υ.

• If c1, ..., cn is not empty, let s′1, ..., s′n be the argument sorts of c in Υ. Then, for every
term ci in c1, ..., cn, its sort si is a subsort of s′i, and the sort s is a supersort of the
sort of c in Υ.

K is a language that allows users to define a specification by giving a set of terms containing
meta-variables, and it also allows them to define a specific ground term (without any meta-
variable) as a "program" that produces a trace of the states when executed with the rules
defined in the specification. An IsaK theory represents the specification, doing so as a
tuple of (Ψ,v,Υ,∆). ∆ is a finite set of rules, each of which is a Rule term (possibly with
meta-variables) defined in Fig. 4.12. A "program" for the theory is a Bag ground term.
In Fig. 4.12, we now describe briefly the grammars that define the Υ set in an IsaK theory.

The variables appearing on the left (before ∈) range over the sets on the right. We assume
that the name sets (UsrSort , LName, and BName) are all disjointly unioned with each other.
Any term in KItem is a user defined one allowed in a computation, with the fixed format of
a constructor (KLabel ) applied to a list of arguments (KList). The operation (::) represents
a type enforcement by giving a sort. It can appear in any term in IsaK, and sometimes we
omit such information in examples.
The � symbol in the KItem definition in Fig. 4.12 represents a family of symbols, one for

each sort, each which represents a "hole" in the context term created when we split a term
into context and redex terms, such as the � in Fig. 4.1 (heat). These symbols are mainly
used for K heating/cooling rules. With the � symbols, the evaluations of a term using
heating/cooling rules are the same as for other rules. In IsaK, there are built-in lists (List),
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Domains and Terms
v ∈ CName , BName ∪ {k} Config Names
c ∈ KLabel , LName ∪ {klabel, isKResult,∧,¬, =}
\{lConstr, sConstr, mConstr, bConstr} KLabels (Constructors)

k ∈ KItem , KLabel (KList)::s | �::s KItem Terms
k ∈ K , KItem list Associative and Identitive KItem Sequences
kl ∈ KList , K list Associative and Identitive K Sequences

ListItem , lConstr(K ) Singleton List Terms
l ∈ ListItem ′ , ListItem | KLabel (KList)::List List Terms With Funs
l ∈ List , ListItem ′ list Associative and Identitive List Terms

SetItem , sConstr(K ) Singleton Set Terms
S ∈ SetItem ′ , SetItem | KLabel (KList)::Set Set Terms With Funs
S ∈ Set , SetItem ′ list Idempotent Set Terms

MapItem , mConstr(K ,K ) Singleton Map Terms
M ∈ MapItem ′ , Map | KLabel (KList)::Map Map Terms With Funs
M ∈ Map , MapItem ′ list Idempotent, and Functional Map Terms

BagItem , bConstr(CName,Term) Singleton Configurations
C ∈ Bag , BagItem list

Associative, Commutative, and Identitive Configuration Terms
t ∈ Term , KItem ∪ K ∪ List ∪ Set ∪Map ∪ Bag Allowed Terms
Pat , Term Patterns Exp , Term Expressions

Transition Rule Syntax
rl ∈ Rule ,

KLabel (KList)::s⇒ KLabel (KList)::s1when KLabel (KList)::s2
(* KItem Function Rules(s1 v s v KItem ∧ s2 v Bool) *)

| KLabel (KList)::K⇒ (K | KLabel (KList)::K)when KLabel (KList)::s2
(* K Function Rules(s2 v Bool) *)

| KLabel (KList)::List⇒ (List | KLabel (KList)::List)
when KLabel (KList)::s2 (* List Function Rules(s2 v Bool) *)

| KLabel (KList)::Set⇒ (Set | KLabel (KList)::Set)
when KLabel (KList)::s2 (* Set Function Rules(s2 v Bool) *)

| KLabel (KList)::Map⇒ (Map | KLabel (KList)::Map)
when KLabel (KList)::s2 (* Map Function Rules(s2 v Bool) *)

| K ⇒ K when KLabel (KList)::s2 (* K Transition Rules(s2 v Bool) *)
| Bag ⇒ Bag when KLabel (KList)::s2

(* Configuration Transition Rules(s2 v Bool) *)
IsaK Theory Input
Symbol , KLabel | KLabel → Bool Symbols
Υ ⊆ Ψ×Ψ list × Symbol × Bool Symbol Table
Rule Set: ∆ ⊆ Rule Subsort Relation: v

Figure 4.12: IsaK Syntax in Isabelle (No Meta-Variables)

sets (Set), and maps (Map) for users with different built-in equational properties (listed in
Fig. 4.12). Type Bag contains lists (with associative, commutative, and identity equational
properties) of basic program state pieces, named configuration pieces or cells and having the
type BagItem . Each cell contains a cell name (CName) and sub-configuration components, an
example of which the IMP configuration is shown in Fig. 4.1. In Sec. 3, we introduced how a
configuration works. Users need to define an initial configuration along with their language
specification. For every step of the evaluation of an input program, the result program state
obeys the sort and position relations among the different cells in the initial configuration.
One feature in IsaK that is useful for configuration translation (Sec. 4.5.2) is that Υ contains
entries for all cell names appearing in the initial configuration. In an IsaK theory, the name
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of each cell has an entry in Υ that contains a target sort the same as the sort of the element
in the cell in the initial configuration, an empty argument sort list, a singleton set of the
cell name, and a false Boolean value. For example, cell env has a content of sort Map
(Fig. 4.1), so it has the entry: (Map, [], {env}, false).
Besides the above syntactic definitions and restrictions, an IsaK theory also has other

syntactic restrictions that appear in the static translation process from FAST to BAST
(introduced in Sec. 4.2). For example, all rules (Rule) have the format: Pat ⇒ Exp when Exp,
where the left hand side of ⇒ is the pattern (Pat) to match with, and the right hand side of
⇒ is the target expression (Exp) to rewrite to, provided that the condition expression (Exp)
after the keyword when is satisfied. Terms in both types Pat and Exp are IsaK terms (Term),
but they have different syntactic restrictions checked by the IsaK static semantics (Sec. 4.2).
For example, no term in Pat can have proper sub-terms possessing function constructors.
For a given Rule term, meta-variables can only represent a term (Termffr in Fig. 4.12).

4.3.2 The IsaK Dynamic Semantics

Here we introduce the IsaK evaluation semantics. From the static process in Sec. 3, we
derive an IsaK theory in BAST format as a tuple of a set of sorts (Ψ), a subsort relation (v),
a symbol table (Υ), and a set of rules (∆ ⊆ Rule), which are briefly presented in Fig. 4.12.
A program in Θ is represented as a ground term configuration (C0) that has the type Bag .
It is a term whose syntax is specified by the syntactic definitions in Θ, and is translated into
a Bag configuration through the static process in Sec. 4.2. The evaluation of a program (C0)
in Θ produces a set of traces, each of which contains a sequence of configurations, where the
(i+1)-th configuration (Ci+1) is the result of applying a rule from ∆ to the i-th configuration
(Ci). We first introduce procedures that are common to every evaluation step and then we
introduce evaluation semantics particular to different rules.
Common Evaluation Procedures. There are three procedures that every evaluation
step in IsaK needs. We introduce them separately. The first one is the pattern matching
procedure (match). The pattern matching algorithm in IsaK is a normal top-most pattern
matching process. Given a rule rl and term t, the procedure match(rl, t) pattern-matches
the left-hand side of rl (the pattern side) with a ground term t, and generates a map from
the meta-variables on the left side of rl to subterms in t or ⊥ if there is no match. Pattern-
matching here means that for a pattern of the form (p, t) with p = c(p1, ..., pn) and ground
term t = c′(t1, ..., tm), we have c = c′, n = m, and σi is the result of matching pi with ti,
then the result is

⋃
i σi so long as for all meta-variables x ∈ (dom(σi) ∩ dom(σj)) we have

σi(x) = σj(x), and for a pattern that is a meta-variable x, the result of the match is {x 7→ t}.
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For simplicity, we define match(Θ, t) to find the rule rl in the rule set of Θ whose left-hand
side matches term t and which generates a mapping.
The second common procedure is the substitution procedure (subs). Given a term p with

meta-variables x1, ..., xn and map m from the meta-variables to ground terms, subs(m, p)

substitutes the ground term m(xi) for the occurrences of every meta-variable xi (1 ≤ i ≤ n)
in p. The third procedure is the normalization procedure (norm) that we have described a
little in Sec. 4.2. Normalization only applies to the whole ground term configuration C, and
norm(C) searches every subterm in C and rewrites it to a canonical form. Mainly, it rewrites
two identical Set and Map subterms to be one (the idempotent property), and checks if there
is a Map term that is not functional; i.e. mConstr(x, 1) and mConstr(x, 2) appear in the
same Map. In this case, norm(C) returns the global error state Err.
Semantics for Different Rules. We first introduce the concept of configuration context.
To do so, we modify the syntax in Fig. 4.12 by inserting a new � term in each type ListItem ′,
SetItem ′, and MapItem ′ in Fig. 4.13.

ListItem ′ , ... | �::List MapItem ′ , ... | �::Map SetItem ′ , ... | �::Set

Figure 4.13: Additional Syntactic Insertions for IsaK Semantics

We then define the configuration context C[]sf to be a Bag term with exactly one of
the � subterms (Fig. ??) or the �::s in the KItem definition in Fig. 4.12 (s ∈ UsrSort ∪
{KItem,K, List,Map, Set}), and the configuration redex to be a term c(kl)::s. We then define
a valid combination of context and redex (C[c(kl)::s]sf ) to be a Bag term C derived by
replacing the � subterm with the redex c(kl)::s, where the sort for the � matches the sort
s. We also insert a new � term in the BagItem definition in Fig. 4.12, and define another
context-redex pair as C[]k and a K term k, such that C[]k has a unique � term as a BagItem
subterm and C[k]k replaces the � subterm with the BagItem term (bConstr(k, k)) whose cell
name (CName) is k and K type subterm is k.
Any IsaK evaluation (−→Θ) can be viewed as an application of one of three different

rules: function rule applications (−→Θ
B,f ; (1) and (2) in Fig. 4.14), K rule applications

(−→Θ
k ; (3) in Fig. 4.14), and configuration (Bag) rule applications (−→Θ

B ; (4) in Fig. 4.14).
In these rules, right is a function to get the right-hand side (expression side) of an IsaK
rule, while cond is to get the condition expression of an IsaK rule. The term true is a
built-in Boolean term in IsaK representing the true value. The Kleene star (∗) in Fig. 4.14
represents applying the arrow-rule inside the parentheses multiple times until a final result
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(like true) shows up or there are no more such arrow-rules to apply. The basic evaluation
strategy of these rule applications is to split the current configuration C into a context and
a redex, apply a rule to rewrite the redex, and insert the new redex back into the context.

(1)

rl ∈ Θ m = match(rl, c(kl))
t = subs(m, cond(rl)) t (−→Θ

f )∗ true

c(kl) −→Θ
f subs(m, right(rl))

(2)
C = C[c(kl)::s]sf c(kl) (−→Θ

f )∗ t

C −→Θ
B,f norm(C[t]sf )

(3)
C = C[k]k rl ∈ Θ m = match(rl, k)

t = subs(m, cond(rl)) t (−→Θ
f )∗ true

C −→Θ
k norm(C[subs(m, right(rl))]k)

(4)
rl ∈ Θ m = match(rl, C)
t = subs(m, cond(rl)) t (−→Θ

f )∗ true

C −→Θ
B norm(subs(m, right(rl)))

(group) =⇒Θ, (−→Θ
B,f )∗(−→Θ

k | −→Θ
B )

Figure 4.14: IsaK Semantics for Different Rules

The (group) definition in Fig. 4.14 represents a typical combination of rule applications
in forming different K tools, mainly, the krun and ksearch tools. The krun tool is defined
as (=⇒Θ)∗ or (=⇒Θ)n if users specify the number of trace steps n they want to see. The
ksearch tool is defined by a transition from a singleton set of a configuration to a set of
configurations in the form ({C} VΘ Cl)∗, where the set configuration transition has the
property in Fig. 4.15.

ClVΘ Cl′ , (∀C ∈ Cl. C =⇒Θ C ′ ⇒ C ′ ∈ Cl′) ∧ (∀C ′ ∈ Cl′, ∃C ∈ Cl. C =⇒Θ C ′)

Figure 4.15: The Transition Property of ksearch

One way IsaK is different from K is that K has two additional kinds of rule applications:
anywhere and macro rule applications. We found out that a specification with the two kinds
is not type safe. We find that in the current big language specifications in K (LLVM [140],
C [83], etc), all of the instances of anywhere and macro rules can be replaced by the three
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different rules stated here. For any IsaK theory with only function, K, and configuration
rules, we have the following type preservation property. Note that the IsaK type system
does not satisfy the type progress property, since K allows users to define language semantics
incrementally. It is fine in K to define a language syntax without defining its semantics.

Theorem 4.1. For an IsaK theory (Θ) containing only function, K, and configuration rules,
with any initial type correct configuration C, evaluating C in the K theory never results in
a type-error.

Proof. Given an IsaK theory (Θ) and an initial configuration C that are type-checked, the
proof is based on structure induction on different rules applied to configuration C. There
are three possible rule applications:

• If the rule application is a function rule one, for any given configuration C that is
split into a context C[]sf and redex c(kl)::s, a function rule application transit the term
c(kl)::s into a possible new term t with sort s′, and s′ must subsort to the sort s based
on the function rule type correctness (the target sort of the right-hand-side of a rule
must be a subsort of the target sort of the left-hand-side). Thus, if we plug the term
t back into the context C[]sf , the configuration becomes C[t::s′]sf . Since s′ subsorts to
s, the new configuration C[t::s′]sf is type-correct.

• If the rule application is a K rule, for any given configuration C that is split into a
context C[]k and redex k that is a K term, a K rule only rewrites the term k to a
new term k′ with the same type K . All K terms have sort K. Thus, the final result
configuration C[k′]k is type-correct.

• If the rule application is a configuration rule, for any given configuration C, applying
a configuration rule rewrites the term C to a new configuration C ′ that is type-correct.

Thus, evaluating a configuration C in the type-checked theory Θ never results in a type
error. QED.

4.4 K DESIGN ISSUES AND THE EVALUATION OF ISAK

4.4.1 The Design Issues and Improvement

In Section 4.2, we briefly describe how K compiles away its modularity, localization and
concision features in the translation from FAST to a BAST format that is normalized for
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execution. We did not specify how to compile module systems in that section because the
compilation of module systems in K is as easy as putting all files together. For a specification,
different modules are not independent, so K has some unexpected behaviors. In this section,
we mainly focus on the design issues of K, especially the design issues of module systems in
K and suggest ways to handle some of these problems.

Too Flexible FAST Semantic Rules. The LHS and the RHS of a K semantic rule have
actually different tolerance on what can be correctly accepted. K views the LHS of a rule as
the pattern and the RHS of a rule as the expression, and provides a different set of syntax
for them in BAST. Their FAST formats are the same, and this can lead to confusion. For
example, if we have the syntactic declaration and rule in Figure 4.16 (a) and 4.16 (b), the
construct test takes an argument of sort Set . The rule tries to rewrite an element of value
1 to 2 in an element of a set. This rule is invalid in K. As a pattern, K only allows one
variable to represent elements of built-in term with sort K , KList , Set , List , Map or Bag .
So, if we cut off the variable B in the rule, the rule becomes permissible. This design can
allow K developers to design the K pattern matching algorithm simply, and avoid having
exponential search steps in the algorithm that arise once we allow more than one variable for
the elements of these built-in terms. The current K pattern matching algorithm is especially
efficient when built-in terms having implicit equational rules.

Figure 4.16: Pattern and Expression Being Different Example

Additionally, being overly flexible can be problematic in K. For example, we found a bug
in K which can allow the rule in Figure 4.16 (c) to compile. This rule basically allows K
to rewrite a sort Set term to a sort K term. We disallow this rewrite in IsaK by designing
different types in Isabelle to represent different built-in terms of K and sort-checking each
input rule.

Module Systems and Configurations. As we know in Section 3.4, each K object lan-
guage specification has a unique configuration that provides users the localization property
of K. Users need to use a key word configuration in K to define it, and K does not restrict
users where to place the configuration. Once a user declares configuration in a module A,
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it means that other modules depend on module A to direct how to interpret rules defined
in them. This problem itself can be classified as a feature of K and only shows that K
module system is not independent. However, if we define two configurations in two different
modules in an object language specification, current K implementations can actually allow
the specification to compile and execute programs. It will choose one of the configurations
as the oracle. Which configuration will be pick is not clear. In IsaK, we place a check to
disallow two different configurations in a specification in the stage of Applying Validity
Checks (in Section 4.2).

Module Systems and Extended Syntactic Definitions and Subsorts. The mod-
ularity of K allows users to define new syntactic constructs, new subsort relations or new
semantic rules where they need. For an object language specification, users are able to define
a new module with a new set of syntactic constructs and rules regarding the old modules.
This brings problems. In the stage of Heat/Cool Rules Generation (Section 4.2), we see
that a pair of heat/cool rules relying heavily on a built-in sort KResult . Defining new sub-
sort relations in a new module with the sort KResult (which is a typical things to do in using
K) is in some sense changing the meaning of these heat/cool rules. It is completely possible
that pattern matching a heat rule on a term might suddenly becomes invalid because we
add a new module with a new subsort relation subsorting the target sort of a subterm in
the term to KResult .
Moreover, extending a syntactic definition might invalidate an object language specifica-

tion. In the Applying Validity Checks of the previous section, we have seen two such
examples. If the two list syntactic definitions mentioned there are in two different modules,
or if users define a new construct that has the same kLabel name as one in other modules,
they will cause the object language specification to be invalid. In addition, if a rule is at-
tributed with function in a new module, the rule might refer to be a part of semantics
for a function application previous defined in other modules. The new rule might bring
additional non-determinism for K functions in an object language specification. To solve
the problem, our static semantics perform several checks in Applying Validity Checks
to check if subsort relations are acyclic and anti-symmetric, if users define two syntactic
definitions with the same kLabel name, and if two list syntactic definitions result in the
conflict described in Applying Validity Checks (Section 4.2). If any of these is true, we
recognize the input object language specification is not well-formed. For K functions, we
only collect them and check if they follow certain formating such as having no more than
one rule attributed with owise for a function construct, but we do not check if a function
has non-determinism behaviors.
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Failure in Generating Nested Cells. We have seen how K complies localization and
concision features by "completing" a rule with configuration information in theTransforma-
tion stage in Section 4.2. Actually, current K implementations (K 3.6 and K 4.0) implicitly
(without any error message or mention in any document) prevent people from defining in a
configuration more than two levels of nested cells with the key word *, meaning that these
cells can have zero or more copies through executions. What is more, there are some unde-
sirable behaviors that happen when the nested * key word cell has only two levels. In K-Java
[86], the method invocation rule connects an operator with a specific method body (some
cells in the methodDec cell) in a specific class (the class cell). The methodDec and class

cells are both attributed with *. The method invocation rule in K-Java is valid but only by
chance. If the author had changed the Java configuration by adding one more cell with the
* key word inside the thread cell (labeled with * key word as well), an application of the
method invocation rule would have crashed. This is not being picky because a lot of users
might actually want to use the K-Java semantics to do further research. For example, when
researchers want to enhance K-Java by making a better memory model, one thing they do
is to change the stack structure. The current stack is implemented as a List data structure
in K, but it is only used to store function information. Users might want to implement a
real stack structure with stack range, types and map from byte location to value. We can
model the stack structure in Fig. 4.17 (a).

(a)

(b)

Figure 4.17: The Stack Structure and Example Rules

The stackType stores the information about the types of the values stored in the stack
piece; the byteMap cell stores the values for each byte location associated with the stack
piece, and the stackRange cell determines the stack locations in the machine. By replacing
the old stack cell with new stack structure in the K-Java configuration, we create two-level
nested * cells in the configuration. The top level * cell is thread, and the inner level cell is
stackObject. Suppose we define the semantics of an operator getStackType to lookup the
type of a stack as Fig. 4.17 (b).
Once a program state requires this rule, the whole execution in the K 3.6 and K 4.0

crashes, because the special cell k representing the program computation sequence is inside
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a cell thread marked with the keyword *, and some variable inside the execution cell k is
trying to match with some content inside another cell (stackObject) marked as *, which
is inside the thread cell containing the execution cell k. Apparently, K 3.6 and K 4.0 do
not allow this. If one is not a K developer and is trying to define some language semantics
with complicated stack or thread data structures, it is almost certain that they will need
the special cell k inside a * keyword cell and define other cells in the * keyword cell with
another * keyword. Nevertheless, determining there has been a crash, testing and finding
the problem takes a K starter a great deal of effort and needless trouble because there are
no error messages and the only way to locate it is to test each rule separately. Our IsaK
solve the problem by eliminating the restriction of level of nested cells with * keyword that
users can write.
These are some design issues of K and our improvement, and we believe that this is one

of the key advantages IsaK is bringing to the K community.

4.4.2 IsaK Evaluation

Evaluating IsaK took more than half of the development time. In testing it, we extracted
OCaml code from IsaK directly in Isabelle, and tested the K specifications and programs
based on the extracted OCaml K interpreter. The extracted interpreter is using the dynamic
semantics that we defined for K in the technical report [10]. The Ocaml interpreter is also
a trivial utility of IsaK, which is extracted directly from the Isabelle source code and users
can use the krun function to execute a program of the specification and see a single trace of
the program. In the following paragraphs, we describe our evaluation, especially the testing,
which resulted in the first thorough set of bug reports for K.

Testing process of IsaK. The validation of language semantics is usually accomplished
through the use of external test suites [83, 84, 120], which was also our strategy. A set of 13
specifications with 356 programs, which we call the K standard test suite, was the basis of
our testing. It was used by the K team to test the K implementations.
Our methodology for developing IsaK was through a strategy of combining Test Driven

Development (TDD) with questioning the K team. We first talked to the K team in depth.
In the first several months of our K semantics project, we only did multiple cycles of (1)
discussing existing documents and materials with the K team, (2) implementing critical
experiments of some small language specifications and running them in the K implementa-
tions, and (3) discussing more materials with them. After that, we developed our semantics
largely by following the TDD process. The reason for employing this design methodology
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was because K had no semantics in print, so we needed to understand exactly what the K
team was thinking. In addition, K is complicated enough that its design should be driven by
tests. Our TDD design process required us to design our features carefully. When developing
a new feature, we first tried to cover all corner cases of the feature under test in isolation,
and then define it in the simplest way possible so as to pass all tests. The test suite also
covered test cases when features overlapped, so we could make sure that the combinations
of features in K were implemented correctly. This is extremely important in cases dealing
with overlapped features.
We first used our design methodology to test our semantics with respect to the dynamic

execution engine of K. We ran the K standard test suite, and our results showed that our K
interpreter passed 338 of the programs. Among the test cases, we had no single specification
that we could not handle. Our kompile function compiled all test specifications, but there
were test programs that we could not handle with krun or ksearch . All of them related
to the standard input channel. K allows users to define a cell as an input/output channel
so that they can type in inputs to the cell from a keyboard, just as I/O operators in C and
Java do. The behaviors of reading I/O input (the input channel) is hard to implement in
Isabelle, and it is best to just define it with the K interpreter. We have not yet finished the
job in the interpreter, but we believe that it will be an easy fix.
In the process of testing, we also questioned the behaviors of the current K implemen-

tations (K 3.6 and K 4.0). If we implemented a feature according to a K document and
descriptions from the K team of the correct behaviors for it, and then found that test results
for the feature were not what the K implementations did, we would extend the specifications
or programs to include new aspects to see what the problems were. Thus, we found possible
undesirable behaviors in the K implementations. Eventually, we located the bugs and made
a new small K "program" (a small language specification and a single input program for
the specification ”k”) to test against the bugs; we also added them to the test suite for later
tests in the development process of IsaK. In developing IsaK, we identified 25 kinds of
undesirable behavior in the K implementations. Each can have many different versions, and
we specified a small K "program" for each of them in our test files.
These undesirable behaviors happen in very diverse circumstances. In fact, we have al-

ready seen one such failure in Section 4.4.1. Some implementations in K might have design
problems. For example, rules labeled with a macro attribute (macro rules) are harmful and
useless. There is no proper K documents suggesting the use of macro rules. When we test
the rules, we find that applying such rules on a user defined program is error-prone. The
only few cases when the macro rules can be applied successfully without any undesirable
behaviors are those listed in the K test suites or in some previous defined language specifi-
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cations in K [83, 84, 85, 86]. In these cases, users always wanted to define a syntactic sugar
and used a macro rule to rewrite the syntactic sugar to another term once in the beginning
of a evaluation of input programs, which can be easily replaced by using function rules in
K. Hence, macro rules are unnecessary in K.
Other undesirable behaviors are the implementation bugs in K. For example, some are

related to sort checking/adjustment. The current K implementations allow users to write
down rules rewriting a sort K term to a sort List or Set term, which are bugs because they
do not allow users to write down rules rewriting a sort sort List or Set term to a sort K
term. In addition, some undesirable behaviors are related to the pattern matching algorithm
in K (the atomic step). The current K implementations allow some implicit associative and
identity equational rules for user-defined list operators in a language specification. However,
there are some cases where the associative rewriting does not work, which is why we decided
not to allow implicit associative and identity equational rules for user-defined list operators.
Moreover, the implementation of the implicit commutative equational rule also fails in some
cases. There are many of these undesirable behaviors, we will not list all of them here.
Interested users can read the technical report [10] or go to https://github.com/liyili2/

k-semantics to see these undesirable behaviors.

4.5 TRANSK: TRANSLATION FROM K TO ISABELLE

Here, we introduce TransK, the translation from a K theory to an Isabelle one. The
input of the translation is an IsaK specification (theory) (Sec. 4.3.2), where a specification
contains a symbol table (Υ), a subsort relation (v), and a set of transition rules (∆), possibly
including function rules, K rules, and/or configuration rules. The subsort relation is assumed
to have no mention of the KResult sort to fulfill the type-correct K specification requirement
in Theorem 4.1. The output of translating a specification by TransK is an Isabelle theory
containing a list of Isabelle datatypes, a list of quotient types with proofs, and a list of
Isabelle rules translated from rules in the input IsaK specification.

4.5.1 Translating Datatypes

For a given IsaK theory Θ = (Ψ,v,Υ,∆), we first translate the tuple (Ψ,v,Υ) to a
pair of a finite quotient type set and a finite set of Isabelle proofs (Ωq,Π) in the translated
Isabelle theory (Ξ), such that all relations in v are invisible in Ξ, but their functionality is
merged in Ωq. The way to achieve this is to utilize Isabelle quotient types: we first translate
the IsaK datatype tuples (Ψ,v,Υ) to a finite Isabelle datatype set Ω by explicitly coercing
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every pair in v, and then translate Ω to a quotient type set Ωq with a finite set of proofs (Π),
one for each target sort in Ωq, to show that each quotient type in Ωq defines an equivalence
relation over all of the syntax defined in Ω. We describe the two processes below.

Builtins
datatype KItem = s1_KItem s1 |...| sn_KItem sn s1, ..., sn ∈ UsrSort
type_synonym K = KItem list
datatype SetItem = SConstr K type_synonym Set = SetItem list
datatype ListItem = LConstr K type_synonym List = ListItem list
datatype BagItem = BagC CName Bag | MapC CName Map | SetC CName Set

| ListC CName List | KC CName K
type_synonym Bag = BagItem list datatype MapItem = MConstr K K
type_synonym Map = MapItem list
Translated Syntax
datatype Exp = Exp_Hole | Var_Exp Var | Int_Exp Int | Div Exp Exp | ...
datatype BExp = BExp_Hole | Bool_Exp Bool | Less Exp Exp | And Exp Exp | ...
datatype Stmt = Stmt_Hole | Bloc_Stmt Bloc | Assign Var Exp
| If BExp Bloc Bloc | While BExp Bloc | Seq Stmt Stmt | Thread Var Stmt

datatype Bloc = Empty | Single Stmt datatype Prog = Prog Vars Stmt
datatypeVars = VarUnit | VarCons Var Vars

Figure 4.18: Example of Datatype Translation (IMP)

The Translation from K Datatypes to Isabelle Datatypes. The translation step from
the tuple (Ψ,v,Υ) to an Isabelle datatype set Ω has two parts: adding builtin datatypes
(corresponding to terms in BuiltinSort in Sec. 4.3.1) and translating user defined datatypes
(corresponding to terms in UsrSort in Sec. 4.3.1). The two parts for translated result of the
IsaK theory (IMP) syntax in Fig. 4.1.1 are shown Fig. 4.18. The builtin datatypes that are
additionally generated in Fig. 4.18 are in a one-to-one correspondence with the datatypes
in IsaK in Fig. 4.12, except the datatypes KLabel /KList , which represent constructors and
their arguments in K and are absorbed into different datatypes in Isabelle. We implement
the builtin K , List , Set , Map, and Bag datatypes as type synonyms for Isabelle builtin lists of
corresponding singleton item datatypes, e.g. KItem list for K . The reason to translate these
builtin datatypes to Isabelle builtin list structures is to capture the aspect that some builtin
datatypes have implicit equational properties associated with them (listed in Fig. 4.12). By
representing these datatypes as Isabelle list structures and representing a connection oper-
ation in IsaK (e.g. the set concatenation operation in K) as an Isabelle list concatenation
operation (@), we are able to capture the implicit associative and identity equational prop-
erties on the these datatypes without extra cares. The other implicit equational properties
are dealt with when translating datatypes to quotient types.
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The translation of user defined datatypes in K to Isabelle is done by adding explicit
coercions for all subsort relation pairs in v, e.g. the constructor Var_Exp coerces a term in
Var to Exp, except that all function constructs (e.g. fresh in Fig. 4.1), which are translated
directly into inductive relations without having datatype definitions in Isabelle (Sec. 4.5.2).
Additionally, Since every user defined sort (s) is a subsort of KItem, we implement KItem
as the union of all coercions of user defined sorts by adding a constructor for each one (s)
of them as: s_KItem. We also add an extra constructor (like Exp_Hole) for each sort that
contains some syntactic definitions with [strict] attributes to represent the � term in
IsaK (Sec. 4.3.2). In IMP (Fig. 4.18), for example, we generate extra "hole" constructs for
the types Exp, BExp, and Stmt , but other user defined sorts have no such construct because
they do not have a definition with a [strict] attribute (Fig. 4.1).

Figure 4.19: Example of Translation to Quotient Types

From Datatypes to Quotient Types. Here we translate the Isabelle datatype set Ω to
the quotient type set Ωq with a set of proofs Π. A quotient type represents a set of terms,
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with a fixed target sort, whose elements are equivalence classes that are partitioned the
whole term domain by a given set of equations. Some datatypes in Ω are only translated
to "trivial" quotient types, meaning a quotient type with the Isabelle’s builtin = operation
as its equivalence relation. The translation of Int to a quotient type in (a) (Fig. 4.1 and
Fig. 4.18) is one example, and we just need the one-line proof "rule identity_equivp" for
such a case.
For any datatype subset of Ω indexed by a specific target sort, there are four cases nec-

essarily needing non-trivial quotient type translations. The general strategy for translating
non-trivial cases is to define inductive relations to capture equivalence relations defined for
the quotient types, and to prove that these really are such relations. Among these inductive
equivalence relation definitions for translating non-trivial cases, we define the rlx, sym, and
trans rules to ensure that the definitions are equivalence relations, such as the ones in (b)

and (c) in Fig. 4.19, which capture the implicit equational properties (only the communica-
tive and idempotent properties) hiding in the builtin terms Bag , Map and Set . Case (b) deals
with the communicative equational property in Bag terms. The com and recur rules capture
the communicative relations among the elements in a BagItem list (which is a Bag term)
precisely. In the case, the right figure shows how a quotient type with a proof is defined in
Isabelle, and the proof content is in (f) in Fig. 4.19. In fact, (f) is the generalized proof for
every non-trivial case quotient type proof in the translation. Case (c) provides an inductive
relation capturing the idempotent equational property in the Set and Map terms. The rule
idem defines the core equivalence property of two lists of SetItem or MapItem elements: two
lists are equivalent if the set translations of the two lists are the same. As we stated in
Fig. 4.12, Map terms must also be functional to be valid in a configuration. We incorporate
the functional property as a transition rule in Sec. 4.5.2. Cases (d) and (e) in Fig. 4.19
capture all necessary non-trivial cases translating from datatypes to quotient types for user
defined sorts/datatypes, whose general concept has been described in [11]. The process is to
identify the possibly equivalent terms due to the removal of the subsort relation and explicit
coercions when translating an order-sorted algebra to a many-sorted one. We first manipu-
late the input subsort relation v to be the definition of v− in Fig. 4.19 by eliminating all
subsorts related to sort K. Here is the reason. The only immediate subsort of sort K in v is
the sort KItem, and users are not allowed to subsort other sorts to K. The only equivalent
terms caused by explicit coercing KItem to K are those recognizing a KItem term as a sin-
gleton K term, which will be translated properly at the stage of translating terms and rules
(Sec. 4.5.2). Cases (d) (and (e)) in Fig. 4.19 describe how we generate quotient types when
a "line" (and a "diamond") structure is presented in the subsort relation v−. For the terms
in the sort marked as yellow in cases (d) and (e), we generate a function, a relation, and a
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proof to capture capture the equivalence relations among these terms. Case (d) describes
a possible "line" structure in v−, where three different sorts s1, s2, and s3 have subsort
relations in a line, like the left graph in (d). In this case, if the terms in s1 have a combined
explicit coercion (s2_s1 (s3_s2 x)), it is equivalent to a term being directly coerced from s3,
as (s3_s1 y), provided that the terms x and y are also equivalent. In Isabelle, we generate a
function s1_eqfun to capture the above description. The ... part contains other trivial cases
for two terms in s1. Sometimes, if a target sort s1 contains other possible subsort relations
fitting patterns in (d) and (e), we also need to take care of those situations in s1_eqfun. The
inductive relation s1_eq is a trivial equivalence relation wrapper for s1_eqfun. We can then
build the quotient type s1

q based on s1_eq with the same proof as (f). Case (e) describes a
possible "diamond" structure in v−. In four different sorts s1, s2, s3, and s4, the sorts s1, s2,
and s4 have subsort relations, while the sorts s1, s3, and s4 also have subsort relations. In
this case, the coercions using different paths from s4 to s1 are all equivalent. We implement
case (e) by the function s1_eqfun, relation s1_eq and quotient type sq1, in the same manner
for case (d).
We have described how to translate datatypes in K to quotient types in Isabelle. Next,

we will introduce the translation of terms and rules.

4.5.2 Translating K Terms and Rules

Here we translate the IsaK terms and rules described in Sec. 4.3.2. For an IsaK theory
(Ψ,v,Υ,∆), the translation algorithm for user defined terms simply walks down the ASTs of
the terms by adding explicit coercions according to the syntactic translations in Sec. 4.5.1.
The only tricky aspect is that the terms translated in Isabelle have no KLabel or KList
subterms. The translation of builtin terms can be summarized as the translation of IsaK
configurations to Isabelle ones. The translation algorithm is straightforward with keeping
an eye on the symbol table Υ to determine the sort for every cell in the configuration.
Fig. 4.20 (a) is a translated term from the initial configuration in Fig. 4.1; its datatype

definition is in Fig. 4.18. To determine the constructor for cell T (BagC or MapC, etc), we look
at Υ for the target sort of T. Since it has sort Bag, we add the constructor BagC for cell T. If
the target sort of a cell (e.g. key) subsorts to K, we give the cell a constructor KC, and turn
the cell content to a singleton sort K term, such as the translated term [Int_KItem 0] in the
cell key. One of the benefits of using TransK instead of IsaK in Isabelle is its significantly
shorter representations of terms. In fact, the initial configuration in (a) (Fig. 4.20) is one-
third the length of what it would be if written in IsaK.
Next, we introduce the translation of rules, which is to translate the rule set ∆ to a
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(a) BagC T [BagC threads [BagC thread [KC key [Int_KItem 0],
KC k [Prog (VarCons x VarUnit) (Assign x (Int_Exp 1))],MapC env []]], KC count [Int_KItem 1],
MapC heap [MConstr [Int_KItem 0] [Int_KItem 0]], SetC keys [SConstr [Int_KItem 0]]]

(b) c(kl)::s⇒ c1(kl1)::s1 when c2(kl2)::s2 ϕ1 ∧ ... ∧ ϕn =⇒ c_ind t1 t2

fresh(SetItem(n::Int) S, m)
⇒ fresh(S, n) when m <Int n

...

inductive fresh_ind where
Jm < n; fresh_ind (S, n) x1K
=⇒ fresh_ind ([SConstr [Int_KItem n]@S, m) x1

...
definition fresh where
"fresh e = (SOME x . fresh_ind e x)"

(c) t1 ⇒ t2 when c(kl)::s ϕ1 ∧ ... ∧ ϕn =⇒ τ_rule t3 t4

v:Exp y � / y y tl⇒ v / y y tl when isKResult(v)

inductive k_rule where
...
Jt = abs_K((Exp_KItem v)#((Div x Exp_Hole)#tl));
isKResult((Exp_KItems v)); t′ = abs_K((Div x v)#tl)K

=⇒ k_rule t t′

...

(d) inductive bag_rule where
Jlocate (abs_Bag C) = (C′, t); k_rule (abs_K t) t′K =⇒ bag_rule C (abs_Bag C′[rep_K t′])
| JC = abs_Bag (BagC T ([BagC threads [BagC thread [KC key [key],KC k []]@xs]@ys, SetC keys S]@zs));
C′ = abs_Bag (BagC T ([BagC threads ys, SetC keys (SetCut(S, [SetConstr [Int_KItem key]]))]@zs))K

=⇒ bag_rule C C′

...

(e) inductive top where
Jis_map_fun C1; C = abs_Bag C1; bag_rule C C′ K =⇒ top C (Some C′)
| J¬is_map_fun C1; C = abs_Bag C1K =⇒ top C None

Figure 4.20: Examples of the Translation of Terms and Rules

set of rules ∆i, whose elements are all represented as inductive relations in Isabelle. The
translated relations are all quantifier-free with all meta-variables represented as universally
quantified meta-variables in Isabelle. In Sec. 4.3.2, we introduced the IsaK rewriting system
by dividing rules into three kinds: function, K, and configuration rules. The rule translation
deals with these rules differently. The functional checking step in the common evaluation
procedures (Sec. 4.3.2) is disregarded from the rule translation here and will be represented
as a specific inductive rule to check that every Map term in a configuration is functional in
the latter part of the section.
Translating Function Rules. We first investigate the translation of function rules. Each
rule translation is divided into two parts: a translated inductive relation in Isabelle that
captures the meaning of the function rule, and a definition using Hilbert’s choice operator to
produce the output of the relation. In K, a function is defined as a syntactic definition with
several function rewrite rules, whose format is as (b) in Fig. 4.20. Each function is translated
to a single inductive relation and a definition using Hilbert’s choice operator. Given a subset
of the symbol table Υ (as Υf ) containing only function constructs, and a subset of ∆ (as
∆f ) containing only function rules, we produce a set of inductive relations in Isabelle as ∆i

f

containing the translated results of ∆f . In K, applying a function rule rlf on a given term t
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results in two possibilities: either it terminates and returns the resultant term t′, or it never
terminates due to endlessly rewriting the condition expression of rlf . Moreover, in all K
tools, function rule applications are implemented as a transition step in a big-step semantic
format, where the function application step produces either an infinite sequence of function
rule applications or the result of a finite sequence of function rules being applied to the input
term. In TransK, we keep this strategy and translate function rules as inductive relations
using a big-step semantic format.
Fig. 4.20 (b) describes the translation of a function rule to an Isabelle inductive relation

with an example (based on the fresh function in Fig. 4.1). For each function label c,
we select all function rules belonging to it in ∆f (having the rule pattern of the top-most
constructor being c). We generate an inductive relation header (c_ind) in Isabelle (e.g. the
fresh_ind header in Fig. 4.20 (b)) for the group of rules belonging to c. For a single rule rlc
for the function label c, its translation results in an inductive relation case in the relation
c_ind, where the term t1 is the translated term describing the input pattern arguments of
rlc (the kl part). An example of such a pattern is the (SetItem(n:Int) S, m) part of the
fresh function rule; it is translated to ([SConstr [Int_KItem n ]@S , m ) in (b). The
term t2 is the translation of the target expression of rlc. Sometimes we need to call rlc or
other functions recursively, so we might need to use a generated variable (x1 in Fig. 4.20),
and generate an equality in the condition of the inductive rule. The conditions ϕ1, ..., ϕn

contains not only the translation of the condition expression of rlc (the m <Int n part), but
also the equities to access the recursive or other function calls. The handling of x1 above
is one example. If the rule expression (the t2 and c1(kl1)::s1 parts in (b)) contains other
mutually recursive function calls, they also need to be translated into variable terms in t2,
with equities as some conditions in ϕ1, ..., ϕn. After we construct the inductive relation for
a K function (or inductive relations for a set of mutually recursive functions), we create a
definition with the Hilbert’s choice operator SOME to force the inductive relation to output
terms with the type matching the target sort of the K function as the Isabelle definition in
(b), so that we can use the name of the function in a configuration or other rule expressions
directly.
Translating K and Configuration Rules. The general strategies for translating a K rule or
a configuration rule are very similar, as described in Fig. 4.20 (c). They are almost the same
as translating a function rule, except that t3 and t4 are mostly translated from the terms t1
and t2 that appear in the K or configuration rule. The τ in (c) is either k or bag. In (c), we
show an example of translating the cooling rule example in Fig. 4.1 (actually, the revised of
the example in Sec. 4.3.1) to an inductive relation case in the inductive relation k_rule. In
the translation, the translated terms t and t′ are quotient type terms of sort K . This is why
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we use t and t′ as variables and then place equities in the conditions in the case to enforce
terms t and t′ to be quotient typed terms.
Translating configuration rules is similar to translating K rules, except that configuration

rules are applied to the whole program state (configuration). We translate all configuration
rules in ∆ to cases in an inductive relation named bag_rule, with an additional rule case
capturing the applications of K rules. Fig. 4.20 (d) shows example rule cases in bag_rule.
Given an input configuration C, the first case is to apply a K rule to a k cell in C. We
pre-define a function locate in the case, along with the translated Isabelle theory, to locate
a k cell in C and split C into a context C[]k and a redex t (the content of the k cell). Then we
apply the corresponding inductive relation k_rule to the quotient type term of t: (abs_K t),
and merge the context and new redex as C[rep_K t′]k as the new configuration. abs_K and
rep_K are Isabelle functions to get an actual term from a quotient type term in sort K and
vice versa. The second rule case in (d) is a translation from the (j) example rule in Fig. 4.1.
Similar to the situation in translating K rules, the input and output configurations C and
C ′ are quotient types, and their contents are wrapped in the coercion abs_Bag. Case (e)

in Fig. 4.20 is the top inductive relation for a translated Isabelle theory. It implements the
functional checking for every Map term in an input configuration C by a pre-defined function
is_map_fun; and if the check is valid, then the bag_rule relation is allowed to apply to C
and to observe one step transition; otherwise, the system enters an error state (None).
We introduced different components of TransK here. Next we investigate the relation

between IsaK and TransK.

