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ABSTRACT

21st century energy production, conversion, and delivery systems are expected to succeed

in multiple goals such as meeting the increasing energy demand, being economically feasible,

being less carbon-intensive, increasing resource utilization efficiency. This requires a transition

in technologies, operation strategies, and use of energy in our everyday life. Such a transition

necessitates a better understanding and analysis of both the existing and futuristic technologies,

pathways, and scenarios.

The aim of my dissertation is to use process systems engineering methods to develop generic

frameworks to arrive at realistic integrated solutions to complex energy and environmental

problems. Mathematical optimization is at the heart of these systematic and quantitative analysis

methods. The systems under investigation range from mesoscale to megascale levels over time

horizons from hours to days or years handling chemical engineering problems like modeling,

design, planning, and scheduling. The common vision throughout every study is to gain insight on

the challenges awaiting the energy transition and provide promising solutions.

This dissertation comprises various studies focusing on both improving the current practices

like in the petroleum industry operations or chemical process design and analyzing feasibility of

long-range energy transition scenarios that put an emphasis on integrating renewables like solar

and wind in power, fuels, and chemicals production. The studies include (i) development of

an integrated data-driven modeling and global optimization framework for improving short-term

production planning operations in petroleum refineries, (ii) use of a process synthesis and global

optimization approach to design optimal ammonia production processes from various pathways

including natural gas reforming, biomass gasification, and renewable-powered electrolysis, (iii)

development of a novel simultaneous design, scheduling, and supply chain strategy to optimize

renewable power generation, storage, and transportation systems, and (iv) an extension of this

latter strategy to integrate renewable energy systems with fossil energy systems for multi-product

process networks to produce power, fuels, and chemicals in integrated facilities.
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1. INTRODUCTION AND LITERATURE SURVEY

1.1 A Snapshot of the Energy Landscape: Yesterday, Today, and Tomorrow

The prehistoric human evolution and the course of history and have been characterized by a

quest for controlling the storage and flow of concentrated and versatile forms of energy and their

conversion into heat, light, and motion [1]. The development of human societies result in larger

populations with growing complexity of social and productive institutions to provide a higher

quality of life for a growing number of people. United Nations Development Programme reports

and academic research suggest a strong correlation between increasing per capita energy use and

Human Development Index (HDI) especially at low to moderate energy use levels [2, 3].

The world population is expected to reach ten billion by 2070 [4] and the world gross domestic

product (GDP) is expected to double from 2020 till 2040 largely due to the emerging economies

and the expanding middle classes in the Asia Pacific countries like China and India [5]. With

this growth, the global energy demand is projected to rise from 570 exajoules in 2015 to 1000

exajoules by 2070 [6, 7]. This trend urges us to answer the question of whether there is enough

energy resources to meet the future demand.

Since the industrial revolution in the 17th century, the productivity and the resulting economic

growth has been fueled predominantly by fossil hydrocarbons like coal, petroleum (oil), and

natural gas. Fossil fuels are chemical mixtures formed by anaerobic decomposition of buried dead

organism that are fossilized during a period of millions of years. As the fossils are exposed to heat

and pressure over a long time, the dilute solar energy harvested originally via photosynthesis is

concentrated and stored in the chemical bonds between mainly carbon and hydrogen atoms. When

burned (combusted), this stored energy is released along with the by products of oxidized carbon

and hydrogen, carbon dioxide and water, respectively. Easy and affordable access to fossil fuels

provided the utmost impetus to countries like the United States to reach great wealth and, as of

2019, there is still a strong reliance on fossil fuels in energy consumption on a global scale, such
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that fossil fuels comprise the 85% of the global energy consumption [7]. Although there have

been debates on the availability of fossil resources, there appears to be enough to supply the global

demand in the near future for another 50 years for petroleum and natural gas and 150 years for

coal. However, the stone age didn’t end for lack of stone and the fossil fuel age is likely to end

before the world runs out of them. An existential risk to the quality of life on Earth might lead to

the eventual decline of the fossil fuels.

There is a high environmental cost that comes with using fossil fuels, that is the release of

carbon dioxide to the atmosphere during combustion. While contributing only to the 20% of

the greenhouse gas (GHG) emissions, carbon dioxide is responsible for 80% of the radiative

forcing that sustains the Earth’s greenhouse effect resulting in the global warming, since it is the

predominant non-condensing gas in the atmosphere [8, 9]. Global carbon dioxide emissions have

been on the rise since the last 250 years and annual emissions reached 36.8 billion tons (Gt) in

2018 [10]. According to the Fifth Assessment Report by the Intergovernmental Panel on Climate

Change (IPCC), if the emissions continue to increase at the current rate, the global warming is

likely to reach 1.5 ◦C between 2030 and 2052 causing a climate change [11]. The impacts of

this change can include more frequent and longer heat waves, extreme precipitation events, and

warming & acidification of the ocean along with an increase in general mean sea levels. These

risks will be unevenly distributed, affecting the disadvantaged people and communities in countries

of all levels of development. Projected disasters include increased cases of floods and wildfires,

more frequent water shortages or restrictions, problems in food production, and rise in heat-related

human mortality [11].

For sustaining the quality of human life on Earth, the energy landscape needs to be adjusted,

modified, and made fit to a new standard where carbon emissions are more tightly accounted and

reduced while meeting the growing demand for energy. "Business as usual" attitude with current

high dependency on fossil fuels is a pathway to many problems. What can be done then? Are there

more suitable energy sources that can be chosen to fight the effects of climate change and put us on

a more sustainable trajectory? Should the societies invest in improving the existing technologies
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or take a risk and go for promising sustainable technologies that are not tested at commercial scale

yet? If societies decide that a "transition" to a more sustainable energy landscape is needed, what

would it look like? It is important to imagine what kind of energy systems are going to be needed

to decide on which pathways to take and what technologies to invest in.

1.2 Energy Transition: Challenges and Opportunities

21st century energy production, conversion, and delivery systems are expected to achieve

multiple objectives. They should meet the increasing energy demand, be economically feasible,

be less carbon-intensive, and increase resource utilization efficiency [12, 13, 14]. This requires a

transition in technology, operation strategies, and possibly a philosophy in how energy is generated

and stored.

Figure 1.1 is prepared, to better understand (i) the development of the modern energy

landscape, (ii) the interplay between the shares of primary energy sources, and (iii) the possible

future evolution of the energy mixture in the example of an industrialized country: the United

States. The data are taken from Energy Information Administration’s (EIA) Monthly Energy

Review [15] and the figures show the total primary energy consumption and the breakdown

of energy source usage in electric power, transportation, industrial, commercial, and residential

sectors. According to the data, 80% of the United States primary energy consumption still relies

on fossil fuels like coal, petroleum, and natural gas as of 2019. Especially, the transportation sector

is heavily dependent on petroleum products which have a 91% share. Looking at the historical

trends in how the primary source shares in the mix have evolved, it appears very likely that fossil

fuels will be around in the near and even far future. The numbers show a few important trends that

will be more prominent in the future. The share of coal is on a historic downfall. Natural gas, a

cleaner and more energy-dense fossil fuel, has become the more preferred energy source in sectors

like industrial, commercial, and residential. Similarly, electric power has increased its share in

commercial and residential sector. Electric power is not a primary source and electrification is

powered by growing shares of natural gas and renewables along with significant contribution by

nuclear energy, and some decreasing contribution by coal.
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Figure 1.1: The breakdown of (a) the total primary energy consumption and analyses of the (b)
electric power, (c) transportation, (d) industrial, (e) commercial, and (f) residential sectors in the
United States show that as of 2019, 80% of the United States primary energy consumption relies
on fossil fuels like coal, petroleum, and natural gas. The changing trends show that the use of
natural gas and increasing electrification powered by growing shares of renewables might play a
key role in the energy transition.

The current evolution of the primary energy source utilization indicates that the dependency

on fossil fuels is not likely to end in the near future. Obviously, this is a complex problem and

with energy systems at global scale, there really is no silver bullet than can solve all the problems

at all locations. One way to reduce or mitigate the effects of burning fossil fuels is to modify

the existing infrastructure. This includes using (i) better control, operation, and supply chain

decision-making strategies, (ii) retrofitting the existing energy conversion facilities with carbon
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capture technologies, and (iii) investing in newer and cleaner energy conversion technologies with a

shift from carbon-intensive fuels like coal to less carbon-intensive and cleaner fuels such as natural

gas. These strategies can lessen the harms of the current pathways used. Apart from option (i),

options (ii) and (iii) will arguably bring down the economic attractiveness of using fossil fuels if the

carbon dioxide released during conversion is captured. Carbon capture and storage technologies

are energy-intensive, and using any fossil fuel technology can be at best carbon neutral, making

sustainability still a significant concern.

A second alternative is nuclear energy that had promised a bright and clean future to replace

fossil fuels. Nuclear energy via fission reaction can provide emission-free power, however, requires

paramount safety consideration since its byprodut, the radiation contamination poses a great threat

to all living beings and the environment if not prevented or sealed properly. Also, flexible power

production causes many stability issues in the current nuclear reactor technology. On top of these,

nuclear energy lost the public interest it once had after two catastrophic incidents in Chernobyl,

Ukraine and Fukushima Daiichi, Japan in 1986 and 2011, respectively, that prevented its further

penetration above its current 10% share in the global energy mix. The next generation nuclear is

likely to make a return, however, investment costs and safety requirements will not make it easily

compete with cheap fossil fuel energy prices.

A more promising way to reduce humanity’s dependency on fossil fuels is to increase the

penetration of renewable resources such as geothermal, hydro, biomass, solar, and wind in the

power sector via electrification and production of valuable chemicals production [14]. This is an

efficient decarbonization strategy that is already underway thanks to the the variety and abundance

of the renewables and decline in renewable investment costs. By the end of 2018, renewable

technologies constitute roughly one-third of the overall global capacity, with biggest portion of

the recent capacity increase coming from solar and wind technologies [16]. Solar and wind

energy are promising pathways to enable electrification. However, both resources suffer from

intermittency and seasonal variability, resulting in low capacity utilization in the absence of energy

storage technologies [17, 14]. Biomass has been a candidate replacement for fossil fuels and its
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application in power, fuels, and chemicals sectors have been studied extensively by national labs

and academia. Crop residues like corn stover and forest residues like hardwood type of biomass

can be economically feasible with gasification technology if provided at a steady supply.

In addition to intermittency and variability in supply, renewable resources also suffer from

uneven geographical distribution. Figure 1.2 illustrates the availability of solar, wind, and biomass

resources for the United States using the online resources of the National Renewable Energy

Laboratory (NREL) [18, 19, 20]. When superimposed on each other, it is seen that each renewable

resource is stranded at a different part of the country. Additionally, they are often isolated and far

from strong demand locations like metropolitan areas and industrial zones. As a result, the optimal

renewable utilization strategies should be location specific and consider the value chain aspect of

the products.

SOLAR

WIND

CROP RESIDUES

FOREST RESIDUES

Figure 1.2: The availability of renewable energy sources across the United States show an uneven
geographical distribution. Solar energy is located in the Southwest, whereas wind is strong in
the Midwest. Crop residues and forest residues are spread to the Midwest and Southeast regions,
respectively.

It is very likely that at least in the near future, the energy systems will comprise multiple

competing pathways and combinations of various technologies that rely on hybrid feedstocks.

Informed decision-making strategies will be needed in areas like process modeling, design, control,

scheduling, planning, and supply chain management. These are time- and space-dependent

functions requiring decision-making strategies across all different scales. This brings the question
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of how to make such informed decisions?

1.3 Process Systems Engineering: Its Philosophy, Role, and Tools

The existence of multiple pathways, competing technologies, and numerous alternatives make

decision-making difficult. As the integrated systems grow in complexity, a traditional method

for energy systems design such as using heuristics that rely on rules of thumb become less

useful to a decision-maker. While heuristics combined with experience can generate quick

solutions that are often reasonably good, it does not provide a way to establish the quality of the

solution. Furthermore, conflicting objectives or comparison of alternatives in a problem might

require arbitrary decisions. As an alternative, high-efficiency targeting approaches that focus

on reaching thermodynamic limits can reduce energy consumption, but most of the time ignore

capital cost considerations. They might also require considerable insight and trial & error [21, 22].

Experimentally testing all the options in commercial scale is practically impossible and risky.

