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ABSTRACT

Hardware complexity has increased over time, and as architectures evolve and new ones

are adopted, programs must often be altered by numerous optimizations to attain maximum

computing power on each target environment. As a result, the code becomes unrecognizable

over time, hard to maintain, and challenging to modify. Furthermore, as the code evolves,

it is hard to keep the optimizations up to date. The need to develop and maintain separate

versions of the application for each target platform is an immense undertaking, especially for

the large and long-lived applications commonly found in the high-performance computing

(HPC) community.

This dissertation presents Locus, a new system, and a language for optimizing complex,

long-lived applications for different platforms. We describe the requirements that we believe

are necessary for making automatic performance tuning widely adopted. We present the

design and implementation of a system that fulfills these requirements. It includes a domain-

specific language that can represent complex collections of transformations, an interface to

integrate external modules, and a database to manage platform-specific efficient code. The

database allows the system’s users to access optimized code without having to install the

code generation toolset. The Locus language allows the definition of a search space combined

with the programming of optimization sequences separated from the application’s reference

code. After all, we present an approach for performance portability.

Our thesis is that we can ameliorate the difficulty of optimizing applications using a

methodology based on optimization programming and automated empirical search. Our

system automatically selects, generates, and executes candidate implementations to find the

one with the best performance.

We present examples to illustrate the power and simplicity of the language. The exper-

imental evaluation shows that exploring the space of candidate implementations typically

leads to better performing codes than those produced by conventional compiler optimizations

that are based solely on heuristics. Locus was able to generate a matrix-matrix multiplica-

tion code that outperformed the IBM XLC internal hand-optimized version by 2× on the

Power 9 processors. On Intel E5, Locus generates code with performance comparable to

Intel MKL’s. We also improve performance relative to the reference implementation of up

to 4× on stencil computations.

Locus ability to integrate complex search spaces with optimization sequences can result

in very complicated optimization programs. Locus compiler applies optimizations to remove
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from the optimization sequences unnecessary search statements making the exploration for

faster implementations more accessible.

We optimize matrix transpose, matrix-matrix multiplication, fast Fourier transform, sym-

metric eigenproblem, and sparse matrix-vector multiplication through divide and conquer.

We implement three strategies using the Locus language to create search spaces to find the

best shapes of the base case and the best ways of subdividing the problem. The search space

representation for the divide-and-conquer strategy uses a combination of recursion and OR

blocks. The Locus compiler automatically expands the recursion and ensures that the search

space is correctly represented. The results showed that the empirical search was important

to improve performance by generating faster base cases and finding the best splitting.

We also use Locus to optimize large, complex applications. We match the performance of

hand-optimized kernels of the Kripke transport code for different input data layouts. The

Plascom2 multi-physics application is optimized to find the best way to use a multi-core

CPU and GPU. The use of Tangram, Hydra, and OpenMP provided an interesting search

space that improved performance by approximately 4.3× on ZAXPY and ZXDOTY kernels.

Lastly, in a similar fashion to how a compiler works, we applied a search space representing a

collection of optimization sequences to 856 loops extracted from 16 benchmarks that resulted

in good performance improvements.
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CHAPTER 1: INTRODUCTION

This dissertation presents a language and a system for optimizing applications by generat-

ing highly efficient, platform-specific code. Platform-specific optimizations are a key factor

for attaining high performance in current hardware. However, organizing, structuring, and

carrying out a sequence of optimizations have proven extremely difficult. Performance is a

complicated function of many factors, including the underlying machine architecture, oper-

ating system, compiler technology, the application instruction mix and memory behavior,

and the input characteristics, which is often unknown before runtime. Applications opti-

mized using our language and system were able to match performance and, in some cases,

outperform hand-optimized implementations.

Based on our experiences with several applications, the developers of complex, long-lived

applications usually mainly rely on two approaches: i) on the selection of code according to

the platform, compiler, and even input through #ifdefs or conditional statements; ii) on

the use of highly-efficient, vendor-provided libraries for the computational bottlenecks. The

former makes the code logic harder to understand and hinders maintainability in the long

term. The latter transfers part of the optimization burden to the libraries. This practice

requires that libraries contain functions to implement the algorithms and data structures

used in these bottlenecks and, to be portable, that the interface across multiple platforms

to be the same. Library functions, however, are domain-specific and consist of contained

computations that cover mostly only common cases. The use of libraries may also miss out

on optimization opportunities across function calls.

We present a methodology to help performance experts as well as ordinary programmers

optimize applications. The same methodology can be used to generate platform-specific,

efficient code for libraries. The optimization should be explicit and separate from the code,

whereas the application’s code should be as “clean” as possible and not have any platform- or

compiler-specific optimizations. We developed a language to program complex optimization

sequences. The optimization programming happens on an external file, separated from the

application itself.

Despite deep knowledge about the underlying architecture, compiler, and application’s

domain, the optimization experts hardly know exactly the optimization sequence and what

optimization parameters will effectively make the code run close to the optimal speed. The

programmer must do some experimentation to decide how to proceed during the optimiza-

tion process. Performance modeling is a common path towards understanding which opti-

mizations to use. It has the advantage of requiring no empirical evaluations. Models are,
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nonetheless, very complicated to devise, domain-specific, and sensitive to small changes on

the target machine.

We claim that empirical search combined with heuristics is the best approach for opti-

mizing a broad range of applications. The use of heuristics incorporates domain-specific

knowledge to the process and is essential to prune the optimization search space that can

grow exponentially.

A search space consists of a finite collection of search variables. A search variable has a

domain of potential values, and constraints are used to either restrict or order combinations

of values between variables. An exploration of a search space involves finding values for

each search variable that satisfy a finite set of constraints. Each combination of values

found during the exploration is considered a point in that space (i.e., configuration). A

search space for program optimization consists of search variables whose domain is discrete.

The search variable’s values are used for the parameters of the optimizations (e.g., unrolling

factor). We also use search variables to either restrict or order combinations of optimizations.

We define optimization as any insertion to or transformation of the source code with the

intent to improve performance. A point in the program optimization search space represents

an optimization sequence used to generate a candidate implementation (i.e., code variant).

An empirical evaluation consists of the execution of n candidate implementations from the

search space.

We have developed Locus, a language and a system for program optimization. The lan-

guage is used to implement optimization programs and includes special constructs to describe

the search space to be explored through empirical search. It allows the expression of com-

plex, large search spaces concisely. The optimization programs are easy to maintain and

adapt. In order to make the optimization process easier, the application’s code is divided

into labeled code regions later referenced in the optimization programs. These code regions

can share the same optimization sequence and search space, or each can have its own.

The system allows the integration of tools developed internally and externally. The goal

is to reuse as much as possible the work developed by others. We focused on fine-grained

transformations that fully automate the cumbersome and error-prone task of code manip-

ulation. The system includes interfaces to integrate modules for code transformation and

for exploring the search space during the empirical search. The easy integration of multiple

modules allows the comparison and selection of the best modules for each specific context.

Generating semantically equivalent candidate implementations that perform better than

the “naive” one can be quite complicated. Figure 1.1 shows the naive version and one can-

didate implementation for matrix-matrix multiplication. The candidate code shown is an

example of how complicated the variants generated can get after a sequence of only two
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loop transformations. It represents a 2-level hierarchical tiling combined with loop reorder-

ing. Carrying out this process by hand is time-consuming, error-prone, and unproductive,

especially because multiple candidates must typically be generated until the best one is

found.

1 int main()
2 {
3 int i, j, k;
4 init_array(A, B, C);
5

6 #pragma @Locus loop=matmul
7 for (i=0; i < 4096; i++)
8 for (j=0; j < 4096; j++)
9 for (k=0; k < 4096; k++)

10 C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j];
11

12 print_array(C);
13 return 0;
14 }

(a)

1 int main()
2 {
3 int i, j, k;
4 init_array(A, B, C);
5

6 #pragma @LOCUS loop=matmul
7 for(i_t = 0; i_t <= 7; i_t += 1)
8 for(k_t = 0; k_t <= 3; k_t += 1)
9 for(j_t = 0; j_t <= 1; j_t += 1)

10 for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1)
11 for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1)
12 for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
13 for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
14 for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
15 for(j = 64 * j_t_t; j <= ((64 * j_t_t) + 63); j += 1)
16 C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j];
17

18 print_array(C);
19 return 0;
20 }

(b)

Figure 1.1: a) Annotated matrix-matrix multiplication source code. The identifier mat-
mul to be referenced in the optimization program. b) Candidate implementation of the
matrix-matrix multiplication automatically generated. This code represents loop reordering
combined with a 2-level hierarchical tiling.

Even for compilers, the generation of such implementations can be difficult. The gap be-

tween the performance of hand-tuned and compiler-generated code has grown substantially.

There are several aspects of code optimization that makes it harder for traditional compiler

approaches. First, depending on the input, we may choose a completely different data struc-

ture from that of the initial implementation. The use of different data structures may alter
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code behavior completely. Data structure selection depends on application-specific semantic

information, which is difficult to obtain using traditional static analysis. Second, because of

the limited compilation time, the optimization passes can only use quick heuristics. Know-

ing when high heuristic costs or even an empirical search can be tolerated must be justified

by expected performance gains. Third, compilers have no access to application-specific in-

formation to help to identify candidate transformations and their parameters. We would

not expect current compilers to identify candidates nor to be able to choose among these

candidates. In short, no input and application-specific information and limited compilation

time restrict performance attained by traditional compiler-generated code.

Our work’s ultimate goal is to provide a way to define optimization sequences and search

spaces concisely, which will be used to automatically generate candidate implementations

whose performance approaches that of the best hand-optimized code. It has been shown

that it is possible to build automatic tuning systems to generate implementations whose

performance competes with, and even exceeds that of, the best hand-tuned code [1, 2, 3, 4,

5, 6]. The lessons learned from these systems have inspired our implementation.

Our system follows these steps for optimizing an application:

• parse of the optimization program and convert it to internal representation;

• compiler passes that are applied to the internal representation of the optimization

program to prune the search space;

• conversion of the search space to the format accepted by the selected search-module;

• search the space for the best implementation using the search module’s techniques. The

candidates are selected, generated, executed, and evaluated according to the chosen

metric;

• generates an optimization program implementing a single optimization sequence con-

taining the steps to generate the best implementation for each code region evaluated.

A code region can be a loop, straight-line code, or a function.

Users of the system can experiment with different search techniques without having to

modify the optimization program. All the details regarding the use of the search techniques

and representation are transparent to the user.

The optimization of applications plays an increasingly critical role in achieving high per-

formance. Our thesis is that, by using the aforementioned approach, we can ameliorate the

difficulty of optimizing applications by using optimization programming and automated em-

pirical search. Our methodology is based on the definition of search spaces combined with
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the programming of optimization sequences. Our system automatically selects, generates,

and executes candidate implementations to find the one with the best performance.

The remainder of this chapter presents in more detail the challenges of the optimization

process. We review the related developments leading up to our work and show a summary

of our contributions.

1.1 PROBLEM CONTEXT

Hardware complexity has increased over time, and the race for more performance is the

reason behind the addition of new features and accelerators’ development. New memory

technologies, deep cache hierarchies, branch prediction, out-of-order execution, and specula-

tive execution complicate modern highly complex platforms’ use and performance modeling.

They make programming efficient codes harder and performance less predictable. Moreover,

each hardware platform commonly requires a different sequence of optimizations to attain

a high fraction of its nominal peak speed. Software developers must devote significant time

to benefit from the computing power of modern CPUs and accelerators as the gap between

the performance of hand-tuned and compiler-generated code has grown substantially.

As platforms evolve and new ones are adopted, programs must often be altered by the

numerous optimizations needed for each target environment (hardware and software stack)

to approximate maximum computing power. As a result, the code becomes unrecognizable

over time, hard to maintain, and challenging to modify. Furthermore, as the code evolves,

it is hard to keep the optimizations up to date. The need to develop and maintain separate

versions of the application for each of the target platforms is an immense undertaking,

especially for the large and long-lived applications commonly found in the high-performance

computing (HPC) community.

An application code is portable if it runs on a diverse set of platforms without needing

significant modifications and produces a similar output. Ideally, the application code would

also be performance portable and achieve high performance across a variety of platforms [7, 8].

However, creating performance portable code is difficult because the search space is very

large, and many important decisions affect an application’s performance on the target ma-

chines. These include the order of operations within large loops and the choice and layout

of data structures. The optimal or near-optimal choices often differ depending on the target

platform.

In practice, improving performance can be challenging because of the quantity of factors

involved in the process. The first challenge is to define the search space, namely: choose

which optimizations to carry out, the order of them, and their parameters. This requires the
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understanding of the underlying architecture (e.g., cache sizes, number of cache levels, kinds

of registers) in order to list the optimizations that would bring performance improvements.

A deeper knowledge of the application and architecture often results in the definition of

heuristics to reduce the search space to optimization sequences and their parameters that

are most likely to generate faster candidates.

Following the search space description, the next step is to select which techniques (or a

collection of) to use for traversing such space. Depending on its size, it may be necessary

to partition the space to accelerate space exploration. The partition of the search space

also facilitates the analysis of results as each partition contains fewer search variables than

the original space. With fewer search variables, it may be easier to identify any correla-

tion between optimizations and performance improvement. Techniques represent the space

differently (e.g., flat, hierarchical), and optimal selection depends on the input space.

The main task of the technique selected to explore the space is to suggest the values that

represent a point in the search space. These values are used to create a candidate imple-

mentation. Creating the candidate implementation by hand is not feasible, and multiple of

them are often generated. The next challenge is to find tools that can generate such can-

didates automatically. Typically, these candidates consist of multiple optimizations chained

together, in which the order is important.

Another important aspect is to use candidates that are guaranteed to be correct. Depen-

dence analysis is able to guarantee the correctness of the transformations applied by using

execution-order constraints between statements. However, it has limitations for which codes

the constraints can be accurately calculated. Because of that, some correct candidates may

not be generated because dependence analysis cannot calculate the constraints and guaran-

tee their correctness. The programmer, however, can skip this check whenever it is known

that the code generated is correct.

Each candidate implementation suggested is evaluated empirically and returns a value

that is used to compare the candidates. It is also used to help select the next candidate to

be evaluated.

After the empirical search, the next challenge is to analyze the results and understand

which optimizations are the most critical to attaining performance. This helps better un-

derstand the application behavior and the underlying architecture. The results from one

process can be reused to guide future search processes using different compilers or even in

different but similar platforms.

Finally, the best candidate implementation needs to be available for the users. Depend-

ing on the application’s size and complexity, the best candidate includes optimizations to

multiple code regions. And, since they are platform-specific, the optimizations used for each
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code region for each target platform must be stored.

In summary, the optimization process can become very challenging as it is necessary to

describe a search space of reasonable implementations, select the method to explore such

space, automatically generate the candidates, analyze results, and deploy platform-specific

optimized code to users.

1.2 RELATED WORK

There have been several projects to develop new programming models, languages and tools

aimed at providing programmers with productive tools for achieving performance portabil-

ity. As shown in Table 1.1, we classify the approaches into high-level abstractions, non-

programmable, code transformations, custom languages or language extensions, and alterna-

tive selection.

1.2.1 High-level Programming Abstraction Tools

The high-level programming abstraction tools provide a limited set of abstractions for

specific domains to represent algorithms. From these representations, the tools can generate

optimized platform-specific binaries. Lift [9] requires programmers to write a high-level ex-

pression composed of algorithmic primitives using rewriting rules. Lift maps this high-level

expression into a low-level expression in OpenCL. Halide [10] is a domain-specific language

for complex image processing pipelines that decouples the algorithm representation from

the schedule of the operations. The Pochoir stencil compiler [11] allows a programmer to

write simple, functional specifications for stencils that are translated into highly optimized

implementation. SPIRAL [6] includes a high-level mathematical framework that links the

“high” mathematical level of transform algorithms and the “low” level of code implementa-

tions. It features multiple search methods to select among the low-level options, including

exhaustive, random, dynamic programming, evolutionary, and hill climbing.

1.2.2 Non-programmable approaches

The non-programmable approaches differ from the other approaches in that they do not

start with user-written code, but instead, the code is generated directly. These tools carry

out all the tuning process without user intervention. It is completely automatic and typically

uses heuristics to accelerate the search of the space of variants. These tools have a particular

domain, are self-contained, and generate optimized library routines.
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Table 1.1: Automatic program optimization approaches.

Domain Optimization Optimization Search Method
Domain Time

High-level Abstractions

Spiral Signal processing Rewriting rules offline Dynamic programming,
Evolutionary (+others)

Lift General purpose Rewriting rules offline Bandit
Halide Image processing Scheduling offline Stochastic
Pochoir Stencils Cache-oblivious algorithm offline -

Non-programmable

FFTW Fast Fourier transform Combination of solvers for
FFTs

offline Dynamic programming

Atlas Dense linear algebra Blocking, scheduling, and
unrolling

offline Exhaustive

OSKI Sparse linear algebra Sparse solvers online Heuristic
PHiPAC Matrix multiplication Adaptive library generator offline Heuristic

Code Transformations

CHiLL General purpose Loop Transformations offline -
Pluto General purpose Loop Transformations offline -
POET General purpose Parameterized code trans-

formations
offline -

Orio General purpose Loop Transformations offline Nelder-Mead, Simulated
Annealing

X Language General purpose Loop Transformations offline Exhaustive

Custom Languages or Languages Extensions

Sequoia General purpose Memory hierarchy aware
language

offline -

Petabricks General purpose Algorithmic choices offline Evolutionary
Kokkos General purpose Abstractions for parallel

execution and data man-
agement

offline -

RAJA General purpose Abstractions for loops and
data layouts

offline -

Alternative Selection

Nitro General purpose Variant selection offline, online Classification (SVM)
Active Harmony General purpose Parametric traversal online Nelder-Mead
OpenTuner General purpose Parametric traversal offline AUC Bandit

For instance, FFTW [12] is a comprehensive collection of fast C routines for computing

the discrete Fourier transform (DFT). It does not implement a single DFT algorithm, but

it is structured as a library of routines that can be composed in many ways or plans. The

plan dictates which routines should be executed and in which order, taking into account the

input size and type and which routines happen to be faster on the underlying hardware.

ATLAS [5] automatically generates linear algebra routines, including highly efficient basic

linear algebra routines. It first focuses on machine-specific features, especially the memory

hierarchy, by generating an optimized matrix multiplication that fits in the fastest level

cache. The other parameters, such as block and loop unrolling factors, are selected through

an empirical search.

The goal of PHiPAC [13] is also to produce high-performance linear algebra libraries. Its

design is similar to ATLAS.
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OSKI [14] is a collection of low-level primitives integrated into automatically tuned com-

putational kernels for sparse matrices. Unlike the previous two approaches, in which the

tuning takes place offline, OSKI defers the tuning until the runtime to make decisions of

the data structures and code transformations based on the input matrix and the underlying

hardware.

1.2.3 Code Transformation Tools

The code transformation tools take as input an initial version of the code and the trans-

formations to apply to it. This specification of transformations can take the form of anno-

tations on the code [2, 3], scripts with commands that represent each transformation [1], or

command-line parameters. Some of these tools allow the developers to implement their own

program transformations [15].

CHiLL [1] contains loop transformation and code generation primitives. It takes as input

the original code and a transformation script with bound parameters and generates a col-

lection of code versions. POET [15] is an embedded scripting language for parameterizing

complex code transformations to be empirically tuned. The POET language is designed to

decouple the empirical tuning aspect of performance optimization from any library or com-

piler’s specifics. Locus is not restricted to AST-based transformations and is designed to

combine transformations from diverse techniques. For instance, we combine transformations

from Pips, which is a polyhedral-based compiler, with our own Rose-based transformations

that are carried out through the AST. The Locus language is able to represent better com-

plex search spaces on applications that have multiple code regions to be optimized. In Locus,

the search space definition is part of the language.

Another example in this class is Orio [2], an annotation-based empirical performance-

tuning system that takes annotated C source code as input, generates code variants of the

annotated code, and empirically evaluates the performance of the generated codes, ultimately

selecting the best-performing version to use for production runs. The X Language [3] provides

pragmas that can perform loop transformations and code transformations defined as pattern-

replacement rules. Pluto [16] transforms C programs for coarse-grained parallelism and data

locality simultaneously. It uses the polyhedral model as an abstraction to perform high-level

transformations on affine loop nests. Locus implements a separation of concerns and avoids

the definition of the optimizations in the application’s code. Besides, our system is designed

to allow the integration of modules for search space exploration. It abstracts from the user

the details about using each of these modules, making it easier to evaluate different search

methods each one has implemented.
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1.2.4 Custom Languages and Language Extensions

Custom languages and language extensions have been proposed to provide abstractions

that insulate algorithmic choices, loop patterns, and data layout from the underlying plat-

form. The Sequoia [17] programming model assists the programmer in structuring bandwidth-

efficient parallel programs that remain easily portable to new machines. The abstraction of

tasks is used as self-contained computation units isolated in their own local address space,

which helps express parallelism within a hierarchical organization.

Another programming language, along with a compiler, is PetaBricks [4]. The language

incorporates fine-grained algorithmic choices in program optimization and allows the speci-

fication of different granularity and corner cases. The auto-tuner uses a choice dependence

graph containing the choices for computing each task and encodes the implications of differ-

ent choices on dependencies. It also contains a dynamic task scheduler and a runtime library

to manage reading, writing, and configurations.

RAJA [18] provides portable abstractions for loops that include loop transformations,

reductions, scans, atomic operations, data layouts, and views. Loop bodies and traversals

are decoupled via lambda expressions (loop bodies) and templates (loop traversal methods)

and support execution policies for different programming model backends. The Kokkos [19]

library unifies abstractions for both fine-grained data parallelism and memory access patterns

for performance portability in manycore architectures.

1.2.5 Alternative Selection

The alternative selection tools assume that either the user or some other tool provides a

collection of variants as input. The main concern of the designer of tools in this class is the

selection process. As the search space is very large, efficient techniques for selecting the best

combination of code variants or parameters can drastically reduce the search time. Some of

these tools make the decision online, whereas others have it defined offline. The advantage of

making the decision online is that the input features can be used in the decision process [20].

The design of languages, compilers, and runtime systems for the development and selection

of algorithmic variants has shown to be a successful way of optimizing irregular iterative and

recursive problems on parallel platforms [4, 17]

The Nitro [20] framework focuses on how code variants and meta-information for variant

selection are expressed and uses a classification technique to select the most appropriate vari-

ant during execution. The codes are represented through library calls rather than language

extensions. Input features that significantly affect the variant selection can be calculated
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by providing functions to the system. A two-phase approach is used. First, the application

is processed to generate a model over the code variants also provided by the user. Second,

during execution, the production version uses the model generated in the first phase and

adapts the execution based on input data.

Active Harmony [21] permits application programmers to express application-level param-

eters and automates the process of searching among a set of alternative implementations.

It has been combined with CHiLL [22] to search for the best sequence of loop transforma-

tion variants of computationally-intensive kernels. The OpenTuner [23] project presents a

new framework for building domain-specific program auto-tuners. It features an extensible

configuration and technique representation able to support complex and user-defined data

types and custom search heuristics.

Some systems attempt to separate the role of the performance tuning expert from the

application domain. This separation can allow the programmer to focus on application issues

and performance tuning at different times. Alternatively, if they are not the same person,

make these two tasks more independent and more productive once each expert focuses on

their own domain. Multiple tuning specifications can be generated and tested for different

architectures, making the application performance portable.

Sequoia, for instance, maintains a strict separation between the algorithm implementation

and the machine-specific optimizations. The auto-tuning system in Petabricks outputs an

application configuration file containing the choices selected. This file can be either used

to run the application, or used by the compiler to build a binary with hard-coded choices.

CHiLL also has an external file containing all the transformations to be applied to the code,

which can be different depending on the machine specifics.

Another interesting feature of some of these systems is the automated validation of code

variants. Petabricks has an automated consistency checking to ensure that the different

algorithms solving the same problem produce consistent results. This helps the user to

detect bugs and increase confidence in the code generated. Orio also supports an automated

validation by comparing the numerical results of the multiple transformed versions. This

technique is not provably correct but provides good testing coverage. It also complements

provably correct techniques, as these proofs do not extend to the implementation of the

compilers, runtime systems, or hardware. In real systems, users must confront faults and

errors in these components as well.
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1.3 CONTRIBUTIONS

The main contributions of this dissertation are:

• A programming language capable of representing complex spaces of candidates gen-

erated by multiple transformation sequences for mainstream programming languages

(C, C++, Fortran);

• Full compiler support that makes the notation less verbose and enables the automatic

optimization of optimization programs;

• Compiler passes to generate complex hierarchical space for divide-and-conquer algo-

rithms properly;

• A system that brings together transformations, search space generation, and traversal

of the space:

– The system can integrate multiple external search modules (backends) that can

be chosen according to the search space. It automatically converts between its

internal search space representation to the format accepted by the search module.

This search-module abstraction results in no changes in the optimization program

when new modules are integrated;

– It is also able to integrate multiple transformation modules that can be chosen

according to the input source-code. Given the complexity of programming lan-

guages, some modules have constraints on the source-code being transformed,

making it important to have multiple alternatives.

• A database to save candidate implementations and results that later can be reused by

future searches. These data are also helpful in analyzing the performance attained.

The best candidates are retrieved for deployment according to user demands;

• We apply these techniques to various applications, including linear algebra kernels,

stencils, fast Fourier transform, symmetric eigenproblem, sparse matrix-vector multi-

plication, Kripke mini-app, Plascom2 multi-physics application, and to hundreds of

loops extracted from 16 important benchmark suites.

1.4 SUMMARY, SCOPE, AND OUTLINE

This thesis’s central claim is that achieving and maintaining high performance over time,

especially for complex, long-term applications, given the current trends in architecture and
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compiler development, requires a platform-specific, search-based approach. The idea of a

language for programming a search space of reasonable implementations and then exploring

that space is modeled on what practitioners do when hand-tuning code. The language gives

the experts more flexibility in trying different configurations, and the application’s code is

kept cleaner, which helps maintainability.

The primary aim of this dissertation is to show why and how optimization programming

on a separate language combined with the automatic generation of candidates can be used

to make applications faster. The design and implementation of the system are discussed

in Chapter 3. The interface to integrate both transformation and search modules, details

about the correctness and consistency checking, and how we use the database to share

results among multiple search modules and across multiple optimization processes are also

discussed.

In Chapter 2, we discuss the program optimization search space. We also review the

most common search techniques that are used to explore complex search spaces. Finally, we

present in detail our approach to the optimization process.

The details, syntax, and how to represent search spaces in our language are presented in

Chapter 4. A description of the compiler developed to optimize our language is in Chapter 5.

In the same chapter, we present the use of data-flow analysis to prune the search space

by removing unnecessary search statements, the important role of interdependent search

statements, and the compiler passes developed to represent complex hierarchical spaces

correctly.

Our system’s first target was the optimization of kernels that are frequently bottlenecks

in diverse applications in scientific computing, artificial intelligence, and engineering. Using

loop transformations, we were able to show the usefulness of the search by generating faster

code than those produced by conventional compiler optimizations based solely on heuristics.

The optimization of these kernels using our system are presented in Chapter 6.

Divide and conquer is an important strategy for solving many conceptually difficult prob-

lems. It uses recursion to break and solve smaller subproblems that, when small enough,

can benefit from the faster access speeds of the caches. We optimize a series of important

applications (e.g., FFT, matrix transpose, and symmetric eigenproblem) through divide and

conquer using our proposed language and system. Locus searches for the best loop transfor-

mations and size for the base case. We evaluate multiple strategies for determining when to

stop subdividing and in which order the problem’s dimensions should be subdivided. The

results are shown in Chapter 7.

We extended our experimentation to other more complex contexts in Chapter 8. We

use our approach to work as a compiler and optimize a collection of loops extracted from
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16 important benchmarks. We use the same heuristic for all the loops, but the search

space is defined according to each loop’s characteristics. This is important to generate only

correct variants and to accelerate the empirical search. We also optimize Plascom2, a large,

complex multi-physics application, to use GPU and CPU more efficiently. Kripke is a mini-

app developed by Lawrence Livermore National Laboratory that consists of multiple code

regions that are optimized independently. The authors provide a hand-optimized version

whose performance we were able to match using our approach.

Chapter 9 looks forward to the future of the tuning systems and considers the common

challenge to all systems: the problem of search. Specifically, how and when to stop the

search and how to search large and deep hierarchical spaces. Furthermore, how to deal with

optimizing for the myriad of specialized architectures that are becoming the norm.
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CHAPTER 2: PROGRAM OPTIMIZATION

The push for more performance has encouraged the development of computer architecture.

For instance, the cost of memory accesses, which are increasingly dominating the cost of

computing as processors gets faster has spurred the development of deep cache hierarchies

and new memory technologies to take advantage of data locality. In many cases, to take

the best advantage of the memory hierarchy, programs must be written in ways that affect

readability. Likewise, out-of-order execution, branch prediction, and speculative execution

have been devised to harness a potential execution overlap among instructions. However,

as the instructions execute in parallel, it is more complicated to predict and model the

performance of different algorithms in these highly dynamic environments. Again, in this

case, the way a program is written affects how well the program benefits from instruction-

level parallelism. Additionally, the popularization of heterogeneous computing, which adds

more performance and energy efficiency to the systems, brings in another architecture with

its own characteristics, increasing even more the complexity of high-performance programs.

As we can see, all these architecture advances make programming harder to achieve high

performance and performance less predictable.

The performance gains achieved by computer architecture has attracted most of the atten-

tion over the last 30 years. Software developers expected performance gains by adopting new

generations of processors that could execute programs at a faster clock rather than imple-

menting architecture-specific optimizations. However, computer architecture was forced to

change because of the end of Dennard Scaling and more attention from the software develop-

ers became necessary in order to harness all the computing power provided by the hardware.

Furthermore, each modern computer architecture requires a potentially non-overlapping set

of optimizations to attain a higher fraction of its nominal peak speed. This leads to other

questions about performance portability and code maintainability. In particular, the devel-

opers must decide how to manage different optimized versions of the same code tailored to

different architectures and keep them up to date as new algorithmic features are added.

Nevertheless, another degree of complexity is the development for parallel computers con-

sisting of thousands of processors, in which load imbalance, communication, and synchro-

nization costs complicate attaining a high ratio of the machine’s performance peak.