4.6 SOUNDNESS AND COMPLETENESS BETWEEN ISAK AND TRANSK

Here we construct the relationship between IsaK and TransK. Fig. 4.21 describes the
general soundness and completeness proof diagrams between them. We first look at the
underlying system the proofs are based on. IsaK is defined in Isabelle, we also implemented
TransK in Isabelle as well as a small Isabelle system (Isab) in Isabelle so that we could
capture the semantics of the Isabelle theory translated from an IsaK one. If we assume that
the generated quotient type proofs are always valid in Isabelle, which is obvious, an Isabelle
theory translated by TransK only requires the soundness and completeness proofs involving
Isabelle datatypes/quotient types and inductive relations. The translated inductive relations
have the form as Fig. 4.20 (d), where every relation is a binary one rewriting from a term
t3 to a term t4 with a list of conditions ϕ1, ..., ϕn, such that they are all quantifier-free. In
addition, the definitions of functions require the support of Hilbert’s choice operator. Thus,
the rewriting semantics of the Isabelle system (Isab) supporting these features is just a
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simple typed λ-µ calculus with Hilbert’s choice operator and quotient types. Isab is based
on the λ-µ calculus developed by Matache et al. [141], and extended to support the rewriting
of the inductive relations described above and definitions using Hilbert’s choice operator.

t1 t2

tq1 tq2

t3 t4∃

rlf1 , ..., rl
f
n

TransK TransK

∈ ∈TransK(rlf1), ..., TransK(rl
f
n)

C1 C2

Cq1 Cq2

rlc

TransK TransK
TransK(rlc)

Figure 4.21: Soundness and Completeness of IsaK and TransK

To prove the soundness/completeness between an IsaK theory and its TransK translation
into Isab, we have to prove the soundness and completeness of the functions rules separately
from the K/configuration rules (Fig. 4.21). The problem is that every rule in IsaK has a
conditional expression (having type Bool ), and the rewrites of the Bool term can be infinite.
Additionally, the function rules are translated to a definition of inductive relations in the
big-step format, and it can be infifnite, too. The soundness and completeness for function
rules have to assume that every rewrite of the function rule application on the conditional
expression terminates in a finite sequence whose length is n. In addition, a function rule
application in Isabelle deals with terms that are the translated datatypes not quotient types.
Thus, a function rule is applied to a representative term in a given equivalence class, which
is transitioned to another term as a representative in the resulting equivalence class, as
described by the existential operation in the first diagram of Fig. 4.21. The term t3 is a
representative of the class tq1 which is translated from the K term t1. The soundness and
completeness of function rule applications are described below.

Theorem 4.2. (Soundness) In IsaK, assume that a sequence of function rules rlf1 , ..., rlfn
applied to a term t1 terminates in n steps and results in term t2, and tq1 and tq2 are quotient
type terms in Isab translated by TransK, there exists a term t3 in tq1 transitioning through
sequence of corresponding rule applications TransK(rlf1), ..., TransK(rl

f
n) to term t4, such

that t4 is in the quotient type class tq2, which is a translation from t2.
(Completeness) If there exist quotient type terms tq1 and tq2, such that a representative t3

of tq1 is transitioned to t4 in tq2 through a sequence of function rule applications rlf
′

1 , ..., rl
f ′
n ,

and tq1 = TransK(t1), tq2 = TransK(t2), and rlf
′

1 = TransK(rlf1),..., rlf
′
n = TransK(rlfn), then

t1 is transitioned to t2 through the sequence of function rule applications rlf1 , ..., rlfn.

To show the theorem, we first need to show the following lemma:
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Lemma 4.1. For any two transformed terms t and t′ in Isabelle, for any k and k′, such that
t = TransK(k) and t′ = TransK(k′), k and k′ in IsaK are equivalent under the equational
properties described in Fig. 4.12.

The proof of the lemma is based on an important assumption about K/IsaK. One cannot
define two terms in K/IsaK with the same constructor. Even if someone makes two identical
syntactic definitions in K, the current K implementation helps map these two definitions with
two distinct constructors. A consequence of this assumption is that every term has a least
sort in K/IsaK.

Proof. The proof is based on induction on the depth of the AST tree of a term t. The base
step is simple, and we ignore it here. The inductive step is divisible into three cases:

• If the two terms t and t′ are the same term, then the original terms k and k′ are also
the same.

• If the two terms t and t′ are quotient-equivalent involving only Set and Map (like case (c)

in Fig. 4.19), then k and k′ are equivalent under the Set and Map equational properties
listed in Fig. 4.12.

• If the two terms t and t′ are quotient-equivalent through cases (d) and (e) in Fig. 4.19
(the line and diamond structures), then k and k′ are the same term. This is because
the constructors serving explicit coercions are created in the TransK function. The
k and k′ terms involve only subsort relations, without needing coercions. Once the
coercions are removed, the terms k and k′ are the same and have the same least sort,
since every constructor in K/IsaK is unique and has a unique least sort.

QED.

Next, we need to change the semantic rule in Fig. 4.14 a little to the rules in Fig. 4.22.
Specifically, we need to change case (1) to by adding a number n representing the number of
steps an application of the rule can take. We need the step number to avoid the termination
proof of a given IsaK theory.
With the above rule changes and Lemma 4.1, we can now prove Theorem 4.2.

Proof. We first show its soundness. The proof is rephrased as "for any number n, if applying
a rule rl to a term t terminates in n steps, and produces a result of true or false, then
applying TransK(rl) to the term TransK(t) also terminates in n step with a result of True
or False in Isabelle."
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(1-a) true −→Θ
0,f true (1-b) false −→Θ

0,f false

(1-c)
c(kl) 6= true c(kl) 6= false

c(kl) −→Θ
0,f error

(1-d)

rl ∈ Θ m = match(rl, c(kl)) n 6= 0
t = subs(m, cond(rl)) t (−→Θ

(n-1),f )∗ true

c(kl) −→Θ
n,f subs(m, right(rl))

Figure 4.22: Changed Rules in IsaK For Theorem Proving Purposes

We abbreviate the transition that happens in Isabelle as −→tr,Θ
n,f .

We induct on the number n. The base step is when the term t is either true or false
(otherwise, it is an error). Trivially, when translating the two terms in Isabelle, they are
True or False values in Isabelle.
In the inductive step, for the n+1 step application, we have the assumption that the rule-

application case (1-d) above is a valid one for term t. It means that a mappingm results from
match(rl, t). We also have the translation of the rule TransK(rl) and the term TransK(t). By
a case analysis of the different quotient translation cases in Fig. 4.19, we can conclude that
there is a term t′ which is in the same equivalence class as TransK(t), such that we can find a
mappingm′ for match(TransK(rl), TransK(t)); and every mapped term ti of meta-variable xi
in the mapping m′ is in the same equivalence class as the term TransK(m(xi)). In addition,
translating the condition expression to true (through the transitions (−→Θ

(n+1 -1),f )
∗) is valid

because of the inductive hypothesis ( n+1 -1 ≤ n). Thus, applying TransK(rl) to the term
TransK(t) produces a valid term t′ that is in the equivalence class of t′, such that t −→Θ

(n+1),f t
′

via the rule rl.
We then show its completeness. The proof is rephrased as "for any number n, if we have a

rule rl and a term t, and their translations TransK(rl) and TransK(t), then if an application
of TransK(rl) on the term TransK(t) terminates in n steps with a result of True or False
in Isabelle, then applying a rule rl to a term t terminates in n steps, and produces a result
of true or false."
We also induct on the number n. The base step is when the term TransK(t) is either True

or False in Isabelle (otherwise, it is an error). Trivially, there is a term true or false in
IsaK to match with the result term.
In the inductive step, for the n+1 step application, we have the assumption that the

rule application case (1-d) above is a valid one for the term TransK(t), and the rule
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being applied is TransK(rl). This means that there is a mapping m as a result of
match(TransK(rl), TransK(t)). We need to show that there is also a mapping m′ as a
result of match(rl, t). We show that there is a term t′ which is in the same equivalence class
as t in IsaK by Lemma 4.1. By the lemma, there is a mapping match(rl, t′), such that
every entry of m is the TransK translation result of the entry with the same meta-variable
in m′. Furthermore, the terms t and t′ are the same term because of the term normalization
in IsaK introduced in Sections 4.2 and 4.3.2. Every input term for a rule application is
assumed to be term-normalized. If two terms are in the same equivalence class, the normal-
ized term for all terms in the equivalence class is the same and it represents the canonical
form of the equivalence class. Thus, there is a step transition t −→Θ

(n+1),f t
′′ via rule rl, and

the translation of term t′′ is in the same equivalence class as the term t′′ in the transition
TransK(t) −→tr,Θ

(n+1),f t
′′ via rule match(TransK(rl).

QED.

The proofs of soundness and completeness for K/configuration rule applications are de-
scribed in the right-hand diagram in Fig. 4.21. A transition step in such cases is a one-
step application of a K rule or configuration rule. The soundness and completeness of
K/configuration rule applications are described below.

Theorem 4.3. (Soundness) In IsaK, assume that a configuration C1 is transitioned to C2

through a K (or configuration) rule rlc, and Cq
1 is a quotient type term translated from C1,

then Cq
2 is translated from C2 by rule TransK(rlc).

(Completeness) If there exist quotient type configurations Cq
1 and Cq

2 , such that Cq
1 tran-

sitions to Cq
2 through a rule rl′c, C

q
1 = TransK(C1), and rl′c = TransK(rlc), then C2 is

transitioned from C1 by rule rlc and Cq
2 = TransK(C2).

Proof. We first show its soundness. Given an IsaK theory Θ and configuration C, we do a
structural induction on different kinds of rules in Θ.

• If the application rule rl is a function rule, the configuration is split into a context
C[]sf and a redex t::s, such that t −→Θ

f t′, and the final configuration is C[t′]sf . The
final configuration is well-typed because of Theorem 4.1. We then need to show that
a translation of rl as TransK(rl) can also be applied to term TransK(t), and it is
transitioned to a term t′, which is in the same equivalence class of the translation
result of t′. This step of the proof is similar to the one in proving Theorem 4.2, with
the assumption that the rewrites of the condition expression of the rl rule with term t

produces a Boolean result of true or false in n steps. We then need to show that the
final configuration from applying function rule TransK(rl) is in the same equivalence
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class as the term TransK(C[t′]sf ). To accomplish this, we have a lemma stating that
the application of an Isabelle definition to a term TransK(C) (as in the case (b)

translation result in Fig. 4.20) produces a term with the context C ′[]sf and redex t′::s,
where t′ and the hole in C ′[]sf also have the type s, t′ is in the same equivalence class
as TransK(t′), and C ′[t′]sf is in the same equivalence class as the term TransK(C[t′]sf ).

• If the application rule rl is a K rule, the configuration is split into a context C[]k

and a redex k having sort K, such that applying rl to k results in k′, and the final
configuration is C[k′]k. The final configuration is well-typed because of Theorem 4.1.
We then need to show that the translation of rl as TransK(rl) can be applied to the
term TransK(k) (like the k_rule translation in Fig. 4.20 (c)), and transition the term
to a term k′ that is in the equivalence class of term TransK(k′). This step of the proof is
basically the same as in Theorem 4.2. Finally, we need to show that the transition rule
in Isabelle (like the first line of Fig. 4.20 (d)) can split the configuration TransK(C) into
a context C ′[]k and redex k, such that k is in the same equivalence class as TransK(k),
and C ′[k]k is in the same equivalence class as TransK(C); and we need to show that
the application of TransK(rl) to k results in k′, and C ′[k′]k is in the same equivalence
class as TransK(C[k′]k). The proof of this step is done by a structural induction on
any Isabelle term with the application of a special inductive rule like the one in the
first line of Fig. 4.20 (d).

• If the application rule rl is a configuration rule, then we only need to show that when
the configuration is transitioned to C ′ via the rule, the translation of C to TransK(C) is
also transitioned to C ′ via the rule TransK(rl), such that C ′ is in the same equivalence
class as TransK(C ′). This is done by the same strategy as the proof of Theorem 4.2.

We then show its completeness. The proof is to do a rule induction on the top inductive
relation listed in Fig. 4.20 (e), and then establish a sub-theorem by doing an induction on
the rules in Fig. 4.20 (d). There are three important cases here:

• If the rule being applied is not the first line of Fig. 4.20 (d), then the rule is the
translation of a configuration rule rl in the given IsaK theory Θ. By a similar proof
strategy as that for proving Theorem 4.2, we can then show that for any configuration
C = TransK(C), the application of TransK(rl) results in a new configuration C ′;
the configuration C is also transitioned to a new configuration C ′ via rule rl; and
TransK(C ′) is in the same equivalence class as C ′.

• If the rule being applied is the first line of Fig. 4.20 (d), then the rule is the translation
of K rule rl in the given IsaK theory Θ. Then, the given configuration C = TransK(C)
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is split into a context C[]k and redex k. The rule application of TransK(rl) to k results
in a term k′. We need to show that if k = TransK(k), then k transitions to k′ via
the K term transition part of rule rl, such that k′ is in the same equivalence class as
term TransK(k′). The proof of the existence of the term uses the same strategy as
the one in the completeness proof of Theorem 4.2. Finally, we need to show that C
is transitioned to C[k′]k via rule rl, such that C[k′]k is in the same equivalence class
as C[k′]k. This proof is done by a similar strategy in proving the existence of the
context-redex combination in the soundness proof of an K rule above.

• If a given configuration C contains an Isabelle definition t (like Fig. 4.20 (b)), then
the definition must be translated from a function constructor appearing in the IsaK
theory Θ. In this case, configuration C is moved through several transitions to a final
step C ′ such that the definition is replaced by the ground term t′ without any Isabelle
definitions. In this case, C can be viewed as the split of a context C[] and a redex
t, such that C[t] = C and C[t′] = C ′. We have shown inductively the following.
For n steps of applications of the inductive rule associated with the definition t, it is
continuously translated to t1, ..., tn. For any rewrite from ti to ti+1, the transition is
through the inductive rule TransK(rl), which is translated from a function rule rl in
Θ. Let ti = TransK(ti), then ti transitions to ti+1 via the application of rule rl, and
TransK(ti+1) is in the same equivalence class as ti+1. Thus, for any n step computations
of inductive rule applications for an Isabelle definition, there are n step computations
of function rule applications, and the final term tn computed in the IsaK system is
translated into the same equivalence class as the final result term tn computed in
the Isabelle system. Finally, let t′ = tn. We need to show that if C = TransK(C),
t = TransK(t), and t′ = tn = TransK(tn), then TransK(C[tn]) is in the same equivalence
class as C[t′]. The proof of this step is the same process as we have already performed
multiple times.

QED.
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Chapter 5: KLLVM: THE SEMANTICS OF LLVM IR

In this section, we define the semantics of K-LLVM. It is divided into two parts: the
K-LLVM static semantics (Sec. 5.2) and the K-LLVM dynamic semantics (Sec. 5.3).
The Low Level Virtual Machine (LLVM) is designed for the compile-time, link-time and

run-time optimizations of programs written in unspecified programming languages. An
LLVM-based compiler, such as Clang, relies on a translation from a high-level source lan-
guage to an intermediate representation (LLVM IR) that hides details about the specific
target execution platform and acts as an interface for LLVM. Then users are able to use the
LLVM tools to perform program optimizations, transformations, and static analyses based
on LLVM IR, which can also be translated into target architectures such as x86, PowerPC,
and ARM. Hence, LLVM IR acts as a "central station" for translating high-level languages
to target architectures, with a fixed set of language syntax, instructions, library functions,
and memory model [142].
The full details of our semantics can be found in the following link: https://github.com/

liyili2/llvm-semantics-1. This chapter highlights an interesting portion of K-LLVM to
show how one can possibly find a balance between abstractions and real world programming
to provide a better, clearer, and more useful language semantics. First, we introduce some
benefits, features, and a limitation of K-LLVM. In this chapter, the K-LLVM memory
model is based on byte-wise sequential consistency. LLVM IR specifies a range of behaviors
for memory operations with different orderings and for volatile memory accesses, while
K-LLVM does not support the full range. In K-LLVM, every memory location is mapped
to a single byte datum; there is only one memory cache to deal with all memory operation
requests from the different threads. Single thread instruction execution is in the program
order. Based on this model with the K-LLVM abstract machine, we provide an observation
in Section 5.3.4. We implemented the full LLVM IR concurrency model in K with all of the
memory ordering behaviors of the atomic memory operations in Chapter 7.
The Most Complete LLVM IR Semantics. K-LLVM is the most complete LLVM IR
semantics to date, and provides a reference for people to use when exploring LLVM IR
behaviors, including threading behaviors. The semantics is complete relative to a byte-wise,
sequentially consistent memory model. K-LLVM defines corner cases for all LLVM IR
operations, some of which have not been defined by previous work.
A Unified and Rigorously Mathematical Framework. We provide a unified and rigor-
ously mathematical framework where people can observe the semantic behaviors in a single
interface and also prove properties of compilers, with a focus on LLVM IR and LLVM IR
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compilers. Transforming programs from a high-level language to a low-level machine code
requires a lot of phases, each of which might cause correctness concerns. For example, the
infamous out-of-thin-air problems can arise at every level of intermediate AST as a result of
a transformation or compiler optimization. They can even appear when some old processors
try to execute certain programs [143]. K-LLVM provides a way for users to reason about
the behaviors of these translations based on the rigorous executable semantics of LLVM IR.
A Conceptual Device and a Virtual Machine. K-LLVM is implemented as a virtual
machine that runs LLVM IR codes, that are interpretable by users. Instead of having to
understand axiomatized memory events, they deal with central processors, threads, memory
caches, etc. K-LLVM accomplishes this by providing an abstract machine that combines
its runtime system, executions and memory models (in byte-wise sequential consistency).
It implements the executable LLVM IR semantics for version 6.0.0. The abstract machine
is also scalable. With simple changes to the current K-LLVM, the machine can allow
the LLVM IR instructions to be executed out of order, handle speculative executions, and
simulate a real-world memory environment that allows for features such as memory caches.
Detailed LLVM IR Low-level Structure. LLVM IR is a low enough language that one
cannot define the semantics without explicitly incorporating aspects of the underlying archi-
tecture. It is important to deal with low-level data values like integers, floats, and pointers
in a more detailed format based on bits and bytes, instead of pure mathematical concepts.
Parametric Behavior. K-LLVM has been implemented in a direct and transparent man-
ner in K, resulting in an interpreter for LLVM IR. K-LLVM is parameterized by important
information needed for implementing defined behaviors. Users can configure the parame-
ters of the semantics based on specific architectures or compilers, and then proceed to see
executable behaviors formally in the implementation in K.
Undefined Behavior. We classify three different types of undefinedness in LLVM IR. The
first one is undef, which represents an unspecified value for a program position; the program
should proceed no matter what the value is. In some cases, undef also means that the
program has ill-defined behavior, such as representing a race in the memory. There are two
ways to deal with undef in K-LLVM: krun can be used to execute a program with undef

and get a fixed deterministic behavior by assuming one path, or ksearch can be used to
search for all different behaviors by executing the program non-deterministically. Sometimes,
the non-deterministic search space caused by undef values in LLVM IR is too large. In such
cases, the symbolic execution engine in ksearch with the K equivalence checker can be used
to determine if two programs return the same results. Additional discussion can be found
in Section 5.4. The second kind of undefinedness is an undefined behavior represented by
a poison value, because LLVM IR does not have a defined symbol for it. Its meaning is
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similar to undef, but it has certain undefined behaviors associated with it. K-LLVM will
carry the poison value and continue computation until a non-deterministic point is reached,
then give an error message saying that there is a poison value in the program, and stop
the continuation of the computation. If no non-deterministic point is found, K-LLVM can
finish the computation successfully. The third kind results from underspecification in the
LLVM IR documentation. We named this as unspecified behaviors in this chapter. When
facing the third kind, K-LLVM immediately labels the computation an error state, saying
there is an unspecified behavior in the system. More information can be found in Section 5.4.
Independent of K. The implementation in K gives K-LLVM the power to have an in-
terpreter automatically, and have tools for state space searching and symbolic executions.
Essentially, K [76] is an executable semantic framework based a rewriting logic [134]. Once
a language semantics is defined in K, it automatically turns it into a logical form by turning
each semantic rule into an axiomatic rule with pre and post-conditions; thus, it creates an
axiom set for the language. Additionally, there are many tools available in K. For example,
kompile can be used to see if the semantics has static type problems and to generate an
interpreter, so that krun can be used with the interpreter to test their semantics by actual
concrete programs. ksearch allows searches of traces of multi-threaded programs based on
the interpreter. The symbolic engine in ksearch and the program equivalence checker in
K can allow for two sets of traces to be compared by symbolically executing two different
multi-threaded programs and seeing if the two sets produce the same output. Even though
we have defined K-LLVM in K, the semantics is independent of its implementations in K.
In fact, we have defined theK-LLVM abstract machine in Isabelle [19] for manually proving
theorems about K-LLVM. Additional discussion is presented in Section 5.4.

5.1 K-LLVM BACKGROUND AND CHALLENGES

Below we discuss the major challenges that needed to be faced when developingK-LLVM.
Additionally, we introduce briefly LLVM IR programs, K-LLVM and K.

5.1.1 A Taste of LLVM IR Programs and Assumptions on LLVM IR

The LLVM language (LLVM IR) is a statically and strongly typed, assembly-like, Static
Single Assignment (SSA) based language. It has undefined behaviors but the undefinedness
is well documented. The LLVM language itself does not have operations or libraries to
support multi-threaded behaviors, but LLVM IR’s structure is highly related to the C/C++
library. LLVM IR basically assumes a runtime environment of C++. LLVM IR also contains
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a set of functions comprising an intrinsic library, in which part of the standard C library is
included.

Program-A :

1 %r1 = call i8* @malloc (i64 12)
2 %r2 = bitcast i8* %r1 to [3 x i32]*
3 store [3 x i32] [i32 0, i32 0, i32 0], [3 x i32]* %r2
4 %r3 = getelementptr inbounds [3 x i32], [3 x i32]* %r2 , i64 0, i32 1
5 %u1 = getelementptr inbounds [3 x i32], [3 x i32]* %r2 , i64 -1, i32 4 ;poison value.
6 %u2 = getelementptr inbounds i8, i8* %r1 , i64 3
7 %u3 = load i8, i8* %u2
8 %u4 = ptrtoint i8* %u3 to i64
9 %u5 = add i64 %u4 , 1
10 %u6 = inttoptr i64 %u5 to i8*
11 %u7 = load i8, i8* %u6
12 %r4 = bitcast i32* %r3 to [2 x i32]*
13 store [2 x i32] [i32 11, i32 11], [2 x i32]* %r4
14 %r5 = ptrtoint [2 x i32]* %r4 to i64
15 %r6 = inttoptr i64 %r5 to i64*
16 %r7 = load i64, i64* %r6 ;read back the two i32 array as an i64 value 47244640267.
17 %r8 = icmp eq i64 %r7 , 47244640267
18 br i1 %r8 , label %next , label %exit
19 next:
20 %r9 = inttoptr i64 100 to i32*
21 %r10 = getelementptr inbounds i32, i32* %r9 , i64 0 ;poison value.
22 store i32 42, i32* %r9 ;unspecified behavior due to invalid pointer.
23 exit:
...

Program-B :

Thread-1 :

...

store atomic i32 42, i32* @x monotonic, align 1
%a = load atomic i32, i32* @y monotonic, align 1
...

Thread-2 :

...

store atomic i32 1, i32* @y monotonic, align 1
%b = load atomic i32, i32* @x monotonic, align 1
...

Program-C :

Thread-1 :

...

store i32 42, i32* @x
%a = load i32, i32* @y
...

Thread-2 :

...

store i32 1, i32* @y
%b = load i32, i32* @x
...

Program-E :

%r1 = call i8* @malloc (i64 12)
%r2 = ptrtoint i8* %r1 to i32
%r3 = call i8* @printf(@x , i32 %r2)

Program-D :

Thread-1 :

...

%a = load i32, i32* @x
%r = call i32 @pthread_create (i32 ()* @f ,...)
...

Thread-2 :

define i32 () @f {
store i32 1, i32* @x
return 0

}

Figure 5.1: LLVM IR Example Programs

It also relies on other functions in the stdlib.h header. For example, it needs dynamic
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memory management functions such as malloc, realloc and free to provide heap memory
access, as well as functions dealing with the environment such as abort, exit and system.
Furthermore, it needs functions listed in the stdio.h header to provide I/O support, as well
as library functions from the Pthread and Pthread-mutex libraries to provide threading and
mutual exclusion behaviors. These functions are not strictly part of the LLVM IR listed in
the documentation but we define them anyway.
The current LLVM IR can be viewed as "C- -". Except function bodies, most features in

C can be found in LLVM IR, such as global variables, struct datatypes, function headers
and different flags for global variables or functions, etc. The main difference between LLVM
IR programs and C programs are the function bodies, a.k.a. expressions. The LLVM IR
expressions are register-based, SSA based and assembly-like. These features eliminate the
undefinedness of the evaluation order in an LLVM IR program. We show some examples of
LLVM IR expressions in Figure 5.1 to provide a taste of LLVM IR. These expressions are
used throughout the whole chapter. We believe that these expressions are enough to show
the key features of LLVM IR and the construction of LLVM IR programs based on these
expressions and other components ( function headers, global variables and modules, etc)
can be easily found in the LLVM documentation. This is also the reason we refer to these
expressions as "programs" in the rest of the chapter.
LLVM IR distinguishes local variables from global variables. Variables starting with the

character % are local ones, while those starting with the character @ are global. Global
variables can only have a pointer type. Any number following the character i in LLVM IR,
such as i32 or i1, means an integer type declaration with the size of the bits. i32* refers to a
32-bit integer pointer type declaration. Instructions starting with the keyword icmp are the
integer comparison operators. With the keyword eq, the instruction %r8 = icmp eq i64

%r7 , 47244640267 tests whether the value in the variable %r7 and 47244640267 are the
same and stores the result to the variable %r8 . The ";" operation allows users to put
comments after a line of code.
Program-A does several pointer arithmetic operations and memory operations. Several key

observations about LLVM IR are made here. First, getelementptr is a memory address
calculation operation and has an inbounds flag. The definition of inbounds is hard because
it not only affects the final result but also affects every intermediate result of computing
the memory address. For example, in Program-A, %u1 (line 5) is a poison value because
we have inbounds in the getelementptr, and the second index is i64 -1, which makes the
intermediate result out-of-bounds. Even though the final result is in bounds because we add
back numbers, the inbounds still makes the final result a poison value. We talk about our
definition of the getelementptr operation in Section 5.3.4. Second, LLVM IR views the

61



main memory as having no type. We can store an array [11, 11] (line 13) and magically
get back the i64 value 47244640267 (line 16). This has effects on defining the K-LLVM
type system, which will be explained in Section 5.2. Finally, executing Program-A in K-
LLVM stops at the line 22. It is an unspecified behavior in LLVM IR to read data from
a memory location pointed to by a pointer that was not properly created. The combined
effects of casting, pointer arithmetic, and memory operations are based on the definition of
the provenance model in K-LLVM. More details are in Section 5.3.1 and 5.3.4. Program-B
and Program-C distinguish between a non-atomic and atomic memory operation. Thanks
to our K-LLVM virtual machine definition, we are able to produce the race caused by two
non-atomic operations in two different threads. Additional details are in Section 5.2 and 5.3.
While maintaining sequential consistency, the execution of Program-D could result in a race
on @x because of the special instruction execution order of LLVM, which the K-LLVM
abstract machine models. More details are in Section 5.3.2. Program-E is an example for
showing the usage of the K symbolic execution engine in Section 5.4.
After reading the programs in Figure 5.1, questions about the memory locations and

memory alignments may come to mind. Memory implementation is very complicated in real
world programming languages. LLVM IR does not actually fix a special implementation
of memory addresses. For simplicity, we assume in this chapter that there is a one-to-one
mapping from natural numbers to memory addresses, and a memory chunk is always in a
range that can be defined between a left and a right integer bound. The memory addresses
refer to conceptual memory byte data. Conceptual memory bytes are not actual byte data
– details are in Section 5.3.3. LLVM IR also allows setting up alignments for different
types, memory endianness and address space information by using target datalayout.
Although we have implemented these features in K-LLVM, for simplicity, we assume in this
chapter that alignments, paddings for structs and address spaces never cause a problem
in calculating memory addresses or type checking, and we assume little-endian byte-order.
Finally, we assume that the heap size is infinite while the stack for each function is finite
and has a maximum bound, and if a stack overflows in a thread, the whole system reaches
an error state.

5.1.2 K-LLVM Challenges

Here are some challenges that we face when we define the K-LLVM semantics.
Sheer Size of LLVM IR. The first challenge is the sheer size and precision of LLVM IR.
With respect to instructions, LLVM IR has more than 60 operators and 100 intrinsic library
functions. Some operators have complex rules or different requirements according to the
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input. For example, store operators can be either non-atomic or atomic, and atomic store
operators have six different orderings. All of these require different semantic rules. The
previous work only defined some of the operators, or some of their features. No previous
work has defined the massive number of intrinsic library functions. K-LLVM defines all
the LLVM operations and intrinsic functions. We handle this challenge through a special
heavily testing strategy to define K-LLVM described in Sec. 5.4.
Subtlety of Well-formedness. In LLVM IR, the subtlety of various instructions and the
well-formedness of instructions are often directly connected with the semantics of the in-
structions in a particular place in a given program. The syntactic nature of even a single
instruction is determined by the semantic context. For example, the getelementptr op-
erator allows indices to be integer local variables if the pointer input is an array pointer.
However, if it is a struct pointer, LLVM IR requires the indices to be integer constants
that can be statically reduced to integer values. These two types can be mixed together in a
single usage of getelementptr in an LLVM IR program. Another example is that the input
containing a decimal representation of a floating-point constant needs to be exact. This
means that the value 1.1 cannot be a valid constant for floating-point operators in LLVM
IR because it cannot be precisely represented by a finite floating point number, and LLVM
IR requires the compilers to LLVM IR to round the float to a hexadecimal format. This is
an error in Clang (the LLVM compiler).
Detailed Low-Level Features. As we mentioned in the beginning of the chapter, it is
not feasible to to gloss over the details of LLVM IR’s low-level features, such as how to
represent integers, floats and pointers. The effects are easily felt when we combine casting
operations with memory operations. It is a common source of confusion among LLVM IR
users, and thus, a common source of bugs. We also need to admit the fact that memory
locations are highly related to integer behaviors; so converting pointers to integers, doing
certain arithmetic on them, and converting them back to pointers are valid program exercises
within a memory chunk created by a malloc operation. This brings us a big challenge. For
example, in Program-A (Fig. 5.1), we cannot use pointer %r9 to store data to the main
memory (line 22), even if it is accidentally at the right range of a memory chunk, because
%r9 is not a valid pointer according to the LLVM IR pointer-aliasing rule. Defining a data
structure to capture the behaviors covering all corner cases is one of the key contributions
of K-LLVM. In addition, it is important to admit that the low-level structure of LLVM IR
is based on bits and bytes; as well as the integer, float and pointer calculations are based on
two’s compliments, IEEE 754, and integer pointer calculations.
Instructions Having Side-effects on Subsequent Instructions. Some instructions may
cause side-effects on subsequent instructions depending on their behaviors. For example,
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in Program-A (Fig. 5.1), one can use the pointer %r4 to access memory because it was a
subsequent computation result of the pointer %r1 from a malloc function, while %r9 cannot
be used to access memory data because it is from an integer constant. Defining these
complicated side-effects requires new ideas. In addition, LLVM IR instructions can have
very different requirements for different computer components. This complicates the design
of different components of the K-LLVM abstract machine.

5.2 THE STATIC SEMANTICS OF ISAK

When giving the semantics of LLVM IR, K-LLVM uses two different ASTs, a front-
end AST (FAST) and a back-end AST (BAST). The syntax of LLVM IR 6.0.0, which
is documented in the website http://releases.llvm.org/6.0.0/docs/LangRef.html, is
directly parsed into the FAST. We have formally defined the LLVM IR 6.0 syntax in K, and
it parses any LLVM IR program into the FAST format.
K-LLVM static semantics refers to the LLVM IR behaviors that happen at compilation

time. For an LLVM IR program, parsing is not enough to rule out unqualified programs.
After parsing, a series of checks are needed to perform on an LLVM IR program including
well-typedness, static single assignment and well-formedness. The K-LLVM static seman-
tics is to apply these checks and rule out unqualified programs, and it also translates a FAST
program into a representation in the BAST format; then, hands to the dynamic semantics
for execution. Figure 5.2 depicts the phases in the K-LLVM static semantics.

Figure 5.2: Static Semantics to Dynamic Semantics in K-LLVM

Preprocessing. The preprocessing step mainly deals with LLVM IR programs outside
function bodies. It takes care of LLVM IR compilation jobs during the linkage time, such
as discovering module dependency and recording them, analyzing and dealing with LLVM
IR metadata, target triples, global/static variables and aliases, etc. In this phase, a list of
LLVM IR modules in FAST is analyzed and transformed. For each module, some metadata,
such as the target data layout (a string deciding how memory is laid out) and target triple
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(a string describing the target host), are analyzed and stored in special cells as the global
data of the module. Global/static variables are analyzed and stored in a form of BAST
as a quadruple of a global variable name, type, pointer and set of attributes (including
linkages, preemption specifiers and visibilities, etc.). During the preprocessing phase, each
non-external global/static variable is also given a static memory location, and its data is
stored there. After dealing with the global/static variables, aliases are also analyzed and
transformed to the BAST format. Aliases rely on the information from the global variables
to get the pointer address of the object aliases. During the preprocessing of the global/static
variables and aliases, small type checks are performed to guarantee that the values of the
global/static and target variables of any alias are coherent. In addition, syntactic sugar
resolution is performed so that the possible constant expressions of the aliasee expression in
each alias will be correctly evaluated to their pointer values. Finally, for function declarations
and definitions, the preprocessing phase only collects their header information including
return types, argument types and attributes. The type checking and transformation of the
bodies of the function definitions are done in the next few phases.
Type Checking. This step emulates the behaviors of LLVM IR type checking for func-

tions in LLVM IR modules. LLVM IR is a strongly typed language even though its type
system is very straight-forward and simple. The K-LLVM type checking process is a com-
plete implementation of the LLVM IR type system listed in the its documentation. The
input for the K-LLVM type checking function is a term and its type, and the function
outputs true if the term has been type checked and has the input type, and it outputs
false otherwise. The "strongly typed" here means that LLVM IR guarantees that a typed
value produced from a typed LLVM IR expression is compatible with the size of the value
in runtime, and any later usage of the value will not result in a type error or size error.
However, the program still has a chance to go wrong due to other problems such as division
by zero. in Program-A in Figure 5.1, every line of code except store and br instructions
assigns a value to a variable. After type checking, each variable has a type. %r1 has type
i8* (line 1) and %r2 has type [3 x i32]* (line 2). If we eliminate line 2 and replace the
variable %r2 in line 3 with %r1 , the line results in a type error.
There are some tricky cases of the type system. In Figure 5.3, we show a getelementptr

instruction on a struct type. For a struct, the value of the index for the getelementptr

affects the type result of the final value of an instruction, because every position in a struct

can have different type. Type checking a getelementptr relies on executing part of the se-
mantics of the getelementptr arguments. That is why some index values of getelementptr
that are associated to struct type positions are required to be input-time calculable. This
means that such positions can contain neither local nor global/static variables, even if a
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constant expression (no variables inside) is allowed. For other non-struct index positions,
variables are allowed, such as the x getelementptr in Figure 5.3.

syntax Type ::= undef( Type ) syntax Type ::= poisonValue( Type )
%struct.RT = type {i8, [10 x [20 x i32]], i8}
getelementptr inbounds %struct.RT , %struct.RT * %u , i64 0,i32 add (i32 1, i32 0), i32 %x

Figure 5.3: Type Definitions and Examples

LLVM IR takes the view that values stored in the memory have no types, and that memory
instructions will always produce values of the prescribed types. In fact, LLVM IR does not
have a clear idea of main memory. It does not even have a built-in memory allocation
instruction, instead, it relies on Standard-C library to provide such instructions. It basically
assumes that the memory machine as a black box, and every memory request is valid as
long as the size of the requested data matches the size of its type, the memory pointer is not
out-of-range, and there is no race. In addition, one can have a correctly typed program where
the result value produced by the program does not make sense. For example, loading items
from the main memory can result in poison values or undefined values (undef in LLVM IR)
in some cases. In such cases, the LLVM IR type system is of limited values. To support the
type system, we need to create two extra constructs inK-LLVM (in Fig. 5.3), one for poison
values and the other for undefined values, with each carrying additional type information.
As a result, poison values and undefined values are group of values with one for each type
in K-LLVM. Combining all these features of LLVM IR type system, we have shown the
following type preservation theorem:

Theorem 5.1. Assuming every load returning a value in a type prescribed in the load
instruction, the program is well-typed by the K-LLVM type system, and the program
executes, then every register and every return value of the program will be of the type
assigned during the type checking.

We first discuss some terms that will be used in the proof. We assume there is a partial
function ϕ representing the process of the K-LLVM static semantics, such that for every
LLVM IR program (as term t) in the FAST format, ϕ either produces ⊥, meaning that t
is not a valid type checked or validity checked program, or term t′, a transformation of t
in the BAST format. A transition system κ exists to implement the K-LLVM abstract
machine under the byte-wise sequential consistency assumption. It takes a pair (t,∆) as
input, where t is a valid LLVM IR program in the BAST format, and ∆ is the program
environment. Through κ, a state (t,∆) can transition to another state (t′,∆′) via the formula
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(t,∆) →κ (t′,∆′). We assume that the component name continuation of the K-LLVM
abstract machine is overloaded as a function for achieving the history of all instructions
produced for a thread. For example, continuation(tid, κ, t,∆) produces a record of all
executed instructions from the initial state to the current state defined as (t,∆) for the
thread tid. The history only records instructions happening in the function that is on top
of the call stack in ∆. Those instructions happening in another function that was executed
before the state (t,∆) are treated as no-op. The component name registers of the K-
LLVM abstract machine is overloaded as a function for achieving the current status of
registers for a state. We first prove a lemma to relate registers to input arguments of a
function call. The component name stack of the K-LLVM abstract machine is overloaded
as a function for achieving the current status of the call stack of a state. The construct
|stack| provides the maximum size of a stack in the K-LLVM abstract machine.

