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ABSTRACT

This study introduces an approach for and the challenges in employing unmanned aerial vehi-

cles (UAVs) for material handling in the emerging industrial custom manufacturing environments.

Compared with conventional industrial robotic systems, UAVs offer enhanced flexibility for the

design and on-the-fly variation of the pathways and workflow to optimally perform multiple tasks

on demand, besides offering favorable cost and dimensional footprint factors. A fundamental chal-

lenge to the deployment of UAVs in manufacturing and other indoor industrial settings lies in

ensuring the accuracy of a drone’s localization and flight path. Earlier approaches based on using

multiple sensors (e.g., GPS, IMU) to improve the localization accuracy of UAVs are considered

ineffective in indoor environments. In fact, few investigations have tackled the issues arising due to

the limited space and complicated components and moving entities, human presence in shop-floor

environments. Towards addressing this challenge, a pose estimation method that employs just a

single camera onboard with a UAV, together with multiple ArUco markers positioned strategically

over the shop-floor is implemented to track the real-time location of a UAV. A Kalman filter is

applied to mitigate noise effects for pose estimation. To assess the performance of this method,

several experiments were carried out in Texas A&M University’s manufacturing labs. The result

suggests that Kalman filter can reduce the variance of pose estimation by 88.48% compared to a

conventional camera and marker-based motion tracking method (~ 27 cm), and can localize (via

averaging) the position to within 8 cm of the actual target location.
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1. INTRODUCTION

Recent advances in 3D printing and cyberinfrastructure are enabling a Manufacturing-as-a-

Service (MaaS) paradigm, to deliver custom products manufactured on-demand [1]. Manufactur-

ing is becoming more customized than ever as each part is personalized to satisfy the specifications

of an individual customer. In fact, 3D printing could potentially restructure and localize manufac-

turing and offer a Cybermanufacturing kiosks model, that my loosely termed the Kinkos for man-

ufacturing [2]. The authors have recent provided an initial demonstration of Cybermanufacturing

kiosks employing laser kirigami process to realize personalized freeform structures with custom

and personalized functionalities [3], [4], as well as a smart manufacturing platform for integrated

user-machine interaction [5]. In this context, dynamic and highly variable material and workflow

pattern pose significant challenges to the deployment of custom manufacturing as a service. It is

imperative to take a radically different material handling approach to achieve efficiency as high

as those of mass production. Material handling is an indispensable yet often overlooked issue in

production, more so in custom manufacturing environments.

Material handling is defined by Material Handling Industry of America (MHI) as the move-

ment, protection, storage and control of materials and products throughout the process of man-

ufacture and distribution, consumption and disposal [6]. Material handling forms a significant

portion of the total production cost and is estimated to be around 20-25% of the total direct cost in

the United States [7]. This however, depends on the type of production and degree of automation in

material handling. Material handling must be performed efficiently, safely, at low cost, in a timely

manner, accurately (the right materials in the right quantities to the right locations), and without

damage to the materials.

In order to efficiently produce individually stylized and personalized product features, the

workflow for successive jobs can be vastly different, and part routing patterns would be com-

plex and highly variable. The shop-floor in custom manufacturing must therefore be endowed with

flexibility especially to dealing with variations in the parts or products produced. Material handling
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system should efficiently perform the functions of (i) random independent movement of work parts

between stations, (ii) handling a variety of work part configurations, (iii) convenient access for

loading and unloading and (iv) compatibility with computer control for automation. Conventional

material handling system employed industrial robots, Automated Guided Vehicles (AGVs) and

Automated Storage & Retrieval Systems (AS/RS) to address this imperative. An AS/RS system

uses cranes running through the aisles to store or retrieve objects in racks automatically without a

significant intervention of a human operator [8].

Material handling in such scenarios is shared between two systems, viz. (i) a primary handling

system responsible for moving parts between stations and (ii) a secondary handling system consist-

ing of transfer devices at every workstation. Currently, separate robotic systems are employed for

the primary and secondary material handling systems, also requiring the parts to be propositioned

and pre-oriented for robotic application. Further, selections of material handling equipment and

layout are closely related. The use of immobile and inflexible robotic systems restricts layout con-

figurations, stipulating a robot-centered or station-centered layout. As an alternative AGVs have

begun to be deployed, especially to deal with material transport needs in a warehouse environment.

However, they impose a strict motion pathway that is suboptimal to the production for a vast ma-

jority of the custom products. Moreover, as custom manufacturing as a service paradigm takes off,

material handling tasks will become increasingly complicated, which will require higher levels of

intelligence and decision-making capabilities of the robots and will also require the ‘robust mobil-

ity’, the capability to move around the work area without relying on rails or moving platforms to

execute actions. Thus, current material handling systems, at large, are rendered inflexible to adjust

for rapidly changing workflows in custom manufacturing, and hence a smarter alternative material

handling system is needed.

Our study presents UAVs as an alternative and superior material handling tool that can be ef-

ficiently employed in manufacturing shop floors. Using UAVs grants the potential to (i) substitute

the primary and secondary handling systems with just one, (ii) achieving true variable routing and

random order in a custom manufacturing (iii) lenient constraints on process layout/ open field lay-
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out, (iv) more efficient part routing, scheduling and dispatching, and (v) scalability and ultimately.

Beyond these, manufacturing system layout to-date has aimed to optimize the utilization of the

(2-D) floor space; much of the ceiling space in a shop is highly underutilized. A major opportunity

exists to fundamentally rethink the way we optimize the layout and material handling and transport

paths over the entire 3-D space of the shop-floor. A vast majority of real-world applications for

UAVs have been for open environments. As noted in the following sections, adaptation of UAVs

for indoor settings, including manufacturing environments is at a very nascent stage. Central to the

realization of a UAV material handler for custom manufacturing is to endow the UAVs with pose

estimation ability. This is essential to sustain a precise motion pattern, especially in the absence or

unviability of location sensors (e.g., GPS and IMUs). We develop an approach based on processing

the images gathered from on-board camera of a UAV of the ArUco markers, strategically placed

in a shop-floor environment to estimate the location and guide the path of a UAV. We demonstrate

and assess the motion accuracy of the UAV based on a case study conducted in Texas A&M Man-

ufacturing Labs. The remainder of the thesis is organized as follows: Section 2 introduces the

prior work on UAVs for manufacturing systems; the work plan for UAVs for material handling

is presented in Section 3; Section 4 presents the methodology of pose estimation of a UAV in a

manufacturing system; Section 5 presents the performance assessment based on the case study,

followed by conclusions in Section 6.
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2. PRIOR WORK ON UAV FOR MANUFACTURING SYSTEM

Although UAVs have been increasingly considered for real-world applications, such as in

surveillance, mapping, inspection, and theater operations, their use in the manufacturing indus-

try, especially the indoor settings have been rather limited. There have been a considerable number

of attempts in utilizing the UAVs for outdoor delivery as in the hyperlocal delivery market, i.e.