The fundamental requirement to achieve high performance is an optimal mapping between

architecture and algorithm. This mapping is not straightforward, though, as it can span from

an entirely specific algorithm to a particular architecture or a very general one developed

without any architecture insight. In the former case, high performance is achieved at the
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expense of portability, given that the code is so specific that it cannot execute in different

architectures. In the latter case, the portability comes at the expense of performance because

it is challenging to exploit the resources available efficiently without any insight about the

architecture.

Selecting the algorithm among many to solve a specific problem is the first and foremost

step of the software development process. However, the selection is not straightforward and

often input-specific. In some cases, multiple fine-grained algorithmic selections can be very

advantageous, as shown in [4]. This composition complicates, even more, the algorithm

selection task given the combinatorial explosion of possibilities. For instance, the intuition

about the optimal sorting algorithm would provide different answers based on the number of

elements to be sorted. For very few elements, insertion sort is faster, whereas for a medium

number of elements, quicksort is faster, and for very large input, radix sort results in the

best performance. It is also possible to compose the three different algorithms once quick

sort and radix sort recursively divides the problem into subproblems until they are small

enough to apply the insertion sort.

After algorithm selection, there are some guidelines to improve performance without a

significant time investment by the developer, as discussed by Goedecker et al in [24]. The

use of efficient libraries is a good example. Highly optimized numerical libraries are available

(i.e., Intel MKL, Nvidia cuBLAS) and should be used whenever possible, sparing developers

from implementing and tuning their own version for each machine.

Another example is choosing a data structure layout that increases data locality and

reduces cache misses. A canonical example is the layout of data in a multidimensional array,

which affects performance depending on how the array is linearized in memory. Row-major

order puts consecutive elements of a row next to each other, whereas column-major order

puts consecutive elements of a column next to each other. In some cases, different data

structures could be optimal in different parts of a program.

The search for and use of appropriate compiler flags typically leads to speed up. At the

same time, higher optimization levels can lead to performance deterioration. The heuristics

used by compilers to apply transformation rules do not guarantee an improvement in all

cases. Nevertheless, it is always worthwhile to experiment with different optimization levels

as well as other options. Notably, architecture-specific compiler flags have a bigger chance

of better results since the heuristics can assume a narrower scenario. Compiler directives

or pragmas are also an effective approach for specific code regions where performance is

crucial. Nonetheless, these directives are not standardized across compilers leaving the code

less portable. In summary, the results achieved by experimenting with compiler flags and

directives are not portable, and the flags rarely remain the same for new processors, requiring

16



the experiments to be performed all over every time a new processor comes out.

Many basic optimizations are generally architecture agnostic and automatically carried

out by modern compilers. Among them are common subexpression elimination, strength

reduction, loop-invariant code motion, constant value propagation, dead-code elimination,

and induction variable elimination [25].

There are also more time consuming and invasive optimizations that may yield a bigger

performance reward. These code transformations can be performed by the compiler or

manually and generate a semantically equivalent program to the original but better suited

to the target machine. Despite the better performance, after transformations, the code may

become less readable and increase register pressure and program size, which should be taken

into account depending on the final goal.

The most common code transformations are loop transformations, as loops are often

sources of hotspots due to their repetitive nature. For example, loop unrolling unwinds

the sequence of statements in the loop body to reduce or eliminate the overhead of exe-

cuting instructions that control the loop and reduce branch penalties. Loop interchange

switches the positions of two tightly nested loops. Depending on the loop order and on the

target architecture, the switch may create parallelization opportunities through automatic

vectorization (CPU) or efficient use of threads (GPU). Strip-mining divides the iteration

space of a loop into chunks. A combination of strip-mining and interchange is called loop

tiling. Its goal is to enhance cache performance by improving spatial and temporal locality

in a nested loop [26]. Loop transformations require parameters that rely once again on the

architecture. For instance, unrolling and tiling require the unrolling factor and the blocking

dimensions, respectively, which are related to the processor pipeline depth and cache size.

After all, the search space is large, and we only mentioned a few optimizations. There are

many important decisions over the software development process to exploit all the available

target machine opportunities. With this in mind, studies have shown that an empirical

search over the search space can be very effective. This strategy consists of generating the

candidate implementations and executing each of them on the target machine. Instead of

creating complex models that could predict the performance in an ever-changing myriad

of architectures, the empirical search relies on just running each candidate, collecting the

evaluation criteria, and selecting the best performant one. Nonetheless, since the search

space is extensive, the exhaustive traversal can be prohibitive. Many works have presented

effective ways of finding good solutions without traversing the entire search space.

Auto-tuning software means that the software has been encoded to automate the painful

and error-prone process of generating and exploring the search space. A process that is

largely repeated to encounter a candidate implementation with better performance than the
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original version. Auto-tuning can resort to an empirical process, as explained before, use

a predictive model or a combination of both. It may take into account the input data,

architecture details, and compiler characteristics to optimize more aggressively than tradi-

tional compilers. Auto-tuning has been used to select loop transformations, data structures,

parallelization, and algorithmic parameters.

Compilers have been successful in some of the critical tasks of code generation, particularly

instruction scheduling, pointer analysis, instruction selection, and inter-procedural analysis.

In the ideal scenario, compilers should automatically generate the optimal code on any

architecture, without any programmer intervention. Nevertheless, the compiler by itself

cannot fully satisfy this role. Its conservative nature precludes the generation of some high-

end optimizations without permission from the programmer. It is also very complicated

to develop static analyses and optimizations that suit all architectures for arbitrary code.

The compilation time is also a constraint for many applications and limits the number of

optimizations that can be considered out of the extensive number of possible ones. The

increasing complexity of the architecture and the optimization space’s size tend to make

compilers deliver unsatisfactory performance. Even the use of advanced optimization flags

like -O3 is not enough to narrow this gap. Also, the compiler technology has not solved all

problems, and, for instance, there are no effective compilers that automatically generates

MPI code out of a sequential version.

On the other hand, the profitability of compiler optimizations has been shown by several

publications. There are numerous reports of performance improvement through data locality,

instruction parallelism, better usage of registers, and vectorization [27, 28, 29, 30, 31].

Applying all these optimizations by hand, however, is not an easy task. It is error-prone,

repetitive, and the outcome is substantially less readable than the original version. Most

of the optimizations are architecture-dependent, which makes performance portability an

issue. Performance improvement in one architecture does not mean similar improvements in

other architectures. Even small design changes may expose different bottlenecks and require

different optimizations. Moreover, given the combinatorial explosion of the search space,

selecting the optimizations and their variations to be implemented turns out to be a critical

part of the tuning process.

The software development process is driven by the requirements defined by the developers

based on user needs. They are divided into functional and non-functional requirements.

The functional requirements are defined as features or as components implemented in the

system. The non-functional requirements are used to assess the system’s operation, rather

than specific behaviors.

Developers are primarily concerned with the correctness and capabilities of the software,
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which result from the implementation and verification of the functional requirements. Per-

formance is a non-functional requirement and during the software development is often dealt

with a “fix-it-later” attitude [32]. This attitude only changes if the software performance is

below expectation and happens in the very late stages of the development, just before releas-

ing the software. Postponing is always a reasonable decision. Performance tuning is indeed

a significant investment and very time consuming, due mainly to the need of understanding

and interacting with many different hardware details. Furthermore, it is hard to convince

someone to put effort into it without telling them how much they are missing out.

In the high-performance computing community, this scenario is not different. The sci-

entists make decisions based on maximizing scientific output, not application performance.

Performance is a means to an end, not an end in itself. For instance, as reported in [33],

when a scientist was informed that the application performance was improved by a factor of

two, he responded that, instead of saving computing time, the saved time could be used to

get a higher-fidelity approximation of the problem being solved.

Scientists will not sacrifice maintainability for modest performance improvements. They

are not interested in applying machine-specific performance tuning because they will likely

lose the benefits of their effort when they port to the next platform. Moreover, they will end

up with a less understandable code [33].

The automation of applying the optimizations and exploring the search space is inter-

esting in many ways. It could popularize the performance gains delivered by current and

future architectures that only experts can achieve today. It could also improve productivity

during the development process. By making optimization easier and accessible, it could be

applied to the development of many other applications that are not big enough to justify a

performance expert. Moreover, as Dennard scaling came to an end and no alternative has

taken its place, the optimization of applications to improve performance will become even

more important and necessary.

Auto-tuning has already been successful in improving performance for specific cases as

presented by many research papers published over the years [2, 4, 6, 12, 13, 14, 15, 23, 34, 35].

Notwithstanding the success in specific areas and the knowledge of how to harness per-

formance from current architectures, the use of auto-tuning has not been widely adopted.

Besides the examples of ATLAS being used in MATLAB and SPIRAL to generate routines

of Intel MKL libraries, to the best of our knowledge, no general-purpose auto-tuning systems

are being used on production-level codes.
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2.1 THE PROGRAM OPTIMIZATION SEARCH SPACE

One of the compiler technology goals is the effective translation of high-level abstrac-

tions provided by the programming languages to low-level code that makes efficient use of

architecture components.

For instance, register allocation assigns program variables to CPU registers during code

generation. Accessing operands in registers is much faster than accessing them from memory.

However, the number of registers is limited, and their efficient use is of critical importance to

overall performance. The register allocation can be reduced to the graph coloring problem,

which in general is NP-complete, and requires the use of heuristics that, as have been shown,

can produce efficient code. These heuristics are machine-independent, and, even though

the number and organization of the registers available differ among architectures, they are

general enough to work with different setups.

The development of data-flow analysis has enabled many machine-independent optimiza-

tions. The data-flow analysis derives information about the flow of data along program

execution paths [25]. It is, for example, used to implement global common sub-expression

elimination, find and remove code that does not affect the program output, and replace

expressions that always evaluate to the same constant at compile time.

We divided the optimizations according to 3 classes of machines: uniprocessors, shared-

memory architectures, and distributed-memory architectures.

In some cases, the same optimization can be applied to different classes of machines

with different granularity. For example, many optimizations that enable parallelism can

be used to apply vectorization for uniprocessors, partition code into threads for shared-

memory architectures, and create processes for distributed-memory architectures. There is

a hierarchical relation among these classes, a distributed machine is composed of nodes that

contain multiprocessors accessing the same memory and are comprised of multiple cores

(uniprocessors).

2.1.1 Uniprocessor Optimizations

The optimizations presented here comprise optimizations to improve performance on the

usage of a single processor (core). Notwithstanding that these optimizations are very effective

and important to achieve high performance, they have been frequently given less importance

due to larger interest in the use of parallel systems for big problems.

The relevance in selecting the appropriate data layout between row-major and column-

major has already been mentioned. Another important and more complex example is the
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decision about using array of structures or structure of arrays. In the array of structures,

each structure has all of its fields close together when laid out in memory. In the structure

of arrays, each field is represented by one array where each element belongs to a different

structure. This way, all elements of the same field from different structures are laid out in

memory contiguously. The array of structures is more intuitive, but for problems that require

reading all elements of the same field from multiple structures, using the structure of arrays is

more efficient due to the use of coalesced memory accesses. The access of non-contiguous data

requires the use of gather and scatter operations and can affect the vectorization efficiency

as well as the memory subsystem by increasing spatial locality. Coalesced memory accesses,

especially on accelerators, can substantially improve performance [36].

Loop unrolling can reduce the instruction branch overhead as it enables the execution

of more instructions per branch. However, if the number of iterations is small, which is

usually only known at runtime, the overhead of always executing the tail section required

for correctness in case the number of iterations are not multiple of the unrolling factor can

overcome the benefits of reducing the number of branches.

Instruction parallelism is vital to keep the processor occupied. Therefore, the dependent

instructions should be distant from the source instruction at least equal to the latency of

the source one. To increase the instruction parallelism, one technique is to unroll the loop

body statements and reorder the statements so that no instructions need to wait for their

source’s execution. Generally, the memory reads are placed as early as possible in the code

to hide their latency.

Loop interchanging is perhaps the single most important loop transformation, according

to Wolf [37]. It switches the inner and outer loop positions. A sequential nested loop can

only be converted to the parallel form if any of the loops carry no dependence relations. If

the goal is vectorization and one loop carries all the dependence relations, the interchange of

that loop with the outermost one allows the other inner loops to be executed in parallel and

vectorized. In case the goal is the parallelization of a loop nest using threads (shared-memory

optimization), the opposite could be considered where each thread executes one iteration of

the outer loop (no dependence relations) at a time, and all the iterations of the inner loop

would be executed sequentially by each thread respecting the dependence relations.

Loop skewing changes the iteration space by adding the outer loop index to the inner

loop index changing the dependence distances. It can improve parallelism and enable other

transformations. Tiling reschedules the iteration space such that the iterations are executed

in blocks, which improves data locality and uses the cache more efficiently. The tiling can

be performed on many levels: from the last level cache up to the registers.

A single loop can be divided into two or more loops through loop fission or loop distri-
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bution. Loop fission can break up a large loop into a smaller one that could be useful for

architectures with minimal instruction cache. It can also improve the usage of the data

cache by transforming a loop that refers to many different arrays into multiple loops, each

accessing only part of the arrays.

The opposite of loop fission is loop fusion. Fusing loops can improve data locality if

they refer to the same data. In the same way, a bigger loop body may allow common

subexpression elimination as well as better instruction scheduling. On the other hand, it

increases register pressure and reduces instruction locality. Fusion is only legal if it preserves

all the dependence relations.

Sometimes one optimization is necessary to allow another one to proceed. For instance,

loop reversal changes the order of the iterations by executing them backward. Thus, it

negates the dependence distance for the loop and can be used to allow loop fusion where it

might otherwise fail.

The organization of the program in procedures is essential for code maintenance. A

procedure call, however, incurs overhead because it needs to, at procedure entry and exit,

save and recover the register states from memory. One way to avoid the procedure call is

by using inlining. The body of the procedure is copied to the place where the procedure or

function was called. Inlining considerably increases the code size, though, and might lead

to performance problems for architectures with a small instruction cache.

Memory latency and bandwidth are increasingly becoming the bottleneck as the proces-

sors get faster. In order to avoid the processor waiting for the data to arrive, the data can be

requested long before it is needed, and other computations can be carried out in the mean-

time. Data prefetching prevents the processor from becoming idle while waiting for memory

requests. Nonetheless, if the data is loaded long before the use, it will occupy resources, such

as registers, unnecessarily and may even slow down the application. Therefore, prefetching

should be carefully used [38].

Arrays referred to by different names are aliased if the allocated memory regions to which

they point overlap. The aliasing prohibits the compiler from performing optimizations be-

cause it may be referring to the same memory location when writing and reading through dif-

ferent array variables. The compiler aborts efficient instruction scheduling, software pipelin-

ing, and vectorization when there is no guarantee that the arrays are not aliased. There are

ways to let the compiler know that the arrays are not an alias to each other. These options,

however, are often compiler-specific and not portable.
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2.1.2 Optimizations to Shared-Memory Architectures

After improving locality, vectorization, and other optimizations already mentioned, the

optimized sequential code still needs to be further modified in order to take advantage of

the parallelism available in current architectures.

In shared-memory architectures, to execute tasks in parallel, it is necessary to use special

libraries (e.g., Pthreads [39]) or runtime systems (e.g., OpenMP [39], Cilk [40]). No com-

piler automatically generates a multithreaded version from arbitrary code, and programmer

intervention is required. Even though they all try to make this task as easy as possible, it is

still complex to parallelize an application.

As an example, OpenMP requires compiler support and allows adding parallelism to exist-

ing source code through directives. It makes it easy to execute loops in parallel and provides

options to split the loop iterations among the queries statically or dynamically and in vari-

able chunks. These parameters affect performance and depend on the characteristics of the

loop body and the number of threads.

In the Cilk language, the programmer is responsible for defining tasks that the system

can execute in parallel. The parallel tasks are exposed by invoking them using the spawn

keyword. The programmer is also responsible for enforcing the dependencies among the

spawned parallel tasks. The sync keyword is used to perform synchronization among them.

In the example of parallel loops with OpenMP, the spawn and synchronization are placed

implicitly by the compiler and the runtime system.

These challenges get even more complicated as the number of processing units increases,

such as in many-core architectures like Intel Xeon Phi and Nvidia GPUs.

Not only parallelism has increased the burden on programmers developing applications

for shared-memory architectures. In cache-coherent NUMA systems, the pages are allocated

on the memory attached to the processor on which the thread that first accessed it resides.

Accessing data allocated on different NUMA nodes incurs a longer latency, and this first-

touch policy affects performance when threads that first “touched” the page moves to another

NUMA processor.

2.1.3 Optimizations to Distributed-Memory Architectures

Distributed-memory architectures are comprised of many nodes interconnected by fast

networks. To efficiently use these architectures, the programmer needs to consider the over-

head of communication between nodes. For some applications, it can be trivial, and, in

some cases, there is no communication at all. For other applications, the overlap between
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computation and communication is the only way to use these architectures efficiently.

The challenges of optimizing for distributed-memory architectures are similar to the ones

faced by the shared-memory architectures. Load balance, data and task decomposition,

and computation and communication overlap are critical to harnessing the computing power

available. A popular programming paradigm for distributed architectures is message passing.

In this paradigm, the processes exchange data through messages sent to each other. The

Message Passing Interface (MPI) is the most widely used implementation of this paradigm.

Another paradigm is the partitioned global address space (PGAS). In PGAS, a global mem-

ory address space that is physically partitioned between the nodes is logically contiguous.

Programming becomes similar to what is done for shared-memory architectures. The PGAS

is the basis of Unified Parallel C and Coarray Fortran.

The optimizations for distributed-memory architectures are added on top of the afore-

mentioned optimizations for uniprocessors and shared-memory architectures. Multi-level

optimizations using MPI for the communication and synchronization among different nodes

and OpenMP for intra-node parallelism is a common approach for demanding applications.

2.2 EXPLORING THE SEARCH SPACE

The search problem can be viewed as

minimize f(x)

subject to x ∈ Ω.
(2.1)

The function f : Rn → R is the objective function that we want to minimize. The vector

x is a vector of n independent variables: x = [x1, x2, . . . , xn]> ∈ Rn. The variables x1, . . . , xn

are referred to as search variables, and the set Ω is a subset of Rn that is the constraint set

or feasible set. The problem involves finding the vector x of the search variables over all

possible vectors in Ω that results in the smallest value of f(x). The problems that look for

the maximization of f(x) can be represented equivalently.

A point x∗ ∈ Ω is a local minimizer of f over Ω if there exists ε > 0 such that f(x) ≥ f(x∗)

for all x ∈ Ω except {x∗} and ‖x−x∗‖ < ε. A point x∗ ∈ Ω is a global optimizer of f over Ω

if f(x) ≥ f(x∗) for all x ∈ Ω except {x∗}. If x∗ is a global minimizer of f over Ω, we write

f(x∗) = minx∈Ωf(x) and x∗ = argminx∈Ωf(x). If the minimization is unconstrained, we

simply write x∗ = arg minx f(x) or x∗ = arg min f(x) [41]. In other words, for a real-valued

function f , the notation arg min f(x) denotes the point x in the domain that minimizes the

function f . If there is more than one such point, we select one arbitrarily.
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Each search variable can be seen as a dimension to the search space. The more dimensions,

the more difficult and complex it is to explore the space. The challenge posed by the high

dimensionality of the search space is to referred as the curse of dimensionality and was

originally introduced by Bellman [42].

Gradient, Newton’s, conjugate gradient, and quasi-Newton are iterative methods that

start with an initial point and then generate a sequence of iterates. The hope is that the

sequence converges to a local minimizer. For this reason, the selection of the initial point

is crucial as it is often desirable for it to be close to a global minimizer. These methods

require first derivatives, and, in the case of Newton’s method, the convergence, particularly

the second-order convergence, depends on the existence of a second derivative.

The objective function of the program optimization search problem, however, operates on

a discrete domain. That is, f : Zn → Z, and the vector x of n independent variables is

x = [x1, x2, . . . , xn]> ∈ Zn.

2.2.1 Global Search Algorithms

There are other methods global in nature in the sense that they attempt to search through-

out the entire constraint set. These global search algorithms use only objective function

values and do not require derivatives. They are, consequently, applicable to a much wider

class of search problems. In some cases, they are even used to generate the starting points for

the iterative methods. Some of the methods are also used for finite but enormous constraint

sets. Examples of global search algorithms are Nelder-Mead, simulated annealing, particle

swarm, and genetic algorithm.

The Nelder-Mead simplex algorithm is a derivative-free method that uses the concept of

a simplex. A simplex is a geometric object determined by an assembly of n + 1 points,

p0, p1, . . . , pn, in the n-dimensional space such that two points in R do not coincide, three

points in R2 are not colinear, four points in R3 are not coplanar, and so on. The simplex in

R is a line segment, in R2 is a triangle, and in R3 a tetrahedron; in Rn it encloses a finite

n-dimensional volume. At each iteration, the function f is evaluated at each point of the

simplex. The point with the largest function value (for the function minimization process) is

replaced by another point. The process of modifying the simplex continues until it converges

toward the function minimizer.

Simulated annealing is an instance of a randomized search method that searches the fea-

sible set of a search problem by considering randomized samples of candidate points in the

set. Typically, we start the process by selecting a random initial point x(0) ∈ Ω. Then, we

select a random next-candidate point, usually close to x(0). For any x ∈ Ω, there is a set
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N(x) ⊂ Ω such that we can generate a random sample from it. We usually think of N(x)

as a set of points on the “neighborhood” of x. A simple version of the simulated annealing

algorithm is shown in 2.1.

The main problem with the naive implementation of simulated annealing is that it may

get stuck in a region around a local minimizer. One alternative to prevent this is to use a

larger set of possible points to pick from. Another alternative is to “climb out” such a region

by accepting a new point that is worse than the current one.

Algorithm 2.1: Simulated Annealing Algorithm.

1 k ← 0;

2 Select an initial point x(0) ∈ Ω;
3 while no stopping criteria are satisfied do
4 Pick a candidate point z(k) at random from N(x(k));

5 if f(z(k)) < f(x(k)) then
6 x(k+1) ← z(k);
7 else
8 x(k+1) ← x(k);
9 end

10 k ← k + 1

11 end

Particle swarm optimization (PSO) is another randomized search technique that was in-

spired by social interaction principles. In PSO, instead of updating a single candidate so-

lution xk at each iteration, we update a population (set) of candidate solutions, called a

swarm. Each candidate solution in the swarm is called a particle. The PSO algorithm aims

to mimic animals and insects’ social behavior, such as a swarm of bees or a flock of birds

that apparently disorganized populations of moving individuals tend to cluster together as

each individual seems to be moving randomly.

The PSO starts with an initial randomly generated population from the feasible set.

Associated with each point in the population is a velocity vector. Then, the objective

function is evaluated at each point. Based on this evaluation, a new population of points

together with a new set of velocities is created. Each particle keeps track of the best position

visited so far with respect to the value of the objective function. The particles “interact”

with each other by updating their velocities according to their individual best as well as the

global best. The usual stopping criteria consist of reaching a certain number of iterations or

a certain value of the objective function.

The genetic algorithm is another randomized population-based search technique that has

its roots in the principle of genetics. It starts with an initial population of points from Ω,
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denoted P (0). Then, the objective function is evaluated at points in P (0). Based on this

evaluation, a new set of points P (1) is created. The creation of P (1) involves certain “ge-

netic” operations called crossover and mutation. The purpose of the crossover and mutation

is to create a new population with an average objective function that is lower than that of

the previous population. The process is repeated iteratively until an appropriate stopping

criterion is reached.

2.2.2 Flat versus Hierarchical Search Spaces

In practice, the implementations available use two main ways to represent a space: flat

and hierarchical. The flat representation forms a Cartesian product of every variable on the

space, which has a multiplicative effect on the number of possibilities. On the other hand,

the hierarchical representation results in a smaller number of choices because variables in

independent sub-spaces do not form a Cartesian combination among them. The variables in

a subspace are conditional on the selection of another variable. Only when this variable is

selected, the others are evaluated. The hierarchical space can be flattened, but this may lead

to worse space exploration performance as the variables on all subspaces are always consid-

ered. OpenTuner [23] uses a flat representation, whereas Hyperopt [43] uses a hierarchical

representation.

For example, let a search space S for program optimization of code on Figure 1.1a that

consists of three search variables and their corresponding domains: x1 ∈ {{1, 2, 3}, {1, 3, 2},
{2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}, x2 ∈ {2, 4, 6}, and x3 ∈ {Reorder, Unroll}, where x1

represents the orders of a triple nested loop, x2 the unroll factor of the innermost loop body,

and x3 the selection of either reordering, represented by x1, or unrolling, represented by x2,

the loop nest.

In a flat representation, the search space consists of the Cartesian product of the domain

of the three search variables. That is, S = {{{1, 2, 3}, 2, Reorder}, {{1, 2, 3}, 4, Reorder},
{{1, 2, 3}, 6, Reorder}, {{1, 2, 3}, 2, Unroll}, . . . , {{3, 2, 1}, 6, Unroll}}, and |S| = |x1| ×
|x2| × |x3| = 6× 3× 2 = 36 possibilities.

On the other hand, when using the hierarchical representation, it is possible to represent

the constraint of variable x3 over variables x1 and x2. It turns out that the search space

now can be partitioned into two independent sub-spaces. That is, S = {S1,S2}, where

S1 and S2 represent the domain of x1 and x2, respectively. Now, |S| = |x1| + |x2| =

6 + 3 = 9 possibilities. The hierarchical representation allows the partition of the search

space according to the constraints among the variables, which results in representations with

a smaller number of possibilities.
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2.2.3 Implementations

OpenTuner is a framework for building domain-specific program autotuners. It includes

a diverse collection of techniques that can handle many types of search spaces. Many search

techniques run simultaneously, and the ones that deliver lower values of the objective function

(e.g., deliver better-performing codes) are allocated more evaluations, whereas the ones that

perform poorly are used less. The techniques included are differential evolution, variants

of the Nelder-Mead and Torczon hill-climbers, various genetic algorithms, pattern search,

particle swarm optimization, and random search. The techniques share results through the

results database to benefit from improvements achieved by each other. This sharing occurs

in technique-specific ways. For instance, evolutionary methods add results found by other

techniques as members of their population. A meta-technique is the root technique with

which the search driver interacts with. It is responsible for dividing the evaluations among

the sub-techniques. Besides, multiple meta-techniques can be combined together.

The core meta-technique used by OpenTuner is the multi-armed bandit with sliding win-

dow, area under the curve credit assignment (AUC Bandit). It is used in addition to other

simple meta-techniques, such as round-robin. The multi-armed problem is the problem of

picking levers to pull on a slot machine with many arms, each with an unknown payout

probability. The sliding window makes it consider only a subset of history when making

decisions.

The AUC Bandit encapsulates a fundamental trade-off between exploitation (use of the

technique that resulted in the best values of the objective function so far) and exploration

(use the others, less performing techniques to gather information). It assigns each evaluation

to technique, t, according to the formula

arg maxt

AUCt + C

√
2 lg |H|
Ht

 (2.2)

where |H| is the length of the sliding history window, Ht is the number of times the technique

has been used in that window, C is a constant to control the exploration/exploitation trade-

off, and AUCt is the credit assignment term quantifying the performance of the technique

in the sliding window.

The area under the curve credit assignment mechanism draws a curve looking at the history

for a technique and whether that technique has yielded a new global best. If the technique

has yielded a new global best, an upward line is drawn, otherwise a flat line is drawn. The

area under the curve (scaled to a maximum value of 1) is the total credit attributed to the
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technique. This credit assignment mechanism is calculated through the formula

AUCt =
2

|Vt|(|Vt|+ 1)

|Vt|∑
i=1

iVt,i (2.3)

where Vt is the list of uses of t in the sliding window history, Vt,i is 1 if using technique t the

ith time in the history resulted in a speedup, otherwise 0.

Hyperopt implements multiple hyperparameter optimization algorithms that take as input

the search space and an experimental historyH of values of the objective function and returns

suggestions for which configuration to try next. Hyperopt implements a tree-structured

Parzen estimator (TPE), adaptive tree-structured Parzen estimator (ATPE), random, and

simulated annealing algorithms. It is also possible to use a mix of these techniques by telling

the percentage of evaluations given to each of the techniques on the mix.

Bayesian optimization methods can be differentiated by their regression models and ac-

quisition functions. Typically, a probabilistic regression modelM is initialized using a small

set of samples from the domain X . New locations within the domain are selected by an ac-

quisition function S that uses the current model as a fast surrogate for the expense objective

f . Each suggested function evaluation produces an observed result yi = f(xi). This result

is appended to the historical set D = {(x1, y1), . . . , (xi, yi)}, which is used to update the

regression model for generating the next suggestion. The initialization sampling strategy

is an important consideration for these methods. Viable approaches include random and

quasi-random sampling [44].

TPE is a probabilistic regression model that creates two hierarchical processes, `(x) and

g(x), acting as generative models for all search variables [45]. These process model the

domain variables when the objective function is below and above a specified quantile y∗,

p(x|y,D) =

`(x) if y < y∗

g(x) if y ≥ y∗,
(2.4)

where `(x) is the density formed by using evaluations {x(i)} such that objective function value

f(x(i)) was less than y∗ and g(x) is the density formed by using the remaining observations.

The tree structure preserves the specified conditional relationships, while other variable

interdependencies may not be captured. TPE naturally supports domains with specified

conditional variables.

The acquisition function defines a balance between exploring new areas in the objective

space and exploiting areas already known to have favorable values. Expected Improvement
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(EI) is the one used by TPE. It defines the nonnegative expected improvement over the best

previously observed objective value at a given location x.

2.3 OUR APPROACH TO THE PROGRAM OPTIMIZATION PROCESS

We rely on an approach that decouples the performance expert role from the application

expert role (separation of concerns). The baseline version defined by the developer should

be as readable as possible and avoid any platform- or compiler-specific optimizations. The

application of the transformations to the baseline is controlled from an external file in what

we refer to as optimization programming. This approach allows the use of architecture-

specific optimizations while keeping the code maintainable in the long term. A database of

different variants for different architectures (and possibly different problem sizes and other

input parameters) is also maintained.

There have been several tools to ease the burden of the optimization process on the

programmer. They commonly require manual refactoring [2, 4, 17], and provide little control

over the steps being carried out. They also are not prepared to coexist with other tools and

cannot be incrementally adopted [33].