Lemma 5.1. Assuming that t is an LLVM IR program for a thread tid, and ϕ(t) = t′, so
that program t is checked by function ϕ, and the BAST term t′ is produced, and ∆ is the
initial environment for t′; Then, σ = registers(t,∆) are the initial registers in ∆. If a valid
state (t′′,∆′′) exists, such that (t′,∆) →+

κ (t′′,∆′′), and s = continuation(tid, κ, t′′,∆′′) is
the history of all instructions occurring before the state (t′′,∆′′), and |stack| = n, then (1)
for any use of variable x in an instruction of s that is from the input argument of t′, the
type of σ(x) is equal to the type of the use of variable x, and is also equal to the input
argument type of x in t′; (2) for any variable x in an instruction of s that is not from the
input argument of t′, its value does not come from the initial registers σ.

Proof. The proof consists of two parts.
Part 1: we assume that there is no function call in an instruction of s =

continuation(tid, κ, t′′,∆′′), and then we prove by induction the length of s, and do a
case analysis of all possible instructions for s. Since, in K-LLVM, ϕ checks the type of any
use for any input argument matching the type of the argument defined in a function header,
(1) is valid. (2) is valid because LLVM IR programs are required to be SSA format and every
use of a variable in every instruction is dominated by its definition; thus, one cannot find
any register value used for any local variable x in an instruction if it has not been defined
before the instruction in s.
Part 2: The proof of this part is done by induction on the maximum stack size |stack|

(n).

Base case: when the stack size for a state (t′′,∆′′) in the transition system κ is
zero, the result from Part 1 validates the proof.
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Inductive hypothesis: assume that the proof is valid when a state (t′′,∆′′)

never needs a stack size less than or equal to k.

The rest of the inductive step: let the maximum stack size be k + 1.
We have three cases. First, if in a state (t′′,∆′′) with instruction history
s = continuation(tid, κ, t′′,∆′′) and the current stack size is k + 1, then the
rest of the instruction cannot be a function call before a return instruction; oth-
erwise, the stack overflows. If the current stack size is k, and the next instruction
is a function call, by the same argument in Part 1 (after the function call is ap-
plied), statements (1) and (2) are valid. If the current stack size is less than k,
and the next instruction to execute is a function call, by the inductive hypothesis,
statements (1) and (2) are valid. In sum, we have validated the proof of Part 2.

By the Parts 1 and 2, we have shown that the Lemma 5.1 is valid.
QED.

Based on the information above, we first prove the single thread case. That is, in the
execution of a program t, a thread creation instruction is never triggered.

Proof. The theorem is proved by case analyzing the result of ϕ(t) for any term t in the FAST
format.
Case 1: ϕ(t) = ⊥. In this case, the proof is done since the condition that "the program

executes" is not fulfilled.
Case 2: ϕ(t) = t′ and t′ 6= ⊥. Let ∆ be any initial state for a transition system

κ, and t′ be the initial BAST program. If κ(t′,∆) cannot transition to any other state,
then the proof is done since the condition that "the program executes" is not fulfilled.
Otherwise, let (t′,∆) →+

κ (t′′,∆′′) for any (t′′,∆′′) through some transition steps. Let s =

continuation(κ, t′′,∆′′). The proof is done by induction on the length of the steps of the
transitions (t′,∆)→+

κ (t′′,∆′′) starting from length equal to one.

Base case: we do a case analysis of all possible instructions in the start position
of s, with the initial registers registers(t′,∆). If the instruction is a function
call, Lemma 5.1 shows that we can guarantee the correctly type checked property
in all instructions of the new function. If the instruction is not a function call,
according to Lemma 5.1, the fact that this is the first transition state, and the
system only executes one instruction, its uses of variables must come from the
input arguments of the current function, and the type checked property is also
guaranteed by Lemma 5.1.
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Inductive hypothesis: we assume that when the length of the transitions in
(t′,∆)→+

κ (t′′,∆′′) is k, the proof is correct.

The rest of the inductive step: when the length is k + 1, it means that
we have (t′′,∆′′) →κ (t′′′,∆′′′), and s′ = continuation(tid, κ, t′′′,∆′′′). In this
case, there is a BAST instruction i such that s@[i] = s′. We do a case analysis
of all possible instructions that i can be. If the instruction is a function call,
Lemma 5.1 guarantees the correctly type checked property in all instructions
of the new function. The rest of the case analyzes the situations when the
instruction is not a function call. Now, since the term t′ is type checked through
the function ϕ, t′ is also in the SSA format, and every use of variable x in t′ is
dominated by a definition of the variable x sequenced-before the line of its use.
We notice that all instructions in s′ are valid executions of instructions in t′. So
for every use of variable x in i, there is an instruction j in s, and the index of j is
less than the index of i, such that xj is the definition of xi and xj dominates xi.
For every use of a variable in i, i.e. xi, we can find a definition of the variable xj
to form a pair as (xj, xi). In any case, the types of the two variables in the pair
must be equal; otherwise, the function ϕ caught the error before it generated the
BAST term t′.

Hence, we have shown that the single thread case of Theorem 5.1 is valid.
QED.

After we have the single thread proof for Theorem 5.1, we can prove the multi-threaded
cases. We define the depth of the thread chain as the longest thread creation sequence in
the execution of a program. For example, if thread x1 has a thread creation instruction,
it creates thread x2; x2 creates another thread x3, and so on. Finally, the last thread xn

created in this chain is the one that does not create another thread. The number n is the
depth of the thread chain.

Proof. We prove the multi-threaded version of Theorem 5.1 via induction on the depth n of
the longest thread chain in an execution of a BAST term t′ with the initial state ∆, where
ϕ(t) = t′ is based on an input LLVM IR program t.

Base case: when n is equal to one, the thread does not contain any thread
creation instruction. Proof 5.2 is exactly the theorem we need to prove in this
case.
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Inductive hypothesis: when n = 1, ..., k, there are w threads (named tidw) in
the system, and the threads execute t1...tw different BAST terms. ti is the one
with the longest thread chain, whose depth is k. In this setting, we assume that
t1...tw never produces errors due to type mismatches.

The rest of the inductive step: when n is equal to k + 1, it means that
the longest thread chain is k + 1. We assume that there are v threads (named
tidv) in the system, which execute t1...tv different BAST terms. For any one
thread tidh, if h is less than or equal to k, based on the inductive hypothesis, the
statement is valid. If h = k + 1, let tidx be the thread that creates the thread
tidv. The thread chain number of tidx is k, so tx is type checked due to the
inductive hypothesis. Without losing generality, we assume at point s′ that tidx
creates the thread tidh, s′ = s@[is], and s = continuation(tidx, κ, t

′,∆′). By the
argument from Proof 5.2, s contains all valid executed instructions. Thus, before
the state (t′,∆′), the system does not have a type mismatch. In the transition
(t′,∆′) →κ (t′,∆′), the system creates thread tidh with some input arguments
from registers(t′,∆′), which are type correct, as are the input perimeters of the
code in th. After the thread tidh dies, the return value does not type-mismatch
with the subsequent use of the value, according to Proof 5.2. Hence, the thread
tidx creating th does not have a type mismatch problem.

In thread tidh, since its thread chain depth is k+1, its program th cannot contain
any more thread creations. In this case, following the proof of Proof 5.2 exactly
validates the proof.

Hence, we have shown that the multi-threaded version of Theorem 5.1 is valid.
QED.

Constant Expression Rewriting. This step rewrites constant expressions in an LLVM
IR program with values or variables. Constant expressions are terms in LLVM IR that
can be used to express a complicated term in a constant position. For example, in the
getelementptr operators below, the term i32 inttoptr (i32* @a to i32) is a constant
expression. Constant expression rewriting is a compilation time process in LLVM IR. It is
not hard, but can be very confusing in some cases. Two other requirements are needed for
rewriting a constant expression besides the compilation time requirement. First, they cannot
contain local variables as arguments. Second, some constant positions of some instructions
might have additional requirements, such as requiring all values in a constant expression
to be ready in parsing time. For example, two getelementptr instructions use constant
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expressions (inttoptr (i32*@a to i32) and add (i32 1, i32 0)) in index constant positions
as follows:

(1) getelementptr { i32, i32 }, { i32, i32 }* %x , i64 0, i32 inttoptr (i32* @a to i32)
(2) getelementptr { i32, i32 }, { i32, i32 }* %x , i64 0, i32 add (i32 1, i32 0)

In the two instructions, the local variable %x is a pointer for a struct and the global/static
variable @a is a pointer for a 32-bit integer. The constant expression inttoptr in the first
instruction converts the pointer @a into a 32-bit integer value, while the constant expression
add in the second instruction adds two integers together. In LLVM IR, the second instruction
is valid, while the first one is not. In getelementptr instructions, if an index position is for
indexing on a struct, the value is based on information discerned in the early compilation
time when static field addresses are not known, but the pointer address for @a is known
in the late compilation time. This is why the first getelementptr instruction is not valid.
When we define a function for rewriting constant expressions, we need not only to input
the constant expressions and a map containing information about global/static variables
and their compilation time generated addresses, but also to include a flag indicating if the
positions holding the values of the constant expressions are required to be a constant or not.
The output of the function is the values rewritten from the constant expressions.
Transformation. The K-LLVM transformation phase regularizes function bodies in

FAST and rewrites them in BAST. In LLVM IR, a function body contains several basic
blocks. Each has a list of instructions and might or might not have a label name. We
transform each basic block into a construct with two arguments. The first one is the label
name for the block. If a basic block does not have a label name, we generate one for it
as LLVM IR does. The second argument is a map from instruction position numbers to
instructions. Each instruction is associated with a unique position number in a basic block.
There are two kinds of instructions in LLVM IR. The first computes values and assigns them
to local variables in registers, and the second does not return values. Each instruction in this
phase is transformed from the position number into a construct named instNumInfo. The
construct has three arguments: the position number, the compiled instruction in BAST, and
the type of the instruction. We type LLVM IR instructions based on their functionality. For
example, branching, function call, and return instructions are classified as different types,
and they contain different arithmetic, comparison, and array instructions. The different
types of instructions are useful in doing analysis of LLVM IR programs such as the use of
the Morpheus tool in K (in Section 5.4).
Validity Checks. Other than the type checking and some checks introduced above, there

are a lot of validity checks (well-formedness checks) that K-LLVM needs to perform before
a program can be sent to execution. In previous work, Zhao et al. [62] defined the procedure
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to ensure Static Single Assignment (SSA) form in an LLVM IR program by using Kildall’s
method [144]. A little procedural modification in K-LLVM is that the local variables used
in a phi are set apart. They only require variables being defined through all paths backwards
from the end of the block indicated by their label name to the entry block. On the other
hand, if a non-phi instruction uses a local variable, it must either be an input argument or
be defined in all paths from the current block back to the entry block.
There are also other small well-formedness checks that LLVM IR needs to perform. They

are simple but we need to conquer all of them. Here we list all of the checks we have
to perform in K-LLVM. First, for every label name mentioned in a phi instruction, we
need to make sure that it is a real label name mentioned as a block label, because LLVM
IR actually allows users to register a new local variable by select-ing from two different
block label names; and the new local variable should not be valid as a label name in a phi

instruction. Second, we also need to check that the block mentioned in a phi instruction
indeed has an edge pointing to the block where the phi instruction resides. Third, all
phi instructions must appear before other instructions in a block. Fourth, if there is a
blockaddress value in a function, the block label names mentioned in the blockaddress

are indeed block names in the function; and the blockaddress should not be the entry block
name. Fifth, if a block has a landingpad instruction, it must be the first non-phi instruction;
and the block can only have one landingpad instruction. Sixth, all edges pointing to a block
containing a landingpad instruction must come from the unwind destination block of an
invoke function call. Seventh, each resume instruction must be dominated by an earlier
landingpad instruction. Eighth, the instructions catchswitch, catchret, cleanupret,
catchpad and cleanuppad also have checks similar to those of landingpad, invoke and
resume.
After a program has been checked and transformed through the K-LLVM static se-

mantics, the transformed BAST program is ready for execution by the K-LLVM dynamic
semantics.

5.3 THE K-LLVM DYNAMIC SEMANTICS

The dynamic semantics of K-LLVM executed BAST programs in an abstract machine
style. We first discuss the pointer provenance model and the abstract machine model of the
K-LLVM dynamic semantics.
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5.3.1 The K-LLVM Pointer Provenance Model

In a language, a pointer provenance model defines the behaviors concerning how pointers
are generated, how memory locations are calculated, how pointer address offsets are com-
puted and validated, and how memory data are stored. The combined effects of these items
seriously influence the language’s consistency and the compilation correctness proofs from a
high-level language to machine-level code. The pointer provenance model in K-LLVM was
developed based on the de facto Standards by Memarian et al. [119, 145] and consideration
of other current projects on developing pointer provenance models for the "fat pointer" ap-
proach [117, 118]. The de facto provenance model is not based on the C standards printed
in the book. Instead, it is based on an understanding of the needs of programmers for some
useful but unconventional usage of pointer arithmetic. They did a survey [146] querying
many programmers and came up with the de facto Standards.
The de facto provenance model developed by Memarian et al. has two branches. The

PVI branch is a semantics that tracks provenance via integer computation, associating a
provenance with all integer values (not just pointer values), preserving provenance through
integer/pointer casts, and making some particular choices for the provenance results of in-
teger and pointer + / - integer operations. The PNVI branch is a semantics that does not
track provenance via integers; instead, at integer-to-pointer cast points, it checks whether
the given address points are within a live object and, if so, recreates the corresponding
provenance.
There are three major problems in the de facto model. First, there is actually no way

to unify the PVI and PNVI models in a framework. The latter model is based on the
assumption that there is a set S of abstract memory addresses. Any actual memory address
has the form (s, i) where s ∈ S and i is an offset integer. However, in the current PNVI
settings, there is no way to instantiate an arbitrary address pair (s, i) to an integer memory
address, like the integer addresses in the PVI model, which is the reason why we cannot unify
the two models. A side-effect is that the PNVI model might not be practical in real-world
implementations. Most real-world implementations are based on pointers being integers, no
matter whether they are 32-bits, 64-bits, or 256-bits. The best effort to make a real-world
implementation of the PNVI model is to split an n-bit integer pointer address to a model as
a + b address, such that a + b = n; using the first a bits to represent the abstract address
s, and the last b bits to represent the offset i. However, an assumption in the PNVI model
is that no two pairs (s1, i1) and (s2, i2) can be identical if s1 and s2 are different. This is
impossible to achieve if s1 and s2 are both integers. In K-LLVM, we develop an abstract
pointer provenance model based on the PNVI model, and it can be instantiated to support
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a pointer model whose memory addresses are represented by integers.
The second problem with the de facto model is that although it does a fantastic job

dealing with heap pointers, there are other kinds of pointers in an imperative language like
LLVM, such as stack pointers, static pointers, and function pointers, which the model does
not propose clear solutions to. These pointers are stored in different places in the memory,
and they have different restrictions and properties. To model all of them, we need to have
a model that distinguishes these different pointers. In the K-LLVM provenance model, we
develop the concept of different memory domains, each of them having a set of abstract
addresses. We assume that there are no overlap of these abstract addresses in these different
domains. This concept models the fact that these different pointers are stored in different
parts of the memory. In addition, we have defined different properties for these pointers.
Third, the de factor model assumes that the memory has infinite space. In reality, the

assumption causes some problems. One of the problems proposed by LEE et al. [118] is that
some malloc calls happen when the memory space is nearly full causes the security problem
of exposing memory addresses. They proposed an algorithmic solution to the security prob-
lem. The solution is based on allocating two chunks of memory addresses when a malloc call
happens: one for actual usage, the other for a reservation. In the end, there are large chunks
of memory addresses being reserved, so that users cannot guess which memory addresses are
left for allocations. In K-LLVM, we generalize the solution as a set of unknown abstract
addresses for reservations during the memory allocation transition process, and achieve the
same guarantees as LEE et al. without using a specific algorithm. Then, in the instantiation
of the K-LLVM abstract provenance model, which is the integer pointer model used in the
K-LLVM abstract machine, we can utilize the solution proposed by LEE et al. by showing
that it satisfies the guarantees we made in the abstract provenance model.
In the formalization of the theK-LLVM abstract pointer provenance model, we have four

abstract memory address domains. Their record structures are shown in Fig. 5.4.

MType , fun_ptr | static_ptr | stack_ptr | heap_ptr
Rec , {mtype = MType; addrs = Addr Set ; max = Nat ; used = Addr Set ; res = Addr Set ; range = (Addr → Nat)}

Figure 5.4: The Record Structures of K-LLVM Pointer Provenance Model

A pointer domain record contains five fields: a type for the domain, a set of abstract
addresses, a natural number representing the maximum number of pointers the domain can
generate, the set of addresses that have been used, a set of reserved addresses for protecting
the field being exposed, and a map from the used addresses to the maximum number of values
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(bytes) in the region that they represent. Each domain is either a function pointer, a static
pointer, a stack pointer, or a heap pointer domain. A transition state in our provenance
model is Tr , (Rec × Rec × Rec × Rec × Prog × H × Reg × ’a), where the first Rec type is a
record for function pointers, the second one is a record for static pointers, the third one is
a record for stack pointers, the fourth Rec is a record for heap pointers, Prog is a program,
H is a partial map from the memory address (type: Addr × N) to values that are typically
bytes, Reg is the registers in the transition system mapping from variables to values including
pointer values, and the polymorphic variable ’a represents the additional transition entities
in other usage, which will be explained in Sec. 5.3.2. A transition system is Tr −→ Tr . For
simplicity, we assume the programs are LLVM IR programs. We also assume that we have
a list of functions: fst, ..., seven, eight to get the specific numbered field in a transition
state. We can see clearly that we have the predicates for any transition state in Fig. 5.5.

∀T. mtype(fst(T )) = fun_ptr ∀T. mtype(snd(T )) = static_ptr

∀T. mtype(trd(T )) = stack_ptr ∀T. mtype(four(T )) = heap_ptr

(a) ∀f T. (f = fst ∨ f = snd ∨ f = trd ∨ f = four)⇒ used((f(T ))) ⊆ addrs((f(T ))) ∧ res((f(T ))) ⊆ addrs((f(T )))

(b) ∀T T ′ f.(f = fst ∨ f = snd ∨ f = trd ∨ f = four) ∧ (T −→ T ′)⇒ |used((f(T ′)))| ≤ max((f(T ′)))

(c) ∀T T ′ f.(f = fst ∨ f = snd ∨ f = trd ∨ f = four) ∧ (T −→ T ′)⇒ |res((f(T ′)))|+ (max− |used((f(T ′)))|) ≥ N

Figure 5.5: Selected Predicates for Transition States

Statement (b) in Fig. 5.5 restricts the memory address allocation number to be less than a
threshold. In order not to expose pointer address in the final domain of pointers, we assume
that any transition step requires there to be a number N of memory locations in the system
at anytime, which is enough so that the pointer address is not exposed due to a lack of
unallocated memory locations as described by predicate (c).
As we mentioned above, any address used in the memory has the type: Addr ×N. It is an

abstract address plus a natural number offset. These are the addresses in the memory, but
they are not the pointers created by the system. Any pointer created by an malloc function
or a stack allocation call is a polymorphic type object (’point) in the abstract provenance
system. We provide two getter functions to access a pointer’s abstract address field and the
offset field as: base and offset, while the function maxoff accesses a pointer’s maximum
offset. For any pointer v, the range [base(v), base(v) + maxoff(v)] contains all of the valid
memory addresses for a given pointer. In addition, we provide a getter function (mtype) to
access a pointer’s mtype and a function (type) to access its type, such as integer or array
type. For all of these pointers, there is a partial order v. We have the assumptions for the
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partial order in different memory domains in Fig. 5.6.

∀a n m. n < m⇒ a+ n v a+m
∀T a b. base(a) ∈ addrs(fst(T )) ∧ base(b) ∈ addrs(snd(T ))⇒ a v b
∀T a b. base(a) ∈ addrs(snd(T )) ∧ base(b) ∈ addrs(trd(T ))⇒ a v b
∀T a b. base(a) ∈ addrs(trd(T )) ∧ base(b) ∈ addrs(four(T ))⇒ a v b

Figure 5.6: Selected Predicates for Memory Domains

The first statement in Fig. 5.6 says that v must follow the natural number order if the
bases are the same. The addition operation (+) is an overloaded notation. a+ n means an
arbitrary pointer whose abstract address is a and offset value is n. The other predicates
in the figure provide some ways that programmers compare pointers in different domains.
A common example is to compare the address of a stack pointer and a heap pointer to
determine which one is created by a malloc function and which one is the stack pointer.
With the transition system described above, we have the properties defined for pointers in
Fig. 5.7.

(1)
∀T T ′ H f.(T −→ T ′)⇒ fst(T ′) ∩ snd(T ′) = ∅ ∧ fst(T ′) ∩ trd(T ′) = ∅ ∧ fst(T ′) ∩ four(T ′) = ∅
∧fst(T ′) ∩ four(T ′) = ∅ ∧ snd(T ′) ∩ four(T ′) = ∅ ∧ trd(T ′) ∩ four(T ′) = ∅

(2)
∀T T ′ H f.(T −→ T ′) ∧ dom(six(T )) 6= dom(six(T ′)) ∧H = new(six(T ′), six(T ))
∧(f = fst ∨ f = snd ∨ f = trd ∨ f = four)⇒ (∀(a, n) ∈ dom(H). a 6∈ used(f(T )))

(3)
∀T T ′.(T −→ T ′) ∧ dom(six(T )) 6= dom(six(T ′)) ∧H = new(six(T ′), six(T ))
⇒ (∀(a, n) ∈ dom(H). (∃f. (f = fst ∨ f = snd ∨ f = trd ∨ f = four) ∧ a ∈ used(f(T ′))))

Figure 5.7: Selected Predicates for Pointers

The group of predicates in Fig. 5.7 define the relations among different types of memory
addresses. The dom function is to get the domain of a map. The new function compares two
memory pieces, and computes the difference between the first and second map as T ′−T . The
map difference (−) is based on elements having the same memory locations. This function
returns a new map containing all the map entries that are newly generated in T ′. Predicate
(1) states that no any two types of memory addresses overlap each other. Predicates (2)
and (3) say that any newly generated pointers have new abstract memory addresses. We
give another group of predicates in Fig. 5.8 defining what happens when specific operations
are executed.
The inst function gets the specific instruction that is executed during a transition (T −→

T ′). The is_def function checks if a instruction is a dereference instruction. The ptr
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(4)

∀T T ′ H.(T −→ T ′) ∧ is_def(inst(five(T ′)))
⇒ addr(ptr(inst(five(T ′)))) v addr(ptr(inst(five(T ′)))) + offset(ptr(inst(five(T ′))))
v addr(ptr(inst(five(T ′))))

+offset(ptr(inst(five(T ′)))) + sizeof(type(ptr(inst(five(T ′)))))
v addr(ptr(inst(five(T ′)))) + maxoff(ptr(inst(five(T ′))))

(5)
∀T T ′ H.(T −→ T ′) ∧ is_def(inst(five(T ′))) ∧ mtype(ptr(inst(five(T ′)))) = fun_ptr
⇒ addr(ptr(inst(five(T ′)))) ∈ used(fst(T ′)) ∧ offset(ptr(inst(five(T ′)))) = 0

(6)
∀T T ′ H.(T −→ T ′) ∧ is_def(inst(five(T ′))) ∧ mtype(ptr(inst(five(T ′)))) = static_ptr
⇒ addr(ptr(inst(five(T ′)))) ∈ used(snd(T ′))

(7)
∀T T ′ H.(T −→ T ′) ∧ is_def(inst(five(T ′))) ∧ mtype(ptr(inst(five(T ′)))) = stack_ptr
⇒ addr(ptr(inst(five(T ′)))) ∈ used(trd(T ′))

(8)
∀T T ′ H.(T −→ T ′) ∧ is_def(inst(five(T ′))) ∧ mtype(ptr(inst(five(T ′)))) = heap_ptr
⇒ addr(ptr(inst(five(T ′)))) ∈ used(four(T ′))

Figure 5.8: Selected Predicates for Operation Executions

function accesses the pointer of the dereference instruction. Function sizeof gets a natural
number representing the number of bytes for a type. Statement (4) says that at the time
of dereferencing a pointer, the actual location pointed to by the pointer must be within
the address range that the pointer allows reference to. Statements (5) to (8) say that
if we dereference a pointer, then the pointer’s mtype must match with the mtype domain,
specifically the address region of the domain, the pointer is supposed to be in. For example,
users are free to cast a function pointer to a heap pointer. However, the users are not allowed
to dereference the pointer, because its base address is in the function pointer domain. For
function pointers, the restrictions are stronger. We additionally require the function pointer’s
offset value to be zero. This means that we don’t allow users to use a function pointer to
get to the middle of a program text. For a specific malloc function, we have the predicates
in Fig. 5.9.

(9)
∀T T ′ H.(T −→ T ′) ∧ is_malloc(inst(five(T ′)))⇒ offset(ptr(inst(five(T ′)))) = 0
∧(∀(a, n) ∈ dom(six(T ′)).a 6= addr(ptr(inst(five(T ′))))⇒
¬overlap((a, (range(four(T ′)))), (addr(ptr(inst(five(T ′)))), maxoff(ptr(inst(five(T ′)))))))

Figure 5.9: Selected Predicates for Malloc

The is_malloc function checks if an instruction is a malloc instruction. The overlap

function checks if two ranges of addresses overlap. (a, n) and (b,m) overlapping refers to
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a v b v a + n v b + m or b v a v b + m v a + n. The predicate in Fig. 5.9 states what
happens when a malloc function is executed. It creates a new memory chunk in the memory
and a pointer whose offset value is 0. The newly generated memory chunk does not overlap
with any of the existing memory chunks whose abstract addresses are in the used set in the
heap domain. Stack pointer allocations are done in the same manner as malloc allocations
except that all the stack pointers are generated when a function call happens. When that
happens, the transition system grabs all of the stack variable allocations in the function
body and generates all the stack pointer allocations at once.
Finally, there are also optional properties defined for some usage of theK-LLVM abstract

pointer provenance model in some sub-domains. For example, we define a line number
function to access the line numbers of a program text. For any two instructions (in1 and
in2) in a function body, if they both contain stack pointers, we then say that line(in1) ≤
line(in2) ⇒ ptr(in1) v ptr(in2). In addition, if two functions f1 and f2 are in line order,
such that line(f1) ≤ line(f2), then we say that the function pointers of these two functions
have the following relation: fun_ptr(f1) v fun_ptr(f2).
In this section, we have briefly introduced the K-LLVM abstract pointer provenance

model. The actual pointer provenance model K-LLVM used for executing programs is
based on integer pointers and is proved to be an instance of the K-LLVM abstract pointer
provenance model. More details are in Sec. 5.3.3.

5.3.2 An Example Sequential Consistency K-LLVM Abstract Machine

As we mentioned in the beginning of the chapter, the semantics of the execution of the
LLVM IR programs in K-LLVM described is via an abstract machine. There are three
reasons for this. First, it is a concise way to define all features and aspects of the LLVM IR
semantics. LLVM IR is a programming language that connects different computer resources
through many different instructions. The best way to model these different features is to
design a computer-like mathematical entity which simulates them. Second, the abstract ma-
chine is designed to emulate real world computer components. Often, mathematical abstract
machines are complicated and confusing. The K-LLVM abstract machine execution is easy
for users to follow since they can relate it to real world computer components. Third, our
abstract machine is modular; as a consequence, it is also extendable. In previous language
semantics, designers either only define straight-line single-threaded instruction behaviors or
only define a subset of all instructions with complete concurrent behaviors. Once concurrent
behaviors are introduced, a single instruction’s semantics can affect the whole semantic uni-
verse forcing designers to update all existing instruction semantics to handle any side-effects.
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The design of the K-LLVM abstract machine allows us to focus on designing one feature at
a time in isolation. Additionally, because of the modular design, the abstract machine can
be easily updated to support progressive concurrent features. For example, we update the
byte-wise sequential consistency model in this chapter to a model containing the full LLVM
IR concurrency features in Chapter 7, without modifying a single instruction semantic rule,
and only changing transition rules for describing how to maintain the execution order in the
continuation and toCommit component of each thread.

Figure 5.10: Component Relations in the K-LLVM Memory Layout Structure

Figure 5.10 describes the overall structure of the K-LLVM abstract machine and the
interactions of different components. The arrows show the direction of messages passing
between the main components. A rounded dashed component means a program state entity
that might contain other component structures, while a square component means a program
state entity whose content is an integer, list, set, map, etc. The K-LLVM abstract machine
is independent of the platform in which we implements the machine. At the top level, the
abstract machine can be thought of as a set of threads communicating with a set of memory
caches, and a global control unit provides global information for threads. As a simplifying
assumption to achieve byte-wise sequential consistency, we assume the memory cache set is
a singleton set, so we will refer to this cache as the memory cache in the rest of the chapter.
The globalControl component represents the global control unit containing several sub-
components storing information about threads, such as thread identifier calculation, thread
final states and mutex lock information. We will see an example of using this information
in Section 5.4. There are several components in each thread as shown in the left side of
Figure 5.10. In Section 5.2, we said that a LLVM IR program is compiled to a list of
BAST control flow graphs (CFGs) for execution. The continuation component represents
a dynamically executing CFG; it contains a sequence of dynamic basic blocks of instructions
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to be executed. A thread executes one instruction at a time, i.e., the first instruction in the
first block. Thread execution is modeled by consuming instructions as they are executed
and possibly inserting a new basic block after the current block during loop execution.
For each thread, the control component includes registers, a stack, flags, and

currInst components. The registers component is a map from local variables to val-
ues. We introduce how we represent values in the next section. The stack component
records function call stack frames for context switching in LLVM IR based on call and
return instructions. Each stack also contains fields for local memory allocations in a func-
tion directed by the alloca instruction. In K-LLVM, each function stack has a maximum
allowed allocation space, and stack overflow leads to an error state. LLVM IR allows users to
declare a set flags for a function, which suggests to the LLVM compiler that more aggressive
compilation optimizations are possible. The flags component contains the set of function
header flags describing the function that is currently executing. For example, the readonly
flag tells the LLVM compiler that the function will never produce memory write operations,
and this need to be reflected in the execution semantics; see Section 5.3.4 for a complete
semantics. The currInst component contains a dynamic block number and instruction
number pair representing the unique identifier for the currently executing instruction. Dy-
namic block numbers are basically timestamps and uniquely identify each execution of a
basic block; when a new basic block of instructions is put into the continuation compo-
nent, a new such number is associated with the block. Instruction numbers can be assigned
statically, e.g., using textual order in the LLVM IR file. For example, the numbers on the
left side of Program-A (Fig. 5.1) are a possible instruction numbering.
The currInst pair allows us to modularly add new concurrent behaviors to theK-LLVM

abstract machine. Even though our model assumes byte-wise sequential consistency in this
chapter, the machine has potential for additional concurrent behaviors. When dispatching
a memory instruction, a thread need not wait for the instruction commit before proceeding.
For example, a thread will not wait for a load instruction to write values to registers.
Instead, it moves on and marks the specific register as unavailable. If the next instruction
needs the register value, the thread component blocks. Otherwise, the thread continues to
execute instructions. The currInst pair identifies a specific instruction and correspond-
ing register during write back. The example Program-D (Fig. 5.1) shows how this feature
can affect program execution in practice. Without this mechanism, the load instruction
in Thread-1 always happens before the store in Thread-2. With this mechanism, an ob-
server can observe the value 1 or even a race on @x . This example is the motivation of
having the abstract machine in K-LLVM even though its memory model assumes byte-wise
sequential consistency in this chapter. K-LLVM is mainly used to verify LLVM compiler
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steps, and verifying programs containing library functions is a key verification component.
The pthread_create function in Program-D is a library function and its functionality should
contain fences to prevent the behavior of executing Program-D described above. The ab-
stract machine mechanism in K-LLVM allows to prove that a particular implementation of
pthread_create does not have harmful behaviors like the one above; whereas otherwise we
do not have a mechanism to verify such library function usage in a program.
The toCommit and readBack components in a thread are to deal with memory instruc-

tions, and they also act as interface communicating with the memory cache. From the
memory point of view, all it knows about memory requests from each thread are from the
two components. In this sense, they belong to the memory model of the K-LLVM abstract
machine, even though they are located in each thread. The toCommit component is im-
plemented as a queue that receives memory operations from continuation and then sends
them to the memory cache in order. The readback component is implemented as a map
and represents the intermediate step of getting back a value from a memory-read from the
memory cache and assigning the value to registers. These components are needed to dis-
tinguish between memory instructions and their corresponding execution. Another reason
is the need to simulate the difference between the non-atomic and atomic memory opera-
tions in LLVM IR. LLVM IR assumes that each non-atomic memory write or read operation
accesses a single byte of data in the memory cache at a time, while an atomic operation
accesses several bytes at once. By breaking down the execution of non-atomic store and
load instructions into possibly several memory operations, we are able to capture potential
races in a multi-threaded program.
The memory cache has a fixed structure in K-LLVM, which is listed on the right side of

Figure 5.10. The memOpList component stores the memory operations from different threads,
in order to allow the interleaving of memory operations from different threads. The byteMap
component is a function that maps a memory location to a byte of data. A memory write
operation in K-LLVM stores an array of bytes in the byteMap component. While byteMap
represents the entire memory cache, a memory chunk refers to a continuous memory region
in byteMap and is allocated by a global memory initialization or local memory allocation.
An object component stores metadata for a specific memory chunk. Each object contains
a range component indicating the range of the chunk in the whole memory domain (as
keys of byteMap), an alignment component with alignment information, a size component
with the size of the chunk in bytes, and an objType component indicating if the memory
chunk is static or not. The complete and race components are used to record the status
of the operations accessing the memory chunk. According to the LLVM IR documentation,
non-atomic memory operations should access a memory range one byte at a time. When
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a non-atomic memory operation is accessing a memory chunk at the same time as another
memory write operation, a race occurs, and the result is undef. The complete and race

components are used to record this status and give the result. The implementations of
the byteMap and object components are used to represent the low-level memory layout
structures in LLVM IR. We believe that storing metadata on a per-chunk basis is the best
way to implement the LLVM IR memory layout model to maximize the concurrent memory
access behaviors allowed by LLVM IR.
We have briefly described the different components of the K-LLVM abstract machine

above. The details of the implementations of each component can be found in the link:
https://github.com/liyili2/llvm-semantics-1. In the following sections, we will in-
troduce some detailed implementation aspects related to memory accesses. The full LLVM
IR concurrency model can also be found in the link : https://github.com/liyili2/

llvm-semantics-1.

5.3.3 K-LLVM Data Layout

In this and the next sections, we introduce a portion of the K-LLVM abstract machine
in depth, especially, the components and rules related to executing memory related instruc-
tions. The manner in which data layout and memory layout are implemented in K-LLVM
facilitates the precise semantics of many language features of LLVM IR while maintaining a
concise abstract machine for the execution semantics. In this section, we introduce the im-
plementation of register and memory location values in K-LLVM and example rules using
these values. The structure of the memory location values is a part of the pointer prove-
nance model that is instantiated from the K-LLVM abstract pointer provenance model in
Sec. 5.3.1. The need for two different kinds of values arises as from the fact that memory
only sees values as a sequence of bytes, while instructions see registers as holding compound
data. We describe these two kinds in Figure 5.11, and we also show some example rules
using these data. In Figure 5.11, rules connected by a ⇒ operator mean that the transition
from the left hand side to the right hand side happens in the beginning of a continuation

component. There is an implicit rule saying that every transition happening in the beginning
of a continuation also happens globally. More complex transition rules are introduced in
Fig. 5.13. The add and icmp eq are instructions in LLVM IR appearing here in the concrete
syntax.
The undef value for a Bit datum exists due to undefinedness of LLVM IR. In LLVM IR,

if an integer that is not a multiple of the length of a byte (like a 23-bit integer), and is
stored to the memory, then the values for the extra bits generated during the process are
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undefined (undef). A memory location value is implemented by the Byte type. In addition
to having eight Bit data, each Byte datum contains a range attribute (Range Option) and
a flag attribute (Range State). If a Byte datum represents a part of a pointer, the range
attribute is the left and right edges of the memory range to which the pointer points, and
if not then none. If a Byte datum represents a part of a pointer, and the pointer is the
result from a getelementptr instruction with a inrange flag, the flag attribute is the left
and right edges of the memory range that the inrange flag defines. If the pointer does not
come from a getelementptr instruction, the flag attribute is none. If a getelementptr

generates an error due to mixing of inrange flags, the flag attribute records the error. We
will see more about the inrange flag of a getelementptr in the paragraph describing store
instruction semantics below. We want to have these two attributes associated with a Byte
datum because we want to provide pointer provenance, so that when a pointer is cast to an
integer or stored to the memory cache, it does not lose side-effect information, such as what
is the memory field the pointer points to. The real data structure of Byte data in K-LLVM
has more fields including information about block address information, endianness, and if a
pointer datum is pointing to a heap, stack, or static constant memory chunk. For simplicity,
we do not include them here, and assume the bytes are in little-endian format. We also
assume no distinction between heap and stack pointers here, even though we have distinct
implementations for each in K-LLVM.

Bit ::= 1 | 0 | undef Range ::= range(Nat , Nat) ’a State ::= Error | ’a Option
Byte ::= byte(Bit List , Range Option , Range State)
Loc ::= loc(Bit List , Type , Range Option , Range State)

Int ::= intLoc(Bit List , Type , Range Option , Range State)
Float ::= floatLoc(Bit List , Type , Range Option , Range State)

(a) add T intLoc(X,A1,B1,C1), intLoc(Y,A1,B2,C2)
⇒ intLoc(bitAdd(T,X,Y), A1, judge(B1,B2), judge(C1,C2))

(b) icmp eq T loc(X,A1,B1,C1), loc(Y,A1,B2,C2) ⇒ intLoc([X = Y], i1,none,none )

Figure 5.11: Memory Data Structure

For register values, we only introduce integer, float and pointer values here. The de-
scription of other register values can be found in the K-LLVM semantics in the link:
https://github.com/liyili2/llvm-semantics-1. Any of the integer (Int), float (Float)
or pointer (Loc) data contains a Bit list, a Type field representing the type of the datum,
a range attribute and a flag attribute. The Bit list represents the binary format of the
value for the datum being either an integer, float (in the IEEE 754 format) or memory ad-
dress. The size of the list is equal to the size of the integer/float/pointer type defined for

83



the data (the pointer size is parameterized in K-LLVM). We assume that all integer, float
and pointer arithmetic is based on the computation of binary representations, even though
we might show decimal representations in some examples in this chapter for presentation
purpose. The range and flag attributes have meaning that is closely related to the ones in a
Byte datum, as we will explain below.
The reason for making the register and memory data structure so complicated is that

K-LLVM covers the relatively complete semantics of LLVM IR including corner cases of
not only the individual instruction semantics but also the interactions between casting,
arithmetic and memory related instructions in LLVM IR. Hence, the pointer provenance
information needs to be available both in the threads and the memory cache. In K-LLVM,
the provenance information is stored in the value representation to enable three features of
LLVM IR that require execution decisions based on the past history of the value. First, there
are flags (inrange), which require the possibility of turning the transition state to an error
state in executing a memory instruction long after the computation of a getelementptr

with the flags. Second, a pointer is valid for accessing a memory datum if and only if it is
created from a non-free memory allocation, or it is the result of a finite number of memory
computations based on a non-free memory allocation pointer, and its pointing memory field
is within the memory range of the allocated chunk. Third, an error should be detected
when an execution is accessing memory data by a pointer cast from an integer value whose
calculation never involves values cast from pointers, even if the integer has the same value
as the memory address of a valid pointer.
The two rules (a) and (b) in Fig. 5.11 give an example describing how an arithmetic

instruction is executed in K-LLVM based on the data structure described above. In evalu-
ating an LLVM IR add instruction (rule (a)), the value computation happens between the
Bit lists of two data (bitAdd adding two binary numbers together). The function judge

merges two range or flag attributes from possibly two different data that possibly come from
two pointer sources. The judge details are in the actual K-LLVM semantics in the link:
https://github.com/liyili2/llvm-semantics-1. Here, we give some interesting exam-
ples. If a pointer is cast to a integer constant (with the range attribute [L,R]) and added
to another integer constant (with the range attribute none), the judge produces a memory
range from the pointer in the range attribute of the result datum. If the two range attributes
of two intLocs have two different memory ranges (like [L,R] 6= [S,T]), the judged result
is none. If two flag attributes of two data have two different memory ranges, in this case,
judge produces an error state in the flag attribute of the result datum; and if the result
datum is further turned into a pointer, and is used to read memory data, the program re-
sults in unspecified behavior. Rule (b) gives an example of a comparison instruction that
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discards the pointer information and produces a pure 1-bit integer constant. Depending on
the instruction, including the nature of its arguments, pointer information might or might
not be transmitted along with the result of the calculation.