Mathematical optimization-based methods that rely on rigorous algorithms and simultaneous

consideration of physics, chemistry, biology, and economics in a system have proven themselves as

promising tools to help decision-makers generate design and operational strategies for integrated

systems [21]. Optimization approach aims to find the best possible solution to the problem by

quantifying the "goodness" of solutions. Optimization methods thrive when tackling systems with

high degrees of freedom. Since integration means an increase in the degrees of the freedom, this

translates into bigger room for improvement for energy systems. Rigorous optimization methods

rely on systematic solution strategies, rather than exhaustive trial & error [23, 24].

Process systems engineering (PSE) [25] methods have mathematical optimization at their core

and they aim to provide a generic framework to arrive at realistic integrated solutions to complex

energy and environmental problems. The energy systems of interest range from nanoscale to

megascale levels over time horizons that range from milliseconds to months or years [26, 27].

The applications range from design decisions like modeling and process synthesis to operational

decisions such as scheduling, planning, and control [28].

The most commonly used tools of PSE include (i) mathematical modeling via first-principles,

7



data-driven, or hybrid approaches [29, 30, 31, 32, 33, 34, 35], (ii) superstructure optimization

for modeling all possible alternatives in an process system design including different system

configurations, process integration, pathway interactions, operating conditions, and other

important design parameters in problems like process heat integration, or supply chain

management [36, 37, 38, 39, 40, 41], and (iii) mixed-integer linear and nonlinear programming

for modeling with continuous and binary decision variables to model mass and energy balances as

well as logical conditions between discrete events in a superstructure [42, 43, 21, 44, 45, 46, 47].

These tools provide powerful aid in achieving the objectives of this dissertation.

1.4 Dissertation Objectives

The proposed works aim to address the aforementioned challenges by using a variety of process

systems engineering tools such as data-driven modeling, superstructure optimization with mixed

integer linear and nonlinear modeling, nonlinear multi-period planning, process synthesis for

optimal design, global optimization, simultaneous design-scheduling-supply chain strategies.

1.4.1 Improving Production Planning in Petroleum Industry via Refinery Data

Production planning operations in the refining industry focus on both the long-term strategic

decisions like purchasing the best crude oil mixture for future plans that cover a few months to

a year and the short-term scheduling decisions like allocating streams or deciding on distillation

cutpoints that cover the span of several days [48, 49]. Production planning problems are often

large-scale optimization problems and the modeling efforts have traditionally relied on linear

programming (LP) or mixed-integer linear programming (MILP) principles by using fixed-yield

planning models and swing-cut models due to tractability concerns [50, 51].

Linear models have low computational cost, however they often fail to capture the inherent

nonlinearities in the refinery operations [52]. Therefore, there has been significant efforts in the

industry and academia to develop nonlinear models for refinery processes since the 1980s [53].

Commercially available planning software tools like Aspen PIMS (AspenTech) and GRTMPS

(Haverly Systems) rely mostly on linear models. Even though they can handle nonlinear equations
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and large-scale problems, the use of nonlinear terms in the such software is restricted [53], since

nonlinear optimization formulations are often nonconvex problems and solution algorithm return

local solution. Although the computational power has increased tremendously in the last decade

and powerful commercial global optimization solvers such as BARON [54] and ANTIGONE [55]

are now available, the use of high-fidelity and nonconvex models in planning optimization is

still limited due to the arising computational complexity [52]. Surveys on the use of planning

and scheduling software indicate that such tools are inherently challenging to master for the

engineers and the economists without proper optimization background [56]. For this reason,

stream allocation in chemical industries is, more often than not, made based on company experts’

experience and manual calculations [57].

My contribution here is to develop a framework that combines data-driven modeling with

nonlinear multi-period planning formulation that is used for optimizing refinery production plans

using real plant data. The developed framework is applied to the Daesan Refinery by Hyundai

Oilbank Company in South Korea. Nonlinear input-output models for all processing units are

created using real plant data. The multi-period production plan allows for inventory management

to improve the economic performance of the refinery.

1.4.2 Sustainable Ammonia Production from Renewable Feedstocks

Ammonia is one of the most widely produced chemicals in the world. Global ammonia

production in 2015 was reported to be over 140 million tons [58]. Currently, more than 80% of the

produced ammonia is used for fertilizer production and the remaining is used as raw material in the

production of urea, ammonium nitrate and other nitrogen-based chemicals [59]. According to Food

and Agriculture Organization (FAO), overall demand for agricultural products is expected to grow

at 1.1% per annum from 2007 to 2050 as a result of the increasing world population [60]. Growing

agricultural production necessitates the need for fertilizers; thus, demand for ammonia-based for

agricultural fertilizer alone is expected to dramatically increase in the future.

Besides its use as a commodity chemical, ammonia stands out as a hydrogen-based dense

energy carrier to store renewable energy. This has two reason: (i) it has a high hydrogen content
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(17.8 wt%) and (ii) when produced from renewable energy and feedstocks, it does not produce

any GHG emissions upon conversion back to energy. Ammonia can be stored as a liquid under

relatively low pressure (0.87 MPa) and ambient temperature (20 ◦C) or atmospheric pressure and

mild cryogenic temperature (-20 ◦C). It has a hydrogen volume density of 105.0 kg/m3, which is

about 45% higher than that of liquid hydrogen (71.2 kg/m3). There is a vast pipeline infrastructure

in the United States for distributing liquid ammonia. Once produced, ammonia can be stored

and transported out with relative ease using the existing infrastructure [61]. Stored energy can

be recovered back since ammonia can also be used as a synthetic fuel in diesel engines, internal

combustion engines, and gas turbines with little modification [62]. Conversion of ammonia to

hydrogen in a fuel cell can also be a feasible technology to be used in mobile vehicles in the future

[63]. Early mentions of ammonia as an energy vector date back to 1982, where the suggested way

to power ammonia production is to use the rejected heat from nuclear energy plants [64]; however,

more recent works are focused on using renewables in ammonia production [65, 66, 67, 68].

Due to this dual opportunity to be used as both a fertilizer and an energy carrier, demand for

ammonia in the future is expected only to grow. The modern ammonia production method, the

famous Haber-Bosch process, is often considered among the most important inventions of the 20th

century [69]; however, it emits an average value of 2.8 tons of CO2/ton of ammonia produced,

contributing to more than 1% of global greenhouse gas (GHG) emissions [70, 71]. Although,

state-of-the-art processes have brought down the energy requirements from 60 GJ/ton of ammonia

produced to 28-30 GJ/ton [72], ammonia production is still highly energy intensive, using about

3-5% of the world’s natural gas resources [59]. If ammonia will continue to be produced in even

greater amounts, the production needs to become more sustainable.

My contribution here is an implementation of process synthesis and global optimization

methods to synthesize sustainable ammonia production processes with significant GHG reductions.

Aim of this study is to compare biomass-, wind-, and solar-based ammonia production routes

with natural gas-based reference case study via having all process options in the same process

superstructure. Case studies are done for different geographical locations, where feedstock and
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electricity prices and availability vary greatly.

1.4.3 Efficient Generation, Storage, and Transportation of Renewable Energy

Global renewable energy generation capacity reached 2,351 GW at the end of 2018,

constituting roughly one-third of the overall global capacity [16]. The actual amount of the

generated renewable energy, however, makes up for only about 11% of the global total primary

energy consumption, signaling that the capacity utilization is low for renewable technologies [73].

Intermittency and temporally asynchronous renewable energy supply and power demand are the

sources of this problem [17, 14]. Solar photovoltaics and wind turbines have been undergoing a

fast growth in deployment. In 2018, 54 and 29% of the total global renewable capacity increase

were attributed to solar and wind technologies, respectively. These technologies are also the ones

that are plagued most seriously by low capacity utilization [74].

Energy storage at grid-scale (GWh-scale) is one way to ensure the balance between the

renewable power supply and demand and therefore improve the capacity utilization [75]. Energy

storage in vectors, that are also called as dense energy carriers (DECs) offer the possibility of

transporting stored energy from one location to another [26]. Hydrogen (H2) and hydrogen-based

DECs like, ammonia (NH3), or methanol (CH3OH) have orders of magnitude higher volumetric

energy density compared to stationary storage options such as pumped storage-hydro (PSH),

compressed air energy storage (CAES), or battery electric storage (BES) [76]. The variety of

the storage options necessitate quantitatively exploration of the trade-offs between competing

technologies under various scenarios.

Optimal integration of hydrocarbon-based renewable resources into fuels and chemicals

production has been traditionally tackled with the multi-scale approach with the steady-state

assumption, where unit design [77, 78], process flow sheet optimization [79], and supply chain

analysis [80] problems are solved independently using different mathematical models for each

scale [81]. However, optimization of design and operation of energy systems with time-varying

resources like solar and wind is more challenging. It is impossible to directly integrate wind and

solar resources into steady process systems due to renewable resource intermittency causing some

11



units to remain idle or partially idle for certain periods of time, where steady-state assumption is

not valid [22]. The temporal variability in short-term scheduling and spatial variability in supply

chain optimization need to be considered as a part of optimal design strategy.

My contribution here is to develop a multi-scale modeling and optimization strategy relying

on mixed-integer linear programming techniques to find the optimal design and operational

decisions of multi-location GWh-scale energy generation and storage systems. The strategy

uses multi-period formulation to address the intermittency in the resource availability. The

multi-location aspect allows for the production and transportation of DECs between high- and

low-potential regions to account for the supply chain problems. The overall approach is multi-scale

by nature since it deals with problems of various time and length scales (i.e. design, scheduling,

and supply chain) simultaneously.

1.4.4 Multi-product Process Network Optimization for Energy Sectors Integration

Decarbonization via shifting the primary energy sources from carbon-intensive fossil-fuels

to renewable- and sustainable-resources is a significant pillar of the energy transition. The

aforementioned challenges related to this transition prevail in various energy sectors such as

power generation and distribution systems, transportation fuels production, chemicals & heavy

industrial production, and residential & commercial buildings [6, 7, 82]. Historically, each of the

aforementioned energy system has been treated separately by its own technical community [83].

However, operation of one sector affects the others since all these energy systems become more

and more interconnected over the time.

It is highly important to determine what sectors and sources of energy can play key roles in

enabling sectors integration for decarbonization. Increasing renewable penetration is a promising

action, however, the intermittency aspect of solar and wind resources makes it rather capital

intense. Therefore, it is essential to get the biggest return for the investment made. This

makes systems analysis and understanding the energy landscape crucial. The interconnectivity

of multiple systems makes conventional or heuristics-based decision-making across multi-sectors

more difficult. However, systems modeling and optimization approach can analyze the individual
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elements of the each system; investigate the trade-offs in systems integration and exploit the

synergies between various system elements [26, 28].

Recalling Figure 1.1, improving the natural gas utilization and increasing renewable energy

penetration in the electric power sector can lead to decarbonization in industrial, commercial, and

residential sectors as well. For decarbonizing the transportation sector, low-emission electric power

can play a role to decrease the share of petroleum-based liquid fuels (e.g. gasoline, diesel, kerosene,

etc.) via increased use of electric vehicles (EVs). Alternatively, liquid fuels produced synthetically

via gas-to-liquids (GTL) processes from hydrogen and captured carbon dioxide that are produced

via renewable or low-emission routes can have a significant impact on emission reductions. Also,

dense energy carriers (DECs), like hydrogen, ammonia, and methanol, can play a dual role in

storing renewable energy and providing heat & power in all the aforementioned energy sectors and

fuel for the transportation sector.

My contribution here is to extend the multi-scale modeling and optimization strategy

developed for optimizing the renewable energy generation, storage, and transportation systems to

fuels and chemicals production to optimally design and operate multi-product process networks.

Using multi-period formulation the intermittent renewable resources are integrated with fossil fuel

technologies. Multi-product process networks allow for analysis of optimal primary energy source

mixture to produce sustainable products.
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2. INTEGRATED DATA-DRIVEN MODELING AND GLOBAL OPTIMIZATION

APPROACH FOR MULTI-PERIOD NONLINEAR PRODUCTION PLANNING

2.1 Production Planning Operations in the Refinery Industry

Many refinery operations such as crude distillation, hydrocracking, or hydrotreating are

complex processes that display strong nonlinear relationships between process inputs and output

[52]. As a result, there has been significant efforts in the industry and academia to develop

nonlinear models for refinery processes since the 1980s [53]. For this purpose, Mobil has

developed a proprietary lumping technique called structure-oriented lumping (SOL) in early 1990s

to predict physical properties using group contribution methods [84]. SOL models have been used

to model the reaction networks in vacuum residua conversion [85] and heavy oil hydroprocessing

[86].