In the following list, we describe what we believe are the requirements for making auto-

tuning more accepted in applications. These requirements are based on our experiences

with several applications, and in particular, with a large, complex multi-physics applica-

tion, being developed as part of the Center for the Exascale Simulation of Plasma-Coupled

Combustion [46]:

1. A straightforward, clean version of the code that is understandable by the computa-

tional scientist and program developer. This is the baseline code and is the one that

may be modified by the code developers.

2. The code should run in the absence of any tool so that the developers are comfortable

that their code will run even if the optimization system fails for some reason.

3. A clean way to provide extra semantic information is needed; for example, indicate

that a loop is short or long or that a set of functions is always called in the same order.

4. Code must run with good performance on multiple platforms and architectures, at

least as long as the same algorithm is appropriate.

5. Because in practice, code tuning and optimization are difficult to make fully automatic,

there needs to be a way for a performance expert to provide additional, possibly target-

specific, information about optimizations.
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6. Because auto-tuning can be expensive (since many candidates may need to be exam-

ined), the system must store the results of the auto-tuning step(s) and use previously

found optimized code whenever possible.

7. Changes to the baseline code should ensure that “stale” optimized versions of the code

are not used and preferably replaced by updated versions.

8. Hand-tuned optimizations should be allowed.

9. Using (as opposed to creating) the optimized code must not require installing the code

generation and auto-tuning frameworks, as these are often difficult to install and use

on many platforms.

10. The system should make it possible to gather performance data from a remote system,

permitting the framework to run on a system on which the auto-tuning and code

transformation tools can be installed.

From these requirements, we made the following design decisions:

• Use of annotated code, written in C, C++, or Fortran, with high-level information

that marks regions of code for optimization (addresses 1 and 2).

• Use annotations that only cover high-level, platform-independent information (ad-

dresses 3).

• Maintain platform and tool-dependent information (e.g., loop-unroll depth) in a sepa-

rate optimization file (addresses 5).

• Maintain a database of optimized code, organized by target platform and other pa-

rameters (addresses 4 and 6).

• Maintain, in the database, a hash of the relevant parts of the code for each transformed

section, and this hash is confirmed before making use of a previously stored auto-tuned

version (addresses 7).

• Allow the insertion of hand-tuned versions of the code into the database to be used by

the system in the same way that code generated by the auto-tuning step (addresses 5

and 8).

• Separate the steps of determining optimized code and populating the database from

extracting code from the database to replace labeled code regions in the baseline version

(addresses 9).
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• Provide some support for running variants on a remote system, meaning that the full

system need not be installed on the target system; this is especially important when

the target is a supercomputer (addresses 9 and 10).

• Allow the inclusion and use of a preferred, custom version. For some applications and

libraries, there is already a preferred, hand-optimized version (e.g., many of the kernel

operations in PETSc have manually unrolled loops [47, 48, 49]). A small change to our

approach accommodates this by placing the baseline version into the database; this is

the version used by the auto-tuning tools (addresses 2).

Not included above is the integrated support for debugging code; that is, methods that relate

the auto-tuned code directly to the original baseline code in a way that can be presented by

a debugger. While desirable and beneficial, we do not view this as essential, in part because,

at high levels of optimizations, compilers often perform complex code transformations that

are not well-reflected in the source code that a debugger may present. While this does

complicate debugging, it is not a new problem. In fact, because our system stores both the

baseline code and the transformed code (created through source-to-source transformations),

it should be easier to debug code in this approach than relying on transformations handled

entirely within a compiler.

We implemented these design decisions in Locus [50, 51]. Locus is a semi-automatic ap-

proach to assist performance experts and code developers in the performance optimization

process of programs developed in mainstream programming languages (C, C++, and For-

tran). The system is non-prescriptive, which means that if none of the optimizations can be

applied or improve performance, the baseline (original version) is used instead.

Regions of interest in the baseline version are marked and given an identifier. The opti-

mization program uses this identifier to specify where to apply each transformation. Multiple

regions with the same identifier will receive the same optimization steps (not necessarily gen-

erating the same resulting code).

Locus combines expert knowledge with empirical search, automates much of the optimiza-

tion process, and gives total control to the developers. The system defines an interface to

use external transformation and search modules. The idea is to have a collaborative envi-

ronment where existing modules can be integrated into a single system. This enables the

comparison among modules and the selection of the one that generates the most performant

code.

Locus does not require the installation of any specific module. Only the ones used require

installation. The full toolset integrated with Locus, however, requires a long and cumbersome

installation process that is hard to replicate in all target machines. Therefore, the Locus
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system uses a database of platform-specific variants that separates the code generation from

the uses of the generated optimized code. It also supports a remote empirical search in which

the driver that explores the search space and the code generation is executed on a different

machine than the one where the variants are assessed.

2.4 SUMMARY

In this chapter, we discuss the complexities faced by the developers when optimizing

a program. We describe widely used platform-specific optimizations for different classes

of machines. We also present algorithms for exploring the search space automatically. A

detailed description of our approach to the program optimization process is given at the

end.
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CHAPTER 3: THE SYSTEM DESIGN AND IMPLEMENTATION

The Locus system design and implementation embody our philosophy about the program

optimization process (Section 2.3). A summary of our approach is as follows: a clean version

of the code should be defined, this clean version should be executable in the absence of any

optimization tool; extra semantic information about the application and the target platform

are provided in a separate file using a specialized language — we use the Locus language for

the work reported here; a database is used to save the steps to generate and the resulting

code of the best candidates for each platform; the consistency between the clean version and

each of the best candidates on the database must be guaranteed.

Figure 3.1: Locus workflow depiction.

The granularity of optimization, according to Smith [52], depends on the size and se-

mantics of the program component being optimized. Traditional static compilation applies

optimizations to programming language constructs, such as: within basic blocks, loop nests,

or procedures. Locus leaves the decision of where to apply optimizations to the user by

allowing the definition of arbitrary code regions as long as the transformation modules used

are able to operate at the chosen granularity.

The system has an interface to integrate optimization and search modules. This pool of

modules allows the comparison and selection of the best module for each specific context.

There is no one-size-fits-all module solution. The transformation modules have restrictions

on the source-code that they are able to transform, and can only transform specific types of

language constructs. The chosen search module carries out the empirical search exploring

spaces that are very hard to model accurately. The selection of the best search module

highly depends on the input space, but it is still hard to predict which search module is the

best because performance can be a complex function of many parameters.
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The searching process could happen offline, once per architecture/application pair, at

runtime, or in some combination. The cost of an offline search can be amortized over

many uses, while a runtime search can benefit from information only available at runtime.

Executing the search process at runtime, however, incurs substantial overhead. Locus limits

itself to choose from the database the best candidate implementation for the given input

and architecture during deployment. Although we focus on an offline search process in

this work, Locus can be easily extended to carry out the search process during runtime.

A hybrid approach could be useful when no implementation optimized for similar input

and architecture is found on the database. The combination of searching offline, saving

information and best implementation in the database, and running a search guided by the

offline results is what we consider the best solution. The hybrid approach would work as

follows: the database of optimized implementations would be consulted first, a “satisfactory”

implementation is used if found. Otherwise, a search process is invoked. The database is then

used to provide the initial configurations of the search process. Using an initial configuration

that performed well with similar input and architecture, instead of a random start, often

helps the search to converge faster to the best result. The results from the runtime search

are fed back to the database to be used by future searches in a similar context.

Locus has two possible workflows: direct and search. The direct workflow applies one se-

quence of transformations and generates one candidate implementation. The search workflow

applies when the Locus program contains search statements and typically involves multiple

optimization sequences and candidate implementations that must be evaluated to select the

best.

Figure 3.1 presents the search workflow of the Locus system. There are two inputs to the

system: the application’s source code and the optimization program (Locus program). The

former is parsed and translated into an internal representation that includes an abstract

syntax tree (AST) and code region data structure. The latter is translated into an internal

AST that represents the search space. Then, it goes through the optimizations to remove any

unnecessary code, especially the unnecessary search statements. The search space is then

translated from Locus notation into the chosen search module’s notation. An iterative search

process can now start for n iterations or for a time limit: the search module selects one point

from the space; this point is represented by a data structure that contains information of each

search variable on the space. The search variables information replaces their respective search

statements on the Locus program AST. The replacement of the search statements results in

a direct Locus program. Then, the Locus interpreter executes the direct Locus program and

generates a candidate implementation. The candidate implementation is compiled, executed,

and evaluated. The evaluation returns a metric that is fed back to the search module to
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assist in selecting the next point. For efficiency, during the search process, we do not actually

generate a file containing a direct Locus program. Instead, its AST representation is directly

fed to the interpreter.

The system executes all the optimization sequences defined using CodeReg (more infor-

mation in Chapter 4) in the Locus program, whose name matches any code region label in

the source-code. If no code-region label in the source-code matches the name of an opti-

mization sequence, that optimization sequence, including the search statements defined on

that sequence, is ignored for the Locus system execution.

In the remainder of this chapter, we present in more detail the interface to integrate

optimization and search modules, and about the database for variants and results.

3.1 INTERFACE WITH THE TRANSFORMATION MODULES

One significant challenge in developing the system was to integrate different and unrelated

transformation modules. Although the current implementation only deals with source-to-

source transformations, it is still necessary to modify the source code (e.g., insert pragmas,

labels) before invoking the transformations. The integration programmer is responsible for

implementing the modifications to direct the modules to where on the source code and how

the transformation should be carried out. After the transformation, the resulting source-

code must also be translated back to the internal representation (AST and code region data

structure). This internal representation is used as an intermediate representation between

the transformations so that the transformed code can be fed from one module to another.

Locus could be extended to optimize code by other transformations than source-to-source,

which we further discuss as future work in Section 9.1.

A very common workflow for the integrated modules is:

1. mark the code region according to the module specification;

2. unparse the code (generates source code);

3. apply the optimization;

4. parse the code again and translate it back into Locus internal source-code representa-

tion (abstract syntax tree and code region data structure).

Several transformations were integrated using this sequence. A wrapper function for

each translator implements it using the system interface. Before calling the transformation

module, the abstract syntax tree is modified to mark the code region that the module is
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supposed to optimize. These marks (e.g., labels, pragmas) depend on the module integrated.

After the optimization has finished, the code regions must be identified again as the result is

parsed back into the internal abstract syntax tree. The interface is comprised of operations

to modify the internal abstract syntax tree, such as:

• replaceCoregWithPragma(·): replaces a Locus code-region annotation (e.g., #pragma

Locus loop=l1) with a pragma. The pragma’s arguments and position on the code

are used by the transformation. For instance, the interchange transformation from the

module RoseLocus is invoked by preceding a loop nest with #pragma interchange

3,2,1. The loop statement following the pragma is the loop that the module should

transform. The argument 3,2,1 represents the new order of the loops in the nest. A

sequence of numbers separated by comma starting from 1 is used to represent the loop

nest;

• replaceCoregWithLabel(·): replaces a Locus code-region annotation (e.g., #pragma

Locus loop=l1) with a label. A label is a name followed by a colon (e.g., loop1:) in

C, C++, and Fortran. The label position on the code is often important. For instance,

a label is used to mark the loop to be transformed by loop tiling from the Pips module;

• addPragma(·): inserts a pragma preceding a statement that is inside a code region;

• addLabel(·): inserts a label preceding a statement that is inside a code region;

• replacePragmaWithCoreg(·): replaces a pragma with the original Locus code-region

annotation. This is the inverse of the replaceCoregWithPragma(). The code-region

information is added back to the transformed code to be used by the subsequent

transformations;

• replaceLabelWithCoreg(·): replaces a label with the original Locus code-region

annotation. This is the inverse of the replaceCoregWithLabel(). The code-region

information is added back to the transformed code to be used by the subsequent

transformations;

• removePragma(·): removes a pragma that precedes a statement;

• removeLabel(·): removes a pragma that precedes a statement.

There are four collections of transformation modules currently available: Pips, RoseLocus,

Pragmas, and BuiltIn. Table 3.1 presents the transformations available on each module.

Transformations may receive a reference to a loop or statement through a string representing
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hierarchical indexing (see Section 4.3), an integer for accessing a loop from a perfectly nested

one (outermost is 1), or a loop reference to the AST representation of the source code. Next,

we discuss how they interface with the system and how to use their optimizations.

3.1.1 Pips

A source-to-source compilation framework for analyzing and transforming C and Fortran

77 programs [53], Pips has a Python interface for invoking the optimizations. The loop

optimizations are invoked on loops marked with labels. Locus adds to the code region a

label and removes the pragma that originally identified the region using the replaceCoreg-

WithLabel(·) operation. The changed AST is unparsed in a temporary file, and Pips is

invoked. After finishing the optimization, the resulting code is read and parsed, and its AST

and code region data structure are rebuilt.

The loop transformations available from Pips in Locus are: unrolling, tiling, GenericTiling,

fusion, and unroll-and-jam. Loop tiling assumes a perfectly nested loop and receives as an

argument a list of tiling factors for each loop in the nest.

Tiling is an effective optimization to improve data locality and expose parallelism, unleash-

ing the potential of hierarchically organized systems. Loop nests can be tiled hierarchically

to fit the target machine’s organization, and the shape and size of tiles can significantly

affect locality, intertile communication, and parallelism.

The representation of loop iteration spaces as polyhedron enables the representation of

loop transformations as linear transformations. The indices of a loop of depth d are repre-

sented as H = [i1, . . . , id]
>, and the values assumed by the indices using a system of affine

inequalities as AH ≤ b, which represents the iteration space as a polyhedron delimited by

hyperplanes. A matrix T translates each point of the source iteration space with indices H

onto a point on the target space with indices H ′ = [k1, . . . , kd]
>. That is, TH = H ′. The

resulting polyhedron representing a transformed iteration space becomes AT−1H ′ ≤ b [37].

GenericTiling accepts a matrix representing the tiling transformation that allows advanced

tiling strategies. Table 3.2 presents the tiling matrix, T , for four tiling schemes: square,

diamond, skewing-1, and skewing-2 [54, 55].

Dependencies are partial order requirements that must be respected between loop itera-

tions. They determine which transformations are valid. GenericTiling accepts checkvalid

to check whether the tiled code respects the dependencies. Two extra parameters are also

accepted to enhance parallelism: tile direction (td), which specifies the scanning directions

of the tiles, and local tile direction (ld), which specifies the scanning directions of the iter-

ations inside each tile. The tile direction values are tp that uses the hyperplane direction
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Table 3.1: Transformation Modules available on Locus. Loop argument can be a string
for hierarchical indexing (see Section 4.3), an integer representing the loop on the nest
(outermost loop is 1), or a reference to the AST.

Module Transformation Arguments Description

Pips

GenericTiling(loop, factor

[,td, ld, checkvalid])

factor : list of lists representing tiling
matrix; td : {tpd, ti}; ld : {lid, ls,
lp}; checkvalid : {trued, false}.

Tiling(loop, factor) factor : list for tiling diagonal matrix.
Unroll(loop, factor) factor : integer.
UnrollAndJam(loop, factor) factor : integer.
Fusion(loop)

RoseLocus

Unroll(loop, factor) factor : integer.
UnrollAndJam(loop, factor

[,checkvalid])

factor : integer; checkvalid : {trued,
false}.

Stripmine(loop, factor

[,checkvalid])

factor : integer; checkvalid : {trued,
false}.

Tiling(loop, factor

[,checkvalid])

factor : list representing tiling factors
for each loop in the nest; checkvalid :
{trued, false}.

Interchange(order

[,checkvalid])

order : string or list representing loop
nest order, outermost loop is 0; check-
valid : {trued, false}.

Distribute(loop

[,checkvalid])

checkvalid : {trued, false}.

LICM([loop])

ScalarRepl([stmt])

IsDepAvailable([loop]) returns true or false.

Pragma

OMPFor(loop, schedule,

chunk)

schedule: {static, dynamic, guided,
runtime, auto}; chunk : integer.

Ivdep([loop])

Vector([loop])

BuiltIn

ListOuterLoops([loop]) returns references to outermost loops.
ListInnerLoops([loop]) returns references to innermost loops.
LoopNestDepth([loop]) returns an integer for the nest depth.
IsPerfectLoopNest([loop]) returns true or false.
Altdesc(source [,stmt]) source: file path with the content to be

inserted; stmt : string for hierarchical
indexing, defaults to replace the entire
code region.

d Default value.
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Table 3.2: Tiling schemes.

Square Diamond Skewing-1 Skewing-2

Tiling Matrix
(
x 0
0 x

) (
x −x
x x

) (
x −x
0 x

) (
x 0
−x x

)

associated with orthogonal directions, and ti that uses the colinear direction to the parti-

tioning vectors. The local tile direction values are li that uses the original basis, ls that

uses one of the partitioning vectors, and lp that uses the hyperplane direction associated

with orthogonal directions. The interested reader may consult Pips documentation [56] for

a thorough explanation.

3.1.2 RoseLocus

We implemented our own set of annotation-based source-to-source loop transformations

using the Rose infrastructure [57]. Loop unrolling, loop tiling, loop interchange, strip-mine,

loop distribution, unroll-and-jam, loop invariant code motion, and scalar replacement are

available. The interface with RoseLocus is similar to that with Pips. However, instead of

labels, pragmas are added to the code regions.

We have also implemented IsDepAvailable(·) to check whether the transformations’

dependence analysis can compute the data dependencies of the source code. The data

dependencies are used by some transformations to check whether the transformation would

be valid. If IsDepAvailable(·) returns false, we avoid invoking transformations whose

result must be verified by the dependence analysis (i.e., checkvalid argument is true).

If no loop or stmt argument is provided to IsDepAvailable(·), ScalarRepl(·), and

LICM(·), the transformations are carried out on the first loop or statement in the code

region.
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3.1.3 Pragma

Pragmas and directives are easy ways to execute loop iterations in parallel or provide

hints to the compiler to help vectorization. Although they are easy to use, the selection of

pragmas and parameters depends on the application and underlying architecture. Besides,

there is no standard for directives across compilers. In our effort to achieve performance

portability, we believe that pragmas and directives should not be added directly to code.

Compiler-specific pragmas and directives can be added using the module Pragma. In the

experiments, ivdep and vector always are used for enhancing vectorization with the ICC

compiler by calling Ivdep(·) and Vector(·), respectively. If no loop argument is provided,

the ivdep and vector always are inserted immediately before the first loop in the code

region.

It is possible to execute loops in parallel by calling OMPFor(·) to insert omp parallel

for pragma. OMPFor(·) accepts the schedule and the chunk size as parameters [58]. The

static schedule divides the iterations into chunks of chunk size and assigns to threads in a

round-robin fashion. The threads execute a chunk of chunk size iterations in the dynamic

schedule and then requests for another chunk until no iteration remains to be assigned. The

guided schedule works in the same way as the dynamic, however, the chunk size starts large

and shrinks to the indicated chunk size as chunks are scheduled. The auto schedule delegates

the decision to the compiler and/or runtime system. The runtime option uses the schedule

and chunk size defined in OpenMP internal control variables.

3.1.4 BuiltIn

It contains functions to analyze or transform the source code by manipulating the internal

AST. Functions to get information about loops are: ListInnerLoops(·) and ListOuterLoops(·)
return a list with references to the innermost and outermost loops, respectively, from a code

region; IsPerfectLoopNest(·) returns whether the loop is perfectly nested; LoopNestDepth(·)
returns the depth of a loop nest. If no loop argument is provided, functions get information

from the first loop in the code region.

Altdesc(·) is used to replace a statement in the code region with external code snippets.

Its functionality is similar to having macros in the program. It is mostly used to incorporate

hand-optimized kernels into a code region. If no stmt argument is provided, the entire code

region is replaced by the content of the source file.
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3.2 INTERFACE WITH THE SEARCH MODULES

Three functions must be implemented to enable the integration of a search module:

1. convertOptUniverse(): responsible for automatically converting the Locus search space

of all code regions to the module’s search space. The space conversion usually includes

converting search statements and defining parameters and options that will be used

during the search process;

2. search(): responsible for starting the search process. The search can only start after

the conversion is finished;

3. convertChosenPoint(): a conversion back to the Locus representation is necessary

for each point chosen during the search. Point information is represented by a data

structure that contains a selected single value for each search variable (each search

variable is represented by a search statement on the Locus program) and is used to

generate a direct Locus program. The direct Locus program can now be interpreted,

and the transformations carried out.

Two modules were integrated to explore the search space: Opentuner [23] and Hyper-

opt [59]. Next, more details about each tool integration are provided.

3.2.1 OpenTuner

The search statements for OR blocks, OR statements, and enum are converted to Open-

Tuner’s EnumParameter (more information about search statements in Chapter 4). The op-

tional statements are represented using the BooleanParameter. The other search statements

have straightforward representations between the two spaces. For instance, the permutation

is represented by PermutationParameter.

3.2.2 HyperOpt

The search statements for OR blocks, OR statements, numerical search statements, and

enum are represented by the randint parameter. Hyperopt accepts the use of conditional

search space. These conditional, hierarchical spaces are constructed in Locus by using nested

OR blocks. The use of search statements dependent on other search statements is treated

in the same way as in OpenTuner.

42



3.3 CORRECTNESS

The transformations available use dependence analysis to verify that the transformed code

is correct. In some cases, the dependence analysis cannot guarantee correctness, but it can

be turned off whenever the programmer is confident that the transformed code is correct.

3.4 CONSISTENCY CHECKING

Before applying an optimization sequence to an application’s code region, the system

checks whether the code in that code region has changed. We assume that a change in the

code region’s code means that the optimization sequence is outdated. To check whether

the code region’s code has changed, we keep a hash key for each code region in the Locus

database, and before the transformation or replacement, the hash keys are compared to the

ones stored. If the keys do not match, we assume that the optimization sequences were

planned for a different code region, which may result in incorrect code, and the system

aborts. The user needs to update the hash keys in the Locus program if the optimizations

steps are still applicable.

The hash function to generate the keys are language-dependent. The current function

removes all the white-spaces characters and comments before generating the SHA-1 key.

Furthermore, during the search, each candidate implementation evaluated can be checked

by custom a function to ensure it is valid. This custom function is provided by the user and

usually application-dependent.

3.5 DATABASE OF VARIANTS AND RESULTS

During the optimization process, the programmer needs to deal with a relatively large

amount of information. It includes information about the host, compiler, application, input

details, and metrics for each candidate implementation generated and evaluated. A database

is proposed to store information about the optimization process. The goal is to have impor-

tant information easily accessible to facilitate performance analysis and the selection and

use of the best candidates found during the empirical searches.

A database of platform-specific codes for different code regions that allows the use of

pre-generated auto-tuned code is an important requirement for making auto-tuning more

accessible. Locus allows using a direct optimization program to reuse results from previ-

ous empirical evaluations, making the optimization results accessible to non-experts. The
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Locus database saves the optimization sequence and the resulting code for each candidate

implementation evaluated during the empirical search.

Despite the system’s goal to facilitate the use of multiple transformation modules, in

our experience (and especially the experience of our computational scientist users), the

installation of the modules and their dependencies has shown to be complex and often

not available for all systems. The users of a direct optimization program containing the

optimization sequences would still need to install all the modules invoked in the direct

program. However, the system also can generate a direct Locus program that loads from the

database the best pre-generated auto-tuned code of each code region into the application

source code, sparing the user from the complicated installation of all the modules needed to

generate the best candidate implementations.

The database organizes information about the optimization process of an application. The

process is commonly comprised of multiple independent empirical evaluations. The result of

each evaluation is added to the database using a unique identifier.
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Figure 3.2: On the left-hand side, the steps to add platform-specific optimized candidates
to the database during the search process. During the deployment, shown on the right-
hand side, the best platform-specific candidates for each code region and a direct Locus
optimization program that loads these variants are automatically generated.

Figure 3.2 shows the database construction (left-hand side) and database use (right-hand

side). The empirical evaluation results are added to the database during the search process.

It can also generates (or updates if there is one already) a direct Locus program that loads

the implementations from the database.

The main purposes of the database are:

• Information about the searches: Because of the non-deterministic behavior of

the search tools, it is often necessary to run multiple independent searches instead
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of a single one containing a larger search space. For instance, when comparing the

application’s performance across multiple compilers, the search will be guided to use

the one that generates the fastest results. Therefore, if one compiler stands out in the

process, the others will rarely be evaluated. This behavior is the correct one, but if

one wants to evaluate the performance of multiple compilers, the only guaranteed way

is to have one search for each compiler. The experimental results for each compiler are

store in the same database for future comparison.

The database also stores experimental results carried out using different search mod-

ules. Besides, each variant evaluated is often executed multiple times, and all the

metrics are saved in the database.

• Reuse search configurations: The execution of multiple independent searches opens

the possibility of sharing best configurations when executing different evaluations

among compilers, architecture, and search tools.

The best configurations for the same application can be extracted from the database

and reused by future empirical searches. We claim that the proper selection of the ini-

tial configuration to be evaluated affects the search’s variability. The empirical search

has converged faster even by reusing as initial configurations the fastest configuration

found in another architecture. We revisit this in Chapter 6.6.

This feature is especially useful for independent evaluations of applications on the

same architecture. Revisiting the compiler example described earlier, if we use one

empirical search for the evaluation of the application using each compiler, reusing the

best configurations from other searches ensures that all the compilers were invoked

to the same set of fastest configurations, and the results are not skewed by the non-

deterministic behavior of the search tools.

Chapter 7 presents the use of this feature to compare different compilers, search tools,

and architectures.

• Deployment: The database saves for each application’s code region the candidate

implementations evaluated empirically on each search. During the application’s de-

ployment, the database is used to get each code region’s best variant. This amortizes

search time among users and avoids a long and cumbersome installation process of

the modules used by Locus to generate the variants. Besides, the installation of the

modules is hard to replicate in all target machines.
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3.5.1 Implementation

The database implementation follows the diagram presented in Figure 3.3. The diagram

can be synthesized as follows:

• Each application is comprised of one or more code regions;

• Optimizing one application requires the execution of one or more search processes;

• Each search, in turn, uses a search space defined in a Locus program;

• The Locus program has the search space segmented by each code region;

• During the search, each configuration is materialized into a variant;

• Each variant execution is an experiment;

• Each experiment may have multiple metrics and are saved in the Experiment Results

table.

Hashes are used to generate unique keys for the application’s code regions, the Locus

programs, and configurations. The hash function is language-dependent; the current version

removes all the white-space characters and comments before generating the SHA-1 key.

Because it is based on the Locus program syntax, the hashing function used does not solve

the problem of returning different keys for semantically equivalent optimization sequences.

Therefore, minimal changes in the Locus program result in the generation of different keys.

The results in the database linked to programs that are semantically equivalent but have

different keys must be aggregated manually by the programmer.

The hash function for the code regions includes the file name they belong to, their code

region label, and an index value from 0 to the number of code regions in the same source

file. The index value is used to set apart code regions if there is more than one in the

same file with the same label. Identical code regions that have the same label will receive

the same sequence of optimizations, but their experimental results will be separated on

the database. Different code regions can also have the same label and receive the same

sequence of optimizations; the use of pragma query allows the customization of the sequence

of transformations according to the source code (see Section 8.2).

Changes in the baseline version of the application may result in the candidates in the

database incorrect. The database contains a hash of the baseline code region from which

each candidate implementation was generated. The BuiltIn.Altdesc uses that hash to check
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Figure 3.3: Database entity relationship diagram.

whether the current code, which the variant is being incorporated into, is the same as the

one the variant was generated from.

The empirical evaluation is often dependent on input parameters (e.g., problem size, ma-

trices shape). The system allows the inclusion of information about the search that better

represents the context in which the variants were generated. This information is later used

to load the proper variants that will be deployed for similar contexts. They are provided as

key,value pairs using environmental variables and saved into the Search Variables and Search

Values tables. For instance, the optimized code for matrix multiplication heavily depends

on the shape of the matrices, which is one information that can be added as tags. Dur-

ing deployment, if the database does not have an optimized code that matches exactly the

key,value requested, a heuristic can be used to get the most appropriate from the available

ones.

3.6 SUMMARY

The Locus system consists of an approach to the program optimization process. Its main

goal is to help the developer make complex and long-lived applications prone to perform

faster on multiple platforms.

The system consists of interfaces to include search modules to conduct the empirical search
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and transformation modules to modify the application’s source code. A database is used

to store the candidate implementations and the steps to generate them. It is also used to

share with others the results from the empirical searches. The Locus system contains an

important set of tools to generate faster, platform-specific code automatically.
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CHAPTER 4: THE LOCUS LANGUAGE

We devised a domain-specific language that allows the definition of an optimization se-

quence along with a search space. The programs developed in our custom language have opti-

mization sequences intertwined with the search variables. Therefore, the search statements

that represent the search variables are part of the optimization sequences’ programming

logic. This results in a concise representation of search spaces combined with optimization

sequences in what we call optimization programming.

The mixing of search spaces with the programming of optimization sequences is exclusive

to Locus. In previous work, search spaces were defined apart from the sequences used to

optimize programs. They define the search space in a meta-program to the optimization

sequence representation, and the values selected during the search replace their respective

placeholders in that representation [1, 2, 22, 34]. The reasons for this separation are two-fold:

(i) the search technique accepts only search variables as input; (ii) the values assigned to the

search variables from a search space are only known during the search process. Locus allows

them to be defined together as it handles the search modules automatically, extracting the

search space from the Locus program and representing it into the module’s notation.

4.1 OVERVIEW

The source-code is annotated to define regions on the source-code to be optimized (e.g.,

Figure 1.1a). These code regions can be loop nests, functions, or sequences of consecutive

statements. An annotation contains a label that is referred to in the Locus program. An

annotated code region can be optimized by creating a CodeReg construct using the same

label defined in the annotation. The heading CodeReg P, where P is a name composed of

letters, digits, and the underscore character (i.e., <NAME> on Figure 4.5), indicates that

the optimization steps in the <block> that follows are to be applied to the regions labeled

P.

To name optimization sequences that are not tied to any code region, there is the OptSeq

construct. OptSeq H(·) defines a collection of transformations that can be invoked using

H(·). These collections of transformations can be reused and invoked by CodeReg and

OptSeq.