5.3.4 Sample Instruction Semantics

In this section, we introduce semantic rules supporting memory related instructions in K-
LLVM. The set of memory related instructions we select to describe here contains LLVM IR
casting, address calculation (getelementptr) and memory instructions, as well as memory
related flags on the function headers. K-LLVM is the first formal semantics to cover all
behavioral aspects (under byte-wise sequential consistency) of this set, including the side-
effects due to interactions between different instructions inside or outside of the set. Under
the byte-wise sequential consistency assumption, the behaviors of different orderings in an
atomic memory operation collapses to the behavior of the sequentially consistent (seqcst)
ordering. It is worth noting that there are cases when an instruction can go to an unspecified
behavior or other error states. We will not list all of those rules here, although we have defined
them in K-LLVM. Interested readers may get more details from the K-LLVM semantics
[135].
Casting Instructions. Here we describe the semantics of inttoptr and bitcast as the
highlights of the K-LLVM semantics of casting instructions in Figure 5.12. The other
casting instructions are implemented in a similar manner. Before K-LLVM, no complete
interpretation for the LLVM IR casting operations existed, especially one supporting cast-
ing between integers or floats and pointers. These casting instructions are hard to define
because the resulting values can vary depending on the program context for the values of
the instructions.

(a) inttoptr(intLoc(X,T1,B,C),T2)⇒ loc(trunc(X,sizeof(T1) - sizeof(T2)),T2,B,C)
if sizeof(T1) ≥ sizeof(T2)

(b) inttoptr(intLoc(X,T1,B,C),T2)⇒ loc(addZero(sizeof(T2) - sizeof(T1))@X,T2,B,C)
if sizeof(T1) < sizeof(T2)

(c) bitcast(Label(X,T1,B,C),T2)⇒ rebuild(X,T2,B,C)
if ¬isPointerType(T1) ∧ Label ∈ {intLoc, floatLoc}

(d) bitcast(loc(X,T1,B,C),T2)⇒ loc(X,T2,B,C)

Figure 5.12: Casting Rules

In Figure 5.12, rules (a) and (b) describe the semantics of inttoptr. The main idea is
to replace the type attribute of the source intLoc with the target type. If the target type
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size is smaller than (or equal to) the source one, the semantics truncates (using the trunc

function) the bits (represented by X as a list) by the difference of the sizes of the two types
starting from the most significant bit. Otherwise, we create a list of 0 bits, whose size is the
difference between the two type sizes, by using the addZero function. We place the bits in
front of the source bit list (variable X ). For example, in Program-A (Fig. 5.1), we assume
that the code is running in a 32-bit machine and variable %r5 has the value represented by
intLoc(X, i64, B, C) in line 15. The code tries to convert the %r5 value to a pointer. The
final result pointer can be represented by loc(X’, i64*, B, C) by taking the right-most
32-bits from X and changing the constructor from intLoc to loc.
Rules (c) and (d) describe the much simpler dynamic semantics of bitcast instructions.

Besides the memory data layout, the K-LLVM type system also contributes to the simplic-
ity. Once we find out that T1 is not a pointer, we can immediately infer that T2 is also
not a pointer because LLVM IR only allows pointer to pointer or non-pointer to non-pointer
bitcast. Thus, the rule (c) should take the bits (variable X ) with additional attribute
information and distribute them to form a corresponding value with respect to the type T2 ,
which is what the function rebuild does. For example, if we bitcast an i24 integer (as
intLoc(X, i24, B, C)) to a three i8 integer array [3 x i8], the 24-bit list X is cut into
three equal parts (X1 , X2 and X3 ), so we have an array with three elements of the format
intLoc(Y, i8, B, C) where Y can be either X1 , X2 or X3 . Alternatively, if a bitcast

sees a Loc datum, it is immediately inferred that the casting is between two pointers, and
the only effect is the updating of the source type T1 with the target type T2 .
The Semantics of getelementptr. A getelementptr instruction is a memory address
calculation whose main idea is to calculate a memory address value based on a sequence of
indices. Section 5.1.1 touches on one of the special cases of getelementptr semantics. The
main idea of getelementptr is similar to the one in Zhao’s work [62]. It uses a sequence of
indices of different types to walk incrementally into a data structure layout to calculate a
pointer to the sub-component found at the end of the path the indices describe. Here, we
focus on one particularly important feature of the instruction, the keyword inbounds, which
is a flag applied on the computation results of a getelementptr instruction. For this flag,
LLVM IR requires all the intermediate and final computation results on the address of the
input pointer are within a valid range of the allocated object pointed to by the address. In
K-LLVM, we implement this with the address computation function calGEP. The function
calculates an new address value by adding multiplication results of the index and type size
to the input address, one adding at a time. In each step, before the calculation, the function
first checks if the input address is within the range indicated by the range attribute of the
input pointer. After we compute the final address result, we also check if the memory chunk
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pointed to by the input pointer still exists. For example, line 4 of Program-A (Fig. 5.1) is
a getelementptr instruction, and it is executed successfully in K-LLVM. However, if a
memory-free for the input pointer %r2 is added before the getelementptr, the inbounds
flag makes the instruction result in a poison value, because the memory chunk pointed to
by %r2 does not exist anymore. As another example of an inbounds flag, executing line
5 of Program-A highlights how a poison value can be produced from a getelementptr.
The index i64 -1 makes an intermediate computation result out-of-bound, so variable %u1
gets a poison value. Another example is to execute line 21 of Program-A. The execution
of this getelementptr fails the inbounds check because its input pointer has range at-
tribute none, so variable %r10 results in a poison value. There is also an inrange flag
in a getelementptr instruction. This flag has subsequent effects on memory instructions
after the getelementptr. The flag information is carried as the flag attribute in the pointer
derived from the getelementptr so that the succeeding memory instructions can use it. We
will introduce its semantics in the next section.
The store Semantics. We only introduce the K-LLVM store memory instructions here;
the other memory instructions are implemented in a similar manner. K-LLVM fully im-
plements the semantics of stores under the byte-wise sequential consistency assumption.
Specifically,K-LLVM distinguishes the non-atomic and atomic store instructions by break-
ing the execution of an memory instruction into three different stages, as shown in Fig-
ure 5.13. As we mentioned, we do not list negative rules, such as configurations going to an
error state when a store is performing a write operation in the memory cache, when the
memory chunk has already been freed by another thread. The rules in Figure 5.13 are sim-
plified versions of the actual K-LLVM rules. The information and handling about address
spaces and memory alignments is not mentioned here. In fact, the construct write has sev-
eral fields than one shown in the figure. On the other hand, these rules are non-trivial, and
they have enough functionality to show manner in which the K-LLVM abstract machine
distinguishes between the behaviors of atomic and non-atomic store instructions.
In Figure 5.13, the Exp type represents an instruction that involves in the computation in

a continuation component (Ψ in Fig. 5.13). We uses store and atomicStore constructs
in Figure 5.13 that are different from the LLVM IR concrete syntax. They are BAST format
transformed from an LLVM IR stores instruction in their simplified form here. Each of
them has three fields. The first represents the type of the value; the second is the value
to store in the memory cache and the third is the memory pointer. The write construct
represents the memory operation that a thread uses to communicate with the memory cache
and the memory cache uses to perform memory events. When a store is executed in the
continuation component (Ψ), a list of writes are generated in the toCommit component
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Key ::= (Nat,Nat,Nat)
Exp ::= store(Type,Exp,Loc) | atomicStore(Type,Exp,Loc) | write(Key,Nat,Nat,Byte List)

(a)

[X,X + sizeof(T)] ⊆ [L,R] ∧ [X,X + sizeof(T)] ⊆ [L1,R1]∧ readonly6∈ Θ(
TID, (BID,IID), (store(T,V,loc(X,B,range(L,R),range(L1,R1)))::Ψ),∆,Θ

)
⇒
(
TID, (BID,IID),Ψ,

∆@genWrites(toBytes(V,sizeof(T)),(TID, BID, IID),X,sizeof(T)),Θ
)

(b)

[X,X + sizeof(T)] ⊆ [L,R] ∧ [X,X + sizeof(T)] ⊆ [L1,R1]∧ readonly6∈ Θ(
TID, (BID,IID), (atomicStore(T,V,loc(X,B,range(L,R),range(L1,R1)))::Ψ),∆,Θ

)
⇒
(
TID, (BID,IID),Ψ,∆@[write((TID, BID, IID),X ,1, toBytes(V,sizeof(T)))],Θ

)
(c)

({
(TID,CurrInst,Ψ,E::∆,Θ) ∪ Threads

}
, (κ,Rest)

)
⇒
({

(TID,CurrInst,Ψ,∆,Θ) ∪ Threads
}
, (κ@[E],Rest)

)

(d)

Addr ∈ [L,R] ∧ ¬isRace(Key,α)(
write(Key,Addr,1,V)::κ,Γ,

{
([L,R], α,Rest)

}
∪ Ω

)
⇒
(
κ, updateMap(Γ, Addr, V),

{
([L,R], α,Rest)

}
∪ Ω

)

(e)

Size > 1 ∧ β(Key) = none ∧Addr ∈ [L,R] ∧ ¬isRace(Key,α)(
write(Key,Addr,Size,V)::κ,Γ,

{
([L,R], α, β,Rest)

}
∪ Ω

)
⇒
(
κ, updateMap(Γ, Addr, V),

{
([L,R], α ∪ {Key}, β[Key 7→1] , Rest)

}
∪ Ω

)

(f)

Size > 1 ∧ β(Key) = Size - 1 ∧Addr ∈ [L,R] ∧ ¬isRace(Key,α)(
write(Key,Addr,Size,V)::κ,Γ,

{
([L,R], α, β,Rest)

}
∪ Ω

)
⇒
(
κ, updateMap(Γ, Addr, V),

{
([L,R], α\{Key}, β[Key 7→none] , Rest)

}
∪ Ω

)

Figure 5.13: Memory Store Rules

(∆ in Fig. 5.13). They have the same group ID represented as a Key type that is a triple of
the thread ID, dynamic block number, and instruction number of the store. A write also
has other fields: a natural number representing the memory address value, another natural
number representing the total size of writes from the same Key, and a list of bytes to write
to the memory. The total size is the same for different write operations with the same Key.
It is both the size of the list of writes generated by a non-atomic store and the size of
bytes of the value to write to the memory cache. An atomicStore generates a singleton
write.
Before we describe the rules in Figure 5.13, some conventions are worth noting. Without

special greek letter illustrations on different components, a name of a component with its first
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character capitalized is the variable representing the component in all rules (e.g. CurrInst
for the currInst component, and Threads for the threads component). The variable Rest
appearing in some rules in Figure 5.13 (and Fig. 5.14) represents the rest of components in
a thread or object component, which do not involve in the computation of the rules. As
we have said in Section 5.3.2, the K-LLVM abstract machine is for a set of threads com-
municating with a single memory cache. The globalControl component is omitted in the
computation here, since we do not need it. Based on these assumptions, we define a transi-
tion state to be a pair of a set of threads and a memory cache: (Threads,Memory). A single
thread contains five components related to memory instructions: thread-ID, currInst,
continuation (Ψ), toCommit (∆) and flag. For simplicity, we assume that a thread only
contains these five components in this section; Also, we assume that the memory cache
only contains three components: the memOpList (κ), byteMap (Γ) and objects (Ω) compo-
nents. The objects component (Ω) contains a set of object. Only three sub-components
(range, race (α) and complete (β)) in the object are related in defining the semantics
of store. The math inclusive range [A,B] represents a set of natural number sequencing
from the number A to the number B inclusively. Finally, there are implicit rules omitted
in Figure 5.13, suggesting that transitions happening in a thread or the memory cache also
happens globally.
Rules (a) and (b) in Figure 5.13 describe how an atomic store and non-atomic store

generate a list of write operations that are pushed to the toCommit component (∆) whose
job is to convey memory operations to the memory cache. The basic idea is to create a list
of writes at the end of toCommit (∆) when we have a store in the head of continuation
(Ψ). The two rules describe the cases when an inrange flag is present in the flag attribute
of the input pointer. In such cases, to execute a store not only requires for the address
value to be within the range indicated in the pointer but also for it to be in the range carried
by the inrange flag; otherwise, the whole system results in an unspecified behavior state.
In K-LLVM, there are rules similar to rules (a) and (b) dealing with pointers without
inrange flags derived by removing the checks for the inrange edges from rules (a) and (b).
Since we will use these rules in an example, we call them rules (ax) and (bx) to distinguish
them from rules (a) and (b). The function toBytes splits a value into an list of bytes
(Fig. 5.11). The list size is defined by its natural number argument. Its functionality is
similar to the rebuild function to turn a value as a list of elements. The only difference is
that toBytes creates an list of bytes instead of values in the case of rebuild. The function
genWrites takes a list of bytes, a Key datum, a memory address, and the size of the byte
list, then generates a list of writes by distributing a byte at a time from the byte list,
and associates each byte with a memory address and other attributes. The address value is
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selected in sequence from the address range between the address and the address plus the
size. Rule (b) is for dealing with atomic stores. The key difference is that it only generates
a singleton write containing the full value to be stored instead of a list. Rule (c) allows
the head element in the toCommit component (∆) of a thread to move to the tail position
of the memOpList (κ) in the memory cache.
Rules (d), (e) and (f) deal with different situations of correctly committing a write to

the byteMap (Γ). The complete component (β) in (e) and (f) is a map from a Key to a
natural number indicating how many writes have been committed to byteMap (Γ) since the
first write with the Key . The Key marks a single instruction and complete allows tracking
the process of the writes entailed by the instruction. To detect races, the race component
(α) contains Keys indicating every Key occupying the memory chunk (object) represented
by the range of the object component. The variable Size represents the number of writes
from the same Key , i.e. the same store instruction. All rules (d), (e) and (f) need to
satisfy two side conditions. The first one is the condition Addr ∈ [L,R] to locate a specific
object in the objects component (Ω) by comparing Addr with the range of the object

(L and R). In K-LLVM, an object is created by a memory allocation; thus, the ranges of
objects (Ω) are always disjoint. Any address (e.g. Addr) within a range (e.g. [L,R]) can
be a key to locate the range, which in turn locates an object. The second condition is to
check if a Key is in race with other Keys in race (α) through the function isRace. The
function isRace checks if the race component (α) for the object pointed to by the memory
address value (Addr) has been occupied by another Key . If Size is 1 (rule (d)), the write

represents an atomic memory store, and writes a list of bytes (V ) to byteMap (Γ) using
the function updateMap. The function updates a range of bytes to corresponding range of
addresses in byteMap (Γ). Rule (e) is executed if two other conditions are satisfied: the
Size is not 1 and no write for this Key has yet completed. In such case, rule (e) writes
a list of bytes to byteMap (Γ) and updates the information in the race (α), and initializes
the Key in the complete component (β). Rule (f) represents the finish of the execution of
a non-atomic store in the memory cache. In such cases, we remove the appearance of the
entities represented by variable Key in the race (α) and complete (β) components. We also
need to update byteMap (Γ) with the final write term. Besides rule (e) and (f), another
rule not listed here deals with the case when β(Key) does exist and is less than Size - 1. In
this rule, we continue to write a byte to the byteMap component (Γ) without touching the
race component (α) and incrementing the complete component (β) for Key .
As an example of applying the store rules, we focus on the store instruction in line 13 of

Program-A (Fig. 5.1). Group (s) in Figure 5.14 represents the computations for executing
the first few steps of the store instruction. In these diagrams, we show the computations as
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(s)
( {(

ϕ,(1,13), (store([2 x i32],[11,11], loc(100,[2 x i32]*,

range(96, 108), none)):: Ψ), [], ∅
)}
∪ Ξ,

(
[],Σ,

{(
[96,108], ∅, ∅,Υ

)}
∪ Ω

) )

⇒
( {(

ϕ,(1,13),Ψ, (write((ϕ,1,13),100,8,byte(B,none,none))::∆ ), ∅
)}
∪ Ξ,(

[],Σ,
{(
[96,108], ∅, ∅,Υ

)}
∪ Ω

) )

⇒
( {(

ϕ,(1,13),Ψ,∆, ∅
)}
∪ Ξ,(

[write((ϕ ,1,13),100,8,byte( B ,none,none)))],Σ,
{(
[96,108], ∅, ∅,Υ

)}
∪ Ω

) )

⇒
( {(

ϕ,(1,13),Ψ,∆, ∅
)}
∪ Ξ,(

[],Σ[1007→ byte(B,none,none)],
{(
[96,108], {(ϕ,1,13)}, {(ϕ,1,13) 7→1},Υ

)}
∪ Ω

) )
⇒···

(t)
({(

ϕ,(1,22), (store(i32, 42, loc(100, i32*, none, none)):: Ψ), [], ∅
)}
∪ Ξ,Rest

)
⇒
(
error unspecifiedBehavior

)
Figure 5.14: Memory Store Example Configuration Transitions

transitions from one state to another. Each transition state is a tuple of a thread set and the
memory cache. In threads, Ξ represents all threads that do not involve in the computation.
The thread we care about has a thread ID ϕ. We assume that the (1,13) in the first
state after the label (s) represents the currInst pair. In the continuation component,
we have the store instruction of line 13 (Fig. 5.1) on the top of the computation, and Ψ

represents the rest of the computations in continuation. For simplicity, we assume that
the toCommit and flags components are empty for thread ϕ, so they have the values [] and
∅, respectively. In the memory cache, for simplicity, we assume that memOpList is empty,
byteMap is represented by the variable Σ. The memory cache contains some objects. The Ω

in Fig. 5.14 represents objects not related to this store computation, and there is an object
with range value [96,108] that matters in this computation (Let’s assume that [96,108] is
the memory range created previously). We also assume that the current race and complete

components are both empty (an empty set and empty map). Υ represents the rest of the
components in the object that does not involve in the computation. The to-store data for
the store operation is an array of type [2 x i32] and value [11,11]. Here, we show these
data in decimal formats. In the real K-LLVM abstract machine, they should be in the
binary format. In this example, we assume that the memory pointer address is a natural
number 100, and the range of the memory chunk pointed to by the pointer is in the range
[96,108].

By applying rule (ax) above, we get a new transition state after the first "⇒" (Fig. 5.1).
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Rule (ax) generates a list of eight bytes in the toCommit component. The first one is the
write term shown in the state, and the other seven bytes are represented by variable ∆.
The variable B inside the byte construct is an eight bit list with all of 0 bits because we
are getting the left-most eight bits of the [11,11] array. By applying rule (c), we get
the resulting state after the second "⇒". This rule moves the write operation from the
component toCommit in thread ϕ to the empty component memOpList in the memory cache.
Next, rule (e) is executed and we get another new state after the third "⇒". We can see
that the components race, complete, and byteMap (Γ) are updated, and the memOpList

component becomes empty. This process keeps going until all items in toCommit have
reached byteMap (Γ).
Another example is group (t) in Figure 5.14. It represents the computations of the store

instruction at line 22 of Program-A (Fig. 5.1). In the initial state, the pointer has the range
attribute none, so the state is transitioned to an error state with the unspecifiedBehavior
indicator.
Notice that in some states in Group (s), the system might have non-deterministic choices

over transition rules. For these non-deterministic choices, we have the follow important
observation, which is clearly true in K-LLVM because the toCommit and memOpList com-
ponents are in FIFO order, and each thread executes instructions in the program order in
the continuation component.

Observation 5.2. Assume that a trace of memory operations is generated by observing
the order of memory operations committed to the byteMap in the memory cache. For a
valid LLVM IR program, no matter which rule the K-LLVM abstract machine chooses to
apply in a transition state if such rule correctly pattern matches the state, the memory trace
generated by executing the program is byte-wise sequentially consistent.

The readonly Function Flag. LLVM IR allows users to set flags on the function headers
that suggest that the function has certain features over memory instructions. The readonly
flag is a representative. It means that the execution of the function with the flag should not
use any memory write operations, e.g. a store instruction. If executing a function does use
a write operation, it is an unspecified behavior. In Figure 5.10, there is a flags component
in the control component of a thread. During the static semantics step in Section 5.2, all
functions from a LLVM IR program are compiled to BAST format and stored in a database,
including function header flag information. During executing in the K-LLVM abstract
machine, when a function is called, K-LLVM context switches the control component
for the function, including the flag information called from the database and stored in the
flags component. When K-LLVM is executing a store operation, according to the store

92



rules (Fig. 5.13), K-LLVM checks if the flags contains a readonly flag. If not, the store
operation can proceed; otherwise, the whole transition state is transitioned to an error state
of unspecifiedBehavior.
We have given here a general idea of how K-LLVM implements different semantic aspects

of LLVM IR here. Next, we do a little evaluation on K-LLVM.

5.4 K-LLVM EVALUATION AND APPLICATIONS

Evaluating K-LLVM took more than half of the development time. We used K to gen-
erate an interpreter for K-LLVM and ran LLVM IR programs in it. We mainly used the
testing process as a tool to validate the correctness of our semantics, comprised of individual
instruction semantics and our memory models. We also developed several tools to show the
usage of K-LLVM.
Testing Process of K-LLVM. The validation of language semantics is usually accomplished
through the use of external test suites [83, 84, 120], which was also part of our strategy. K-
LLVM successfully ran a set of 1,385 unit testing programs, which covers all individual
single thread LLVM IR features. A C test suite including the GCC-torture test suite is
compiled to LLVM IR programs to test K-LLVM, which passed all test cases. The test
suite contained 2,156 LLVM IR programs and covers all LLVM IR single thread C features.
For single-threaded programs, we relied on krun to fix the execution order and show the
final result. The test cases and Clang bugs have been documented in the link: https:

//github.com/liyili2/llvm-semantics-1, and the bugs have been reported to the LLVM
community.
The methodology for developing K-LLVM was based on a strategy named Test Driven

Development (TDD), whose basic idea is to develop tests before implementing the actual
features. LLVM IR has an official test suite, but it is hard to break it down into individual
pieces. In developing K-LLVM, the test principle is to test individual features while coor-
dinating new features with old defined ones. When we defined a new feature in K-LLVM,
we followed four steps. First, we read the details about the feature in the LLVM IR docu-
mentation, and thought about how to define the static and dynamic semantics of it. Next,
we wrote out unit test cases to test the feature in the current LLVM IR implementation
(Clang/Clang++). We made sure that we covered enough corner cases by designing a good
set of new unit tests. We then defined the feature and tested it with the new unit tests,
making sure it could pass them all. Third, we added the new feature to all of the defined unit
tests to see if it caused any new problems. Finally, we tested the whole semantics with the
regression 2,156 test suite (the GCC-torture test suite) and made sure that it passed more
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test cases than before and did not introduce new problems. When we developed K-LLVM,
we started by defining the static semantics for each individual feature in LLVM IR, and
made sure that all static features were validated for every variable, expression, instruction,
function and module. After that, we defined the K-LLVM memory model and validated
the correctness of the model. Following the definition of the model, we incrementally de-
fined the semantics of the instructions, working from those that interacted least with other
instructions and the memory such as the arithmetic and conversion instructions, through to
the branching instructions and finally those that affected the memory. Lastly, we defined
different memory operations. The distinction between the atomic and non-atomic memory
operations is particularly complicated due to the fact that we define the non-atomic memory
system to be based on reading/writing one byte at a time.
While searching for undesirable behaviors in Clang was not an objective of this project, we

found some in the process of defining theK-LLVM semantics. Mainly, we ran test programs,
and compared their outputs with those listed in the LLVM documentation. Undesirable
behaviors happened in very diverse circumstances. A large number of them related to the
fact that Clang does not place enough checks to validate what the LLVM IR documentation
suggests. In other cases, Clang has missing features. For example, one cannot cast an fp128

constant to a ppc_fp128 constant, which should be allowed. In some cases, the description
of the LLVM documentation is not clear. For example, in describing the fptrunc and fpext

instructions, LLVM IR uses the idea of large floating point types, and allows a comparison of
two of them. However, it does not give a precise description of how to make this comparison.
In fact, we found that the two types fp128 and ppc_fp128 are not comparable, so there is
no way in LLVM IR to cast from one to the other, contrary to the documentation.
Finally, among the 2,156 LLVM IR programs, we used 26 multi-threaded programs to test

the K-LLVM thread library with ksearch . K-LLVM produced a set of behaviors that
are all expected according with respect to our thread and byte-wise sequentially consistent
memory model. There are other multi-threaded programs used for testing the full memory
concurrency behaviors.
Morpheus on K-LLVM. We built the Morpheus tool [1] on top of K-LLVM to support
correct transformations of compiler optimizations of LLVM IR programs. The Morpheus
core language is a domain-specific one for formal specifications of program transformations.
It describes program transformations as rewrites on control flow graphs with temporal logic
(CTL) side conditions. Morpheus allows users to specify comprehensible program opti-
mizations including those in data flow analysis and data dependence graph analysis. Its
executable semantics allows these specifications to act as prototypes for the optimizations
themselves, so that candidate optimizations can be tested and refined before including them

94



in a compiler. We built Morpheus on top of K-LLVM in K, so that users are able to specify
program optimizations in LLVM IR, and test the optimizations by using K tools for LLVM
IR programs. Through the IsaK and TransK tools (Chapter 4), we translate K-LLVM
into a transition system in Isabelle, and merge it with the Morpheus tool in Isabelle. With
this system, we are able to prove the correctness of the optimizations in Isabelle under the
assumption that programs are executed in the K-LLVM abstract machine and a choice of
memory model. As an instance, we are able to define redundant store elimination properties
on LLVM IR programs in Isabelle under sequential consistency. With the K-LLVM ab-
stract machine, we have a framework for proving the correctness of the optimization for all
programs in LLVM IR in Isabelle. The finalization of the proof will be an interesting future
work of K-LLVM. The detailed semantics of Morpheus, and its union with a transition
semantics for a fragment of LLVM for use in proving properties of program transformations
is in the later chapter.
Detecting Undefined Behaviors. When an undefined behavior happens, K-LLVM out-
puts an error state. This is particularly useful for programmers in revealing unexpected
behaviors to programmers, especially memory access errors. For example, in Program-A

(Fig. 5.1), the execution of the program results in a transition state with an error com-
ponent containing an unspecifiedBehavior construct (Fig. 5.14). This is because pointer
%r9 comes from a non-valid source. By using krun , we can see an error message for the
Program-A execution in Fig. 5.15.

$ krun program-a.ll
ERROR while executing the program.
Description: The argument pointer points to an illegal location.
Line-number: 22

Figure 5.15: The Error Message for Program-A

For some undefined behaviors in LLVM IR, the ksearch space exploration method cannot
list all outputs. Program-E (Fig. 5.1) is such an example. The program is to create a memory
field, get a memory pointer, then turn the pointer to an integer and print it. The output
is a non-deterministic value with infinite many possible values. When using krun (the
single-thread execution engine in K) to execute the program, it prints out a random integer
value depending on the runtime memory address allocation in K-LLVM. A better way to
analyze the program is to use the K symbolic execution engine. One can use ksearch with
the –symbolic flag to execute this program, and the final result is a variable representing a
integer value. One can also use the K symbolic equivalence checker to check if the executions
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of two similar programs printing out variables representing the same range of integers. The
equivalence checker relies on the Z3 SMT solver to calculate if two variables representing the
same range of values.
State Space Exploration. A trivial utility of K-LLVM is state space exploration through
the ksearch tool. Users can use ksearch (actual command: krun –search) to see all
possible final results and traces of multi-threaded programs based on the automatically
generated interpreter for K-LLVM in K. This can be useful for detecting out-of-thin-
air behaviors. For example, by assuming sequential consistency, if we execute program-B

(Fig. 5.1) with the initial values of zero in both memory fields for pointers @x and @y , the
final results of %a and %b can never both be zero. We can also detect undefined values of
a race. According to the documentation of LLVM IR, when a non-atomic store happens,
and another memory operation from another thread is trying to access the same field, a race
happens, and the two memory operations both get undef. By using ksearch to execute
program-C (Fig. 5.1), we can see undef for variables %a and %b in some final results.
Additionally, the option –pattern allows us to filter the traces generated by executing

a multi-threaded program. This option can be used to detect some interesting behaviors.
For example, in K-LLVM, the globalControl component has a sub-component named
waitJoinThreads that is used to store the states when a thread is waiting to join its child
threads. If two threads in K-LLVM use the Pthread library function pthread_join to
wait for each other in a multi-threaded program, the result is a deadlock. We can use the
–pattern option with the pattern < M ( X |-> EDEADLK) >waitJoinThreads to detect if any
trace of the multi-threaded program results in a deadlock. The key word EDEADLK is a flag in
the Pthread library meaning that a thread has ended in a deadlock. Variable X represents
any thread with an unspecified thread ID.
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Chapter 6: HYBRID AXIOMATIC TIMED RELAXED CONCURRENCY
MODEL (HATRMM)

A concurrency model describes the semantics of concurrency in a programming lan-
guage, particularly one with imperative features, delimiting the allowed execution se-
quences, particularly regarding the values passed among different portions of program ex-
ecutions via variables whose values are stored in the memory. Weak concurrency mod-
els for imperative programming languages (C, C++, Java) have been studied broadly
[2, 3, 4, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113].
One of the major tasks of using these axiomatic models is to provide correct mappings

from primitives in concurrent imperative programming languages to instructions in main-
stream architectures, in particular, the architectures x86-TSO [147], POWER [148], and
ARMv8 [149], since the semantics of imperative programming languages are implemented in
a modern computer as mappings instead of their mathematical meanings. The correctness of
such mappings means that for every high-level imperative program P, the set of concurrent
behaviors allowed by the target architecture for the translated machine-level program P’ is
contained in the set of behaviors allowed by the high-level model for P. Building such a proof
is an active research topic in the compiler correctness field. However, mapping correctness
is difficult to establish. Previous works either provided incorrect claims and proofs or very
limited results for a handful of compilation processes. For example, Batty et al. [150] built
the mapping from C/C++ to POWER and ARMv7, whose correctness claims were found
to be incorrect [3]. On the other hand, imperative languages usually have similar primitive
behaviors. All these facts led to the creation of intermediate languages (IR), like LLVM
[142], to act as bridges connecting the imperative-language and machine-level instructions.
Once one set of correct mappings is established on an IR language, then it can be used to
provide mappings for many different imperative languages.

6.1 HATRMM BEYOND OTHER PREVIOUS MODELS

Previous researchers [4, 114] tried to provide concurrency models for these IRs and verified
the mapping correctness from imperative languages to the IRs, and from the IRs to machine-
level instructions. However, they either mimicked the model of a high-level imperative
language, like the work of Chakraborty and Vafeiadis [114], who used the C++ concurrency
model for LLVM; or they intentionally weakened their models to connect high-level languages
and low-level machine instructions, like the IMM model [4]. These IR languages usually have
the features of both the high-level and machine-level languages. Modeling them in terms of a
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C-like concurrency model is not enough. Moreover, there need to be strategic methodologies
for designing a specific IR model so that it can not only act as a bridge connecting the high-
level and machine-level languages, but also facilitate correctness proofs of the mappings from
the high-level languages to machine-level instructions. Simply weakening a high-level model
is inadequate. For example, IMM was purposely weakened to allow the establishment of
broader compilation correctness proofs. There are two main problems with the model. First,
the semantics of some operations, while violating the user’s intuition, make it tough to design
a large programming language based on the model. For example, the control dependency
in IMM is too weak to prevent out-of-thin-air behaviors (OOTA, Sec. 6.3.2). Second, the
properties guaranteed by IMM are blurry. IMM certainly does not satisfy DRF-SC. Even
if one can prove a compilation correctness mapping from the model to the machine-level, it
does not mean that a high-level language that satisfies DRF-SC can also establish such a
mapping.
In this paper, we first investigate three aspects in which an IR concurrency model is

different from the high-level and machine-level models. Then we propose three method-
ologies targeting these aspects. Finally, we propose an IR concurrency model, the hy-
brid axiomatic timed relaxed concurrency model (HATRMM) in the style of the axiomatic
candidate-execution model [100], which combines the three methodologies into one model.
Duality and Hybridization. Generally speaking, the first way that an IR model is different
from the previous models is duality. A compiler usually contains a long sequence of trans-
lation phases. Compiling a program in an IR platform typically involves translating it into
a simpler format, with both formats using the same IR syntax. However, the concurrent
semantics, i.e., the meanings of an operation, might be different before and after translation.
In this case, a correct translation guarantees that the new meaning does not cause harmful
behaviors.
For example, according to the NO-THIN-AIR constraint in RC11 [3], the reads in the

(anti) and (anti-if) example programs in Fig. 6.1 both observe the value 1, but the behavior
is allowed in the machine-level instructions (ARMv8 [149]). This means that one of the
compiler steps (e.g. Clang [142]) must slightly weaken the concurrency guarantee in the IR
program (obviously, the translation itself must guarantee that no weakened behaviors can
happen).
Previously, the IMM model [4] tried to bridge the proof of such translations by weakening

its NO-THIN-AIR constraint and control-flow dependency (ctrl). We have seen the discussion
of the model’s problem in Fig. 6.1. To overcome the duality, we bring in the methodology,
named hybridization, which means that we mix the concurrency semantics of high-level
and machine-level languages together. In HATRMM, we built a subset of operations that
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/* initially, x = 0 and y = 0 */

(anti)
a:=rlxy//1 b:=rlxx//1
x:=rlx 1 y:=rlx 1

(anti-if)
a:=rlxy//1 b:=rlxx//1
if(a=1) if(b=1)
x:=rlx 1 y:=rlx 1

(anti-eq)
a:=rlxy//1 b:=rlxx//1
if(a=a) if(b=b)
x:=rlx 1 y:=rlx 1

(anti-b)
a:=rlxy//1 b:=rlxx//1
if(a=a) y:=rlx 1
x:=rlx 1

Figure 6.1: Example Programs For Concurrency

satisfy the DRF-SC property. This subset represents the concurrency behaviors of high-level
languages. We also have another subset of operations that has weaker concurrency behaviors
than the DRF-SC subset to act as the translation target. A translation for changing the
concurrent semantics is just a translation of the operations in one subset to ones that fit the
other. The hybridization concept seems simple, but the actual formulation is complicated.
It involves not only the combination of two subsets of operations, but also the consideration
of non-atomics and atomics. See Sec. 6.3.3.
One of the side-effects of hybridization is the recognition of out-of-thin-air behaviors

(OOTA). Identifying out-of-thin-air behaviors (OOTA) is a hard problem because they are
context-sensitive. For example, RC11 [3] disallows all two-reads-both-reading-1 executions
in all of the programs in Fig. 6.1 to achieve DRF-SC, while IMM purposely weakens its
model by allowing both reads to load 1 in both (anti-eq) and (anti-if), which is definitely a
"bad" OOTA behavior. In a sense, it is impossible to have one unique way for distinguishing
OOTA behaviors while satisfying different needs in different circumstances. In HATRMM,
distinguishing "good" OOTA behaviors from "bad" ones depends on the layer. Clearly, the
HATRMM subset that guarantees DRF-SC distinguishes OOTA behaviors differently than
the HATRMM subset that does not satisfy DRF-SC. On top of this, we have a third layer;
that is, we rely on a simulation proof through the per-location simulation [151] to build
a form of equivalence among all executions exhibiting "the greatest allowance" for OOTA
behaviors. For example, the first layer disallows two reads to both load 1 in all the examples
in Fig. 6.1. The second layer of HATRMM allows the two reads to both load 1 in (anti) and
(anti-b), but disallow the behavior in (anti-if) and (anti-eq). By building equivalence through
the per-location simulation, we prove the equivalence of all executions of (anti) and (anti-eq)
under the assumption of the compilation of a simple code motion optimization (SCM), but
disprove equivalence between (anti) and (anti-if) under that assumption.
Versatility and Fencizing. IR language structures are usually messy and complicated,
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involving a lot of special flags and operations for controlling devices on different levels, such
as OS and machine-level devices. Many of them affect the languages’ concurrent behaviors.
Defining all of them separately creates a burden that swells the size of the semantics. For
example, K-LLVM [140] has more than 50,000 semantic rules. Here, we provide a uniform
mechanism for supporting the definitions and extensions of these different operations. Like
the unified field theory in physics, we want to use a unified structure to explain each of
these burdens and define them in a nice and clean way. To do so, we "fencize" every
operations that affects the concurrent behaviors by viewing it as a fence structure. For
example, control dependency is defined as a control fence in HATRMM. We also define call
fences for capturing the behaviors of function calls. We utilize the call fences to show the
correctness of the function inlining optimization in restricted contexts (not all cases; see
Sec. 6.3.2).
Linearization. One methodology that we use to couple all these different pieces into a
model is to give each execution in the system a sequence, named a time point sequence.
Introducing the time points significantly reduces the complexity of defining and combining
different constructs, such as non-atomics and atomics, as well as simplifies the correctness
proof between HATRMM and an operational model. According to Nienhuis et al. [152], no
extant operational model can be proved to be equivalent to an axiomatic model (based on the
C++ model [2]), if the operational model admits out-of-order/speculative executions. Out-
of-order/speculative executions are executions of single-threaded instructions that might not
follow the sequenced-before relation (sb). The previous models [2, 3, 4] all assumed that each
single-threaded execution in a multi-threaded program followed the sb order strictly. When
an equivalence proof between one of these models and an operational one was conducted, sb
order was the natural choice for the inductive factor. If the operational model had admitted
out-of-order executions, then for every such execution, they would have needed to unfold
the program text and attempt to make the new sb order match the order of the execution;
but it is impossible to know all of the unfoldings of a program before induction on the
sb order. The previous equivalence proofs were done by having an intermediate in-order
operational model that followed the sb order exactly, then showing that the axiomatic one
was equivalent to the in-order one, and finally showing that the in-order operational model
was threadwise bisimilar to the out-of-order one. For every execution, HATRMM gives a
sequence (linearization) that does not assume sb order. This linearization represents the set
of memory events happening at one time, and the construction of the equivalence proof is
based on induction on the linearization (see Sec. 6.3.1).
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6.2 PRELIMINARY: MEMORY ACTIONS, EVENTS, EXECUTIONS, RELATIONS,
AND EXAMPLE PROGRAMMING LANGUAGE

Here we introduce the key syntactic aspects of HATRMM with examples, following the
standard axiomatic approach for defining memory consistency models [100]. Some useful
relations based on a relation (R) in this paper are the reflexive (R?), transitive (R+) and
reflexive-transitive closures (R∗). We denote by R1;R2 the left composition of two relations
R1 and R2, and assume that ; binds tighter than ∪ and \. [A] is the identity relation on a
set A. A ⊂fin B means that A is a finite subset of B. A ] B is a property showing that A
and B are disjoint. uT gets the maximum of T . In Fig. 6.2, every name in Chancery font is
a type defined for a language component; everything in tt font is a constructor or terminal
in the language; and everything in Italics is a variable representing a term. The figure also
introduces ranging conventions that are employed throughout the paper.