Amazon drone delivery, yet they have not been exploited for material handling in an industrial

environment. The potential of UAVs as material handling equipment in custom manufacturing has

not been unleashed yet. Most of the real-world UAVs are designed for reconnaissance applica-

tions, especially in situations that are unsafe or inaccessible to humans. Load carrying capacity of

most of these UAVs is much lower than what is considered typical for industrial material handling

applications. Those with the necessary capacity tend to be expensive and large in size. Almost

all of the commercially available drones need to be retrofitted with the material carrying appara-

tus (e.g., a gripper). Currently, the pickup, delivery and placement of materials with UAVs are

nascent research topics. Furthermore, when it comes to the safety, as machines in a manufacturing

environment are distributed densely and of complicated dimensions, the collision tolerance and re-

silience of drones should be considered in contrast with the customary obstacle/collision avoidance

to guarantee a fail-safe operation [9]. Use of UAVs with vertical take-off and landing (VTOL) is a

relatively new research area still in infancy with a potential for various novel applications such as

coordinated pickup of heavy items and part assembly.

Deploying UAVs in the industry environment requires a minimal number of fixtures and hard-

ware, as it is possible for a single drone to handle multiple tasks in a sequence. Also, UAVs can

be very flexible and efficient in the changing manufacturing workflows because of their dynamic

characteristics. Several research efforts are underway to design aerial manipulators and grasp-

ing mechanisms for the UAV [10], [11]. This is one of the significant challenges that need to

be addressed while designing such a UAV-based material handling system. Heredia et al. [12]

and Jimenez-Cano et al. [13] have demonstrated advanced manipulation capabilities and assembly
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tasks using multiple degrees of freedom manipulators. There have been several instances where

UAVs have been utilized in carrying out the construction work, Augugliaro et al. [14] demonstrate

the use of UAVs for creating a 3D building structure where multiple UAVs work simultaneously.

Research efforts of multi-robot systems have gained momentum in recent times because they have

better performance and space utilization. Arbanas et al. [15] provide a decentralized planning and

control strategy for a UGV-UAV system. These early efforts clearly point to the potential of em-

ploying UAVs for material handling in custom manufacturing environments. Based on these, we

present, the following section, a workplan delineating how UAVs will be deployed, what tasks will

they perform, how they will carry out these tasks and what are the key challenges in this context.
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3. WORKPLAN OF UAV FOR MATERIAL HANDLING

Figure 3.1: Workplan of UAV for material handling

The workplan of a UAV-based material handling system for custom manufacturing environ-

ment can be very complicated as it involves not only interactions among the components (users,

machines, inventories and the drone) within the system, but also the various tasks to assure the in-

tegrity of operation of an autonomous “drone” (UAV). As summarized in Figure 3.1, we consider

the following four broad set of activities as part of the workplan: picking up (an input) material,

placing and loading the workpiece into the machine, interacting with the manufacturing process,

storage and information systems. We present these activities in the context of a typical custom

manufacturing (make-to-order) jobshop as follows:

Picking up material: Upon receiving a manufacturing order, the product information is pro-

cessed, and the required raw material is identified. Then the UAV receives a notification to fly

from its base (e.g., battery charging station) or from its course of flying back to the base (after

completing a task) to the location of the corresponding available inventory. After adjusting its po-

sition above the material, the drone reached out, picks up the material and then sends a signal to
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notify the inventory change and proceeds to the destination (a machine or a work-in-process or a

storage location). The destination location is determined based on which manufacturing process is

required per the process plan, and the location, from among the available cells is communicated to

the UAV.

Placing and loading workpiece in the machine: Once the input material is picked up, the drone

flies to the machine, communicates to open the machine, and places the workpiece at the required

position at the specific machine and process. After the placement, the drone moves to the base or

a waiting area (alternate base) and notifies the machine to close the door and start the process.

Manufacturing process: During the process, the drone can be in a standby mode for battery

charging. Once the process is finished, it receives a signal indicating completion of the process. It

then flies to the machine, communicates to open the machine, and picks up the workpiece. Then

it employs a built-in sensor and intelligence to determine the successive process and chooses to

move to another machine or storage place accordingly.

Storage: The drone drops the prototype at the target location, that can be either a tote that

holds the work-in-process, a (automated) storage system, or another material handler, and sends a

signal to notify the storage change. Then it returns to the waiting position. The prototypes will be

examined later.

Towards executing even this relatively simple workplan, the UAV needs to be endowed with

several capabilities. First, the drone must be able to be programmed to fly autonomously. It must

allow the estimation of its real-time location. Towards this end computer vision system with a

camera with at least 10 frames-per-second and a high enough (depending on the size and light-

ing conditions in a shop floor) resolution, with little distortion and preferably image stabilization

should be equipped. To accurately move to a specific location or hover at the same place by ob-

serving a specified speed and motion profile, the drone should have as little as possible drift, which

requires a well calibrated gyroscope (helping balance the drone), good motors, propellers, elec-

tronic speed controller (ESCs) and flight controllers. To achieve material handling, the drone must

have the ability to carry the load of the input materials and workpieces (by itself or in collaboration

7



with other drones). Also, due to vast variations in the shape and sizes of the custom-products to

be made, a versatile robotic arm may be required for holding the material. To assure a reliable

operation of the drone for a long enough and continuous time, one should choose the battery ca-

pacity according to the workload, while also maintaining a reasonable overall weight. To interact

with the machines and computers, the drone is preferred to be wireless. Moreover, if the drone will

be working in a complicated environment or even with humans, a collision resilience apparatus

should be equipped.

Based on the foregoing, the UAV is desired to have the ability of carrying, grasping, sending

and receiving signals, moving accurately and safely. Most fundamental challenge here is to achieve

the accurate and autonomous flightpath of the UAV, so that it can pick up, move and drop materials

at the planned location by itself (highlighted workflow in Figure 3.1). In this study, as we mainly

focus on improving the accuracy of the drone’s motion, a Parrot Bebop II drone is employed as

the UAV for the case study. This UAV can offer 25-minute flying time and can be wirelessly

connected to the computer for controlling and programming. It is equipped with a 1920 x 1080

wide-angle camera with a fisheye lens. The autonomous control programming is based on ROS

(Robot Operating System) with Python in Ubuntu OS 16.04. We leverage these capabilities to

solve the crucial problem of computer vision-based real-time localization, which can locate the

drone within the work space via an array of binary square fiducial markers. This allows the UAV

to adjust its motion quickly based on its position, even in a limited space where conventional

sensors like GPS may not work.
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4. REAL-TIME ESTIMATION OF A UAV LOCATION IN A MANUFACTURING SYSTEM

In a manufacturing environment, facilities such as machines, computers, and inventory racks,

etc., are regarded as obstacles to the drone. They are distributed densely and are of complicated

shapes, so the motion of the drone should be as accurate (close to the target) and precise (little

variation from flight-to-flight) as possible. If we preprogram the motion path (with known distance

and velocity, move until total moving time equals the expected time), it would not be accurate

since there is an inevitable noise in the drone’s motion, such as the drift and fluctuation in the

actual velocity. These noise effects cause the drone to move a longer or shorter distance in the

expected time period. Instead, we can let the drone control its path itself, by estimating its real-

time location, then updating its real-time distance to the destination, and looping until it reaches

the target place.

