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Abstract

Matching logic is a unifying logic aimed at defining programming lan-
guage semantics, and reasoning about various program and language prop-
erties. It is a general logic designed with minimalism in mind. With only
eight syntactic constructs, matching logic can define many important log-
ical frameworks and languages as its theories. Yet, to our knowledge, no
research has been conducted into the decidabiltiy of matching logic. In
this paper, we begin such an initiative with respect to decidable fragments
of matching logic and identify the first non-trivial decidable fragment for
the empty theory. Our decision procedure extends a tableau system for
modal µ-calculus. We also give an implementation of the proposed deci-
sion procedure and show that with modifications, it can be extended to
support theories with certain axioms.

1 Introduction

Matching logic [1] was developed as the mathematical foundation [2] of the K
framework [3] — a rewriting-based framework for defining and reasoning about
the formal semantics of programming languages. It is therefore intended to
be expressive enough to encompass both abstractions for defining programing
language semantics, as well as tools for model checking and verification.

Matching logic adopts a minimal design [4]. Its formulae, called patterns, are
built from constants, applications, logical operators, quantification, and fixed-
points. Unlike FOL, matching logic makes no distinction between terms and
formulae giving matching logic the flexibility to subsume various syntaxes, in-
cluding predicates, assertions, expressions, etc. of FOL [1], modal logics (com-
putation tree logic (CTL) [5], linear temporal logic (LTL) [5], propositional
dynamic logic (PDL) [5], modal µ-calculus [5], . . . ), separation logic [6], reach-
ability logic [5], algebraic structures modulo axioms [7], and type systems [8].
This syntactic generality allows for uniformly specifying and reasoning about
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properties typically expressed in disparate logical systems in their original no-
tation, within single logical framework yet without awkward encodings.

We consider these “awkwardness-free” encodings a big selling point for match-
ing logic. Indeed, a logical framework may work in principle, albeit with a large
gap between the target logic and its encoding in the framework. Yet, despite
its fairly minimal design, matching logic is able to capture each of these logics
with little or no representational distance.

Matching logic becomes a lingua franca within which we may talk about
properties of the mentioned logics, or develop procedures not limited to specific
ones. The need for such generality is clearly justified by the similarities and
redundancies between, for example, the tableau-based decision procedures for
propositional logic [9], modal µ-calculus [10], for LTL [11], FOL with equality
[12] to name a few. Indeed, there already exist initiatives for such logic-generic
procedures using matching logic as their basis. In [13], the authors develop
a prototype proof framework for reasoning about fixedpoints. A small set of
proof strategies are derived that are sufficient to prove separation logic, LTL,
and reachability formulae. However, no thought is given to decidability.

In this paper, we study the decidability of matching logic. By decidability, we
refer to the decidability of the following satisfiability problem, stated informally:

Given an axiom set Γ and a pattern ϕ, does there exist a model M
and an assignment of variables ρ, such that M validates Γ and there
exists an element e ∈ |ϕ|ρ, meaning that e is matched by ϕ in M .

This closesly parallels the satisfiability modulo theories problem of FOL:

Given an axiom set Γ and a formula ϕ, does there exist a model M
and an assignment of variables ρ, such that M validates Γ and ϕ.

Posed by Hilbert and Ackermann as a fundamental challenge of mathemat-
ics (the Entscheidungsproblem) in 1928 [14], finding an algorithm to solve this
problem was proved impossible for arbitrary mathematical statements and the-
ories independently by Church [15] and Turing [16] in 1936. However, this has
not caused the problem to disappear. Instead it has become one of classification
— for which classes of mathematical statements can we find such an algorithm?

Much progress has been made since then, and continues to be made, in this
active area of research. Various theories and syntactic fragments (e.g. quanti-
fier prefixes) of FOL have decision procedures [17]. Several other logics, such
as propositional modal logic [18], modal µ-calculus [10], linear temporal logic
(LTL) [11], CTL* [19], guarded fixedpoint logic [20], and more have been proved
decidable. In addition, several other mathematical abstractions not typically
considered logics, such as unification modulo axioms [21], have also been shown
decidable.

Many of these decision procedures and proofs exist in their own private
universes with varied syntaxes, semantics, models and proof rules. Yet, most
of these logics and abstractions may be defined naturally as theories within
matching logic. This leads us to wonder, is matching logic a tool we may leverage
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to find commonalities between these assorted decision procedures? Can it help
up expand these fragments? Does it give us insight into what properties make
these fragments decidable, and what makes them undecidable?

Figure 1: The semantics-first
approach taken by K.

While important and interesting questions
in their own right, these questions are not of
purely theoretic motivation. Let us now re-
turn to matching logic’s origin, as the log-
ical foundations of the K framework. This
framework subscribes a “sematics-first” phi-
losophy, shown in Figure 1. Under this phi-
losophy, programming language development
should start with a formal mathematical se-
mantics. From this formal semantics, we
may then derive the various tools for pro-
gramming languages, such as compilers, in-
terpreters, model checkers, verification tools,
etc. This approach has proven effective and
practical, even for complex languages in var-
ied paradigms, such as C [22], Haskell [23], Etherium Virtual Machine [24], to
name a few. Language semantics and specifications written in K are translated
to matching logic theories. K’s various tooling are considered best-effort im-
plementations to prove the validity of these specifications. Knowing the limits
of decidability in matching logic will inform us about how we may use these
tools more effectively, and where we need to ask the user for additional lemmas,
assumptions and annotations.

In this work, we make a first foray into such an effort by generalizing a deci-
sion procedure for modal µ-calculus to a fragment of matching logic. In Section
2, we discuss related research. In Section 3, we present a formal introduction to
matching logic. In Section 4, we look at the existing results about decidability
in matching logic. The next three sections present our main results:

• In Section 5, we introduce a decision procedure for a fragment of matching
logic.

• In Section 6, we show how we can take theories into account by generalizing
the previous decision procedure to LTL.

• Finally, in Section 7 we briefly review out implementation of the decision
procedure.

2 Related Work

In this section, we briefly introduce works we generalize, or with similar goals.

2.1 Tableau Systems for Modal Logics

Various modal logics have such as LTL, CTL, modal logic, modal µ-calculus
have tableau systems for the satisfiability of their formulae. The tableau system

3



presented in this paper in fact generalizes that of modal µ-calculus, and with
some modifications, subsumes that of LTL.

2.2 Monadic Second Order on Graphs with Bounded Treewidth

Monadic second order logic is a logic that allows quantification over both sets
and elements. It has been shown that when restricted to models that are graphs
with bounded tree width, formulae in this logic may be decided in linear time
[25].

2.3 Guarded Logics

Many of the above modal logics have been shown to have translations into
guarded logics, or guarded fixedpoint logics. Guarded logics restrict quantifica-
tion so that they can only reference elements that are closely related. This is
done syntactically, by restricting quantification to formulae of the form.

∃ȳ.(α(x̄, ȳ) ∧ ψ(x̄, ȳ) or ∀ȳ.(α(x̄, ȳ)→ ψ(x̄, ȳ)

where α is a “guard” that must mention all free variables in ψ. Depending
on which guarded logic is considered, α may have different restrictions placed
on it. As originally proposed in [20], α was restricted to atomic propositions.
Whereas, loosely guarded logics [26] generalize this to conjunctions of atoms,
such that for each pair x, x′ of variables one in x̄ ∪ ȳ, the other quantified in ȳ
an atomic proposition in the guard mentions both x and x′.

While the fragment of matching logic we build the decision procedure for
may likely be translated to loosely guarded fixedpoint logic, matching logic
offers other selling points such as the low representational distance and the
possibility of restricting models using theories.

2.4 A Unified Proof Framework

In [13], the authors develop a prototype proof framework for matching logic. It
deals with the validity of matching logic patterns, a property closely related to
satisfiability. The prototype is aimed at handling fixedpoints generically across a
set of matching logic theories, specifically separation logic, LTL and reachability.
A small set of strategies derived from the matching logic proof system, that are
sufficient to prove certain patterns in these theories. However, no thought is
given to decidability and completeness. We believe that the approach taken
there is somewhat ad-hoc, and such a theory-spanning prover may be better
architected with a decision procedure such as the one presented in this paper at
its core.

3 Matching Logic Preliminaries

In this section, we formally introduce various matching logic preliminaries, in-
cluding its formulae, semantics, models and theories.
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Matching logic signatures prescribe the constant symbols and variables that
may be used. Unlike in FOL, matching logic doesn’t assign arities to symbols. In
fact, all symbols are constants. More complex patterns, such as predicates and
terms, may be built using the application construct shown later. Further, there
are two different classes of variables — set variables, and elemental variables
that are used in different contexts.

Definition 2. A matching logic signature (EVar,SVar,Σ) has a set EVar of
element variables x, y, . . . , a set SVar of set variables X,Y, . . . , and a set Σ
of (constant) symbols σ, f, g, . . . . We often omit EVar and SVar and use Σ to
denote the signature.

Matching logic formalae are called patterns, and are build from structural
constructs (constant symbols and applications) logical connectives, quantifiers
and fixed-point constructs.

Definition 3. For a signature Σ, the set of matching logic patterns, denoted
Pattern, is defined by the following grammar:

ϕ :=

structural︷ ︸︸ ︷
σ | ϕ1 ϕ2 |

logical︷ ︸︸ ︷
⊥ | ϕ1 → ϕ2 |

quantification︷ ︸︸ ︷
x | ∃x. ϕ |

fixpoints︷ ︸︸ ︷
X | µX.ϕ

where σ ∈ Σ, x ∈ EVar, X ∈ SVar, and X occurs positively in µX.ϕ i.e., X is
not nested in an odd number of times on the left of an implication ϕ1 → ϕ2.

Pattern ϕ1 ϕ2 is called application and assumed associative to the left. It
may be used to build both terms and predicates. The scope of binders ∃ and µ
goes farthest to the right. Observe that FOL-style quantifiers may only be used
over element variables, whereas the fixedpoint operators only allow set variables.
This disallows, for example, universal quantification over sets. The notions of
free variables FV(ϕ), α-renaming, and capture-avoiding substitution (ϕ[ψ/x]
and ϕ[ψ/X]) are defined in the usual way. >,⊥,∧,∨,∀ and ν are considered
syntactic sugar and are defined as usual:

¬ϕ ≡ ϕ→ ⊥
> ≡ ¬⊥

ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

∀x. ϕ ≡ ¬∃x.¬ϕ
νX.ϕ ≡ ¬µX.¬ϕ[¬X/X]

Intuitively, patterns have a “matching” semantics. For example, given list
constructor symbols cons and nil, the pattern cons(x, nil) matches all singleton
lists. The patterns ϕ1 ∧ ϕ2 (resp. ϕ1 ∨ ϕ2) match the elements in the model
that match both ϕ1 and ϕ2 (resp. ϕ1 or ϕ2). Existentials have a union seman-
tics, with ∃x.ϕ(x) matching the union of all patterns that match ϕ(a) for all
elements a in the model. Similarly, universals have an intersection semantics.
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The fixedpoint pattern µX.ϕ(X) matches the least set A such that ϕ(A) = A.
For example µX.0 ∨ s(s(X)) matches the set of even natural numbers, when s
is the successor function.

Definition 4. A matching logic structure is a three-tuple, (M, appM , {σM}σ∈Σ),
where :

• M is a nonempty, called domain;

• appM : M ×M → P(M) is a binary application function;

• for each symbol σ, σM is a subset σM ⊆M called interpretation of σ ∈ Σ.