Domains
Values: v ∈ Val Memory Locations: x, y, z ∈ Loc ⊂fin Loc , N
Action IDs: d ∈ Aid Thread IDs: tid ∈ T id ⊂fin Tid , TName
Time Points: s, t ∈ T ⊆ Times , N Call Fence Labels: u ∈ LName
Function Names: g ∈ FName Mutexes: k ∈ Key ⊆ KName
Action Counters: n,m ∈ CName , N
Orderings
Read Orderings: Or 3 or , rlx | acq| sc
Fence Orderings: Of 3 of , rlx | acq| acqrel| sc
Write Orderings: Ow 3 ow , rlx | rel| sc
RMW Orderings: Orw 3 orw , rlx | acq| rel| acqrel| sc
v , {(na,rlx), (rlx,acq), (rlx,rel),

(acq, acqrel), (rel,acqrel), (acqrel, sc)}∗

Memory Actions, Events, & Executions
Act 3 ac , ARead Bool x or [Ror

(x,v)
] | AWrite Bool v x ow [Wow

(x,v)
]

| NRead Bool x d n m [NRd
(x,v)

] | NWrite Bool v x d n m [NWd
(x,v)

]

| CallFence g d [CAFgd] | RMW Bool v x orw [RWorw
(x,v)

] | Fence of [Fof ]

| ControlFence [CF] | Lock k [Lk] | UnLock k [ULk]

Memory Events: Ev 3 ev , (tid, d, ac) Reads From Relations: rf ⊆ T × T
Time Point Mapings: ρ ⊆ T ∪ {0} → Ev ∪ {⊥}
Sequenced-Before Relations: sb ⊆ T × T
Sequenced-Before Families: sbs ⊆ T id→ (T × T )
Data Dependence Relations: dd ⊆ T × T
Data Dependence Families: dds ⊆ T id→ (T × T )

Memory Executions: Z 3 ζ , (T id, Loc,Key, T, ρ, rf, sbs, dds)

Element Properties
RName ] TName ] FName ] KName ] LName ] Times ] Aid ] CName⊎
tid∈Tid

(sbs(tid))
⊎

tid∈Tid
(dds(tid))

∀T. 0 6∈ T ∀tid ∈ T id. dds(tid) ⊆ sbs(tid)

∀ρ. ρ(0) = ⊥ ∀s t ∈ T. (s, t) ∈ (
⋃

tid∈Tid
(dds(tid)) ∪ rf)⇒ s < t

Figure 6.2: Memory Execution Elements

We assume that there is an underlining programming language and its operational seman-
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tics that formulates programs. A program is a mapping from threads (Tid) to single-threaded
program pieces. We assume that the program semantics is a labeled transition system. A
sequence of transitions, in terms of pairs of labels and states, can be derived by execut-
ing an input program. We name these sequences program executions (an example is in
the Sec. 6.4). From the programming language perspective, HATRMM is defined on top
of memory executions, which are sequences of memory events generalized from program
executions. Given a labeled transition system executing a program, each memory event rep-
resents a memory operation "compiled" from a running thread in the system to communicate
with other threads and memory.
HATRMM is independent of a particular programming language and it provides the gener-

alization for communication between the threads and memory in a system, through defining
constraints on the set of input relations. We introduce memory events and executions de-
scribed by several input relations in HATRMM in Fig. 6.2. Its basic elements include a set
of values representing the data points in the heap, a finite natural number set of memory
locations (Loc), a finite set of thread-IDs (Tid), a set of Action-IDs uniquely identifying a
memory action in a single-thread execution, a set of function names (FName), a set of func-
tion labels (LName) for identifying an executing function call in an execution, a downward
closed natural number set of time points (T ) excluding 0 and acting as the sequence in a
memory execution, a set of mutex locks (Key), and a natural number set of action counters
(CName) for identifying non-atomic memory action in an execution. Since time points are
natural numbers, there is a natural number less-than operator (<) for every time point set.
We assume that some of these sets are disjoint unioned (Fig. 6.2), and 0 is never an element
in a T set. The 0 time point represents the initial state of the memory before any memory
event is committed.
A memory execution represents a sequence of memory events that is either an initial

event (⊥) at time point 0 or a triple (Ev in T ) of a thread-ID, an action-ID and a memory
action. A memory action represents an operation in a language suited for communication
between the threads and memory (defined in Fig. 6.2). It contains atomic reads (ARead,
abbr. R) and writes (AWrite abbr. W), non-atomic reads (NRead abbr. NR) and writes
(NWrite abbr. NW), read-modify-writes (RMW), ordered fences (Fence abbr. F), call fences
(CallFence abbr. CAF), control fences (ControlFence abbr. CF), and mutex operations
(Lock/UnLock). Sec. 6.3 describes some of these. On the right of each action definition in
Fig. 6.2, the bracket contains the abbreviation for the action that is used in the execution
diagrams throughout this paper. The action-IDs d appeared in non-atomics (NW and NR)
are group-IDs uniquely distinguishing groups of non-atomics. HATRMM allows mixed-size
values for non-atomics, so an non-atomic instruction in a program (not memory execution!)
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might "compile" to many non-atomic events in an execution. The group-IDs are keys to
identify the events from the same group. The details are in Sec. 6.3.3. Throughout this
paper, we refer to atomic/non-atomic reads/writes, and read-modify-writes as the memory
operations that really perform data communications between the threads and memory,
while the other actions are memory fences, which fix the way of communications. In a
memory operation, the Bool field represents if the operation admits the volatile memory
model (LLVM volatile model [142]). In some memory operations and fences, the ordering
fields (or, ow, orw, and of ) represent C++ like memory orderings. The order relation v is
applied to pairs of memory orderings, which also includes na for non-atomics.
A memory execution (Fig. 6.2) is defined as ζ = (Tid, Loc,Key, T, ρ, rf, sbs, dds),

where ρ (T ∪{0} → Ev ∪{⊥}) is a bijective function from time points to memory events (T
is bijective to Ev), and rf is a write-read relation set defining the source write event that
a read event loads from in the execution. Even though the example executions (diagrams)
in the paper do not indicate the following, any read in an execution must appear in rf, and
if a read does not load a value from a write, it is assumed to load from a "conceptual write
value" happening in the 0 time point. sbs is a family of sequenced-before relations (sb for
each thread) in different single-threaded programs, while dds is a family of data dependency
relations in different single-threaded programs (dd for each thread), such as traditional data
dependency, address dependency, output dependency, and pointer aliasing dependency, etc.
Given a multi-threaded program, for each single-threaded control flow graph (CFG, Let’s
assume that each single-threaded program piece is represented as a CFG) in the program,
there are simple and well-known algorithms to compute the sb and dd relations for the
thread, which we will omit here. There are assumptions on a memory execution (Fig. 6.2).
For example, different relations (sb or dd) for different threads in sbs and dds are disjoint
unioned; every relation (dd) in dds is a subset of the one (sb) in sbs for the same thread;
every 0 time point maps to the initial event (⊥) in ρ; and the union of rf, dds for each
thread, and the natural number inequality (<) is irreflexive. There is a syntactic sugar that
dds ,

⋃
tid∈T id

(dds(tid)).

Throughout the paper, example programs like (anti) in Fig. 6.3 are all assumed to have
every location initialized as the value 0. a, b and c ranges over register variables, while
x, y and z ranges over memory locations. Thus, a:=rlxx is an atomic read instruction,
while x:=rlxa is an atomic write, and :=na refers to non-atomic instructions. The colored
values appearing in some reads in the program are the reading values thought to appear
in some executions of the program. Executions of programs are portrayed as the middle
and right diagrams in Fig. 6.3. In these diagrams, the memory events are represented as
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(anti)

a:=rlxy//1 b:=rlxx//1
x:=rlx 1 y:=rlx 1

Rrlxy,1

Wrlxx,1

Rrlxx,1

Wrlxy,1

T1 T2

sbsb rfrf
Wrlxx,1

Rrlxy,1

Wrlxy,1

Rrlxx,1

T1 T2

rf rf
sb

sb

Figure 6.3: The Execution and Execution Diagram of anti

abbreviations of the memory actions described in Fig. 6.2. The middle diagram without a
downward arrow represents an execution that appeared in previous models [3, 4], while the
right diagram with a downward arrow indicating the flow of time (the time point order) is
an execution in HATRMM. We have briefly introduced the memory execution syntax and
some definitions. Next we will introduce an example language syntax that is used in the
chapter.

6.2.1 Example Programming Language Syntax

Domains
Basic Block Numbers: π ∈ Bn , N Dynamic Block Numbers: π ∈ Dn , Bn × N Instruction Position Numbers: i ∈ I , N
Registers: a, b ∈ Reg , RName Instantiated Value: v ∈ Val , (Loc|Z|[N× Val ]) Instantiated Action-IDs: d ∈ Aid , Dn × I
Instructions
Type 3 ty , int | ty *| [N× ty] Exp 3 e , v | a | e + e | e * e | e = e | e < e | ...
S 3 in , skip| a := ty e | a := phi ((a, π) list) | a := &x | a := set ty e ty e | a := get ty e (N List) | a :=or (vol)? x | lock k

| x :=ow (vol)? a | a :=n (vol)? x | x :=n (vol)? a | a :=orw (vol)? fadd(x, a)
| fenceof | a := g (inline)? (a list) | unlock k

C 3 in ::= if a then π1 else π2 | br π | return a | exit L 3 cl ::= seq | yes | no
Programs
N ⊂fin Bn π0 ∈ N E ⊆ N× L ×N
Basic Blocks: BB , S List × C CFG Label Funs: λ ⊆ N→ BB Control Flow Graphs (CFG): CFG 3 G , (N, π0, λ, E)

Programs: Prog 3 µ , T id→ CFG Functions: SProg 3 p , (r List , G) Function Database: f , FName → SProg

Figure 6.4: Example Language Syntax

HATRMM is independent of a particular programming language. However, as the struc-
ture in Chapter. 8, a proof of semantic preservation on top of HATRMM requires an op-
erational semantics for a programming language building on top of HATRMM. In Fig. 6.4,
we provide an example CFG-based imperative language. The operational semantics of such
language establishes an execution system that can be used for proving semantic preservation
of compiler optimizations on the language. In the semantics, the communications between
threads and memory is derived by HATRMM. In Sec. 6.4, we discuss the operational seman-
tics of the language and the derivation between its operational semantics and HATRMM.
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The language (Fig. 6.4) is LLVM-like, and any program of it is assumed to be in static
single assignment format (SSA). We assume that any program is type-checked and well-
formed and the execution of the program does not cause well-formed problem. The execution
of a program can be analogized as a set of threads, each of which executes a single-threaded
CFG in the program, and each thread execution is executing a basic block at a time. Other
than the atomic elements in Fig. 6.2, the language (Fig. 6.4) is given a set of basic block
numbers (Bn) labeling each basic block in a control flow graph (CFG), a set of dynamic
basic block numbers (Dn) labeling each executing basic block and including a basic block
number and a counter number, a set of instruction numbers labeling each instruction in a
basic block statically, a set of registers. We also instantiate two sets in Fig. 6.2 to more
concrete instances. The value set (Val ) is instantiated as location values (Loc), integers (Z),
and array values ([N×Val ]). An action-ID (Aid ) is instantiated to a triple of a basic block
number, a dynamic basic block counter number, and an instruction number. It can uniquely
identify an executing instruction in a thread of a program execution, so a pair of a thread-ID
and action-ID can uniquely identify an executing instruction in a program execution.
Expressions (e) are constructed from registers (local variables) and integers, and represent

values and locations. For simplicity, we assume that there is only one evaluation order in
evaluating an expression. There are two kinds of instructions. Normal instructions (S)
include assignments, address-of, function calls with a possible inline flag, array insertion
(set) and extraction (get) instructions, and memory instructions. Termination instructions
(C) only appear at the end of a basic block and include function return, exit, unconditional
(br) and binary conditional branching. r := ty e is the assignment instruction, and an
execution first evaluates the expression e and then casts it to the type ty and stores the value
in the register r. r :=ormw (vol)? fadd(x, e) atomically increments the value in location x by
the value of e and loads the old value in register r. The optional vol flag forces the given
memory instruction to respect the volatile memory access model, which here refers to the
LLVM volatile model [142]. For simplicity, read/write instructions are divided into atomic
ones (:=ow/:=or) and non-atomic ones (:=n/:=n).
A basic block is a list of S instructions following by a termination instruction (C). In

a basic block, we assign each instruction a instruction position number (i ∈ I ), where
the sequential instructions are assigned their position in the list (starting from 0), and the
termination is assigned the length of the list of sequential instructions. Thus, its position
number is one greater than that of the last instruction in the list. In a CFG, the node
set N contains the basic block numbers of the CFG λ is a labeling of each node, with a
basic block comprising the list of sequential instructions terminated by a termination, and
E ⊆ N × L ×N is a set of edges labeled seq, yes or no, such that, if snd(λ(n)) = br π, then
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there is a unique out-edge of n, labeled seq; if snd(λ(n)) = exit or return e, then n has no
out-edges; otherwise, there are exactly two out-edges, one labeled yes and one labeled no.
For every variable in a basic block π that has more than one source from two different in-
coming blocks of π, there is a phi instruction in π to merge the different sources and the phi
instruction mentions all incoming edges of the block exactly once. A function (p) is defined
as a pair of an argument list (registers), and a CFG. A program is defined as a mapping from
a set of thread-IDs to CFGs. In this chapter, we assume Boolean values true and false

are just syntactic sugars for the integers 1 and 0. Notice that we have a skip instruction,
so if e {e1} in all examples in this chapter just means that if e then {e1} else skip.
We have briefly introduced the memory execution syntax and an example language syntax.

We will introduce HATRMM and the utility of it with the operational semantics of the
language.

6.3 HATRMM AND THREE METHODOLOGIES

Here we introduce several aspects of HATRMM in terms of its implementation and com-
bination of the three methodologies introduced in the beginning of the chapter. Recall
that a memory execution in HATRMM has the form: ζ = (Tid, Loc,Key, T, ρ, rf, sbs, dds)

(Sec. 6.2). The way to define valid executions is to define constraints that specify which
ones are valid among a set of candidate executions having the form ζ. Throughout this
section, we use the predicate is_something to test if a memory event has an action defined
as something. For example is_read means that an event has a read action (or RMW), is_acq
means that an event is an acq atomics, and is_mem_op means that the action of an event is
a memory operation. The predicate same_property means that two input memory events
have the same property. For example, same_loc means that the two input memory events
access the same memory location. dom is for getting the domain of a function while ran is
for getting the co-domain. Definitions are provided in Fig. 6.5 for some is_something and
same_property predicates.

6.3.1 Linearization: Benefits of Time Points

Here we introduce the linearization methodology, which also serves as the basis of the
other two methodologies. The implementation of linearization in HATRMM is the time
point concept. As we have described in Sec. 6.2, the time point set T is a downward
closed natural number set in the candidate execution ζ. It is associated with the ρ, a
mapping from T ∪ 0 to memory events. All relations and constraints appearing in previous
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get_loc(tid, d, NWd
′

(x,n,m)
) , x

get_loc(tid, d, NRd
′

(x,n,m)
) , x

get_loc(tid, d, W(x,v,...)) , x
get_loc(tid, d, R(x,v,...)) , x
get_loc(tid, d, RW(x,v,...)) , x
get_loc(tid, d, ac) , ⊥ [owise]

get_i(tid, d, NWd
′

(x,n,m)
) , m

get_i(tid, d, NRd
′

(x,n,m)
) , m

get_i(tid, d, ac) , ⊥ [owise]

get_gid(tid, d, NWd
(x,n,m)

) , d

get_gid(tid, d, NRd
(x,n,m)

) , d

get_gid(tid, d, ac) , ⊥ [owise]

get_tid(tid, d, ac) , tid get_aid(tid, d, ac) , d get_ac(tid, d, ac) , ac
same_tid(ev, ev′) , get_tid(ev) = get_tid(ev′)
same_gid(ev, ev′) , get_gid(ev) = get_gid(ev′) ∧ get_gid(ev) 6= ⊥
same_loc(ev, ev′) , get_loc(ev) = get_loc(ev′)

get_pos(tid, d, NWd
′

(x,n,m)
) , n

get_pos(tid, d, NRd
′

(x,n,m)
) , n

get_pos(tid, d, ac) , ⊥ [owise]

get_num(tid, d, NWd
′

(x,n,m)
) , n

get_num(tid, d, NRd
′

(x,n,m)
) , n

get_num(tid, d, ac) , ⊥ [owise]

Figure 6.5: Some Useful Predicate Definitions

models are defined over events, while HATRMM’s relations and constraints are defined over
time points. Essentially, the time points are given a linearization for the execution with
no assumption on the relationship between the linearization and the sb of the execution.
Obviously, such linearization needs to respect each single-threaded dd (recall the assumption
that < ∪ rf∪ dds is irreflexive). The most important reason to include time points is to solve
that there does not exist a direct equivalent proof between a relaxed axiomatic concurrency
model and an operational model that admits out-of-order/speculative executions [152].

(flow) x:=rlx 1 y:=rlx 1
a:=rlxy//1 b:=rlxx//1

Wrlxy,1

Rrlxx,1

Wrlxx,1

Rrlxy,1

T1 T2

sbsb rfrf

(flow-a) x:=rlx 1 b:=rlxx//0
a:=rlxy//0 y:=rlx 1

Wrlxy,1

Rrlxx,0Wrlxx,1

Rrlxy,0

T1 T2

sbsb

Figure 6.6: Two Example Memory Executions for Two Similar Programs

When the researchers [152] proved the equivalence property, they inducted on the sb

relation, and showed for every possible sb, the executions generated have an equivalent
entity generated from the operational model. However, some possible executions generated
from an out-of-order operational machine might violate the sb relation. For example, the
execution of program piece (flow) in Fig. 6.6 follows the sb of (flow), but the execution of
(flow-a) is also a valid execution for (flow), if we consider the possibility of executing the
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T2 thread in (flow) out-of-order; then, the new sb relation makes the program (flow) looks
more like (flow-a). In this case, the proof needs to unfold the single-thread control flow graph
(CFG) to match the sb relation due to the out-of-order execution, such as unfold the program
(flow) to (flow-a). The unfolding needs to be done before the induction on the sb relation,
which is impossible because one cannot guess all possible out-of-order execution sequences
before running the operational machine to actually see the sequence. What they did [152]
was to have an intermediate in-order operational machine to execute programs exactly follow
sb, and show that the equivalence between the in-order machine and the axiomatic model;
and then showed that the in-order and out-of-order machines are threadwise bisimilar.

(1)

Wrlxx,1

Rrlxy,1

Wrlxy,1

Rrlxx,1

T1 T2

rf rf
sb

sb

(2)

Wrlxx,1

Rrlxy,1

Wrlxy,1

Rrlxx,1

T1 T2
rf

rf
sb sb

(3)

Wrlxx,1

Rrlxy,1
Wrlxy,1

Rrlxx,0

T1 T2

rf
sb

sb

......

Figure 6.7: HATRMM Execution Diagrams for flow

With the time points in HATRMM, the executions of (flow) can be simply expressed as
the diagrams ((1), (2), and (3) and more) in Fig. 6.7. Events are free to execute in positions
that violate the sb relations, such as the upward sb edges in the examples (2) and (3). The
linearizations of the executions are represented as the time point flow downward arrows. At
each time point, an execution can only have one memory event (represented by the y-axis
of the execution diagrams). By time points, we can express all out-of-order/speculative
executions for a program without unfolding the program in HATRMM. In the Sec. 6.4, we
introduce an LLVM operational model that is proved to be equivalent to HATRMM. In
fact, the HATRMM model can be extended to include more elements as to instantiate as an
operational model directly (see Sec. 6.4).
Obviously, the execution linearizations are not completely random. There are constraints

in HATRMM to restrict the selection of the linearizations. We will introduce them in the
later sections. Additionally, with time points, we are able to divide the HATRMMmodel into
a single-threaded execution model capturing all single-threaded dependencies for all memory
events happened in a thread, and a multi-threaded memory operation scheduling model
capturing the interactions between threads and memory. We are also able to define more
precise single-threaded dependencies (program order po) to substitute for the sb relation.
More details are in Sec. 6.3.3.
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6.3.2 Fencizing: Adding CallFence and ControlFence

The purpose of "fencizing" is to create a uniform mechanism to define the concurrent
behaviors of different operations that might affect the concurrency (other than the non-
atomics, atomics and traditional fences). The concept is migrated from the memory fences.
We will see two example new fences: ControlFences (CF) and CallFences (CAF).

(srd)

y =rlx1 b =rlx x
a = g() fencesc

c =rlx y

g() {...
x :=rlx 1
...}

Rrlxx,1

Rrlxy,0

Wrlxx,1

Wrlxy,1

Fsc

T1 T2

sbsb

rf

sc

sc

(srd-at)

Wrlxy,1

CAFgd

Wrlxx,1

CAFgd

Rrlxy,1

Fsc

Rrlxy,1

T1 T2

sc

sc

rf

rf

caf

caf

caf

Inlining−−−−−→

Wrlxy,1

Wrlxx,1

Rrlxy,1

Fsc

Rrlxy,1

T1 T2

sc

sc

rf

rf

Figure 6.8: CAF Examples

First we discuss the CAF fences, whose motivation example is given in Fig. 6.8. Let’s
assume that the function g in (srd) only has one memory operation (a write to location x).
The sc fence will be introduced in Sec. 6.3.3. We now assume its functionality is to force
the sb execution order of the two reads in thread T2. The previous models [3, 4] allow one
memory execution, as in the diagram shown in (srd), where one can observe the read from
y to have the value 0 because the write to x in T2 can actually be executed before the write
to y. However, this does not match with the case of a real-world compiler. In compiling
a program to machine-level code, a lot of fences are generated to prevent CPU reordering
instructions. In all current compiler implementations (C, C++, LLVM, etc), without specific
flags (e.g. enabling function inlining optimization in some specific cases), function calls are
always surrounded by fences to prevent later instructions from being executed earlier than the
content in the function calls. HATRMM has CAFs to prevent exactly this execution behavior
in (srd). For each function call in a program, the generated memory execution has a pair of
CAFs surrounding the execution of the function body as shown in the first execution diagram
in (srd-at). Each element of such a pair contains the function name (FName in Fig. 6.2) that
it surrounds, and an action-ID (d) generated to identify the pair. The arguments of CAFs
allow us to perform function call optimizations in HATRMM executions. For example,
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if we perform a function inline expansion optimization on the function call g in program
(srd), an execution of the program results in an execution diagram like the second one in
(srd-at), where the two CAFs have been removed. Generally speaking, inlining expansions
are not thread-safe optimizations. However, we like to show that it is valid to apply such
optimization under a certain condition, i.e. the function being surrounded has no memory
operations in it, because compilers actually perform such optimizations in some cases.

(anti) a:=rlxy//1 b:=rlxx//1
x:=rlx 1 y:=rlx 1

(anti-if)
a:=rlxy//1 b:=rlxx//1
if(a=1) if(b=1)
x:=rlx 1 y:=rlx 1

Rrlxy,1

Wrlxx,1

Rrlxx,1

Wrlxy,1

T1 T2

sbsb rfrf

Wrlxx,1

Rrlxy,1
Wrlxy,1

Rrlxx,0

CF

CF

T1 T2

rf

ctrl

ctrl

ctrl

ctrl

(flow-if)
x:=rlx 1 y:=rlx 1
if (a=1) if (b=1)
a :=rlx y//0 c :=rlx x//0

Wrlxx,1

Rrlxy,0
Wrlxy,1

Rrlxx,0

CF

CF

T1 T2

dd

ctrl

ctrl

Figure 6.9: A Program Having CF Fences and Its Execution Diagrams

A ControlFence (CF) represents the control dependency in an execution for a program.
Previously, RC11 [3] did not include control dependency (ctrl), so the execution listed
beside (anti-if) in Fig. 6.9 is not valid for both the program (anti) and (anti-if) in RC11.
IMM [4] tried to validate the execution for the (anti) case by defining ctrl, but its ctrl

relation is too weak, so the execution is also valid for (anti-if) in their model. This is because
the ctrl relation in IMM is defined to be a data-dependent relation between the uses of
variables in the Boolean guards of a program and the sequenced-after writes of the variables.
Clearly, the uses of variables a and b do not bound the writes to x and y in (anti-if). In
HATRMM, we define an extra fence CF representing a control dependency in a program. For
example, a possible execution for (anti-if) is listed as the right execution in Fig. 6.9. The
CFs generally have dependency with all other memory events sequenced-before or after them
in the same thread. In these cases, one cannot observe both reads in (anti-if) to have 1.
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Moreover, HATRMM allows speculative reads by removing the ctrl edges between the CFs
and their sequenced-after reads. One example is observable in the (flow-if) in Fig. 6.9: the
two reads do not have any ctrl edges on them because they are sequenced-after the CFs.
However, thread T1 still has a data dependency from the CF to the read from a, because
the Boolean guard in thread T1 contains the use of variable a, and an assignment of a is
sequenced-after the use.
In HATRMM, the behaviors of CAFs and CFs are defined by two predicates call_dep and

control_dep in Fig. 6.10, provided with time points T , mapping ρ, and sb for each thread
in Tid in an execution ζ.

call_dep(T,ρ,sb) ,
{(s, t)|(s, t) ∈sb
∧(is_call_fence(ρ(s))
∨is_call_fence(ρ(t)))}

control_dep(T,ρ,sb) ,
{(s, t)|(s, t) ∈sb
∧((is_control_fence(ρ(s))

∧¬is_read(ρ(t)))
∨(is_control_fence(ρ(t))))}

Figure 6.10: The HATRMM Predicates for CAF and CF

The CallFence and ControlFence are examples of fencizing in HATRMM. We believe
that other operations and flags can also define in the same manner as these fences. For
example, to define the readonly flag for a function, we only need to add one more condition
in control_dep in Fig. 6.10, such that there is no writes in between the two call fences
surrounding the function.

6.3.3 Hybridization

Hybridization is to properly hybridize HATRMM, which can be split into a subset that
satisfies DRF-SC and represents concurrency in high-level language primitives, and the other
set that is weaker than the first set and represents concurrency in machine-level instructions.
The Hybridization of a concurrency model is not as simple as merging two complete different
systems together, but also taking care of the difference between atomics and non-atomics,
as well as different memory orderings. With the HATRMM linearization, these differences
become possible to implement in a model.
Addressing Non-Atomic Memory Operations. We first discuss how to merge non-atomic
operations in HATRMM with duality (see the beginning of the chapter). We first revise
the previous definition about the non-atomics without mixed-size values, i.e., the values of
atomics and non-atomics having the same size. Then, we develop the model for handling
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the non-atomics with mixed-size values. For the first aspect, the previous modeling of non-
atomic operations [2, 106] was a pandemic, a series of straightened definitions based on a
design mistake in the original C++ memory model. The original design in C++ about the
non-atomics is based on the happens-before relation (hb). The paper [153] discussed several
possible definitions for modeling non-atomics in C11, but they pointed out that all of the
solutions had problems.

(arr)
a:=scx b:=scy
if(a=1) if(b=1)
y:=na 1 x:=na 1

Rscy,1

Wnax,1

Rscx,1

Wnay,1

T1 T2

sbsb rfrf

Figure 6.11: A Motivated Program Execution with Non-Atomics and sc Atomics

For example, if the behavioral definition of non-atomics is that they does not violate the
hb relation, then the execution in Fig. 6.11 observing both 1 in the two reads is valid for the
program (arr), because there are no hb edges between the reads and writes according to the
definition in [153]. However, the execution of (arr) is obvious problematic and is a typical
OOTA behavior. According to previous hardware concurrency models [149, 154], there is
no difference between the concurrent constraints for non-atomics and rlx atomics if they
deal with the values having the same size (e.g. same 32-bit integer values). The problem of
implementing non-atomics solely to have the same constraints as rlx atomics is that the final
model does not satisfy the DRF-SC property. In HATRMM, non-atomics are implemented
hybridly. We have a set of non-atomics having the equivalent constraint as rlx atomics
as a compilation target for machine-level instructions, and a set of non-atomics having the
equivalent constraint as acq/rel atomics as high-level language primitives. We will introduce
the relationship between these two sets and the DRF-SC property in Sec. 6.3.4. Here we
refer "the lowest atomic constraint" to be the constraint of rlx atomics for machine-level
instructions and the acq/rel atomics for high-level language primitives.
In this sense, the solution in HATRMM to deal with non-atomics is to equate the non-

atomics constraints to the lowest atomic constraint, i.e., having no special constraints but
requiring single-threaded data dependencies and multi-threaded memory operation schedul-
ing constraints. The constraint details are in Sec. 6.3.3. With the constraints, the (arr)
execution in Fig. 6.11 is impossible to happen in HATRMM where the two reads never load
the value 1 at the same time.
The second important invention for dealing with non-atomics handles the mixed-size struc-

tures. The main usage of non-atomics in a language like C++ is memcpy, i.e. to read or
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write a large chunk of data. Usually, the non-mixed-size non-atomic read/write in C++ is
treated the same as an rlx atomic read/write. In this case, an execution never causes any
race. The main source of races is from the conflict between a large non-atomic read/write
chunk and other operations. Flur et al. [155] introduces a solution for modeling large chunk
non-atomic operations. They view a large chunk non-atomic operation as a list of atomic
operations with the lowest atomic constraint. Each atomic operation in the list has an rf

edge with other operations (not in the list). The race definition pertains a conflict analysis
of different rf edges on the list. This works fine if we keep the non-atomics and atomics
separated (as mentioned in Sec. 1); but, once we combine the two, things get odd.
The execution of (pass) in Fig. 6.12 shows the oddness. The different group-IDs d and

d′ represent different groups of non-atomics originated from different non-atomic memory
instructions in the program. For example, the two non-atomic writes NWdx,1 are in the same
group and originated from the instruction x:=na [1,1].

(pass)
x:=na [1,1] z:=rlxx b:=nay

y:=rlxa

Rrlxx,[1,1]

Wrlxy,[1,1]

NWdx,1

NWdx,1

NRd
′
x,1

NRd
′
x,1

T1 T2 T3

dd

rf
rf rf

rf

(at-pa)
Rrlxx,[1,1]

Wrlxy,[1,1]

NWdx
NWdx,[1,1]

NRd
′
x

NRd
′
x,[1,1]

T1 T2 T3

dd

rf

rf

Figure 6.12: A Complicated Program Execution with Non-Atomics

As shown in the (pass) execution in Fig. 6.12, rf-1 is not functional anymore. The data
being read in each rf edge becomes unclear. Our solution is also to have a group of memory
operations representing a non-atomic instruction, but we require that only one operation
in the group can appear in an rf relation. This operation is always the latest one in time
(greater than other operations in the same group) in an execution. The execution with
mixed-size non-atomics is like the (at-pa) execution, which is an execution in HATRMM
for (pass). In (at-pa), only the latest operation produced by the instruction (NWdx,[1,1] for
x:=na [1,1] and NRd

′

x,[1,1] for b:=nay) has an rf edge. In HATRMM, we define the behavior
with two assumptions on non-atomics. One obvious assumption about our rf relations is
that rf-1 is functional. All source events in rf are writes while all target events are reads.
In addition, for all pair (s, t) ∈ rf, s < t. Finally, we also have the assumption in Fig. 6.13
about the NRead and NWrite actions.
Remember that there are two natural numbers (n and m) fields in the syntax of the
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non_atomic_well_order (Tids, sbs, ρ) , ∀t ∈Tids .∀a b ∈ (sbs (t)).
is_non_atomic (ρ(a))
∧ is_non_atomic (ρ(b))
∧ same_gid (ρ(a), ρ(b))
⇒get_i (ρ(a)) <get_i (ρ(b))

Figure 6.13: Well-Ordered Assumption for Non-Atomics

actions (Fig. 6.2). The second natural number n represents the total number of non-atomic
actions for a particular group-ID (gid), while the first m shows that a non-atomic action is
the m-th piece of the non-atomic action. In the implementation of HATRMM in Isabelle,
for simplicity, we assume that all of the non-atomic actions have an m range from 1 to n.
The m-th non-atomic action for a gid happens at gid’s m-th rank in a candidate execution
(defined by the non_atomic_well_order predicate in Fig. 6.13). This assumption only
talks about the non-atomics in one particular thread, because we also have the assumption
that non-atomic actions with the same gid only happen in a thread, as an observation on
the real-world situation that there is no use for two different threads dealing with a single
memory operation. The assumption eases our proofs and allows us to abstract away the
mechanism for distributing correct memory actions into correct memory locations. For now,
we have a lemma about non-atomic actions to suggest that if an action happens at a time
and its m and n values are the same, then the non-atomic memory event is the latest one
in the group of non-atomic memory events in terms of time points; otherwise, at a given
time, the non-atomic memory operation is still waiting for more actions to finish. Only the
latest memory event in a group of memory events can join an edge in rf. We establish that
if (s, t) ∈ rf and s or t is a non-atomic event, then its m value is the same as its n value.
The reason for the implementation is that people usually care about the rf edges in an

execution if there is no race so that they want to analyze rf edges to produce the correct
value for each read. On the other hand, if there is a race, people usually care about how to
detect it instead of analyzing rf edges to get the value for a racy read since such read has
an undefined value and there is no "correct" value.
The definition of race detection is in Def. 6.1. This definition does not depend on the

analysis of rf edges. It only finds if there is an outlier operation in the time point range of
a group of non-atomic operations in an execution.

Definition 6.1. An execution (Tid, Loc, T, ρ, sbs, dds, rf) has a race, iff there is a group d
of non-atomics accessing a location x, the earliest time point for d is s, and the latest time
point for d is t in the time point range [s, t], and the following happens:
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• An atomic write accessing x happens between s and t.

• An atomic read accessing x happens between s and t, and d is a group of non-atomic
writes.

• A non-atomic write accessing x happens between s and t, and its group-ID is not d.

• A non-atomic read accessing x happens between s and t, its group-ID is not d, and d
is a group of non-atomic writes.

A program is race-free if any valid execution of the program in HATRMM has no race.

Here we mainly discussed the difference between the HATRMM modeling of non-atomics
and that of previous models. A formal definition of HATRMM non-atomics which also
includes the implementation of mutex locks is found in Fig. 6.14.

non_ac_asm(T, ρ, rf) , ∀(s, t) ∈ rf. ((ρ(s) = (tid, d, NW(x,n,m))⇒ n = m) ∧ (ρ(t) = (tid, d, NR(x,n,m))⇒ n = m))

non_ac_asm1(T, ρ) , ∀{s, t} ⊆ T. s < t ∧ is_non_atomic(ρ(s)) ∧ is_non_atomic(ρ(t))
∧get_gid(ρ(s)) = get_gid(ρ(t))⇒ get_pos(ρ(s)) < get_pos(ρ(t))

inMid(T, ρ, s, t, ac) , ∃r.r ∈ T ∧ s < r < t ∧ (∃tid d.ρ(r) = (tid, d, ac))

lock_dep(T, ρ, sb) , {(s, t)|(s, t) ∈ T 2∩ sb
∧(is_lock(ρ(s)) ∨ is_unlock(ρ(t)))}

unlock_dep(T, ρ, sb) , {(s, t)|(s, t) ∈ T 2∩ sb
∧(is_unlock(ρ(s)) ∨ is_unlock(ρ(t)))}

lock_prop(T, ρ, s, k) , (∀t ∈ T. t > s∧ same_tid (ρ(s), ρ(t))⇒ get_ac(ρ(t)) 6=ULk ∧get_ac((ρ(t)) 6=Lk)
∨(∃t ∈ T.t > s ∧ same_tid(s, t) ∧ get_ac(ρ(t)) =ULk ∧¬inMid(T, ρ, s, t, Lk) ∧ ¬inMid(T, ρ, s, t, ULk)
∧(∃r ∈ T. r > t ∧ get_ac(ρ(r)) =ULk⇒ inMid(T, ρ, t, r, Lk)))

locks(T,Key, ρ) , ∀t ∈ T. (∀k ∈ Key. get_ac(ρ(t)) =Lk⇒ lock_prop(T, ρ, t, k))

race_def(T, ρ) , ∃s t r ∈ T. is_non_atomic(ρ(t)) ∧ is_non_atomic(ρ(r)) ∧ ¬both_read(ρ(s), ρ(r)) ∧ same_loc(ρ(t), ρ(r))
∧same_gid(ρ(t), ρ(r)) ∧ get_pos(ρ(t)) = 1 ∧ get_pos(ρ(r)) = get_num(ρ(r)) ∧ t < s < r
∧is_mem_op(ρ(s)) ∧ ¬same_gid(ρ(t), ρ(s)) ∧ same_loc(ρ(t), ρ(s))

Figure 6.14: Non-Atomic Actions and Lock Predicates

The complete HATRMM model contains locks, which are the NR, NW, L and UL actions
(Fig. 6.2). The group of functions get_some gets a field whose name is some in a memory
event, while the predicates same_some check if two memory events in the field some have the
same value. Some of these function definitions are found in Sec. 6.3.

The example (nac) in Fig. 6.15 provides an example execution containing non-atomics.
For the program piece on the left, two groups of non-atomic reads and writes, with different
group-IDs (d and d′), are shown in the middle column. They both have two group members.
NW writes 1 to memory and NR reads the value. The right column shows a simplified execution
diagram of the middle-column execution without mentioning the locks. In any execution,
the position indices of the non-atomics in each group increase from 1 to 2 following the time
flow. There is only one rf edge from the write to the read having both position indices equal
to 2 (the total number of group members).
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(nac)
lock k lock k
a :=n x x :=n [1,1]
unlock k unlock k

L k L k
NRdx,1,2 NWd

′
x,1,1,2

NRdx,2,2 NWd
′
x,1,2,2

UL k UL k
NRdx,1,2
NRdx,2,2

NWd
′
x,1,1,2

NWd
′
x,1,2,2

rf

Figure 6.15: An Example Execution with Non-Atomics and Locks

The validity predicates on locks (L and UL) are split into single-threaded behavioral and
multi-threaded behavioral predicates. The predicates lock_dep and unlock_dep handle the
single-threaded behaviors, which disallow the execution of memory operations crossing locks
out of order. The predicate locks take an execution and look at every L to guarantee that it
is properly executed. Their core definition is the lock_prop predicate. There are two cases
in lock_prop. First, a lock L with key k can exist without any ULk in the same thread later
than the lock in an execution, provided that no other L with the same key exists after L.
Second, a lock L with key k happens at time s, and a ULk in the same thread happens at a
later time t (after s). Between times s and t, no Lk can happen, nor can an unlock happen
twice on k without a lock on k in between. The predicate race_def (Fig. 6.14) defines when
a race can happen. An execution results in race if, between a non-atomic operation’s first
action time (when i = 1, time t) and last action time (when i = n, time r), there exists a
time s that is a memory operation that has a different group-ID (or action-ID if it is atomic)
than the actions at s and t, and they are all accessing the same memory location.
Atomic Memory Operations and Fences. HATRMM builds a hybrid model that is
equivalent to the RC11 without having the extra rlx atomics for machine-level instructions
as compilation targets; as well as having the NO-THIN-AIR constraint from the IMM model
(with a fix on its ctrl relation) for rlx atomics. The whole concurrency model is split
into two parts: (1) an execution model captures the single-threaded out-of-order execution
behaviors; (2) a memory operation scheduling model describes the memory event interaction
across different threads. A side effect of the hybridization in HATRMM is to enable directly
construct an operational semantics (Sec. 6.24). Another advantage of the rearrangement is
we can now develop a new program order (po) relation to substitute for sb relations, so that
we have a more precise single-threaded dependencies than the traditional sb relations. We
will describe these atomics and fences in the three paragraphs below as the single-threaded
execution model, the memory operation scheduling model, and the sc atomics having both
single-threaded and multi-threaded behaviors.
We first discuss some atomics and fences performing only single-threaded behaviors.
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This group includes memory operations (R, W and RW) and memory fences (F), which are
ordered by rlx, acq, rel, and acqrel. Among these atomics, the rlx atomics does not
have a specific predicate restricting its behavior, while atomics with the volatile flag set
follow the constraint of the volatile model. We named the ordering behaviors allowed by the
single-threaded execution model as the program order relation (po). We view the po relation
as the union of all single-threaded dependent relations, such as dd and the relations defined
in this paragraph.

(acq-d)
y:=rlx 1 a :=acq x//1
x:=rel 1 b :=rlx y//1

Racqx,1Wrlxy,1

Rrlxy,1Wrelx,1

T1 T2

sbsb swrf

Wrlxy,1

Racqx,1

Wrelx,1

Rrlxy,1

T1 T2

rel
rf
rf

acq

Figure 6.16: An Example Execution with acq/rel Orderings

To deal with these atomics and fences, previous models employed a concept named
synchronized-with relations (sw), which are special rf relations that occur mostly between
rel writes and acq reads (an sw relation can also happen between locks and unlocks). The
behaviors of rel writes and acq reads are usually described by sw. If an acq read loads from
a rel write, there is an sw edge between the two, and all the happens-before events before
the writes are observed by the events after the read. In example acq-d in Fig. 6.16, the read
from y must observe 1 because once the acq read from x sees the value from the write to
x, the write to y must have already happened. In HATRMM, we replaced sw with several
single-threaded constraints on different atomics and fences, as well as the global memory
operation scheduling constraint described in the next paragraph. Here we focus on the
single-threaded constraints proposed by different atomics and fences. For each atomic oper-
ation with different ordering in an execution, we impose an additional dependent constraint
between the operation and other operations in the same thread besides the existing data
dependency (dd). For example, an execution in HATRMM for the example acq-d is listed
on the right in Fig. 6.16. In threads T1 and T2, there are additional dependency relations,
named rel and acq, connecting rel write and acq read to other operations, respectively.
We also discard the sw relation completely.
The reason for discarding sw relations and implementing atomics and fence behaviors in

dual modeling (single-threaded and multi-threaded memory operation scheduling modelings)
is that we want the model to reflect the essence of the real-world conceptual implementation
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of these operations. Essentially, there is no such thing as locking mechanism for pairs of
acq reads and rel writes as seemingly suggested by sw relations. For example, there is no
guarantee that the acq read in acq-d must read the value from the rel write. It actually
can read any value occurring in the two threads. One possible value for the read is the initial
value 0. Based on a language developer’s perspective, the behaviors of these kinds of acq
and rel operations (including acqrel atomics and fences) are side-effects of multi-threaded
memory operation scheduling behaviors and constraints on the po relation. HATRMM is
designed to respect the perspective. We show two example predicates for defining single-
threaded constraints for these atomics and fences in Fig. 6.17 (P.a).