The language accepts pragmas that are used to provide extra information for the search

space translation and code generation. An important one is the @pragma query that tells

the search space translator that the information provided by OptSeq calls in the subsequent
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1 import "RoseLocus";
2 OptSeq printstatus(type) {
3 print "Tiling selected: "+type;
4 }
5 OptSeq Tiling2D() {
6 tileI = poweroftwo(2..32);
7 tileJ = poweroftwo(2..32);
8 RoseLocus.Tiling(loop="0", factor=[tileI, tileJ]);
9 return "2D";

10 }
11 OptSeq Tiling3D() {
12 RoseLocus.Tiling(loop="0", factor=[4,4,8]);
13 return "3D";
14 }
15 CodeReg matmul {
16 tiledim = 4;
17 tiletype = Tiling2D() OR Tiling3D();
18 printstatus(tiletype);
19 if (tiletype == "2D") {
20 RoseLocus.Unroll(loop=innermost, factor=tiledim);
21 }
22 }

Figure 4.1: Locus program example for optimizing a matrix-matrix multiplication.

line are static across the search process. These OptSeq calls are then executed before the

translation to the search module’s notation occurs, and the values returned replace the calls

that originated them. This information may be used by search statements and useful for

compiler passes to optimize the Locus program itself (Chapter 5 better explains the Locus

program’s optimization).

A transformation receives a reference to where in the code region to perform the trans-

formation. References point to, for instance, a loop in a nest or a compound statement.

The reference can be a parameter to an OptSeq, which could make it generic enough to be

reused for optimizing different code regions.

The code region being optimized may change as the optimization sequence is being carried

out. The user is responsible for making sure that the references passed to each transformation

are consistent with the state of the transformed code at that point in the optimization

sequence.

The Locus system ignores CodeReg definitions whose name does not match any label in

the source code of the application being optimized. The absence of any code region in the

source-code to be optimized by a CodeReg also results in the removal from the search space

of any search statements defined in that CodeReg.
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1 import "RoseLocus", "Pips";
2 dim=4096;
3 Search {
4 buildcmd = "make clean all";
5 runcmd = "./matmul";
6 }
7 CodeReg matmul {
8 perm = permutation([0,1,2], init=[0,2,1]);
9 RoseLocus.Interchange(order=perm);

10 tileI = poweroftwo(2..dim, init=512);
11 tileK = poweroftwo(2..dim, init=128);
12 tileJ = poweroftwo(2..dim, init=2048);
13 Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
14 tileI_2 = poweroftwo(2..tileI, init=256);
15 tileK_2 = poweroftwo(2..tileK, init=32);
16 tileJ_2 = poweroftwo(2..tileJ, init=32);
17 Pips.Tiling(loop="0.0.0.0", factor=[tileI_2, tileK_2, tileJ_2]);
18 {
19 None;
20 } OR {
21 tileI_3 = poweroftwo(2..tileI_2);
22 tileK_3 = poweroftwo(2..tileK_2);
23 tileJ_3 = poweroftwo(2..tileJ_2);
24 Pips.Tiling(loop="0.0.0.0.0.0.0", factor=[tileI_3, tileK_3, tileJ_3]);
25 }
26 }

Figure 4.2: Locus program for optimizing Matrix-Matrix Multiplication. The program ap-
plies loop interchange and a 2- or 3-level hierarchical tiling. It also provides the values to be
used as the initial configuration for the search process.

4.2 EXAMPLES

Figure 4.1 is an example of a Locus program that tiles a reference version of matrix-

matrix multiplication (Figure 1.1a). It shows a search space that includes two OptSeq: one,

Tiling2D(), for tiling the two outermost loops and another, Tiling3D(), to tile the three

outermost loops, which, in this case, is the whole loop nest. The transformation sequence

that applies to the loop labeled matmul in Figure 1.1a must have header CodeReg matmul.

Using the Locus OR statement, this sequence specifies that Tiling2D() and Tiling3D()

will be used to create two different collections of points in the space of transformations.

Tiling2D() will create 25 points on the space for the tiles of dimension 2 by 2, 2 by 4, ..., 2

by 32, ... 32 by 32, whereas Tiling3D() will create one additional point on the search space

for a tile of dimension 4 by 4 by 8. When Tiling2D() is applied, the innermost loop is also

unrolled after tiling. There are multiple tiling factor parameters in Tiling2D() represented

using ranges of values. There are 31 sizes for each dimension, leading to 31 × 31 possible

tile shapes for Tiling2D(), whereas there is a single tile shape in Tiling3D(). The shape

of a tile is a tuple representing the size of each dimension.

The optimization program in Figure 4.2 has a definition of a CodeReg with NAME as

matmul. This program first changes the loop order according to the permutation on the
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perm variable (e.g., from ijk to ikj ) by calling RoseLocus.Interchange. Then, the loop

nest is tiled twice by calling Pips.Tiling two times. In the end, there is an OR block that has

the possibility of tiling again and generating a 3-level hierarchical tiling. Each tiling uses a

range of values to cover different shapes; the best shape depends on the memory hierarchy,

which is machine-specific.

4.3 SYNTAX AND SEMANTICS

A Locus program consists of the following structure:

• Preprocessor commands;

• CodeReg and OptSeq constructs;

• Variables;

• Statements and expressions;

• Comments.

Preprocessor commands include the import used to access optimization sequences defined

in separate files. In a Locus program, a semicolon is a statement terminator. Comments

start with #. A variable is a name given to a storage area that the program can manipulate.

The name of a variable can be composed of letters, digits, and the underscore character but

must begin with a letter or an underscore. Locus is case-sensitive and dynamically typed.

Variables need not be declared or defined in advance. To create a variable, just assign it

a value. A variable may be assigned different values of different types during its lifetime.

The assignment operator = is used to assign values from right-side expression to left-side

operand. In practice, a variable is a symbolic name to reference an object. Locus creates

objects implicitly for each data structure and types it accepts. Data structures accepted

are lists and tuples. Types accepted are for integers and floating-point numbers, and string

literals (constants).

A code region definition consists of the keyword CodeReg, and a unique name followed by

a body that consists of a block of statements. It contains no parameters nor return type.

CodeReg is invoked by the system whenever there is a definition on the Locus program

whose name is the same as an annotated code region on the source code.

An optimization sequence definition consists of the keyword OptSeq, a unique name, and

parameters followed by a body containing a block of statements. Contrary to CodeReg, op-
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timization sequences may contain parameters and return values. Since Locus is dynamically

typed, no return type is provided.

The rest of this section provides more information about the language.

Operators. The arithmetic operators accepted are: addition (a+ b), subtraction (a− b),
multiplication (a ∗ b), modulus (a%b), power (ab is a ∗ ∗b), division (a/b), and floor division

(a//b).

The relational operators (a == b, a != b, a > b, a < b, a >= b, a <= b), logical operators

(&& for and, || for or, not for negation), and bitwise operators (& for and, | for or, ∼
for inversion, ∧ for xor, << for left shift, >> for right shift) follow the same rules as in

Python 31.

Search Statements. Locus has multiple search statements to expose and define the op-

timization space. The search statements are:

1. OR Blocks;

2. OR statements;

3. Optional statements;

4. enum, integer, float, permutation, poweroftwo, loginteger, and logfloat

statements.

An OR can be used between blocks of code (set of statements inside curly brackets (e.g.,

{optA;} OR {optB;})) and between statements (e.g., transfA OR transfB;). They are

used to describe alternative optimization sequences. The statements or blocks are selected

at run time, and it is not guaranteed that all possibilities will be evaluated; this decision

depends on the search module.

In the same way, the Locus language has optional statements. Any statement (including

OR statements) marked with a preceding ∗ may or may not be executed and adds a dimension

to the search space. The OR statements have precedence over the optional construct. The

semantics of an optional statement is the same as having an OR statement in which one of

the options is None. To keep these semantics, assignments cannot be optional statements.

A collection of values can be represented by enum(<value>, . . . ), permutation(<value>,

. . . ), and [integer, float, permutation, poweroftwo, loginteger, logfloat] (<min>

.. <max>). In the search space, the enum exposes to the search all values received; it can be

1https://docs.python.org/3/library/operator.html

53



used for specifying the performances of different compiler flags (e.g., enum(-O2,-O3)). The

permutation exposes to the search all the permutations of a list. In our experiments, we

used permutation to specify all orders of a loop nest as a parameter of the loop interchange

optimization. The poweroftwo exposes to the search all values that are power of two on

the given range. integer exposes to the search all the integer values in the range. Note

that “..” is used to represent a range. The integer can be used to find the best dimensions

when tiling a loop nest, and poweroftwo can reduce the search time as it covers fewer values

for the same range. loginteger and logfloat expose to the search space all the scaled

logarithm values to base 2 between the minimum and maximum values provided.

The arguments of these search statements can be another search statement. This is

especially useful for defining constraints that depend on previously selected statement. For

instance, in a sequence that tiles and then unrolls, the unroll factor is limited by the number

of loop iterations, which in turn is defined by the block size selected using another search

statement. If the block size was selected as 32, the search space for the unroll factor should

be constrained by that value. The use of constraints reduces the size of the space and

potentially speeds up the search process.

Data Structures. Locus can represent two kinds of data structures: lists and tuples (in

a similar fashion to Python). The lists are represented by enclosing elements within square

brackets, and tuples by enclosing elements within parenthesis. Lists are mutable and tuples

are immutable. A new tuple can be generated from an existing one using the + operator

with another tuple and assigning the result to a variable that will reference the created tuple.

An element can be appended to an existing list by using the append(v) method. An element

can be removed from an existing list by using the remove(v) method.

Types. Besides lists and tuples, there are two other types of constants: numbers and

strings. As with tuples, these types are immutable. Strings are surrounded by double-

quotes. Strings can be concatenated using the + operator and assigning the result to a new

variable. Signed integers and floating-point real values are the types of numbers accepted.

Built-in Functions. The Locus compiler provides the following functions:

• seq(start, stop[, step]): generates a sequence of numbers. The arguments must

be integers. If the step argument is omitted, it defaults to 1. step cannot be zero.

For a positive step, the contents of a range r are determined by the formula r[i] =

start+ step ∗ i where i >= 0 and r[i] < stop. For a negative step, the contents of the
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range are still determined by the formula r[i] = start + step ∗ i, but the constraints

are i >= 0 and r[i] > stop;

• len(v): returns an integer that represents the length of v. The argument v must be

a list or a tuple;

• str(v): returns a string version of v. The argument v must be a number;

• int(v): returns an integer representation of v. The argument v must be a number or

string representing an integer literal in base 10;

• float(v): returns a floating-point number constructed from a number or string v. If

the argument v is a string, it must conform to the format of <SIGNEDFLOAT> from

Figure 4.5;

• getenv(key, default=None): return a value of the environment key if it exists, or

default if it does not. The arguments and return values are strings;

• print v: print to stdout the argument v, which must be a string or a sequence of

string separated by commas.

Control Flow. The control flow statements available are if and for. They can be used

to decide, during run time, how to proceed with the optimization according to previous

decisions. In the CodeReg and OptSeq block, it is possible to execute different optimizations

sequences depending on the result of an expression or a search statement selection. For

instance, the compiler to be used can be expressed as a search statement assigned to a

variable (e.g., compiler = enum("gcc", "icc")), and an if can be used to execute

different sequences of optimizations according to the value assigned to the variable during

the search process.

Scope. Each block of code has its own scope. The variables declared in the body of a

CodeReg, an OptSeq, or a control-flow statement are accessible only in the block representing

their body and in all inner blocks of that block. The formal parameters of an OptSeq

definition are considered local to the block of the OptSeq body. Variables declared outside

of a CodeReg and OptSeq are considered global and are accessible anywhere in the program.

Import. It is possible to import optimization sequences created by others. This is an

important feature as experts can share their recipes for common code regions running on

similar architectures. It is also used to import modules and optimization definitions to be
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used on CodeReg and OptSeq. All the definitions of CodeReg, OptSeq, and global variables

from the imported files become accessible to the program. The syntax for importing a file

is import <path/filename>;.

Search Block. The Search block is used to give the system commands on how to compile

and run each candidate implementation being evaluated during the search process. The

commands assigned to each statement are expressions that will be converted to a string before

their execution. Lines 3-6 in Figure 4.2 shows an example of a search block. The string "make

clean all" is assigned to buildcmd to compile each candidate implementation, and the

string "./matmul" is assigned to runcmd to execute each candidate implementation. The

statements allowed are:

• prebuildcmd: used for assigning a command to be executed before the search process;

• buildcmd: used for assigning a command to compile each candidate implementation;

• runcmd: used for assigning a command to execute each candidate implementation

compiled using the buildcmd ;

• buildorig: the same as buildcmd, but it is executed only once on the baseline version

before the search process starts;

• runorig: the same as runcmd, but it is executed only once on the baseline version

before the search process starts;

• checkcmd: used for assigning a command to be executed for each candidate after their

execution. It is used for verification of the results of the execution.

The search process requires the use of, at least, buildcmd and runcmd, the others are

optional.

Initial Search Configuration. The Locus syntax allows the specification of an initial

value for each search statement. These values may be used as the as the first candidate

implementation of the search process. The Locus system default, however, is to select the

values randomly (among the possible options) for each search statement to serve as the first

candidate implementation of the search process. The rules used to define the initial search

configuration are:

• the first block of each OR block is used;
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• the first statement of each OR statement is used;

• optional statements are assumed to be executed;

• search statements (except OR blocks, OR statements, and optional statements) have

an extra parameter, namely init, to provide the value. Otherwise, the first value of

each sequence is used.

The code in Figure 4.2 illustrates the representation of initial values that may be given

to the search module to be assessed as the first candidate implementation. In this case,

the initial values are given for the perm variable, and the variables tileI, tileK, tileK,

tileI 2, tileK 2, and tileJ 2. The first candidate implementation will include the first

block of the OR (only a None;) resulting in a 2-level tiled variant.

Recursion. OptSeq constructs accept the use of recursion. It is important to remember

that the recursion happens during the execution of the Locus program. At that point, search

statements were already replaced by the values selected by the search module. Therefore, the

same selection for each search statement will be used in all calls of the respective OptSeq,

including the recursive calls. In case it is necessary to have different values at each recursion

level, the recursion must be expanded before the conversion to the search module notation.

This conversion is further discussed in Section 5.4.2.

Hierarchical Indexing. Locus uses hierarchical indexing to be able to refer to loops and

statements on the source code. This indexing is made of numbers separated by periods. Each

number represents a code block level, starting from 0. The value of the number represents

the order of the statement or loop at that level. For instance, “0.0.0” refers to the innermost

loop in Figure 1.1a. In case of two innermost loops, the second one would be referenced as

“0.0.1”. Using this indexing, we can reference any statement or loop in a code region.

Figure 4.3 presents an example of source code and the index for each statement. At each

code block level, one extra number is added to the index. The index is incremented for

statements, and loops, that are part of the same level.

For transformations that change the code structure, such as loop distribution and fusion,

the indexing needs to refer to the current state of code and not to its original version. This

raises the burden on the programmer to ensure at each transformation that the indexing is

still valid. For instance, if the loops indexed by “0.0.0” and “0.0.1” are to be fused, after

the fusion, the new, fused loop is referred to as “0.0.0” as it takes the position of the first

loop. Conversely, if loop distribution is carried out, the indexes of the statements after the
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0         for (t = 0; t < niter; t++) {
0.0          for (i = 1; t < x-1; i++) {
0.0.0                      for (j = 1; j < y-1; j++) {
0.0.0.0            for (k = 1; k < z-1; k++) {
0.0.0.0.0             STMT_A;
                   }
                }
0.0.1                       for (j = 1; j < y-1; j++) {
0.0.1.0            for (k = 1; k < z-1; k++) {
0.0.1.0.0             STMT_B;
0.0.1.0.1             STMT_C;
                   }
                }
0.0.2           for (k = 1; k < z-1; k++) {
0.0.2.1            STMT_D;
               }       
             }
          }

Figure 4.3: Hierarchical indexing example.

loop being distributed are incremented according to the number of new loops created by the

distribution.

4.4 EXTENDED BACKUS-NAUR FORM OF THE LANGUAGE

Figures 4.4 and 4.5 show the extended Backus-Naur form of the language. In the extended

form presented, we use the following syntax rules and extensions: optional items are enclosed

in square brackets; items occurring 0 or more times are suffixed with an asterisk (∗); items

occurring 1 or more times are suffixed with the plus symbol (+); items occurring 0 or 1

times are suffixed with a question mark (?); terminals appear surrounded by single quotes;

grouped items are enclosed in simple parentheses.

4.5 SUMMARY

The Locus language can define search spaces of optimizations sequences. In this chap-

ter, we explain the syntax and semantics of the language. The language accepts special

statements to represent the search variables from a search space. The values of these search

variables can be used by other search statements, control-flow statements, and passed as ar-

guments to the transformations. The mixing of search spaces with transformation sequences

creates a rich environment for defining complex spaces for optimizing programs.
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〈start〉 ::= (〈coderegdef 〉 | 〈optseqdef 〉 | 〈globalscp〉 | 〈searchdef 〉 | 〈pragmastmt〉)∗

〈searchdef 〉 ::= ‘Search’ 〈searchblock〉

〈searchblock〉 ::= ‘{’ searchstmt (‘;’ searchstmt)∗ ‘;’ ‘}’

〈searchstmt〉 ::= 〈prebuildstmt〉 | 〈measureorigstmt〉 | 〈buildcmdstmt〉 | 〈runcmdstmt〉 | 〈runorigstmt〉 | 〈buildorigstmt〉 |
〈checkcmdstmt〉

〈prebuildstmt〉 ::= ‘prebuildcmd’ ‘=’ 〈test〉

〈measureorigstmt〉 ::= ‘measureorig’ ‘=’ 〈truestmt〉 | ‘measureorig’ ‘=’ 〈falsestmt〉

〈buildcmdstmt〉 ::= ‘buildcmd’ ‘=’ 〈test〉

〈runcmdstmt〉 ::= ‘runcmd’ ‘=’ 〈test〉

〈runorigstmt〉 ::= ‘runorig’ ‘=’ 〈test〉

〈buildorigstmt〉 ::= ‘buildorig’ ‘=’ 〈test〉

〈checkcmdstmt〉 ::= ‘checkcmd’ ‘=’ 〈test〉

〈coderegdef 〉 ::= ‘CodeReg’ 〈NAME〉 〈block〉

〈optseqdef 〉 ::= ‘OptSeq’ 〈NAME〉 ‘(’ [〈arglist〉] ‘)’ 〈block〉

〈importstmt〉 ::= ‘import’ 〈STRING〉 (, 〈STRING〉)∗ ‘;’

〈pragmastmt〉 ::= ‘@pragma’ 〈STRINGINNER〉∗

〈block〉 ::= ‘{’ 〈subblock〉 ‘}’

〈subblock〉 ::= 〈block〉 (‘OR’ 〈block〉 )+ | 〈block〉 | 〈stmt〉

〈stmt〉 ::= 〈setstmt〉 | 〈compoundstmt〉

〈setstmt〉 ::= 〈smallstmt〉 (‘;’ 〈smallstmt〉)∗ ‘;’

〈smallstmt〉 ::= (〈exprstmt〉 | 〈printstmt〉)

〈globalscp〉 ::= 〈exprstmt〉 ‘;’ | 〈importstmt〉

〈printstmt〉 ::= ‘print’ [ 〈test〉 (‘,’ 〈test〉)∗ [‘,’] ]

〈exprstmt〉 ::= 〈testlist〉 ‘=’ 〈starstmt〉 | 〈starstmt〉

〈starstmt〉 ::= ‘∗’ 〈orexprstmt〉 | 〈orexprstmt〉

〈orexprstmt〉 ::= 〈testlist〉 (‘OR’ 〈testlist〉)∗

〈compoundstmt〉 ::= 〈ifstmt〉 | 〈forstmt〉

〈ifstmt〉 ::= ‘if’ 〈test〉 〈block〉 (‘elif’ 〈test〉 〈block〉)∗ [‘else’ 〈block〉 ]

〈forstmt〉 ::= ‘for’ ‘(’ 〈exprstmt〉 ‘;’ 〈test〉 ‘;’ 〈exprstmt〉 ‘)’ 〈block〉

〈test〉 ::= 〈ortest〉

〈ortest〉 ::= 〈andtest〉 (‘||’ 〈andtest〉)∗

〈andtest〉 ::= 〈nottest〉 (‘&&’ 〈nottest〉)∗

〈nottest〉 ::= ‘not’ 〈nottest〉 | 〈comparison〉

〈comparison〉 ::= 〈expr〉 ((‘>’ | ‘<’ | ‘==’ | ‘>=’ | ‘<=’ | ‘!=’) 〈expr〉)∗

〈rangeexpr〉 ::= 〈expr〉 ‘..’ 〈expr〉 [‘..’ 〈expr〉]

〈expr〉 ::= 〈xorexpr〉 (‘|’ 〈xorexpr〉)∗

〈xorexpr〉 ::= 〈andexpr〉 (‘∧’ 〈andexpr〉)∗

〈andexpr〉 ::= 〈shiftexpr〉 (‘&’ 〈shiftexpr〉)∗

〈shiftexpr〉 ::= 〈arithexpr〉 ((‘<<’|‘>>’) 〈arithexpr〉)∗

〈arithexpr〉 ::= 〈term〉 ((‘+’|‘-’) 〈term〉)∗

Figure 4.4: The extended Backus-Naur form of the language (part 1/2).
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〈term〉 ::= 〈factor〉 | 〈term〉 (‘∗’ | ‘/’ | ‘//’ | ‘%’) 〈factor〉

〈factor〉 ::= (‘-’ | ‘∼’ | ‘+’) 〈factor〉 | 〈power〉

〈power〉 ::= 〈molecule〉 [‘∗∗’ 〈factor〉]

〈molecule〉 ::= 〈funccall〉 | ‘enum’ ‘(’ 〈testlist〉 ‘)’
| ‘poweroftwo’ ‘(’ 〈rangeexpr〉 [ 〈initvalrg〉 ] ‘)’
| ‘integer’ ‘(’ 〈rangeexpr〉 [ 〈initvalrg〉 ] ‘)’
| ‘permutation’ ‘(’ (〈test〉 | 〈listmaker〉) [ 〈initlistmk〉 ] ‘)’
| ‘seq’ ‘(’ 〈test〉 ‘,’ 〈test〉 [‘,’ 〈test〉] ‘)’
| ‘len’ ‘(’ 〈test〉 ‘)’
| ‘str’ ‘(’ 〈test〉 ‘)’
| ‘int’ ‘(’ 〈test〉 ‘)’
| ‘float’ ‘(’ 〈test〉 ‘)’
| ‘getenv’ ‘(’ 〈test〉 [ ‘,’ [‘default’ ‘=’] 〈test〉 ] ‘)’
| 〈molecule〉 ‘.’ 〈NAME〉
| 〈atom〉

〈funccall〉 ::= 〈molecule〉 ‘(’ [〈arglist〉] ‘)’ | 〈molecule〉 ‘[’ [〈subscriptlist〉] ‘]’

〈atom〉 ::= 〈tuplemaker〉 | 〈listmaker〉 | 〈truestmt〉 | 〈falsestmt〉 | 〈nonestmt〉 | ‘(’ 〈test〉 ‘)’ | 〈NAME〉 | 〈number〉 | 〈string〉+

〈tuplemaker〉 ::= ‘(’ 〈test〉 ((‘,’ 〈test〉)+ [‘,’] | ‘,’) ‘)’

〈listmaker〉 ::= ‘[’ [ 〈test〉 (‘,’ 〈test〉 )∗ [‘,’] ] ‘]’

〈testlist〉 ::= 〈test〉 (‘,’ 〈test〉)∗ [‘,’]

〈subscriptlist〉 ::= 〈test〉 (‘,’ 〈test〉)∗ [‘,’]

〈arglist〉 ::= (〈argument〉 ‘,’)∗ (〈argument〉 [‘,’])

〈argument〉 ::= 〈test〉 | 〈test〉 ‘=’ 〈test〉

〈initvalrg〉 ::= ‘,’ ‘init’ ‘=’ 〈expr〉

〈initlistmk〉 ::= ‘,’ ‘init’ ‘=’ 〈listmaker〉

〈number〉 ::= 〈INT 〉 | 〈FLOAT 〉

〈truestmt〉 ::= ‘True’

〈falsestmt〉 ::= ‘False’

〈nonestmt〉 ::= ‘None’

〈string〉 ::= 〈ESCAPEDSTRING〉

〈DIGIT 〉 ::= ‘0’..‘9’

〈INT 〉 ::= 〈DIGIT 〉+

〈SIGNEDINT 〉 ::= [‘+’|‘-’] 〈INT 〉

〈DECIMAL〉 ::= 〈INT 〉 ‘.’ 〈INT 〉? | ‘.’ 〈INT 〉

〈EXP〉 ::= (‘e’|‘E’) 〈SIGNEDINT 〉

〈FLOAT 〉 ::= 〈INT 〉 〈EXP〉 | 〈DECIMAL〉 〈EXP〉?

〈SIGNEDFLOAT 〉 ::= [‘+’|‘-’] 〈FLOAT 〉

〈COMMENT 〉 ::= /#[ˆ\n]*/

〈STRINGINNER〉 ::= /.*?/

〈STRINGESCINNER〉 ::= 〈STRINGINNER〉 /(?<!\)(\\)*?/

〈ESCAPEDSTRING〉 ::= " 〈STRINGESCINNER〉 "

〈LETTER〉 ::= ‘A’..‘Z’ |‘a’..‘z’

〈NAME〉 ::= (‘_’|〈LETTER〉) (‘_’|〈LETTER〉|〈DIGIT 〉)∗

Figure 4.5: The extended Backus-Naur form of the language (part 2/2).
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CHAPTER 5: COMPILING AND OPTIMIZING LOCUS PROGRAMS

A Locus program represents a search space of transformation sequences. Optimizing Locus

programs affects search time by removing unnecessary search statements. The smaller the

search space, the shorter the search time. Optimization also affects code generation by

reducing the time to execute the program implementing the optimization sequence leading

to the candidate implementation. This program is called the direct Locus program.

This chapter presents techniques to optimize Locus programs and compiler passes to

represent correctly hierarchical search spaces constructed based upon the interdependence

among search statements.

5.1 DATA-FLOW ANALYSIS

Dead-code elimination, constant propagation, and constant folding depend on the data-

flow analysis. Data-flow analysis refers to techniques that derive information about the flow

of data along program execution paths [25].

Before running the data-flow analysis, the statements are partitioned into basic blocks.

For Locus, a basic block ends at the statement preceding a function call or the beginning

of a compound statement in the form of a loop, a conditional statement, a Block, or an OR

Block.

Once the Locus program is partitioned into basic blocks, we represent the control flow

between them by a graph. The nodes of the control-flow graph (CFG) are the basic blocks.

There is an edge from basic block B to basic block C if and only if it is possible for the first

instruction in block C to be executed immediately after the last instruction in basic block

B. We say that basic block B is a predecessor of C, and C is a successor of B. Two extra

nodes are often added to the graph: entry and exit. They do not correspond to executable

statements. There is an edge from the entry to the first executable node of the flow graph,

i.e., to the basic block that contains the first statement of the program. The last basic block

executed of the program is always a predecessor of the exit node. Figure 5.1 presents an

example of a Locus program on the left and the program’s CFG on the right.

Data-flow analysis algorithms associate every program point with a data-flow value that

represents an abstraction of the set of all possible program states that can be observed at

that point. The set of possible values is the domain for the data-flow analysis. For example,

the domain of data-flow values for reaching definitions is the set of all subsets of definitions

in the program. A definition is a statement that assigns a value to a memory location. Each
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1 OptSeq ortst() {
2 n = 1024;
3 {
4 if (n > 512) {
5 print "A.1 block";
6 } else {
7 print "A.2 block";
8 }
9 } OR {

10 print "B block";
11 } OR {
12 print "C block";
13 }
14 print "Final";
15 }

(a)

(b)

Figure 5.1: (a) An example of a Locus program. (b) CFG generated from the Locus example.

point in the program is associated with the exact set of definitions that can reach that point.

The data-flow values before and after each statement s are the sets IN[s] and OUT[s],

respectively. The goal of data-flow analysis is, for all statements s, to find the IN and OUT

sets by solving a set of constraints. There are two sets of constraints:

• Transfer functions: the data-flow values before and after a statement are constrained

by the semantics of the statement. For example, suppose data-flow analysis involves

determining the definitions that reach point p. A definition d of variable x reaches a

point p if there is a path from the point immediately following d to p, and there is no

other definition to x along the path. The definition still reaches the next point p+ 1 if

no definition of x occurred at point p. This relationship between the data-flow values

before and after the statement is known as a transfer function. The transfer functions

may flow forward along the execution paths or flow backward up the execution paths.

The transfer function of a statement s is denoted by fs, and, in a forward-flow, takes

the data-flow value before the statement and produces a new data-flow value after the

statement. That is, OUT[s] = fs(IN[s]). In a backward-flow, the transfer function

takes the data-flow value from after the statement to a new data-flow value for before

the statement: IN[s] = fs(OUT[s]).
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• Control-flow: the control-flow is simple within a basic block. For a basic block B

that consists of s1, s2, . . . , sn in that order, then the control-flow of si is the same

as the control-flow into si+1. Therefore, IN[si+1] = OUT[si], ∀i = 1, 2, . . . , n − 1.

In between basic blocks, the constraints are more complex as it needs to take into

account the multiple paths that the program could follow. For reaching definitions,

there must exist at least one path along which the definition reaches a program point.

Hence, OUT[P ] ⊆ IN[B] whenever there is a control-flow edge from basic block P to

basic block B. IN[B], however, needs to be no larger than the union of the reaching

definitions of all the predecessor blocks. The union is referred to as the meet operator

for reaching definitions. In a data-flow analysis, the meet operator is used to create a

summary of the contributions from different paths at the confluence of those paths.

The data-flow analysis technically involves values at each point of the program. However,

in practice, it can be done at the basic block level in order to save time and space. Thus,

the data-flow values immediately before and after each basic block are denoted by IN[B]

and OUT[B], respectively. The constraints involving IN[B] and OUT[B] can be derived from

those involving IN[s] and OUT[s] for the various statements s in B as follows: consider a

basic block B that consists of statements s1, s2, . . . , sn in that order. Then, IN[B] = IN[s1] if

s1 is the first statement of basic block B, and OUT[B] = OUT[sn] if sn is the last statement

of B. The transfer function of a basic block B denoted as fB can be derived by composing

the transfer function of the statements in the block. That is, let fsi be the transfer function

of statement si. Then, fB = fsn ◦ · · · ◦ fs2 ◦ fs1 . The relationship between the beginning and

end of the block is OUT[B] = fB(IN[B]). The control-flow constraints between basic blocks

can be rewritten by substituting IN[B] and OUT[B] for IN[s1] and OUT[sn], respectively.