Commonly investigated topics by the academia include blending [87, 88, 89], crude distillation,

and fluid catalytic cracking processes[90, 91, 92]. Nonlinear models can be first principle-based

or empirical [92]. First principle models consist of mass and energy balance equations as well

as phase equilibrium conditions along an entire column. Such rigorous models also include

flow rates and compositions of all internal and external streams as well as operating conditions

such as tray temperatures and pressures. Optimization formulations of such systems present

inherently nonlinear and nonconvex problems. Although the computational power has increased

tremendously in the last decade and powerful commercial global optimization solvers such as

BARON [54] and ANTIGONE [55] are now available, the use of such high-fidelity models in

planning optimization is restricted due to the arising computational complexity [52].

Aspen PIMS (AspenTech) and GRTMPS (Haverly Systems), two commercially available

inverntory managment tools, use sequential linear programming (SLP) techniques to solve

nonlinear programming (NLP) models, where NLP models are linearly approximated around

a reference operating point. While SLP is a well-established method in the industry to solve
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large-scale nonlinear problems, it suffers from yielding locally optimum solutions when handling

nonconvex NLP models [50]. Therefore, academic literature conducts studies to efficiently

incorporate accurate nonlinear models in optimization of the refinery process operations [93, 94].

Studies focusing on nonlinear and mixed integer nonlinear programming (MINLP) problems often

also examine necessary global optimization strategies to solve the resulting problems [89, 95, 96].

A promising way to model nonlinearity in complex processes with low computational cost

is to use data-driven models. Data-driven models are used in a plethora of disciplines such as

chemical engineering, financial management, mechanical engineering, geosciences, etc. [97, 98,

99]. The analytical form of data-driven models are known and they are especially useful if the

rigorous model of a process is computationally expensive or the finding an analytical expression

for the required input-output relationship is nontrivial [33]. Data-driven models can be trained with

simulation or operational data.

Despite all the interest in improving planning operations in both academia and the

petrochemical industries, collaborations are quite rarely published [14]. This limited research is

often due to the confidentiality restrictions [100, 101]. In their work, Li et al. [52] use a data-driven

approach to optimize the production plan of an existing petrochemical complex in China owned

by PetroChina Company Ltd. They use the operational plant data provided by the company to

train nonlinear process models. Their work highlights that if companies are willing to share their

data with academia, state-of-the-art modeling and optimization techniques can help the industry to

improve their operations.

2.2 Integrated Modeling and Optimization Framework

With this study, an integrated data-driven and global optimization approach for nonlinear

multi-period production planning is proposed that significantly extends the previously proposed

framework by Li et al. [52], featuring: (i) automatic generation of nonlinear and sparse data-driven

process models where yields and properties of the process models are based on input properties

and compositions, (ii) estimation of model parameters using real-plant data, and (iii) a global

optimization solution strategy of the large-scale nonlinear and multi-period production planning
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model using ANTIGONE. The automated model selection aims to achieve a certain degree of

sparsity in the models. Sufficiently sparse models can improve the computational efficiency

in multi-period planning formulations and allow for the use of commercial global optimization

software. This integrated modeling and planning approach is first described and later applied to

optimize the production planning problem of Hyundai Oilbank Company Ltd.’s Daesan Refinery

in South Korea, where the processing units are modeled using the historical operational data

provided by the company. Various data processing, model training, and single- and multi-period

formulations are analyzed and the optimal production plans for selected days of operation are

compared with the actual plan to show the effectiveness of the current approach.

The framework is best described in four major steps as illustrated in Figure 2.1. Step 1

comprises collection, grouping, and processing of the raw data provided by the industrial partner.

In Step 2, data-driven yield and property prediction models for all the processing units are

developed. Lasso and elastic net regularization methods are compared to obtain sparse prediction

models. In Step 3, a process superstructure is generated with all possible connections and available

operating modes in the refinery. With the addition of mass balance, capacity, inventory, and

demand constraints, lower and upper bound values on all decision variables, and the objective

function to the processing models, a discrete-time multi-period planning problem is obtained.

Finally, Step 4 is when the resulting optimization problem, that is a large-scale nonconvex,

constrained NLP, is solved to ε-global optimality using commercial global optimization solvers.

The details of each step are elaborated in the following sections of this chapter.
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Figure 2.1: Integrated data-driven modeling and global optimization approach for production
planning.
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2.2.1 Data Processing

Data collection, grouping, and processing is an most important step in this framework. Since

modeling is purely data-driven, the raw data taken from a plant often need to be checked for

consistency and reliability prior to any modeling efforts. The data sets for each processing unit

are formed as matrices where each column consists of either flow rates or properties (features) and

each row consists of the corresponding measurements made at each operating day (observations).

The original raw data set consists of various property measurements for every stream in the

plant. While using all the stream flow rates is essential to model all the possible connections,

reducing the number of property measurements down to the smallest essential amount of features

is important in reducing the size of the optimization problem. The initial list of predicted properties

for each processing unit are decided by the company experts. Additional properties that do not

belong the initial list are also included to the properties to be predicted, since they need to be later

used as input variables to the connected processing units. Once formed, the mass balances and the

measurements in the data set are checked for consistency by the company experts. However, this

alone is not sufficient to declare the data set as reliable.

The raw data consist of noise and occasional missing points. There are potential reasons listed

in the literature for sources of noise in actual data such as variability in operating personnel, data

acquisition devices of the processing units, and random error [52]. Missing data are commonly

caused by sensor breakdown, data acquisition system malfunction, data recording errors [102],

and often by decisions and/or mistakes by the operation personnel [103]. While the stream flow

rates and yields are measured every day, some property measurements are only taken on a weekly

basis, often after crude oil change. While removing a mostly empty row (or a column) is one

way to get rid of the missing data problem [104], more often than not, the missing data points are

isolated cells in a big data matrix. Removing an entire row can mean losing precious information

on other useful features.

Missing data imputation is a way to regain some of the information missing in the original

data set [105]. Previous work by Li et al. uses k-nearest neighbor (k-NN) algorithm to replace
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the missing data point with the corresponding value from the nearest-column, where the nearest

column is the closest column in Euclidean distance. For this purpose, they use MATLAB’s

knnimpute function. In this study, in addition to the k-NN algorithm, available imputation

techniques available in MATLAB are tested to find the best performing technique for this data

set. The alternative methods are the probabilistic principal component analysis (PPCA) using

MATLAB’s ppca function, the iterative algorithm (IA), the nonlinear iterative partial least squares

regression algorithm (NIPALS), the known data regression (KDR), and the trimmed scores

regression (TSR) methods. The latter four methods are available in MATLAB through the Missing

Data Imputation (MDI) Toolbox that is described in the works of Folch-Fortuny et al. [103, 106].

After the missing data are imputed, the data set is normalized and then ready for the data-driven

modeling.

2.2.2 Data-Driven Modeling and Feature Selection

2.2.2.1 Model Training

The aim in data-driven modeling is to establish relationships between several explanatory input

variables and the response variables that are to be predicted using the available data [107]. All

refinery units have significant variety in the outputs with respect to changing input conditions, often

showing nonlinear relationships. To capture the relationships the prediction models are allowed to

include linear, quadratic, and bilinear interaction terms. Such models are referred to as quadratic

models or polynomial response surface models (RSM). For this purpose, individual parameter

estimation problems are solved for each yield and property prediction model. The inputs are tested

for correlation by checking Pearson correlation coefficients. A cutoff value of 0.7 is used for

elimination inputs and no significant correlations in the data set are observed.

There are important challenges related to using data-driven models, which need to be addressed

in any study. Two important decisions in data-driven modeling are the input-output relationships

and the adequate model complexity. There are trade-offs between finding (i) a model that best fits

the training data set, (ii) a model that makes the best predictions when tested with data outside
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the training set, and (iii) a sparse model that ensures computational efficiency when used in an

optimization application. In order to use nonlinear models in multi-period optimization problems,

it is beneficial to have a model that simultaneously satisfies all the three points to a degree. While

objectives (i) and (ii) can often be achieved by k-fold cross-validation (CV) approach, addressing

objective (iii) requires a somewhat different approach. Sparsity in models is often obtained by

selecting a subset of inputs and omitting a set of predictors in the model. Since the size of

multi-period optimization problems scales linearly with the number of periods, sparsity in models

becomes crucial to reduce the size of a problem.

There are various variable selection methods in the literature such as Akaike Information

Criteria (AIC), Bayesian Information Criteria (BIC), lasso, ridge, or elastic net types of

regularization [33], or nonlinear methods such as support vector regression (SVM) [108, 109].

Regularization methods use a nonnegative hyperparameter, the regularization coefficient λ, to

penalize the coefficients of the predictors. Lasso regularization penalizes the L1-norm of the

coefficients, whereas ridge regularization penalizes the L2-norm. Lasso method pushes the

coefficients to be zero, effectively eliminating predictors, if they are not relevant. While ridge

method penalizes large values of coefficients, it does not necessarily push them to be zero. Elastic

net is a mixture of both methods, having both L1- and L2-norm in its objective function to be

minimized [110]. Regularization is a fast method and easy to implement. The objective of the

regularization problem is given in Equation 2.1:

min
β,β0

(
1

2N

N∑
k=1

(yk − β0 − xTk β)2 + λ

(
(1− α)

2
‖β‖2 + α ‖β‖

))
(2.1)

Equation 2.1 becomes the lasso regularization problem for α = 1 and ridge for α = 0. In

elastic net regularization, α can take any value between 0 and 1. In any case, a larger λ penalizes

more terms, resulting in a sparser model.

In this study, two regularization methods are used to obtain sparse models: (1) lasso- and (2)

elastic net- regularization. For elastic net α = 0.5 is used. For both methods, MATLAB’s lasso

function is used with 5-fold cross-validation. The function solves a parameter estimation problem
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with the objective of minimizing the cross-validated mean square error (MSE), that is shown in

Equation 2.2, where yk is the observed value and ŷk is the predicted value.

MSE =

∑N
k=1(ŷk − yk)2

N
(2.2)

The lasso function performs regularization using a geometric sequence of λ’s, resulting in

100 discrete values of λ and 100 parameter estimation problems solved. The function reduces the

number of non-zero regression coefficients gradually by using a larger values of λ in each step.

This results in 100 sets of parameters for each prediction model. Among those 100 sets, two are

highlighted by MATLAB: the one with the minimum cross-validation MSE (minMSE) and the

one with minimum MSE plus one standard error (minMSE+1SE), a sparser model due to larger

regularization coefficient in expense of a larger cross-validation MSE.

Depending on the scale of the variables yk the range of MSE can be very different. While

this does not affect the optimal solution of the parameter estimation problem, normalizing MSE

for all the models can be useful is comparing the relative accuracy of different models (e.g. yield

vs. property predictions). Taking the square root of MSE and then dividing it by the range of the

measured data is commonly used to normalize MSE as shown in Equation 2.3 and the obtained

quantity is called normalized root mean squared error (NRMSE).

NRMSE =

√
MSE

ymax − ymin
(2.3)

2.2.2.2 Yield and Property Prediction Models

In this section, the generic expressions for the prediction models are presented. The full list

of all the variables and parameters used in the notation is given in the Nomenclature chapter. The

outlet flow rate of a stream from a unit, Fout(s, u, t), is calculated from its yield and the total input
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flow rate to that unit using Equation 2.4.

Fout(s, u, t) =
Y ield(s, u, t)

100

∑
s′

Fin(s′, u, t)

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu

(2.4)

The yields are predicted from inlet flow rates and inlet properties. Equations 2.5 and 2.6 show

the mapping between the inputs variables and the output yields, and the general form of the yield

prediction equations, respectively.

Y ield(s, u, t) = f [Fin(s′, u, t), Pin(p′, s′, u, t)]

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , p′ ∈ P in
s′,u, t

(2.5)

Y ield(s, u, t) = Cyield(s, u){βyield,0(s, u) +

Iyield,u∑
i=1

βyield,i(s, u)xyield,i(u, t)

+

Iyield,u∑
i=1

Iyield,u∑
j=1,j≥i

βyield,i,j(s, u)xyield,i(u, t)xyield,j(u, t)}

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , p′ ∈ P in
s,u, t

(2.6)

where xyield,i(u, t) and xyield,j(u, t) can either be Fin(s′, u, t) or Pin(p′, s′, u, t) and Cyield(s, u)

is the factor used to scale the value of Y ield(s, u, t). Iyield,u is the set of inputs for yield

predictions for unit u, respectively that are associated with the unit u. βyield,0(s, u), βyield,i(s, u),

and βyield,i,j(s, u) are the parameters of the model.