(P.a)

C++/LLVM Documentations HATRMM Predicates
Acquire
Read
Predicate

no reads or writes in the
current thread can be reordered
before this acquire read.

acqr(T, ρ, sb) ,
{(s, t) ∈ T 2∩ sb |is_read(ρ(s))

∧is_acq(ρ(s)) ∧ is_mem_op(ρ(t))}
Volatile
Model
Predicate

The order of volatile operations is fixed.
The order of volatile operations relative
to non-volatile ones can change.

vol_dep(T, ρ, sb) ,
{(s, t) ∈ T 2∩ sb |

is_volatile(ρ(s)) ∧ is_volatile(ρ(t))}

(P.b)

Supposed C++/LLVM Documentations HATRMM Predicates
Modifi-
cation
Order

For any location, the orders of
writes oservered by reads in
any two threads are the same.

mo(T, ρ) , {(s, t) ∈ T 2|
a < b ∧ same_loc(ρ(s), ρ(t))
∧is_write(ρ(s)) ∧ is_write(ρ(t))}

Known
Fact
Order

For any operation t in a thread,
the known-fact order is either
any writes happen-in-time
before t in the thread,
or any write known-fact-ordered
before the write that a read
(happen-in-time before t) reads from.

kf(T, ρ, rf) , {(s, t) ∈ T 2|
s < t ∧ same_thread(ρ(s), ρ(t))
∧is_write(ρ(s)) ∧ is_mem_op(ρ(t))}

∪{(s, t)|∃s′ t′. s′ < t ∧ same_thread(ρ(s′), ρ(t))
∧is_read(ρ(s′)) ∧ is_mem_op(ρ(t)) ∧ (t′, s′) ∈ rf
∧(s, t′) ∈ kf(T, ρ, rf)}

Coherence
Order
Constraint

Not exist a write-read pair (s,t),
where the write s is non-immediately
know-fact-ordered (extending with the
modification-ordered of writes)
of the read t.

non_co(T, ρ, rf) ,
{(s, t) ∈ rf|(s, t) ∈ (kf(T, ρ, rf) ↑ mo(T, ρ))| 6=imm}

non_co(T, ρ, rf) ≡ ∅

Figure 6.17: Memory Model Documentation and Implementation

The table in Fig. 6.17 shows two example constraints defined in HATRMM, which are
related to the definitions of the constraint models described in the C++/LLVM documen-
tations (the middle columns). The first table entry defines the behaviors of acq reads. The
constraint (acqr) places edges between an acq read and any its sequenced-after memory
operations (reads or writes). These edges restrict the evaluation order in an execution and
they are included in po. The constraint also models the behaviors of acq reads to exactly re-
flect the C++ definition for the atomics. The second table entry above unveils the predicate
for capturing the volatile model in HATRMM: it places constraint edges between any two
flagged volatile memory operations. The LLVM description of the volatile model is listed in
the middle. The po order is defined to be the union of all these single-threaded constraints.
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The constraints for restricting other atomics and fences are in Fig. 6.18.

Intra-Fence Relation: ff_dep(T, ρ, sb) , {(s, t) ∈ T 2∩ sb |¬is_mem_op(ρ(s)) ∧ ¬is_mem_op(ρ(t))}
Acquire Fence Relation: acqf(T, ρ, sb) , {(s, t) ∈ T 2∩ sb |is_read(ρ(s)) ∧ is_acq(ρ(t)) ∧ is_fence(ρ(t))}

∪{(s, t) ∈ T 2∩ sb |is_acq(ρ(s)) ∧ is_fence(ρ(s)) ∧ is_mem_op(ρ(t))}
SeqCst Read Relation: seqr(T, ρ, sb) , {(s, t) ∈ T 2∩ sb |is_read(ρ(s)) ∧ is_sc(ρ(s)) ∧ is_mem_op(ρ(t))}

∪{(s, t) ∈ T 2∩ sb |is_write(ρ(s)) ∧ is_sc(ρ(t)) ∧ is_read(ρ(t))}
SeqCst Write Relation: seqw(T, ρ, sb) , {(s, t) ∈ T 2∩ sb |is_mem_op(ρ(s))∧ is_sc (ρ(t)) ∧ is_write(ρ(t))}

∪{(s, t) ∈ T 2∩ sb |is_write(ρ(s)) ∧ is_sc(ρ(s)) ∧ is_write(ρ(t))}

Figure 6.18: Single-Threaded Behavioral Predicates

In Fig. 6.18, the ff_dep requires that the relative execution order for different fences is the
same as the one given by sb. Some sc atomics also contain some single-threaded behaviors
in the system. We split their single-threaded behaviors and their multi-threaded ones, and
put the single-threaded ones as predicates showing in Fig. 6.18.
We then focus on themulti-threaded memory operation scheduling model without

considering SC atomics. An execution ζ in HATRMM has an input relation rf, which
contains write-read pairs that might cross threads. The appearance order of cross-threaded
write-read pairs in an rf is constrained by the scheduling model, which is similar conceptually
to a synchronized message sending/receiving model in a distributed system. In this sense,
the scheduling model is just a particular synchronization strategy in a message sending-
receiving model. We first see two important concepts useful in the section. R ↑ R′ is defined
as {(s, t)|(s, t) ∈ R ∨ (∃(s′, t) ∈ R ∧ (s, s′) ∈ R′)}, which represents a form of extending
the relation R with R′. R(T, ρ)|6=imm is the collection of all non-immediate edges for the
same locations in R with at least input arguments T and ρ as {(s, t) ∈ R(T, ρ)|∃s′.(s, s′) ∈
R(T, ρ) ∧ (s′, t) ∈ R(T, ρ) ∧ same_loc(ρ(s), ρ(t)) ∧ same_loc(ρ(s′), ρ(t)) ∧ is_read(ρ(t))}.
We named the HATRMM multi-threaded memory operation scheduling model as the

coherence order (co), which originated from RC11’s [3] coherence consistent constraint. In
fact, the memory event ordering behaviors allowed in the coherence order matches exactly
what is allowed by the RC11 coherence constraint (replacing the sb relation with the po

relation shown in the next paragraph). HATRMM’s co order is defined by the predicates
shown in the above table based on two additional relations: modification (mo) and known-fact
orders (kf). For memory writes accessing a memory location in an execution, mo provides
a global total order on the writes. The kf relation is basically an HATRMM version of the
traditional happens-before relation (hb), defining the happens-before writes for any memory
operation in an execution. The difference is that the traditional hb is based on sb relations,
while kf is based on the time point orders (<, happens-before in-time relations). We list
the relations and the co order constraint on the right of the table. The co order is defined
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by collecting all "bad behaviors" (non_co) and setting the collection to be empty.

(no)

Wrlxx,2
Wrlxx,1

Wrely,1
Racqy,1

Wrelz,1
Racqz,1

Racqx,2

T1 T2 T3 T4

rf

rf

rf8

rel

rel+acq

acq

mo

(yes)

Wrlxx,2
Wrlxx,1

Wrely,1
Wacqy,2

Wrelz,1
Racqz,1

Racqx,2

T1 T2 T3 T4

rf

rf4

rel

rel+acq

acq

mo

mo

Figure 6.19: An Example Execution Showing Ordering Multi-threaded Behaviors

In RC11, coherence constraint is defined as an acyclic property of a relation graph. On the
other hand, The HATRMM co order is defined only based on finding bad candidate write-
read pairs in rf. We need to check if a read loading a write value that is the read’s "old value",
which is defined as the non-immediate extended known-fact ordered (kf(T, ρ, rf) ↑ mo(T, ρ))
of the read. We explain this by the example execution diagrams in Fig. 6.19. For each read
in a write-read pair in rf, we create the idea of old write values. For any read t, such that
(s, t) in the kf relation, the write in s is an old write value if we can find a intermediate
write at s′ between s and t, such that they have the same locations and (s, s′) and (s′, t) also
in the extended known-fact relation (kf ↑ mo). For any write-read pair, it is invalid for the
read to load an old write value. For example, there is a chain of po and rf edges starting
from the write (to x) in T1 to the read (from x) in T3 in case (no) in Fig. 6.19. All writes
to x in (no) have edges connected to the read from x. Thus, the write to x in T4 is the old
value of the read from x because it happens-in-time before the write to x in T1. Thus, the
execution does not satisfy the co order. On the other hand, we create a special operator ↑
here because mo is not transitive. The ↑ operator only extends the s write in the (s, t) pair
in kf to the mo-ordered write proceeding s, i.e. if (s, t) is in kf and (s′, s) is in mo, then (s′, t)

is in kf ↑ mo. For example, case (yes) is a valid execution because there is only a mo edge
connecting the two writes to y. Thus, the write to x in T1 in (yes) does not have an edge in
kf ↑ mo to the read from x, and the write in T4 is not an old write value in (yes).
In Fig. 6.17 (P.b), we propose descriptions of different components in the co order using

English words, since the C++/LLVM documentation lacks them. These descriptions can
function as the standard descriptions for the documentation. Another advantage of the
rearrangement of co is that the constraint is now highly related to each rf edge, and it can
then be easily written as a model checking algorithm for checking rf edges. Finally, the
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sc_fence_in_mid(T, ρ, s, t) , (∃t′.s < t′ < t ∧ {s, t, t′} ⊆ T ∧ is_sc_fence(ρ(t′)))
write_in_mid(T, ρ, s, t, x) , (∃t′.s < t′ < t ∧ {s, t, t′} ⊆ T ∧ is_write(ρ(t′)) ∧ same_loc(ρ(t′), x))

sc_read_in_mid(T, ρ, s, t, x) , (∃t′.s < t′ < t ∧ {s, t, t′} ⊆ T ∧ is_sc_read(ρ(t′)) ∧ same_loc(ρ(t′), x))

sr(T, ρ, rf) ,
(s, t) ∈ T 2 ∧ s < t ∧ is_write(ρ(s)) ∧ is_sc_fence(ρ(t)) ∧ x = get_loc(ρ(s))
∧¬sc_fence_in_mid(T, ρ, s, t) ∧ ¬write_in_mid(T, ρ, s, t, x) ∧ ¬sc_read_in_mid(T, ρ, s, t, x)

⇒ (s, x, t) ∈ sr(T, ρ, rf) (∗ scBase ∗)
| (s, x, t′) ∈ sr(T, ρ, rf) ∧ t′ < t ∧ t ∈ T ∧ is_sc_fence(ρ(t)) ∧ x = get_loc(ρ(s))
∧¬sc_fence_in_mid(T, ρ, t′, t) ∧ ¬write_in_mid(T, ρ, t′, t, x) ∧ ¬sc_read_in_mid(T, ρ, t′, t, x)

⇒ (s, x, t) ∈ sr(T, ρ, rf) (∗ scInduct ∗)
...

cw(T, ρ, rf) , {(s, x, t)|(s, t) ∈rf ∧x = get_loc(ρ(s))} ∪ sr(T, ρ, rf)

non_sc(T, ρ, rf) ,
{(s, t)|(s, t) ∈ rf ∧ (∃t′ ∈ T.is_sc_write(ρ(t′)) ∧ same_loc(ρ(s), ρ(t′)) ∧ s < t′ < t)}
∪{(s, t)|(s, t) ∈ rf ∧ (∃t′ ∈ T.is_sc_fence(ρ(t′)) ∧ s < t′ < t ∧ (s, get_loc(ρ(s)), t′) /∈ cw(T, ρ, rf))}
∪{(s, t)|(s, t) ∈ rf ∧ (∃t′ ∈ T.is_sc_read(ρ(t′)) ∧ s < t′ < t ∧ (s, get_loc(ρ(s)), t′) /∈ cw(T, ρ, rf))}
∪{(s, t)|(s, t) ∈ rf ∧ (∃t′ ∈ T.s 6= t′ ∧ (t′, get_loc(ρ(s)), t) ∈ cw(T, ρ, rf))}

Figure 6.20: Multi-Threaded Communication Predicates for SC Atomics

multi-threaded order proposed here is modular. For example, one can replace co with the
sc atomics order appearing in the following paragraph so that all valid executions admit
sequential consistency.

The third piece of the atomic model in HATRMM is the SC model, which described
in the previous paragraphs does not include the sc atomics behaviors. In HATRMM, we
use an sc atomic operation at a time t to provide an expensive locking mechanism that
imposes a global consensus of the value for a location across all threads. The definition of
the sc atomics behaviors is constructed with a non_sc bad behavior set. The details are in
Fig. 6.20. Here, we explain it by the example executions in Fig. 6.21.

(sc-f)

Wrlxx,2
Wrlxx,1

Wrlxy,2
Wrlxy,1

T1 T2 T3 T4

Fsc

rf’

rf’
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Fsc

T1 T2 T3 T4
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rf’
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(sc-fr)

Wrlxx,2
Wrlxx,1

Wrlxy,2
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Rscy,1

rf’

rf’
rf’ rf

Figure 6.21: Example Executions of sc Atomics
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Every sc atomic operation or fence has the effect of making the values for a memory
location in different threads agree. An sc read or write consenses the values for a particular
location, while an sc fence consenses the values at every location. The effect is explained
by the execution sc-f in Fig. 6.21. For locations x and y, the sc fence consenses their
values from the writes having the latest time points before the fence. Thus, it picks the
values from the write to x in T1 and the write to y in T4 because they happen-in-time after
the other two writes. This procedure is indicated by the rf’ edges in the diagram, which
indicate an rf-like relation between the writes and the sc fence but they are not real rf
edges. In HATRMM, we define the rf’ relation for every sc fence and read, described as
the cw relation in Fig. 6.20.
The sc-r execution highlights how we utilize rf’ to locate error relations for sc atomics

in the non_sc constraint. There is no write between the read in T2 and the sc fence. Thus,
the read must load the same value (of x) as the fence observes, because the fence consenses
the value for x across every thread. The two rf’ edges and the rf edge between the write in
T1 and the read in T2 form a nice triangle diagram, meaning that the fence reads the write
value (T1), and the read (T2) happens-in-time after the fence without any write in between,
so the read must load from the write. On the other hand, an rf edge between the read
and write having the value 2 is an error because the read does not correspond to the write
value consensed by the fence; and there is no write between the read (T3) and the fence.
The non_sc set collects all of the invalid rf edges in an execution. Then a valid execution
requires non_sc to be empty. The sc-fr execution in Fig. 6.21 shows that the rf’ relation
is also transitive. If there are two consecutive sc atomics (the sc fence and read) without
any writes in between, the consensing value of the latter sc atomic operation (the read)
must be the same as the former one.
We have stated all of the important single-threaded and multi-threaded memory operation

and fence behaviors of HATRMM. In the following section, we will put these pieces together
and show some theorems to relate HATRMM to the previous works.

6.3.4 Putting it All Together

We have described the interesting behaviors of HATRMM. Here we put all of the pieces
of HATRMM together in Fig. 6.22. We define the program order of an execution to be
the union all single-threaded constraints (po in the figure). We define single-threaded
consistency as the predicate always_prop. This means for each po relation for a thread,
there is no edge from a later time point pointing to an earlier one (po ∪ < is irreflexive).
The definition of coherence consistency is that the set non_co is empty, which means
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single_order(T, ρ, sb) , acqr(T, ρ, sb) ∪ acqf(T, ρ, sb) ∪ seqr(T, ρ, sb) ∪ seqw(T, ρ, sb) ∪ ...
po′(T, ρ, sb, dd) , dd ∪ control_dep(T, ρ, sb) ∪ call_dep(T, ρ, sb) ∪ single_order(T, ρ, sb) ∪ vol_dep(T, ρ, sb)

po(T id, T, ρ, sbs, dds) ,
⋃

tid∈Tid
po′(T, ρ, sbs(tid), dds(tid))

always_prop(T id, T, ρ, sbs, dds, rf) , ∀(s, t) ∈ (rf ∪
⋃

tid∈Tid
po′(T, ρ, sbs(tid))).s < t (single-threaded consistency)

sat(T id, Loc,Key, T, ρ, sbs, dds, rf) , well_formed(T id, Loc, T, ρ, sbs, dds, rf) ∧ always_prop(T id, T, ρ, sbs, dds, rf)
∧non_co(T, ρ, rf) ≡ ∅ (coherence consistency)
∧non_sc(T, ρ, rf) ≡ ∅ (sc consistency)
∧locks(T,Key, ρ) (lock consistency)

Figure 6.22: HATRMM Consistency

that the execution satisfying the property follows the co order we described in Sec. 6.3.3.
We also define the sc consistency to mean that the set non_sc is empty, which indicates
as well that the execution satisfying the property has no behavior violating the sc atomic
constraints described in Sec. 6.3.3. The well_formed predicate includes the assumptions
that we make for an execution, as well as lock consistency are defined to include lock
behaviors. We define HATRMM consistency by the sat predicate. We name a valid
execution in HATRMM to be one that is HATRMM consistent.
We now show that HATRMM is equivalent to other models, namely RC11 and IMM

[3, 4]. RC11 has four consistency requirements for an execution: COHERENCE, SC, ATOMIC
and NO-THIN-AIR. IMM also has these four requirements. The ATOMIC consistency is for
RMW atomics and assumes that an RMW operation is represented by a read immediately
followed by a write. HATRMM mainly focuses on the correctness of the compiler steps
happening at the imperative language level (e.g. compiler optimizations in LLVM), so we
assume RMW atomics behavior atomically; thus, the consistency is satisfied automatically.
We use the COHERENCE and SC consistencies in RC11 for proving HATRMM equivalence. The
NO-THIN-AIR consistency in RC11 is too strong, and the equivalent proof is based on the
NO-THIN-AIR consistency in IMM with a strengthened ctrl relation (Sec. 6.3.2). Finally, we
also replace all the sequenced-before (sb) relations appearing in these consistencies with the
program order (po) relations. We call the target equivalent model as RC11+IMM model,
and a valid execution in it RC11+IMM consistent. We present the following two theorems
for linking the HATRMM and RC11+IMM models.

Theorem 6.1 (soundness). For any valid execution sat(Tid, Loc, T, ρ, sbs, dds, rf) in HA-
TRMM, it is RC11+IMM consistent.

Theorem 6.2 (completeness). For any valid execution that is RC11+IMM consistent, it is
HATRMM consistent.

HATRMM is a hybrid model including a clear subset satisfy the DRF-SC property.
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This subset acts as the language primitives for imperative languages. The remaining rlx

atomics/non-atomics represent machine-level concurrency. We have shown that we have a
clear subset in HATRMM satisfying DRF-SC as follows:

Theorem 6.3 (HATRMMDRF-SC). HATRMM executions with memory operations having
at least rel/acq orderings satisfy DRF-SC.

We now show the proofs of these theorems step by step in the following paragraphs.

The Target Model and the First Lemma. Now we have discussed all aspects of HA-
TRMM. We have constructed them in Isabelle/HOL. To accomplish equivalence proofs, we
want to link HATRMM with other models. The target model is RC11 [3] with the OUT-OF-
THIN-AIR consistency of the IMM model [4]. For all constraints defined in the two models,
we need to replace the sb relation with the po definition from Fig. 6.22. In Fig. 6.23, we
show the necessary predicates and constraints in the RC11 and IMM models. The w O
appearing in some elements means that the operation has at least a memory ordering of O.
The Q represents memory operations: R represents reads’ W represents writes’ F represents
fences; and E represents operations and fences.

mox(T, ρ) , {(s, t) ∈ T 2|a < b ∧ same_loc(ρ(s), ρ(t)) ∧ is_write(ρ(s)) ∧ is_write(ρ(s))}

mo ,
⋃

x∈Locs
mox rs , [W]; po|?loc; [W

wrlx]; (rf; [RMW])* sw , [Qwrel]; ([F]; po)?; rs; rf; [Rwrlx]; (po; [F])?; [Qwacq]

rb , rf−1; mo eco , (rf∪ mo ∪rb)+ hb , (po ∪sw)+

scb , po ∪ po| 6=loc; hb; po| 6=loc ∪ hb|loc ∪ mo ∪ rb pscbase , ([E]sc ∪ [F]sc; hb); scb; ([E]sc ∪ hb; [F]sc)
pscF , [F]sc; (hb ∪ hb; eco; hb); [F]sc psc , pscbase ∪ pscF detour , ((co \ po); (rf \ po)) ∩ po

Figure 6.23: Parts of the Relations in RC11/IMM/SRA

In Figure 6.23, we first define the modification order at a specific location x as mox, which
respects the modification order definitions in RC11/IMM. Based on mo, the first lemma
we want to prove is that HATRMM satisfies the modification order printed in the C++11
memory model documentation [156]. HATRMM clearly satisfies the property because of the
requirement of coherence order (non_co ≡ ∅). We list the lemma and proof below:

Lemma 6.1. For any valid execution sat(Tid, Loc,Key, T, ρ, sbs, dds, rf) in HATRMM,
for any location x ∈ Loc, {s, t, s1, t1} ⊆ T , (s, t) ∈ rf|x, (s1, t1) ∈ rf|x, t and t1 having
events from the same thread, t < t1, then s = s1 or (s, t1) ∈ mox(T, ρ).

Proof. We show here the proof by contradiction. Essentially, the only possible case to violate
the lemma is to have two write-read pairs in rf as (s, t) and (s′, t′), such that the reads in t
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and t′ are from the same thread (same_thread(ρ(t), ρ(t′))), t and t′ access the same location
same_loc(ρ(t), ρ(t′)), s < s′ but t > t′. Let’s assume in the above case that t > t′. Now, t
happens-in-time later than t′, but s happens-in-time earlier than s′. Since the reads at t and
t′ are in the same thread, the write in the (s′, t′) edge, which is s′, has a known-fact edge with
the read t according to the definition of kf in Sec. 6.3.3. Thus, we can find the write at s to be
in the non-immediate extended known-fact set of t, as (s, t) ∈ (kf(T, ρ, rf) ↑ mo(T, ρ))|6=imm.
Thus, the (s, t) edge violates the co order (because non_co is not empty) and the execution
is not a valid one. Hence, the lemma is valid.

QED.

The Partial DRF-SC Theorem. Here we focus on the Partial DRF-SC Theorem 6.3.
The content of the theorem states that any executions containing no rlx atomics (also no
non-atomics that are set up to satisfy the same constraints of rlx ordering) satisfies the
DRF-SC property. The actual proof of the theorem is based on the fact that RC11 satisfies
the DRF-SC property. If we prove that the subset of HATRMM (containing executions
without rlx atomics) satisfies the constraints in RC11, then the subset also satisfies the
DRF-SC property. Essentially, the proof is to show that the HATRMM subset is also an
RC11 model by proving that it satisfies all constraints in RC11. Here we show the core part
of the proof. We show that the HATRMM subset satisfies the SRA-coherence property in
the SRA model [110], which is a subset of the RC11 model. The SRA model also satisfies
the DRF-SC property. In other words, if we can show that the HATRMM subset satisfies
the SRA-coherence property, then the subset is also an SRA model and it also satisfies the
DRF-SC property. Before we show the main theory, we first show the useful lemma below:

Lemma 6.2. If < is a linear total order, R ∪ < and R′ ∪ < are irreflexive, and all elements
in < cover the elements in R and R′; then R ∪R′ is acyclic.

Proof. Since R ∪ < is irreflexive, it means that for every (s, t) ∈ R, s < t. The same fact
holds for every pair (s′, t′) ∈ R′. R ∪ R′ being acyclic means that (R ∪ R′)+ is irreflexive.
This means that there exists a path s1, ..., sn, such that (s1, s2),...,(sn−1, sn) and (sn, s1) are
all in (R∪R′)+. These pairs all appear in either R or R′. Obviously, (s1, s2),...,(sn−1, sn) are
all in either R or R′, so that we have the following cases: s1 < s2,...,sn−1 < sn. Since < is
a linear total order, through the above chain we can conclude that s1 < sn. Without losing
generality, let’s assume that (sn, s1) ∈ R, so sn < s1. This contradicts the fact that s1 < sn.
Thus, R ∪R′ is acyclic.

QED.
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The SRA-coherence property is defined as
⋃

tid∈Tid
sbs(tid)∪ mo∪ rf is acyclic. Let’s define

a syntactic sugar for
⋃

tid∈Tid
sbs(tid) as sbs We state our main theory to link HATRMM with

SRA below:

Theorem 6.4. For any valid execution sat(Tid, Loc,Key, T, ρ, sbs, dds, rf) in HATRMM,
and every memory operation action in ρ has at least acq or rel orderings, then sbs∪mo∪rf
is acyclic.

Proof. From the validity execution property in HATRMM, it is obvious that the union of the
mo relation and the natural number order < on T is irreflexive. This is true for rf as well, as
rf ∪ < is irreflexive. From Lemma 6.3.4, we infer that mo∪ rf is acyclic in HATRMM. The
only possibility of violating the acyclicity of sbs ∪ mo ∪ rf in the conclusion of the theorem
is to have a series of time points s1, ..., sn, such that (s1, s2) ∈ mo∪rf,...,(sn−1, sn) ∈ mo∪rf,
but (sn, s1) ∈ sbs.
We can get several facts from the above possibility. First, since (s1, s2) ∈ mo ∪

rf,...,(sn−1, sn) ∈ mo∪rf, then s1 < s2,...,sn−1 < sn. Thus, s1 < sn. Second, if (sn, s1) ∈ sbs,
since sbs is just a collection of all single-threaded sequenced-before relations, then the events
in sn and s1 are from the same thread as same_thread(ρ(s1), ρ(sn)). Now the proof becomes
to show that the assumptions (sn, s1) ∈ sbs and s1 < sn lead to a contradiction.
We do a case analysis of the different possibilities of events at s1 and sn. It is obvious that

the events at s1 and sn cannot be sc atomics or fences. If ρ(s1) and ρ(sn) are sc atomics,
then there is a po relation between the two to require that any sequenced-before sc atomics
never happen-in-time after a sequenced-after event, while any sequenced-after sc atomics
never happens-in-time before a sequenced-before event. Thus, if the two events at s1 and sn
are sc events, then it is a contradiction to have (sn, s1) ∈ sbs and s1 < sn. Although there
are other interesting cases, the four major cases to consider are when ρ(s1) and ρ(sn) are
acq reads and rel writes. Let’s analyze them one by one:

• The two events at s1 and sn are rel writes. Since (sn, s1) ∈ sbs, according to the relw
definition in HATRMM, we have a rel edge from sn to s1. Thus, an execution must
make sn happen-in-time earlier than s1. This is contradicted by the fact that s1 < sn.

• The two events at s1 and sn are acq reads. Since (sn, s1) ∈ sbs, according to the acqr
definition in HATRMM, we have an acq edge from sn to s1. Thus, an execution must
make sn happen-in-time earlier than s1. This is contradicted by the fact that s1 < sn.

• ρ(s1) is a rel write and ρ(sn) is an acq read. Since (sn, s1) ∈ sbs, according to the
acqr and relw definitions in HATRMM, we have an acq edge from sn to s1 and a rel
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edge from sn to s1. Thus, an execution must make sn happen-in-time earlier than s1.
This is contradicted by the fact that s1 < sn.

• ρ(s1) is an acq read and ρ(sn) is a rel write. Recall that (s1, s2), ..., (sn−1, sn) are all
in mo∪ rf. ρ(s1) is a read means that s1 does not join any relation in mo and it might
be the second event in a pair (st, s1) in rf. Let’s assume that st is a pair among these
sequence (s1, s2), ..., (sn−1, sn). First, st cannot be sn, since if st is sn, then (sn, s1) ∈ rf

so that sn < s1, which is contradicted by the fact that s1 < sn. Since we also assume
that s1 < sn here, it means that the read at s1 happens-in-time before the write at sn.
We show that it is impossible to have a relation in mo ∪ rf; between the events at s1

and sn, because if there is a relation, there will be a chain of time points sn, sn+1, ...., st,
such that (sn, sn+1) ∈ mo,...,(st−1, st) ∈ mo and (st, s1) ∈ rf. However, in this case, we
can see that sn < sn+1,...,st−1 < st and st < s1. Thus, sn < s1 is contradicted by the
fact that s1 < sn.

Hence, based on the case analysis above, we have shown that sbs ∪ mo ∪ rf is acyclic in
the subset of HATRMM without rlx atomics.

QED.

The Soundness of HATRMM with Respect to RC11+IMM. Here we show part
of the soundness proof as Theorem 6.1. The main idea is to show that any valid HATRMM
execution satisfies the constraints in RC11+IMM (with the replacement of sb by po). These
two models both contain four major consistency constraints for a valid execution to satisfy.
They are COHERENCE, ATOMICITY, SC and NO-THIN-AIR. The ATOMICITY con-
straint makes sure that all RMWs in an execution are atomic, since the two models assume
that RMWs are treated as reads following by writes. In the current version of HATRMM,
we assume that RMWs are treated as atomic operations to begin with, so HATRMM auto-
matically fulfills this constraint. The SC constraint defines the behaviors of sc atomics,
and it is very complicated. We omit the proof here, but it can be found in total in the
Isabelle implementation. Here we mainly focus on showing that valid executions satisfy the
COHERENCE and NO-THIN-AIR constraints.
First we deal with the NO-THIN-AIR constraint, which is defined in RC11 as sb∪rf being

acyclic. In IMM, it is rewritten as the acyclicity of the union, named ar, of many different
dependencies, including the detour, psc, and rf. The soundness proof of HATRMM takes
IMM’s NO-THIN-AIR constraint by making the ctrl stronger, as described in Sec. 6.3.2.
Essentially, the ar relation (with the stronger ctrl) can easily be translated into the formula
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po ∪ rf. Hence, the NO-THIN-AIR constraint for the soundness proof of HATRMM is as
follows:

Theorem 6.5. For any valid execution sat(Tid, Loc,Key, T, ρ, sbs, dds, rf) in HATRMM,
po ∪ rf is acyclic.

Proof. Since po and rf satisfy the property that po ∪ < and rf ∪ < are irreflexive, po ∪ rf
is acyclic by Lemma 6.2.

QED.

Now, we look at the COHERENCE constraint. In RC11, it is defined as hb; eco? (eco
and hb in Fig.6.23). The extended-coherence order (eco) is the transitive closure of the
union of rf, mo and reads-before (rb in Fig.6.23). The happens-before (hb) is the transitive
closure of the po and synchronized-with (sw) sets. Essentially, the COHERENCE constraint
represents the coherence order in HATRMM (Sec. 6.3.3). We show the theorem as follows:

Theorem 6.6. (RC11 COHERENCE constraint for HATRMM consistency). For a valid
execution sat(Tid, Loc,Key, T, ρ, sbs, dds, rf) in HATRMM, hb; eco? is irreflexive.

Proof. First, hb is irreflexive because hb is defined as (po∪sw)+; and sw is essentially a part
of rf (if we omit fences). So we have shown that po ∪ rf is acyclic in Theorem 6.5. Thus,
po ∪ sw is acyclic and hb if irreflexive.
The other part of the proof is based on a case analysis of the hb edges. Let’s as-

sume an event happening at s in the middle of a sequence of hb edges, such that
(s1, s2), ..., (si, s), ..., (sj−1, sj) are all in hb. Obviously, we can also say that s1 < s2,...,si < s.
Another way to understand this is that for s, if we cannot make a pair (s, t) in eco such
that we cannot link hb with eco through (s, t), then we are done because of the acyclicity
of the hb. The only possibility of a contradiction with the conclusion of the proof is that for
a pair (s, t) in eco, there is also an edge (t, sk) in eco, and (sk, s) ∈ hb.
Let’s do a little analysis of the eco relation. It is defined as (rf ∪ mo ∪ rb)+. Obviously,

every pair (t, t′) in eco accesses the same location. If s is a read, then the only possibility
for a pair (s, t) to exist in eco is if (s, t) ∈ rb. In this case, t is a write and the read at s
and write at t access the same location. Actually, rb is not a relation that matches the flow
of the order <, so t might happen-in-time earlier than s. It is possible that there is a path
(t, t1), ..., (tn−1, tn), (tn, sk) in eco and (sk, s1) ∈ hb.
We now show that it is impossible for the path to exist. We first show that every time

point t1, ..., tn and sk happen-in-time after t. Let (tl, tm) be one of the pairs in the path
(t, t1), ..., (tn−1, tn), (tn, sk). If (tl, tm) is from mo, then tm happens-in-time later than tl; if it
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is from rf, tm also happens-in-time later than tl. If (tl, tm) is from rb, then tm might happen-
in-time before tl; but it must happen-in-time after t, because the event at t is a write, and
that at tl is a read, while that at tm is a write. In the path (t, t1), ..., (tn−1, tn), (tn, sk),
the prefix before (tl, tm) must be a mo pair, and there must also be an rf pair right before
(tl, tm); so t happens-in-time before the write (let’s say it is t′l) that the read at tl loads
from. The definition of rb is for the read tl to look for the write happening-in-time after t′l,
so t is never a candidate for tm. Thus, t must happen-in-time before any event in the path
(t, t1), ..., (tn−1, tn), (tn, sk) except t itself.
We now show that (sk, s) never appears in hb. Let’s assume that (sk, s) does appear in

hb. First, let’s say that the event at sk is a write. In this case, Since t, sk and s access the
same location, (t, sk) ∈ mo. Recall that s is a read, and (s, t) is in rb. Thus, the read at s
loads the write (Let’s assume that it is t′) even happening-in-time before t and (t′, t) ∈ mo,
so (t′, sk) ∈ mo. With the fact that (sk, s) ∈ hb, according to the non_co set definition,
(t′, s) is an element in the set, and so the execution does not follow the HATRMM co order.
Now let’s say that the event at sk is a read. Notice that sk is also an element in the path
(t, t1), ..., (tn−1, tn), (tn, sk). Thus, (tn, sk) ∈ rf, and the tn event is a write accessing the
same location as the read in s. If (sk, s) is in hb, then tn happens-in-time eariler than s,
and t happens-in-time earlier than tn, so (t, tn) ∈ mo and (t′, tn) ∈ mo. Since (sk, s) is in
hb, according to the known-fact order definition in Sec. 6.3.3, (tn, s) is in known-fact order.
Hence, (t′, s) is in the non_co set, and the execution does not follow the HATRMM co order.
Next let’s assume that the event at s is a write. In this case, the pair (s, t) is either in

rf or mo. In both cases, t happens-in-time later than s. If t is a write, then we have seen
that in the path (t, t1), ..., (tn−1, tn), (tn, sk), all elements happen-in-time later than t except
t itself. Hence, sk happens-in-time after s, and it is impossible to form an edge in hb from
sk to s according to Theorem 6.5. Finally, let’s say that t is a read, then (s, t) is in rf and t
happens-in-time after s. The same argument showing that t must happen-in-time before all
elements in the path (t, t1), ..., (tn−1, tn), (tn, sk) also supports that s must happen-in-time
before all elements in the path (s, t), (t, t1), ..., (tn−1, tn), (tn, sk). Therefore, (sk, s) is never
in hb. Hence, we have shown that consistent executions in HATRMM satisfy the RC11
COHERENCE constraint.

QED.

The Completeness of HATRMM with Respect to RC11+IMM. The final theorem
in this section is Theorem 6.2, the relative completeness theorem of HATRMM. We need
some modifications in RC11+IMM to make the completeness theorem go through. The
first step is to use the memory events in Batty et al.’s model [2], because RC11/IMM is
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implemented in Coq, but we need an Isabelle version. For this, we choose the memory event
structure in Batty et al.’s model. Second, a candidate execution in IMM based on Batty et
al.’s event set syntax is a tuple such as (Actsr, T idr, Locr, sbsr, ddsr, rfr, mor, scr). Tidr,
Locr, sbsr, ddsr, rfr and mor are similar to the entities without the subscript r. Actsr is
a set of memory events in IMM, and scr is a relation defining the sc atomics with respect
to other events happening in an execution. Since RC11/IMM does not have the concept of
time points, its candidate executions need these relations to describe the execution behaviors.
The problem is that the definitions of mor, scr and ddsr can be absolutely anything. Even
though the implementation of RC11 has well-formed checks, it is not enough. For example,
there is no rule to prevent mor from being defined as an empty set in a candidate execution
in RC11, while the execution can still be RC11-consistent. To prevent this, we require all
events in Actsr to appear once in sbsr, all write events in Actsr to appear once in mor,
all seq events to appear once in scr, and the translation of ddsr into HATRMM to be the
dds relation. We describe the above properties as well-formedness in Theorem 6.7. The
etrans function translates an RC11+IMM execution into a set of HATRMM ones. For any
execution in RC11+IMM, etrans generates a set of executions in HATRMM, since IMM is
descriptive and every valid execution defined in IMM describes a group of valid executions.
It is hard to make an execution in IMM strictly unique. We show Theorem 6.7 below. The
proof is basically the reverse of the HATRMM soundness proof, except that we now prove
the theorem by doing induction on the number of events in an execution, i.e., the maximum
number in the time point set T of the execution. The details of the proof are found in the
Isabelle implementation.

Theorem 6.7. For a valid and well-formed execution (Actsr, Tidr, Locr, sbsr, ddsr, rfr,
mor, scr) that is IMM-consistent and well-formed, and (Tid, Loc, Key, T , ρ, sbs, dds, rf)
∈ etrans(Actsr, Tidr, Locr, sbsr, ddsr, rfr, mor, scr), then sat(Tid, Loc,Key, T, ρ, sbs

, dds, rf).

6.4 EXAMPLE PROGRAM SEMANTICS ADAPTING HATRMM

Here we introduce an example operational semantics that admits HATRMM, i.e. its con-
currency behavior is derived by HATRMM. The operational semantics is useful for proving
properties such as compiler optimization correctness for a language admitting HATRMM
(Chapter 8). We introduce an example operational semantics here. However, we do not
use the semantics to prove compiler optimization semantic preservation property since the
semantics is too intricate and too hard to be extended to include the semantics for the whole
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LLVM IR. We will introduce an abstract machine like operational concurrency model that
is substitutable for the one in Sec. 5.3.2 in the next chapter. We also prove that the new
operational model is equivalent to the HATRMM with FIFO ordering.