5.1.1 Reaching Definitions

It is important to know where each variable x may have been defined in a program for

many reasons. For example, a compiler can know whether x is a constant when evaluating an

expression at point p. Because of being a constant, x can be replaced by its value avoiding a

load operation during execution. Reaching definitions is one of the most common and useful

data-flow analysis.

A definition d reaches a point p if there is a path from the point immediately following d

to p, such that d is not “killed” along that path. A definition of x is killed if there is any

other definition of x anywhere along the path. Intuitively, a definition d of some variable x

that reaches point p might be the place at which the value of x used at p was last defined.
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A definition of a variable x is a statement that assigns a value to x. Program analysis must

be conservative, and we must assume that it may assign to it even though we are not totally

sure that a statement s is assigning a value to x.

Algorithm 5.1: Computing Reaching Definitions.

1 OUT[ENTRY] = ∅;
2 foreach basic block B other than ENTRY do OUT[B] = ∅;
3 while changes to any OUT occur do
4 foreach basic block B other than Entry do
5 IN[B] =

⋃
P a predecessor of B OUT[P];

6 OUT[B] = genB ∪ (IN[B]−killB);

7 end

8 end

Consider a definition d: t = y + z. This statement “generates” a definition d and “kills”

all the other definitions in the program that define variable t, while leaving all the remain-

ing definitions unaffected. Reaching definitions is a forward-flow analysis, and its transfer

function is genB ∪ (x − killB), where genB = d is the set of definitions generated by the

statement, and killB, the set of all other definitions of t in the program.

The iterative algorithm to compute the reaching definitions is in Algorithm 5.1. The first

two lines initialize the data-flow values. Line 3 starts the loop that iterates until convergence,

and the inner loop at Line 4 applies the data-flow equations to every basic block other than

entry. Intuitively, the algorithm propagates the non-killed definitions as far as possible,

simulating all possible executions of the program. It will eventually halt, as the OUT[B]

for every B never shrinks. The added definitions stay there forever. Since the set of all

definitions is finite, eventually, there must be an iteration of the while loop during which

nothing is added to any OUT, and the algorithm then terminates. It is safe to terminate

then because if the OUT’s have not changed, the IN’s will not change in the following passes.

Consequently, no changes to the IN’s mean that OUT’s also stay the same in subsequent

passes.

5.2 PRUNING THE SEARCH SPACE

The Locus program contains a representation of the search space. Each use of a search

statement on the program has a multiplicative factor on the space size. Hence, it is advanta-

geous to remove from the Locus programs any search statements that are never used. These

statements, then, will not take place in the search space, and a smaller space often results
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in less time required for the empirical search.

Constant propagation, constant folding, and dead code elimination are applied before

the Locus representation of the space is converted to the search module’s space. These

optimizations are applied iteratively until the statements converge to a state in which no

more changes occur.

1 CodeReg optimizer () {
2 @pragma query
3 perfect = IsPerfectLoopNest();
4 if (perfect)
5 {
6 Interchange(permutation[0,1,2]);
7 }
8 Tiling(factor=poweroftwo(2..1024));
9 Distribute(...);

10 Unroll(factor=integer(2..64));
11 }

(a)

1 CodeReg optimizer () {
2 perfect = False;
3 Tiling(factor=poweroftwo(2..1024));
4 Distribute(...);
5 Unroll(factor=integer(2..64));
6 }

(b)

Figure 5.2: Example of using a pragma query followed by constant propagation and dead
code elimination. The code on Lines 4-7 is removed, including the permutation term,
because of perfect value is False.

These optimizations can drastically reduce the search time by reducing the space and im-

proving the quality of the candidate implementations suggested to be assessed. For instance,

in Section 8.2, there is one example in which optimizations are only applied if the loop nest

depth is greater than 1. Therefore, we can exclude from the search space all the search

variables that are not used when optimizing loop nests with a depth equal to 1.

Constant propagation substitutes values of known constants in expressions at compile

time. Constant folding recognizes and evaluates constant expressions at compile time rather

than computing them at runtime. Terms in constant expressions are typically simple literals

(constants), but they may also be variables whose values are known at compile time. Dead or

useless statements compute values that never get used. Dead code may appear as the result

of transformations. One advantage of constant folding and constant propagation is that it

often turns statements into dead code. Dead code elimination removes these statements.

The optimizations often occur after the execution of calls preceded by a pragma query

whose results are used by search statements and control-flow statements. These query calls

are assumed to have a deterministic result throughout the search process if used by any

search statement. The parameters of the search statements need to be known when the

search is defined. Therefore, these query calls are executed, and their values replace the

search statement parameters.

Figure 5.2 presents an example of a program that uses the query IsPerfectNestLoop()
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to check whether the loop is perfectly nested. For this example, let’s assume that the loop

being optimized is not perfectly nested, and the query call returns False. By invoking

the constant propagation, the If on Line 4 becomes if(False). Dead-code elimination is

now able to remove the block of code on Lines 4-7. The result is on the right side of the

figure. The permutation search statement represents 6 possible interchange orders for the

loop being optimized. Optimization of this Locus program was not only able to remove the

useless code but also to remove the permutation search statement that would have incurred

a 6 fold increase of the search space.

5.3 INTERDEPENDENT SEARCH STATEMENTS

When designing a search space to be explored, it is common to have interdependence

between search statements. This interdependence is hard to represent concisely and, with

no assistance, requires a verbose, hard to maintain description. We present compiler passes

that automatically generate complex spaces with interdependent search statements allowing

the users to program them concisely. The concise representations are easier to program

and maintain and are less error-prone. Besides, these compiler passes can reduce the space

dimensionality by cutting unnecessary search statements. Each search statement represents

a search variable in the search space. This dimensionality reduction often results in faster

search processes.

There are two important constraints when programming search spaces: the translation

from the space in Locus IR to the notation accepted by the search modules only considers

the static information of the code, and the translation must finish before the search starts.

This section addresses the challenges of programming search spaces when using control-flow

statements and recursion to represent interdependence between search statements. These

control-flow statements and recursion require runtime information (i.e., when the Locus

program is being executed during the search) to create the semantically correct search space

properly.

The use of search statements that depend on other search statements is not natively sup-

ported by the search modules that we have integrated, OpenTuner and HyperOpt. Locus

supports it, but since all the search variables in the search space need to be precisely de-

fined, the minimum and maximum possible values that reach the search statements must

be computed ahead of the search space definition. A data-flow analysis through the use-def

chains of the Locus program is performed to get the boundary values. Nonetheless, during

the search, for each point selected during the empirical evaluation, it is still necessary to

check whether the values selected for the dependent search statements are valid.
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1 tileI = poweroftwo(2..512);
2 Pips.Tiling(loop="0", factor=[tileI]);
3 tileI_2 = poweroftwo(2..tileI);
4 Pips.Tiling(loop="0.0.0.0", factor=[tileI_2]);

Figure 5.3: An example of interdependent search statements.

For instance, in Figure 5.3, the factor of the second-level tiling (tileI 2) is limited by

the factor of the first-level tiling (tileI). In the search space definition, the maximum value

of the search statement referenced by tileI 2 is defined as the maximum of the statement

referenced by tileI. The search module, however, is not aware of that and may suggest

points in the space in which the value referenced by tileI 2 is bigger than the value

referenced by tileI. This violates the interdependence criteria. Hence, the system needs to

check that the value selected for tileI 2 is smaller or equal to the one selected for tileI;

otherwise, this point is invalidated (the candidate implementation is not generated), and the

search process moves on to the next point.

5.4 EXPANSION PASSES FOR INTERDEPENDENT SEARCH STATEMENTS

Search statements related to control-flow statements need to be expanded before the search

starts to make part of the search space. Search statements declared inside a loop body must

have, represented on the search space, one instance for each iteration of the loop1. With a

known number of iterations, or, in other words, with only constants on the loop header, a

Locus pass is able to fully unroll a for-loop, replicate the loop body, and generate the proper

space with one instance of each search statement for each iteration. This pass, however, is

only necessary in cases that there are search statements on the body.

Nonetheless, there are cases in which the number of iterations of a loop is also part of the

search. Locus allows search statements on the loop header. For instance, the header of the

loop on the left-hand side of Figure 5.4 has i < integer(1..3) as a condition. Besides,

the loop body contains three search statements (poweroftwo). The number of iterations can

range from 1 to 3, which will only be defined during the search process, at a time that is too

late to replicate on the space representation the number of search statements according to

the number of iterations. For the search space to be represented appropriately, our solution

is a pass that expands the for-loop for all possible number of iterations.

We developed compiler passes to transform the Locus IR and ensure that space is generated

1Otherwise, the search statement should be declared outside of the loop and only the value assigned to
the statement referenced in the loop body.
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CodeReg loopA {
  perm = permutation([0,1,2]);
  RoseLocus.Interchange(order=perm);
  tileI = tileK = tileJ = 512;
  idx = "0";
  @pragma expandloop init=3
  for (i = 0; i < integer(1..3); i += 1) {
    tileI = poweroftwo(2..tileI);
    tileK = poweroftwo(2..tileK);
    tileJ = poweroftwo(2..tileJ);
    Pips.Tiling(loop=idx, factor=[tileI, 
        tileK, 

       tileJ]);
    idx += ".0.0.0";
  }
}

Locus expand-loop pass

CodeReg loopA {
  perm = permutation([0,1,2]);
  RoseLocus.Interchange(order=perm);
  tileI = tileK = tileJ = 512;
  idx = "0";
  @pragma expandloop init=3
  {
    tileI_1 = poweroftwo(2..tileI);
    tileK_1 = poweroftwo(2..tileK);
    tileJ_1 = poweroftwo(2..tileJ);
    Pips.Tiling(loop=idx, factor=[tileI_1, tileK_1, tileJ_1]);
    idx += ".0.0.0";
    {
      tileI_2 = poweroftwo(2..tileI_1);
      tileK_2 = poweroftwo(2..tileK_1);
      tileJ_2 = poweroftwo(2..tileJ_1);
      Pips.Tiling(loop=idx, factor=[tileI_2, tileK_2, tileJ_2]);
      idx += ".0.0.0";
      {
        tileI_3 = poweroftwo(2..tileI_2);
        tileK_3 = poweroftwo(2..tileK_2);
        tileJ_3 = poweroftwo(2..tileJ_2);
        Pips.Tiling(loop=idx, factor=[tileI_3, tileK_3, tileJ_3]);
        idx += ".0.0.0";
      } OR {
        None;
      }
    } OR {
      None;
    }
  }
}
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Figure 5.4: Loop-expansion pass for Locus program that contains a search statement in the
condition expression of the loop-header.

correctly to represent the semantics of the code. The implementation details for handling

interdependent search statements using control-flow statements and recursion are discussed

next. Besides the loop-expansion pass, we also present a pass to expand recursion that is

useful when representing a tree of choices. To represent a tree of choices, the recursion in

the Locus program needs to be unfolded before the translation of the space. Otherwise, the

same decision will be taken for all levels and branches of the tree. Although we show the

result of the pass using Locus notation, for efficiency, the passes carry out the expansion in

the IR level and do not actually generate another Locus program.

5.4.1 Loop Expansion

A for-loop in Locus can contain search statements in its header and body. The body’s

search statements need to be replicated for each iteration defined in the header to represent

the search space correctly. It must be replicated before the conversion from the Locus IR to

the search module’s notation.

With a known number of iterations (constants on the loop header) and the body containing

search statements, the Locus pass unrolls the for-loop, replicates the loop body, and generates

the proper space with one instance of each search statement for each iteration.

With search statements on the loop header and search statements on the body, Locus

must generate a Cartesian product of all search statements on the loop header. Regarding

68



a for-loop header as for(init; cond; step), the first step of the pass is to generate

one option for each pair of values of the init and step expressions if they contain search

statements. The second step, for each of these options, creates, in another level, a hierarchical

OR block according to the values on the cond expression. The second step is depicted in

Figure 5.4 since the init and step expressions are fixed. The loop-carried dependencies

between search statements are also correctly solved by the second step. The expansion of

the loop defines that the first level hierarchical tiling always occurs (Lines 8-11). The second

and third levels, however, are optional because of the empty blocks (contain only a None;

placeholder) on Lines 26 and 29, respectively. If the block on Line 26 is selected during the

search, the second-level tiling (Lines 14-17) and third-level tiling (Lines 20-23) statements

are ignored. Similarly, if the block on Line 29 is selected, the third-level tiling is ignored

(but second-level tiling occurs).

The goal of the code on the left of Figure 5.4 is to tile a triple-nested loop, as shown in

Figure 1.1a, hierarchically. The three search statements on the body (poweroftwo) find the

best tile dimensions for each loop. The number of iterations defines the number of levels

that the loop nest should be tiled.

The definition of the candidate to be the first evaluated (i.e., initial search configuration)

can make the search process converge faster. Locus allows the definition of values for each

search statement to be used as the first candidate implementation of the search process. In

the case of OR Blocks, the first block is the one used by the first candidate. Therefore, when

expanding the loop, by selecting which code to be on the first block of each OR block, it is

possible to define which “iteration” of the loop should be used for the first candidate. The

loop expansion pass is invoked by using the pragma expandloop [init=<iteration>].

The “iteration” to be used for the first candidate is defined by assigning an integer value to

the init keyword. This value is optional, and the default is the first iteration. In Figure 5.4,

the third “iteration” is used for the first candidate.

In summary, we use the for-loop with search statements in its header and body to generate

a search space to explore for the best number of levels in hierarchical tiling.

5.4.2 Recursion Expansion

The divide-and-conquer strategy recursively divides a problem into smaller subproblems

and solves them using (typically) simpler methods. The main challenge in these algorithms

is to identify the best dimensions (or shape) for the base case so that the data fits in the

cache and the best number of base cases for parallel execution, assuming that a new task

is created for each recursive invocation to be executed in parallel. The dimensions of the
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OptSeq rec(n, r) 
{
  {
    {
      newr = enum(2,4,8); 
      newm = n/newr;
      if newm > 1 {
        rec(newr, newm);
      }
    }
  } OR {
    GenCode.solver();
  }
}
CodeReg regA {
  @pragma expandrec inline
  rec(0, nelem);
}

Locus enum-to-OR-block pass  

OptSeq rec(n, r) 
{
  {
    {
      newr = 2; 
      newm = n/newr;
      if newm > 1 {
        rec(newr, newm);
      }
    } OR {
      newr = 4; 
      newm = n/newr;
      if newm > 1 {
        rec(newr, newm);
      }
    } OR {
      newr = 8; 
      newm = n/newr;
      if newm > 1 {
        rec(newr, newm);
      }
    }
  } OR {
    GenCode.solver();
  }
}
CodeReg regA {
  @pragma expandrec inline
  rec(0, nelem);
}
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Figure 5.5: Enum-to-OR-block pass is required before the recursion expansion and inline.

base case are the result of recursively splitting the input. There is then the decision about

how far to split between each dimension and the splitting order. This search space can be

expressed as a tree of choices. We revisit this discussion in Chapter 7.

We can concisely represent a tree of choice in Locus language by using recursion combined

with OR blocks. The tree of choices is automatically generated by a compiler pass that

executes in 4 steps. The pass is invoked through the pragma expandrec inline placed right

before the call of a recursive Locus function. To perform this tree generation, the values on

which the recursion depends must be known.

In the first step, it is checked whether any of the recursive calls have an argument that

is, or refer to, a search statement (e.g., enum). If yes, the block of code in which the

recursion is included is replicated into a set of OR blocks, one for each possible value or

combination of values in the arguments. Figure 5.5 presents an example of expanding a

recursive optimization sequence with the argument (newr) that refers to an enum statement.

The result is on the right-hand side, in which the block containing the recursive call is

replicated into an OR block, and each search statement is replaced with one of the possible

values from the original search statement.

In the second step, the recursion is unfolded and inlined. As the recursion is successively

unfolded, before inlining each call, constant folding and propagation, common subexpression

elimination, and dead-code elimination are executed to remove potentially unnecessary new

recursive calls.

In the third step, blocks of code belonging to OR blocks that do not invoke any OptSeq
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are removed (dead blocks containing OptSeq were removed in previous iterations of the data-

flow optimizations). The fewer blocks in an OR block, the smaller the search space. For

instance, on the right-hand side of Figure 5.5, recursion calls at Lines 8, 14, and 20 are only

unfolded if the previous line’s condition is true. Otherwise, by executing constant folding

and propagation, common sub-expression elimination, and dead-code elimination, we can

eliminate the if block, avoiding to unfold unnecessary recursion calls.

Finally, the expanded recursive optimization sequence representing a tree is inlined and

replaces the call right after the pragma.

Because the tree of choice can grow very fast, we also implemented a feature to generate

an approximate recursion expansion. Based on a given percentage value x, at each level of

the recursion expansion, only x% of recursion invocations are actually expanded.

5.5 SUMMARY

The Locus compiler optimizes Locus programs to reduce search and code generation times.

Data-flow optimizations can remove unnecessary statements, including search statements,

whose result is a smaller search space.

The Locus compiler also contains passes to represent correctly hierarchical search spaces

constructed based on the interdependence among search variables. It provides an important

role by automatically optimizing programs to reduce the search time and code generation

time and accurately generating complex search spaces through its passes.
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CHAPTER 6: EXPERIMENTS ON LOOP-BASED TRANSFORMATIONS

When optimizing programs for improving performance, the most gains come from regions

of the program that require the most time. These regions often correspond to iterative loops.

In this chapter, we concentrate on using loop transformations to improve the performance

of linear algebra operations, represented by matrix-matrix multiplication, and stencils.

Selecting the transformations and applying a sequence of loop transformations can be

a very complicated task, almost impossible to be done by hand. It is difficult even for a

general-purpose compiler considering its limited compilation time and the large space of

possible transformations for a given kernel on a given machine.

Locus helps define transformations sequences and search spaces for exploring sequences

of loop transformations and their factors. It also includes searching for the best way to run

loops in parallel and the best compiler-specific pragmas for vectorization.

6.1 EXPERIMENTAL ENVIRONMENT

We evaluated the performance of the code generated by Locus on two platforms: IBM

Power9 and Intel E5. The details of the platforms are presented in Table 6.1. The IBM

platform runs a Linux Red Hat kernel version 4.14, and the Intel runs a Linux Ubuntu kernel

4.4.0.

Table 6.1: Platforms used on the evaluation (sh for shared; pr for private).

Processor Clock Cores HT L1 L2 L3 RAM
IBM P9 8335-GTH 3.8 GHz 20 4 32KB pr 512KB sh 100MB sh 570GB
Intel E5-2660v3 2.60 GHz 10 2 32KB pr 256KB pr 25MB sh 62GB

The code generated on the IBM Power9 was compiled with IBM XLC (version 16.1.1;

flags -O3 and -qHot) and GNU GCC (version 8.2.0; flags -O3, -mtune=native, and

-ftreevectorize). For the Intel E5, the code was compiled with ICC (version 17.0.1;

flags -O3, -xHost, -ipo, -ansialias, and -fpmodel precise).

We compare it to the code generated by Pluto [16] (pet branch version 0.11.4) with no

parameter tuning. Pluto is an automatic parallelization tool based on the polyhedral model.

It transforms annotated affine loop nests in C programs for coarse-grained parallelism and

data locality.
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1 Search {
2 buildcmd = "make clean; make";
3 runcmd = "./matmul";
4 }
5 CodeReg matmul {
6 RoseLocus.Interchange(order=[0,2,1]);
7 tileI = poweroftwo(2..512);
8 tileK = poweroftwo(2..512);
9 tileJ = poweroftwo(2..512);

10 Pips.Tiling(loop="0", factor=[tileI,
11 tileK,
12 tileJ]);
13 tileI_2 = poweroftwo(2..tileI);
14 tileK_2 = poweroftwo(2..tileK);
15 tileJ_2 = poweroftwo(2..tileJ);
16 Pips.Tiling(loop="0.0.0.0",
17 factor=[tileI_2,
18 tileK_2,
19 tileJ_2]);
20 {
21 Pragma.OMPFor(loop="0");
22 } OR {
23 Pragma.OMPFor(loop="0",
24 schedule=enum("static","dynamic"),
25 chunk=integer(1..32));
26 }
27 }

(a)

1 dim=4096;
2 Search {
3 buildcmd = "make clean all";
4 runcmd = "./matmul";
5 }
6 CodeReg matmul {
7 perm = permutation([0,1,2], init=[0,2,1]);
8 RoseLocus.Interchange(order=perm);
9 tileI = poweroftwo(2..dim, init=512);

10 tileK = poweroftwo(2..dim, init=128);
11 tileJ = poweroftwo(2..dim, init=2048);
12 Pips.Tiling(loop="0", factor=[tileI,
13 tileK,
14 tileJ]);
15 tileI_2 = poweroftwo(2..tileI, init=256);
16 tileK_2 = poweroftwo(2..tileK, init=32);
17 tileJ_2 = poweroftwo(2..tileJ, init=32);
18 Pips.Tiling(loop="0.0.0.0",
19 factor=[tileI_2,
20 tileK_2,
21 tileJ_2]);
22 {
23 None;
24 } OR {
25 tileI_3 = poweroftwo(2..tileI_2);
26 tileK_3 = poweroftwo(2..tileK_2);
27 tileJ_3 = poweroftwo(2..tileJ_2);
28 Pips.Tiling(loop="0.0.0.0.0.0.0",
29 factor=[tileI_3,
30 tileK_3,
31 tileJ_3]);
32 }
33 }

(b)

Figure 6.1: Locus programs for optimizing Matrix-Matrix Multiplication (DGEMM). On
the left, the search space comprises two-level tiling shapes and parameters for OpenMP
parallel for. On the right, a larger search space comprises all possible loop orders, two-
or three-level tiling shapes, and the search statements have the init argument for the initial
search configuration.

6.2 MATRIX-MATRIX MULTIPLICATION

We present here results for the optimizations in Figure 6.1a applied to the baseline code

shown in Figure 1.1a. The baseline code is a naive implementation of the double-precision

matrix-matrix multiplication (DGEMM), which will be transformed by the Pluto compiler

and Locus. The experiments were conducted on the Intel E5 platform. Its execution time on

a single core was used to calculate the speedups. The three matrices involved have 2048 by

2048 shape. Figure 6.1 represents a search space of 34,012,224 possible variants (according

to OpenTuner).

The first step of the optimization code in Figure 6.1a is to interchange the loop from ijk to

ikj at Line 6 by invoking RoseLocus.Interchange(order[0,2,1]). The tiling happens
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Figure 6.2: Dgemm speedup of Pluto, Intel MKL, and Locus on the Intel E5 platform.

on all three loops of the nest, and Lines 7-9 contains three search statements to define the

tile shape of the first level of the hierarchical tiling. The shape dimensions can be any value

of the power of 2 in the range from 2 to 512. Pips.Tiling(), at Line 10, uses the values

of the three previous search statements to carry out the tiling on the three loops starting at

the first loop (loop="0") of the code region. In the same way, the code for the second-level

tiling is at Lines 13-19. The values of the second-level tiling search statements are limited

by the values selected for the first-level tiling. After each tiling, three extra loops are added

to the nest. Therefore, Pips.Tiling() on Line 16 is carried out on the fourth, fifth, and

sixth loops of the nest (loop="0.0.0.0" is used to determine that the tiling transformation

starts on the fourth loop). After the tiling transformation being applied twice, the nest has

nine loops in total. The optimization program’s last step is to insert OpenMP parallel

for before the outermost loop (loop="0"). We use an OR block to explore the space of

optimization that the parallel for pragma provides: scheduling and chunk. There are

two options represented by the OR blocks: the first, at Line 21, uses the default arguments

for the parallel for; and the second includes a search statement for using a static or a

dynamic schedule of the iterations, and another search statement for the chunk size.

Figure 6.2 presents results from 1 to 10 CPU cores. They are compared to code generated

by Pluto (flags --tile, --l2tile, and --parallel) and Intel MKL version 2017.0.1. We

optimized the code according to the number of threads used and executed a search process

for each number of cores separately. Each Locus search was limited to 1,000 variants and

took, on average, 80 minutes to complete. Pluto generated code in less than a second. The

code generated by Locus using 10 cores was 553 times faster than the baseline. Intel MKL

was faster than Locus when using 1, 2, and 6 cores, but slower for 4, 8, and 10 cores. On

74



average, Locus best candidate implementation was 3.45 times faster than the code generated

by Pluto. The reason for the performance difference is not the set of transformations applied.

Pluto and Locus apply the same transformations, but the empirical search can identify the

best tile shapes.

6.3 EVALUATING HIERARCHICAL TILING

We show optimization results of a double-precision matrix-matrix multiplication as pre-

sented in Figure 1.1a using the optimization program shown in Figure 6.1b on IBM Power9

and Intel E5 platforms. The search process was conducted by OpenTuner and limited to

the evaluation of 1000 variants or 5 hours. The running time of candidate implementations

evaluated was capped by the elapsed time of the best one found until the candidate started

its execution. This significantly reduced the total search time by limiting the bad candidates’

execution that could last for hours.

The optimization program in Figure 6.1b is very similar to the one already explained in

Figure 6.1a. The one used for the current evaluation (6.1b), however, includes: all permu-

tations for reordering the original loop nest at line 7; the possibility of tiling one extra level

represented by the OR blocks at Lines 22-32; the search statements have an init value that

is used to generate the first candidate implementation of the search process.

The baseline code compiled with XLC performed significantly better than when compiled

with GCC for the IBM Power9 platform. The XLC flag -qhot requests, according to IBM

manual, high-order transformations such as loop interchange, fusion, unrolling, and reduce

the use of temporary arrays. Besides, by monitoring the compilation, we could see that XLC

uses interprocedural analysis. As a consequence, the compilation time for XLC is at least

3-times longer than with GCC.

Moreover, the XLC compiler1 detected that the baseline version was a matrix-matrix mul-

tiplication and replaced it with a function call to a hand-optimized version. The version

containing the invocation to the hand-optimized code is used as a reference on the perfor-

mance evaluation. The compiler, however, was unable to detect matrix multiplication in the

transformed code generated by Locus, which, in turn, was able to find variants that were

faster than the XLC hand-optimized version.

Figure 6.3 shows results for IBM Power9 on the top and Intel E5 on the bottom. On both

platforms, a 2-level and 3-level hierarchical tiling has been evaluated. The results include

the best variant found by Locus and the baseline version using the two compilers. For the

1We used GNU objdump for this analysis.
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Figure 6.3: Results for matrix-matrix multiplication on IBM Power9 and Intel E5. It shows
the results for the baseline version and the best variant generated by Locus compiled with
XLC and GCC on Power9 and ICC and MKL-library on E5. The 2lt refers to 2-level
hierarchical tiling and the 3lt to 3-level hierarchical tiling.

matrices of 2048 by 2048 shape, the best variant generated by Locus varied according to the

compiler used. For XLC, the 2-level tiling was the fastest, whereas the 3-level tiling attained

the best performance for GCC. For matrices of 4096 by 4096 shape, both XLC and GCC

found 2-level tiling faster. For XLC, 3-level tiling also attained performance close to that

of the fastest 2-level tiling version. Locus, however, could not find a 3-level tiling variant

compiled with GCC that was faster than the XLC baseline.
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Table 6.2: Tiling shapes of the best variant for the matrix-matrix multiplication generated
by Locus. 2-level tiling was faster than 3-level tiling for all results.

Platform Matrices Shape Compiler tile I tile K tile J tile I2 tile K2 tile J2

IBM P9
2048 XLC 256 128 2048 256 16 8
4096 XLC 512 512 512 4 512 256
8192 XLC 8192 4096 8192 8192 64 16

Intel E5
2048 ICC 512 1024 32 512 64 32
4096 ICC 512 128 2048 256 32 32

For 8192 by 8192 matrices, due to the long execution time of most of the candidate

implementations compiled with GCC, we only present results using the XLC compiler. In

this case, the best performance is obtained with 2-level tiling.

Search time is strictly dominated by the time to compile and run the candidate imple-

mentations. The compilation is often fast for GCC, XLC, and ICC. As noted above, XLC

is 3 times slower than GCC and ICC when it runs high-order transformations and interpro-

cedural analysis. The variant execution, however, depends on the matrix size and can take

up to 30 minutes since each variant was executed 5 times.

The search time lasted up to 5 hours for each of the experiments. While earlier experi-

ments, which only considered 2-level tiling, only took on average 1.5 hours, the search time

significantly increased after the addition of the third-level tiling. The addition of a third-

level tiling within an OR block extended the search process because the search space in a

flattened representation is not aware of the interdependent search statements. In this case,

the dimensions tileI 3, tileK 3, and tileJ 3 only matter when the second block within

the OR block is selected; otherwise, their values are ignored in the code generation and do

not affect the variant performance. However, in this case, the search module, OpenTuner, is

not aware of that and may infer that those values are important. In other words, the search

module processes a search space much bigger than it actually needs to explore and wastes

time exploring configurations that do not improve performance.

In Table 6.2, we show the tiling shapes for the best variants for each matrix shape on the

two platforms. The tiling shapes are very different from each other and result in input- and

platform-specific variants to be saved in the database.
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Figure 6.4: Speedup of Pluto and Locus for 1D and 2D Stencils on the Intel E5 platform.

6.4 1D AND 2D STENCILS

We evaluated tiling transformations using Locus on 6 stencil codes: Jacobi 1D and 2D,

Heat 1D and 2D, and Seidel 1D and 2D2. The experiments were executed on the Intel E5

platform. The stencils were executed for 1,000 time steps; the dimensions of the 2D versions

are 2,000 by 2,000 elements, and of the 1D are 1,600,000 elements (double-precision). As an

example, Figure 6.5 presents the Heat 2D baseline version, and Figure 6.6 the optimizations

applied.

We applied a skewing-1 (see Table 3.2) tiling shape using Pips.GenericTiling. The skewing-

1 matrix for transforming 1D stencils, T1, and for 2D stencils, T2, are defined as follows:

T1 =

(
x −x
0 x

)
, and T2 =

x −x −x0 x 0

0 0 x

 . (6.1)

Line 6 of Figure 6.6 shows a search statement for generating candidate evaluations with

different skewing factors that result in different tiling shapes. Since it represents the opti-

mization of a 2D stencil, the variable tmat at Line 7 is assigned a list of lists representing

the transposed matrix T2 with skew1 variable replacing x. The Pips.GenericTiling()

at Line 10 tiles the first loop of the code region (loop="0") and uses tmat. Pragma.Ivdep

and Pragma.Vector at Lines 11 and 12, respectively, insert pragmas before the innermost

2The stencil codes were based on Pluto’s examples (pet branch) and can be found at http://pluto-
compiler.sourceforge.net.
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loop to provide hints to the compiler that are relevant to automatic vectorization.