Outlet properties are predicted from inlet flow rates, inlet properties, and outlet flow rates.

Equations 2.7 and 2.8 describe the mappings between the input variables and the output properties

or outlet yields for each unit.

Pout(p, s, u, t) = f [Fin(s′, u, t), Fout(s, u, t), Pin(p′, s′, u, t)]

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , p ∈ P out
s,u , p

′ ∈ P in
s′,u, t

(2.7)
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Equation 2.8 shows the form of property prediction equations:

Pout(p, s, u, t) = CPout(p, s, u){βprop,0(p, s, u) +

Iprop,u∑
i=1

βprop,i(p, s, u)xprop,i(u, t)

+

Iprop,u∑
i=1

Iprop,u∑
j=1,j≥i

βprop,i,j(p, s, u)xprop,i(u, t)xprop,j(u, t)}

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , p ∈ P out
s,u , p

′ ∈ P in
s′,u, t

(2.8)

where xprop,i(u, t) and xprop,i(u, t) can either be Fin(s′, u, t), Fout(s, u, t), or Pin(p′, s′, u, t) and

CPout(p, s, u) is the factor used to scale the value of Pout(p, s, u, t). bprop,0(s, u), bprop,i(s, u), and

bprop,i,j(s, u) are the parameters of the yield prediction equation for stream s leaving unit u. Iprop,u

is the set of inputs for yield predictions for unit u, respectively that are associated with the unit u.

2.2.2.3 Feature Selection

A feature selection approach to reduce the number of terms in the regression models, in other

words increasing the model sparsity, serves a multitude of goals. Sparsity in this work is defined

in Equation 2.9:

Sparsity =
Number of nonzero parameters

Number of all possible parameters
(2.9)

MATLAB’s lasso function is called for four different type of models: (a) linear terms only

(LM), (b) linear plus interaction terms (LIM), (c) linear plus quadratic terms (LQM), (d) linear

plus interaction and quadratic terms (LIQM). For each type of model, two versions are obtained:

the minMSE and minMSE+1SE, with different sparsity and CV errors. The procedure for feature

selection to generate sparse data-driven models is presented in Table 2.1.

This procedure aims to create a subset of relevant features first by comparing the cross

validation MSE (CV-MSE) of the regularized LM models (Steps 1 and 2). Later on, interaction

and quadratic terms of the selected features are also included in the model to see if performance

of the model is improved (Steps 3 and 4). Overfitting is a significant concern that is possible to
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Table 2.1: Feature selection procedure.

Procedure Feature selection to obtain sparse models
Step 1 Initialize the model sparsity cutoff criteria (CC) for yields and properties as

85% and 90%, respectively
Step 2 Train regularized LM using 5-fold CV
Step 3 Pick the best regularized model
Step 4 Use the subset of variables selected by LM and train regulzarized LIM, LQM,

and LIQM using 5-fold CV
Step 5 Eliminate any model where: # possible terms ≥ 0.1(# observations) to prevent

overfitting
Step 6 Pick the model with the minimum CV-MSE that obeys: Model sparsity ≥ CC
Step 7 If no model is selected, then relax the CC by 5% and go to Step 6; else continue
Step 8 If the linear terms of all the features do not appear in the model, retrain the model

including the linear terms; else continue
Step 9 Print the model and continue to Step 1 for the next prediction model

run into if the number of observations are not large enough. A rule of thumb is to use at least

an order of magnitude more observations than the number of terms. Models that do not obey this

conditions are eliminated (Step 5). Then, the model with the minimum CV-MSE that obeys the

sparsity criterion is selected (Step 6). If no model obeys the initial sparsity cutoff criterion, the

criterion is relaxed by 5% (Step 7). The models including the nonlinear terms are also regularized

to eliminate insignificant nonlinear terms. This can potentially give models that include nonlinear

combinations of a feature while its linear terms are eliminated (Step 4). As per convention for the

surface response model training [107], the linear term of any feature that appears in any nonlinear

form is forced to be included in the final (Step 8).

2.2.3 Multi-Period Planning Problem Formulation

Multi-period formulation allows the production facility to produce and store products over a

planning horizon and inventory constraints tie the production plans of adjacent periods to each

other. The additional degrees of freedom coming from inventory management provides room for

improvement in the objective function value. Since the planning problem is solved for all periods

simultaneously, the problem grows large in size compared to singe-period formulation where each

period is solved individually. While single-period models are easier to solve due to smaller problem
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size, they are subjected to a few limitations: one such limitation is observed when the minimum

demand exceeds the refinery production capacity, resulting in a violation of demand satisfaction

constraints [87, 93]. Single-period plans also provide less flexibility to the schedulers by ignoring

the inventory levels, resulting in possible infeasibility when considering in scheduling operations.

Multi-period formulation is a way to overcome this problem and to have more flexible production

plans. The optimal solution of a multi-period problem is at least as good as the single-period

problem. However, since the number of decision variables and constraints are scaled linearly

with respect to the number of periods, finding a global solution to a nonlinear and nonconvex

multi-period problem can be difficult. For this reason, multi-period planning models are mostly

reported to use linear equations for the processing units [111].

This work uses a discrete-time model with each time period represented uniformly by a

single-day. This choice is made in accordance with the way the industrial partner makes their

planning decisions, however, the duration of a period in the model can be nonuniform. The

multi-period planning problem is formulated by including mass balance equations, capacity

constraints, inventory constraints, operational restrictions, demand constraints, and the objective

function along with the process models. These constraints provide the necessary physical

restrictions to the process. The full list and definition of variables, sets, and parameters are

presented in the Nomenclature section.

2.2.3.1 Connections and Unit Mass Balances

A typical refinery operation is summarized in Figure 2.2. The refinery process under

investigation begins with the blending of various crude oil feeds and Daesan Refinery blends up to

seven different crudes to obtain their crude oil mixture. The blended crude oil is fed to the crude

distillation unit (CDU) to be separated into fractions of different products. The rest of process can

be summarized as further separation and upgrading of the crude oil distillates. In this study, crude

oil blending is not included in the model, since a different branch of the refinery experts is working

on finding the optimum blend. Hence the main input to the refinery is blended crude oil.
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Figure 2.2: Simplified flowsheet of the refinery processes in Plant #1.

The plant topology with all possible stream connections is represented by a process

superstructure. The stream connections are formulated as shown in Equations 2.10 and 2.11.

Only allowable connections are made possible by constraining the equations using the stream

connections subset UC. A pictorial representation of the inputs and outputs to unit u is shown in

Figure 2.3. ∑
u∗

∑
s∗

F (s∗, u∗, s′, u, t) ≥ Fin(s′, u, t)

∀(u, u∗) ∈ Upro, s∗ ∈ Soutu∗ , s
′ ∈ Sinu , (s∗, u∗, s, u) ∈ UC, t

(2.10)

Fout(s, u, t) ≥
∑

(s′,u′)

F (s, u, s′′, u′′, t)

∀(u, u′′) ∈ Upro, s ∈ Soutu , s′′ ∈ Sinu′′ , (s, u, s′′, u′′) ∈ UC, t

(2.11)

where the Fout(s, u, t) is calculated using Equation 2.12. Equations 2.10 and 2.11 are not strict
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equality constraints, hence the flow of streams entering the unit can be adjusted if needed.

Unit (u)Mixer

Splitter
Fout(s’1,u,t)

Splitter
Fout(s’M,u,t)

Fin(s’’,u**1,t)

Fin(s’’,u**P,t)

Fout(s’,u’1,t)
Pout(pj, s’,u1,t)

Fout(s’',u’i,t)

Pout(pj, s’’,u’i,t)

Fout(s’’’,u’N,t)
Pout(pj, s’’’,u’N,t)

Fin(si,u,t)

Pin(pj,si,u,t)

Fin(s’,u*1,t)
Pin(pj,s’,u*1,t)

Fin(s’,u*P,t)
Pin(pj,s’,u*P,t)

Pin(pk,s’’,u**1,t)

Pin(pk,s’’,u**P,t)

Pout(pj,s’1,u,t)

Pout(pk,s’M,u,t)

Figure 2.3: Schematic diagram showing how inputs and outputs are related from different units.

Fout(s, u, t) =

[ ∑
s′∈sin(s′,u)

Fin(s′, u, t)

]
Y ield(s, u, t)/100

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , t

(2.12)

The property information is also transferred using the connections subsets UC(s, u, s′, u′), P in
s,u,

and P out
s,u as shown in Equation 2.13:

Pin(p, s′, u′, t) = Pout(p, s, u, t)

∀(u, u′) ∈ Upro, s ∈ Soutu , s′ ∈ Sinu ,

p ∈ (P in
s,u ∪ P out

s,u ), (s, u, s′, u′) ∈ UC, t

(2.13)

The yield and property prediction Equations (2.5 and 2.7) are modified with slack variables and

they take the form of Equations 2.14 and 2.15.

Y ield(s, u, t) = f [Fin(s′, u, t), Pin(p′, s′, u, t)]± Y ieldSlacks(s, u, t)

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , p′ ∈ P in
s,u, t

(2.14)
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Pout(p, s, u, t) = f [Fin(s′, u, t), Fout(s, u, t), Pin(p′, s′, u, t)]± PropSlacks(p, s, u, t)

∀u ∈ Upro, s ∈ Soutu , s′ ∈ Sinu , p ∈ P out
s,u , p

′ ∈ P in
s,u, t

(2.15)

By the addition of slack variables, slight violations of the upper or lower bounds of the predicted

quantities are allowed. Since yield and property prediction constraints are in forms of equalities,

adding slack variables to these equations relaxes the problem. Note that the slack variables are

constrained to be no more than 5% of the upper bound of the predicted variable. To give an

example, if the upper bound of a yield prediction is 40% and the model predicts the yield as

40.8%, then the negative slack will have the value 0.8% and the level value of the prediction will

be 40%. Since nonzero slacks are essentially not desired, the sum of all the slacks is later added to

the objective function to be minimized.

The throughput of the unit is the total flow rate leaving and it must not exceed the unit capacity.

Equation 2.16 ensures that condition.

CAPmin(u) ≤
∑
s

Fout(s, u, t) ≤ CAPmax(u)

∀u ∈ Upro, s ∈ Soutu , t

(2.16)

2.2.3.2 Variable Bounds

For each variable there are upper and lower bounds coming from two years of operational data.

Equations 2.17 to 2.21 show the upper and lower bounds on the decision variables.

F low
in (s, u) ≤ Fin(s, u, t) ≤ F up

in (s, u)

∀u ∈ (Upro ∪ Uhyp), s ∈ Sinu , t
(2.17)

F low
out (s, u) ≤ Fout(s, u, t) ≤ F up

out(s, u)

∀u ∈ (Upro ∪ Uhyp), s ∈ Soutu , t

(2.18)
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Y ieldlow(s, u) ≤ Y ield(s, u, t) ≤ Y ieldup(s, u)

∀u ∈ Upro, s ∈ Soutu , t

(2.19)

P low
in (p, s, u) ≤ Pin(p, s, u, t) ≤ P up

in (p, s, u)

∀u ∈ (Upro ∪ Uhyp), s ∈ Sinu , p ∈ P in
s,u, t

(2.20)

P low
out (p, s, u) ≤ Pout(p, s, u, t) ≤ P up

out(p, s, u)

∀u ∈ (Upro ∪ Uhyp), s ∈ Sinu , p ∈ P out
s,u , t

(2.21)

2.2.3.3 Demand Constraints

For each final product there is a different demand during the planning horizon. Upper and

lower bounds on the demand for a product is addressed in Equation 2.22. All products are sent to

the hypothetical SALES unit.

MinDemand(s, t) ≤ Fin(s, SALES, t) ≤MaxDemand(s, t)

∀s ∈ SinSALES, t
(2.22)

2.2.3.4 Inventory Balance Constraints

The inventory variables Inv(s, t) and Inv0(s, t) are used to connect the production variables

to the sales variables. Equations 2.23 and 2.24 allow some of the refinery products to be stored in

inventory.