Domain
Time Points: s, t ∈ T ⊆ N Registers: ϕ ⊆ (Var → Val ) Heap Snapshots: γ ⊆ (Loc → (T × Val ))

Thread-IDs: tid ∈ T id ⊆ Tid Dyanmic Block Number: Bn 3 π , (N ×N)

Dyanmic Block Family: Π ⊆ T id→ (N ×N) Action-IDs: Aid 3 d , (Bn ×N)
Semantic Function Types
Expression Semantics: eval ⊆ (Exp × ϕ)→ Val Inst Semantics: ψ ⊆ (Inst × ϕ× γ)→ (ϕ× Act)
Termination Semantics: η ⊆ (CInst × (Var → Val ))→ L

Example Instruction Semantics
ψ(a := e, ϕ, γ) , (ϕ[a← eval(ϕ, e)], τ) Assignment Semantics
ψ(a :=or x, ϕ, γ) , (ϕ[a← snd(γ(x))], Rxsnd(γ(x)),or

) Read Semantics
ψ(x :=ow a, ϕ, γ) , (ϕ, Wxeval(ϕ,a),ow

) Write Semantics
η(if e then π1 else π2, ϕ) ,IF η(ϕ, e) = 0 THEN yes ELSE no Binary Branching Semantics

Operational Program Semantics
Program Order Family: pos ⊆ T id→ po Current Program Pointer: θ ⊆ In Set × In Set
Registers Family: Φ ⊆ T id→ ϕ Heap Family: Γ ⊆ T id→ γ
Program Pointer Family: Θ ⊆ T id→ θ

Single Step Transition Function:
trans ⊆ (C, T id, π, po, sb, dd, T, ρ, ϕ,Γ, θ)→ (π, po, sb, dd, T, ρ, ϕ,Γ, θ, rf)

State Environment: ω , (T id Set , pos, sbs, dds,Π,Φ,Γ,Θ, T, ρ, rf)

State: (µ, ω) Transition System: (µ, ω)
ev−−→ (µ, ω)

One Example Transition Rule:
tid ∈ T id ∧ pos′ = pos[tid 7→ po′] ∧ sbs′ = sbs[tid 7→ sb′] ∧ dds′ = dds[tid 7→ dd′]
∧Π
′

= Π[tid 7→ π] ∧ Φ′ = Φ[tid 7→ ϕ′] ∧Θ′ = Θ[tid 7→ θ′] ∧ sat(T id, T ′, ρ, sbs′, dds′, rf ∪ rf’)

∧trans(µ(tid), tid,Π(tid), pos(tid), sbs(tid), dds(tid), T, ρ,Φ(tid),Γ,Θ(tid))
= (π′, po′, sb′, dd′, T ′, ρ′, ϕ′,Γ′, θ′, rf’)(

µ, T id, pos, sbs, dds,Π,Φ,Θ,Γ, T, ρ, rf
)

ρ′(max(T ′))−−−−−−−−→
(
µ, T id, pos′, sbs′, dds′,Π′,Φ′,Θ′,Γ′, T ′, ρ′, rf ∪ rf’

)

Figure 6.24: Example Program Semantics Admitting HATRMM

Here we discuss the operational program semantics for the language in Fig. 6.4 as an
example of binding HATRMM with an operational semantics. The semantics is a bridge
connecting single instruction semantics and a multi-threaded weak memory model. Fig. 6.24
provides a taste of the instruction semantics, and operational semantics based on the lan-
guage in Fig. 6.4 and HATRMM. In Fig. 6.24, T is a downward closed natural number set
of time points without 0 in HATRMM. We implement a heap snapshot (γ) as a function
from a location to a pair: the pair is the time point of the most recent write to the location
and the value in the location. In Fig. 6.4, we introduced the concept of basic blocks, nodes
are numbers identifying basic blocks. We use a pair of natural numbers as a dynamic basic
block number (Bn); the pair uniquely identify an executing basic block in a thread during
an execution. For a program µ : Tid → CFG , we have a family of dynamic basic block
numbers (Π), one for each thread. In Fig. 6.4, we introduced an instruction number for
each instruction in a basic block; it is represented by a natural number. Here, we name an
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action-ID as the combination of a dynamic block number π and an instruction number in
the basic block indexed by the second argument of π. Hence, it is clear that an action-ID
can uniquely define an executing instruction in a thread.
At the instruction level, there are three semantic functions. The eval function (Fig. 6.24)

is for evaluating an expression (Exp) in Fig. 6.4. It is a straight evaluation of each term of
the expression, so we omit the detailed implementation here. The function ψ implements
the semantics of an instruction (Inst in Fig. 6.4). It takes an instruction, a register map
(ϕ), and a heap snapshot (γ), and produces a resulted register map and a memory action
(Act) indicating the type of memory communication the instruction could bring. We show
three cases for ψ in Fig. 6.24: the case when a normal assignment happens and ψ returns
a τ action, the case when a read happens and ψ returns a read action, and the case when
a write happens and ψ returns a write action. The function η implements the semantics of
terminations. It takes a termination and registers, and returns an edge label. In Fig. 6.24,
we show the semantics of a binary branching instruction.
In Fig. 6.4, we also introduced actions (Act). A memory instruction produces a read/write

action, while other instructions/terminations produce a τ action. Here we combine an action,
thread-ID and action-ID, making a memory event (Ev). In the model in Fig. 6.24, for an
execution, we assume that a family (sbs) of sequenced-before relations (sb) is given, one
sb for each thread; and a family (dds) of data dependency relations (dd) is also given, one
dd for each thread. A straight-forward algorithm for generating a sequenced-before relation
for executing a CFG can be taken from the program text order of the CFG; also, a data
dependency relation for a CFG execution can be produced by the traditional data-flow, alias,
and control dependency analysis algorithms. Here we omit the details of these algorithms.
The operational transition semantics in Fig. 6.24 is a combination of the instruction level

semantics and memory concurrency model. It is represented as a labeled transition system
whose states are pairs of programs (µ) and the state environment (ω), and whose labels
are memory events. A state environment is a long tuple of a set of thread-IDs (Tid), a
program order family (pos, one for each thread), a sequenced-before relation family (sbs),
a data dependency family (dds), a current dynamic block number family (Π), a registers
family (Φ), a heap snapshot family (Γ) representing different views of the threads of the
main memory, a program pointer family (Θ) representing the current executing instruction
of each thread, a time point set (T ), a ρ mapping, and a reads-from relation (rf). We show
the top-most rule of the transition system in Fig. 6.24. This rule selects a thread tid, applies
the one-step transition function trans to the state environment of tid, checks the result of
the one-step transition to see if the accumulated result satisfies the predicate of the memory
model (sat), and then moves forward to a new step via the memory event label ρ′(max(T ′)).
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The function max produces the maximum number in T ′. We can retrieve the memory event
by the max function because the trans function always creates a map entry in ρ from the
maximum time point plus 1 to the current memory event. The detailed implementation of
the trans function is found in the Sec. 6.4. It needs to finish several tasks as a one step
evaluation for a thread tid with a CFG C. First, if its program pointer Θ(tid) points to the
end of a basic block (no instructions left for execution), it selects a new basic block according
to the edge information in C (applying function η to it with registers (Φ(tid)) to get the edge
label), and assigns a new dynamic basic block number with a new program pointer pointing
to the top of the new block. In this case, trans also adds new relations of program order,
sequenced-before, and data dependency to the existing relation sets inside the new basic
block. Second, if Θ(tid) indicates that there are instructions in the basic block waiting for
execution, an instruction is non-deterministically selected for execution (applying function
ψ to it with registers (Φ(tid)) and heap snapshot (Γ(tid))) if the instruction satisfies the
program order relation on the basic block. Third, for a step, trans also picks a new time
point (the maximum number of the time point set T plus 1) to add to the set T , and assigns
the new time point to a new memory event. The creation of the event is to combine the
thread-ID tid, a newly generated action-ID (the action-ID is calculated by combining the
dynamic block number with the instruction number), and a memory action calculated from
the function ψ (if the instruction is a termination, we assume that the action is τ). Fourth,
trans also generates a new rf pair if the action is a read, and modifies the memory snapshot
by inserting the current time point and write value if the action is a write.
Here, we define the semantics for a program based on the program syntax and instruction

semantics in Sec. 6.2.1. The program semantics is building an abstract machine executing
single threaded instructions through a family of conceptual CPUs (one for each thread), and
multi-threaded instructions through a conceptual memory machine. We assume that a CPU
execute a basic block of instructions at a time, and any one of executing basic blocks in an
program execution, named dynamic basic block, can be identified as a unique number
m ∈ N in a program execution. We use a pair of a unique number and a basic block number
of a block (m,π) ∈ N × N to refer to the dynamic basic block number (as π) for a
dynamic block whose content is the basic block whose node is π in a CFG. Then, a pair
of dynamic block number and an instruction number (N × N × N), named action-ID (as d
having type A = N× N× N), can uniquely identify an executing instruction in a thread in
a program execution. In Sec. 6.3.3, we have described a po relation (or a family pos), we
extend the idea to a relation po (or a family pos, one for each thread) describing similar
program order relations as po. po for a thread is a relation on A × A, and it describes the
program order relations on different instructions instead of memory events in po. Every po
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in pos is generated along with program semantics transitions.

form_D(π, β) ≡ {d|∃e i.d = (π, i) ∧ e = ins(β, d)} gen(po, D,W ) ≡ {d ∈ D|(¬∃d′ ∈W.(d′, d) ∈ po)}

(a)

(N, π0, λ, E) = G ∧ λ(π) = β ∧ ins(β, d) = e ∧ is_C(β, d) ∧ π = snd(π)
∧l = η(e, φ) ∧ (π, l, π′) ∈ E ∧ λ(π′) = β′ ∧ π′ = (fst(π)+1, π′) ∧D = form_D(π′, β′)
∧ρ′ = ρ[n+1 7→ (tid, d, τ)] ∧ po′ = gen_po(G, π′, po, ρ′, D, β′, ϕ) ∧W = gen(po, D,D)(

tid, π, G, po, n, ρ, ϕ,Γ, ({d}, S)
)
−→

(
π′, po′, n+1, ρ′, ϕ,Γ, (W, ∅), ∅

)

(b)

(N, π0, λ, E) = G ∧ λ(π) = β ∧ ins(β, d) = e ∧ ¬is_C(β, d) ∧ Γ(tid)|v = γ
∧Γ(tid′)|v = γ′ ∧ γ′(x) = v ∧ (ϕ′, Rxv,o) = ψ(e, ϕ, γ[x 7→ v])
∧W ′ = gen(po, D − (S ∪ {d}),W ) ∧ rf = {fst(Γ(tid′)(x)), n+1)} ∧ π = snd(π)(

tid, π, G, po, n, ρ, ϕ,Γ, (W ∪ {d}, S)
)
−→(

π, po, n+1, ρ[n+1 7→ (tid, d, Rxv,o)], ϕ
′,Γ, (W ′, S ∪ {d}), rf

)

(c)

T = gen_times(n′) ∧ sbs = gen_sb(T, P, ρ) ∧ sat(Tid, T, ρ, sbs, rf ∪ rf’) ∧ tid ∈ TID
∧pos′ = pos[tid 7→ po′] ∧Π

′
= Π[tid 7→ π] ∧ Φ′ = Φ[tid 7→ ϕ′]

∧
(
tid,Π(tid), P(tid), pos(tid), n, ρ,Φ(tid),Γ,Θ(tid)

)
−→

(
π′, po′, n′, ρ′, ϕ′,Γ′, θ′, rf’

)(
TID, P, pos,Π,Φ,Θ,Γ, n, ρ, rf

)
=⇒ρ′(n′)

(
TID, P, pos′,Π

′
,Φ′,Θ[tid 7→ θ′],Γ′, n′, ρ′, rf ∪ rf’

)
Figure 6.25: The Single-Thread Transition Function

The semantics of a program P is defined as a labeled transition semantics as σ =⇒a σ
′

where σ and σ′ are states and a is a memory event acting as the label in a transition. (c) in
Fig. 6.25 is the main rule in the transition semantics. A state is defined as a tuple (having
type name: State) of (TID, P, pos,Π,Φ,Θ,Γ, n, ρ, rf), where TID is a set of thread-IDs (type
TID), P is a program as the µ function in Sec. 6.2.1, pos is a family of po relations (type
TID → (A×A)), Π is a family of dynamic block numbers (type TID → N×N), each of which
acts as the dynamic block number counter for each thread, Φ is a family of registers, Θ is a
family of program counters (type TID → (A set)× (A set)) that point out the next possible
instructions to execute for a thread, and also have a set of finishing executing instructions,
Γ is a family (type TID → (loc→ T × val)) of observable memory snapshots, n is the time
point counter representing the maximum time point value at a state, ρ is a mapping from
time points to memory events (type N→ Υ), and rf is the reads-from relation (type T ×T )
under construction along with the transitions. In the transition σ =⇒a σ

′, the transition
state is (a, σ′) (type Υ × State). A program execution is a sequence of transition states:
(a, σ′), ..., (an, σ

′
n), ..., generated by the transitions: σ =⇒a σ

′ =⇒ ... =⇒an σ
′
n =⇒ .... Γ is

the observable memory snapshot for each thread, each of which (γ) represents the knowledge
of the thread about a memory location: the value of the location as well as the time point
when the latest write in the thread wrote to the location.
Rules (a) and (b) (Fig. 6.25) are sample rules for the transition relation −→ that connects
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between the transition =⇒ and the single-instruction semantics defined in Sec. 6.2.1. It
transitions from a tuple of a thread-ID tid, a current dynamic block number π, a CFG G, a
program order po, a time point n, a mapping ρ, a register φ, a family of memory snapshots
Γ, and a program counter θ; to another tuple of a possible new dynamic block number π′, an
updated program order po′, a new time point n′, a new mapping ρ′, a possible new register
φ′, an updated family of memory snapshots Γ′, an updated program counter θ, and a set of
reads-from relations rf containing a possible write-read pair generated by a load instruction.
In a thread tid, −→ selects one of the possible next instructions in θ to execute. The (a) rule
deals with the transition after executing a branching state at the end of a basic block, while
rule (b) deals with the case of a load instruction. In these rules, ins is a function producing
the instruction expression from a basic block and an action-ID. γ|v means to form a new
mapping by getting rid of the time point in the value pair T × val. The function gen_po

takes the existing po and a basic block and generates a new po′ containing all relations in
the po relation, all program order relations between instructions in the basic block, and
the program order relations between the old-instructions in po and the instruction in the
new basic block. gen_po happens once when a new dynamic basic block is generated. The
function gen_sb generates a family of sb relations based on the program information, while
gen_po generates a family of po relations.
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Chapter 7: THE LLVM OPERATIONAL MODEL

As we have discussed, to define the complete behavior of the LLVM IR language, we
are basically simulating a conceptual virtual machine that runs the LLVM IR codes. In
Figure 7.1, the conceptual machine includes execution machines (models) that select a K-
LLVM BAST instruction to execute, returning a result that is assigned to a local variable as
the target register; and the conceptual machine has a memory machine (model) that interacts
with memory operations from different threads represented by the execution machines. The
directions of arrows in the figure represent the target force of a cell. In this section, we will
describe the formation of the execution model and memory model in detail.

7.1 THE EXECUTION MODEL

The K-LLVM execution model in Figure 7.1a directs how a single operation is selected
and executed and how the result is returned. All of the rectangles in Figure 7.1a relate to a
cell in the K-LLVM configuration. All these rules are attributed with transition, so they
can be executed nondeterministically. We start by assuming that an executing block has
been selected and put in the toExecute cell. When a program begins to be executed, the
entry block is selected and put in the toExecute cell. The rule that interacts the toExecute
and instQueue cells is listed as the toExecute-out rule in Figure 7.2. In the toExecute,
the content is a term with constructor blockExecution with two arguments, and the first
one is an integer referring to the executing block number and the second one is a list of
instructions for the block in the program order. Each new executing block that is injected
into the cell is given a unique dynamically generated number that helps distinguish it from
all other executing blocks. Each element in the list is a compiled instruction term whose
constructor is instNumInfo and has three arguments: an integer (Num) representing the

(a) Component Relation in Execution Model
(b) Component Relation in Memory Model

Figure 7.1: Relations Among Model Components
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instruction position number, a term (In) representing the content of the actually instruction
and a flag (T) representing the type of the instruction. Each instruction in the executing
block is sent to the instQueue cell in the numerical order of Num by wrapping with an-
other construct dynInstInfo with an additional executing block number B . We refer the
executing block number B an the position number Num together as the instruction number
which not only allows the instruction to be distinguished from all other instructions in the
instQueue cell, but also the new input instruction to be identified as the latest one in the
cell. updateVars is a function to update local variables in In with values. In K-LLVM,
we have two register cells registers and specRegisters, whose values are mapped by
local variables from instructions in a normal stage or speculative stage, respectively. In
specRegisters, its keys are tuples of an executing block number and a local variable, so
a local variable can be assigned differently in different executing blocks. The updateVars

functions relies on the content Tr from the specTree to determine which value is the correct
one to be assigned to a local variable. The condition of the toExecute-out rule shows
that there is a limit of maximum instructions maxNum that the instQueue cell can take at a
time.
The main task of the instQueue cell is to select an instruction to put in the cpu for execu-

tion once the cpu is empty (represented by .K). There are two rules (rule instQueue-out

and instQueue-heavy-out) to select an instruction: first(instQueue-heavy-out rule),
if an instruction is a function call, branching or return instruction (checked by the
isHeavyInst function), it can be selected if and only if its instruction number is the oldest
one in the instQueue cell (checked by the isSmallest function); second (instQueue-out

rule), if an instruction is not one of these three, it can be selected if and only if all its
arguments are constant values (no local variables) (checked by the isAvailable function).
Fulfilling one of these two rules means that an instruction is available. The reason that
we want to have the selection rules is that we want to simulate the speculative execution
behavior implicit inside the LLVM IR language; and we do not specify a strategy for the
speculative execution, but randomly guess a block to execute if we face a branching situation.
The first rule says that we do not want to move a function call, branching or return operation
ahead for execution, because it is hard to believe that any modern computer moves these
instructions ahead for execution. The second rule gives K-LLVM the power to randomly
select an instruction to execute out of its program order, and it can be out-or-order execution
or speculative execution.
As we see in the rule toExecute-out in Figure 7.2, the job of the CPU cell is to push the

instruction (In) to the k cell for evaluation. In Section 4.2, we show that every instruction
is either an assign term or a noAssign depending if the instruction returns value. the
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Figure 7.2: Selected Rules for K-LLVM Execution Model

syntactic definitions of the constructs assign and noAssign are attributed as strict and
number to indicate the non-terminal positions that the attribute is applied on. The strict
means that for a given non-terminal position in a construct, a pair of heat/cool rules is
created. A heat rule means that if the head position of the k cell has the target construct
term and the subterm in the non-terminal position of the term has no sort KResult (a special
K sort indicating the evaluation results), the subterm in the specific position of it is replaced
by a � and the subterm is put on the k cell head position. A cool rule means that if the head
position term in the k cell has sort KResult , and the second position term has a � in one of its
subterm position, we merge the head position term back to the �. Because of the semantic
meaning of the strict attribute, one can expect subterms of assign and noAssign terms
are pulled out and evaluated to KResult terms by the semantic rule of the instruction and the
results will be pushed back to the subterm positions in those terms. Then, CPU-noAssign,
CPU-assign and CPU-assign-spec rules take place. The CPU-noAssign rule means
that the instruction does not return values so the CPU cell just clean up the content and
wait for the next instruction. The CPU-assign and CPU-assign-spec rules describe
the situation when the instruction returns values. The difference between them is if the
instruction is in the speculative stage. In rule CPU-assign, if the executing block number
(B) is equal to the current block number (B’ ) in the currBlock cell, the instruction is
not in the speculative stage so that the final result is assigned to X in the registers cell;
otherwise, if B is greater than B’ , which means that the current execution is executing
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Figure 7.3: SpecTree Example

an instruction that is not in the current block, the value is assigned to a tuple of variable
X and the executing block number B in the cell specRegisters, as shown in the rule
CPU-assign-spec. Two things need to be updated once registers change: the content
in the specTree cell and the instructions in instQueue. We need to update values for
variables in the memory operation prototypes in the specTree cell that determines which
memory operators become ready for commitment and we need to update local variables in
each instruction in instQueue with the new arrival value. The functions updateVarTree,
updateVarSet, updateSpecTree and updateSpecSet are to update the value for the local
variable X in a set or a specTree.
Different semantic rules for different instructions in the k cell can affect the interaction with

different components in the execution model. For example, if the instruction is a function
call, the CPU cell needs to interact with the stack. If the instruction is a heap memory
operation, the CPU cell sends the instruction to the toCommit cell where it is dealt with.
Finally, if the instruction is a branching operation, the CPU cell also needs to interact with
the speculative information cells (the specTree and the restChoices cells) by updating
information in them.
The specTree and restChoices cells are the speculative information cells, which contain

information for performing speculative executions. The type of content in the specTree cell
is a map from an executing block number to a construct RunningBlock. RunningBlock has
five arguments: the executing block’s original basic block label name, the parent executing
block number (the entry block’s parent is labeled as none), a list of the memory operators
that will occur in it, the set of local variables defined in the block and a set of child executing
block numbers. There are three main tasks of the specTree cell: first, it is used to track
all executing blocks and their parent-child relationships. The K-LLVM semantics allows
speculative execution. An instruction can be executed even if the current program pointer is
not pointing at the executing block where the instruction lives. Hence, we need to track the
executing block information and be able to disable the effects of all instructions in it once
we discover that it is not the correct speculative execution guess. Second, the specTree cell
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also needs to contain enough information for K-LLVM to recognize which map entry in
the specRegisters should be used for updating a particular local variable. In Figure 7.3,
an example on how specTree can be used to calculate the correct assignment for a local
variable. The left in the figure is an LLVM IR program, and executing this program in
K-LLVM will require 100 creation of executing blocks for the basic block %loop. The right
shows a graph on a over simplified K-LLVM configuration including the cells toExecute,
CPU, instQueue and specRegisters (we only show the list of the blockExecution construct
and put the executing block number on the top). We assume that the No.2, No.3 and No.4
executing blocks have block label name %loop. From this program state piece, we can see
that K-LLVM has not yet executed the branching operation br label %loop, because its
compiled K-LLVM AST is still in the first position of the instQueue cell. The addition
operations for the No.2 and No.3 executing blocks have been speculatively executed, since
there are two entries in the specRegisters ((2, %y) → 2 and (3, %y) → 3) indicating
that. The system is about to move the phi instruction from the No.4 executing block to
the instQueue cell, since the compiled K-LLVM AST of the phi instruction is in the first
position of the toExecute cell. At this point, the arguments of the instruction need to be
updated before the instruction can be moved to instQueue, and the local variable %y has
two instances in specRegisters. (2, %y) (coming from the No.2 executing block) maps
to the value 2, while (3, %y) (coming from the No.3 executing block) maps to value 3. To
determine which %y the system should pick to update the one in the phi instruction, we
need the information from the set of defined local variables in the RunningBlock of an entry
in specTree. Since the LLVM IR program is required to be in SSA form, a local variable
can only be defined once it is in an executing block. Hence, there are only two situations in
which %y occurs here: (1) either it has been defined inside the executing block, which can be
determined by seeing if there is a definition of %y in the block and comparing the instruction
position numbers between its use and definition; or (2) the correct instance for the user of %y
is that of the latest preceding executing block containing a definition of %y. Third, specTree
also has the task determining a memory operator in the toCommit cell ready to be sent to
the memory for execution, which will be discussed later.
The restChoices cell is used to store the remaining choices for a speculative guess. When

the toExecute cell finishes putting all of the instructions of a block in instQueue, if the
final instruction is a branching operator, it will guess a branch and place its executing
block in toExecute. There might be remaining branches that are not selected. They will
be contained in restChoices. K-LLVM allows the toExecute cell to randomly select a
speculative guess either from the next possible choice or from one of the remaining branches
in the restChoices cell.
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The registers include two different cells, the registers and specRegisters cells. The
difference between them is the time when the CPU finishes computing the value for an instruc-
tion and assigning the value to the defined local variable associated with it. In K-LLVM,
we have a global metavariable to indicate the current executing block, and only executing
a branching operator can change its value. As computing is finishing, if the instruction’s
executing block number is not the current block number, then the value will be assigned
to a tuple of the executing block number and the defined local variable, and put in the
specRegisters cell. If the executing block number is the current block number, we create
a map entry in the registers to map the defined local variable to the computed value.
The toCommit and readBack cells are used to deal with heap memory operators in K-

LLVM. Their main functionality is to determine when a memory operator is sent to the
main memory to perform an action. toCommit receives memory operators from the CPU,
while readBack waits for the main memory to send back values for the load operators, and
then pushes them into the registers. Since K-LLVM operators may be executed out of
order, we cannot expect the heap memory operators to be put into the toCommit in program
sequence order. It relies on information from specTree to determine when to commit an
operator to the main memory. We will explain this in detail in Section 7.2. The stack cell
implements the stack structure of K-LLVM. It not only stores the call stack for function
call information, but also manages the stack memory operators since LLVM IR specifically
states that the alloca operators are creating memory pieces in the stack. The structure of
the stack cell and the semantics of the stack memory operations are similar to the heap
ones, except that we define a global variable simulating the fixed stack size. Once a stack is
out of this fixed size, K-LLVM stalls and gives an error message stating that the stack is
out of bound.
In this section, we have introduced components of our K-LLVM execution model and the

relations between different components. Through the execution model, we see howK-LLVM
provides a way to describe the semantics of the executing LLVM IR program instructions
out of order and speculatively, while guaranteeing the correctness of the program execution.
We will examine in the memory model in the next section and provide examples to how an
instruction is run based on the execution model and memory model.

7.2 THE MEMORY MODEL

The K-LLVM operational memory model is similar to a message passing model. Its
components and relations are described in Figure 7.1b. All of the components in the figure
are cells in the K-LLVM configuration that represents some program state pieces. In the
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Figure 7.4: Selected Rules for K-LLVM Memory Model

graph, a rounded cell means a program state entity that might contain other cell structures
as content, while a square cell means a program state entity whose content is values such as
integers, lists, sets or maps.
The left column contains a set of threads trying to communicate with the main mem-

ory. Each thread follows the execution model defined previously, and they contain several
different cells. In terms of interaction with the main memory, only three cells join the
communication with memory channels: channel-ID, toCommit and readback. The middle
column represents the main memory. The main memory contains a cell named memoryList

comprised of the set of memory ranges that have been allocated for use at a time. The main
memory also contains a set of memory channels, each of which has a structure similar to the
right column of the graph.
Each thread has an assigned channel ID when it is created. The job of the toCommit cell

of each thread is to manage the ordering of the memory operators sent to the main memory.
The toCommit cell’s content is a tuple of four sets: the first set (R) containing all memory
messages that are ready to commit to the memory channel; the second set (PR) containing
all memory messages that are ready but in the speculative stage and have been checked and
dealt with the unordered ordering memory messages, we can mark these memory messages
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being partially ready; the third set the fourth set (NPR) representing all partially ready
memory messages that have not yet been checked if they have unordered orderings so
that they need special treatment; the fourth set (NR) containing all memory messages that
are not ready. The PR andNPR sets are used to help memory opeartors happening in
speculative stage with unordered ordering and it will be described later this section. Each
memory message is a singleMem construct that contains five arguments: an identifier for
the thread ID of the thread the toCommit cell resides, the executing block number of the
memory operator, the instruction position number, a flag indicating if the memory message
is a heap or stack one and a memory operator. Memory operators are transformed from
LLVM IR memory operators to one of seven: a non-atomic write (writeByte), atomic
write (atomicWrite), non-atomic read (readByte), atomic read (atomicRead), atomic read
write (atomicReadWrite), seq_cst ordering fence (seqFence) or a memory free (toClose)
operator. In K-LLVM, all fences except the seq_cst one only has effects inside a single
thread, and we implement them by encoding them into specTree. For simplicity, K-LLVM
assumes all memory generation operators (e.g., malloc or alloca) happen right at the
moment when the CPU cells move the operators to the k cell, and they do not go through
the memory devices defined in this section, while a memory free operator will take in effects
in the memory model.
The toCommit-out rule in Figure 7.4 describes how we move a memory message to

the the memOpList in the memory channel. It relies on the matching between content of
the the memChannel-ID and channel-ID cells to help locating the correct memory channel
for the thread. The toCommit-ready and toCommit-par-ready rules talk about how
to determine if a memory message can be moved to the R or NPR sets depending if the
memory message is in the speculative stage (by checking the executing block number B with
the current block number in the currBlock cell). The way to check that is through a special
function named isReady that has six arguments: the current block number, the execution
block number of the memory message, the instruction position number, the heap / stack

flag, the memory ordering and the specTree in the specTree cell. From the previous section,
we know that the value of specTree has a list field containing information about all memory
operators in an executing block. Each item in the list is implemented as a construct named
memProtoType. It has six arguments, an instruction number, a memory location expression,
a field indicating the type of its memory prototype (either a read, a write, a readWrite

such as cmpxchg or atomicrmw, or a fence), a field having the memory ordering, a Boolean
value indicating if the operator is volatile and a Boolean value indicating if the corresponding
memory operator has been committed. We do not show how the isReady function utilizes
specTree and memProtoTypes. The main idea of the function is to check if a memory

143



message is ready to be committed to memory channels. It compares the memory pointer
address (p) of the message to check (m) with all other memory message prototypes (Φ) that
are sequence before this memory message in the memProtoType fields of specTree. There are
three different properties to compare. First, we check if there is a memory message m′ in Φ,
such that p and the memory pointer address p′ of m′ overlaps. If there is a memory message
prototype that is sequenced before m but has not yet known the pointer address, we assume
that it overlaps with m. The second property relates to memory orderings. Basically, we are
comparing the orderings of m with the orderings in each prototype in Φ to determine if the
operator is ready at this point. For example, if m and all prototypes in Φ have unordered,
and monotonic (the LLVM IR version of relaxed atomic ordering), m is ready if the first
property was satisfied. If m is a write operator, and a memory prototype m′ in Φ is a
write with release ordering or read with acquire ordering, the operator is not ready. If
m is a read operator, and the memory prototype m′ in Φ is a write with release ordering,
the operator is not ready; however, if every m′ in Φ is a read with acquire ordering, m
is ready. The third property guarantees that if m is marked with a volatile key word, it
is not ready if a prototype m′ in Φ is also marked as volatile. By comparing m with all
memory prototypes in Φ, we can determine if it is ready to be committed, then we can move
it to the R set or NPR set by comparing its executing block number with the current block
number.
The idea of memory channels in Figure 7.1b is basically that we have different memory

cashes to manage requests from different cores or threads. A single memory address might
have different values in different memory cashes. A thread only talks to one memory channel
in its lifetime. The idea of memory channels is a compromise between theoretical concerns
and real world usage. Theoretically, we want to be able to observe the difference between
memory operators with seq_cst ordering and acquire/release ordering. Consider the two
LLVM IR program fragments in Figure 7.5. We assume the addresses of the pointer variables
%x and %y have the value zero at first. The difference between these two systems is that the
variables %a, %b, %c and %d can have values 1, 0, 1 and 0 in the left system, respectively;
while the right system never shows this group of results, because seq_cst ordering requires
total order across all threads. If K-LLVM implemented the main memory with only one
channel talking to all threads, we would never be able to see the difference between these two
systems, because every memory operator put in the main memory would already be in order.
That is why we want to have more than one channel in the main memory. The practical
side is that we can simulate a conceptual machine with multiple cores and multiple cashes
that executes LLVM IR codes through K-LLVM. The memory channels simulate different
cashes for different cores. Implementing a memory model with different threads talking to
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Thread 1 :
store atomic i32 1, i32* %x release, align 1

Thread 2 :
store atomic i32 1, i32* %y release, align 1

Thread 3 :
%a = load atomic i32, i32* %x acquire, align 1
%b = load atomic i32, i32* %y acquire, align 1

Thread 4 :
%c = load atomic i32, i32* %y acquire, align 1
%d = load atomic i32, i32* %x acquire, align 1

(a) Example for acquire/release

Thread 1 :
store atomic i32 1, i32* %x seq_cst, align 1

Thread 2 :
store atomic i32 1, i32* %y seq_cst, align 1

Thread 3 :
%a = load atomic i32, i32* %x seq_cst, align 1
%b = load atomic i32, i32* %y seq_cst, align 1

Thread 4 :
%c = load atomic i32, i32* %y seq_cst, align 1
%d = load atomic i32, i32* %x seq_cst, align 1

(b) Example for seq_cst

Figure 7.5: Comparison Between acquire/release and seq_cst Memory Ordering

different memory channels and the different channels interacting with each other is a better
fit with the multi-cash memory storage environment.
The right column in Figure 7.1b represents the contents of a single memory channel. The

channel-ID cell contains the identifier of the channel. The cell memOpList contains the list
of the memory operators coming from threads. The channel performs the events defined by
the operators in the order of the list. Each unit of memory location is a byte, so we have a cell
named byteMap that maps from the memory location to the byte value in integer bit forms.
The Object cell contains information about the specific chunk of memory spaces defined
by the pointer value of a memory operator. Inside an Object cell, the range cell contains
the range of a memory space. It is implemented as two integer numbers in K-LLVM. The
first one represents the base value of the memory space, while the second represents the
bounds of the memory space. The size stores the number of bytes the memory location
has. The alignment cell stores an integer value that represents the number of bytes that
serve as alignment packing bytes before the memory chunk. The objType can be either
static or heap, indicating if the memory chunk can be modified or not. The complete and
race cells are used to simulate the data race behaviors in LLVM IR. The LLVM IR read

and write operators both have non-atomic and atomic versions. The non-atomic read and
write operators are performed one byte at a time. According to the LLVM document, while
performing a non-atomic read or write, if another read or write happens in the middle
of the process, and a race happens, then the return value for a read operator should be
an undef value. To implement this feature in K-LLVM, we need a cell (race) to indicate
that the non-atomic operator that was working on the memory chunk, if there is one; and
the cell (complete) that indicates how many bytes the non-atomic operator have finished
performing. Hence, if there is another operator coming in from another thread, the memory

145



channel can detect the race immediately.
The timeStamp, channelOps and acks cells in a channel are used to communicate with

other channels. The timeStamp cell contains the current vector timestamp that is imple-
mented as a map and one entry per memory channel. Once a write or readWrite memory
operation is performed in a channel, the channel will send out messages to notify all other
channels of the changes, including the memory location, the new value, and the vector
timestamp with updated values for the new memory operator, and channel ID. The mes-
sage passing is assumed to be synchronous without failure for simplicity. The channelOps

receives this kind of message from the other channels. Then it compares its own timestamp
with that attached to the message; if its own is larger, then the channel ignores the message;
if it is smaller, the channel updates the value of the memory location with the message as
well as the timestamp. If the two timestamps cannot be compared, the channel will com-
pare the channel ID with the one attached to the message to determine if it will perform
the memory update. The difference between a memory operator with seq_cst ordering and
all other kinds of memory operators is that it will wait for all of the acknowledgements to
come back from its change-notification messages sending to different channels. acks maps
from message IDs to the number of acknowledgements. Once a seq_cst ordering operator
performs sending out messages to notify all of the other channels. It knows the total number
of channels in the system, so it can wait for that number of acknowledgements to come back,
then perform the memory operation in its own channel and then move to the next operator.
In K-LLVM, we have series of rules to perform behaviors of memory messages in memory

channels. In Figure 7.4, we show two rules (atomicWrite and atomicWrite-seq) for
describing committing atomic write operators. Rule atomicWrite describes the behavior
when the memory ordering of the message is not seq_cst. When an atomic write is in the
head of the list in the memOpList cell, we can remove the head, and add one for the current
memory channel in the timestamps cell. The TM [ CId ] gets the value of channel ID
CId in the map TM, which is the timestamps for the channel and adding one to it is the
event number of the new message sending out to other channels. Function addOne gets a
map and a key and returns a map with adding one to the value of the key. We add an
entry with the event number being the key with a value 0 in the ackMap cell. It is used
to indicate the number of acknowledgements getting back from other channels when we
send out messages to other channels to notify a change. In the byteMap cell, we update
a chunk of memory with a list of bytes V starting on the position Base. The number of
bytes changed is defined by Size. In the channelOps cell, we send out messages to all other
channels by using an operator sendAll. The message content notifies the other channels
that there is a write updating the memory by using the construct msgWrite. The condition
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Base ≥ Left ∧ Base + Size ≤ Right is used to locate the right memory chunk (a object

cell) in the configuration. Each object cell has a cell chunkRange that stores the range
of the memory chunk by using two integers (Left and Right). The condition locates the
memory chunk by checking if the Base is within the range of the chunk. The main item
that involves in an atomic write rule in a memory chunk is the race cell. It relies on the
isOverlap function to check if there is a non-atomic memory operations that are occupying
the memory chunk, which cause a race. The rule atomicWrite-seq is dealing with the
case when the ordering of the memory message is seq_cst. The only difference between
the rules atomicWrite-seq and atomicWrite is that the atomicWrite-seq rule puts
the memOpList cell in a memory channel on hold by using an operator msgWait in the cell.
The operator will wait for all acknowledgements coming back from other memory channels,
then it allows the memOpList cell to execute other memory messages. The process of waiting
for all acknowledgements is to synchronize the status of all memory channels, because when
other channels receive messages msgWrite, they update their own byteMap cell with the new
writes, and then send the acknowledgement back to the sender.
Our K-LLVM memory model not including the unordered ordering on atomic memory

operators is basically a C++ memory model. In evaluating the memory model, we need to
target the unavoidable infamous out-of-thin-air problem. A lot of previous work [3, 111, 113,
152] defines the problem as relations on memory events. For example, Lahav et al. defined
the out-of-thin-air problem as having a cycle on a graph combining the sequenced-before
relation and reads-from relation. K-LLVM is an operational semantics that simulates a
virtual machine running LLVM IR programs, so we want to make the definition more direct
on trace behaviors and different cells as follow:

Definition 7.1. No Out-Of-Thin-Air Condition. We define observable memory operations to
be those that have been committed by a thread and are living in the CDB cell or in a memory
channel. Then, The No Out-Of-Thin-Air Condition means that through all possible traces by
executing a LLVM IR program, no a single thread outputs an observable memory operation
that is in the speculative stage.

The reason why the above definition satisfies the traditional no out-of-thin-air condition
is that all K-LLVM memory operations except those with unordered ordering interact
memory values in the memory channels. If we guarantee not to have memory operations
that are in the speculative stage to show up in a memory channel; obviously, we will not read
or write those values that may or may not happen in the future. The only possible source of
memory operation reordering is the out of order execution. Due to the availability check on
selecting instructions from instQueue to CPU, we guarantee all instructions become available
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before it is sent to execute, which also respect the modification order. By this definition,
our K-LLVM actually satisfy the theorem below.

Theorem 7.1. Given any program that has no unordered ordering on memory operations,
when running such program, K-LLVM satisfy the No Out-Of-Thin-Air Condition.

Dealing with Unordered Memory Ordering. As we discussed in the example in Fig-
ure 5.1, the unordered ordering in memory operations is used to describe the weak happens-
before memory model. According to the LLVM document, the unordered ordering is only
used for atomic write and read operators and is to describe the Java shared-memory model.
It is very weak because when a Java program is compiled to LLVM IR, it involves a lot of
extra generated codes to guarantee the conservatism of the Java memory model. In defining
K-LLVM, we cannot assume the way of compilation from Java to LLVM IR, and we assume
that those unordered memory operations are used in any form on which future compilers
may design. Our K-LLVM implementations of unordered memory ordering has a restric-
tion, where we do not consider the cases when memory locations being overlapped but not
exactly the same. Through out our test cases, it is hardly to find a counter example where
we need to consider the case when two unordered memory operations having pointer values
whose memory locations are overlapped with each other. The reason behind this is that
LLVM IR is a lower-level language. A non-atomic memory operations are based on the byte
operations, while an atomic memory operations in LLVM IR can only allowed to deal with
an integer, floating-point or pointer value. Hence, we believe that our implementation is
enough for understanding the behaviors of unordered memory operations. The implemen-
tation of K-LLVM on memory operations without unordered orderings takes the cases of
memory overlapped into account.
In designing the semantics for the unordered memory operations, we discovered that

if there is no additional jump wires, a well defined semantics has no way to output the
out-of-thin-air behaviors, which is the key behavioral difference between the unordered and
monotonicmemory operations. The jump wires inK-LLVM are two sets and four cells. The
sets are the NPR and PR sets in the toCommit cell, and the cell is the CDB, memTrack, track
and count cells. The example rules are listed in Figure 7.6. Rule specUnorderedWrite

describes when and how we move the values of a unordered atomic write to the CDB cell.
When a unordered atomic write is in the NPR set, which means that the write is in the
speculative stage, in the toCommit cell, we assign the value it carries to the tuple of the
memory base (variable Base) and size (variable Size) in CDB, and then move the write
operator to the PR, so eventually, the operator will have effect on a memory channel. In

148



Figure 7.6: Selected Unordered Rules

doing the assignment, we also associate the value with a global counter value (variable I from
the count cell) that allows the assignment to distinguish with other ones, and the thread
ID of the current thread. We also place corresponding assignments in the memTrack and
track cells. The memTrack cell is local to the thread, which allows unordered atomic reads
from the same thread to access values, and it also allow retrievals of the assignments putting
into the global CDB cell from some previous unordered atomic writes. When a branching
operator happens, some executing blocks being in the speculative stage might be discovered
to be not token, so we need to throw out all things the blocks did. The memTrack cell helps
throw out assignments that have been committed to global CDB or track cells. The track

cell is also taking effects in the retrieval process. When we throw out assignments in the
CDB cell, we need to know what is the old value for the key (a Base and Size pair) of an
assignment. We rely on the track cell, and find the largest I with the pair in the keys of
the track cell, and access that value to be the retrieval value for the CDB cell.
Rule unordered-read-CDB describes the situation when an unordered atomic read

happens in the NPR set, we get the value from the CDB cell for the Base and Size pair
if the value is not from the same thread as the atomic read. Then we move the value
to the readBack cell. The readBack cell is a device in a thread in K-LLVM. Once an
LLVM IR load operator (non-atomic or atomic ones) is in the CPU cell, we put a read
operator in the toCommit cell and also place an assignment for assigning the instruction
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number (a block number and instruction position number pair) to a construct wait con-
taining a pair of the return variable (variable X ) and an empty byte list. A non-atomic
read reads a byte at a time and place the byte in the byte list for the corresponding
instruction number. An atomic read reads a list of bytes from a target place (like the
CDB cell) and use a function joinBytes to merge the list into a value directed by the de-
fined type (variable T ). LLVM document suggests that if size of type for a read is bigger
than the bits or bytes that actually read, the output is an undef value, so the function
joinBytes also adjusts the problem of size of type and read-in bytes mismatch. Rule
unordered-read-Local describes the case when an unordered atomic read reads from
values in the same thread from the memTrack cell. The function correctDef gets an in-
struction number that represents the instruction which is a write operator that defines the
value for the atomic read based on the specTree. The instruction number might not ex-
ist as a key in the memTrack cell. In fact, only an unordered atomic write is able to
modify content in the memTrack cell, so a following unordered atomic read might not
find its value in the memTrack cell. In this case, the unordered-read-No rule fires,
which move the read operator to the PR set. The three rules (unordered-read-CDB,
unordered-read-Local and unordered-read-No) happen nondeterministically. In
fact, the rules unordered-read-CDB and unordered-read-Local have another ver-
sions where the unordered atomic read operators start at the R set, so an unordered atomic
read can also read data from the jump wires when they are not in the speculative stage.
The distinction between the unordered-read-CDB and unordered-read-Local rules
help us achieve the property (2).