4.1 Camera Calibration

In order to estimate the location of a UAV, a camera-based pose estimation algorithm is im-

plemented. As a first step, the camera on-board the UAV needs to be calibrated to get the pose

estimation parameters, such as the intrinsic matrix and distortion coefficients [16]. Normally, the

extrinsic matrix would change when the camera moves, so we only make use of the intrinsic matrix

and distortion coefficients from calibration. Using all these parameters, we can find the correspon-

dence between a 3D point in the real world and its projection in the 2D image.

Among the different methods available (e.g., [16], [17], [18], [19]) we adapted Zhang’s method

[20] for calibrating the camera. Zhang’s method utilizes a planar pattern of known dimensions, i.e.

a chessboard, on which each corner (intersection point of two squares) is a 3D point with known

coordinates. This method only requires the camera to observe the pattern at different (at least two)

orientations by moving the pattern or the camera. The location change and motion imaging are not

needed. Moreover, one pattern can provide multiple correspondences as it has multiple corners.

This can be improved further to consider the difference in the focus and issues in the optical setup.
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The intrinsic matrix depends only on the camera. It projects the point from the camera-centered

coordinate system onto the image plane. Figure 4.1 shows an example of projecting a point (X,

Y, Z) regarding the image plane’s y-axis. First, we need the focal length fy expressed in terms

of pixels (since the unit in image coordinates is pixel). Since the camera and image plane have

different coordinate systems, the offset cy between their principal points is required as well. The

projection regarding the x-axis is similar, with corresponding focal length and offset.

Figure 4.1: Project a 3D point onto the image in terms of Y axis

(a) radial distortion (b) tangential distortion

Figure 4.2: Camera distortion
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The distortion coefficients are used to correct the distortion caused by camera lens. In 1966,

Brown classified the distortion into radial distortion and tangential distortion [21]. The former one

is due to light rays bend more near the edges of a lens than they do at its optical center, while the

latter one occurs when the lens and the image plane are not parallel. Examples are shown in Figure

4.2. After obtaining the parameters and clarifying the distortion of the image, we can perform the

pose estimation.

4.2 Pose estimation based on ArUco marker system

One of the common pose estimation approaches uses ArUco markers (see Figure 4.3), a type of

binary square fiducial markers that are widely used in augmented reality literature. The method is

based on the correspondence between the points in a marker-centered coordinate system and their

2D projections in the image. There are two main benefits of using these markers. One is that a

single marker can provide enough correspondences (its four corners’ known coordinates) to obtain

the camera location. Second, different markers can carry non-redundant information due to the

robust and unique binary encoding inside each marker [22].

Figure 4.3: An example of markers with their coordinate systems

Based on the intrinsic matrix and distortion coefficients obtained from the camera calibration,

once we know the coordinates of corners and their corresponding image coordinates, we can cal-

culate the extrinsic camera matrix. Finally, the coordinates of the camera in the marker space can
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be derived by multiplying the inverse of the extrinsic matrix and the coordinates of the camera in

camera-centered space, which is the origin.

To get the camera position in terms of the real world, we just need to add the coordinates of the

origin of the marker system (the center of the marker) in the real-world space.

In this pose estimation method, our inputs are, the coordinates of each marker’s center in the

real-world space we defined, each corner’s coordinates in terms of its marker (calculated from the

marker’s dimension), images of markers, the intrinsic camera matrix and distortion coefficients.

The first two can be measured with little error, while the latter two largely rely on the properties of

the camera. Therefore, the variance in this method sometimes can be considerable.

4.3 One-step prediction of UAV location

Traditionally, a drone’s motion and pose estimates tend to have dramatically high variances.

The variance in motion is mainly due to the drift, while the variance in pose estimation is at-

tributed to the camera’s failure get stable images during the flight or its resolution not being high

enough. In this thesis, we study the linear motion of the drone, and we assume its speed and lo-

cation are normally distributed. Based on above, a Kalman filter can be applied to mitigate the

error by integrating the information from both the motion and pose estimation, but weighing more

on the information that has less uncertainty. Kalman filter is commonly applied for this task, also

referred to as Simultaneous Localization and Mapping (SLAM) in the autonomous vehicles liter-

ature (e.g., [23], [24], [25], [26]). Specifically, Kalman filter is an iterative data fusion algorithm

that includes two steps: prediction and then update. In prediction, the current state is predicted

from the previous updated state. Each state contains two components: a state estimate and its error

covariance matrix. In update, the current state is updated based on the measurement. Specifically,

the predicted means and covariances are updated based on the means and covariances of the latest

measurement according to Bayes Rule. Then the updated states are used for prediction in the next

iteration.
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5. DEMONSTRATION AND PERFORMANCE ASSESSMENT BASED ON A CASE

STUDY

A case study is carried out to assess the performance of our method combining the ArUco

marker-based pose estimation and Kalman filter. In the experiment (Figure 5.1), the drone moves

for one second every time. After each movement, it stops and captures images of markers and

sends them to the computer. After processing the images, the computer sends back the location

results. The purpose of letting drone stop to collect images is to account for the delay caused by

computation and communications. By comparing the estimated location and the target location,

the drone flies from raw material inventory to the machine and then to the product inventory.

Figure 5.1: Experiment overview

5.1 Experiment setup

A simulated manufacturing environment is built for assessing the performance of the drone in

a real working environment. The planned motion path is shown in Figure 5.2. Specifically, the

drone will take off at the raw material inventory, and then fly past the machine, and eventually land

at the product storage. The origin of the real-world coordinate system is defined as O and shown

in Figure 5.2. The axes X, Y are determined relative to the plan of the markers and they connote
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the directions in which the drone moves forward/backward and left/right, respectively.

Figure 5.2: Simulated manufacturing environment

5.2 Parameters for the pose estimation and Kalman filter

The camera is calibrated before implementing the pose estimation. Since we are using a Parrot

Bebop 2 drone, which has a fisheye lens on the wide-angle camera, we need to get the distor-

tion coefficients of the lens other than intrinsic camera matrix from the calibration. A 6x9 grid

chessboard of known dimension (Figure 5.3) is used. During calibration, the camera position is

fixed while it captures the chessboard in different orientations and positions. The calibration is

conducted 12 times, followed by a pose estimation for a static drone for each time. We choose the

calibration result that leads to relatively less error in the static pose estimation. After calibration,

the intrinsic matrix and distortion coefficients are obtained.

In pose estimation, a total of 12 markers are used, so we can get 48 correspondences from

each image to calculate the coordinates of the camera in terms of the markers. Then by adding the

real-world coordinates of the centers of the markers, we get the location of the camera in the real

world.
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Figure 5.3: Calibration chessboard with a drawn 6x9 grid pattern

In the experiment, the drone moves in orthogonal three axes, namely upward/ downward, left/

right and forward/ backward. We therefore assume that there’s no covariance among movements

in different directions. The Kalman filter is applied to each direction respectively.

In prediction, the state estimate St is a 2x1 vector of the drone’s predicted coordinate and

velocity on corresponding axis for time t.