Inv(s, t) = Inv0(s, t− 1) +
∑
u

∑
s′

F (s′, u, s, SALES, t)

∀u ∈ Upro, s ∈ SinSALES, s′ ∈ Soutu , (s′, u, s, SALES) ∈ UC, t
(2.23)

Inv0(s, t) = Inv(s, t)− Fin(s, SALES, t)−W (s, t)

∀s ∈ SinSALES, t
(2.24)

Inv(s, t) and Inv0(s, t) show the inventory level at the beginning of a period and at the end after

the demands are satisfied, respectively. The inventory constraints and increased time horizon of
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the model allow products to be stored when either the demand or the crude prices are low. The

excess production can later be used to meet the product demands when they are higher than refinery

capacity. Alternatively, some excess products can be discarded if W (s, t) variable is nonzero.

2.2.3.5 Objective Function

The objective of this project is to maximize the gross profit of the refinery, that is presented in

Equation 2.25.

Profit =
∑
t

{∑
s

Price(s, SALES, t)Fin(s, SALES, t)

−
∑
s′

Cost(s′, PURC, t)Fout(s
′, PURC, t)

−
∑
u

OperatingCost(u)
∑
s′′

Fout(s
′′, u, t)

−
∑
s

InvCost(s)Inv0(s, t)
}

∀u ∈ Upro, s ∈ SinSALES, s′ ∈ SoutPURC , s
′′ ∈ Soutu , t

(2.25)

where the cost of all raw materials that are purchased at the hypothetical PURC unit and the

operating costs of all processing units are subtracted from the total gross sales, which is the total

revenue gained by sold products that are sent to the hypothetical SALES unit. Total profit is

calculated in $MM/day (millions of $/day) basis.

The objective function for the main optimization problem is the sum of negative profit and slack

variables. The addition of slack variables and minimizing the sum ensures that while maximizing

the profit, the slack variables (thus the small violations of hard bounds) are forced to be as small

as possible. The objective function is shown in Equation 2.26.
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Objective Function = −Profit

+γ
∑
t

{∑
u

∑
s

∑
p

PropSlacks(p, s, u, t)

+
∑
u

∑
s

Y ieldSlacks(s, u, t)
}

∀u ∈ Upro, s ∈ Soutu , p ∈ P out
s,u , t

(2.26)

The coefficient γ is found by a process of trial. Different values for γ are tested, and the largest

value that is ensuring that while the sums of slacks have a weight in the objective function they

are not dominating the profit maximization objective. The optimization problem is presented in

Equation 2.27:

min Objective Function (Equation 2.26)

s.t. Equations 2.6, 2.8

Equations 2.10− 2.24

(2.27)

2.2.4 Global Optimization

Here, the global optimization software and algorithms are briefly explained. For more

information, the readers are encouraged to read the work of Misener and Floudas [55] which

describes the novel components of the commercial solver ANTIGONE. The discrete-time,

multi-period, planning model is a nonconvex, constrained NLP model where the nonlinearity

comes from the quadratic and bilinear terms and the nonconvexity is caused by the bilinear

interaction terms coming from property and yield prediction models.

The planning problem is modeled in GAMS and solved with the solver ANTIGONE to

ε-global optimality. ANTIGONE takes the user defined NLP, detects the special structures,

and reformulates the problem. It uses term-based underestimators to create tight convex lower

bound problems (underestimations) in the form of a mixed integer linear optimization (MILP)

program. Then, the MILP is combined with the upper bound (original problem) NLP in a
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branch-and-cut algorithm to find the global optimum solution. The algorithm generates tight

convex underestimators, dynamically generates separating hyperplanes, bounds the variables,

branches on the search space, and finds feasible solutions. As time progresses the lower and upper

bounds converge to a global optimum solutions.

2.3 Computational Studies

2.3.1 Data Processing Results

The data set consists of daily averaged stream flow rates for all unit inputs and outputs,

connections between units, daily/weekly/biweekly property measurements, product demands, raw

material costs, as well as unit operating costs. Additionally, unit capacities, allowable lower and

upper limits on product qualities, and detailed descriptions of the refinery flow sheet are given. The

Daesan Refinery consists of three subplants within their refinery complex. Among the three plants,

Plant #1 is chosen for this study. After grouping the data for each unit and having it approved by

the company experts, the imputation analysis is done.

The performance of the data imputation techniques can depend on the missingness mechanism

and the ratio of observations to features. [105] lists some of the mechanism as (i) random

missingness, (ii) missingness that is correlated in time which can often be due to sensor failure,

(iii) missingness with a patter that can be caused by multi-rate data, and (iv) censorship. The data

set consists of columns with various missingness mechanisms, mainly suffering from types (i) and

(iii). In order to compare the six imputation techniques listed above, test sets are generated with

varying degrees of missing data by removing cells randomly to form matrices with missingness

fraction ranging from 0.1 to 0.5. Afterwards, the squared error (SE) between imputed values and

the actual values are compared.

Figure 2.4 shows the performance of these methods on data sets taken from six refinery

units, i.e. CDU, DCU, GHT, HCR, LER, and NHT. Note that the results obtained from NIPALS

algorithm are not included in the figures because for many cases NIPALS performed significantly

worse than the other five. An analysis of the results showed that in 56.7% of the total cases of 30,
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k-NN algorithm is the best, followed by TSR, which performs best in 33.3% of the cases, and KDR,

which is the best in only 10% of the cases. In these studies, PPCA and IA give much larger SE,

especially with increasing fraction of missing data. Since k-NN algorithm consistently performs

well with high fractions of missing data (e.g. 0.4-0.5), it is chosen over the other methods.
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Figure 2.4: Imputation performance of k-NN, PPCA, IA, KDR, and TSR methods show that k-NN
performs consistently well in all six process unit data sets.

In order to restrict the degree of imputations, the amount of missing data on a row is limited

to a cutoff value of 50% for yield inputs and 50% for property inputs. If a row (i.e. a day of
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observations) has more missing data that these cutoff values, it is removed completely from the

data set. The overall missing data percentages before imputation ranged between 9 and 42% for all

the units. The number of rows after removals ranged between 177 and 688. Additional reasons for

row removal included larger than 10% mass balance error, a plant-wide shutdown, and maintenance

shutdowns for individual units.

2.3.2 Parameter Estimation and Feature Selection Results

73 product yield and 181 outlet property prediction models are trained with the plant data.

Regression analyses are done with lasso- and elastic net-regularization techniques using 5-fold

cross validation. Sparse models are obtained with the feature selection procedure described earlier.

10% of the data is spared from the training data in order to be used for testing the models.

The cross-validation NRMSE (CV-NRMSE) distributions of the lasso- and elastic net-regularized

models are shown with box plots in Figure 2.5.
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(a) Lasso-based Yield Models
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(b) Elastic Net-based Yield Models
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(c) Lasso-based Property Models
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Figure 2.5: CV-NRMSE for property and yield prediction models (Red boxes show the 25th and
75th percentiles, blue whiskers show the 5th and 95th percentiles, grey dots show the CV-NRMSE
of all individual prediction models associated with each unit).

The results show that there is no big difference between the CV-NRMSE of the lasso- and

elastic net-regularization models. Figure 2.6 shows the histogram of % model sparsity in prediction

models.
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Figure 2.6: Histograms of CV-NRMSE and % sparsity of the data-driven prediction models.

Table 2.2: The list of the regularization model selected with respect to the yield and property
prediction models.

# Yield Selected # Property Selected
Unit Models Models Models Models
CDU 8 Elastic Net 25 Elastic Net
GHT 5 Lasso 4 Elastic Net
HMU 4 Elastic Net 4 Lasso
KMX1 2 Elastic Net 6 Elastic Net
LER 5 Lasso 9 Lasso
LER Mixer 1 Lasso 4 Lasso
LMX 1 Elastic Net 2 Elastic Net
NHT 6 Lasso 6 Elastic Net
NHT Mixer 1 Elastic Net 3 Elastic Net
PLT 5 Elastic Net 6 Lasso
PLT Mixer 1 Elastic Net 6 Lasso
KMX2 1 Elastic Net 4 Elastic Net
DCU 7 Lasso 7 Lasso
DCU Mixer 1 Lasso 4 Elastic Net
HCR 11 Lasso 27 Elastic Net
HCR Mixer 1 Elastic Net 6 Elastic Net
LBO 8 Elastic Net 32 Elastic Net
VDU 5 Lasso 26 Lasso
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Results indicate that both regularization methods give the intended sparsity to the models. More

than 87% of models have a sparsity greater than 85%. For deciding on which regularization model

to use, 10% of the original data that is previously spared is used for testing. After comparing the

testing NRMSE the list of selected models for each unit is presented in Table 2.2.

2.3.3 Production Planning Case Studies

2.3.3.1 Global Optimization

The planning problem is solved for selected days of October 2015. Both the single- and

multi-period planning models are NLP. The problem is solved using ANTIGONE’s advanced

branch-and-bound algorithm, while CPLEX and CONOPT are selected as MILP and NLP solvers,

respectively. All case studies are solved on a high-performance computing machine at Texas A&M

High-Performance Research Computing (HPRC) facility using Ada IBM/Lenovo x86 HPC Cluster

operated with Linux (CentOS 6) using 1 node (20 cores per node with 64 GB RAM). ANTIGONE

1.1 is used with GAMS 26.1.0 as the default solver. The solution time is limited to one hour and

optimality criterion is set as 0.0001. Statistics of the single-period (SP) and multi-period (MP)

optimization problems are given in Table 2.3. For problem size comparison, SP solution for period

1 is presented (SP-1) along with 2-, 4-, 6-, and 8-period MP solutions, that are MP-2, MP-4, MP-6,

and MP-8, respectively.

Using ANTIGONE’s options, piecewise linear underestimators with logarithmic partitioning

scheme are selected to relax the nonconvex bilinear terms. Using default McCormick type convex

envelopes can give results much faster, but the solution algorithm takes considerably more time

to close the optimality gap within the vicinity of the global optimum. The rate of closing the gap

also slows down with time. On the other hand, the solution algorithm with tighter piecewise linear

underestimators can take more time to obtain the result, but it can close the optimality gap much

faster by the end of the solution time. The optimal solutions obtained with ANTIGONE are later

compared with the ones obtained using BARON 19.7.13 and IPOPT 3.11 and they are given in

Table 2.3. The difference between optimal solutions of different solvers are found to be within
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Table 2.3: Single- and multi-period planning formulation statistics

Model Statistics SP-1 MP-2 MP-4 MP-6 MP-8
Total continuous variables 1,349 2,718 5,434 8,150 10,866
Total equations 859 1,716 3,430 5,144 6,858
Total nonlinear terms 442 884 1,768 2,652 3,536
Solver Statistics SP-1 MP-2 MP-4 MP-6 MP-8
ANTIGONE Profit ($ MM) 0.356 0.742 1.677 2.152 2.334

Solution time (s) 1,566 3,600 3,600 3,600 3,600
Relative gap 0.00 0.52 N/A N/A 0.98

BARON Profit ($ MM) 0.356 0.742 1.677 2.154 2.330
Solution time (s) 3,600 3,600 3,600 3,600 3,600
Relative gap 0.59 0.66 N/A N/A N/A

IPOPT Profit ($ MM) 0.356 0.743 1.674 2.154 2.333
Solution time (s) 0.5 1.3 4.1 22.5 6.6
Relative gap N/A N/A N/A N/A N/A

0.2%. IPOPT is much faster than the other two solver to find a solution, however, it does not

provide a gap of optimality since it is a local solver. Among the two global solvers, BARON is

found to be faster to locate a solution than ANTIGONE but was slower to close the gap in SP

and MP studies, this is due to BARON being used with default options, whereas with ANTIGONE

piecewise underestimators are used. ANTIGONE is the solver to bound the lower and upper bound

solutions more consistently as well as finding the best optimal solution within the one hour time,

even though the MP problem can leave an optimality gap. The size of a 8-period problem shown

in Table 2.3 shows that large-scale nonconvex NLPs still pose a challenge to the state-of-the-art

global solvers. While, no solver used in this study has a significant advantage over others, since

ANTIGONE gives the best results, its results are presented in the following section.

The problem of computational complexity is a common concern with multi-period models.

In this study, an 8-period plans considers 8 days of operation horizon, since each period is as

long as day. While multi-period planning presents improvements over single-period planning even

when the optimality gap is not closed, computational limitations prevent the maximum number of

periods that the planning problem can be solved for. For plans that cover longer time horizons,

use of representative time periods with varying weights assigned to each time period can be useful.
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Some clustering methods such as k-means [112, 113] and hierarchical clustering [114] are already

used in planning and scheduling problems like capacity expansion. Future work should focus on

reducing the number of representative time periods and the current planning model can be easily

modified work with representative periods.