7.3 RELATION BETWEEN THE LLVM OPERATIONAL MODEL AND HATRMM

The operational model we described here has been proved to be equivalent to the HA-
TRMM model in Chapter 6. The soundness proof is proved through on showing all the
possible executions of programs in the LLVM operational model satisfy the properties de-
fined in HATRMM. The completeness is a relatively completeness theorem. We first identify
the different kinds of memory instructions in the LLVM operational model with respect to
the constructs in HATRMM. Then, we show that for a possible translation of the constructs
in HATRMM to a subset of memory instructions in the LLVM operational model, if the
execution of any translated program have certain concurrent behaviors, the behaviors are
captured by the predicates defined in HATRMM.
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Chapter 8: A FRAMEWORK TO VERIFY COMPILER OPTIMIZATION
SEMANTIC PRESERVATION

Here, we discuss a framework to verify the semantics preservation property for a compiler
optimization in the LLVM semantics with the LLVM operational model. The essence of the
framework is the Per-Location Simulation Framework.
When the preservation of concurrency behavior was being verified in the CompCert com-

piler [37], the researchers found that it is not enough to tell the whole story just to use a tradi-
tional bisimulation framework to prove the program equivalence between a compiled program
and its original one, so they designed a new bisimulation framework by treating safe programs
and programs that might reach error states differently. CompCert’s concurrency model was
sequential consistency. The extent to which traditional bisimulation is inappropriate is
even clearer when dealing with weak concurrency models. Weak concurrency models have
been studied broadly for real world imperative programming languages (C/C++/LLVM)
[2, 3, 4, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 157]. When using
these models to prove compiler correctness, a problem arises. Historically, the semantics of
these languages has been determined by the behavior of their compilers, so the behavioral
effects of compiler optimizations also need to be considered in the concurrency models. For
example, in the program piece (b) in Fig. 8.1, variables a and b can both read 1 if we consider
the fact that a simple optimization removes the Boolean guards in (b), transforming it as
the program piece (a). The well-known confusion about out-of-thin-air behaviors [158] is a
typical consequence of the problem.

/* number after the blue "//" along with a read restricts the value of the read to be the number */
/* initially, x = 0 and y = 0 */

(a)
a :=rlx y//1 b :=rlx x//1
x :=rlx1 y :=rlx1

(b)
a :=rlx y//1 b :=rlx x//1
if (a=a) if (b=b)

x :=rlx1 y :=rlx1

(c)
a :=rlx y//1 b :=rlx x//1
if (a=1) y :=rlx1

x :=rlx1

(d)

x :=rlx1
y :=rlx1
a :=rlx y
b :=rlx x

(e)
a :=rlx y//1 b :=rlx x//1
if (a=1) if (b=1)

x :=rlx1 y :=rlx1
(f)

a :=rlx y//z b :=rlx x//z if (ram())
if (a=a) if (b=b) z :=rlx1

x :=rlx z y :=rlx z else
z :=rlx2

Figure 8.1: Motivating Examples

Researchers [4, 111, 112, 113] have tried to solve the thin-air problems by merging the
extra behaviors caused by compiler optimizations into their concurrency models. These
models have several problems. Vafeiadis et al. [159] has shown that most of the compiler
optimizations are invalid in these weak models. Moreover, Batty et al. [153] proved that it
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does not exists a candidate execution style axiomatic C++ concurrency model to incooperate
the thin-air problems raised by (b) (Fig. 8.1). Additionally, these models are built upon a
very limited set of memory actions or language pieces, and provide correct compiler schemes
generated from the models based on the limited set. It requires a great effort to extend the
schemes to prove a real-world compiler optimization preserving the multi-threaded program
semantics for a real-world language under a real-world concurrency model. In some cases,
even if the underlying language is extended a little, these models failed to show all supposedly
allowed behaviors. For example, the promising model [113] is designed specifically to prove
that the two reads in (d) (Fig. 8.1) can both read 1, but it fails to prove that the variables
a and b in (f) can read any possible value from location z because z does not have a fixed
value in all possible executions. The IMM model [4] is able to prove that the two reads in
(a) can both read 1, but it fails to prove the two reads in (b) (Fig. 8.1) can both read 1.
PLS is able to handle all these cases.
In this chapter, we propose a simulation framework, named Per-Location Simulation

(PLS), that is able to prove semantic preservation between compiled programs and their
original programs under a language semantics with a weak concurrency model. We focus on
safe traces (traces not going wrong) here, and assume that there is an outer layer on top of
PLS to deal with reaching-error-state traces the same as the upward simulation framework
in defined by CompCert [37]. As a main example, we provide a clear border for acceptable
behaviors and out-of-thin-air behaviors in a CFG-based language with a weak concurrency
model by using PLS to prove the semantic preservation of a simple optimization. The border
is summarized by the examples in Fig. 8.1, which can be divided into two parts. The first
is the PLS core part (Sec. 8.1.1). By the traditional simulation framework, the example
(c) cannot be proven to simulate (a) (meaning that (a) semantically preserves (c)), because
the memory trace (d) can be generated by (a), but it cannot be observed from (c). By
analyzing closely the output of the two reads and two writes in both (a) and (c), all values
that can be observed in these reads and writes of (c) can also be observed in (a). Thus,
we should have a kind of similarity between (a) and (c). The PLS core produces such kind.
It filters traces of programs into sub-traces based on locations. Instead of comparing the
whole traces (as (d)), the PLS core compares the sub-traces of location x (and y) in (a) and
(c) to determine if (c) per-location simulates (a). The second part is the full PLS definition
(Sec. 8.1.2), which addresses the focal point of thin-air problems. (b) (Fig. 8.1) is supposed
to be proved to be semantically preserved by (a), but (e) is not; because the two Boolean
guards in (d) can be compiled away, but such guards in (e) cannot be removed. There are
traces appearing in (a) but not appearing in (e). To validate the proof, we augment the PLS
core with additional equations that capture some very simple compiler optimization syntac-
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tic dependencies. Instead of proving the simulation from (d) to (a), we prove the simulation
from an equivalent representative of (d) to (a). To the best of our knowledge, PLS is the
first simulation framework weaker than the one in CompCert/CompCertTSO [97], and to
be used to prove compiler correctness under a CFG-based imperative language with a weak
memory model, and is able to correctly distinguish thin-air and correct behaviors.

8.1 THE PER-LOCATION SIMULATION DEFINITION

This section provides an introduction of PLS. We first introduce PLS core, then we pro-
vide an example language, and then we introduce the full PLS definition. After that, we
introduce the definition of PLS with failure by combining PLS with the forward simulation
in CompCertTSO [97].

8.1.1 PLS Core

Transition System
States: σ ∈ Σ Labels: α ∈ A Labeled Transition Systems (LTS): (Σ, A,

α−→)
Locations: Loc Label’s Value: val(α) Label’s Type: type(α) Label’s Location: loc(α) ∈ Loc
Transition System Property: (∀α. type(α) = τ ⇒ val(α) = ⊥ ∧ loc(α) = ⊥) ∧ (⊥ 6∈ Loc)
Transition System Syntactic Sugar
σ

τ−→ σ′ , ∃α. σ α−→ σ′ ∧ type(α) = τ σ −→not(x) σ
′ , ∃α. σ α−→ σ′ ∧ loc(α) 6= x

σ
α−→x σ

′ , ∃σn α. σ −→∗not(x) σn
α−→ σ′ ∧ type(α) 6= τ ∧ loc(α) = x

PLS Definition
Label Equivalence: α ≡ β , val(α) = val(β) ∧ type(α) = type(β) ∧ loc(α) = loc(β)

LTSΞ: (Ξ, A,
α−→

Ξ
) LTSΣ: (Σ, B,

β−→
Σ

)
vx is a PLSx relation on two transition systems LTSΞ and LTSΣ:
a.k.a. PLSx(vx) ,

∀ξ ξ1 ∈ Ξ. (∀σ ∈ Σ (∀α ∈ A. ξ vx σ ∧ ξ
α−→

Ξ

x ξ1 ⇒ (∃β σ1. σ
β−→

Σ

x σ1 ∧ α ≡ β ∧ ξ1 vx σ1)))

PLSLoc(v) , ∀x ∈ Loc. PLSx(vx)

Figure 8.2: Per-Location Simulation Core Definition

Here, we introduce the PLS core definition and utility examples. Fig. 8.2 includes the
PLS core definition. We assume that there is a labeled transition system (LTS) (Σ, A,

α−→),
including a set of states (Σ), a set of labels (A), and a labeled transition function ( α−→). The
transition system is parameterized by a set of locations Loc. Every label in the transition
system has three properties: its value (accessed by val), its type (at least having a τ type
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and normally having additional read and write types), and its memory location (be in the set
Loc). For simplicity, we assume that if the type of a label is τ , then the value and location
of the label are ⊥ in a given transition system. To best describe the PLS core definition, we
define some syntactic sugar on top of the transition system α−→ in Fig. 8.2. We first describe a
predicate PLSx defining PLS core on a single location x. A relation vx is a PLS core relation
on x over two labeled transition systems (LTSΞ and LTSΣ in Fig. 8.2), if for any two states
(ξ ∈ Ξ and σ ∈ Σ) in the relation (ξ vx σ), ξ can transition by an x step (defined by α−→x),
then σ can also transition by an x step, where the two labels are equivalent (≡) and the
resulting states are again related by vx. A family of relations (v), one for each location in
Loc, is a PLS core relation if each indexed relation (vx) satisfies PLSx for each x in Loc,
where Loc is a finite set of memory locations.

(wr_a)
x :=rlx1
y :=rlx1
z :=rlx1

(wr_b)
y :=rlx1
x :=rlx1
z :=rlx1

(prop) x :=rlx1 ∧y :=rlx1 ∧z :=rlx1

Figure 8.3: PLS Sequential Program Execution Examples

We first discuss the single-threaded cases. The program pieces in Fig. 8.3 ((wr_a) and
(wr_b)) describe two sequences of memory writes. Regarding the underlying memory con-
currency model, the outputs of the two program pieces should be the same, i.e. to write 1 to
the locations x, y, and z. However, (wr_a) and (wr_b) cannot be proved to be similar with
each other using the traditional simulation framework under the assumption of sequential
consistency. Only if we assume a relaxed concurrency model can we prove that (wr_a) and
(wr_b) are similar. In PLS, both (wr_a) and (wr_b) are viewed as three sub-traces as shown
in (prop) (for simplicity, in each sub-trace, we only show instructions without mentioning
other state environments), each of which describes a write for a location; so that we are able
to prove that (wr_a) and (wr_b) are per-loc similar to each other.

(a_dd)

Ry

Wx

Rx

Wy
rf rf (b_dd)

Ry

Wx

Rx

Wy
ctrl rf rf (prop_a) x :=rlx1

b :=rlx x ∧
y :=rlx1
a :=rlx y

Figure 8.4: PLS Multi-threaded Program Execution Examples

We now discuss multi-threaded cases under a weak relaxed memory model [3]. One of
the example per-loc simulation relations that PLS enables is the one between programs (a)
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and (c) in Fig. 8.1, whose execution diagrams are listed as (a_dd) and (b_dd) in Fig. 8.4.
An execution diagram is a graph representation of the execution of a program (only listing
memory instructions), with arrows representing the memory instruction order that the ex-
ecution must obey. In (a_dd), W (or R) represents a write (or a read) instruction with the
subscripts (x or y) representing the memory locations (details are the Act type in Fig. 6.2).
The rf arrow between Ry and Wy in (a_dd) means that the read from y reads the value writ-
ten by the write, so the read must happen after the write. The ctrl arrow in (b_dd) is a
control dependency so that Ry must happen before Wx in any valid execution of (c) (Fig. 8.1).
This is the reason that program (c) does not simulate program (a) by traditional simulation
methods, i.e. because the execution ((d) in Fig. 8.1) happens in (a) but never happens in
(c). On the other hand, PLS deals the two programs by first splitting all executions in both
programs into a sub-trace per-location like the one in (prop_a). Thus, (c) per-loc simulates
(a) ((a) semantically preserves (c)).

8.1.2 Full PLS

The PLS core definition is suitable for building the per-loc simulation between (a) and (c)
in Fig. 8.2, but the relation between (a) and (b) (Fig. 8.2) cannot be handled by the PLS
core. To enhance the usability of PLS, we associate a reflexive relation eq with the PLS core
definition as the Full PLS definition (Fig. 8.5).

PLS Definition
Reflexive Relations On Two LTSs: eq

LTSΞ: (Ξ, A,
α−→

Ξ
) LTSΣ: (Σ, B,

β−→
Σ

) LTSΥ: (Υ,K,
κ−→

Υ
)

PLSeqx (vx) ,

∀ξ ξ1 ∈ Ξ. (∀α ∈ A. (∀σ ∈ Σ. ξ vx σ ∧ ξ
α−→

Ξ

x ξ1 ⇒
(∃ (LTSΣ, LTSΥ,�eq) ∈ eq. (∃υ υ1 ∈ Υ. (∃κ ∈ K.

σ �eq υ ∧ υ κ−→
Υ

x υ1 ∧ (∃σ1 ∈ Σ. σ1 �eq υ1 ∧ ξ1 vx σ1))))))

PLSeqLoc(v) , ∀x ∈ Loc. PLSeqx (vx)

ξ ξ1

σ σ1

υ υ1
∃

∀

v v

�eq �eq

Figure 8.5: Full Per-Location Simulation Definition

The eq relation is at least a reflexive relation describing program transformations and
capturing the syntactic dependencies of program instructions that are hard to be discovered
by only the program concurrency semantics, such as the example (b) in Fig. 8.1. eq in-
cluding the identity relation (as �eq) relates two systems LTSΣ and LTSΥ, such as the tuple
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(LTSΣ, LTSΥ,�eq) in Fig. 8.5. PLSeqx can be understood by the right diagram in Fig. 8.5.
Assume that we have two systems LTSΞ and LTSΣ. We want to show the per-loc simulation
(vx) from LTSΞ to LTSΣ by showing that for every transition ξ to ξ1, there exists a transition
σ to σ1, such that the two transition labels are equivalent (≡). However, we cannot directly
have a transition from σ to σ1 in some cases. Instead, through the eq set, we find a relation
�eq that relates LTSΣ with another system LTSΥ; and the transition from υ to υ1 is found
in LTSΥ, where υ and υ1 are related to σ and σ1 through �eq, respectively, and ξ1 and σ1

are also related by vx. PLSeqx is a generalization of the PLSx predicate in Fig. 8.2, if we just
select the tuple in eq as (LTSΣ, LTSΣ,=). By selecting such tuple, the two systems LTSΣ

and LTSΥ are the same. Finally, PLSeqLoc includes the functionality as PLSLoc, but it builds a
family of relations over the predicate PLSeqx .

eq , ...
(N, π0, λ ∪ {π 7→ (ins, if e)}, E′ ∪ {(π, yes,π1), (π, no,π2)})
∼=eq (N, π0, λ ∪ {π 7→ (ins, br)}, E′ ∪ {(π, seq,π1)})
IF eval(e) = true;

(N, π0, λ ∪ {π 7→ (ins, if e)}, E′ ∪ {(π, yes,π1), (π, no,π2)})
∼=eq (N, π0, λ ∪ {π 7→ (ins, br)}, E′ ∪ {(π, seq,π2)})
IF eval(e) = false;

(N, π0, λ ∪ {π 7→ (ins, if e)}, E′ ∪ {(π, yes,π1), (π, no,π2)})
∼=eq (N, π0, λ ∪ {π 7→ (ins, br)}, E′ ∪ {(π, seq,π1)})
IF λ(π1) = λ(π2) ∧ (∀l π′.(π1, l, π

′) ∈ E ⇔ (π2, l, π
′) ∈ E);

...

(a) Example eq Relation
(b) Roach Model on Ac-
quire/Release Atomics

Figure 8.6: Example and Roach Model

Fig. 8.6a provides a partial definition of an example eq set. The set contains equations
to relate two labeled transition systems LTSΞ and LTSΣ by relating the two program texts
in any two states ξ and σ from the systems. The conditional equations shown in Fig. 8.6a
is to equate two CFGs for a thread in any two program texts, i.e. two program texts
µ and µ′ are equivalent, if for any thread tid in the domain of µ/µ′, µ(tid) ∼=eq µ′(tid)

(∼=eq means equivalence closed under the conditional equations in Fig. 8.6a). The first two
conditional equations in Fig. 8.6a describe the equivalence relation that if a Boolean guard
of a binary branching is always evaluated to true or false statically (by the eval function),
then the CFG is related to the version formed by transforming the branching operation to a
unconditional branching operation. The third rule describes the relation that if the outgoing
edges of a branching block have the same target, then the CFG can be rewritten as a version
only going through one branch.
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The single-threaded programs ((pa_a), (pa_b), and (pa_c)) in Fig. 8.6 are examples for
which traditional simulation frameworks cannot provide satisfactory explanations. Using a
sequential consistency model, a traditional simulation framework enables the proof of simi-
larity between programs (pa_a) and (pa_b) (let’s assume that the executions of a program
generate an LTS), because an execution of (pa_a) always executes a write to x, then a read
from y, and then a write to z, which is the same sequence as the one produced by (pa_b).
The problem is that we also want to show that (pa_a) and (pa_c) are similar, which the
traditional framework cannot enable.

(pa_a)

x :=rlx c
if (a=b ∧ b=c)

a :=rlx y
else

a :=rlx y
z :=rlx b

(pa_b)
x :=rlx c
a :=rlx y
z :=rlx b

(pa_c)
a :=rlx y
z :=rlx b
x :=rlx c

(prop_pa) x :=rlx c ∧ a :=rlx y ∧ z :=rlx b

Figure 8.7: Single-threaded Reordering Example Executions

Under a weak memory model, like RC11 [3], a transitional simulation method enables
the proof that (pa_c) simulates (pa_a) but not the opposite, because the Boolean guard in
(pa_a) contains the variables a and b, so it has data dependency on the later instructions
(read from y and write to z). Thus, they cannot move to execute before the Boolean guard as
well as the write to x. Clearly, by using the full PLS, to prove that (pa_a) simulates (pa_c),
we can first find an equivalent program of (pa_a), which is exactly the one in (pa_b). Then
we prove that (pa_a) per-loc simulates (pa_c) by showing that (pa_b) per-loc simulates
(pa_c).

(a_dd)

Ry

Wx

Rx

Wy
rf rf (d_dd)

Ry

Wx

Rx

Wy
ctrl ctrlrf rf (prop_a) x :=rlx1

b :=rlx x ∧
y :=rlx1
a :=rlx y

Figure 8.8: Difference Between PLS and Traditional Simulation Relation in Multi-threaded
Executions

The simulation from (pa_a) to (pa_c) can also be proved by the PLS core definition in
Sec. 8.1.1. To understand the additional proving ability that the full PLS brings us, the
simulation from (b) to (a) in Fig. 8.1 provides a better hint. The execution diagram of (a)
is shown as (a_dd) in Fig. 8.8, while the diagram of (b) is shown as (d_dd). In (d_dd),
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for every single thread, a control dependency (ctrl) exists from the read to the write. If
we observe that the two reads both read 1, we have exactly two reads-from edges (rf) from
writes to reads. Thus, the diagram contains a cycle, which means that the execution of
reading both as 1 is impossible if no optimization is applied to (b) (Fig. 8.1). Like the
traditional simulation frameworks, PLS core is unable to prove the per-loc simulation from
(b) to (a), which is the correct behavior in the sense that no optimization is applied. the
desired simulation between (b) and (a) must take into account some resulting behaviors
caused by optimizations. It is clear that the two ctrl edges in (d_dd) can be removed by
some very simple optimizations, so that (b) becomes (a); and its execution diagram is the
same as that of (a_dd). Then we can use the PLS core to build the simulation relation as
the one in Sec. 8.1.1. This is the main content of the full PLS definition, which includes the
optimization effects as the equivalence relation eq, then proves the per-loc similarity from
an equivalence representative of (b) to (a) by using the PLS core.

(par)

a :=rlx y//1 b :=rlx x//1
if (a=1) if (b=1)

x :=rlx1 y :=rlx1
else

y :=rlx1

(par’)
a :=rlx y b :=rlx x
if (a=1) y :=rlx1

x :=rlx1
(par’_dd)

Ry

Wx

Rx

Wy
ctrl rf rf

Figure 8.9: Example Executions with Optimizations on Branching Statements

If a traditional simulation framework would be parameterized with the eq relation, it could
prove the simulation from (b) to (a) in Fig. 8.1, but it is inadequate for the simulation from
the (par) above to (a) (Fig. 8.1). For that, the full power of PLS is required. To prove such
a per-loc simulation, we first select an equivalence representative of program (par) to be the
program (par’) (Fig. 8.9). Then, we prove the per-loc simulation from (par’) to (a) by the
strategy for proving the relation from (c) to (a) (Sec. 8.1.1).
We then need to answer the question: what kind of equations are allowed in eq? The

principle is described in the Roach Model of Manson et al. [160], and systematically explained
by Vafeiadis et al. [106]: the short answer is any equation that can preserve program
meaning, especially, the meaning of the critical section created by the acquire (acq) and
release (rel) atomic memory operations. Essentially, the acquire/release atomics are C++
memory devices that implement a weak version of the memory locking mechanism. Moving
a memory operation before an acquire atomic operation or after a release atomic operation
violates the Roach Model principle that states: "shared memory accesses can be moved in
critical regions but not out of them" (Fig. 8.6b). In the paper of Vafeiadis et al., several cases
are mentioned of an optimization violating this principle; each of them involves the removal
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or addition of read/write memory operations. For simplicity in this chapter, we provide the
following observation about a conservative construction of eq to preserve the Roach Model
principle. In it, LTS|tid means chopping the LTS to only execute single-threaded CFGs in
the thread tid.

Observation 8.1. Assume that we have a transition system LTSΣ, and a singleton relation
set eq = {(LTSΣ, LTSΞ,∼)}. We assume that for every thread tid, we derive two single-
threaded systems from LTSΣ and LTSΞ as LTSΣ|tid and LTSΞ|tid, the ∼ relation (LTSσ|tid ∼
LTSσ|tid) has the property that LTSσ|tid is bisimilar to LTSσ|tid. Then, for any relation v,
such that PLSeqLoc(v), and any state ξ in LTSΞ that does not transition (in LTSΞ) to a Roach-
Model-violating state (Fig. 8.6b), if σ v ξ, then σ does not transition (in LTSΣ) to a Roach-
Model-violating state.

8.1.3 PLS with Failure

PLS with Failure Definition
PLSeqx (vx) ,

∀ξ ξ1 ∈ Ξ. (∀α ∈ A. (∀σ ∈ Σ. ξ vx σ ∧ ξ
α−→

Ξ

x ξ1 ⇒

(∃ (LTSΣ, LTSΥ,�eq) ∈ eq. (∃υ υ1 ∈ Υ. (∃κ ∈ K. σ �eq υ ∧ υ κ−→
Υ

x υ1 ∧ (∃σ1 ∈ Σ. σ1 �eq υ1 ∧ ξ1 vx σ1))))

∨(∃ σ′ σerr ∈ Σ. σ
τ−→

Σ∗
σ′

fail−−−→
Σ
σerr)))

PLSeqLoc(v) , ∀x ∈ Loc. PLSeqx (vx)

Figure 8.10: Per-Location Simulation with Failure Definition

The full PLS definition (Fig. 8.5) describes the relations among executions that never reach
error states. To make the PLS definition suitable for reasoning about program executions
that might reach failure states, we wrapped the full PLS definition with the failure simulation
predicates in the upward simulation definition in CompCertTSO [97]. The definition is in
Fig. 8.10. In the definition, LTSΞ represents the system executing the optimized program,
while the LTSΣ represents the system executing the original program. The PLS with failure
definition adds one more condition in the PLSeqx (vx) predicate stating that if for any one
step transition in LTSΞ, the corresponding state in LTSΣ is transitioned to an semantic error
state, then the relation is still an allowed PLSeqx (vx) relation. The PLS definition captures the
compiler optimization semantic preservation property. The semantic meaning of the property
when an execution of the original program reaches an error state is that the execution of the
optimized program is allowed to do whatever it is allowed. This is what we defined for the
PLSeqx (vx) predicate to handle the error-state-reaching case.
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8.2 PROGRAM MEANING PRESERVATION

Morpheus is a a domain-specific language for formal specification of program transforma-
tions. In previous papers about Morpheus [1, 98], it was shown how to combine a sequential
memory model, the Morpheus framework, and an underlying instruction semantics for a pro-
gramming language to prove the correctness of a traditional compiler optimization (PRE).
This section introduces a combination of PLS, Morpheus, and the program semantics for the
language in Fig. 6.4 (based on a weak memory model in Chapter 7) to prove an optimiza-
tion semantically preserving the program meaning. The Morpheus specification language
is introduced in Sec. 3.2. Here, we first introduce examples of optimizations specified in
Morpheus. Then, we introduce the proof of the optimization by using the PLS definition in
Fig. 8.10. The program semantics of the proof is based on K-LLVM with the operational
model described in Chapter 7. Given an optimization ζ and program µ, we rewrite µ to µ′

by ζ. The proof is to build a PLS relation from a LTS, whose states have the form (µ′, ω) for
any environment state ω with a fixed format (e.g. Fig. 7.1), to another LTS, whose states
have the form (µ, ω).

8.2.1 Example Optimization Specifications

Figure 8.11: Examples of Simple Code Motion Optimizations

In this chapter, we use two kinds of simple code motion (SCM) optimizations as examples.
The general strategies for them are shown as graphs in Fig. 8.11. Given a CFG C for a
thread in a program µ, the left optimization in Fig. 8.11 locates (by a Morpheus condition
expression) a basic block B of C, whose termination is a binary branching instruction and
the two outgoing edges pointing to the two basic blocks B1 and B2 that have the same
content and same outgoing edges. Then the left optimization changes the binary branching
instruction in B to a non-conditional one, and also changes the edges of B to a single outgoing
edge with a label seq. This is done by a strategy code in Morpheus with a sequence of graph
transformations. Similarly, the right optimization first locates a basic block B of C whose
termination is a binary branching instruction whose Boolean guard is always evaluated as
true (by static rewriting). Then the optimization changes the binary branching instruction
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to an unconditional branching one br, and makes all of the outgoing edges of B point to the
basic block indicated by the true branching of B.

sameOutEdge(a, b) , stmt(a) = stmt(b) ∧ sameEdges(a, b)
∨stmt(a) = stmt(b) ∧ ¬sameEdges(a, b) ∧ sameOutEdge(next(a), next(b))

leftOpt(π) , EXISTS π1 π2.SATISFIED_AT π.sameOutEdge(next(yes, π), next(no, π))
;relabel_node(π, (insts(π), br));move_edge((π, no, π2), (seq, π1))
;move_edge((π, yes, π1), (seq, π1))

rightOpt(π) , EXISTS a π1 π2.SATISFIED_AT π.tem_inst(π) = a ∧ eval(a) = true
;relabel_node(π, (insts(π), br));move_edge((π, no, π2), (seq, π1))
;move_edge((π, yes, π1), (seq, π1))

Figure 8.12: Simple Code Motion Transformations in Morpheus

Figure 8.12 contains the Morpheus formulas leftOpt and rightOpt defining the left and
right compiler optimizations from Fig. 8.11. The sameOutEdge formula defines the predicate
for checking if two statements are the same; and their children have the same outgoing edges
or statements. a and b are two metavariables representing two nodes; the stmt(π) function
gets the basic block represented by node π, and the sameEdges predicate checks if a and b
have the same out going edges. leftOpt represents the left optimization in Fig. 8.11. It first
searches a node π that has a binary branching instruction with two out going edges (defined
by the SATISFIED_AT Morpheus strategy operation). The next function gets the outgoing
node of π with a fixed edge label (yes or no in leftOpt). It does three actions: first, it
replaces the termination of π with br (by the Morpheus relabel_node action); second, it
changes the no edge of π to π1 with the label seq (by the Morpheus move_edge action), and
finally it exchanges the yes edge of π with the label seq (also by the Morpheus move_edge
action). The insts function gets the instruction list in the basic block of π. The rightOpt
formula implements the right optimization in Fig. 8.11. It is similar to leftOpt. The only
difference is that it checks if the binary branching instruction in the basic block of node π has
a Boolean guard that is always evaluated as true (by the eval function). The termination
is retrieved by the tem_inst function, and the metavariable a represents the termination of
π.
The semantics of Morpheus [1, 98] is basically the implementation of a graph rewrite

algorithm over the FOCTL style conditions. Given an optimization formula (like Fig. 8.12)
and a program µ, for every CFG C for a thread in µ, the algorithm generates a set of new
CFGs. It first locates a basic block node satisfying the condition ϕ defined in a SATISFIED_AT
strategy operation; and then it does a series of actions that change the structure of the CFG
based on the node, as with the relabel_node and move_edge actions in leftOpt.
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Here, we have briefly introduced Morpheus and given examples of optimizations defined
therein. We will introduce the PLS proof in the next section.

8.2.2 The PLS Proof over Morpheus Optimizations

We utilize the optimizations and the program semantics defined in Chapter 5 and 7 to
prove the correctness of a simple code motion optimization (SCM) as a utility of PLS. We
want to show that any compiler-optimized (by SCM) program in the language (K-LLVM)
per-loc simulates its original unoptimized program.

Figure 8.13: Optimization Proof with PLS

Fig. 8.13 provides the structure of the optimization proof. In Sec. 8.1.1, we described
how the PLS framework is parameterized by transition systems. Here we instantiate these
systems with the same program transition system in Chapter. 7. We then instantiate the
states (ξ, σ and υ in Fig. 8.10) as the form (µ, ω). For any two states in a LTS (LTSΞ, LTSΣ,
or LTSΥ), they have the same program µ. We also map the labels (α, β, and κ) to memory
events (Ev). Given a label event ev, the property val is implemented as getting the value of
the action in ev only if the action is a read or write; if it is a τ event, then the val answers
⊥. type is implemented as a read for a read action in the event, as a write for a write action,
and as τ for a τ action. loc is implemented as getting the memory location in the action of
the event (if it is a τ event, then loc answers ⊥). We keep the relation set eq the same as the
one in Fig. 8.6a. Assume that a program µ is given, by applying the Morpheus optimization
algorithm of SCM, we can rewrite µ as an optimized program µ′. For a fixed initial state ω,
the PLS proof is to show that the LTS (LTSΞ) with the initial state (µ′, ω) per-loc simulates
the LTS (LTSΣ) with the initial state (µ, ω), where there exists a per-loc simulation relation
v for a finite set of locations Loc, such that (µ′, ω) v (µ, ω). We formalize this result as
Theorem 8.2, and the proof is done in Isabelle. The approach of the proof is first to prove a
lemma with a similar structure but for only a single-threaded program with one CFG, and
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then prove Theorem 8.2 by using induction on the number of threads in the domain of the
program.

Theorem 8.2. Let (µ, ω)(x) (ξ(x) or σ(x)) be the value of location x at the ω’s heap
snapshot (Γ in Fig. 6.24) that belongs to the thread tid such that ρ(max(T )) = (tid, aid, ac) (ρ
and T are the elements in ω in Fig. 6.24). For any program µ in the language in Fig. 6.4 with a
finite domain (Tid has size n), for any π and any tid ∈ Tid, let µ′(tid) ∈ leftOpt(π)(µ(tid))

(or µ′(tid) ∈ rightOpt(π)(µ(tid))).
Given a non-empty finite set of memory locations Loc and a given state environment

ω, there exists a per-loc simulation v that satisfies PLSeqLoc(v) and (µ′, ω) vx (µ, ω) for all
location x, and for all ξ and σ such that ξ vx σ for a location x, ξ(x) = σ(x).

8.3 ISABELLE FORMALIZATION OF THE FRAMEWORK AND THE PROOF

The PLS framework, the combination of PLS and Morpheus, and the proof of the seman-
tic preservation of a particular optimization on a specific language are achieved through an
elegant combination of different locale structures [161] in Isabelle. An Isabelle locale struc-
ture is a polymorphic theorem structure that is parameterized by a list of Isabelle terms
with proper types and a list of assumptions for these terms. Through a locale structure,
a collection of theorems can be defined for a list of polymorphic terms, provided that the
terms satisfies the assumptions defined for the terms. Users can later instantiate the locale
structure to a specific instance of terms by proving the assumptions.
In the Isabelle Morpheus definition, we first define the syntax for the Morpheus specifi-

cation language. We then define a polymorphic CFG locale structure, named Flow_graph,
with all necessary elements in a CFG, such as a set of nodes, a set of edges, the start node
and the exit node for the CFG with several assumptions on the CFG well-formedness. The
Morpheus specification language semantics is also defined as a locale structure, named Mor-
pheus_sem, which is built on top of the Flow_graph locale. Based on the CFG structure
and assumptions provided by flow_graph, Morpheus_sem defines an inductive relation cap-
turing the graph rewriting semantics of Morpheus based on the polymorphic CFG structure
(flow_graph).
Before we define PLS in Isabelle, we define an LTS locale for a polymorphic labeled

transition system (LTS) with four properties with some well-formedness assumptions. Three
of them are listed in Fig 8.2. The other one is the program text of the LTS described in
Sec. 8.1.2. PLS is defined as a locale, named PLS, with two LTSs and an equation set eq as
the input terms. The two LTSs are based on the LTS locale. In the PLS locale, we define
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a predicate as the one in Fig. 8.10, which defines the full PLS. When using PLS to prove
language properties, one might be more interested in finding a PLS relation. To do that, we
combine the Morpheus_sem and the PLS locales, as a new locale Morpheus_com, to build a
PLS relation on top of the Morpheus semantics. In Morpheus_com, we build a new predicate
simeqx µ µ′ steprel n, where µ and µ′ are two programs (with the same thread domain),
and µ′ is the transformed program of µ through a specific optimization defined as an input
term of Morpheus_com. steprel is a polymorphic function (defined as a term in a locale)
to produce an LTS based on a program by omitting the implementation details of the LTS
but only producing the four properties above. It takes in a program µ and a state ω, and
outputs a label ev and a new state ω′ transitioned from ω. The simeqx predicate is valid if
and only if the LTS with the program text µ, and an initial state ω (µ, ω), per-loc simulates
(with the equation set eq) the LTS with the program text µ, and an initial state ω (µ, ω) in
n steps.
As an example (in Isabelle) of defining the optimization in Fig. 8.12 and proving The-

orem 8.2 on K-LLVM, we first define its instruction and CFG syntax with a definition
capturing the instruction level semantics of the language. We also define a memory model
as a locale structure capturing the relaxed concurrency behaviors described in Chapter 6.
We then define the program semantics as the LTS (−→) as the LLVM Operational Model
(Chapter 7) by instantiating the memory model locale with the language (Fig. 6.4) and
adding more structures (like the program pointer family). Now, we instantiate the Mor-
pheus_sem locale by the CFG syntax in K-LLVM, the Steprel locale (for instantiating the
function steprel) by the LTS (−→), and the eq set as the one in Fig. 8.6a, and the compiler
optimization term in Morpheus_sem as the one in Fig. 8.12. The proof of Theorem 8.2 is
then turned to show that the predicate simeqx µ µ′ steprel n is valid for arbitrary x in a
location set Loc. We first show the case when n = 1 by proving for any one-step transition
defined by the LTS (−→) for arbitrary x; then, we lift the proof inductively to arbitrary n
step based on the one-step proof result.
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Chapter 9: CONCLUSION AND FUTURE WORK

Here, we provide conclusions and possible future studies on different components of the
thesis.

9.1 CONCLUSION

We first introduce the platform used for defining language semantics and prove theorems,
which is IsaK and TransK. IsaK is a formal semantics of K in Isabelle. It contains two
part. The static semantics of IsaK describes the behavior of how K is transformed from
FAST to BAST; especially, how the concision, localization and modularity are transformed
into a well structured BAST format. In addition, we discuss some potential design issues
related to the concision, localization and modularity with respect to the transformation, and
suggest some design changes. In the static semantics, we proposed a sort system for K which
is the first complete sort system for K. All of these processes involved discussion with the
K team to make sure our K formal semantics behaved correctly. We also examined IsaK
by running tests against the extracted OCaml interpreter of IsaK in Isabelle and found
that our system passed all 13 test specifications and 338 out of 356 programs for these test
specifications. We discovered 25 major undesirable behaviors of K. The dynamic semantics
of IsaK is to capture the behavior of executing a program in a specification sequentially
(krun) or in a multi-threaded way (ksearch) by giving the specification in K. We also
defined TransK, the shallow embedding of a K specification into an Isabelle theory, and
showed that the execution of a program in the K specification is bisimilar to its Isabelle
theory transalted by TransK. As an usage of IsaK and TransK, we defined K-LLVM in
IsaK, and translate it to a Isabelle version through TransK. Then, we prove the semantic
preservation property on a compiler optimization based on the Isabelle version of K-LLVM.
The second piece of the work is K-LLVM, which is a formal semantics of LLVM IR in

K. The main advantages of K-LLVM is its relatively completeness and its implementation
via a novel abstract machine for LLVM IR. To the best of our knowledge, K-LLVM is
the most complete formal semantics of LLVM IR. We fully define the static semantics and
dynamic semantics of LLVM IR relative to a sequentially consistent memory model. To
validate its completeness, we ran 1,385 unit testing and 2,156 concrete test programs, all
of which K-LLVM successfully executed. K-LLVM provides guidance and reference to
future compiler developers on exactly what are permissible behaviors in running LLVM IR
programs. It also provides important piece of a framework for proving properties of compilers
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to or from LLVM IR. The K-LLVM abstract machine is a concise way of specifying how
each LLVM IR instruction interacts with different computer components. In particular, K-
LLVM covers corner cases and side-effects of instruction semantics that previous work does
not have, such as the different cases of the getelementptr operators, casting operators, and
memory operators. K-LLVM also supports multi-threaded behaviors and provides users a
collection of tools, including a state-space searching tool to explore traces of their LLVM
IR programs under the assumption of sequential consistency. While this was not the main
focus of this work, we also found more than 20 bugs in the current LLVM implementation,
Clang. Based on the abstract machine design of K-LLVM, we created the full LLVM IR
memory model in K-LLVM, including the behaviors of different atomic memory orderings
and volatile memory accesses, with heavy testings and proofs of its relationship with
existing C++ memory models [2, 3, 110, 113, 162, 163] based on HATRMM.
The third piece of the work is HATRMM. The main reason to have HATRMM is to bridge

the traditional axiomatic candidate relaxed memory models with relaxed operational mem-
ory models, which have been proved that the linkage is impossible to establish based on the
traditional axiomatic candidate model [153]. We show that the equivalence of HATRMM
with respect to the RC11 [3] and IMM [162] models. There are other features of HATRMM
that previous models cannot achieve (Sec. 6.1). In addition, through the definition of HA-
TRMM we have corrected some mistakes in the definitions of previous models. The special
feature of HATRMM is its division of predicates describing concurrency behaviors based on
the concept of an abstract machine: this feature implements one predicate to describe single-
threaded behaviors and another to describe multi-threaded ones. By using HATRMM, we
can prove that the K-LLVM operational model in Chapter 7 is a model whose behaviors
are all valid behaviors in RC11 + IMM.
Finally, we propose a new per-location simulation (PLS) relation that is simple and suitable

for proving a compiled program preserves its original program semantics under a CFG-based
programming language with a real-world, C/C++ like, weak memory model. PLS can be
divided into two parts (Sec. 8.1.1 and 8.1.2). With the failure predicate from the upward
simulation in CompCertTSO [97], we are able to form PLS with the K-LLVM operational
model (Chapter 7), to prove semantic preservation property of an optimization defined in
K-LLVM. We have shown the utility of PLS by proving that program semantics is preserved
for a simple code motion optimization (defined in Sec. 8.2.1) for all possible programs.
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9.2 FUTURE WORK

There are many different future possibilities of the work. We can use IsaK and TransK
to link reachability logic [78, 79, 164], the new program logic being derived by the K team,
with traditional program logics such as Hoare Logic [80] and Separation Logic [165]. To do
so, we first define reachability logic on top of IsaK, and then use TransK to translate a
specification defined in IsaK + reachability logic to an Isabelle version. Then, we can prove
properties about an specification in IsaK + reachability logic with respect to the traditional
Separation Logic [165].
The modular abstract machine of K-LLVM allows us to define different memory models

and libraries on top of K-LLVM without changing different instruction level semantics.
For example, we can define the OpenSSL library based on K-LLVM, so that we are able to
verify properties on programs with OpenSSL library functions.
For the future work of HATRMM + PLS, we plan to use them to prove that a wide range

of compiler optimizations semantically preserve program meaning in K-LLVM. To do so,
we will need to include compiler optimizations like partially redundant elimination, inline
expansion, thread inlining, etc.
For the future work of the whole project, we plan to define the complete semantics of

Haskell with its memory model (Software Transactional Memory model [166, 167]) based
on IsaK. Then, we can translate Haskell in K to a version of Haskell in Isabelle through
TransK. We then define the program transformation from Haskell to K-LLVM in Isabelle.
Finally, we prove the compiler correctness from Haskell to K-LLVM by using PLS. We
expect to extend HATRMM to include the Software Transactional Memory model, and also
combine the K-LLVM operational model with the Haskell abstract machine in Isabelle.
Eventually, we will have a complete verified compiler from Hasekell to LLVM IR.
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