We use M to denote the above structure and also call it a model. We lift,
pointwise, the application function appM from over elements to over sets, as
follows (where A,B ⊆M)

ãppM : P(M)× P(M)→ P(M)

ãppM (A,B) =
⋃

a∈A,b∈B

appM (a, b)

Note that ãppM (A,B) = ∅ whenever A = ∅ or B = ∅. We overload the notation
appM (A,B) to mean ãppM (A,B) for simplicity.

Definition 5. Given (EVar,SVar,Σ) and a structure M , a valuation is a function
ρ : (EVar ∪ SVar)→ (M ∪ P(M)) with ρ(x)∈M for all x∈EVar and ρ(X)⊆M
for all X ∈ SVar. Its extension, | |ρ : Pattern→ P(M), is defined as:

|x|ρ = {ρ(x)} for x ∈ EVar

|X|ρ = ρ(X) for X ∈ SVar

|σ|ρ = σM for σ ∈ Σ

|ϕ1ϕ2|ρ = appM (|ϕ1|ρ , |ϕ2|ρ)
|⊥|ρ = ∅

|ϕ1 → ϕ2|ρ = M \ (|ϕ1|ρ \ |ϕ2|ρ)

|∃x. ϕ|ρ =
⋃
a∈M
|ϕ|ρ[a/x]

|µX.ϕ|ρ = µF where F(A) = |ϕ|ρ[A/X] for A ⊆M

Here, “\” is set difference; ρ[a/x] (resp. ρ[A/X]) denotes the valuation ρ′ such
that ρ′(x) = a (resp. ρ′(X) = A) and agrees with ρ on all other variables.
µF denotes the least fixedpoint of F , a monotone function. Its existence is
guaranteed by the Knaster-Tarski fixpoint theorem [27]. We omit the subscript
ρ when ϕ is closed is understood to be the empty valuation, and simply use |ϕ|.
Definition 6. We say pattern ϕ is valid in M , written M � ϕ, iff |ϕ| = M for
all ρ : Var → M . Let Γ be a set of Σ-patterns called axioms. We write M � Γ
iff M � ψ for all ψ ∈ Γ. We write Γ � ϕ and say that ϕ is valid in Γ iff M � ϕ
for all M � Γ. We abbreviate ∅ � ϕ as � ϕ. We call the pair (Σ,Γ) a matching
logic Σ-theory, or simply a (Σ-)theory. We say that M is a model of the theory
(Σ,Γ) iff M � Γ.
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4 Status Quo

In this section we will review the existing decidability results for matching logic.
Matching logic in its full generality is undecidable. Indeed, in [28], it is shown
that matching logic can capture FOL as a theory. Since FOL is undecidable,
matching logic must also be undecidable.

We should therefore consider subsets of matching logic instead. The obvi-
ous subsets to consider are syntactic fragments. We may consider fragments
based on the components of the grammar defined in Definition 3 used to con-
struct patterns and axioms. Let us first consider the fragment consisting only
of the structural and logical components. That is, patterns that do not use the
quantification and fixedpoints.

However, even with this basic fragment, we encounter a problem. The “word
problem” for groups, a known undecidable problem [29], may be encoded as
validity of patterns in this fragment, implying that satisfiability is undecidable.
This problem is stated as:

Given an arbitrary finitely presented group 〈A | U1 = ε, . . . , Un = ε〉,
where A = {a1, a2, . . . an}, and U1, . . . Un are finite set of words in
built from A and its inverses, are two words w1 and w2 equal?

Let Σ = A∪Ā∪{ε}, where Ā = {a−1
1 , . . . , a−1

n } represents the set of inverses,
and ε represents the empty word Let Eq = {U1, . . . , Un} ∪ {a1a

−1
1 , . . . , ana

−1
n }.

Now, for each e1e2 . . . en ∈ Eq and each word a1 . . . an ∈ A∗ add a (countable)
set of axioms e1(e2(. . . (en(a1(a2 . . . (an)) . . .))))↔ a1(a2 . . . (an)). Now, for two
words a1 . . . an, b1 . . . bn, the pattern a1 (. . . an) ↔ b1 (. . . bn) is valid iff they
can be proved equal via the group equalities encoded by the axioms.

This encoding takes advantage of infinte axioms to emulate quantification,
so this fragment may yet be decidable when the set of axioms if finite. However,
a similar theory may be presented using only finitely-many axioms, if we allow
either set variables or elemental variables in the axioms. Since even the simplest
of fragment is undecidable for arbitrary theories, we must be more discerning
regarding the theories we consider to obtain a non-trivial decidable fragment.

Let us, for now, restrict ourselves to decidability when Γ = ∅. Here, we find
we can make more progress. If we restrict applications to only allow constant
symbols in the first argument, we see that we are left with an embedding of
modal logic, a decidable logic, in AML. We may even relax our restriction on
the use of fixedpoint operators and have an embedding of modal µ-calculus. We
shall in fact use this as the starting point for the results in this paper. In the
next section we show that this restriction to constant symbols in first argument
of applications is not neccessary for decidability. We begin to tackle non-empty
theories in Section 6.

We summarize the status quo of the decidability of matching logic fragments
in Table 7.
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# of axioms base base base base, µ
in Γ only and µ and ∃ and ∃

0 3 3 7 7
Finite ? 7 7 7

Infinite 7 7 7 7

Figure 7: Decidability results for syntactic fragments of matching logic with
respect to cardinality of axioms in the theory.
Boxes denote nontrivial results proved in this paper.

Base ≡ structural + logical components

µ ≡ fixedpoint component,

∃ ≡ quantification component

5 Our Tableau-Based Decision Procedure

In this section, we prove the decidability of the empty theory for matching logic
without existentials and set variables, that we will denote by ML6 ∃µ. At a high
level, we present a two sets of tableau rules, Smod and Sref . If a tableau can
be constructed via Smod, and meets certain additional properties (in Definition
20), then the pattern under consideration must be satisfiable. Otherwise, a
refutation may be constructed via the rules in Sref . The tableau rules and
proofs presented in this paper is inpired by a similar proof presented in [10]
for modal µ-calculus, but extended to handle binary application with arbitrary
patterns (whereas modal µ-calculus only allows binary application where the
first argument is a constant symbol). In [10] a single set of rules is used to
construct a tableau from which a model or refutation is obtained by pruning
certain branches.

In the following subsections, we first define preliminaries for constructing
tableau sequents, present the tableau rules, and then define conditions under
which such a tableau is considered a “pre-model”. Next, we prove a pattern is
satisfiable iff a pre-model exists. We also show that a refutation may otherwise
be constructed using Sref , and that the time and space complexity of construct-
ing the model is a function of the size of the formula, implying the small model
property.

We only present outlines and intuitions for each of the proofs in the main
body of the paper, and refer the reader to the appendix for complete ver-
sions.

5.1 Positive-Form Guarded Patterns

For technical convenience, we consider a more limited form of matching logic
syntax without explicit negation, called the positive form:

Definition 9. Positive form patterns are patterns inductively defined according
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to the following grammar:

ϕ :=

structural︷ ︸︸ ︷
σ | σ̄ | 〈ϕ1, ϕ2〉 | [ϕ1, ϕ2]

|ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2︸ ︷︷ ︸
logical

| X | µX.ϕ | νX.ϕ︸ ︷︷ ︸
fixpoints

where:

σ̄ ≡ ¬σ 〈ϕ1, ϕ2〉 ≡ ϕ1 ϕ2

νX.ϕ ≡ ¬µX.¬ϕ[¬X/X] [ϕ1, ϕ2] ≡ ¬〈¬ϕ1, ¬ϕ2〉

For the ML6 ∃µfragment without axioms, this syntax is as expressive, but dis-
allows negations of set variables. It is convenient, because we would otherwise
have to handle each construct separately depending on whether it occured pos-
itively or negatively, does away with the need for the positivity condition for
variables occuring in µ and ν. Every ML6 ∃µpattern may be converted into a
positive-form patten by applying De Morgan dualities and the equivalences in
Definition 9.

For convenience, we show a derived semantics of positive-form patterns here.
Given a model M and a valuation ρ, the semantics of positive-form patterns is:

|c| = cM

|¬c| = M \ cM
|X| = ρ(X)

|ϕ1 ∧ ϕ2| = |ϕ1| ∩ |ϕ2|
|ϕ1 ∨ ϕ2| = |ϕ1| ∪ |ϕ2|
|〈ϕ1, ϕ2〉| = {a ∈M | ∃a1, a2 s.t. a ∈ appM (a1, a2)

∧ ∀i ∈ {1, 2}, ai ∈ |ϕi|}
|[ϕ1, ϕ2]| = {a ∈M | ∀a1, a2 s.t. a ∈ appM (a1, a2)

→ ∃i ∈ {1, 2} s.t. ai ∈ |ϕi|}

|µX.ϕ|ρ =
⋂{

A ⊆M | |ϕ|ρ[A/X] ⊆ A
}

|νX.ϕ|ρ =
⋃{

A ⊆M | A ⊆ |ϕ|ρ[A/X]

}
Note that this presentation of the semantics is slightly different from that in

Definition 5, describing µ (resp. ν) in terms of infinite union (resp. intersection)
of the application of the function F . Again, this is guaranteed to be the least
(resp. greatest) fixed-point due to the Knaster-Tarksi theorem. We also present
〈 〉 and [ ] to emphasize the symmetry between them. It also highlights that
〈 〉 corresponds is the pointwise application of the appM and allows [ ] to be
presented showcasing its dual nature.

For technical reasons, we further restrict patterns to “guarded” patterns,
that only allow bound set variables to occur within applications.
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Definition 10 (Positive-form guarded pattern). Let ϕ be a positive-form pattern
and X be a variable that occurs in ϕ (the occurrences may be free occurrences
or bound occurrences). We say X is guarded in ϕ iff every occurrence of X is
in scope of some 〈 〉 or [ ]. We say a pattern is a positive guarded pattern iff it
is a positive-form pattern and every bound variable is guarded.

Using some basic reasoning, we may prove that:

Lemma 11. Every ML6 ∃µpattern is equivalent to some positive-form guarded
pattern.

For example, given an unguarded pattern: µX. νY. X ∨ 〈X, Y 〉, we may
replace it with the equivalent pattern using the following derivation

µX. νY. X ∨ 〈X, Y 〉
⇐⇒ µX. X ∨ 〈X, νY. X ∨ 〈X, Y 〉〉
⇐⇒ µX. 〈X, νY. X ∨ 〈X, Y 〉〉

For the rest of this section, we will use assume that all patterns are positive-
form guarded patterns.

5.2 Definition Lists

Definition 12. We extend the positive-form pattern syntax with a countable
set, DefCons, of fresh constant symbols, called definition constants, denoted
U1, U2, . . . , V1, V2, . . . . As with set variables, we only allow definition constants
to appear positively in patterns, so they cannot have negations on top of them.

A definition list is a finite ordered list of equations:

D = (U1 = κ1X.ϕ1) ; . . . ; (Un = κnX.ϕn)

where κ1, . . . , κn ∈ {µ, ν}, U1, . . . , Un ∈ DefCons are distinct definition con-
stants, X is a set variables, κ1X.ϕ1, . . . , κnX.ϕn are distinct patterns (modulo
α-equivalence), and for every i ∈ {1, . . . , n}, all definition constants appearing
in ϕi are among U1, . . . , Ui−1. If i < j, we say Ui is older than Uj and Uj is
younger than Ui, with respect to the definition list D. We call Ui a µ-constant
or a ν-constant according to κi = µ or κi = ν. We use ε to denote the empty
definition list.