1 #pragma @Locus loop=heat2d
2 for (t = 0; t < T; t++)
3 for (i = 1; i < N+1; i++)
4 for (j = 1; j < N+1; j++)
5 A[(t+1)%2][i][j] = 0.125 * (A[t%2][i+1][j] - 2.0 * A[t%2][i][j] + A[t%2][i-1][j])
6 + 0.125 * (A[t%2][i][j+1] - 2.0 * A[t%2][i][j] + A[t%2][i][j-1]) + A[t%2][i][j];

Figure 6.5: Heat 2D stencil kernel.

Pluto generated code in less than a second. Locus execution time (including the empirical

search) for the stencil Heat 2D was the longest at 9 minutes. Jacobi 1D and 2D, Heat 1D,

Seidel 1D and 2D lasted 3, 6, 2, 2, and 6 minutes respectively.

The Locus-generated code outperforms that of Pluto (flags --tile and --pet) as shown

in Figure 6.4. Once again, the empirical search showed its importance on the process, as the

set of transformations applied by both systems was the same.

6.5 3D STENCIL

The 3D heat baseline code is in Figure 6.7. The optimization program in Figure 6.8 tiles

the accesses to the Y dimension of the XYZ input volume. It first strip-mines the j loop

(responsible for traversing the Y dimension) by calling RoseLocus.StripMine(·). Then,

the order of the loops is changed by invoking RoseLocus.Interchange(·). It moves the

loop created by the strip-mine transformation to the outermost position. The strip-mine

increases the reuse of the XY -plane elements as it traverses the Z dimension and improves

performance when the XY plane does not fit on the last private level cache. The strip-mine

is most effective when the problem is large enough that four XY (three for the input and

one for the output) planes do not fit into the cache.

1 Search {
2 buildcmd = "make clean; make";
3 runcmd = "./heat-2d";
4 }
5 CodeReg heat2d{
6 skew1 = poweroftwo(16..128);
7 tmat = [[ skew1, 0, 0],
8 [-skew1, skew1, 0],
9 [-skew1, 0, skew1]];

10 Pips.GenericTiling(loop="0", factor=tmat);
11 Pragma.Ivdep(loop="0.0.0.0.0.0");
12 Pragma.Vector(loop="0.0.0.0.0.0");
13 }

Figure 6.6: Locus program for optimizing Heat 2D stencil.
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1 void heat3d(double A[2][N+2][N+2][N+2])
2 {
3 int i, j, t, k;
4

5 #pragma @LOCUS loop=heat3d
6 for(t = 0; t < T-1; t++) {
7 for(i = 1; i < N+1; i++) {
8 for(j = 1; j < N+1; j++) {
9 for (k = 1; k < N+1; k++) {

10 A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] - 2.0 * A[t%2][i][j][k] +
11 A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k] -
12 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-1] -
13 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k];
14 }
15 }
16 }
17 }
18 }

Figure 6.7: The baseline version of the finite-difference solution to the 3D heat equation in
C.

1 dim=256;
2 Search {
3 buildcmd = "make clean all";
4 runcmd = "./heat3d";
5 }
6 CodeReg heat3d {
7 tileJ = poweroftwo(2..dim);
8 RoseUiuc.StripMine(loop=3, factor=tileJ);
9 RoseUiuc.Interchange(order="0,2,1,3,4");

10 }

Figure 6.8: Locus program for optimizing the finite-difference solution to the 3D heat equa-
tion. This program applies a strip-mine transformation on the j loop.
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Figure 6.9: Weak scaling results for the 3D Heat stencil (2563 mesh size) on Intel E5 and
IBM Power9. It shows the execution of 1, 10, and 20 processes running concurrently for Intel
E5; 1, 20, 40, and 80 running concurrently on IBM Power9. Tiling appears most effective as
the number of processes increases.
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Figure 6.10: Strong scaling results for the 3D Heat stencil (16003 mesh size) on Intel E5 and
IBM Power9. Only the Z dimension of the XYZ input volume is split among the processors.
It shows the execution of 1, 10, and 20 processes running concurrently for Intel E5; 1, 20, 40,
and 80 running concurrently on IBM Power9. Tiling appears most effective as the number
of processes increases.

Figures 6.9 and 6.10 present weak scaling and strong scaling performance results comparing

the baseline version and the best-tiled candidate implementation generated using Locus.

The results were evaluated using 1, 10 (1 for each core), and 20 processes (2 for each core;

HyperThreading is available on the processor) on Intel E5; and 1, 20, 40, and 80 processes on

IBM Power9. The variants and the baseline were compiled with ICC on Intel E5 and XLC

on IBM Power9. For the concurrent processes evaluation, GNU parallel command [60]

was used to execute the same binary in parallel.

Weak Scaling. The stencil was executed on a 2563 mesh of double-precision elements.

On the Intel E5, with only one process on the socket, the tiled code does not improve in the

aggregated number of millions of stencils performed per second. However, as access to the

cache and memory becomes more competitive with the increasing number of processes, the

tiled code performs better. The aggregated performance of the tiled code is approximately

20% higher compared to the baseline when running 10 processes (1 per core). The aggregated

performance of the tiled code when using 20 processes is slightly worse than with 10 processes,

which demonstrates the saturation of the memory subsystem. It is, however, 50% higher

than the baseline performance. Similar conclusions can be drawn from the experiments on

the IBM Power.

Despite the processes being independent of each other, the system’s aggregated perfor-

mance does not follow a linear increase as the number of processes increases. The memory

bandwidth is a bottleneck in which optimizations such as strip-mine can help mitigate its
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limitations. This contrasts with the observations in [61], for example, though those were

for systems nearly a decade ago, and (except for results on the Cell processors), only one

core was used in their work (see Table 2.1). However, similar to the findings in that paper

and our own more recent work with the XPACC application program, it remains important

to make the inner loop use stride-one indexing and be as long as possible to exploit both

vectorization and memory optimizations such as prefetch.

The tile values for the best variants decreased as the number of processes increased. On

Intel E5, for 10 processes, the best-found strip-mine value was 64, and for 20 processes was

16. On IBM Power9, for 20 processes, the best-found strip-mine value was 64, for 40 was

32, and for 80 was 16. As the caches are shared among more processes, the tile values have

to be smaller to accommodate the increasing amount of data.

The optimal candidate implementation differed as to the concurrency in the processor

increased; this information can be added to the database as a tag to the variants. Similarly,

as for the matrix-matrix multiplication, the optimal code depends on the problem size.

Strong Scaling. Figure 6.10 presents the results for a mesh of 16003 double-precision

elements. Through strip-mine, Locus could generate faster stencil code, similar to the results

from the weak scaling experiments.

The best strip-mine values found on Intel E5 were 1024 for 1 process, 512 for 10 processes,

and 256 for 20 processes. On IBM Power9, the best strip-mine values were 32 for 1 process,

16 for 20 processes, 8 for 40 processes, and 4 for 80 processes. Once again, as the number

of processes increased, the tile size decreased. The best tiling values found on IBM Power9

were significantly smaller than the ones found on Intel E5. The gaps between the baseline

and best candidate implementation were also bigger on IBM Power9.

6.6 FIXED VERSUS RANDOM INITIAL SEARCH CONFIGURATION

A Locus program can set the initial configuration of the search process. Figure 6.11

compares two search strategies for matrix-matrix multiplication on IBM Power9. The first

search strategy, which we call fixed, starts with a configuration provided by the Locus pro-

gram. This configuration is the one identified as the best for matrix-matrix multiplication

on an Intel x86. The second search strategy uses a random configuration selected by the

search module.

For the comparison, each of the two forms of search, fixed and random, is run ten times.

For each run, we record the best execution time of matrix-matrix multiplication as the search

progresses. The plot shows the best values obtained by each of the 10 runs at different search
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Figure 6.11: Execution time of best candidate implementation found as a function of search
time for matrix-matrix multiplication on IBM Power9. Comparing random (the default)
and fixed initial search configurations. The fixed one is the best found for the Intel E5 on a
previous search process.

intervals. In some cases, the random search results in slightly better execution times but

results in much slower values even for long searches. We conclude that although the use

of an initial configuration based on results from another platform did not guarantee to find

the best candidate implementation, it confined the search outcome to a more certain and

narrower range (all results are below 28 seconds).

6.7 SUMMARY

In this chapter, we presented the use of Locus to define search spaces consisting of loop

transformations for matrix-matrix multiplication and 1D, 2D, and 3D stencils.

Using the empirical search, Locus found better tile shapes that outperformed the Pluto

compiler and Intel MKL library. In addition, we evaluated the use of an initial search

configuration that provided narrower variability on the search process.
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CHAPTER 7: OPTIMIZING THROUGH DIVIDE AND CONQUER

Divide and conquer is a powerful strategy for solving many conceptually difficult prob-

lems. The idea relies on breaking the problem into smaller subproblems, solving them using

(typically) simpler methods, and then combining the results to generate a solution to the

original problem. These algorithms use recursion as their primary control structure to gen-

erate and solve the smaller subproblems. A base case is used to compute the smallest size

subproblem.

They are a good match for modern parallel machines as they can benefit from high inherent

parallelism and the prevalent deep memory hierarchy. The subproblems are usually inde-

pendent and can be solved in parallel. The hierarchical division of the problem at multiple

levels are inherently concurrent. Therefore, besides the base case, the division and combine

phases of different paths on the recursion call tree can also be executed in parallel. These

algorithms tend to perform well on cache-based systems because the cached-data reuse in-

creases as the original problem is broken into subproblems small enough to fit entirely in the

cache. As most of the computation takes place deep in the recursive call tree, the program’s

execution time is mostly spent using the cache effectively. Moreover, divide and conquer

algorithms naturally work well with different memory hierarchy levels and cache sizes. They

automatically adapt to the memory hierarchy and generally run well without modification

in any machine. These are known as cache-oblivious algorithms [62].

In reality, however, there are some important trade-offs to exploit these divide and conquer

properties fully. To be efficient, the programs must spend a significant part of the execution

time in useful computation instead of dividing problems and combining results. The base

case size controls the balance between the number of levels in the recursion call tree, which

translates into the amount of divide and combine stages, and the amount of work per base

case call. If the base case is too small, the overhead of the divide and combine phases are

too high compared to the useful computation. On the other hand, if the base case is too

large, the memory hierarchy is not efficiently exploited because the data is not small enough

to fit in the caches. In addition, the amount of concurrency is reduced.

The simplest and most straightforward implementation reduces the problem to its min-

imum size, typically one element, before applying the very simple base case. Recursion,

however, incurs high overhead, which often leads the programmers to unroll the recursion

manually. Therefore, implementing efficient divide and conquer algorithms puts a heavy

burden on the programmer [63].

Divide and conquer also provides opportunities for combining different algorithms at dif-
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ferent levels of the recursion [4]. The best composition is highly dependent on the target

architecture, the base case size, and the input, which results in no single, hard-coded com-

position optimal for all cases. Auto-tuning software has addressed these challenges, such

as Atlas [5] and FFTW [64], which are, however, problem-specific and tailored to the few

algorithms they support.

The complex search space found in divide and conquer algorithms puts the burden of

implementing and evaluating the best optimal code on the programmer. As applications

target multiple platforms, a diverse number of optimizations is necessary to approximate

maximum computer power on each of them.

The search spaces for divide and conquer algorithms are often huge and virtually im-

possible to be exhaustively traversed. Auto-tuning has been a popular approach to find

faster code with less program intervention. However, expressing these spaces concisely and

efficiently is very challenging.

In the remainder of this chapter, we present ways to express the divide-and-conquer search

space using Locus. We evaluated these on matrix-matrix multiplication, matrix transpose,

fast Fourier Transform, symmetric eigenproblem, and sparse matrix-vector multiplication.

7.1 DIVIDE-AND-CONQUER SEARCH SPACE

The search space on breaking into subproblems and combining the solutions can be very

large. Space grows exponentially to the number of problem dimensions that can be split up.

An algorithm is cache-oblivious if no program variables depend on hardware parameters to

be tuned, such as cache size or cache-line length [65]. For matrix-matrix multiplication and

matrix transpose, cache-oblivious algorithms always split the largest dimension and go on

until the base case size is achieved (theoretically up to a single element). In practice, a base

case consisting of a single element is very inefficient. Therefore, even with a cache-oblivious

strategy, searching for the best base case size and most efficient base case implementation is

very important.

For some problems, though, the order in which the dimensions are divided may affect

performance but incurs a much larger search space. In this more general approach, the

recursion tree’s searching process can select stopping at any level for each branch, resulting

in an unbalanced sub-tree. Figure 7.1 shows a balanced recursion tree representing multiple

ways to subdivide a matrix transposition with two dimensions. The number of levels is the

same for all branches, and the base case size on all leaves are also the same. Each node on

the tree represents one possible candidate implementation to be selected during the search

process.
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Figure 7.1: Recursive space of optimization for a transpose of a matrix m×n, m = n = 256
and base case size minimum as 32 elements.

There are multiple ways to represent this recursive space. We devised the following clas-

sification of the search space for divide-and-conquer algorithms to capture the possibilities

discussed:

• Uniform: the base case size is the only parameter of the search space. This is the

cache-oblivious strategy. The order of dimensions being divided is always the same.

• Random-choice vertically: besides the base case size, the tree provides different choices

vertically across levels. The order of dimensions being divided is part of the search

space, but all the branches follow the same order, which generates a balanced tree.

• Random-choice horizontally: this is the most comprehensive space. It includes as

parameters the base case size, different choices across levels, and horizontally between

branches. In other words, it can generate unbalanced recursion trees.

We represent the random-choice strategies in Locus by combining recursion with OR

blocks. We later refer to this nomenclature for the benchmarks and experiments.

The more an algorithm is subdivided, the smaller the base case size, which incurs more

calls to the base case procedure. A procedure call is relatively expensive, and the amount

of work performed by a procedure needs to be enough to compensate for the overhead.

Compilers can inline the procedure body to avoid the call overhead. The search’s goal is to

find the right balance of which dimensions to split, how many levels, and base case size.
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7.2 CODE GENERATION

The application’s source-code is annotated to define the code region to which the code

generated using a divide-and-conquer strategy will be inserted. In our examples, the code

region’s original code contains a single call for the base case to operate on the entire input

data.

The base case implementation should be on the application’s source-code library and self-

contained to independently compute a subproblem. In the Locus program, the developer

needs to define an OptSeq to generate the code for invoking the base case each time the

OptSeq is called by the Locus code generator. The resulting sequence of invocations to the

base case is then inserted into the application’s code. The arguments about the subproblem

are received by the OptSeq and added to the code generated. Not all the arguments of the

base case are on the Locus program. Usually, only the ones related to the search space are

referred.

As an example, in the case of matrix transpose, the OptSeq transp(mS, mE, nS, nE)

(e.g., invoked at Line 15 in Figure 7.2a) is part of the GenCode collection. This OptSeq

will generate the code to invoke the base case for matrix transpose. It receives only the

dimensions of the submatrix: mS and mE for the first and last rows, and nS and nE for

the first and last columns, respectively. The other arguments, such as the names of the

variables that point to the input and output matrices, were pre-defined and are constant on

the transp(·) implementation.

7.3 MATRIX TRANSPOSE

The transpose of an m × n matrix is to compute and store A> into an n × m matrix

B. We present three strategies for optimizing it using divide-and-conquer: cache-oblivious,

random-choice vertically, and random-choice horizontally.

The system used for the experiments on matrix transpose was a processor Intel i7-3770 4-

core at 3.4 GHz with 32 KB of L1 instruction and 32 KB of data cache, 256 KB of private L2

cache, and 8 MB of shared L3 cache, Ubuntu 16.04 operating system, Linux kernel 4.15.0,

and 16 GB of RAM. The compilers’ versions used are GCC version 6.5, ICC 18.0.2, and

Clang 8. We used OpenMP tasks to execute the base cases in parallel.

Optimizing the Base Case. The base case search space was to unroll for the factors

u ∈ {0, 4, 8}. The evaluations were conducted with all variants using a cache-oblivious

strategy and base case size to fit both matrices in the cache L2. For the two matrices to fit
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1 mstop = nstop = 32;
2 OptSeq recCObliv(mS, mE, nS, nE)
3 {
4 mlen = mE-mS;
5 nlen = nE-nS;
6 if nlen >= mlen && nlen > nstop {
7 pivn = nS + nlen/2;
8 recCObliv(mS, mE, nS, pivn);
9 recCObliv(mS, mE, pivn, nE);

10 } elif mlen > mstop {
11 pivm = mS + mlen/2;
12 recCObliv(mS, pivm, nS, nE);
13 recCObliv(pivm, mE, nS, nE);
14 } else {
15 GenCode.Transp(mS, mE, nS, nE);
16 }
17 }
18 CodeReg transp {
19 mstop = poweroftwo(mstop..melem/2);
20 nstop = mstop;
21 recCObliv(0, melem, 0, nelem);
22 }

(a) Cache oblivious.

1 mstop = nstop = 32;
2 OptSeq recVector(mS, mE, nS, nE, vec, lvl)
3 {
4 nextlvl = lvl + 1;
5 mlen = mE-mS;
6 nlen = nE-nS;
7 if veclvl[lvl] == "splitN" {
8 pivn = nS + nlen/2;
9 recVector(mS, mE, nS, pivn, vec, nlvl);

10 recVector(mS, mE, pivn, nE, vec, nlvl);
11 } elif veclvl[lvl] == "splitM" {
12 pivm = mS + mlen/2;
13 recVector(mS, pivm, nS, nE, vec, nlvl);
14 recVector(pivm, mE, nS, nE, vec, nlvl);
15 } elif veclvl[lvl] == "leaf" {
16 GenCode.transp(mS, mE, nS, nE);
17 }
18 }
19 OptSeq recVert(mS, mE, nS, nE, vec, lvl)
20 {
21 nlvl = lvl + 1;
22 mlen = mE-mS;
23 nlen = nE-nS;
24 {
25 if nlen > nstop {
26 pivn = nS + nlen/2;
27 veclvl = veclvl + ["splitN"];
28 recVert(mS, mE, nS, pivn, vec, nlvl);
29 recVector(mS, mE, pivn, nE, vec, nlvl);
30 }
31 } OR {
32 if mlen > mstop {
33 pivm = mS + mlen/2;
34 veclvl = veclvl + ["splitM"];
35 recVert(mS, pivm, nS, nE, vec, nlvl);
36 recVector(pivm, mE, nS, nE, vec, nlvl);
37 }
38 } OR {
39 veclvl = veclvl + ["leaf"];
40 GenCode.transp(mS, mE, nS, nE);
41 }
42 }
43 CodeReg transp {
44 @pragma expandrec inline
45 recVert(0, melem, 0, nelem, [], 0);
46 }

(b) Random-choice vertically.

Figure 7.2: Locus programs for matrix transpose.

in the L2 cache, we used m′ = n′ =
⌊√

C
2E

⌋
, where C is the cache’s size in bytes, and E is

the number of bytes per element of the matrix (8 for double-precision in experiments case).

The data for all compilers and threads t ∈ {1, 2, 3, 4} are in Figure 7.3. The different

compilers presented very similar behavior. The performance did improve by using more

threads, but the speedup was not significant. The matrix transposition is very memory

intensive, and we believe that this presented a barrier to better performance when using one

thread per core.
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Figure 7.3: Optimizing matrix transpose’s base case implementation. The unrolling factors
u ∈ {0, 4, 8} were compared using a cache-oblivious strategy with values fixed to fit in the
L2 cache for threads t ∈ {1, 2, 3, 4} and Clang, GCC, and ICC compilers.
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Cache Oblivious. Optimal work and cache complexities can be obtained with a divide-

and-conquer strategy [65]. If n ≥ m, we partition

A = (A1 A2), B =

(
B1

B2

)
. (7.1)

Then, Transpose(A1, B1) and Transpose(A2, B2) are recursively executed. Conversely, if

m > n, matrix A is divided horizontally, matrix B vertically, and, similarly, performs two

transpositions recursively.

Figure 7.2a presents the cache-oblivious implementation using the Locus language. The

cache-oblivious strategy splits the biggest dimension, as shown by the if-then-else in Lines

6-16 of the code. It also checks whether the divide has reached the stop value, which is the

value selected for the base case’s execution. Lines 19 and 20 present the selection of the size

base case (i.e., stop) in the search space. The same value is used for all the dimensions.

Random-choice Vertically. Figure 7.2b presents the random-choice vertically. In essence,

this version has the freedom to choose which dimension to split at each level (vertically in the

recursion tree). Differently to the cache-oblivious case, the base case size may have different

values for each dimension. However, it replicates all the decisions horizontally.

The base case size (i.e., stop) has a lower bound. The splitting, however, can stop at any

value greater than that and is dimension independent.

The optimization sequence recVert (Line 19) contains three OR blocks (lines 24-41) that

opens up the possibilities of dividing in any dimension as it calls itself recursively. It does

a depth-first traversal of the tree of possible divisions. It then saves this traversal in an

array that contains a decision for each level (Lines 27, 34, and 39). The array is used to

replicate the decisions into the other branches of the tree by calling the optimization sequence

recVector (Line 2) with it as an argument.

Random-choice Horizontally. It is very similar to one presented for matrix-matrix mul-

tiplication in Figure 7.7b. The difference is that the matrix transpose has one less dimension

to subdivide. Therefore, it has two OR blocks instead of the three shown.

Figure 7.4 shows the matrix transpose performance for matrices with 1024 by 1024 to 8192

by 8192 elements, using the three compilers, and running 1 to 4 threads. All the strategies

present similar results, except the random-choice horizontally strategy that degrades perfor-

mance as the matrix size increases.

Figure 7.5 presents the speedup relative to the optimized baseline for 8192 elements. The
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Figure 7.4: Matrix transpose results for best of baseline, best of cache-oblivious (Cobliv),
cache-oblivious limited to L2 (CoblivL2 ) and L3 (CoblivL3 ) cache sizes, random-choice ver-
tically (Rchoice-vert), and random-choice horizontally (Rchoice-horiz ).
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Figure 7.5: Matrix transpose speedup over optimized baseline, N = 8192.
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cache-oblivious has the best results for the three compilers and 1 to 4 threads. Cache-

oblivious strategies with base case sizes fixed to fit in L2 and L3 caches showed performance

close to the non-fixed one and the random-choice vertically version. The random-choice hor-

izontally results are the slowest. Although the cache-oblivious and random-choice vertically

are subspaces of the random-choice horizontally strategy, the search tools could not explore

the space of the random-choice horizontally efficiently and, at least, match results of the

other ones under the given time limit.

7.4 MATRIX-MATRIX MULTIPLICATION

This section describes and analyzes three different strategies to optimize through divide-

and-conquer an algorithm for multiplying an m× n matrix by an n× p matrix.

The system used for the experiments on matrix-matrix multiplication was an Intel E5-

1630v3 4-core processor at 3.7 GHz with 32 KB of instruction and 32 KB of data L1 cache,

256 KB of private L2 cache, and 10 MB of shared L3 cache, Ubuntu 18.04 operating system,

Linux kernel 4.15.0, and 32 GB of RAM. The compilers’ versions used are GCC version 7.5,

ICC 19.0.5, and Clang 9. We used OpenMP tasks to run the base cases in parallel.

Optimizing the Base Case. The reference code used for the base case is the same shown

in Figure 1.1a. The loop nest was first interchanged from IJK to IKJ that we already have

found in earlier experiments to improve performance significantly. The base case search

space consisted of unroll-and-jam the outermost loops I and K by factors 4 and 8, and

unroll the innermost loop J by factor 4.

The results for m = n = p = N , Clang, GCC, ICC compilers, and threads t ∈ {1, 2, 3, 4}
are in Figure 7.6. The evaluations were conducted using a cache-oblivious strategy. For the

three base case submatrices to fit in cache, m′ = n′ = p′ =
⌊√

C
3E

⌋
, where C is the size of the

cache in bytes, and E is the number of bytes per element of the matrix (8 for double-precision

in experiment case). These evaluations, however, used a base case size of N/8 that varied

according to the matrix size. Only one configuration stood out on the results from 1 to 4

threads. For Clang and GCC, it was the one with unroll-and-jam of I and K by 4. For ICC,

the best was with unroll-and-jam K by 4.

Cache Oblivious. According to [65], the optimal divide-and-conquer algorithm for mul-

tiplying an m×n matrix A by an n× p matrix B halves the largest of the three dimensions.
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Figure 7.6: DGEMM evaluation for m = n = p = N using a cache-oblivious strategy with
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94



1 mstop = nstop = kstop = 32;
2 OptSeq recCObliv(mS, mE, nS, nE, kS, kE)
3 {
4 mlen = mE-mS;
5 nlen = nE-nS;
6 klen = kE-kS;
7 maxnk = nlen < klen ? klen : nlen;
8 maxmk = mlen < klen ? klen : mlen;
9 maxmn = mlen < nlen ? nlen : mlen;

10 if mlen >= maxnk && mlen > mstop {
11 #"Split in M";
12 pivm = mS + mlen/2;
13 recCObliv(mS, pivm, nS, nE, kS, kE);
14 recCObliv(pivm, mE, nS, nE, kS, kE);
15 } elif nlen >= maxmk && nlen > nstop {
16 #"Split in N";
17 pivn = nS + nlen/2;
18 recCObliv(mS, mE, nS, pivn, kS, kE);
19 recCObliv(mS, mE, pivn, nE, kS, kE);
20 } elif klen >= maxmn && klen > kstop {
21 #"Split in K";
22 pivk = kS + klen/2;
23 recCObliv(mS, mE, nS, nE, kS, pivk);
24 recCObliv(mS, mE, nS, nE, pivk, kE);
25 } else {
26 GenCode.Gemm(mS, mE, nS, nE, kS, kE);
27 }
28 }
29 CodeReg gemm {
30 mstop = poweroftwo(mstop..melem/2);
31 nstop = mstop;
32 kstop = mstop;
33 recCObliv(0, melem, 0, nelem, 0, kelem);
34 }

(a) Cache oblivious.

1 mstop = nstop = kstop = 32;
2 OptSeq recHoriz(mS, mE, nS, nE, kS, kE) {
3 mlen = mE-mS;
4 nlen = nE-nS;
5 klen = kE-kS;
6 {
7 if mlen > mstop {
8 pivm = mS + mlen/2;
9 recHoriz(mS, pivm, nS, nE, kS, kE);

10 recHoriz(pivm, mE, nS, nE, kS, kE);
11 }
12 } OR {
13 if nlen > nstop {
14 pivn = nS + nlen/2;
15 recHoriz(mS, mE, nS, pivn, kS, kE);
16 recHoriz(mS, mE, pivn, nE, kS, kE);
17 }
18 } OR {
19 if klen > kstop {
20 pivk = kS + klen/2;
21 recHoriz(mS, mE, nS, nE, kS, pivk);
22 recHoriz(mS, mE, nS, nE, pivk, kE);
23 }
24 } OR {
25 GenCode.Gemm(mS, mE, nS, nE, kS, kE);
26 }
27 }
28 CodeReg gemm {
29 @pragma expandrec inline
30 recHoriz(0, melem, 0, nelem, 0, kelem);
31 }

(b) Random-choice horizontally.

Figure 7.7: Locus programs for matrix-matrix multiplication.

It recurs according to one of the following three cases:

AB =

(
A1

A2

)
B =

(
A1B

A2B

)
, (7.2)

AB = (A1 A2)

(
B1

B2

)
= A1B1 + A2B2, (7.3)

AB = A (B1 B2) = (AB1 + AB2). (7.4)

In case 7.2, we have m ≥ max{n, p}, and A is split horizontally, both halves are multiplied

by matrix B. In the case 7.3, we have n ≥ max{m, p}, both matrices are split, and the two

halves multiplied. In the case 7.4, we have p ≥ max{m,n}, and matrix B is split vertically,

and each half is multiplied by A.

The base case for the original cache-oblivious occur when m = n = p = 1. That is
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when two elements are multiplied and added to the result matrix. In our implementation,

however, the base case size is selected by the empirical process. In Figure 7.7a, there is the

cache-oblivious implementation using Locus language. The cache-oblivious strategy splits

the biggest dimension, as shown in Lines 12, 17, and 22 of the code. It also checks whether

the base case size has reached the stop value, which is the value selected for the execution of

the base case. Lines 30, 31, and 32 present the selection of the size base case (stop variable)

in the search space. The same value is used for all the dimensions.

Random-choice Vertically. The code is similar to the one shown in Figure 7.2b. The

difference is that the matrix-matrix multiplication contains one extra dimension to subdivide.

Random-choice Horizontally. Figure 7.7b presents the random-choice horizontally im-

plementation using Locus language. It extends the number of possibilities compared to the

random-choice vertically by allowing independent decisions for each recursive subdivision.

Figure 7.8 shows the performance for matrices with 512 by 512 to 4096 by 4096 elements,

using the three compilers, and running 1 to 4 threads. The cache-oblivious strategy is the

best one as the matrices size and the number of threads increase. However, the random-

choice vertically strategy outperformed the cache-oblivious for 4096 by 4096 matrices with

GCC and Clang and executing 4 threads.

Figure 7.9 presents the speedup over optimized reference for Clang and GCC compilers,

1 to 4 threads, and matrices with 4096 by 4096 elements. Cache-oblivious and random-

choice vertically showed the best results. The cache-oblivious fixed to the base case fit in

the L3 cache was significantly slower than the non-fixed cache-oblivious results. Similar to

the results with the matrix transpose, the random-choice horizontally results were meager.

Although the cache-oblivious and random-choice vertically are subspaces of the random-

choice horizontally strategy, the search tools could not explore the space of the random-

choice horizontally efficiently and, at least, match results of the other ones under the given

time limit.