St =

[
st vst

]T
(5.1)

The real-world location after takeoff is used as initial state s0. As the drone will first move

forward, the velocities in other directions are set as 0. But in fact, velocities in other directions are

non-zero due to the drift. This error is considered in prediction covariance matrix Pt and thus these

velocities can be updated later. Pt can be presented as:

Pt =

 σ2
s σsσvs

σsσvs σ2
vs

 (5.2)

In the initial state, each σ is set according to empirical observations, but after a few iterations,

they would be updated and become closer to the actual distribution. The prediction is then given

by:
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St = ASn
t−1 (5.3)

Pt = AP n
t−1A

T +Q (5.4)

Here, the superscript n indicates the variable has been updated, Q is the process noise, which

accounts for the error in the prediction model. For instance, we assume the drone can suddenly

change speed at the beginning of each iteration and maintain constant within each iteration, while

in fact, it should have an acceleration period and may not keep constant afterwards. The transition

matrix A,

A =

1 ∆t

0 1

 (5.5)

has the time between each iteration ∆t is set to 1 to simplify computations.

In update, every measurement vector M represents an average of the results of pose estimation

based on one frame, namely an average of 48 results since we have 12 markers in each frame. M

can be written as:

M =

[
smt vsmt

]T
(5.6)

wherein smt is the x-coordinate of the camera in the real world. vsmt is calculated as the first

derivative of smt with respect to ∆t. Since ∆t is 1, vsmt can be written as:

vsmt = smt − smt−1 (5.7)

Kalman Gain K is calculated based on Pt and N , the covariance matrix of the prediction and

measurement, respectively.

K = PtH
T (HPtH

T +N)−1 (5.8)
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N is set according to prior observations and is considered constant because it mainly depends

on the fixed configurations of the measuring instrument, namely the camera. H is an identity matrix

to format the Pt for matrix operation, and its dimension is determined by the number of variables

we are going to update in St based on the measurement M . In equation (5.8), if Pt increases or N

decreases, which means larger variance in prediction or less variance in measurement, K would

be larger. Thus, K can be used as the weight for measurement, while (1 −K) can be used as the

weight for prediction. Then St can be updated by:

Sn
t = (I −KH)St +KM (5.9)

5.3 Results

The experiments without and with Kalman filter are conducted separately and are repeated

multiple times with the same settings (velocity, covariance matrix, takeoff and target location,

etc.). Figure 5.4 shows the real-time estimation of the virtual path of the UAV from one of the

experiments. In Figure 5.4 (a), each red dot represents an ordinary pose estimation result. The

green dots refer to the pose estimates updated with Kalman filter (each green dot is obtained by

applying Kalman filter to an average of 48 ordinary results). Figure 5.4 (b) shows the virtual motion

paths based on average of the ordinary pose estimation results (red) and results with Kalman filter

(green). As we can see, by taking the average of results from 12 markers, the variance of pose

estimation is considerably reduced and Kalman filter can further mitigate the noise. The path

based on Kalman filter results (the green curve) is visibly smoother and more accurate.

Next, we examined the accuracy of the method in terms of the distance between the point where

the UAV is estimated to land for pickup/drop off, and the target point for various experiments.

The landing points are shown in Figure 5.5. (The X and Y axes are defined in Figure 5.2). As

summarized in the figure, the average distance in the experiments with Kalman filter is 0.08 m,

and 0.27 m in the experiments without Kalman filter. The estimated variance of the ArUco marker-

based pose estimation is 0.031243 m2, while that of the one with Kalman filter is 0.0036 m2. The
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variance is effectively reduced by approximately 88.48% after applying a Kalman filter.

Figure 5.4: (a) Scatter plot of Kalman filter results and results from each marker (b) virtual paths
for Kalman filter results and the average results from 12 markers

Figure 5.5: Landing locations of all the experiments
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6. CONCLUSIONS

In this study, we introduce the concept of using a UAV for material handling in custom man-

ufacturing. Compared with conventional handling methods, UAV is more flexible at dealing with

multiple tasks regarding diverse workflows. It also has a lower cost and smaller dimension. Fur-

thermore, we also delineated an elementary four-step workplan for its application. To implement

the workplan, many challenges should be identified and solved. One of the most fundamental chal-

lenges is to achieve the accurate and autonomous movement of the drone in a complicated indoor

manufacturing environment. Towards addressing the challenge, a computer vision-based pose esti-

mation is used to estimate the real time location of the drone. Specifically, Kalman filter is applied

to improve the pose estimation accuracy. A case study is carried out to evaluate and compare the

methods mentioned above. The result suggests that applying Kalman filter can reduce the variance

of pose estimation by 88.48% compared to a conventional ArUco marker-based method, and can

localize (via averaging) the position to within 8 cm of the actual target location, which is more

accurate than the method without Kalman filter (approximately 27 cm).

However, several other issues remain unsolved regarding the localization of UAV movement.

For example, we have not studied the nonlinear process in which the drone can have angular

rotation, as well as the dependences among the locations along X, Y, and Z directions. Also,

many components of the errors in the localization are largely due to the quality of the camera,

and can be addressed by a proper consideration of the camera parameters. Additionally, to com-

prehensively realize material handling in custom manufacturing, the design of load capacity and

collision-tolerant mechanism of the drone should be further studied. These issues are addressed as

part of our future research.
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APPENDIX A

EXPERIMENT RESULTS

Camera calibration results

Intrinsic camera matrix:
519.40427524 0 422.37794908

0 506.11336746 246.85083267

0 0 1


Distortion Coefficient:

[
0.00116584 −0.030782 0.00175287 −0.00248902 0.01731515

]

Pose estimation results

a) Pose estimation results when moving only on one direction (with and without Kalman filter):

Figure A.1: Pose estimation results when the drone moves only along Y axis
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b) Landing location results of ordinary pose estimation (unit:m):

Experiment number Location Coordinate X Location Coordinate Y Euclidean Distance
1 1.88 0.77 0.30
2 1.65 0.41 0.18
3 1.68 0.39 0.21
4 1.59 0.20 0.40
5 1.66 0.59 0.02
6 2.05 0.32 0.49
7 1.60 0.67 0.10
8 1.65 0.75 0.16
9 1.47 0.08 0.54
10 2.02 0.39 0.42
11 1.61 0.65 0.07
12 2.01 0.38 0.42
Average 0.27 Variance 0.031243 m2

Table A.1: Landing location results of ordinary pose estimation (corresponding to Fig. 5.5)

c) Landing location results of estimation with Kalman filter (unit:m):

Experiment number Location Coordinate X Location Coordinate Y Euclidean Distance
1 1.78 0.65 0.15
2 1.66 0.58 0.03
3 1.45 0.59 0.19
4 1.55 0.75 0.16
5 1.68 0.52 0.10
6 1.63 0.71 0.10
7 1.64 0.56 0.05
8 1.66 0.59 0.03
9 1.73 0.69 0.12
10 1.65 0.58 0.03
11 1.64 0.60 0.01
12 1.66 0.57 0.04
Average 0.08 Variance 0.0036 m2

Table A.2: Landing location results of estimation with Kalman filter (corresponding to Fig. 5.5)
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APPENDIX B