For every i ∈ {1, . . . , n}, we call Ui the ith constant in D and κiX.ϕi the
defining pattern of Ui. Note that all defining patterns are fixpoint patterns that
have the same binding variable X. This requirement is mainly for technical
convenience and can be easily satisfied by α-renaming.

Definition 13. Given a pattern ϕ, we construct a definition list for ϕ by means
of the contraction operation [〉ϕ〈] defined inductively as follows (where the op-
eration ◦ is defined later):

1. [〉c〈] = [〉¬c〈] = [〉X〈] = [〉U〈] = ∅;
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2. [〉ϕ1 ∧ ϕ2〈] = [〉ϕ1 ∨ ϕ2〈] = [〉ϕ1〈] ◦ [〉ϕ2〈];

3. [〉〈ϕ1, ϕ2〉〈] = [〉[ϕ1, ϕ2]〈] = [〉ϕ1〈] ◦ [〉ϕ2〈];

4. [〉µX.ϕ〈] = (U = µX.ϕ) ; [〉ϕ[U/X]〈], where U is a fresh definition constant;

5. [〉νX.ϕ〈] = (U = νX.ϕ) ; [〉ϕ[U/X]〈], where U is a fresh definition constant.

The operation [〉ϕ1〈] ◦ [〉ϕ2〈] is defined as follows. Firstly, we make sure that
all the definition constants used in [〉ϕ1〈] are disjoint from those used in [〉ϕ2〈].
Then, if there are (U = ψ) ∈ [〉ϕ1〈] and (V = ψ) ∈ [〉ϕ2〈] for the same pattern ψ,
we delete (V = ψ) from [〉ϕ2〈] and replace V with U in the remaining definitions
in [〉ϕ2〈]. Repeat this step until all the defining patterns are disjoint. Finally,
let [〉ϕ1〈] ◦ [〉ϕ2〈] denote the sequence of the remaining definitions.

Intuitively, [〉ϕ〈] summarizes all the fixpoint sub-patterns of ϕ in a top-down
way. The oldest (i.e., first) definition constant in [〉ϕ〈] corresponds to the topmost
fixpoint sub-pattern of ϕ, say, µX1. ϕ1. Then, the fixpoint sub-patterns of
ϕ1[U1/X1] are recursively summarized, where all the (recursive) occurrences of
X1 are replaced with U1. Therefore, for every (Ui = ϕi) ∈ [〉ϕ〈], the subscript
i denotes the timestamp that shows the time when ϕi is summarized. If Ui is
older than Uj , then the defining pattern Ui is summarized before that of Uj is
summarized. Since [〉ϕ〈] is computed in a top-down way, U1, . . . , Un are listed in
the pre-order traversal of the parse tree of ϕ. Let us demonstrate this operator:

[〉(νY.p ∧ 〈•, Y 〉)〈]
≡ (V1 = νY.p ∧ 〈•, Y 〉); [〉p ∧ 〈•, V1〉〈]
≡ (V1 = νY.p ∧ 〈•, Y 〉); [〉p〈] ◦ [〉〈•, V1〉〈]
≡ (V1 = νY.p ∧ 〈•, Y 〉); [〉〈•, V1〉〈]
≡ (V1 = νY.p ∧ 〈•, Y 〉); [〉•〈] ◦ [〉V1〈]
≡ (V1 = νY.p ∧ 〈•, Y 〉)

Definition 14. Let ϕ be a pattern that may contain definition constants andD be
a definition list that contains all definition constants appearing in ϕ. We define
the expansion operation 〈]ϕ[〉D that subsequently replaces definition constants
in ϕ by their defining patterns according to D, as:

〈]ϕ[〉D = ϕ[ϕn/Un] · · · [ϕ1/U1]

where D = (U1 = ϕ1), . . . , (Un = ϕn)

Note that expansion is carried out from the youngest definition constants to
the oldest, in reserve to the contraction operation [〉ϕ〈]. When D is understood,
we abbreviate 〈]ϕ[〉D as 〈]ϕ[〉. For example, 〈]V1[〉D ≡ νY.p ∧ 〈◦, Y 〉, where D is
the definition list from above.
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5.3 Tableau Sequents

Below, we define various constructs needed for tableau sequents.

Definition 15. Let Γ be a set of patterns. We define Γ〈 〉 (resp. Γ[ ]) to be the
set of 〈 〉-patterns (resp. [ ]-patterns) in Γ. Formally,

Γ〈 〉 = {〈ϕ1, ϕ2〉 | 〈ϕ1, ϕ2〉 ∈ Γ}
Γ[ ] = { [ϕ1, ϕ2] | [ϕ1, ϕ2] ∈ Γ}

Definition 16. Given Γ we define a witness function wit : Γ[ ] → {1, 2} as a
function that maps every pattern of the form [ψ1, ψ2] ∈ Γ to either 1 or 2, called
the witness. Let Wit(Γ) = [Γ[ ] → {1, 2}] denote the set of all witness functions
with respect to Γ. For a witness function wit, let Γwit

i = {ψi | [ψ1, ψ2] ∈ Γ and
wit([ψ1, ψ2]) = i }.

Each witness function represents one possible partition of [ ] terms into two
sets. For example, when Γ[ ] = {[a1, a2], [b1, n2]} there are four witness possible
functions:

a = {[a1, a2] 7→ 1, [b1, b2] 7→ 1}
b = {[a1, a2] 7→ 1, [b1, b2] 7→ 2}
c = {[a1, a2] 7→ 2, [b1, b2] 7→ 1}
d = {[a1, a2] 7→ 2, [b1, b2] 7→ 2}

Choosing witness c, we have Γc1 = {b1} and Γc2 = {a2}
Definition 17. A tableau sequent is one of the following:

1. a finite nonempty pattern set Γ;

2. Γ 〈ϕ1, ϕ2〉, where 〈ϕ1, ϕ2〉 ∈ Γ;

3. Γ 〈ϕ1, ϕ2〉 wit, where 〈ϕ1, ϕ2〉 ∈ Γ and wit ∈Wit(Γ, σ).

We call (1) a normal sequent and (2) and (3) ghost sequents.

Definition 18. For a normal sequent Γ, we say Γ is an inconsistent sequent if
there exists ϕ ∈ Γ such that its negation is in Γ. If a normal sequent is not
inconsistent, then it is a consistent sequent.

5.4 Constructing a Tableau

Let D be a definition list. We define the following set Smod of tableau rules with
respect to D as shown in 8b, where Γ is a finite nonempty set of sentences and
ϕ,ϕ1, ϕ2 are sentences, whose definition constants are all contained in D.

Definition 19. A tableau for ψ is a possibly infinite labeled tree (T, L), where T
is a tree whose set of nodes is Nodes(T ) and nodes are denoted s, s1, s2, . . . , and
the root node is root(T ). The labeling function L : Node→ Sequent associates
every node of T with a sequent, such that the following conditions are satisfied:
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1. L(root(T )) = {ψ};

2. For every s ∈ Nodes(T ), if L(s) is an inconsistent sequent then s is a leaf
of T ;

3. For every s ∈ Nodes(T ), if L(s) is not an inconsistent sequent and one of
the tableau rules in Smod can be applied (with respect to the definition
list D = [〉ψ〈]), and the resulting sequents are seq1, . . . , seqk, then s has
exactly k child nodes s1, . . . , sk, and L(s1) = seq1, . . . , L(sk) = seqk.

In (3), we categorize the nodes by the corresponding tableau rules that are
applied. For example, if the a child nodes of s is obtained by applying (or-l),
then we call s an (or-l) node. We also categorize the nodes by their labeling
sequents. If a node is labeled with a normal sequent, we call it a normal node.
Otherwise, it is labeled with a ghost sequent and we call it a ghost node. Note
that a node is a ghost node iff it is an (app2) or (app3) node. In either case,
its closest ancestor normal node is an (app1) node.

For any tableau (T, L), the leaves of T are either labeled with inconsistent
sequents, or they are (app1) nodes whose labels contain no σ-patterns for any
σ. For any non-leaf node, unless it is labeled with (app1) or (app3), it has
exactly one child node.

Definition 20. A quasi-model is a tableau where all leaf nodes are consistent.

Thus, in a quasi-model, all leafs are (app1) nodes.

Definition 21. Let ψ be a sentence and (T, L) be a tableau for ψ. Given a
rooted maximal (possibly infinite) path P of T , a trace on P is a partial function
Tr: P 7→ Pattern whose domain dom(Tr) is a prefix of P , such that the following
conditions are satisfied:

1. If Tr(s) is defined on s ∈ Nodes(T ), and

(a) if s is a normal node then Tr(s) ∈ L(s);

(b) if s is a ghost node, then let s′ be the closest ancestor normal node
of n and define Tr(s) = Tr(s′);

2. Tr(root(T )) is defined, and by (1), Tr(root(T )) = ψ;

3. If Tr(s) is defined on s ∈ Nodes(T ) and s′ is the next node of s in P that
is a normal node and is obtained not by applying (app3), and

(a) if the rule does not reduce Tr(s), then we define Tr(s′) = Tr(s);

(b) if the rule reduces Tr(s), then we let Tr(s′) be one of the results of
the reduction, non-deterministically. Note that the nondeterministic
choice only occurs when s is an (and) node, L(s) = {ϕ1 ∧ ϕ2} ∪ Γ,
T (s) = ϕ1 ∧ ϕ2, and L(s′) = {ϕ1, ϕ2} ∪ Γ. In this case, T (s′) is ϕ1

or ϕ2, non-deterministically.
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4. If Tr(s) is defined on s ∈ Nodes(T ) whose label L(s) = Γ  〈ϕ1, ϕ2〉  
wit, and s′ is the next node of s in P obtained by applying (app3), and
L(s′) = {ϕi} ∪ Γwit

i for some i ∈ {1, 2}, and

(a) if Tr(s) = 〈ϕ1, ϕ2〉, then Tr(s′) = ϕi;

(b) if Tr(s) = [ψ1, ψ2] and ψi ∈ Γwit
i , then Tr(s′) = ψi;

(c) Tr(s′) is undefined for any other cases.

Definition 22. We say a definition constant U regenerates on Tr if exists a node
s such that Tr(s) = U and Tr(s′) = κX.ϕ[U/X], where s′ is the next node of
n on Tr and (U = κX.ϕ) ∈ D. We say Tr is a κ-trace for κ ∈ {µ, ν}, if it is
infinite and the oldest definition constant (with respect to D) that regenerates
infinitely often is a κ-constant.

Lemma 23. Any infinite trace is either a µ-trace or a ν-trace.

Definition 24. A quasi-model is called a pre-model iff all infinite traces on all
paths are ν-traces.

5.5 Correspondence between existance of pre-models and
satisfiability

Now that we have know how to build pre-models, we go about proving decid-
ability:

Theorem 25. For any positive guarded sentence ψ, determining whether ψ is
satisfiable is decidable.

To do this, we prove the equivalence between pre-models and satisfiability.

Theorem 26. For any positive guarded sentence ψ, there exists a pre-model for
ψ iff ψ is satisfiable.