2.3.3.2 Optimal Plans

The multi-period (MP) problem has been solved for 2-, 4-, 6-, and 8-periods. Here the results

obtained with 8-period problems (MP-8) are shown. Single-period (SP) problem is solved for

each of the 8 periods separately. Crude oil is the primary input to the refinery process. In the

optimization problem, crude oil properties are fixed to those of the actual operation, however inlet

crude oil flow rate is left free as a decision variable. Availability of the crude oil is limited by the

use of crude oil in the actual plan for that period. For the case studies, the demand profiles for

all refinery products, product prices, raw material costs, and product quality specifications are set

to values identical to the actual plant operation. Due to confidentiality restrictions, the full details

of the actual or optimal plans are not disclosed. Instead a breakdown of the major gross profit

contributors is presented in Figure 2.7.
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Figure 2.7: Comparison of actual, single-period, and multi-period optimization results indicate
that both the single- and multi-period plans are superior over the actual plan.

Results indicate that both SP and MP optimal plans outperform the actual plan in every

period. Optimal plans reduce the operating costs and the amount of raw material purchased while

producing the same output as the actual plan by using the full advantage of the mathematical

models for the processing units and optimal stream allocation. When MP-8 is compared with actual

daily plans, the biggest reductions are observed in the operating costs that come from the changes

in the operation crude distillation (CDU), vacuum distillation (VDU), delayed coker (DCU) and

hydrocracker (HCR) units. In the MP optimal plan, CDU operation increases kerosene production

slightly while decreasing the light and heavy gasoil production. VDU unit increases the vacuum

gasoil production to be sent to HCR, while decreasing the vacuum residue that is sent to the DCU.

DCU produces more lighter products, while HCR produces more kerosene and less diesel. This

decrease in diesel production is compensated by the increased production of the lube base oil plants

(LBO). LBO increases diesel production by using the available unconverted oil. Naphtha (NHT)

and gasoil hydrotreating (GHT) units’ throughputs do not change significantly, while kerosene
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mercaptan oxidation units (KMX1 and KMX2) slightly increase their production. Overall, some

portion of the diesel production shift from HCR to LBO. This makes sense, since HCR is more

costly to operate for this refinery.

In periods 1, 2, 4, 5 and 8 the optimal plans result in 57-94% improvement in gross profit.

Periods 3, 6, and 7 are operational days where actual plan is vastly inferior to optimal plans. MP

plan brings the operational costs further down compared to SP plans since some of the products

can be produced and stored in the earlier periods when the resources are cheaper that are later sold

to satisfy the demand. Total gross profit for the eight periods considered is $955,300 for the actual

plan. SP plan gives $2,297,500 whereas MP plan gives $2,334,200. Improvements in gross profit

are 140.5% and 144.3% for SP and MP plans, respectively. Although, the aforementioned changes

in operation in the MP plan are similar to the ones in SP plans, MP plan also has the advantage of

the inventory management, that results in the additional 3.8% improvement in gross profit.

2.4 Conclusions

With this work, an integrated data-driven modeling and global optimization approach in

developed to solve multi-period production planning problems. This work achieves (i) automatic

generation of nonlinear and sparse data-driven process models where yields and properties of the

process models are based on input properties and compositions, (ii) estimation of model parameters

using real-plant data, and (iii) global optimization solution strategy of the large-scale nonlinear

and multi-period production planning model using commercial solvers. Given operational data,

accurate nonlinear data-driven input-output models for refinery processing and mixing units

can be obtained. Lasso- and elastic net-regularization methods are used to obtain the process

models. Obtained models have enough sparsity to be efficiently used in large-scale multi-period

nonlinear optimization problems. Optimal production plans can improve the actual operation

by allocating the streams more efficiently between units to reduce raw material and operating

costs. Multi-period planning approach provides further improvement over single-period planning.

While this work specifically focuses on production planning in refinery operations, the proposed

integrated modeling and optimization approach can be applied to any production facility.
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3. PROCESS SYNTHESIS AND GLOBAL OPTIMIZATION FOR NOVEL SUSTAINABLE

AMMONIA PRODUCTION ROUTES ∗

3.1 Ammonia Production from Fossil and Renewable Feedstocks

Ammonia (NH3) is synthesized at industrial scale by the Haber-Bosch process where nitrogen

(N2), that is coming from the air, is combined with hydrogen (H2), that is traditionally extracted

from a fossil feedstock. N2 is highly unreactive and it is converted to NH3 ( Eq. 3.1) only

in the presence of a catalyst. Due to exothermicity, thermodynamic limitations, and reaction

stoichiometry, high NH3 yield requires lowering the temperature and increasing the pressure.

However, while thermodynamically feasible, the reaction is kinetically limited at low temperatures;

hence, a trade-off between reaction rate and conversion is made, and the reactor is operated under

high pressure (usually between 150-300 bar) and high temperature (above 400 ◦C), where only

∼20-35% of the reactants are converted in each pass. Haber-Bosch process reaches high overall

conversions by using multiple large recycle streams and removing the products and inerts from

the reactor effluent stream [59]. Alternative methods to produce ammonia are electrochemical

synthesis, membrane reactor system, and biological processes. While these methods might

become feasible in the future, as of today, they are still immature for industrial scale production

[115, 116, 117]. Most analyses done on future technologies suggest that the Haber-Bosch process

will continue to be used to produce ammonia in large-scale in the near future, with an open

possibility of significant changes in the hydrogen generation part. Therefore, this work focuses

only on state-of-the-art configurations of the Haber-Bosch process [59, 118].

N2(g) + 3H2(g) ⇀↽ 2NH3(g), ∆H◦ = −91.4 kJ/mol (3.1)

∗Reprinted from "Sustainable ammonia production through process synthesis and global optimization" by
Demirhan, C.D. and Tso, W.W. and Powell, J.B. and Pistikopoulos, E.N., 2019, AIChE Journal, 2019, Vol. 67,
No. 7, Copyright 2020 by John Wiley and Sons and Copyright Clearance Center.
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While most of the ammonia production process stayed somewhat the same throughout more than

100 years of industrial practice, hydrogen generation technologies have significantly evolved.

Both sustainability and economics of ammonia production can be significantly affected by the

choice of hydrogen source. A global report from 2007 showed that, natural gas reforming-based

ammonia production (the preference in the U.S.) had a huge 67% share, which was followed by

coal gasification-based production with 27% (mostly from China). The remaining was shared by

naphtha, fuel oil, and other feedstocks [119]. Although natural gas is the most efficient fossil

feedstock in terms of energy economics and greenhouse gas emission savings [120], it still has a

significant carbon footprint of 1.60-1.90 ton CO2/ton NH3 produced, which includes both fuel and

feedstock use. The emissions can go up to 3.8 ton CO2/ton NH3 produced if coal is used as fuel

and feedstock [121].

Producing ammonia from biomass gasification has been studied by several researchers over

the last few years. Gilbert et al. [122] state that 65% reduction of GHG emissions is achieved

for a biomass gasification-based ammonia production system, and Tock et al. [123] compare

biomass-based production with natural gas-based production and points out that next to reduced

emissions, the former can be economically competitive depending on the resource price and

introduction of a carbon tax. Andersson and Lundgren [124] investigated integrating biomass

gasification in an existing pulp and paper mill. Arora et al. [72] studied small-scale ammonia

production by combining biomass gasification with steam reformers in a techno-economic

perspective in one study. Another work of Arora et al. [125] examined performance of various

biomass types in a similar framework. SynGest Inc. has a patent on producing ammonia from

biomass gasification [126] and constructed world’s first biomass-to-ammonia plant in Menlo, Iowa.

As of 2018, hydrogen production from water electrolysis is the least common technique, taking

about 0.5% share of global ammonia production. Alkaline and proton exchange membrane (PEM)

are two of the most common types of electrolyzers. Alkaline electrolysis systems are suitable

for large-scale industrial applications due to their low capital cost, whereas less mature and more

expensive PEM technology is more adept to dynamic operation. Water electrolysis is less efficient
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than reforming, but it can be used in conjunction with inexpensive electricity that comes from a

renewable energy source [61]. For instance, researchers are working to combine water electrolysis

with onshore and offshore wind energy. Among the groups that study onshore wind energy studies,

Morgan et al. [62] have a techno-economic analysis of the wind-ammonia system, and Allman et

al. [127] point out the overlap of wind resources and ammonia demand locations in a supply

chain optimization problem for wind powered ammonia production. A further work of Morgan et

al. [61] focuses on offshore wind, and Allman and Daoutidis [128] study optimal scheduling of

wind-powered ammonia production. Using solar energy to power ammonia synthesis concept is

investigated by works of Du et al. [129], a feasibility analysis of solar PV-to-ammonia route, and

Sanchez and Martin [130], performing an optimization based production design of ammonia from

solar and wind energy.

Despite the increasing interest in studying sustainable ammonia production in the literature,

there is no work focusing on global optimization-based process synthesis approach with

simultaneous heat, power, and water integration applied to a variety of feedstocks. This work aims

to contribute a study on the production of ammonia from a wide selection renewable resources such

as hardwood or corn stover type of biomass, municipal solid waste, solar power, and wind power.

Renewable-based ammonia production is later compared with the natural gas-based reference

case. In order to account for the effects of variability in renewable energy availability and

prices, case studies are done for states of Texas, California, and Iowa. Break-even prices for

producing ammonia and report optimal process topologies, overall cost breakdown, investment

costs breakdown, and GHG emission balances are calculated in the following sections.

3.2 Process Synthesis and Process Superstructure

This section describes the major components of the ammonia production process. Ammonia

production process consists of the following sections: (i) synthesis gas generation, (ii) water

electrolysis (iii) synthesis gas cleaning, (iv) ammonia synthesis loop, (v) air separation, (vi)

waste water treatment, and (vii) heat & power integration. The conceptual design of the process

synthesis with simultaneous heat, power, and water integration is illustrated in Figure 3.1. The
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Figure 3.1: Conceptual design of the ammonia process consists of (a) the ammonia plant including
sections (i)-(v), (b) the utility system that exchanges electricity, steam, power, with the plant, and
(c) the heat recovery system that interacts with both (a) and (b) to provide heating and cooling
duties to the plant.

superstructures for process sections (i), (ii), (iii), and (iv) are shown in the following subsections.

Sections (v), (vi), and (vii) are described in the previous works of Floudas and coworkers in

the publications of Elia at al. [131] and Baliban et al. [132, 133]. The complete mathematical

model of the process synthesis superstructure is given in Appendix B. Mass and energy balance

equations are solved around each processing unit. All physical properties and the thermodynamic

relationships are calculated using Peng-Robinson equation of state with Boston-Mathias alpha

function (PR-BM) method.

For sake of simplicity in illustration of the flowsheet, the heat exchangers, compressors, pumps,

and expanders are omitted in the figure, however they are present where needed before and after

each processing unit in the superstructure. Rectangular boxes represent units consisting of multiple
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steps of processes that are modeled as input-output units (e.g. Rectisol unit, aMDEA unit, etc.).

The input output relations of such units are found from company reports or studies by other groups.

More information on model parameters of such units with the references can be found in Appendix

B.

3.2.1 Synthesis Gas Generation

Figure 3.2 shows the superstructures of the synthesis gas generation and water electrolysis

sections. Syngas generation section includes natural gas reforming-based and biomass

gasification-based production trains. The following sections describe each train in detail. The

objective of this step is to produce H2 and N2 in the desired ratio for ammonia synthesis.
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Figure 3.2: Hybrid feedstock synthesis gas generation and water electrolysis sections.

3.2.1.1 Natural Gas Conversion

Natural gas from the pipeline, removed of sulfur species, is compressed to 31 bar and can be

sent to three different reforming reactors, that are (1) steam reforming (SMR), (2) autothermal

reforming (ATR), or (3) the choice of traditional ammonia production plants: primary reformer

(PR) and secondary reformer (SR) in series, that are essentially an SMR followed up by an ATR.