CODES

Camera calibration codes

# System information:

# - Linux Mint 18.1 Cinnamon 64-bit

# - Python 2.7 with OpenCV 3.2.0

# Resources:

# - OpenCV-Python tutorial for calibration: http://opencv-python-tutroals.

readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/

py_calibration.html

# - Variable names were changed for clarity

import numpy

import cv2

import pickle

import glob

# Create arrays you’ll use to store object points and image points from all

images processed

objpoints = [] # 3D point in real world space where chess squares are

imgpoints = [] # 2D point in image plane, determined by CV2

# Chessboard variables

CHESSBOARD_CORNERS_ROWCOUNT = 9

CHESSBOARD_CORNERS_COLCOUNT = 6

square_size=0.025

# Theoretical object points for the chessboard we’re calibrating against,

# These will come out like:
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# (0, 0, 0), (1, 0, 0), ...,

# (CHESSBOARD_CORNERS_ROWCOUNT-1, CHESSBOARD_CORNERS_COLCOUNT-1, 0)

# Note that the Z value for all stays at 0, as this is a printed out 2D image

# And also that the max point is -1 of the max because we’re zero-indexing

# The following line generates all the tuples needed at (0, 0, 0)

objp = numpy.zeros((CHESSBOARD_CORNERS_ROWCOUNT*CHESSBOARD_CORNERS_COLCOUNT,3)

, numpy.float32)

# The following line fills the tuples just generated with their values (0, 0,

0), (1, 0, 0), ...

objp[:,:2] = numpy.mgrid[0:CHESSBOARD_CORNERS_ROWCOUNT,0:

CHESSBOARD_CORNERS_COLCOUNT].T.reshape(-1, 2)

objp*=square_size

# Need a set of images or a video taken with the camera you want to calibrate

# I’m using a set of images taken with the camera with the naming convention:

# ’camera-pic-of-chessboard-<NUMBER>.jpg’

images = glob.glob(’*.jpg’)

# All images used should be the same size, which if taken with the same camera

shouldn’t be a problem

imageSize = None # Determined at runtime

a=0

# Loop through images glob’ed

for iname in images:

# Open the image

img = cv2.imread(iname)

# Grayscale the image

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Find chessboard in the image, setting PatternSize(2nd arg) to a tuple of

(#rows, #columns)

board, corners = cv2.findChessboardCorners(gray, (

27



CHESSBOARD_CORNERS_ROWCOUNT,CHESSBOARD_CORNERS_COLCOUNT), None)

# If a chessboard was found, let’s collect image/corner points

if board == True:

a=a+1

# Add the points in 3D that we just discovered

objpoints.append(objp)

# Enhance corner accuracy with cornerSubPix

corners_acc = cv2.cornerSubPix(

image=gray,

corners=corners,

winSize=(11, 11),

zeroZone=(-1, -1),

criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,

30, 0.001)) # Last parameter is about termination criteria

imgpoints.append(corners_acc)

# If our image size is unknown, set it now

if not imageSize:

imageSize = gray.shape[::-1]

# Draw the corners to a new image to show whoever is performing the

calibration

# that the board was properly detected

img = cv2.drawChessboardCorners(img, (CHESSBOARD_CORNERS_ROWCOUNT,

CHESSBOARD_CORNERS_COLCOUNT), corners_acc, board)

# Pause to display each image, waiting for key press

cv2.imwrite(’Chessboard.jpg’, img)

else:

print("Not able to detect a chessboard in image: {}".format(iname))
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# Destroy any open CV windows

cv2.destroyAllWindows()

# Make sure at least one image was found

if len(images) < 1:

# Calibration failed because there were no images, warn the user

print("Calibration was unsuccessful. No images of chessboards were found.

Add images of chessboards and use or alter the naming conventions used

in this file.")

# Exit for failure

exit()

# Make sure we were able to calibrate on at least one chessboard by checking

# if we ever determined the image size

if not imageSize:

# Calibration failed because we didn’t see any chessboards of the

PatternSize used

print("Calibration was unsuccessful. We couldn’t detect chessboards in any

of the images supplied. Try changing the patternSize passed into

findChessboardCorners(), or try different pictures of chessboards.")

# Exit for failure

exit()

# Now that we’ve seen all of our images, perform the camera calibration

# based on the set of points we’ve discovered

calibration, cameraMatrix, distCoeffs, rvecs, tvecs = cv2.calibrateCamera(

objectPoints=objpoints,

imagePoints=imgpoints,

imageSize=imageSize,

cameraMatrix=None,

distCoeffs=None)

# Print matrix and distortion coefficient to the console
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print(cameraMatrix)

print(distCoeffs)

# Save values to be used where matrix+dist is required, for instance for

posture estimation

# I save files in a pickle file, but you can use yaml or whatever works for

you

f = open(’calibration4.pckl’, ’wb’)

pickle.dump((cameraMatrix, distCoeffs, rvecs, tvecs), f)

f.close()

# Print to console our success

print(’Calibration successful. Calibration file used: {}’.format(’calibration4

.pckl’))

print(a)

Pose estimation codes (with Kalman filter)

#! /usr/bin/python

# rospy for the subscriber

import rospy

# ROS Image message

from sensor_msgs.msg import Image

# ROS Image message -> OpenCV2 image converter

from cv_bridge import CvBridge, CvBridgeError

# OpenCV2 for saving an image

import cv2

import time

import datetime

import numpy as np

import pandas as pd

import cv2

import cv2.aruco as aruco
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import os

import pickle

from geometry_msgs.msg import Twist

from std_msgs.msg import Empty

from numpy.linalg import inv

def restPovec(id):

if id == 1:

mkpos = [0.3048,1.2509,0,1]

#elif id == 3:

#mkpos = [0.4255,1.2509,0,1]

#elif id == 5:

#mkpos = [0.3048,1.0541,0,1]

#elif id == 7:

#mkpos = [0.4255,1.0541,0,1]

elif id == 9:

mkpos = [0.8303,1.2287,0,1]

elif id == 11:

mkpos = [0.9477,1.2287,0,1]

elif id == 13:

mkpos = [0.8303,1.0541,0,1]

elif id == 15:

mkpos = [0.9477,1.0541,0,1]

elif id == 25:

mkpos = [1.3676,1.2287,0,1]

elif id == 27:

mkpos = [1.4859,1.2287,0,1]

elif id == 29:

mkpos = [1.3676,1.0541,0,1]

elif id == 31:

mkpos = [1.4859,1.0541,0,1]

else:
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mkpos = [0,0,0,0]

return mkpos

if not os.path.exists(’./calibration4.pckl’):

print("You need to calibrate the camera you’ll be using. See calibration

project directory for details.")

exit()

else:

f = open(’calibration4.pckl’, ’rb’)

(cameraMatrix, distCoeffs, _, _) = pickle.load(f)

f.close()

if cameraMatrix is None or distCoeffs is None:

print("Calibration issue. Remove ./calibration.pckl and recalibrate

your camera.")

exit()

# Create constant markers

ARUCO_PARAMETERS = aruco.DetectorParameters_create()

ARUCO_DICT = aruco.Dictionary_get(aruco.DICT_5X5_1000)