We handle each direction separately in the following propositions:

Proposition 27. If a positive guarded sentence ψ is satisfied in M on a, there
exists a pre-model for ψ.

and

Proposition 28. If there exists a pre-model for a positive guarded sentence ψ
then ψ is satisfiable.

Proposition 27 is proved by constructing a pre-model from a model M of
ψ and an element a ∈ |ψ|. As we construct each node, we assign an element
as to the node and maintain the invariant L(s) |= as. The invariant allows us
to construct further nodes, resulting in a quasi-nodel. We then show that the
quasi-model must be a pre-model, or else there would be a µ-trace.

Next, to prove Proposition 28 we construct a model, called the canonical
model, from the pre-model. We define the set of elements in the model as
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the (app1) nodes (including the leaf nodes with zero 〈 〉-patterns. For nodes
s, s1, s2 ∈M , appM (s1, s2) = s iff s1 and s2’s nearest (app1) descendant is s.

While most of the tableau rules have an intuitive meaning, replacing the
current sequent with a set of equisatisfiable sequents, the (appi) rules need
some explanation. Let us review the semantics of 〈 〉 and [ ].

|〈ϕ1, ϕ2〉| = {a ∈M | ∃a1, a2 s.t. a ∈ appM (a1, a2)

∧ ∀i ∈ {1, . . . , n}, ai ∈ |ϕi|}
|[ϕ1, ϕ2]| = {a ∈M | ∀a1, a2 s.t. a ∈ appM (a1, a2)

→ ∃i ∈ {1, 2} s.t. ai ∈ |ϕi|}

Each instance of 〈ϕ1, ϕ2〉 requires that there exists some elements a1 and
a2, that are matched by ϕ1 and ϕ2 and that a ∈ appM (a1, a2). But now, each
instance of [ϕ1, ϕ2] we require that for every element in appM (a1, a2), there is
some i ∈ {1, 2}, ai matches ϕi. So, for each [ϕ1, ϕ2] the either s1 must match
ϕ1, or s2 must match ϕ2. Thus, we need to assign each [ ] to either s1, or
s2. This is precisely what the witness does. So, intuitively, each (app1) rule
selects all 〈 〉 patterns, the (app2) node chooses a witness, and (app3) begins
construction of the nodes.

5.6 Refutations

We may use the rules in Sref to build a refutation as defined below.

Definition 30. A refutation for a pattern ψ is a possibly infinite labeled tree
(T, L), where T is a tree whose set of nodes is Nodes(T ) and nodes are denoted
s, s1, s2, . . . , and the root node is root(T ). The labeling function L : Node →
Sequent associates every node of T with a sequent, such that the following
conditions are satisfied:

1. L(root(T )) = {ψ};

2. For every s ∈ Nodes(T ), if L(s) is an inconsistent sequent then s is a leaf
of T ;

3. For every s ∈ Nodes(T ), if L(s) is not an inconsistent sequent and one
of the tableau rules in Sref can be applied (with respect to the definition
list D = [〉ψ〈]), and the resulting sequents are seq1, . . . , seqk, then s has
exactly k child nodes s1, . . . , sk, and L(s1) = seq1, . . . , L(sk) = seqk.

4. Every leaf node is labeled with an inconsistent sequent.

5. Every infinite path has µ-trace.

We may prove that:

Theorem 31. For an arbitary positive-form guarded pattern ϕ, there exists
either a pre-model or a refutation.
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This may be deduced by constructing a Gale and Stewart game[30] with
Borel winning[31] conditions. One player attempts to find a model, while the
other, a refutation. Borel winning conditions imply that there must be a winner,
i.e. that there must be either a model, or a refutation.

5.7 Example: Modal µ-Calculus Tableaux as an Instance
of the Matching Logic Tableau

We begin with a review of the syntax of modal µ-calculus. Note that here we
present the version with muliple modalities, there also exists a simpler version
with just a single modalilty. Given a finite set of atomic propositions P , a
finite set of actions A, and a countable of variables V , the language of Modal
µ-calculus formula is defined inductively from the following grammar:

ϕ := p | X | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ | µX.ϕ

where p ∈ P , a ∈ A, and X ∈ V , and X occurs positively in ϕ. Derived
operators are defined as sugar: [a]ϕ ≡ 〈a〉¬ϕ and νX.ϕ ≡ ¬µX.¬ϕ[X/¬X].

This is translated into an matching logic theory whose signature consists of
a symbol for each p ∈ P , for each a ∈ A. The modal operator is translated
to application via the alias 〈ϕ1〉ϕ2 ≡ 〈ϕ1, ϕ2〉. From this we may derive that
[a]ϕ ≡ [¬a, ϕ]. Modal µ-calculus formalae as represented in matching logic thus
only have constants as the first argument of 〈 〉, and negations of constants as
that of [ ].

[10] defines a set of tableau rules identically to those defined here, except
that the (appi) rules are replaced with a single rule:

Γ
(all〈〉)

{α, {β : [a]β ∈ Γ} : 〈a〉α ∈ Γ}

We show that every mu-calculus tableau may be considered an instance of
a matching logic tableau.

Let us consider the case when the sequent contains a = 〈a〉ϕ1 ≡ 〈a, ϕ1〉 and
ā = [a]ψ2 ≡ [¬a, ϕ2]. Consider any witness where wit(ā) = 1. Attempting to
apply the (appi) rules will result in an inconsistent node, as shown in Figure 32a.
To produce a model, we must therefore always use a witness where wit(s) = 2
when the first argument of mu calculus’ 〈 〉 and [ ] are the same constant symbol.

Next, consider the case when the sequent contains a = 〈a〉ϕ1 ≡ 〈a, ϕ1〉 and
b̄ = [b]ψ2 ≡ [¬b, ϕ2] (see Figure 32b). Choosing a witness when wit(b̄) = 1
results in the first child of (app3) with only the constant a and the negations
of other constants. Since ¬b only conflicts with b, this is a safe choice. We do
not need to consider ϕ2 on the second child of (app3). All other models would
put additional constraints on the right child of the (app3) node.

Defining wit
〈a, 〉
modal as assigning [¬a, ϕ1] to 1, and [¬b, ϕ1] to 2 when a 6= b,

we get:
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Γ

{Γ 〈a, ϕ1〉 : 〈a, ϕ〉1 ∈ Γ}

{Γ 〈a, ϕ1〉 wit
〈a, 〉
modal : 〈a, ϕ〉1 ∈ Γ}

{a, {¬b | [¬a]ϕ2 ∈ Γ} : 〈a, ϕ〉1 ∈ Γ}

{ϕ1, {ϕ2 | [a]ϕ2 ∈ Γ} : 〈a, ϕ〉1 ∈ Γ}

(app1)

(app2)

(app3)

5.8 Example: Dynamic logic

Dynamic logic is a common logic used in program reasoning. It extends modal
logic by allowing more complex modalities, such as sequences of actions, loops,
choices and conditionals, described by the grammar:

ϕ := p | ϕ→ ϕ | false | [α]ϕ

α := a | α ;α | α ∪ α | α∗ | ϕ?

As with modal µ-calculus, dynamic logic may also be translated to the ML6 ∃µ

fragment, without any axioms:

〈α〉ϕ ≡ (• α ϕ) [α]ϕ ≡ ¬〈α〉¬ϕ
(Seq) [α ;β]ϕ ≡ [α][β]ϕ (Choice) [α ∪ β]ϕ ≡ [α]ϕ ∧ [β]ϕ

(Test) [ψ?]ϕ ≡ (ψ → ϕ) (Iter) [α∗]ϕ ≡ νX. (ϕ ∧ [α]X)

Notice that this translation takes advantage of matching logic’s more pow-
erful application, using it to build a nested application for the translation of
〈α〉ϕ. Figure 33 shows an example tableau for a dynamic logic formula.

6 Linear Temporal Logic: Extending to non-
empty theories

In this section, we take a look at how we may expand the decidable fragment
beyond empty theories, and begin to handle theories with axioms. We use linear
temporal logic as a case-study, because it is defined by a simple theory.

For the signature, we use the set of propositional constants and a symbol ◦.
LTL is defined as a matching logic theory using a small set of notations and two
axioms:

“weak next” •ϕ ≡ ¬(◦¬ϕ)

17



“eventually” ♦ϕ ≡ µX. ϕ ∨ •X
“always” �ϕ ≡ νX. ϕ ∧ ◦X

“(strong) until” ϕ1 U ϕ2 ≡ µX. ϕ2 ∨ (ϕ1 ∧ •X)

(Inf) • > (Lin) •X → ◦X

The two axioms (Lin) and (Inf) force linear infinite models, and can be
used to derive an equivalent axiom •X ↔ ◦X. That is, that ◦ and its dual •
are equivalent. With this insight, we modify the tableau Smod to require that a
new proof rule is applied before (app1):

〈◦, ∆1〉, [¬◦, ∆2],Γ
(equiv)

〈◦, ∆1〉, 〈◦, Γ2〉, [¬◦, ∆1], [¬◦, ∆2],Γ
when † holds and Γ does not contain any [ ] and 〈 〉 patterns.

Here, 〈◦, ∆1〉 (resp [¬◦, ∆2]) represents the set of all 〈 〉 patterns (resp. [ ])
with ◦ (resp. ¬◦) as their first argument.

While this change by itself does not produce linear models, linear models
may be derived from these models. To see why this is the case, we take a look
at the sequents produced by applying the (equiv), (app1), (app2) and (app3)
rules.

〈◦, ∆1〉, [¬◦, ∆1],Γ(0)

〈◦, ∆1 ∪∆2〉, [¬◦, ∆1 ∪∆2]

{〈◦, ϕ1〉 [◦,∆1 ∪∆2, ,][¬◦, ∆1 ∪∆2] | for ϕ1 ∈ ∆1 ∪∆2}

{〈◦, ϕ1〉 wit 〈◦, ∆1 ∪∆2〉, [¬◦, ∆1 ∪∆2]
| for ϕ1 ∈ ∆1 ∪∆2}

{◦ | for ϕ1 ∈ ∆1 ∪∆2} {∆1 ∪∆2(2) | for ϕ1 ∈ ∆1 ∪∆2}

(equiv)

(app1)

(app2)

(app3)

First, notice that as with the case of model µ-calculus, only one choice

of witness can produce models, wit
〈a, 〉
modal, defined in the previous section as

assigning each [ ] term to 2. Next, observe that, due to the application of the
(equiv), while there are several sequents produced after the application of the
(app3) rule, only two are unique. The first set of children are labeled with a
single pattern ◦ and is a leaf node. The second set of sequents are all labeled
with the right sub-patterns of the 〈 〉 and [ ] patterns in the original sequent
— i.e. they all have the same label. For any pre-model, we may build a linear
LTL model by ignoring the first set of children, and treating the second set of
sequents as an equivalence class, choosing the children from any arbitrary node
in the set.
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Another important insight is that whenever α U β (or ♦β) occurs as the
label of a node, a future state must eventually be labeled with β. This is
because all traces in the pre-model are ν-traces. If a trace is labeled α U β ≡
µX.β ∨ (α ∧ •X) and no future state has the label β, then we must choose
the (or-r) rule infinitely often. But then, the corresponding definitional µ-
constant is regenerated infinitely often, without any older ν-constant between
regenerations. Thus it must have a µ-trace, a contradiction.

With these, we may prove that for the modified tableau rules:

Theorem 35. Every pre-model corresponds to an LTL model.