7.5 FAST FOURIER TRANSFORM

The fast Fourier transform (FFT) is an efficient way to convert a signal from its original

domain (time or space) to the frequency and vice-versa. It is extensively used in digital

signal processing, and its applications are numerous, including data compression, image and

sound analysis, and telecommunications.
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Figure 7.8: DGEMM results for best of reference, cache-oblivious (Cobliv), cache-oblivious
limited to L3 cache size (CoblivL3 ), random-choice vertically (Rchoice-vert), and random-
choice horizontally (Rchoice-horiz ).
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Figure 7.9: DGEMM speedup over the optimized reference, N = 4096.

FFTW [64, 66] is a widely used library for applications that require FFT. It can compute

a discrete Fourier transform (DFT) in problems with n dimensions, arbitrary size, and both

real and complex data. It includes a collection of algorithms structured as a library of

codelets. A codelet is a C subroutine that computes a Fourier transform of a fixed size. The

codelets are produced automatically by the FFTW special-purpose compiler. A composition

of codelets is called a plan. The precise plan used to compute the FFT depends on the input

dimensions and on which codelets happen to run faster on the underlying system. The plan

is devised automatically. The user, however, can select which heuristic to use for finding the

fastest plan. The longer the planning time, the more likely it is to produce a faster plan.

The FFTW planner accepts four modes:

• Estimate: instead of actual measurements of different composition of codelets, a simple

heuristic is used to select a plan as fast as possible;

• Measure: find an optimized plan by actually computing several FFTs and measuring

their execution time. This is the default;

• Patient : similar to Measure, but considers a wider range of algorithms and often

produces a faster plan, but at the expense of several times longer planning time;

• Exhaustive: similar to Patient, but considers an even wider range of algorithms, in-

cluding many that authors would assume are unlikely to be fast. Planning time is

substantially larger.
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1 OptSeq recdft(n, r, vecrnk) {
2 if n > stop {
3 {
4 Nvecrnk = vecrnk + 1;
5 if vecrnk > 1 {
6 GenCode.ProlVT();
7 Nvecrnk = vecrnk;
8 }
9 {

10 newr = enum(2,4,8,16,32,64);
11 newm = n/newr;
12 if newm > 1 {
13 GenCode.ProlDftCt();
14 recdftw(newm, newr, Nvecrnk);
15 recdft(newm, newr, Nvecrnk);
16 GenCode.EpilDftCt();
17 }
18 }
19 if vecrnk > 1 {
20 GenCode.EpilVT();
21 }
22 } OR {
23 # Direct solvers
24 if vecrnk > 1 {
25 GenCode.ProlVT();
26 }
27 if n == 2 {
28 GenCode.N1fv_2() OR
29 GenCode.N2fv_2();
30 } elif n == 4 {
31 GenCode.N1fv_4() OR
32 GenCode.N2fv_4();
33 } elif n == 8 {
34 GenCode.N1fv_8() OR
35 GenCode.N2fv_8();
36 } elif n == 16 {
37 GenCode.N1fv_16() OR
38 GenCode.N2fv_16();
39 } elif n == 32 {
40 GenCode.N1fv_32() OR
41 GenCode.N2fv_32();
42 } elif n == 64 {
43 GenCode.N1fv_64() OR
44 GenCode.N2fv_64();
45 } elif n == 128 {
46 GenCode.N1fv_128();
47 } else {
48 GenCode.Iterative();
49 }
50 if vecrnk > 1 {
51 GenCode.EpilVT();
52 }
53 }
54 }
55 }
56 CodeReg fft {
57 GenCode.ProlApiplan();
58 @pragma expandrec inline
59 recdft(nelem, 1, 0);
60 GenCode.EpilApiplan();
61 }

1 OptSeq recdftw(n, r, vecrnk) {
2 {
3 if r == 2 {
4 GenCode.T1fv_4() OR
5 GenCode.T2fv_4();
6 } elif r == 4 {
7 GenCode.T1fv_4() OR
8 GenCode.T2fv_4() OR
9 GenCode.T3fv_4();

10 } elif r == 8 {
11 GenCode.T1fv_8() OR
12 GenCode.T2fv_8() OR
13 GenCode.T3fv_8();
14 } elif r == 16 {
15 GenCode.T1fv_16() OR
16 GenCode.T2fv_16() OR
17 GenCode.T3fv_16();
18 } elif r == 32 {
19 GenCode.T1fv_32() OR
20 GenCode.T2fv_32() OR
21 GenCode.T3fv_32();
22 } elif r == 64 {
23 GenCode.T1fv_64() OR
24 GenCode.T2fv_64();
25 } else {
26 GenCode.Iterative();
27 }
28 } OR {
29 GenCode.ProlDftw-Generic();
30 recdft(n, r, vecrnk);
31 GenCode.EpilDftw-Generic();
32 }
33 }

Figure 7.10: Locus program for fast Fourier transform.
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Figure 7.11: FFT Planning time (top) and execution time speedup over the best plan found
by FFTW Estimate (bottom) of an array of N complex double-precision elements.
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A discrete Fourier transform in FFTW is expressed in terms of structures of I/O tensors,

which are, in turn, described in terms of I/O dimensions. An I/O dimension d is a tuple

d = (n, ι, o), where n is a non-negative integer called length, ι is an integer called the input

stride, and o is an integer called the output stride. An I/O tensor t = {d1, d2, . . . , dρ} is a

set of I/O dimensions. The non-negative integer ρ = |t| is called the rank of the I/O tensor.

A DFT problem dft(N, V, I, O) consists of two I/O tensors N and V , and two pointers I

and O.

The FFTW planner explores a space of valid plans for a given problem selecting the fastest

one using different heuristics. Many plans exist to solve a given DFT problem. FFTW takes

three steps to solve a general DFT problem: reduce a problem of arbitrary vector rank to a

vector rank-0; reduces multi-dimensional DFT to a sequence of rank-1 problems (i.e., one-

dimensional DFTs); solve the rank-1, vector rank-0 problem by some DFT algorithm such

as Cooley-Tukey.

Rank-1 DFT problems denote ordinary Fourier transformations. FFTW solves most of

the rank-1 problems through direct and Cooley-Tukey plans. Other kinds of plans exist and

are applied to certain special cases.

Direct plans are provided for small rank-1 problems. These plans solve the problem

directly in a single call. This applies to problems dft({(n, ι, o)}, V, I, O), where |V | ≤ 1

and n ∈ {2, . . . , 16, 32, 64}. These plans operate by calling a C codelet specialized for one

particular size.

Cooley-Tukey plans implement a radix-r Cooley-Tukey algorithm for problems of the form

dft({(n, ι, o)}, V, I, O) where n = rm. FFTW generates a plan for each suitable value of r, in

addition to a direct plan. It implements two of the many known Cooley-Tukey algorithms,

distinguished mainly by whether the codelets multiply their inputs or outputs by twiddle

factors.

A decimation in time (DIT) plan solves dft({(m, r · ι, o)}, V ∪{r, ι,m · o}, I, O), multiplies

the output array O by the twiddle factors, and finally solves dft({(r,m · o,m · o)}, V ∪
{m, o, o}, O,O). For performance, the last two steps are fused in a twiddle codelet, which

multiplies its input by the twiddle factors and performs a DFT of size r, operating in-place

on O. FFTW contains one such codelet for each n ∈ {2, . . . , 16, 32, 64}.
A decimation in frequency (DIF) plan operates backward with respect to a DIT plan. The

plan solves dft({r,m · ι,m · ι}, V ∪{m, ι, ι}, I, I), multiplies the input array I by the twiddle

factors, and finally solves dft({m, ι, r ·o}, V ∪{r,m · ι, o}, I, O). The first two steps are fused

in a single codelet. The DIF destroys the input array, and FFTW generates them only if

I = O.

The heuristic used to select the solvers is pretty much a closed box. It is possible to
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include new solver implementations, but the planner heuristic is very hard to modify.

The advantage of exposing this search space is that we can use different search tech-

niques to find the fastest sequence of solvers for a particular DFT problem. Performance

expert knowledge can be included to reduce the planning time. The space can be segmented

according to the characteristics of the target platform and input problem.

Using Locus, the search space can be programmed and explored by a diverse set of search

techniques. Figure 7.10 presents the FFTW search space in Locus notation. The space

presented works for rank-1, power of 2 length problems in which all the problems are reduced

to as discussed. It generates only DIT plans but could be easily extended to include DIF

plans as well. The FFTW interface was modified to accept the invocation of any solver

externally, including the ones relying on recursion.

The experimental results are shown in Figure 7.11. They were executed on the same system

used in Section 7.3. The top chart presents the planning time. The lower chart presents

the execution time of the best candidates generated during the planning time. It is worth

pointing out that the planning time of the FFTW is done by manipulating a dependence

graph between the already-compiled solvers. In our Locus approach, each candidate had to

be generated into a temporary file, compiled, and executed. Despite the extra overheads that

Locus had for generating and compiling each candidate, the planning times were relatively

similar. The best candidates found also had similar execution times. Our prototype did

not include all the solvers included in the FFTW. Some of the ones missing are especially

efficient for bigger input sizes. The inclusion of these solvers should close the gap between

the best candidates found by Locus and the ones used by the FFTW.

7.6 SYMMETRIC EIGENPROBLEM

Eigenvalues and eigenvectors of symmetric matrices have a broad range of applications in

many areas, such as search engines, population studies, quantum mechanics, and aeronautics.

Let A be a real symmetric or complex Hermitian n× n matrix. If Ax = λx, the scalar λ is

called an eigenvalue and a nonzero column vector x the respective eigenvector.

We examine 3 direct methods for the symmetric eigenproblem: Tridiagonal QR iteration,

divide-and-conquer, and Bisection and inverse iteration. All the algorithms assume that

A = A> and the orthogonal matrixQ has been found so that A = QTQ> and T is tridiagonal.

The eigenvalues of A and T are the same, and the eigenvectors of A are obtained multiplying

Q by the eigenvectors of T [67].

The Tridiagonal QR iteration finds all eigenvalues of T in 2 QR steps per eigenvalue on

average, resulting in O(n2) operations. However, to find all the eigenvectors as well, the QR
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1 stop = 16;
2 OptSeq recCObliv(mS, mE)
3 {
4 len = mE-mS;
5 if len > stop {
6 piv = mS + len/2;
7 GenCode.DCProlog(mS, mE, elem);
8 recCObliv(mS, piv);
9 recCObliv(piv, mE);

10 GenCode.DCEpilog(mS, mE, elem);
11 } else {
12 {
13 GenCode.QRTD(mS, mE, elem);
14 } OR {
15 GenCode.Bisect(mS, mE, elem);
16 }
17 }
18 }
19 CodeReg eig {
20 stop = poweroftwo(stop..elem/2);
21 recCObliv(0, elem);
22 }

(a) Cache oblivious.

1 stop = 16;
2 OptSeq recEigen(mS, mE)
3 {
4 len = mE-mS;
5 {
6 piv = mS + len/2;
7 if len > stop {
8 GenCode.DCProlog(mS, mE, elem);
9 recEigen(mS, piv);

10 recEigen(piv, mE);
11 GenCode.DCEpilog(mS, mE, elem);
12 }
13 } OR {
14 GenCode.QRTD(mS, mE, elem);
15 } OR {
16 GenCode.Bisect(mS, mE, elem);
17 }
18 }
19 CodeReg eig {
20 @pragma expandrec inline
21 recEigen(0, elem);
22 }

(b) Random-choice horizontally.

Figure 7.12: Locus programs for symmetric eigenproblem.

iteration takesO(n3) operations. The divide-and-conquer approach computes the eigenvalues

and eigenvectors of T by composing the results of computing the ones from the two diagonal

sub-matrices T1 and T2 of T =
(
T1 0
0 T2

)
. This approach can be applied recursively and also

results in O(n3) complexity.

The Bisection and inverse iteration may be used to find a subset of the eigenvalues of

a symmetric tridiagonal matrix. It requires O(kn) operations, where k is the number of

eigenvalues desired. The inverse iteration is used to find the corresponding eigenvectors.

In the best case, the inverse costs O(nk), in the worse, O(nk2) operations. Finding all

eigenvalues and eigenvectors results in O(n3) complexity. This algorithm is based on a

simple formula to count the number of eigenvalues less than a given value. Bisection and

inverse iteration are embarrassingly parallel since each eigenvalue and eigenvector may be

found independently of the others.

The code generated by Locus for these three primary algorithms uses LAPACK rou-

tines [68]. The Locus program, shown in Figure 7.12, automates the choices of these three

algorithms and computes the eigenvalues and eigenvectors of the input matrix. From the

three choices, two are non-recursive. The non-recursive ones are QR iterations and Bisection

by inverse iteration. At the recursive call, Locus will decide whether to continue making

recursive calls or switch to one of the non-recursive methods. By doing this, Locus is also

deciding the best base case size, which is where the recursion stops.

Despite looking very similar, the codes in Figures 7.12a and 7.12b have a fundamental
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Figure 7.13: Symmetric eigenproblem performance.

difference. In 7.12a, the search space is restricted to finding the best stop value and which

algorithm to use on all subproblems, whereas in 7.12b, it allows subproblems to stop at

different levels, base cases of different sizes, and different algorithms. The latter is a much

larger space and requires expanding the recursion tree before the search starts, as explained

in Section 5.4.2.

We evaluated these methods using the LAPACK routines implemented by the Intel MKL

library (version 20190005) running on the same system configuration used in Section 7.4. In

Figure 7.13, we have the standalone results for tridiagonal QR iteration (QRTD), Bisection

and inverse iteration (Bisec) along with Intel MKL’s own hand-optimized divide-and-conquer

(MKL-DC ). We also present the results attained by Locus with cache-oblivious (Cobliv),
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random-choice vertically (Rchoice-horiz ), and random-choice horizontally (Rchoice-vert).

The experiments were executed in parallel using OpenMP tasks. The results promote

the good performance of the divide-and-conquer approach. Locus cache-oblivious’ perfor-

mance attained performance very close to the MKL’s. The random-choice versions, however,

achieved performance worse than the cache-oblivious. Their search space was more complex

and challenging to be explored by the search modules.

7.7 SPARSE MATRIX-VECTOR MULTIPLICATION

Sparse matrix kernels are frequently computational bottlenecks in diverse applications

in science and engineering. Nonetheless, these kernels perform poorly on most modern

processors due to a low compute-to-memory ratio and irregular memory access patterns.

Attaining near-peak performance from them on modern cache-based superscalar machines is

difficult because of the complexity of cached-based memory systems. Moreover, performance

is highly dependent on the non-zero structure of the matrix.

Many sparse matrices from applications have a natural block structure that can be ex-

ploited by storing the matrix as a collection of blocks. However, there are cases in which an

“obvious” block structure is not always the best [69].

Consider the sparse matrix-vector multiplication (SpMV) operation y ← y + Ax, where

A is an m× n sparse matrix. In SpMV, the elements of A are accessed sequentially but not

reused. The elements of y are also accessed sequentially but are reused for each non-zero in

the row of A. The access to x is irregular as it depends on the column indices of non-zero

elements of A.

Register reuse of y and A cannot be improved, but access to x may be improved if there

are elements in A that are in the same column and nearby one another so that an element of

x may be saved in a register. In this case, the use of a blocked format for the sparse matrix

may improve locality.

7.7.1 Sparse matrix formats

A wide variety of formats are in use, each tailored to a particular application and matrix.

Besides, several of the formats were specifically created to benefit from vector architectures.

Common-used formats include coordinate (COO), compressed sparse stripe (CSR, CSC),

jagged diagonal (JAD), variable block row (VBR), and blocked compressed sparse stripe

(BSR). We focus our discussion on the compressed sparse stripe (CSR, CSC) and blocked

compressed stripes formats (BSR) that are present in our evaluation.
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Compressed stripe storage. This class includes the compressed sparse row (CSR) for-

mat (and compressed sparse column format - CSC). CSR can be viewed as a collection of

sparse vectors, allowing random access to entire rows and efficient enumeration of non-zeros

within each row. The compressed stripe formats tend to capture the irregular structure of

sparse matrices well but suit poorly vector architectures.

In CSR, a sparse vector represents each row. The CSR uses three arrays:

• a single value array val stores all sparse row vector values in order;

• an array of integer, ind, stores the column indices of each value of the val array;

• the ptr array contains the indices at which new rows start in val.

Algorithm 7.1 presents a sparse matrix-vector multiply for a matrix using the CSR format.

Algorithm 7.1: SpMV for a matrix using CSR format.

input : Array x representing vector x, and arrays val, ptr, ind representing matrix
A in BSR.

output: Array y representing vector y.
1 foreach row i do
2 for l← ptr[i ] to ptr[i+1 ]− 1 do
3 y[i ]← y[i ] + val[l ] · x[ind[l ]]
4 end

5 end

Blocked compressed stripe storage. The common occurrence of dense block structure

in sparse matrices led to the design of blocked compressed sparse stripe formats. The block

compressed sparse format is the same as CSR, but instead of each non-zero, it stores an r×c
dense block. The case of r = c = 1 is exactly the same as CSR.

We focus on the block compressed sparse row (BSR) format. The r × c BSR generalizes

CSR: Matrix m-by-n A is divided into dm
r
e block rows, and each block row is stored as a

sequence of dense r × c blocks. The values of A are stored in an array (val) of Krc · r · c
elements, where Krc is the number of non-zero blocks. The blocks are stored consecutively

by row, and each block may be stored in any format used for dense matrices (e.g., row- or

column-major). The starting column index of each block is stored in array ind, and array

ptr contains the indices of the row at which each block starts. Filling the blocks with zero

elements may be required as they are treated as a full dense block.

Blockings are not unique depend on the convention selected by libraries and systems on

how to align the blocks. Intel MKL aligns blocks so that the first column j of each block
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is multiple of c, i.e., j mod c = 0. Other libraries use a greedy approach that scans each

block row column-by-column, starting a new r× c block upon encountering the first column

containing a non-zero.

Algorithm 7.2 presents a sparse matrix-vector multiply for a matrix using the BSR format

assuming r divides m and c divides n.

Algorithm 7.2: SpMV for a matrix using BSR format.

input : Array x representing vector x, and arrays val, ptr, ind representing matrix
A in BSR.

output: Array y representing vector y.
1 A closed range of integers from a to b inclusive is denoted as [a : b].
2 foreach block row I do
3 i0 ← I · r
4 y’← y[i0 : (i0 + r − 1)]
5 for L← ptr[I ] to ptr[I+1 ]− 1 do
6 j0 ← ind[L] · c
7 x̂← x[j0 : (j0 + c− 1)]

8 Â← val[(L · r · c) : ((L+ 1) · r · c− 1)]

9 y’← y’ + Â · x̂
10 end
11 y[i0 : (i0 + r − 1)] ← y’

12 end

This blocked format has the advantage of reducing the amount of memory required to

store indices for the matrices since a single index is stored per block. Because r and c are

fixed, the innermost loop can be fully unrolled.

7.7.2 Results

By analogy to tiling in the dense case, finding the best-blocking shape is also a difficult

aspect to optimize sparse kernels. We used Locus to search for the composition of blocking

sizes that resulted in the best performance. The sparse matrix is recursively divided and

different blocking sizes evaluated independently in the search space defined using the random-

choice horizontally strategy.

The Locus program is shown in Figure 7.14. The Locus expands the recursion tree, and,

at each level, it is possible to divide the matrix in the dimension m, in the dimension n, or

generate the base case’s invocation. The base case invocation has six possibilities of blocking

sizes (CSR, 2-by-2, 3-by-3, 4-by-4, 5-by-5, or 6-by-6 BSR).
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1 mstop = melem/4;
2 nstop = nelem/4;
3 OptSeq recHoriz(mS, mE, nS, nE) {
4 mlen = mE-mS;
5 nlen = nE-nS;
6 {
7 if mlen > mstop {
8 pivm = mS + mlen/2;
9 recHoriz(mS, pivm, nS, nE);

10 recHoriz(pivm, mE, nS, nE);
11 }
12 } OR {
13 if nlen > nstop {
14 pivn = nS + nlen/2;
15 recHoriz(mS, mE, nS, pivn);
16 recHoriz(mS, mE, pivn, nE);
17 }
18 } OR {
19 {
20 GenCode.SpmvCSR(mS, mE, nS, nE);
21 } OR {
22 blk = enum(2,3,4,5,6);
23 GenCode.SpmvBSR(mS, mE, nS, nE,
24 blk);
25 }
26 }
27 }
28 CodeReg spmv {
29 @pragma expandrec inline
30 recHoriz(0, melem, 0, nelem);
31 }

Figure 7.14: Locus program for SpMV using the random-choice horizontally strategy.

We evaluated the sparse matrices shown in Table 7.1. They were taken from the SuiteS-

parse Matrix Collection [70]1. We used the Intel MKL (version 20190005) implementations

of the CSR and BSR formats and the SpMV operation for the base case. The experiments

were executed on the same system configuration used in Section 7.4. Because Intel MKL

aligns blocks so that the first column j of each block is multiple of c, the sparse matrices

dimensions were extended to be multiple of all possible blocking sizes.

Table 7.1: Sparse Matrices evaluated from the SuiteSparse Matrix Collection.

Name Application Area Dimension Non-zeros % of Non-zeros

1 bcsstk35 Automobile frame 30237×30237 1450163 0.16
2 crystk02 FEM Crystal 13965×13965 968583 0.50
3 net100 Optimization 29920×29920 1031560 0.11
4 olafu Accuracy problem 16146×16146 515651 0.20

1https://sparse.tamu.edu/about
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Figure 7.15: Sparse Matrix-Vector multiplication results using different sparse formats for
the matrix.

Figure 7.15 presents the speedup over the CSR format. Each matrix had a different block-

ing size as the one that resulted in the best performance. The random-choice horizontally

strategy further improved the performance by using different blocking shapes across the

sub-matrices. It resulted in performance improvement of 14%, 12%, 13%, and 42% for the

matrices bcsstk35, crystk02, net100, and olafu, respectively.

The blockings that attained the best performance for each matrix are presented below.

For instance, the maximum performance attained for crystk02 (Equation 7.6) was due to

dividing twice on each dimension, and the use of formats BSR 3x3, BSR 6x6, BSR 5x5, BSR

3x3 on sub-matrices 00, 01, 10, 11, respectively.

bcsstk35 =

BSR 6x6 BSR 6x6 BSR 2x2

BSR 4x4 BSR 6x6 BSR 3x3

BSR 5x5 BSR 6x6 BSR 3x3

 (7.5)

crystk02 =

[
BSR 3x3 BSR 2x2

BSR 5x5 BSR 3x3

]
(7.6)

net100 =

[
BSR 2x2 CSR

CSR BSR 3x3

]
(7.7)
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olafu =

[
BSR 6x6 BSR 4x4

BSR 4x4 BSR 6x6

]
(7.8)

7.8 SUMMARY

This chapter presented the optimization of matrix transposition, matrix-matrix multipli-

cation, fast Fourier transform, symmetric eigenproblem, and sparse matrix-vector multipli-

cation.

We implemented in Locus three strategies: cache-oblivious, random-choice vertically, and

random-choice-horizontally strategies. Each of these strategies creates a different search

space for optimizing through divide and conquer.

The experimental results showed that the cache-oblivious strategy combined with empir-

ical search was the best for benchmarks operating on dense data structures. The random-

choice horizontally, however, showed its value when optimizing the SpMV operation due to

the irregular structure of the sparse matrices.
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CHAPTER 8: OTHER EVALUATIONS

In this chapter, we evaluate a miscellaneous collection of applications that we optimized

using Locus: Kripke is a mini-app comprised of 5 kernels that are optimized independently

according to the input data layout; we used Locus as a compiler to optimize 856 loops ex-

tracted from 16 relevant benchmarks with a generic optimization sequence; evaluated search

modules using a complex search space; searched for the best way to execute in parallel and

using GPUs a large, complex multi-physics application called Plascom2. In the remainder

of this chapter, these applications and their respective search spaces are further discussed.

8.1 KRIPKE

Kripke [71] is a deterministic particle transport code and a proxy-app for the Ardra project

developed at LLNL. It supports the storage of angular fluxes using a three-dimensional array

indexed by direction (D), group (G), and zone (Z). It has 5 kernels: LTimes, LPlusTimes,

Scattering, Source, and Sweep. Their implementation contains 6 hand-optimized versions of

each kernel, one for each data layout. Each layout corresponds to a different linearization of

the 3D arrays according to one of the 6 permutations of D, G, and Z.

1 #pragma @Locus loop=Scattering
2 for(int nm = 0; nm < num_moments; ++nm)
3 for(int g = 0; g < num_groups; ++g)
4 for(int gp = 0; gp < num_groups; ++gp)
5 for(int zone = 0; zone < num_zones; ++zone)
6 for(int mix = zones_mixed[zone]; mix < zones_mixed[zone] + num_mixed[zone]; ++mix)
7 {
8 int material = mixed_material[mix];
9 double fraction = mixed_fraction[mix];

10 int n = moment_to_coeff[nm];
11

12 #####
13 # Address calculation to be included here.
14 #####
15

16 *phi_out += *sigs * *phi * fraction;
17 }

Figure 8.1: Kripke’s Scattering kernel.

Using Locus, we can create a more compact representation of all versions of Kripke. Our

representation contains only one skeleton for each kernel plus the code for each of the six

address computations, one for each data layout. We then use transformation modules to

generate versions that achieve a performance comparable to that of the hand-optimized ones.

Figure 8.1 contains the code representing our version of one of the five kernels, Scattering,
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1 datalayout=enum("DZG","DGZ","GDZ","GZD","ZDG","ZGD");
2 CodeReg Scattering {
3 if (datalayout == "DGZ") {
4 omploop="0.0.0.0";
5 } elif (datalayout == "GDZ") {
6 looporder=[1,2,0,3,4];
7 omploop="0.0.0.0";
8 } elif (datalayout == "GZD") {
9 looporder=[1,2,3,4,0];

10 omploop="0.0.0";
11 } elif (datalayout == "ZGD") {
12 looporder=[3,4,1,2,0];
13 omploop="0";
14 } elif (datalayout == "ZDG") {
15 looporder=[3,4,0,1,2];
16 omploop="0";
17 } elif (datalayout == "DZG") {
18 looporder=[0,3,4,1,2];
19 omploop="0.0";
20 }
21 sourcepath="scatter_"+datalayout+".txt";
22 BuiltIn.Altdesc(stmt="0.0.0.0.0.3", source=sourcepath);
23 RoseLocus.Interchange(order=looporder);
24 RoseLocus.LICM();
25 RoseLocus.ScalarRepl();
26 Pragma.OMPFor(loop=omploop);
27 }

Figure 8.2: Locus program for optimizing Kripke’s Scattering kernel.

and Figure 8.2 contains the Locus program to create the six versions of the kernel. These

will differ in the evaluation of the addresses used by the expression (*phi out += *sigs

* *phi * fraction) at the end of the loop in Figure 8.1.

The main structure of the other four kernels (LTimes, LPlusTimes, Source, and Sweep) is

very close to the one shown for Scattering, and the Locus program for each of these kernels

is similar to that in Figure 8.2.

The Locus program specifies that, for Scattering, each of the six data layouts (DZG, DGZ,

GZD, ZDG, and ZGD) will be used to select one of six different files (scatter DZG.txt,

scatter DGZ.txt, ..., and scatter ZGD.txt). Each of these files contains one way of

computing the addresses, depending on the layout. Different versions of Scattering are

created by inserting the content of each of these files into the innermost loop of the kernel

using the module BuiltIn.Altdesc. The specific place of insertion is after the third

statement of the innermost loop, which is identified as 0.0.0.0.0.3. Then:

• the loop nest order (looporder) is altered by the module RoseLocus.Interchange;

• loop invariant code motion is applied by the transformation module RoseLocus.LICM

to move each part of the computation to the most efficient location within the loop

nest;
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Figure 8.3: Kripke execution time comparing hand-optimized versions and using Locus for
6 different data layouts.

• scalar replacement [26] is performed to improve register usage by the module

RoseLocus.ScalarRepl;

• the loop to be parallelized (omploop) is annotated with OpenMP directives by the

module Pragma.OMPFor.

The data layout was the only search variable defined. Other possibilities, however, could

have been added to the search space. For instance, we used the loop nest orders identical to

the hand-optimized versions, but it would be straightforward to explore different orders for

each data layout.

Performance attained using Locus is very close to that of the hand-optimized kernels, as

presented in Figure 8.3. However, our proposed version is simpler and easier to maintain

because it contains a single version of each kernel for all data layouts.

8.2 OPTIMIZATION OF ARBITRARY LOOP NESTS

We have shown performance improvements of optimizations specific to source codes known

beforehand. In this experiment, we used a generic Locus program to optimize arbitrary loop

nests, whose structure and characteristics were not known in advance. Gong et al. [91, 92]

developed a loop nest extractor and transformed the extracted loops with subsets of the

following two sequences:
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Table 8.1: The benchmarks used for loop extraction, the number of loop nests selected, and
variants assessed.

Benchmark Number of loop Variants
nests assessed

ALPBench [72] 13 39
ASC Sequoia [73] 1 3
Cortexsuite [74] 47 1,297
FreeBench [75] 30 431
Parallel Research Kernels [76] 37 1,055
Livermore Loops [77] 11 121
MediaBench [78] 39 159
Netlib [79] 18 260
NAS Parallel Benchmarks [80] 208 23,384
Polybench [81] 93 7,582
Scimark2 [82] 4 83
SPEC2000 [83] 71 2,228
SPEC2006 [84] 50 216
Extended TSVC [85] 156 6,943
Libraries [86, 87, 88, 89] 61 1,966
Neural Network Kernels [90] 17 132
Total 856 45,899

1. interchange → unroll-and-jam → distribution → unrolling;

2. interchange → tiling → distribution → unrolling.

We represented these optimization sequences and their subsets in a Locus program, shown

in Figure 8.4. The optimizations have a data dependence check, and only valid transfor-

mations were used to generate variants. The first step is to check if the data dependencies

can be computed for the loop nest (if not, only unrolling is applied). The next step is to

check whether the loop is perfectly nested. Then, the loop nest depth is obtained. These

data are used to define which transformations are going to be applied next. Interchange is

only applied to perfectly nested loops with nest depth greater than 1. Tiling is only applied

to perfectly nested loops and unroll-and-jam only on nests with a depth greater than 1.

Along with distribution, these are only applied if the data dependencies can be computed.

Unrolling is always applied at the end of the process.

An OR construct is used to express the choice among tiling, unroll-and-jam, or none before

distribution. It is also important to note the ∗ on the distribution, which denotes that it is

optional.