# Create vectors we’ll be using for rotations and translations for postures

rvecs, tvecs = None, None

# Instantiate CvBridge

bridge = CvBridge()

def pose_estimation(msg):

global num

global aland

i = 0

camx = []
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camy = []

camz = []

# Convert your ROS Image message to OpenCV2

cv2_img = bridge.imgmsg_to_cv2(msg, "bgr8")

QueryImg = cv2_img

ret = True

if (QueryImg is not None):

# grayscale image

gray = cv2.cvtColor(QueryImg, cv2.COLOR_BGR2GRAY)

# Detect Aruco markers

corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,

ARUCO_DICT, parameters=ARUCO_PARAMETERS)

# Initialize the camera coordinate

camcord=np.zeros((3,6))

# Require 8 markers in a photo i=i+1

if ids is not None and len(ids) > 0:

num = num+1

#Estimate the posture from each Aruco marker

rvecs, tvecs,_ = aruco.estimatePoseSingleMarkers(corners,

0.07, cameraMatrix, distCoeffs)

for rvec, tvec in zip(rvecs, tvecs):

#QueryImg = aruco.drawAxis(QueryImg, cameraMatrix,

distCoeffs, rvec, tvec, 0.1)

povec=restPovec(ids[i])

Rt,_Jacobian=cv2.Rodrigues(rvec)

tvec=np.transpose(tvec[0])
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tvec=tvec.reshape(3,1)

temp=np.concatenate(Rt)

temp=temp.reshape(3,3)

transformation=np.append(temp,tvec,axis=1)

append=np.array([0,0,0,1]).reshape(1,4)

transformation=np.append(transformation,append,axis=0)

transformation=np.linalg.inv(transformation)

# Get camera center location in marker coordinate

system

arucocord=np.matmul(transformation,np.array([0,0,0,1])

)

# Get camera center location in real world coordinate

system

cameracord=arucocord+povec

cameracord=cameracord[0:3]

i=i+1

# For display, x is toward the camera, y is along the

closet, z is the height

camx=np.append(camx,cameracord[2])

camy=np.append(camy,cameracord[0])

camz=np.append(camz,cameracord[1])

# Write the photo

cv2.imwrite(str(num)+".png",QueryImg) ## should check

every time to avoid overwrite

else:

print("no image detected")

aland = 1

camcord = [camx,camy,camz,aland]

return camcord
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def land():

rate = rospy.Rate(10)

while land_pub.get_num_connections()<1:

rospy.loginfo_throttle(2,"waiting for landing")

rospy.sleep(0.1)

land_pub.publish(Empty())

def takeoff():

rate = rospy.Rate(10)

while takeoff_pub.get_num_connections()<1:

rospy.loginfo_throttle(2,"waiting for takeoff")

rospy.sleep(0.1)

takeoff_pub.publish(Empty())

# The real world xyz system is consistant with the marker coordinate system

# In the marker system, y is the height, x is along the closet, z is toward

the camera

def prediction2d(x,vx):

A = np.array([[1,1],

[0,1]])

X = np.array([[x],

[vx]])

X_prime = A.dot(X) # Here we don’t consider adding acceleration a

return X_prime

def covariance2d(sigma_x, sigma_vx):

sigma = np.array([[sigma_x, sigma_vx]])

cov_matrix = (sigma.T).dot(sigma)

return cov_matrix # let covariance = 0

def main():
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kf_camx = []

kf_camy = []

kf_camz = []

kf_vx = []

kf_vy = []

a_x = []

a_y = []

a_z = []

move_time = []

global land_pub

global aland

global num

camx = []

camy = []

camz = []

num = 0

speedx = 0

speedy = 0

target_x = 1.65 * 100

target_y = 0.8 * 100

target_z = 1.35 * 100

# Initial Estimation Covariance Matrix

# Process / Estimation Errors

error_est_x = 0.01*100

error_est_vx = 0.005*100

error_est_y = 0.05*100

error_est_vy = 0.025*100

error_est_z = 0*100
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error_est_vz = 0*100

# Observation Errors (To avoid S being singular matrix, cannot use the

same multiply)

error_obs_x = 5 *100 # Uncertainty in the measurement

error_obs_vx = 10 *100

error_obs_y = 0.1 *100

error_obs_vy = 0.2 *100

error_obs_z = 0.2 *100

error_obs_vz = 0.4 *100

A = np.array([[1,1],

[0,1]])

H = np.identity(2)

Px = covariance2d(error_est_x, error_est_vx)

Rx = covariance2d(error_obs_x,error_obs_vx)

Py = covariance2d(error_est_y, error_est_vy)

Ry = covariance2d(error_obs_y,error_obs_vy)

Pz = covariance2d(error_est_z, error_est_vz)

Rz = covariance2d(error_obs_z,error_obs_vz)

# Get initial location

image_topic = "/bebop/image_raw"

msg = rospy.wait_for_message(image_topic, Image)

camcord = pose_estimation(msg)

camx = camcord[0]

camy = camcord[1]

camz = camcord[2]

aland = camcord[3]

if(aland == 0):

image_topic = "/bebop/image_raw"

msg = rospy.wait_for_message(image_topic, Image)

camcord = pose_estimation(msg)
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camx = np.append(camx,camcord[0])

camy = np.append(camy,camcord[1])

camz = np.append(camz,camcord[2])

aland = camcord[3]

if(aland == 1):

land_pub = rospy.Publisher("bebop/land",Empty,queue_size=1)

land()

avg_x = np.mean(camx) * 100

avg_y = np.mean(camy) * 100

avg_z = np.mean(camz) * 100

pos_x = avg_x

pos_y = avg_y

pos_z = avg_z

a_x = np.append(a_x,avg_x/100)

a_y = np.append(a_y,avg_y/100)

a_z = np.append(a_z,avg_z/100)

with open(’camx.txt’,’a’) as fz:

np.savetxt(fz, camx, delimiter=",",fmt=’%.4f’)

with open(’camy.txt’,’a’) as fz:

np.savetxt(fz, camy, delimiter=",",fmt=’%.4f’)

with open(’camz.txt’,’a’) as fz:

np.savetxt(fz, camz, delimiter=",",fmt=’%.4f’)

# initial kalman filter state (x,y,z,vx,vy,vz)

X = np.array([[pos_x],

[-3]]) # !!!The direction of speed in kalman filter

is the reverse of the drone’s speed

Y = np.array([[pos_y],

[0]])

Z = np.array([[pos_z],

[0]])
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kf_camx = np.append(kf_camx, X[0][0]/100)

kf_camy = np.append(kf_camy, Y[0][0]/100)

kf_camz = np.append(kf_camz, Z[0][0]/100)

kf_vx = np.append(kf_vx, X[1][0]/100)

kf_vy = np.append(kf_vy, Y[1][0]/100)

current_x = X[0,0] # all elements are x*100 (unit:cm)

#True or False

isMove = input("Sure to move x?: ")

if(isMove):

# Move on x direction (towards the marker)

while (current_x < target_x-20 or current_x > target_x-6):