Figure 34 shows some example tableaux for LTL formulae.

7 Implementation

We’ve implemented the matching logic tableau as a rewriting system using
Maude [32]. The rewriting system has as its state, sets of annotated sequents.
Since the representational distance between tableaux/proof-trees and rewriting
is low, For the most part, the implementation of each tableaux rule looks almost
identical to the tableaux rules. There is, however, some bookkeeping we must
do to facilitate searching for models, and to detect µ- and ν-traces.

There are two things the bookkeeping needs to handle. First, there are a
few sequents that may have multiple possible children. This happens when
(or-l) and (or-r), (app1), (app2) or (app3) may apply. However, when
(or-l) and (or-r), and (app2) may apply we need to choose any one of the
possible children, whereas when (app1) and (app3) may apply, we must choose
all children.

We represent the choice of possible child sequents as non-deterministic rules.
For example, the maude rules for (or-l) and (or-r)

c r l [ or− l ] : 〈 \or (P1 , P2 ) , Gamma ; De f L i s t ; H i s t 〉
⇒ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ P1 , Gamma ; De f L i s t ; H i s t ]
i f P1 6= ⊥ ∧ P2 6= ⊥ .

c r l [ or−r ] : 〈 \or (P1 , P2 ) , Gamma ; De f L i s t ; H i s t 〉
⇒ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ P2 , Gamma ; De f L i s t ; H i s t ]
i f P1 6= ⊥ ∧ P2 6= ⊥ .

Similarly, the (app2) rule partitions each of the [ ] patterns into two sets,
corresponding to an assignment of witness via the following non-deterministic
rules.

r l 〈 . . . wi t {P1s}{P2s}  [ DApp1 DApp2 ] , Gamma; . . . 〉
⇒ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
〈 . . . wi t {P1s , DApp1}{P2s}  Gamma; . . . 〉 .

r l 〈 . . . wi t {P1s}{P2s}  [ DApp1 DApp2 ] , Gamma; . . . 〉
⇒ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
〈 . . . wi t {P1s}{P2s , DApp2}  Gamma; . . . 〉 .

Handling multiple child sequents, such as with the (app1) and (app3) rules,
is done by sequent conjunction operator, &&.
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eq 〈 〈 P1 P2 〉  wi t { P1s } { P2s }  empty ; . . . 〉
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
〈 P1 , P1s ; . . . 〉 && 〈 P2 , P2s ; . . . 〉

The second piece of bookkeeping we need to perform is the detection of
µ -and ν-traces. There are two parts to doing this. Firstly, we must detect
when a path loops back on itself so that we may stop applying tableau rules on
this branch. We do this be accumulating a history of all the sequents in that
path, and when a sequent repeats, we stop execution. Secondly, we must check
whether we have a µ− trace. We do this by annotating each possible trace-label
in the sequent with the set of definitional variables that have previously been
generated. When a sequent recurrs we check if the oldest constant generated
between occurrences on each trace is a µ- or a ν-constant. If it is a µ-constant,
we fail that branch. Otherwise, we consider the branch successful.

8 Future work

8.1 Extension to Equational Theories

The modified LTL tableau presented in Section 6 could in principle be extended
to other theories with similar axioms — equations whose application results
in the patterns labeling the sequent reaching a fixedpoint. Besides LTL, such
theories could include algebraic and co-algebraic structures. For each pair of
distinct constructors (without axioms) f, g, we may derive the following propo-
sitions: 〈f, ϕ〉 → [¬g, ⊥] that forces models matching f(x) to not match g(y);
and 〈f, ϕ〉 → [¬f, ϕ] that forces injectivitiy of constructors. Note that these
axioms alone allow both inductive and co-inductive structures. While is it clear
that these axioms are sound (i.e. that they follow from the properties of con-
structors), it is not clear that they are enough to rule out all models where
constructor axioms do not hold. The (equiv) may be modified to take this
implications into account instead of the ones mentioned in Section 6 to allow
working with there theories. A similar rule for associative and associative-
commutative constructors would require a relaxation of these axioms.

8.2 Guarded Fragment of FOL+fixedpoints

In [20], it is claimed that the reason for the robustness of the decidability of
modal logic is that it translates to the “guarded fragment” of FOL. This guarded
fragment, even with fixedpoint operators introduced, is decidable. It is therefore
worth looking into how this fits into a decision procedure for a fragment of
matching logic.

8.3 As the basis for an SMT prover for matching logic

For FOL, most modern satisfiability modulo theories (SMT) provers use a de-
cision procedure as there core. Many work by separating the formula into a
predicate logic “skeleton” and a first-order part. This skeleton is solved using
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the DPLL [33] decision procedure or similar. The SMT solver then iterates
through each of the models returned by this procedure, and checks if they are
“compatible” with the first-order part. A similar architecture may prove useful
for an matching logic solver. Since ML6 ∃µis a larger, decidable fragment of AML
than propositional logic, it may prove a better basis for such solver.

9 Conclusion

In this work, we proved the decidability of the first non-trivial fragment of
matching logic. This lays a foundation which we may extend to identify ad-
ditional decidable fragments of matching logic. We may also use this decision
procedure as the basis of a matching logic solver.
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[4] X. Chen and G. Roşu, “Applicative matching logic,” University of Illinois at
Urbana-Champaign, Tech. Rep. http://hdl.handle.net/2142/104616, 2019.
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.1 Decidability of ML6 ∃µ

Lemma 11. Every ML6 ∃µpattern is equivalent to some positive-form guarded
pattern.

Proof. Every ML6 ∃µpattern may be transformed into an equivalant positive-form
pattern by De Morgan’s laws. Let ϕ be a positive-form pattern, we construct
an equivalent guarded pattern.

Suppose ϕ = µX.α(X) and α(X) is a guarded pattern. Suppose X is un-
guarded in some sub-pattern α(X) of the form σY.β(Y,X) and Y is guarded
in σY.β(Y,X). We may use the (knaster-tarski) proof rule of matching
logic to obtain an equivalent (due to the (pre-fixedpoint) proof rule) pat-
tern, β(σY.β(Y,X), X). This pattern has all unguarded occurances outside the
scope of the fixedpoint operator.

We may now transform this pattern to obtain a conjunctive normal form:

(X ∨ α1(X)) ∧ · · · ∧ (X ∨ αn(X)) ∧ β′(X)

where all occurances of X in αi and β′ are guarded.

23

https://lmcs.episciences.org/4153
https://lmcs.episciences.org/4153
maude.cs.illinois.edu/
maude.cs.illinois.edu/


This is equivalant to:

(X ∨ (α1(X) ∧ · · · ∧ αn(X))) ∧ β′(X)

It is obvious that:

µX.(α1(X) ∧ · · · ∧ αn(X)) ∧ β′(X)

=⇒ µX.(X∨(α1(X) ∧ · · · ∧ αn(X))) ∧ β′(X)

Let γ = (X ∨ (α1(X) ∧ · · · ∧ αn(X))) ∧ β′(X). It is enough to show that
γ(µX.ᾱ(X) ∧ β(X)) =⇒ µX.ᾱ(X) ∧ β′(X).

γ(µX.ᾱ(X) ∧ β(X))

≡((µX.ᾱ(X) ∧ β(X)) ∨ ᾱ(µX.ᾱ(X) ∧ β(X)))

∧ β(µX.ᾱ(X) ∧ β(X))

=⇒ ((ᾱ(µX.ᾱ(X) ∧ β(X)) ∧ β(µX.ᾱ(X) ∧ β(X)))

∨ ᾱ(µX.ᾱ(X) ∧ β(X)))

∧ β(µX.ᾱ(X) ∧ β(X))

=⇒ ᾱ(µX.ᾱ(X) ∧ β(X)) ∧ β′(µX.ᾱ(X) ∧ β(X))

=⇒ µX.ᾱ(X) ∧ β′(X)

Lemma 23. Any infinite trace is either a µ-trace or a ν-trace.

Proof. Any rule except (ons) decreases the size of the trace label, so the (ons)
must apply infinitely often. Since there are only finite constants, there must
be some oldest constant that is regenerated infinitely often. It may be either a
µ-constant or a ν-constant.

We show that for any positive guarded sentence ψ, it is satisfied in a model
(i.e., its interpretation is nonempty) iff there exists a pre-model for ψ.

Definition 36. We extend the pattern syntax with two new constructs µαX.ϕ
and ναX.ϕ, where α is an ordinal. We define their semantics in M under the
valuation ρ by transfinite induction as follows:∣∣µ0X.ϕ

∣∣ = ∅∣∣µα+1X.ϕ
∣∣ = |ϕ|ρ[|µαX.ϕ|/X]∣∣µλX.ϕ∣∣ =

⋃
α<λ

|µαX.ϕ| for λ limit ordinal∣∣ν0X.ϕ
∣∣ = M∣∣να+1X.ϕ
∣∣ = |ϕ|ρ[|ναX.ϕ|/X]∣∣νλX.ϕ∣∣ =

⋂
α<λ

|ναX.ϕ| for λ limit ordinal
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Lemma 37. |µX.ϕ| =
⋃
α |µαX.ϕ| and |νX.ϕ| =

⋂
α |ναX.ϕ|.

Let us extend the notion of definition lists given in Definition 12 by allowing
equations of the form U = καX.ϕ for κ ∈ {µ, ν}. Let us extend the expansion
operator 〈]ϕ[〉D accordingly.

Definition 38. Let ψ be a sentence, D be a definition list containing all definition
constants in ψ, M be a model, and a be an element of M . Let Uk1 , . . . , Ukd
be the list of µ-constants in D, ordered from the oldest to the youngest. If for
some (irrelevant) valuation ρ we have a ∈ |〈]ψ[〉D|, then we define the signature
ordinal sequence, or simply the signature of ψ in a, written SigD(ψ, a), as the
least (in the lexicographical ordering) sequence of ordinals (α1, . . . , αd) such
that a ∈ |〈]ψ[〉D′ |, where D′ is obtained from D by replacing all equations of the
form Uki = µX.ϕki for i ∈ {1, . . . , d} with Uki = µαiX.ϕki .

Lemma 39. SigD(ψ, a) as given in Definition 38 is well-defined.

Note that SigD(ψ, a) is defined when a ∈ |ψ|. For technical convenience,
we define SigD(ψ, a) = ∞ when a 6∈ |ψ| and assume ∞ is larger than all other
ordinal sequences.

Lemma 40. Let ϕ1, ϕ2, ϕ be sentences whose definitions constants are in D,
M be a model, and a be an element of M . The following propositions hold.

1. If a ∈ |ϕ1 ∧ ϕ2| then

SigD(ϕ1 ∧ ϕ2, a) = max (SigD(ϕ1, a),SigD(ϕ2, a))

2. If a ∈ |ϕ1 ∨ ϕ2| then

SigD(ϕ1 ∨ ϕ2, a) = min (SigD(ϕ1, a),SigD(ϕ2, a))

3. If a ∈ |〈ϕ1, ϕ2〉| then

SigD(〈ϕ1, ϕ2〉, a) ≥ min
(a1,a2)∈Ā

max
i∈{1,2}

SigD(ϕi, ai)

where Ā = {(a1, a2) | a1 ∈ |〈]ϕ1[〉| , a2 ∈ |〈]ϕ2[〉| , a ∈ appM (a1, a2)}.