Table 8.1 presents the number of the loop nests extracted and the number of variants

assessed for each benchmark. In total, 3,146 loop nests were extracted, and we selected 856

whose executions are longer than 10,000 CPU cycles. The search for each loop nest was
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1 Search {
2 buildcmd = "make clean; make LOOPEXTRACTED";
3 runcmd = "LOOPEXTRACTED ../input 10";
4 }
5 CodeReg scop {
6 @pragma query
7 perfect = BuiltIn.IsPerfectLoopNest();
8 @pragma query
9 depth = BuiltIn.LoopNestDepth();

10 @pragma query
11 depavail = RoseLocus.IsDepAvailable()) {
12

13 if (depavail) {
14 if (perfect && depth > 1) {
15 permorder = permutation(seq(0,depth));
16 RoseLocus.Interchange(order=permorder);
17 }
18 {
19 if (perfect) {
20 indexT1 = integer(1..depth);
21 T1fac = poweroftwo(2..32);
22 RoseLocus.Tiling(loop=indexT1, factor=T1fac);
23 }
24 } OR {
25 if (depth > 1) {
26 indexUAJ = integer(1..depth-1);
27 UAJfac = poweroftwo(2..4);
28 RoseLocus.UnrollAndJam(loop=indexUAJ,
29 factor=UAJfac);
30 }
31 } OR {
32 None; # No tiling, interchange, or unroll and jam.
33 }
34 innerloops = BuiltIn.ListInnerLoops();
35 *RoseLocus.Distribute(loop=innerloops);
36 }
37 innerloops = BuiltIn.ListInnerLoops();
38 RoseLocus.Unroll(loop=innerloops,
39 factor=poweroftwo(2..8));
40 }

Figure 8.4: Locus program for optimizing arbitrary loop nests.

limited to 500 variants. In total, 45,899 variants were evaluated. We ran Pluto on the same

set of selected loop nests.

Our work was able to reproduce the performance results presented by Gong et al. However,

the Locus program required 37 lines while the implementation by Gong et al. for this purpose

was approximately 1200 lines long. Besides, in their approach, the implementations of the

two optimization sequences, their subsets, and parameters were hard-coded and cumbersome

to modify. With the Locus approach, modifying and experimenting with new optimization

sequences becomes trivial.

In this experiment, the variants generated by Locus and the code generated by Pluto

(flags --tile, --prevector, and --unroll) were compiled with GCC 6.3.0 (flags -O3,

and -ftreevectorize).
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1 CodeReg Loop {
2 perm = permutation([0,1,2]);
3 RoseLocus.Interchange(order=perm);
4 tileI = tileK = tileJ = 512;
5 @pragma expandloop # init=2,3
6 for (i = 0; i < integer(1..3); i+= 1) {
7 tileI = poweroftwo(2..tileI);
8 tileK = poweroftwo(2..tileK);
9 tileJ = poweroftwo(2..tileJ);

10 Pips.Tiling(loop=idx, factor=[tileI,
11 tileK,
12 tileJ]);
13 idx += ".0.0.0";
14 }
15 }

Figure 8.5: Optimizing a loop for finding the number of levels for tiling.

On average, the best variant generated by Locus achieved a speedup of 1.15 while Pluto

achieved 1.05. Locus could transform 822 loop nests out of the ones selected and Pluto

397. Pluto transformed a smaller number of loop nests because it is based on the polyhedral

model. This model is only applicable to loop nests in which the data access functions and the

loop bounds are affine combinations of the enclosing loop variables and parameters. Locus

achieved speedups higher than 1.05 for 360 loops nests and Pluto for 170. Out of these 170

optimized by both tools, Locus generated faster code than Pluto on 129 of them.

8.3 COMPARING SEARCH MODULES

Considering that OpenTuner and HyperOpt represent the search space differently (Open-

Tuner uses a flat representation and HyperOpt does it hierarchically), we would like to

evaluate their performance with a hierarchical space as input. For that purpose, we used the

search for the best number of levels of hierarchical tiling on matrix-matrix multiplication.

Figure 8.5 presents the Locus program used for optimizing source-code in Figure 1.1a. The

search space includes the tile shapes and the option for 1-level, 2-level, or 3-level tiling. The

expandloop pass described in Section 5.4.1 was used to expand the loop from Figure 8.5 into

a hierarchical space, whose number of levels is defined according to the maximum number

of loop iterations (based on i < integer(1..3) on Line 6).

The Figure 8.6 presents two representations of the space in Locus syntax after the pass

was executed: one for using 2-level tiling as the initial search configuration, and one for using

3-level tiling as the initial search configuration. The Locus system uses the first block of each

OR-block level for the initial search configuration. Hence, the initial search configuration for

both cases executes the blocks starting at Lines 7, 16, and 25. However, the block starting at
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1 CodeReg Loop {
2 perm = permutation([0,1,2]);
3 RoseLocus.Interchange(order=perm);
4 tileI = tileK = tileJ = 512;
5 @pragma expandloop init=2
6 {
7 tileI_1 = poweroftwo(2..tileI);
8 tileK_1 = poweroftwo(2..tileK);
9 tileJ_1 = poweroftwo(2..tileJ);

10 Pips.Tiling(loop=idx,
11 factor=[tileI_1,
12 tileK_1,
13 tileJ_1]);
14 idx += ".0.0.0";
15 {
16 tileI_2 = poweroftwo(2..tileI_1);
17 tileK_2 = poweroftwo(2..tileK_1);
18 tileJ_2 = poweroftwo(2..tileJ_1);
19 Pips.Tiling(loop=idx,
20 factor=[tileI_2,
21 tileK_2,
22 tileJ_2]);
23 idx += ".0.0.0";
24 {
25 None;
26 } OR {
27 tileI_3 = poweroftwo(2..tileI_2);
28 tileK_3 = poweroftwo(2..tileK_2);
29 tileJ_3 = poweroftwo(2..tileJ_2);
30 Pips.Tiling(loop=idx,
31 factor=[tileI_3,
32 tileK_3,
33 tileJ_3]);
34 idx += ".0.0.0";
35 }
36 } OR {
37 None;
38 }
39 }
40 }

(a)

1 CodeReg Loop {
2 perm = permutation([0,1,2]);
3 RoseLocus.Interchange(order=perm);
4 tileI = tileK = tileJ = 512;
5 @pragma expandloop init=3
6 {
7 tileI_1 = poweroftwo(2..tileI);
8 tileK_1 = poweroftwo(2..tileK);
9 tileJ_1 = poweroftwo(2..tileJ);

10 Pips.Tiling(loop=idx,
11 factor=[tileI_1,
12 tileK_1,
13 tileJ_1]);
14 idx += ".0.0.0";
15 {
16 tileI_2 = poweroftwo(2..tileI_1);
17 tileK_2 = poweroftwo(2..tileK_1);
18 tileJ_2 = poweroftwo(2..tileJ_1);
19 Pips.Tiling(loop=idx,
20 factor=[tileI_2,
21 tileK_2,
22 tileJ_2]);
23 idx += ".0.0.0";
24 {
25 tileI_3 = poweroftwo(2..tileI_2);
26 tileK_3 = poweroftwo(2..tileK_2);
27 tileJ_3 = poweroftwo(2..tileJ_2);
28 Pips.Tiling(loop=idx,
29 factor=[tileI_3,
30 tileK_3,
31 tileJ_3]);
32 idx += ".0.0.0";
33 } OR {
34 None;
35 }
36 } OR {
37 None;
38 }
39 }
40 }

(b)

Figure 8.6: Locus programs resulting from the expandloop pass executed on the loop from
Figure 8.5 using two different init arguments (Line 5). The main difference between these
two programs is on Line 25. The program’s initial configuration on the left (a) uses 2-level
titling, whereas the initial configuration of the program on the right (b) uses 3-level tiling.
The Locus system uses the first block of each OR-block level as the initial configuration.
Hence, the initial configuration for both cases executes blocks starting at Lines 7, 16, and 25.
For (a), Line 25 is a None, but for (b), Line 25 starts the block responsible for the third-level
tiling.

Line 25 of the 2-level tiling initial configuration contains just the None placeholder. On the

other hand, for the 3-level tiling initial configuration, the block starting at Line 25 includes

the statements to carry out the third-level tiling.

In theory, the OpenTuner space representation of this example is much larger than the

HyperOpt one. Opentuner representation forms a Cartesian product of all search variables.
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Figure 8.7: Evaluating different backends. Each search backend was executed 30 times,
presenting 20 and 80 percentile. The search space was matrix-matrix multiplication using
two compilers and initializing the search with a 2 or 3 level tiling.

Hyperopt, on the other hand, can segment the space into independent subspaces. The

program in Figure 8.6a presents a hierarchical search space that can be segmented into

independent subspaces. For instance, when HyperOpt decides to evaluate 1-level tiling by

selecting the second option of the first OR Block (Line 37), the search variables of the 2-level

tiling (Lines 16-18) and 3-level tiling (Lines 27-29) are not part of the search.

Figure 8.7 presents the results using two different compilers, ICC and GCC, and using

2-level or 3-level tiling as the initial search configuration. Each search was executed 30

times. The figure presents the 20 and 80 percentile of them. HyperOpt was evaluated using

TPE and a mix of 25% for random, 25% for TPE, and 50% for simulated annealing. The

selected mix composition was the best found after the evaluation of multiple ones. Our initial

hypothesis was that HyperOpt would perform better because it can represent search spaces

hierarchically. Hyperopt indeed converged faster than OpenTuner when using the GCC for

compiling the candidates, especially with 3-level tiling as the initial search configuration. The

experiments with ICC, nonetheless, showed OpenTuner converging faster than HyperOpt.

Besides, the performance of the candidates with ICC was much faster than the GCC ones.
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Although the input space is more suitable for HyperOpt, OpenTuner has shown good re-

sults and eventually matched the ones achieved by HyperOpt. We believe that OpenTuner’s

meta-technique strategy can effectively use multiple techniques and achieve good results in

such complex search spaces.

8.4 PLASCOM2

Plascom2 is a large, complex multi-physics application developed as part of the Center

for the Exascale Simulation of Plasma-Coupled Combustion (XPACC) [46]. It is built up

from modular, reusable components designed to use modern, heterogeneous architectures ef-

ficiently. The parallel execution model used by Plascom2 is based on hybrid MPI+OpenMP.

Most of the Plascom2 application is written in C++, but the computational kernels are

written in Fortran 90. These kernels consist of pointwise operations and stencils.

Plascom2 follows the development model in which the baseline version contains an easy-

to-maintain code with no architecture- or compiler-specific optimizations. Automatic code

transformation tools and runtime systems are then used to make it run faster, adapting

accordingly to different target architectures.

Locus can optimize Plascom2 through loop transformations to the computation kernels

and stencils, and enabling different runtime systems. The initial step, and not less chal-

lenging, was to define the baseline version out of a code that had already evolved into an

optimized version. Subsequently, all the hand-optimized code regions were included in the

Locus program as a preferred version. These preferred versions are loaded into the appli-

cation at build-time. Below, we present the use of code transformations on top of these

preferred versions. Locus also allows us to enable and compare different tools for parallel

execution and the use of accelerators.

We evaluate the performance of two computation kernels: ZAXPY and ZXDOTY. They

were evaluated on a single-node IBM Power9 system with two CPUs (40 cores and 160

threads) and four Nvidia Volta V100 GPUs.

8.4.1 ZAXPY

ZAXPY performs the operation Z = αX + Y , where Z, X, and Y are vectors and, α is a

scalar. Figure 8.8 shows the code with the pragma generated by Hydra [93, 94] to execute

it on the GPU. Hydra is also responsible for the data movement required to offload ZAXPY

execution.
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1 !$omp target teams distribute parallel do simd
2 DO I = iStart, iEnd
3 Z(I) = Y(I) + a*X(I)
4 END DO

Figure 8.8: ZAXPY source-code with OpenMP pragma for offloading to accelerators.

The omp target teams distribute parallel do indicates to the compiler that the

following section of code should be compiled for host and accelerator. It also indicates to

the OpenMP runtime to transfer to the device the input data structures used in this section

and transfer back to the host the output data structures. If no device is available, the code

is executed solely on the host. This allows a single version of the code to execute in various

devices. It distributes the iterations of the loop among the threads (teams). The simd is a

hint for the compiler to use vector instructions.

Figure 8.9: Performance of ZAXPY in Plascom2. Tangram kernels tuned by varying the
number of blocks and the number of threads per block. Hydra uses offloading through
OperMP.

Tangram [95] is a high-level programming framework for synthesizing efficient GPU code.

It provides composable code blocks that can be synthesized to provide different GPU archi-

tectures with algorithmic choices. Locus is able to generate code that either uses OpenMP

offloading via Hydra or CUDA kernels synthesized by Tangram. The two solutions, however,

require further tuning parameters to achieve optimal performance.

Figure 8.9 presents the performance of the kernel generated by Tangram as a function of
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1 !$Locus loop=zxdoty
2 DO iComp = 0, numComponents-1
3 DO K = kStart, kEnd
4 DO J = jStart, jEnd
5 DO I = iStart, iEnd
6 zIdx = (K-1) * nPlane
7 yzIdx = zIdx + (J-1) * xSize
8 cOffset = iComp * numPoints
9 bIdx = yzIdx + I

10 Z(bIdx) += X(bIdx + cOffset) * Y(bIdx + cOffset)
11 END DO
12 END DO
13 END DO
14 END DO

Figure 8.10: ZXDOTY source-code.

the number of blocks and threads per block and the offloading using OpenMP (Hydra). The

performance of Tangram kernels varies greatly according to the configuration of blocks of

threads and the number of threads per block. It outperforms the OpenMP offloading as the

number of blocks and threads per blocks increases better utilizing the GPU resources.

8.4.2 ZXDOTY

The operation performed by ZXDOTY is

Z(k, j, i) =

numcomp∑
c=1

Xc(k, j, i) ∗ Yc(k, j, i) (8.1)

where Z, X, and Y are 3D data volumes indexed by k, j, and i. The values of X and Y are

multiplied and accumulated over all the components.

The code for ZXDOTY is presented in Figure 8.10. The iterations of the loops indexed

by variables K, J , and I can be executed in parallel. The iComp loop, however, cannot, as

there is a reduction on Z. Therefore, the parallelization of ZXDOTY must be mindful of the

position of the iComp loop. In general, the more work there is to provide to the threads,

the more efficient the parallelization will be. A loop nest can be collapsed to increase the

number of iterations partitioned across the threads by reducing the granularity of work done

by each thread. The iterations of the K, J , and I loops can be collapsed into a single,

large loop to improve the scalability of ZXDOTY. The iComp loop, then, must be in the

outermost or innermost position, which may improve data locality.

Locus generated all variants automatically by using loop interchange to change the position

of the iComp loop. OpenMP carried out the collapse of the loops.

Figure 8.11 presents the results for parallelizing the ZXDOTY with the iComp loop in
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Figure 8.11: Performance of ZXDOTY from Plascom2 as a function of the iComp loop
position and the number of threads running in the CPU, and Hydra in the GPU. Out is for
the iComp loop in the outermost position, Inn for in the innermost.

outermost or innermost position, collapsing loops K, J , and I, number of threads n ∈
{1, 40, 80, 160} running in the CPU, and Hydra running in the GPU. The input dimensions

are Z = X = Y = 701 elements, and numberofcomponents = 3. Hydra offloads to the GPU

using omp target teams distribute parallel do simd collapse(3). The results

were best for the iComp loop in the innermost position and running 80 threads (2 per core).

The performance of Hydra on the GPU was still 1.5× faster.

8.5 SUMMARY

The optimization process complexity depends on many factors, such as the kind of ap-

plication, the number of code regions, and the architecture’s features. In this chapter, we

evaluated applications that challenged Locus in many ways. Locus was able to match the 5

hand-optimized for 6 data layouts Kripke kernels, improve the performance of hundreds of

loops with the same optimization program, and optimize for GPUs kernels of a large, com-

plex multi-physics application. Locus was able to show that the system and the language

are robust to optimize a diverse collection of applications.
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CHAPTER 9: CONCLUSIONS

This dissertation presented Locus, a new system, and a language for optimizing complex,

long-lived applications for different platforms. As architecture-specific optimizations are re-

quired to harness performance available on current machines, the Locus system can integrate

different modules and combine expert knowledge with automated transformations to assist

performance experts and code developers in the performance optimization process.

We describe the requirements that we believe are necessary for making automatic perfor-

mance tuning widely adopted. We present the design and implementation of a system that

fulfills these requirements. It includes a domain-specific language that is able to represent

complex collections of transformations, an interface to integrate external modules, and a

database to manage platform-specific efficient code. The database allows the system users

to access optimized code without having to install the code generation toolset. In all, the

system presents an approach for performance portability.

Locus allows the integration of complex search spaces with the programming of optimiza-

tion sequences. The optimization sequences can produce complex, hard to read programs,

but thanks to Locus, the programmer does not have to deal with these complex versions,

which are generated automatically. The optimization of Locus programs by our compiler re-

moves from the optimization sequences unnecessary search statements that represent search

variables on the search space and make the exploration harder. Interdependent search vari-

ables are common in search spaces for program optimization. They are, however, hard

to represent concisely, requiring a verbose, hard to maintain description. We developed

compiler passes to generate complex spaces containing interdependent search variables auto-

matically. The compiler passes are also used to ensure that these spaces only include useful

search statements.

The experiments showed that it is possible to obtain higher speedups over a reference

version by using empirical search compared to conventional restructurers. The results include

553× on matrix-matrix multiplication and up to 4× on stencil computations over original,

unmodified versions.

We presented evaluations that used the system to generate optimized code for two different

platforms. Locus generated a matrix-matrix multiplication code that outperformed the IBM

XLC internal hand-optimized version by 2× on the Power 9 processors. On Intel CPUs,

Locus was able to generate code with performance comparable to that of Intel MKL’s, which

is hand-optimized and platform-specific. The 3D heat stencil optimized by Locus was up to

75% more efficient than the baseline version. We also showed the benefits of using a fixed
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configuration based on results from a different platform as the initial search configuration,

which confined the search outcome to a narrower range.

The performance attained varied significantly depending on the platform and the input

dimensions and showed the value of having a database to save efficient platform-specific code

for each code region.

The divide-and-conquer strategy is a good match for modern parallel machines because of

their inherent parallelism and ability to benefit from the prevalent deep memory hierarchy.

There are, nonetheless, important trade-offs to fully exploit the divide-and-conquer strategy.

We used Locus to create search spaces using three different strategies to determine the best

shapes for the base case and the best way of subdividing the problem that attained the best

performance. We used Locus to optimize matrix transpose, matrix-matrix multiplication,

fast Fourier transform, symmetric eigenproblem, and sparse matrix-vector multiplication

using divide and conquer. The results showed that the empirical search was important to

improve performance by generating faster base cases and finding the best splitting. The

experimental results showed that combining a cache-oblivious strategy and search space

for the base case size was the best for benchmarks operating on dense data structures.

The random-choice horizontally, however, despite being a large and complicated space that

resulted in no performance improvement for benchmarks operating on dense data structures,

showed its value when optimizing the SpMV operation by improving performance up to 42%

due to the irregular structure of the sparse matrices.

Locus was also able to optimize large, complex applications. The Kripke transport code’s

baseline version consists of 6 versions for each of the 5 kernels, each version hand-optimized

for a specific input data layout. Using Locus, it was possible to match Kripke’s hand-

optimized performance for all data layouts using a single optimization sequence. We created

a generic optimization sequence to be applied to a collection of 856 loops extracted from

16 benchmarks, which resulted in good performance improvements. The Plascom2 multi-

physics application was optimized to find the best way to use a multi-core CPU and GPU,

along with exploring different modules and their solutions. Tangram, Hydra, and OpenMP

provided an interesting search space that improved the performance of Plascom2 by approx-

imately 4.3× on ZAXPY and ZXDOTY kernels.

Locus showed that the definition of optimization sequences combined with search spaces

separated from the application’s code works. We improved the performance of a diverse set of

applications and believe it benefits developers in the complicated performance optimization

process.
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9.1 FUTURE DIRECTIONS

We envision a variety of ways in which to extend the work in this dissertation. The

optimization of other domains and improvements to the search process are discussed next.

9.1.1 Beyond Source-to-source Transformations

Locus could be extended to optimize code using other transformations than source-to-

source. Despite the high speedups achieved by source-to-source transformations, optimiza-

tions in lower representations may further improve the performance of key applications.

Optimizations in lower representations closer to the architecture instruction set would

require new ways to define code regions. The use of labels and the arbitrary granularity that

we have in the source-code level may not be possible on lower-level representations.

Superoptimization [96, 97] is a program optimization technique to search for a correct and

optimal machine-specific sequence of instructions. The combination of heuristics and search

in this area have presented interesting results. For instance, Stoke [98] is a superoptimizer

that formulates the loop-free binary superoptimization task as a search problem. The search

space explored by Stoke could be defined in the Locus language and explored by other search

techniques in addition to Markov Chain Monte Carlo that Stoke uses.

The idea of a full compiler using the Locus approach has been introduced by the optimizing

arbitrary loop nests shown in Section 8.2. We believe that the Locus approach could be used

to implement a full compiler. The system and the language could be extended to invoke and

explore search spaces of lower-level compiler passes. In theory, the optimization of code on

lower-level representations is possible as long as the result of a transformation is accepted

by the subsequent one.

Locus would require the compiler passes to be developed in a modular way so they can

be invoked independently of each other. Locus accepts the definition of nested code regions.

Thus, passes that comprise larger code regions, or even the entire source-code, could be

pre-specified by the Locus system and the selection of the passes to be used on those code

regions customized by the developer.

To determine, based on the unit of optimization of each compiler pass, the places of the

code where to apply each pass is very challenging on lower-level representations. The lower

the representation level, the more complicated it is to determine the exact portion of the

code to be optimized by a specific compiler pass. Besides, keeping track (e.g., through labels

or annotations) of the unit of optimization across representation levels is a big undertaking.

Therefore, we believe that in lower representation, the optimizations would be carried out
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on coarse-grained regions of code (e.g., at function level).

The heuristics used by compiler passes are often presented as a black-box. We believe

that combining heuristics with a search-based approach would help generate faster code.

Exposing such search spaces would allow their exploration by different search techniques.

The compiler infrastructure should strive to open up more the search space of its passes and

allow the combination of search spaces along with heuristics to generate fast, platform-, and

domain-specific code.

9.1.2 Optimizing Domain-specific Languages

Programmer productivity has dramatically increased by the use of high-level (e.g., Python,

Ruby) and domain-specific languages (DSL) (e.g., Halide, TensorFlow) as they raise the level

of abstraction and increase software reuse. These languages, however, still require a compiler

stack to generate code that runs efficiently on the target architectures (e.g., CPUs, GPUs,

FPGAs). The construction of a compiler stack and optimization passes to harness the

potential performance of each target architecture for each DSL is an immense undertaking.

DSLs have been designed to decouple algorithms from their schedules. Changing the sched-

ule enables a single algorithm to achieve high performance on diversity machines. Halide [10]

and Tiramisu [99] separate what you want to compute (algorithm) from how you want to

compute it (schedule), including choices about memory locality, redundant computation,

and parallelism.

While they make it easy to try different schedules, writing schedules that achieve high

performance is hard. It requires expertise in hardware architecture and optimization, but

the space of possible schedules is large, and their performance can be difficult to model.

The Locus system can be expanded to generate high-performance schedules automatically.

In a similar fashion to what was done for optimizing arbitrary loop nests (Section 8.2), an

optimization sequence combined with a search space could generate schedules tailored to an

algorithm and a target platform.

This approach would make fast, efficient code accessible to relatively untrained audiences,

ease the burden of developing energy-efficient applications/architectures, and help developers

devote more time to new interesting features and less time dealing with the intricacies of

each new architecture.

In summary, languages that are highly productive, but domain-specific are becoming the

norm. The programs using these languages require complex scheduling of operations to

result in efficient code for an increasing variety of architectures. Locus could help to lower

the barrier of achieving high performance on applications developed using DSLs.
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9.1.3 Better Control of the Search Process

Locus has allowed the integration of the definition of a search space with the programming

of optimizations sequences. The search techniques, nonetheless, have shown difficulty in

exploring large, hierarchical search spaces.

Ideally, the Locus system would identify such spaces and adapt them to semantically

equivalent ones that are more amenable to the search techniques being used. For instance,

the search space could be divided, and multiple independent searches carried out.

Another important challenge is to define when to stop the search process. We believe that

Locus could help users by automatically defining when to stop based on previous searches

saved on the database, on a pre-selected model (e.g., Roofline model [100]), on analyzing

the progress of the current search over time, or on a combination of all of them.

Selecting the initial candidates for the search process may result in a faster convergence

to the best result. The initial candidates can be selected from a database of previously

evaluated candidates or specified by the search statements in the Locus program. The

search process could be further guided by giving bias to the options of each search statement.

Currently, each possibility of a search statement follows a uniform probability distribution.

The language could be extended to enable the use of different probability distributions for

each search statement.

9.1.4 New Target Architectures

New architectures are a natural direction for future research and development. Although

the experiments included CPUs and GPUs, Locus could be used to optimize other architec-

tures, such as FPGAs and domain-specific accelerators.

Domain-specific hardware accelerators remain one of the few paths to continue to increase

the performance and efficiency of computing hardware with the end of Dennard Scaling and

Moore’s Law. As these domains greatly vary, the likely result is, however, the development

of a multitude of different architectures and instruction sets that add more burden to the

compiler-stack development [101]. Besides, accelerators that include special instructions

and special engines are becoming the norm. The HMMA (half-precision matrix multiply-

accumulate) is one example of specialized instruction added to a general-purpose processor.

It is part of the NVIDIA Volta V100 GPU [102] and multiplies two 4 × 4 half-precision

(16-bit) floating-point matrices accumulating the results in a 4 × 4 single-precision (32-bit)

floating-point matrix. The development of instruction, engine, and hardware specializa-

tion makes the optimization of applications even more complicated, and the separation of

127



algorithm specification from the platform-specific optimizations very important.

The optimization of applications for distributed-memory systems is another target to

which Locus could be applied. Data partitioning and process placement can become a

hard problem to solve, especially for current large and heterogeneous machines. This area

is particularly challenging due to the difficulties of characterizing dynamic workloads and

modeling interactions of many complex system components.
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[95] S. G. De Gonzalo, S. Huang, J. Gómez-Luna, S. Hammond, O. Mutlu, and W.-m.
Hwu, “Automatic generation of warp-level primitives and atomic instructions for fast
and portable parallel reduction on GPUs,” in Proceedings of the 2019 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, ser. CGO 2019. IEEE
Press, 2019, p. 73–84.

137

http://dx.doi.org/10.1109/PACT.2011.68
www.gap-system.org
lame.sourceforge.net
github.com/mozilla/mozjpeg
github.com/mozilla/mozjpeg
github.com/mozilla/mozjpeg
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5728
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5728


[96] H. Massalin, “Superoptimizer: A look at the smallest program,” in Proceedings of the
Second International Conference on Architectual Support for Programming Languages
and Operating Systems, ser. ASPLOS II. Washington, DC, USA: IEEE Computer
Society Press, 1987. [Online]. Available: https://doi.org/10.1145/36206.36194 p.
122–126.

[97] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati, “Scaling up
superoptimization,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’16. New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2872362.2872387 p. 297–310.

[98] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in
Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’13. New
York, NY, USA: Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2451116.2451150 p. 305–316.

[99] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral compiler for expressing fast
and portable code,” in 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2019, pp. 193–205.

[100] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual
performance model for multicore architectures,” Commun. ACM, vol. 52, no. 4, p.
65–76, Apr. 2009. [Online]. Available: https://doi.org/10.1145/1498765.1498785

[101] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture:
Domain-specific hardware/software co-design, enhanced security, open instruction sets,
and agile chip development,” https://iscaconf.org/isca2018/turing lecture.html, 2018.

[102] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and programmability,”
IEEE Micro, vol. 38, no. 2, pp. 42–52, 2018.

138

https://doi.org/10.1145/36206.36194
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/1498765.1498785

	CHAPTER 1 Introduction
	Problem Context
	Related Work
	High-level Programming Abstraction Tools
	Non-programmable approaches
	Code Transformation Tools
	Custom Languages and Language Extensions
	Alternative Selection

	Contributions
	Summary, Scope, and Outline

	CHAPTER 2 Program Optimization
	The Program Optimization Search Space
	Uniprocessor Optimizations
	Optimizations to Shared-Memory Architectures
	Optimizations to Distributed-Memory Architectures

	Exploring the Search Space
	Global Search Algorithms
	Flat versus Hierarchical Search Spaces
	Implementations

	Our Approach to the Program Optimization Process
	Summary

	CHAPTER 3 The System Design and Implementation
	Interface with the Transformation Modules
	Pips
	RoseLocus
	Pragma
	BuiltIn

	Interface with the Search Modules
	OpenTuner
	HyperOpt

	Correctness
	Consistency Checking
	Database of Variants and Results
	Implementation

	Summary

	CHAPTER 4 The Locus Language
	Overview
	Examples
	Syntax and Semantics
	Extended Backus-Naur Form of the Language
	Summary

	CHAPTER 5 Compiling and Optimizing Locus Programs
	Data-Flow Analysis
	Reaching Definitions

	Pruning the Search Space
	Interdependent Search Statements
	Expansion Passes for Interdependent Search Statements
	Loop Expansion
	Recursion Expansion

	Summary

	CHAPTER 6 Experiments on Loop-based Transformations
	Experimental Environment
	Matrix-Matrix Multiplication
	Evaluating Hierarchical Tiling
	1D and 2D Stencils
	3D Stencil
	Fixed Versus Random Initial Search Configuration
	Summary

	CHAPTER 7 Optimizing Through Divide and Conquer
	Divide-and-Conquer Search Space
	Code Generation
	Matrix Transpose
	Matrix-Matrix Multiplication
	Fast Fourier Transform
	Symmetric Eigenproblem
	Sparse Matrix-Vector Multiplication
	Sparse matrix formats
	Results

	Summary

	CHAPTER 8 Other Evaluations
	Kripke
	Optimization of Arbitrary Loop Nests
	Comparing Search Modules
	Plascom2
	ZAXPY
	ZXDOTY

	Summary

	CHAPTER 9 Conclusions
	Future Directions
	Beyond Source-to-source Transformations
	Optimizing Domain-specific Languages
	Better Control of the Search Process
	New Target Architectures


	REFERENCES