####

# within a safe x range (just pose estimation result, in case kalman

filter not good)

if (pos_x > target_x - 75 and pos_x < target_x + 95 and aland == 0):

# within a safe y range

if (pos_y > target_y - 35 and pos_y < target_y + 100 and aland ==

0): ####

prepose_x = pos_x

prepose_y = pos_y

prepose_z = pos_z

# set speed

if (current_x < target_x-20):

speedx = -0.01 #!!!!Notice that the

coordinate of world and drone are reversed

distance = target_x-20-current_x

if (current_x > target_x-6):
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speedx = 0.03 #!!!!Notice that the

coordinate of world and drone are reversed

distance = current_x-target_x

# Prediction in Kalman filter

X = prediction2d(X[0][0], X[1][0])

Y = prediction2d(Y[0][0], Y[1][0])

Z = prediction2d(Z[0][0], Z[1][0])

Px = A.dot(Px).dot(A.T)

Py = A.dot(Py).dot(A.T)

Pz = A.dot(Pz).dot(A.T)

# Calculate the Kalman gain

Sx = H.dot(Px).dot(H.T) + Rx +0.0001*H # H represents the

random error

Sy = H.dot(Py).dot(H.T) + Ry +0.0001*H

Sz = H.dot(Pz).dot(H.T) + Rz +0.0001*H

Kx = Px.dot(H.T).dot(inv(Sx))

Ky = Py.dot(H.T).dot(inv(Sy))

Kz = Pz.dot(H.T).dot(inv(Sz))

# Move

vel_msg.linear.x = speedx

vel_msg.linear.y = 0

vel_msg.linear.z = 0

vel_msg.angular.x = 0

vel_msg.angular.y = 0

vel_msg.angular.z = 0

# Set the timer

t0 = rospy.Time.now().to_sec()

t1 = rospy.Time.now().to_sec()

while(t1-t0 <= 1): # either move 2 secs

#Publish the velocity
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velocity_publisher.publish(vel_msg)

#Takes actual time to velocity calculus

t1=rospy.Time.now().to_sec()

# stop the robot

vel_msg.linear.x = 0

velocity_publisher.publish(vel_msg)

t2=rospy.Time.now().to_sec()

move_time = np.append(move_time,t2-t0)

with open(’move_time.txt’,’a’) as fx:

np.savetxt(fx, move_time, delimiter=",",fmt=’%.6f’)

# Pose estimation (measurement)

image_topic = "/bebop/image_raw"

msg = rospy.wait_for_message(image_topic, Image)

camcord = pose_estimation(msg)

camx = camcord[0]

camy = camcord[1]

camz = camcord[2]

aland = camcord[3]

if(aland == 0):

image_topic = "/bebop/image_raw"

msg = rospy.wait_for_message(image_topic, Image)

camcord = pose_estimation(msg)

camx = np.append(camx,camcord[0])

camy = np.append(camy,camcord[1])

camz = np.append(camz,camcord[2])

aland = camcord[3]

if(aland == 1):

land_pub = rospy.Publisher("bebop/land",Empty,queue_size

=1)

land()

avg_x = np.mean(camx) * 100
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avg_y = np.mean(camy) * 100

avg_z = np.mean(camz) * 100

pos_x = avg_x

pos_y = avg_y

pos_z = avg_z

a_x = np.append(a_x,avg_x/100)

a_y = np.append(a_y,avg_y/100)

a_z = np.append(a_z,avg_z/100)

with open(’camx.txt’,’a’) as fz:

np.savetxt(fz, camx, delimiter=",",fmt=’%.4f’)

with open(’camy.txt’,’a’) as fz:

np.savetxt(fz, camy, delimiter=",",fmt=’%.4f’)

with open(’camz.txt’,’a’) as fz:

np.savetxt(fz, camz, delimiter=",",fmt=’%.4f’)

# Update in Kalman filter

datax = [pos_x,pos_x-prepose_x]

datay = [pos_y,pos_y-prepose_y]

dataz = [pos_z,pos_z-prepose_z]

Mx = H.dot(datax).reshape(2, -1)

My = H.dot(datay).reshape(2, -1)

Mz = H.dot(dataz).reshape(2, -1)

X = X + Kx.dot(Mx - H.dot(X))

Y = Y + Ky.dot(My - H.dot(Y))

Z = Z + Kz.dot(Mz - H.dot(Z))

Px = (np.identity(len(Kx)) - Kx.dot(H)).dot(Px)

Py = (np.identity(len(Ky)) - Ky.dot(H)).dot(Py)

Pz = (np.identity(len(Kz)) - Kz.dot(H)).dot(Pz)

current_x = X[0,0]

kf_camx = np.append(kf_camx, X[0][0]/100)

kf_camy = np.append(kf_camy, Y[0][0]/100)
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kf_camz = np.append(kf_camz, Z[0][0]/100)

kf_vx = np.append(kf_vx, X[1][0]/100)

kf_vy = np.append(kf_vy, Y[1][0]/100)

else:

print("y is out of the safe range")

current_x = target_x

Y[0,0] = target_y

else:

print("x is out of the safe range")

current_x = target_x

Y[0,0] = target_y

print("finish moving x, now move on y")

# initial kalman filter state (x,y,z,vx,vy,vz)

X = np.array([[X[0,0]],

[0]]) # !!!The direction of speed in kalman filter is

the reverse of the drone’s speed

Y = np.array([[Y[0,0]],

[-8]])

Z = np.array([[Z[0,0]],

[0]])

kf_vx = np.append(kf_vx, X[1][0]/100)

kf_vy = np.append(kf_vy, Y[1][0]/100)

error_est_x = 0.00005*100

error_est_vx = 0*100

error_est_y = 0.001*100

error_est_vy = 0.0005*100

Px = covariance2d(error_est_x, error_est_vx)

Py = covariance2d(error_est_y, error_est_vy)

current_y = Y[0,0]

# Move on y direction

while(current_y < target_y-8 or current_y > target_y+10):
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# within a safe x range (just pose estimation result, in case kalman

filter not good)

if (X[0,0] > target_x - 75 and X[0,0] < target_x + 45 and aland ==

0):

# within a safe y range

if (pos_y > target_y - 35 and pos_y < target_y + 90 and aland ==

0): ####

prepose_x = pos_x

prepose_y = pos_y

prepose_z = pos_z

# set speed

if (current_y < target_y-8):

speedy = -0.01 #!!!!Notice that the

coordinate of world and drone are reversed

distance = target_y-8-current_y

if (current_y > target_y+10):

speedy = 0.02 #!!!!Notice that the

coordinate of world and drone are reversed

distance = current_y-target_y-10

# Prediction in Kalman filter

X = prediction2d(X[0][0], X[1][0])

Y = prediction2d(Y[0][0], Y[1][0])

Z = prediction2d(Z[0][0], Z[1][0])

Px = A.dot(Px).dot(A.T)

Py = A.dot(Py).dot(A.T)

Pz = A.dot(Pz).dot(A.T)

# Calculate the Kalman gain

Sx = H.dot(Px).dot(H.T) + Rx +0.0001*H # H represents the
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random error