4. If a ∈ |[ϕ1, ϕ2]| then

SigD([ϕ1, ϕ2], a) ≥ sup
(a1,a2)∈Ā

min
i∈{1,2}

SigD(ϕi, ai)

where Ā = {(a1, a2) | a1 ∈ |〈]ϕ1[〉| , a2 ∈ |〈]ϕ2[〉| , a ∈ appM (a1, a2)}.

5. If a ∈ |µX.ϕ| and (Ui = µX.ϕ) ∈ D is the ith µ-constant in D, then
SigD(µX.ϕ, a) and SigD(Ui, a) are the same at the first (i− 1) ordinals.

6. If a ∈ |νX.ϕ| and (V = νX.ϕ) ∈ D, then SigD(νX.ϕ, a) = SigD(V, a);
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7. If a ∈ |U | and (Ui = µX.ϕi) ∈ D is the ith µ-constant in D, then
SigD(U, a) > SigD(ϕ[U/X], a), and they are the same at the first (i − 1)
ordinals.

8. If a ∈ |V | and (V = νX.ϕ) ∈ D, then

SigD(V, a) = SigD(ϕ[V/X], a)

For any normal sequent Γ = {ϕ1, ϕ2}, we write |〈]Γ[〉D| to mean
⋂
i |〈]ϕi[〉D|

and drop D when it is understood from the context.

Definition 41. Given a pre-model (T, L) for ψ, we define a corresponding canon-
ical model M as follows:

1. The carrier set M contains as elements all the leaves and (app1) nodes of
T . For any s ∈ Nodes(T ), we define by dess its closest descendant node
(may be itself) that belongs to M . Note that dess is well-defined, because
each infinite path in the pre-model must contain infinitely many (app1)
nodes, since all patterns are guarded.

2. a ∈ appM (a1, a2) for every non-constant symbol σ, iff a is an (app1) node,
and L(a) contains a pattern of the form 〈ϕ1, ϕ2〉, and a has a child node
s with L(s) = L(a) 〈ϕ1, ϕm〉, and s has exactly one child node s′ with
L(s′) = L(a)  〈ϕ1, ϕm〉  wit for some wit ∈ Wit(L(a), σ), and s′

has exactly n child nodes denoted s1, . . . , sn, and that dess1 = a1, . . . ,
dessn = an.

3. cM = {s ∈ Nodes(T ) | c ∈ L(s)}.

Theorem 42. ML6∃,µ is decidable.

Lemma 37. |µX.ϕ| =
⋃
α |µαX.ϕ| and |νX.ϕ| =

⋂
α |ναX.ϕ|.

Lemma 39 (,). SigD(ψ, a) as given in Definition 38 is well-defined.

Proof. Let us assume the notations given in Definition 38. Note that finite
sequences of ordinals are well-founded. Therefore, we only need to show that
there exists a sequence (α1, . . . , αn) such that a ∈ |〈]ψ[〉D′ |. The proof is standard
and can be carried out by induction on n and the structural induction on ψ.

Lemma 40. Let ϕ1, ϕ2, ϕ be sentences whose definitions constants are in D,
M be a model, and a be an element of M . The following propositions hold.

1. If a ∈ |ϕ1 ∧ ϕ2| then

SigD(ϕ1 ∧ ϕ2, a) = max (SigD(ϕ1, a),SigD(ϕ2, a))

2. If a ∈ |ϕ1 ∨ ϕ2| then

SigD(ϕ1 ∨ ϕ2, a) = min (SigD(ϕ1, a),SigD(ϕ2, a))
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3. If a ∈ |〈ϕ1, ϕ2〉| then

SigD(〈ϕ1, ϕ2〉, a) ≥ min
(a1,a2)∈Ā

max
i∈{1,2}

SigD(ϕi, ai)

where Ā = {(a1, a2) | a1 ∈ |〈]ϕ1[〉| , a2 ∈ |〈]ϕ2[〉| , a ∈ appM (a1, a2)}.

4. If a ∈ |[ϕ1, ϕ2]| then

SigD([ϕ1, ϕ2], a) ≥ sup
(a1,a2)∈Ā

min
i∈{1,2}

SigD(ϕi, ai)

where Ā = {(a1, a2) | a1 ∈ |〈]ϕ1[〉| , a2 ∈ |〈]ϕ2[〉| , a ∈ appM (a1, a2)}.

5. If a ∈ |µX.ϕ| and (Ui = µX.ϕ) ∈ D is the ith µ-constant in D, then
SigD(µX.ϕ, a) and SigD(Ui, a) are the same at the first (i− 1) ordinals.

6. If a ∈ |νX.ϕ| and (V = νX.ϕ) ∈ D, then SigD(νX.ϕ, a) = SigD(V, a);

7. If a ∈ |U | and (Ui = µX.ϕi) ∈ D is the ith µ-constant in D, then
SigD(U, a) > SigD(ϕ[U/X], a), and they are the same at the first (i − 1)
ordinals.

8. If a ∈ |V | and (V = νX.ϕ) ∈ D, then

SigD(V, a) = SigD(ϕ[V/X], a)

Proof. We only prove (3) and (4). The other proofs are the same as in [10].
(3). Let ᾱ = SigD(〈ϕ1, ϕ2〉) and Dᾱ be D′ as given in Definition 38. Then,

we have a ∈ |〈]〈ϕ1, ϕ2〉[〉Dᾱ |. By the definition of expansion operator, we have
a ∈ |σ(〈]ϕ1[〉Dᾱ , 〈]ϕ2[〉Dᾱ)|. Then, there exist a1, a2 such that a ∈ appM (a1, a2)
and ai ∈ 〈]ϕi[〉Dᾱ for i ∈ {1, 2}. Let ᾱi = SigD(ϕi, ai). Then we have ᾱi ≤ ᾱ.
This implies that maxi ᾱi ≤ ᾱ. Therefore, we have

SigD(〈ϕ1, ϕ2〉) ≥ min
(a1,a2)∈Ā

max
i∈{1,2}

SigD(ϕi, ai)

(4). Let ᾱ = SigD([ϕ1, ϕ2]) and Dᾱ be D′ as given in Definition 38. Then,
we have a ∈ |〈][ϕ1, ϕ2][〉Dᾱ |. By the definition of expansion operator, we have a ∈
|σ̄(〈]ϕ1[〉Dᾱ , . . . , 〈]ϕn[〉Dᾱ)|. Then for all a1, a2 such that a ∈ appM (a1, a2), there
exists i ∈ {1, 2} such that ai ∈ |〈]ϕi[〉Dᾱ |, and thus Dᾱ ≥ SigD(ϕi, ai). Therefore,
Dᾱ ≥ mini SigD(ϕi, ai) for every a1, . . . , an such that a ∈ appM (a1, a2), and we
have

SigD([ϕ1, ϕ2]) ≥ sup
(a1,a2)∈Ā

min
i∈{1,2}

SigD(ϕi, ai)

Proposition 27. If a positive guarded sentence ψ is satisfied in M on a, there
exists a pre-model for ψ.
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Proof. Let D = [〉ψ〈] and (Uk1 = µX.ψk1); . . . ; (Ukd = µX.ψkd) be the sub-list
of all µ-constants. We construct a quasi-model for ψ by selecting the rules from
Smod to construct a child node s. For every constructed node s, we associate
an element as ∈ M , with the property that as ∈ |〈]L(s)[〉|, if L(s) is a normal
sequent.

Firstly, we construct the root of T and for the associated element, we choose
any element that matches ψ.

Suppose we have already constructed a node s and included it in the quasi-
model, with the associated element as. We show how to proceed from this point,
depending on what tableau rule may be applied:

1. L(s) cannot be an inconsistent sequent, because as ∈ |〈]L(s)[〉|.

2. If we can apply (and), (ons), (mu), or (nu) to s, we apply any of those
rules. s has exactly one child s′. Let as′ = as.

3. Otherwise if (or-l) or (or-r) can be applied to s, whose label is L(s) =
ϕ1 ∨ ϕ2,Γ, then s can have one of two child nodes s1 and s2, with labels
L(s1) = {ϕ1} ∪ Γ and L(s2) = {ϕ2} ∪ Γ, respectively.

Let i = arg mini SigD(ϕi, as). We select the child node si and define
asi = ai. We can prove that ai ∈ |〈]ϕi[〉|.

4. Otherwise if (app1) can be applied, then we construct all its child nodes.

5. Otherwise if (app2) can be applied to s, with label L(s) = Γ 〈ϕ1, ϕ2〉,
then we define

(a1, a2) = arg min
(a1,a2)∈Ā

max
i∈{1,2}

SigD(ϕi, ai)

where Ā = {(a1, a2) | a1 ∈ |〈]ϕ1[〉| , a2 ∈ |〈]ϕn[〉| , as ∈ appM (a1, a2)}.
We define the witness function wit : Γ[ ] → {1, 2} as follows. For every
[ψ1, ψ2] ∈ Γ[ ], since as ∈ |〈][ψ1, ψ2][〉| and as ∈ appM (a1, a2), there exists
i ∈ {1, 2} such that ai ∈ |〈]ψi[〉|, and we define wit([ψ1, ψ2]) = i. We
construct s′ whose label L(s′) is Γ 〈ϕ1, ϕ2〉 wit.

6. Otherwise (app3) applies to s with label is L(s) = Γ  〈ϕ1, ϕ2〉  wit
as defined in (5), we construct both child nodes of s, written s1, s2, and
define asj = aj for every j ∈ {1, 2}, where a1, a2 are defined in (5).

We need to prove that aj ∈ |〈]L(sj)[〉|. By definition, L(sj) = {ϕj} ∪ Γwit
j .

We have aj ∈ |〈]ϕj [〉| by construction. For any ψj ∈ Γwit
j , We have aj ∈

|〈]ψj [〉| by the definition of Γwit
j .

Let us denote the resulting quasi-model as T0. Next, we show that (T0, L)
is a pre-model for ψ.

Assume the opposite and suppose (T0, L) is not a pre-model. Then there
exists a µ-trace Tr on a path P of T . Suppose Uki is the oldest definition
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constant that regenerates infinitely often on Tr. Then there exists a node s on
Tr such that Uk1 , . . . , Uki−1 do not regenerate after s.

Consider the signature ordinals of the patterns on Tr after s. Using Lemma 40,
we observe that the i-length prefixes of the signature ordinals never increase,
and every regeneration of Uki strictly decrease the signatures at the ith posi-
tion. Since ordinal sequences are well-founded, Tr cannot be infinite, which is a
contradiction. Therefore, (T0, L) contains no µ-trace, and thus it is a pre-model
for ψ.

Proposition 28. If there exists a pre-model for a positive guarded sentence ψ
then ψ is satisfiable.

Proof. Suppose ψ has a pre-model (T, L) and M is its corresponding canonical
model as defined in Definition 41. Let s0 = root(T ) be the root of T . Let
D = [〉ψ〈] and let (Vk1 = νX.ψk1); . . . ; (Vkd = νX.ψkd) be the sub-list of ν-
constants in D. For the sake of contraction, we assume dess0 6∈ |ψ| for some
(irrelevant) ρ.

Firstly, we define the notion of a ν-signature, SigνD(ϕ, a), which is defined
for a sentence ϕ and a ∈M such that a 6∈ |〈]ϕ[〉|, as follows:

SigνD(ϕ, a) = SigνD(not(ϕ), a)

where the definition list not(D) is obtained from D by replacing every definition
(U = κX.ϕ) with (U = not(κX.ϕ)). Recall that not(ϕ) is the equivalent
positive guarded formula of ¬ϕ, obtained by pushing in the negation. Note that
Lemma 40 translates to ν-signatures after interchanging µ with ν, σ̄ with σ,
and ∨ with ∧.