In option (1), SMR operates at 30 bar with a reaction temperature of either 800, 850, or 900 ◦C.
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It partially converts CH4 to synthesis gas over a nickel catalyst. SMR is modeled using steam

reforming and water-gas shift equilibria (Eqs. 3.2 and 3.3, respectively), the effluent is sent to

synthesis gas cleanup section. Option (2) uses an ATR that operates at 30 bar with a reaction

temperature of 900 ◦C. It also uses a nickel catalyst. Autothermal reformer uses high purity

oxygen coming from the air separation unit (ASU) to combust some of the CH4 to supply heat

to the endothermic steam reforming reaction. Steam reforming and water-gas shift reactions are

accompanied by methane combustion (Eq. 3.4) in the reformer.

CH4(g) +H2O(g) ⇀↽ CO(g) + 3H2(g), ∆H◦ = 206.0 kJ/mol (3.2)

CO(g) +H2O(g) ⇀↽ CO2(g) +H2(g), ∆H◦ = −41.0 kJ/mol (3.3)

CH4(g) + 2O2(g) ⇀↽ CO2(g) + 2H2O(g), ∆H◦ = −802.3 kJ/mol (3.4)

Option (3), is the approach used in traditional single-train ammonia production plants and it

consists of two parts. In the first part, PR is modeled after the SMR and it operates at 800 ◦C

and 31 bar. After partial conversion of CH4, the reformer effluent is mixed with large amounts of

air. In this configuration, N2 can be added to the system at SR. The O2 in the air is combusted

in SR, that is modeled similar to ATR unit. SR operates at 1000 ◦C and 30 bar and methane

combustion, water-gas shift, and steam reforming reactions (Eqs. 3.2-3.4) take place in it. In

traditional ammonia plants PR and SR configuration does not necessitate an ASU unit for pure

N2 generation, however it requires a larger cleanup section due to early introduction of N2 to the

synthesis gas (syngas). The effluents from all the options are sent to synthesis gas cleanup section,

to remove the carbon oxide species (COx) and inerts, before they are sent to the ammonia synthesis

loop.

3.2.1.2 Biomass Gasification

As an alternative to natural gas, various type of biomass such as forest residue (hardwood),

agricultural crops (corn stover), and municipal solid waste (MSW) can also be used as renewable

sources of hydrogen. A gasification unit is used for thermochemical conversion of biomass into a
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syngas mixture. The detailed models of the hardwood, corn stover, and MSW gasifiers used in this

work can be found in papers of Baliban et al. [77] and Onel et al. [78], respectively. This section

will briefly describe the processes involving biomass gasification.

The hardwood- or corn stover-type biomass is delivered to the refinery as pellets with a

moisture content of 45 wt.%. Biomass is dried and lockhopped with compressed CO2 at 31 bar. The

mixture is fed to a circulating gasifier (BGS) operating at either 900, 1000, or 1100 ◦C and 30 bar.

Pure oxygen, produced in ASU, and steam are sent to the gasifier to facilitate char gasification. The

biomass gasifier is modeled stoichiometrically and simulates pyrolysis of biomass. The gasifier

effluent is cooled down to 883 ◦C and sent to two cyclones (C1 and C2) in series to remove ash

from the system, while unreacted char is recycled back to the gasifier. The vapor products are sent

to a tar cracker operating at 925 ◦C to decompose some of the residual hydrocarbons. The effluent

from the tar cracker is referred to as bio-syngas. The biomass gasification section is outlined in

Figure 3.2.

While hardwood or corn stover can be processes using available pellets, MSW type of biomass

requires a more intricate handling process. Since MSW contains undesired components such as

glass, metals, etc., it needs to be processed to produce refuse derived fuel (RDF) [134, 135]. An

RDF facility removes the non-combustible material from MSW and condenses RDF into pellets

that are later sent to a drier to remove its high moisture content. Dried and lockhopped RDF is

sent to an MSW gasifier (MSW-GS) that operate at either 800, 850, or 900 ◦C and 30 bar in the

presence of calcium dolomite catalyst. The gasifier effluent is sent to two ash cyclones (C1 and

C2) that are followed up by a tar cracker to decompose the remaining hydrocarbons. Syngas from

biomass gasification require a cleanup section to remove any sulfur and carbon oxide species.

3.2.1.3 Water Electrolysis

Another hydrogen production method is water electrolysis. For water electrolysis, alkaline

(AL-EYZ) and proton electrolyte membrane (PEM) type of electrolyzers (PEM-EYZ) are

considered. Both technologies require water purification and a deionizer (DEION) unit to generate

purified water. The output of the DEION can either be sent to AL-EYZ or PEM-EYZ. AL-EYZ
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is modeled after NEL alkaline electrolyzers and it operates at 80 ◦C and 1 bar. With an

electrochemical reaction H2 and O2 are produced from H2O in stoichiometric amounts as shown

in Eq. 3.5. The H2 output is compressed to 30 bar. PEM-EYZ is modeled after ProtonOnSite

PEM electrolyzer and it is producing a pure H2 stream available at 30 bar and 40 ◦C. The hydrogen

streams from both electrolyzers are mixed and sent to the electrolyzer splitter. Since the product of

water electrolysis is pure hydrogen and it does not require any cleaning. The electrolyzer splitter

sends hydrogen at 30 bar and 25 ◦C directly to the ammonia synthesis loop.

2H2O(l) ⇀↽ 2H2(g) +O2(g) (3.5)

3.2.2 Synthesis Gas Cleanup

The purpose of the synthesis gas cleanup section is to reduce the amount of undesired species

and adjust the ratio H2 and N2 in the ammonia synthesis gas. Synthesis gas from a hydrocarbon

source includes poisonous species (e.g. CO, CO2, NO, N2O, COS, HCN) and inerts (e.g.Ar, CH4)

for the iron ammonia synthesis catalyst. The synthesis gas coming from reforming of natural gas

(will be referred to as syngas from this point on) contains H2, H2O, CO2, CO, CH4, N2, NO, N2O,

and Ar. The synthesis gas coming from the gasifier (will be referred to as bio-syngas) contains

NH3, HCN, COS, H2S, C2H2, C2H4, and C2H6 in addition to all the species present in syngas.

Therefore both of these streams need to be cleaned before being sent to the ammonia synthesis

section. While the poisonous species need to be completely removed, the inerts can be sent to the

Haber-Bosch reactor. If inerts are present in the ammonia synthesis loop, the equipment will be

larger in size, and additional separation steps might be required to remove them, so that they are

not accumulated in the recycle stream. Traditional single-train ammonia production methods do

not shy away from having inerts in the ammonia synthesis loops, whereas more modern methods

prefer having an inert-free ammonia synthesis gas [59].

The synthesis gas cleanup section can be viewed in three subsections: first part is characterized

by increasing/adjusting the H2 yield using water-gas shift reaction, the second part by bulk CO2
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removal, and the third part by final purification to completely remove all the poisonous and/or inert

species. The superstructure of the entire cleanup section is shown in Figure 3.3.

Figure 3.3: Hybrid feedstock synthesis gas cleanup section.

Syngas from steam reforming can be sent to a the mixer, MX-RGS, to be directed to a

forward/reverse water-gas shift reactor (RGS) that operates at 29 bar and either 400, 500, or 600

◦C. Alternatively syngas can bypass RGS and head straight for the raw syngas mixer MX-RS.

Bio-syngas can be mixed with syngas at MX-RGS or sent to a forward water-gas shift reactor

(HT-WGS). Syngas collected at MX-RS is called raw syngas. It is split at SP-RS and can be sent

to a high- (HTS) or low-temperature water-gas shift (LTS) unit, where CO is shifted with H2O
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to CO2. In this way, not only is CO converted to readily removable CO2, but additional H2 is

also produced in the process. The high-temperature shift is carried out at 350 ◦C and 28.5 bar

over an iron-chromium catalyst, while the low-temperature shift is operated at 250 ◦C and 28.5

bar over a copper-zinc catalyst. Both shift reactors are modeled using equilibrium model (Eq.

3.3). Alternatively, raw syngas can be sent through a COS-HCN hydrolyzer, that is followed up

by a NH3-HCl stripper, where the residual tar, particulates, and NH3 in the stream are removed.

In another alternative, raw syngas at SP-RS can bypass all these options and sent directly to the

acid gas flash (AGF) unit. AGF is modeled using liquid-vapor phase equilibrium calculations. It

operates at 24.5 bar and 35 ◦C, and flashes out about 95% of the water. The vapor effluent of AGF

is sent to SP-AGF where it is directed to either downstream CO2 removal units or to the light gas

header. This mostly water-free syngas can either be sent to CO2 process or bypass it. There are two

process options for bulk CO2 and possible sulfur removal, either a Linde Rectisol unit [136], or an

BASF aMDEA (activated methyldiethanolamine) process [137]. Removed CO2 can be recycled to

be used elsewhere (e.g. in the gasifier), sent for sequestration, or vented. COx-lean syngas streams

are mixed at MX-AGR and compressed to 34 bars before the final purification step.

There are three alternatives for the final purification before the ammonia synthesis loop. First

option is sending the COx-lean syngas to a methanator (METH) where all the poisonous carbon

oxide species are completely hydrogenated to inert CH4 over a nickel catalyst (Eqs. 3.6 and 3.7).

METH is modeled as a stoichiometric reactor and operates at 300 ◦C and 33 bar. The outlet stream

is sent to another flash unit and through molecular sieve drying (Dryer) using Sylobeads to remove

any remaining H2O. The effluent of Dryer consists of H2, N2, CH4, and Ar.

CO(g) + 3H2(g) ⇀↽ CH4(g) +H2O(g), ∆H◦ = −206.0 kJ/mol (3.6)

CO2(g) + 3H2(g) ⇀↽ CH4(g) + 2H2O(g), ∆H◦ = −165.0 kJ/mol (3.7)

The second option is a liquid nitrogen wash unit, that is modeled after Air Liquide’s process and

operates at 30 ◦C and 31 bar. The unit washes the syngas stream with liquid nitrogen coming
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from the ASU to remove hydrocarbons, carbon oxide species, and inert gases and produces a pure

ammonia synthesis gas mixture of hydrogen and nitrogen. Liquid nitrogen wash unit utilizes 0.02

tons of liquid nitrogen per ton of syngas treated and it is able to recover 99.6% of the H2 that is

present in the synthesis gas stream and can adjust the required H2/N2 ratio.

The third option is using a pressure swing adsorption (PSA) unit that accepts hydrogen-rich

streams and increases their the hydrogen concentration by selectively adsorbing impurities. Unit

specifications are taken from UOP’s Polybed PSA systems. PSA unit is capable of processing

streams with hydrogen compositions as low as 80 %, and produces a 99.999 % pure hydrogen

stream. The off-gases from PSA and other units are sent to light gas header, which can either

be vented or sent to the fuel combustor. The optimization algorithm decides whether to recycle

the gases back to process units to increase overall yield or send them to fuel combustor (FCM) to

generate heat and/or power.

3.2.3 Ammonia Synthesis Loop

Due to low single-pass conversion at the Haber-Bosch reactor, unreacted ammonia synthesis

gases need to be recycled back after removing the product and inerts. The process superstructure

allows for various synthesis loop configurations and recycle options that are illustrated in Figure

3.4.
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Figure 3.4: Ammonia synthesis loop section.

3.2.3.1 Haber-Bosch Reactor

The ammonia synthesis gases coming from synthesis gas cleanup section, water electrolysis,

ASU, and H2 coming from PSA unit are mixed at MX-SYN at 30 ◦C and 31 bar and sent to the

first compression step where the pressure of the stream is increased up to 85.5 bar. The fresh feed

is mixed with four different recycle streams at MX-HBR. Ammonia synthesis gas stream can be

split at SP-HB-I to five separate compression trains leading to five different Haber-Bosch reactors

(HBR) operating at distinct pressures of 85.5, 130, 170, 210, or 250 bar. A second compression

stage is required for all reactor options except the one operating at 85.5 bar. The streams are

connected at five different mixers and sent to HBR. Pressure has a larger effect on the conversion

(∼20-35%) than temperature does. Moreover, downstream product separation and transportation
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options for ammonia are also highly dependent on pressure. Hence, the only variable here is the

reactor pressure. Inlet and outlet temperatures of HBR are set at 400 ◦C and 440 ◦C, respectively.

Ammonia synthesis reaction (Eq. 3.1) is the only reaction taking place at HBR.