Sy = H.dot(Py).dot(H.T) + Ry +0.0001*H

Sz = H.dot(Pz).dot(H.T) + Rz +0.0001*H

Kx = Px.dot(H.T).dot(inv(Sx))

Ky = Py.dot(H.T).dot(inv(Sy))

Kz = Pz.dot(H.T).dot(inv(Sz))

# Move

vel_msg.linear.x = 0

vel_msg.linear.y = speedy

vel_msg.linear.z = 0

vel_msg.angular.x = 0

vel_msg.angular.y = 0

vel_msg.angular.z = 0

# Set the timer

t0 = rospy.Time.now().to_sec()

t1 = rospy.Time.now().to_sec()

while(t1-t0 <= 1): # either move 2 secs or move to target

#Publish the velocity

velocity_publisher.publish(vel_msg)

#Takes actual time to velocity calculus

t1=rospy.Time.now().to_sec()

# stop the robot

vel_msg.linear.y = 0

velocity_publisher.publish(vel_msg)

t2=rospy.Time.now().to_sec()

move_time = np.append(move_time,t2-t0)

with open(’move_time.txt’,’a’) as fx:

np.savetxt(fx, move_time, delimiter=",",fmt=’%.6f’)

# Pose estimation (measurement)

image_topic = "/bebop/image_raw"
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msg = rospy.wait_for_message(image_topic, Image)

camcord = pose_estimation(msg)

camx = camcord[0]

camy = camcord[1]

camz = camcord[2]

aland = camcord[3]

if(aland == 0):

image_topic = "/bebop/image_raw"

msg = rospy.wait_for_message(image_topic, Image)

camcord = pose_estimation(msg)

camx = np.append(camx,camcord[0])

camy = np.append(camy,camcord[1])

camz = np.append(camz,camcord[2])

aland = camcord[3]

if(aland == 1):

land_pub = rospy.Publisher("bebop/land",Empty,queue_size

=1)

land()

avg_x = np.mean(camx) * 100

avg_y = np.mean(camy) * 100

avg_z = np.mean(camz) * 100

pos_x = avg_x

pos_y = avg_y

pos_z = avg_z

a_x = np.append(a_x,avg_x/100)

a_y = np.append(a_y,avg_y/100)

a_z = np.append(a_z,avg_z/100)

with open(’camx.txt’,’a’) as fz:

np.savetxt(fz, camx, delimiter=",",fmt=’%.4f’)

with open(’camy.txt’,’a’) as fz:

np.savetxt(fz, camy, delimiter=",",fmt=’%.4f’)
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with open(’camz.txt’,’a’) as fz:

np.savetxt(fz, camz, delimiter=",",fmt=’%.4f’)

# Update in Kalman filter

datax = [pos_x,pos_x-prepose_x]

datay = [pos_y,pos_y-prepose_y]

dataz = [pos_z,pos_z-prepose_z]

Mx = H.dot(datax).reshape(2, -1)

My = H.dot(datay).reshape(2, -1)

Mz = H.dot(dataz).reshape(2, -1)

X = X + Kx.dot(Mx - H.dot(X))

Y = Y + Ky.dot(My - H.dot(Y))

Z = Z + Kz.dot(Mz - H.dot(Z))

Px = (np.identity(len(Kx)) - Kx.dot(H)).dot(Px)

Py = (np.identity(len(Ky)) - Ky.dot(H)).dot(Py)

Pz = (np.identity(len(Kz)) - Kz.dot(H)).dot(Pz)

current_y = Y[0,0]

kf_camx = np.append(kf_camx, X[0][0]/100)

kf_camy = np.append(kf_camy, Y[0][0]/100)

kf_camz = np.append(kf_camz, Z[0][0]/100)

kf_vx = np.append(kf_vx, X[1][0]/100)

kf_vy = np.append(kf_vy, Y[1][0]/100)

else:

print("y is out of the safe range")

current_y = target_y

else:

print("x is out of the safe range")

current_y = target_y

with open(’kf_camx.txt’,’a’) as fz:

np.savetxt(fz, kf_camx, delimiter=",",fmt=’%.4f’)
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with open(’kf_camy.txt’,’a’) as fz:

np.savetxt(fz, kf_camy, delimiter=",",fmt=’%.4f’)

with open(’kf_camz.txt’,’a’) as fz:

np.savetxt(fz, kf_camz, delimiter=",",fmt=’%.4f’)

with open(’avgx.txt’,’a’) as fx:

np.savetxt(fx, a_x, delimiter=",",fmt=’%.4f’)

with open(’avgy.txt’,’a’) as fy:

np.savetxt(fy, a_y, delimiter=",",fmt=’%.4f’)

with open(’avgz.txt’,’a’) as fz:

np.savetxt(fz, a_z, delimiter=",",fmt=’%.4f’)

with open(’kf_vx.txt’,’a’) as fz:

np.savetxt(fz, kf_vx, delimiter=",",fmt=’%.4f’)

with open(’kf_vy.txt’,’a’) as fz:

np.savetxt(fz, kf_vy, delimiter=",",fmt=’%.4f’)

print("finish moving")

time.sleep(1)

if __name__ == ’__main__’:

global aland

aland = 0

# Starts a new node

rospy.init_node(’parrot_bebop2’, anonymous=True)

# publisher for takeoff

takeoff_pub = rospy.Publisher("bebop/takeoff",Empty,queue_size=1)

isTakeoff = input("Sure to takeoff?: ") #True or False

if (isTakeoff):

takeoff()

time.sleep(4) #3s for takeoff
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# Fly to the planned height

velocity_publisher = rospy.Publisher(’/bebop/cmd_vel’, Twist,

queue_size=10)

vel_msg = Twist()

current_height = 0

height = 0.36 #m

speedz = 0.06 #m/s

#isMove = input("Sure to move z?: ") #True or False

isMove = True

if (isMove):

vel_msg.linear.x = 0

vel_msg.linear.y = 0

vel_msg.linear.z = speedz

vel_msg.angular.x = 0

vel_msg.angular.y = 0

vel_msg.angular.z = 0

t0 = rospy.Time.now().to_sec()

while(current_height < height): #distance can substract a

certain number to allow drift

#Publish the velocity

velocity_publisher.publish(vel_msg)

#Takes actual time to velocity calculus

t1=rospy.Time.now().to_sec()

#Calculates distancePoseStamped

current_height= speedz*(t1-t0)

# Reached the height, stop

vel_msg.linear.z = 0

velocity_publisher.publish(vel_msg)

time.sleep(1)

# Move and collect photos

main()
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#Land the robot

#landing = input("Ready to land?: ") #True or False

landing = True

print("start landing!")

if (landing and aland == 0):

landspeed = 0.06

landdistance = 0.54

currentz = 0

vel_msg.linear.z = -landspeed

t2 = rospy.Time.now().to_sec()

while(currentz < landdistance):

velocity_publisher.publish(vel_msg)

t3=rospy.Time.now().to_sec()

currentz = landspeed*(t3-t2)

vel_msg.linear.z = 0

velocity_publisher.publish(vel_msg)

# publisher for landing

land_pub = rospy.Publisher("bebop/land",Empty,queue_size=1)

land()

else:

print("already landed!")
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