Next, we show that the assumption dess0 6∈ |ψ| implies that there exists
a µ-trace on some path P of T , which contradicts the fact that (T, L) is a
pre-model.

In the following, we construct P and a µ-trace Tr on P , simultaneously. The
first pattern Tr(s0) = ψ. Now, suppose we have constructed Tr up to Tr(s) for
some node s on P , such that dess 6∈ |〈]Tr(s)[〉|. We select the child node s′ and
Tr(s′) as follows:

1. If s is an (and)/(or)/(mu)/(nu)/(ons) node, then s has exactly one
child node s′ and

(a) if L(s) is not reduced, then Tr(s′) = Tr(s);

(b) if L(s) = ϕ1∧ϕ2 or L(s) = ϕ1∨ϕ2 is reduced, we let i = arg mini SigνD(ϕi,dess)
and define Tr(s′) = ϕi.

(c) in other cases, let Tr(s′) be the only resulting pattern.

2. If s is an (app1) node, and

(a) if L(s) = {〈ϕ1, ϕ2〉} ∪ Γ and Tr(s) = 〈ϕ1, ϕ2〉, then by the hy-
pothesis, s 6∈ |〈]〈ϕ1, ϕ2〉[〉|. Note that s has a child node s′ with
L(s′) = L(s)  〈ϕ1, ϕ2〉, which has exactly one child node s′′ with
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L(s′′) = L(s)  〈ϕ1, ϕ2〉  wit for some wit ∈ Wit(L(s), σ), which
has n child nodes denoted s1, . . . , sn. By the construction of the
canonical model, s ∈ appM (dess1 ,dess2). Therefore, there exists
i ∈ {1, 2} such that dessi 6∈ |〈]ϕi[〉|. Let i = arg mini SigµD(ϕi,dessi)
and we select Tr(si) = ϕi.

(b) if L(s) = {[ϕ1, ϕ2]}∪Γ and Tr(s) = [ϕ1, ϕ2], then by the hypothesis,
s 6∈ |〈][ϕ1, ϕ2][〉|. Let

(dess1 ,dess2) = arg min
(a1,a2)∈Ā

max
i∈{1,2}

SigνD(ϕi,dessi)

where Ā = {(a1, a2) | s ∈ appM (a1, a2)}. We select any i ∈ {1, 2}
and let Tr(si) = ϕi.

(c) For any other cases, stop the construction of Tr.

If the constructed trace Tr is finite, then either the last pattern Tr(sN ) is a
constant symbol or its negation, or sN is a leaf node and the pattern Tr(sN ) is a
σ̄-pattern. From the definition of the canonical model, we have dessN ∈ Tr(sN ),
a contradiction.

If Tr is infinite, then by a similar argument to the one in Proposition 27, we
can show that the oldest definition constant that regenerates infinitely often on
Tr is a µ-constant, which contradicts the fact that (T, L) is a pre-model.

Therefore, our assumption that dess0 6∈ |ψ| is incorrect, and thus ψ is satis-
fiable in the canonical model.

Theorem 26. For any positive guarded sentence ψ, there exists a pre-model for
ψ iff ψ is satisfiable.

Proof. By Propositions 27 and 28.

Theorem 25. For any positive guarded sentence ψ, determining whether ψ is
satisfiable is decidable.

Proof. By Theorem 26, we can look for a pre-model for ψ. We will construct a
tree automaton Aut on infinite trees that accepts exactly the pre-models for ψ.
Then by the Emerson-Jutla theorem, it is decidable to determine whether the
language accepted by Aut is empty.

Aut is constructed in two steps. Firstly, we define an outer automaton Auto
that accepts the quasi-models, which are essentially the regular trees generated
by the set of tableau rules Smod. Secondly, we define an inner automaton Auti
that is a Büchi automaton on infinite words that accepts the µ-traces. Then,
we combine the two automatons using the Safra deterministic construction and
obtain a tree automaton that accepts precisely the pre-models for ψ.

Theorem 42 (,). ML 6∃,µ is decidable.

Proof. By Theorem 25.
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Theorem 31. For an arbitary positive-form guarded pattern ϕ, there exists
either a pre-model or a refutation.

Proof. Define
Sall = Scommon ∪ {(or), (app1), (app’2), (app3)}. Note that the (app’2) and
not (app2) rule is used.

Construct a labeled tree T such that:

1. L(root(T )) = {ψ};

2. For every s ∈ Nodes(T ), if L(s) is an inconsistent sequent then s is a leaf
of T ;

3. For every s ∈ Nodes(T ), if L(s) is not an inconsistent sequent and one
of the tableau rules in Sall can be applied (with respect to the definition
list D = [〉ψ〈]), and the resulting sequents are seq1, . . . , seqk, then s has
exactly k child nodes s1, . . . , sk, and L(s1) = seq1, . . . , L(sk) = seqk.

We define an infinite game for two players played on T . Player 1 will try to
show that ϕ is satisfiable, and player 2 that it is not.

The game is played as follows:

• The game starts with the root node.
• In any (or) node, player 1 may choose any child.
• In any (app1) node, player 2 may choose any child.
• In any (app’2) node, player 1 may choose any child (i.e. any witness).
• In any (app3) node, player 2 may choose any child.
• In all other non-leaf nodes, the only child is chosen.

The result of the game is a path of the tableau. If the path is finite it ends
with sequent. If that sequent is consistent, then player 1 wins. Otherwise player
2 wins. If the path is infinite, player 2 wins iff there is a µ-trace.

A strategy exists for player 1 iff there is a pre-model contained in T . Intu-
itively, player 1 needs to pick all nodes that belong to the pre-model. The root
of T obviously belongs to the pre-model. If the current node is in the pre-model
and player 1 is to play, player 1 may pick the child node from the pre-model. If
player 2 is to play, all child nodes are part of the pre-model, and so the choice
does not matter.

By a similar argument we may show that a strategy exists for player 2 iff
there is a refutation contained in T .

Clearly, only one player may have a winning strategy, and so a pattern may
not have both a pre-model and a refutation. It is now left to show that either
one must exist. We now show that the game always has a winning strategy for
one player. This may be deduced from the theory of infinite games of Gale and
Stewart [30].

A game G(Y,A) is defined by an arena Y , and a winning set A, for the
first player. Here, Y ⊆ X∗ is a set of strings over a set S, closed under initial
segments, and such that any string in Y has a prolongation in Y . Let F (Y ) ⊆
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Xω be infinite sequences with all finite prefixes in arena Y . The winning set A is
a subset of F (Y ). Players 1 and 2 pick elements from X alternately, constructing
an infinite seqeunce in F (Y ). At infinity, player 1 wins if the selected sequence
is in A. Otherwise, player 2 wins.

The set F (Y ) may be equipped with a Cantor topology induced by the metric
d(u, v) = 2−n where u 6= v and n is the least position such that u(n) 6= v(n). In
[31], Martin showed that if A is a Borel set, then the game is determined – i.e.
has a single winner.

It remains to choose X,Y and A so that our game may be presented as a
Gale and Stewart game with a Borel winning condition. We choose X to be the
set of all sequents that can appear in the tree for ϕ plus a dummy symbol. The
arena Y can be obtained by extending the paths ending with a leaf with infinite
occurances of the dummy symbol. The winning condition A is the set of paths
with neither a µ-trace nor passing through an axiom sequent. Notice that the
natural definition of this set involves an existential second-order quantifier. In
order to show that A is Borel, we first observe that the set of all infinite sequents
over X that do not contain µ traces and do not pass through axiom sequents is
an ω-regular language and so is in Σ0

2 in the Borel hierarchy over Xω. Now A
can be obtained by intersecting this set with F (Y )., and the last is a closed set
since it is the set of all infinite paths of a tree. Thus A is a Borel subset of Xω

with the Cantor topology. In order to see that it is Borel aslo in F (Y ) observe
that every Z ⊆ F (Y ) that is closed in Xω is also closed in F (Y ).

.2 LTL Tableau

Theorem 35. Every pre-model corresponds to an LTL model.

Proof. Let T be a pre-model. We need to construct an model (S,R,L) from
T , where S is the set of states, R is the transition relation, L is the labeling
function.

The AML theory of LTL only allows one symbol, ◦, in the left hand side of
〈 〉, and ¬◦ in the left hand side of [ ]. This means that there is only one possible
witness that may produce a model — mapping all [ ]s to 2. So the composition
of the (equiv) and the (app1), (app2) and (app3) rules results in two sets of
descendant sequents. The first set of sequents have label ◦, whereas the other
set has for their labels the set of patterns in the second argument of the 〈 〉s and
[ ]s of the original sequent. Pick any decendant sequent from the second set and
discard the rest. Since none of the other tableau rules allow branching, we are
left with a single path.

Let S0 be set of (app1) in this path. Let (n, n′) ∈ R0 if there is a path from
n to n′ without using the (appi) rules. Let si−1 be the ith node in the chain
(i.e. s0 is the first node in the chain). There are two cases:

1. The chain is infinite and there are no µ-traces. There must be some i < j
such that L(si) = L(sj), and si and sj are (app1) nodes. Let S = S0,
R = R0, and N be the lowest such i.
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2. The chain is finite. Let N be the length of the chain. Let S = S0 ∪ {∗}.
Let R = R0 ∪ {(N − 1, ∗), (∗, ∗)}.

In either case, R defines a non-branching chain of nodes, that eventually
loops back to the Nth node.

We want to define a family of sets ∆i, that are the patterns we want to hold
at each node. Let each ∆i be the set of expansions of patterns in the labels of
all nodes between applications of (app1). Let L(Si) be the set of atomic labels
in ∆i.

Lemma 43. If 〈◦, α〉 ∈ ∆i, then α ∈ ∆i+1. If [¬◦, α] ∈ ∆i, then α ∈ ∆i+1.

Proof. If 〈◦, α〉 ∈ ∆i, no rule besides the (app3) removes it. If this 〈◦, α〉 is
chosen by the (app1) rule, then the (app3) rule must produce a node with a
label that includes α. Otherwise, the (equiv) generates [¬◦, α], and the second
half of this proof applies.

If [¬◦, α] ∈ ∆i, again, no rule besides the (app3) removes it. Note that
because of (equiv), there must be at least one 〈 〉 pattern, and (app3) must
apply. Since wit([¬◦, α]) = 2 and ◦ is the only symbol in the signature, (app3)
must produce a node with a label that includes α.

Lemma 44. Suppose αUβ ≡ µX.β∨(α∧〈◦, X〉) ∈ ∆i, then there is some d ≥ i
such that β ∈ ∆d, and for all f , if i ≤ f < d then {α, α U β, ◦(α U β)} ⊆ ∆f .

Proof. Suppose αU β ≡ µX.β ∨ (α∧ 〈◦, X〉) ∈ ∆i. Let U be the corresponding
definitional constant. Then, the (ons) and (mu) rules must apply before ap-
plying either (or-l) or (or-r). Thus, either β or both 〈◦, U〉 and α are in ∆i.
If 〈◦, U〉 ∈ ∆i, then by Lemma 43, α U β ∈ ∆i. By induction, α, α U β and
〈◦, X〉 must remain in ∆, until β is present.

It remains to show that β appears in some ∆d. If the branch is finite, there
must be some final node sf where the (app1) has no decendants. This may
only happen iff there are no 〈◦, 〉 labeled sequents. In particular, 〈◦, X〉 6∈ ∆f .
Therefore, β must be in some ∆d for i ≤ d ≤ f .

Consider the case when the branch is infinite. Suppose (for sake of contra-
diction), it @d.β ∈ ∆d. Then, when simplifying α U β, we must always choose
the (or-l) rule. But this implies that a µ-trace exists! Contradication.

Lemma 45. If ¬(α U β) ≡ νX.¬α ∧ [¬◦, X] ∈ ∆i, then either:

1. there is some d ≥ i such that ¬α,¬β ∈ ∆d and for all f if i ≤ f < d, then
{¬β,¬(α U β), ◦(¬(α U β))} ⊆ ∆f , or

2. for all f if i ≤ f , then {¬β,¬(α U β), ◦(¬(α U β))} ⊆ ∆f .

Proof. Similar to 44. If the corresponding definitional constant regenerates
finitely, then we get the same contradiction as if a µ-trace existed. Otherwise,
the first part of the proof, shows that 2. must hold.

Lemma 46. For all i ≥ 0, for all α ∈ ∆i, if α is the translation of an LTL
formula, then (S,R, g), si |= α.
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Proof. We prove this by induction on the construction of α. since we are only
considering positive-form patterns,

1. Case σ,¬σ: by definition of L, α ∈ L(si) and (S,R, g), si |= α.

2. Case α ∧ β: This label is removed by (and), and is replaced with both α
and β before the next (app1). By applying the inductive hypothesis, α
and β must hold in si.

3. Case α ∨ β: This label is removed by (or-l) or (or-r), and is replaced
with either α or β before the next (app1). By applying the inductive
hypothesis, α or β must hold in si.

4. Case α U β: By Lemma 44 and induction.

5. Case ¬(α U β): By Lemma 45 and induction.

6. Case ♦β ≡ µX.β ∨ 〈◦, X〉: This is reduced to either β (by (or-l)) or
◦U (by (or-r)), where U is the corresponding definitional constant. If it
is reduced to β, then the by the induction, β holds on the current state.
Otherwise, ♦β ∈ ∆i+1 by Lemma 43, and by induction β holds in the next
state.

7. Case �β: This is reduced to β, 〈, �β〉. By induction and Lemma 43, β
holds for all future states.

This ends the proof.
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(and)

ϕ1 ∧ ϕ2,Γ

ϕ1, ϕ2,Γ (mu)

µX.ϕ,Γ

U,Γ where (U = µX.ϕ) ∈ D

(ons)

U,Γ

ϕ[U/X],Γ
where (U = κX.ϕ) ∈ D

and κ ∈ {µ, ν} (nu)

νX.ϕ,Γ

U,Γ where (U = νX.ϕ) ∈ D

(a) Scommon

(or-l)

ϕ1 ∨ ϕ2,Γ

ϕ1,Γ

ϕ1 ∨ ϕ2,Γ

ϕ2,Γ (or-r)

(app1)

Γ
where † holds

{Γ 〈ϕ1, ϕ2〉 | 〈ϕ1, ϕ2〉 ∈ Γ}

(app2)

Γ 〈ϕ1, ϕ2〉
Γ 〈ϕ1, ϕ2〉 wit where wit ∈Wit(Γ, σ)

(app3)

Γ 〈ϕ1, ϕ2〉 wit

ϕ1,Γ
wit
1 ϕ2,Γ

wit
2

(b) Smod = Scommon + the 4 rules above

(or)

ϕ1 ∨ ϕ2,Γ

ϕ1,Γ ϕ2,Γ

(app′1)

Γ where 〈ϕ1, ϕ2〉 ∈ Γ,
and † holdsΓ 〈ϕ1, ϕ2〉

(app′2)

Γ 〈ϕ1, ϕ2〉
{Γ 〈ϕ1, ϕ2〉 wit | wit ∈Wit(Γ, σ)}

(app′3)

Γ 〈ϕ1, ϕ2〉 wit
where i ∈ {1, 2}

ϕi,Γ
wit
i

(c) Sref = Scommon + the 4 rules above

Figure 8: Smod and Sref are two “dual” tableaux with respect
to a definitional list D. Γ is a finite nonempty set of sentences
and ϕ,ϕ1, ϕ2 are sentences, whose definition constants are all
contained in D.
Smod may be used for constructing a model for a pattern,

and Sref for constructing a refutation. They are dual in the
sense that each set of non-deterministic rules in one (e.g. (or-
l) and (or-r) in Smod) are treated as a single rule with multiple
conclusions in the other.
†: In (app1) and (app′1), we require that Γ contains only

constant symbols and their negations, applications, or dual ap-
plications. In other words, they can be applied only if all other
rules cannot.
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(νY.p ∧ 〈◦, Y 〉) ∧ (µX.¬p ∨ [¬◦, X])

(νY.p ∧ 〈◦, Y 〉), (µX.¬p ∨ [¬◦, X])

V0, U1

p ∧ 〈◦, V0〉,¬p ∨ [¬◦, U1]

p ∧ 〈◦, V0〉,¬p

p, 〈◦, V0〉,¬p7

(and)

(ons)

(mu,nu)

(or-l)

(and)

(a) Failed tableau,
ending in

inconsistent
sequent

(νY.p ∧ 〈◦, Y 〉) ∧ (µX.¬p ∨ [¬◦, X])

(νY.p ∧ 〈◦, Y 〉), (µX.¬p ∨ [¬◦, X])

V0, U1

p ∧ 〈◦, V0〉, U1

p ∧ 〈◦, V0〉,¬p ∨ [¬◦, U1]

p, 〈◦, V0〉,¬p ∨ [¬◦, U1]

p, 〈◦, V0〉, [¬◦, U1]

p, 〈◦, V0〉, [¬◦, U1] 〈◦, V0〉

p, 〈◦, V0〉, [¬◦, U1]7→2  〈◦, V0〉

◦3 U1, V0

(and)

(ons)

(nu)

(mu)

(and)

(or-r)

(app1)

(app2)

(app3)

(b) Failed tableau,
with µ-trace

(νY.p ∧ 〈◦, Y 〉) ∧ (µX.¬p ∨ [¬◦, X])

(νY.p ∧ 〈◦, Y 〉), (µX.¬p ∨ [¬◦, X])

V0, U1

p ∧ 〈◦, V0〉, U1

p ∧ 〈◦, V0〉,¬p ∨ [¬◦, U1]

p, 〈◦, V0〉,¬p ∨ [¬◦, U1]

p ∧ 〈◦, V0〉,¬p

p, 〈◦, V0〉,¬p7

p, 〈◦, V0〉, [¬◦, U1]

p, 〈◦, V0〉, [¬◦, U1] 〈◦, V0〉

p, 〈◦, V0〉, [¬◦, U1]7→1  〈◦, V0〉

◦,¬◦7

p, 〈◦, V0〉, [¬◦, U1]7→2  〈◦, V0〉

U1, V0

(and)

(ons)

(nu)

(mu)

(and)

(and)

(or)

(app1)

(app3)

(app2)

(app3)

(c) Refutation

Figure 29: Examples tableaux and refutations for (νY.p ∧ 〈◦, Y 〉) ∧ (µX.¬p ∨
[¬◦, X]).
We have D = {V0 = νY.p ∧ 〈◦, Y 〉, U1 = µX.¬p ∨ [¬◦, X]}. The witness
functions are denoted as superscripts over the corresponding patterns in the
domain.
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〈a, ϕ〉1, [¬a, ϕ2],Γ (app1)

〈aϕ1〉[¬aϕ2] 〈aϕ1〉 (app2)

〈aϕ1〉[¬aϕ2] 〈aϕ1〉 wit (app3)

a,¬a, . . . 7 ϕ1, . . .

(a) Attempt to build a tableau for
〈a, ϕ〉1, [¬a, ϕ2],Γ by choosing

wit([¬a, ϕ2]) = 1

〈a, ϕ〉1, [¬b, ϕ2],Γ (app1)

〈aϕ1〉[¬bϕ2] 〈aϕ1〉 (app2)

〈aϕ1〉[¬bϕ2] 〈aϕ1〉 wit (app3)

a,¬b, . . . 3 ϕ1, . . .

(b) When building a tableau for
〈a, ϕ〉1, [¬a, ϕ2],Γ, it is easiest to choose

wit([¬a, ϕ2]) = 1.

Figure 32: Application of the (appi) rules to translations of modal µ-calculus
formulae.

µX.p ∨ 〈〈•, a〉, X〉 ∧ ¬p

µX.p ∨ 〈〈•, a〉, X〉,¬p

U1,¬p

p ∨ 〈〈•, a〉, U1〉,¬p

〈〈•, a〉, U1〉,¬p

〈〈•, a〉, U1〉 〈〈•, a〉, U1〉,¬p

〈〈•, a〉, U1〉 〈〈•, a〉, U1〉,¬p

〈•, a〉

〈•, a〉 〈•, a〉

〈•, a〉 〈•, a〉

• a

U1

p ∨ 〈〈•, a〉, U1〉

p

(and)

(ons)

(mu)

(or-r)

(app1)

(app2)

(app1)

(app2)

(app3)

(app3)

(mu)

(or-l)

Figure 33: Tableau for 〈a∗〉p ∧ ¬p ≡ µX.p ∨ 〈〈•, a〉, X〉 ∧ ¬p.
D = {U1 = µX.p ∨ 〈〈•, a〉, X〉}
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νX. p ∧ 〈◦, X〉

V1

p ∧ 〈◦, V1〉

p, 〈◦, V1〉

p, 〈◦, V1〉, [¬◦, V1]

〈◦, V1〉 p, 〈◦, V1〉, [¬◦, V1]

〈◦, V1〉 p, 〈◦, V1〉, [¬◦, V1]
7→2

◦ 3 V1

(ons)

(nu)

(and)

(Equiv)

(app1)

(app2)

(Equiv)

(a) Successful tableau for
�p ≡ νX.p ∧ ◦X.

D = {V1 = νX.p ∧ ◦X}

(νX.p ∧ ◦X) ∧ (µX.¬p ∨ ◦X)

V1, U2

p ∧ 〈◦, V1〉, U2

p ∧ 〈◦, V1〉,¬p ∨ [◦, U2]

p, 〈◦, V1〉,¬p ∨ [◦, U2]

p, 〈◦, V1〉, [◦, U2]

p, 〈◦, U2〉, [¬◦, U2], 〈◦, V1〉, [¬◦, V1]

?

...

〈◦, U2〉 p, 〈◦, V1〉, [¬◦, V1], 〈◦, U2〉, [¬◦, U2]

〈◦, U2〉 p, 〈◦, V1〉, [¬◦, V1]
7→2
, 〈◦, U2〉, [¬◦, U2]

7→2

◦ U2, V1

(and,ons)

(nu)

(mu)

(and)

(or-r)

(Equiv)

(app1)

(app2)

(Equiv)

(b) Failed tableau for
�p ∧ ♦¬p ≡ (νX.p ∧ ◦X) ∧ (µX.¬p ∨ ◦X).
D = {V1 = νX.p ∧ ◦X,U2 = µX.¬p ∨ ◦X}.

Note that the sequent at ? is identical to that on
the other (app1) branch.

Figure 34: Tableaux for translations of LTL formulae
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