Ammonia synthesis is an exothermic reaction. Industrial Haber-Bosch reactors are operated

adiabatically and they consist of multiple reaction stages with interstage cooling to capture the heat

of reaction. This heat is later used to preheat the reactor inlet stream. Due to trade-offs between

thermodynamic and kinetic limitations, even when multiple stages are used, the Haber-Bosch

reactors often do not reach equilibrium conversion. Hence, HBR is not modeled as an equilibrium

reactor. Instead, a data-driven approach is used to model conversion of HBR by using a dataset of

25 industrial (Imperial Chemical Industries, Kellogg Brown & Root, Haldor Topsøe, Uhde GmbH,

Casale) [138, 139, 140, 59, 141, 142, 143, 144, 145, 146, 147, 148, 149] and experimental practices

[150, 151, 152, 153, 154]. Reactor pressure, outlet temperature, and inlet compositions are inputs

to the model and predict the conversion of the limiting reactant (either H2 or N2, depending on the

H2/N2 ratio). Models with linear, quadratic, and cubic terms of the input variables are compared

using cross-validation method and as a result the fully linear model is selected. Conversion of HBR,

Xr, is calculated using Eq. 3.8, where A-G are fitted parameters determined from the solution of

the parameter estimation problem.

Xr(T, P, yi) = A+B · T + C · P +D · yH2 + E · yN2 + F · yNH3 +G · yInert (3.8)

Details of the data-driven modeling approach are presented in Appendix B of the supplementary

material. Interested readers can read works of Boukouvala et al. [155], Onel et al. [156], and

Beykal et al. [156] to learn more about data-driven modeling techniques and their applications.

3.2.3.2 Synthesis Loop Configurations for Product Separation

HBR effluent contains product NH3, unreacted H2 and N2, and possible inerts. Before being

recycled back to the HBR, products and some inerts need to be removed from the recycle stream

to prevent accumulation. The effluent is cooled to ambient conditions before being refrigerated
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down to -20 ◦C to condense NH3. Next, a letdown vessel flashes out the liquid NH3 product at

25 bar. The letdown vessel is modeled using liquid-vapor phase equilibrium. The vapor from

the vessel is splitted at SP-LV to either be purged, or compressed to 85.5 bar to be recycled

back to MX-HBR (1st Recycle), or sent to scrubber-distillation system (SCRUB-DIST) for further

ammonia recovery. SCRUB unit removes ammonia from the recycle stream by scrubbing the

vapors with H2O. The water scrubber is modeled after an example from an industrial patent [157].

The resulting NH3/H2O mixture is sent to DIST unit, that is a distillation column modeled using

data from a RadFrac model built in Aspen Plus with thermodynamic calculations based on PR-BM

method. Distillation product purities are found to be in good agreement with the values reported

in literature [59]. NH3 product is either stored at pressurized conditions (20 ◦C and 25 bar) or

cooled further and stored at ambient pressure (-33.33 ◦C and 1.01 bar). The vapor leaving from

the top of SCRUB contains unreacted ammonia synthesis gas with some H2O, that is removed in a

molecular sieve Dryer unit. The Dryer effluent still contains some of the product NH3, it can either

be pressurized and recycled back to MX-HBR (2nd Recycle) or to a membrane separation unit for

further purification. The membrane is modeled after an Air Products design and operates at 60

◦C and 25 bar. The permeate of the membrane is a H2-rich gas that can either be pressurized and

recycled back to MX-HBR (3rd Recycle) or sent to PSA unit. PSA unit takes all the H2-rich streams

and produces a 99.999% pure H2 stream. That can either be sent to low pressure mixer MX-SYN

at 31 bar or to high pressure mixer MX-HBR at 85.5 bar after being compressed in a separate

compressor (HP Hydrogen Recycle). While each recycle stream comes with the requirement of

additional separation units, NH3 content of the streams decrease at each successive recycle option.

Light gases from the ammonia synthesis loop are sent to the light gas header and from there

they can either be recycled directly to various mixing point in the process, sent to PSA for H2

recovery, or sent to FCM for heat and power generation.

56



3.2.4 Investment Costs

Cost estimations for the process units are collected from several literature sources. Total

overnight costs (TOCu) are calculated by sum of direct and indirect costs, using Eq. 3.9.

TOCu = (1 + IC)(1 +BOP )Co

(
S

So

)sf
(3.9)

BOP is the balance of plant (assumed to be 0.20 and includes site preparation, civil works, etc.),

IC is the indirect costs (assumed to be 0.32 and include engineering, startup, spare parts, royalties,

fees, and contingencies), Co is the base cost in MM$, S is the cost flow, So is the base case flow,

and sf is the scaling factor. Smax is the maximum flow for a process unit, when it is reacted multiple

trains are used and the cost for each train is scaled with a factor of 0.9. The list of cost parameters

are given in Table 3.1 with the references. All costs are converted to 2016 prices using the Chemical

Engineering Plant Cost Index (CEPCI).

TOCu needs to be annualized in order for us to compare it with the annual feedstock, utility, and

operations & maintenance (OM) costs. TOCu is annualized following the approach used by Kreutz

et al. [136], where investments costs are multiplied by levelized capital charge cost (LCCR) and

interest during costruction factor (IDCF) as shown in Eq. 3.10. The values for LCCR and IDCF

are taken as 14.38%/year and 1.0716, respectively.

CCu = LCCR · IDCF · TOCu (3.10)

Annual operating and maintenance costs (OM) are assumed to be 4.5% of the total overnight

costs and the plant is assumed to operate for 330 day/year (CAP) similar to industrial ammonia

production plants. PROD is the production capacity of the plant (e.g. 1,000 tons/day of NH3).

Using these values, investment and OM are levelized as shown in Eqs. 3.11 and 3.12, respectively.

CostInvu =

(
CCu

CAP · PROD

)
(3.11)
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Table 3.1: Investment Cost Parameters and Scaling Factors (Given in 2016 $).

Unit Name Co (MM$) sf So Smax Cost Flow Basis Ref.
Biomass Handling (forest) 4.31 0.77 17.94 33.33 kg/s of as received biomass [136]
Biomass Handling (nonforest) 13.76 0.77 17.94 33.33 kg/s of as received biomass [136]
Biomass Gasifier 51.2 0.7 17.94 33.33 kg/s of dry biomass [158]
MSW Handling and RDF Facility 135.98 0.77 45.2 33.33 kg/s of RDF [134]
MSW Gasifier 51.2 0.7 17.94 33.33 kg/s of dry biomass [158]
SMR/Primary Reformer 28.49 0.67 12.2 35 kg/s of feed [159]
ATR/Secondary Reformer 20.37 0.67 12.2 24 kg/s of feed [159]
PEM Electrolyzer 50.05 0.85 50 1000 MW of electricity [159]
Alkaline Electrolyzer 5.92 0.95 10 1000 MW of electricity [160]
Air Compressor 5.59 0.67 10 30 MW of electricity [158]
Air Separation Unit (ASU) 230.77 0.5 145 41.67 kg/s of O2 feed [159]
Forward Shift Reactor (WGS, HTS, LTS) 3.47 0.67 150 250 kg/s of feed [161]
Reverse Shift Reactor (RGS) 3.47 0.67 107.9 250 kg/s of feed [161]
COS-HCN Hydrolyzer 4.82 0.88 56.98 250 kg/s of feed [136]
Rectisol CO2 Removal Unit 29.77 0.63 2.51 8.78 kmol/s of feed [136]
aMDEA CO2 Removal Unit 10.11 0.63 41.9 500 kg/s of feed [137]
Methanator 35.01 0.72 10 50 kg/s of feed [162]
Liquid Nitrogen Wash 29.77 0.63 2.51 8.78 kmol/s of feed [136]
Pressure Swing Adsorption (PSA) 7.38 0.65 0.29 1.78 kmol/s of purge gas [158]
Sylobead Dryer 4.76 0.6 6.3 67.2 kg/s of feed [163]
Flash Separator 0.16 0.59 10 220 m3/s of feed [164]
Ammonia Converter (85.5 bar) 18.32 0.67 3.56 7.13 kmol/s of feed [162]
Ammonia Converter (130 bar) 19.92 0.67 3.56 7.13 kmol/s of feed [162]
Ammonia Converter (170 bar) 22.3 0.67 3.56 7.13 kmol/s of feed [162]
Ammonia Converter (210 bar) 25.49 0.67 3.56 7.13 kmol/s of feed [162]
Ammonia Converter (250 bar) 30.27 0.67 3.56 7.13 kmol/s of feed [162]
Refrigerator 1.19 0.7 0.7 10.55 MW of heat removed [164]
Letdown Tank 0.28 0.56 10 220 m3/s of feed [164]
Ammonia-Water Scrubber 0.16 0.67 1 125 m3/s of feed [157]
Ammonia-Water Distillation 1.88 0.68 1 150 kg/s of feed [165]
Hydrogen Separation Membrane 4.61 0.67 1 3.6 kg/s of hydrogen removed [166]
Compressors 6.93 0.67 10 20 MW of electricity [165]
CO2 Sequestration 22.42 0.6 24.4 30 MW of electricity [165]
Gas Turbine 75.66 0.75 226 334 MW of electricity [158]
Steam Turbine 61.47 0.67 136 500 MW of electricity [158]
Sour Stripper 3.93 0.53 11.52 - kg/s of feed [167]
Biological Digestor 4.68 0.71 115.74 - kg/s of feed [168]
Reverse Osmosis 0.32 0.85 4.63 - kg/s of feed [168]
Cooling Tower 57.85 0.65 1.75 - GW of heating deficit [167]

CostOMu =

(
TOCu ·OM

365 days/year · PROD

)
(3.12)

Levelized unit cost CostU
u is the sum of levelized investment and OM costs and it is calculated by
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Eq. 3.13.

CostUu = CostInvu + CostOMu (3.13)

3.2.5 Utility Requirements

Simultaneous heat, power, and water integration framework determines the total minimum

utility cost for the process. The utility requirements of several units such as Rectisol, aMDEA, or

electrolyzers are known they are shown in Appendix B. Remaining units such as heat exchangers,

compressors, etc. are calculated using energy conservation and total heat balance equations that

are presented in Appendix B.

3.2.6 Greenhouse Gas Emissions

Improving the sustainability of ammonia production requires reducing greenhouse gas

emissions. CO2 is considered as the only greenhouse gas (GHG) in this work and ammonia

production from natural gas has a significant carbon footprint. Total GHG (TGHG) emissions

(in CO2 equivalent/s) include (a) feedstock acquisition and transportation (GHGfeedstock), (b)

process emissions (GHGprocess), and (c) product end use and CO2 transportation for sequestration

(GHGproduct). These values are calculated from the Argonne GREET Model for well-to-wheel

emissions [169] and assuming transportation distances for feedstocks (50 miles), products (100

miles), and CO2 (50 miles). Table 3.2 shows the GHG emissions from the feedstocks used in this

work [79]. The TGHG emissions from the process are compared with the avoided GHG emissions

Table 3.2: GHG emissions of feedstocks in g/kg flow.

Feedstock GHG Emission
Natural gas 391.38
Corn stover -1472.76
Hardwood -896.87
MSW -1252.66
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from a typical natural gas-based ammonia production plant. GHG emission index (GHGI) is

calculated to compare the sustainability of the plant to the reference plant as shown in Eq. 3.14.

GHGI =

(
GHGfeedstock +GHGprocess +GHGproduct

GHGAE +GHGAN

)
(3.14)

Carbon footprint of the ammonia plant (GHGAN) is assumed to be 1.694 ton CO2/ton NH3

produced [121]. There are larger numbers reported in the literature. In this work a smaller

process emission number is selected to restrict the emissions more strictly. An additional source

of GHG emissions is heat and power generation. The plant can buy electricity from the grid

to supply the utility need of the processes. Buying electricity from the grid contributes to the

GHG emissions. The GHG emissions avoided by electricity (GHGAE) is calculated by using a

typical natural gas-based emissions value of 101.3 kg CO2 eq/GJ. GHGAE takes a negative value

if electricity is bought from the grid; as a result, this puts a restriction on the process emissions

(GHGprocess) according Eq 3.14. The process superstructure includes simultaneous heat and power

integration, therefore the plant can produce its own electricity and heating utilities by combusting

fuel or recycled light gases in the fuel combustor unit and using a steam turbine. The plant can also

sell the electricity to the grid to improve process economics. By doing that plant produces more

process emissions, however, the emissions from grid electricity generation are avoided; hence,

GHGAE takes positive value. GHGAE can have an effect on the BEP and it is affected by GHG

emission restrictions, as well as natural gas and electricity prices.

The parameter GHGred is used to dictate how much GHG reduction is to be imposed on the

plant as shown in Eq. 3.15. For this work, at least 75% reduction of GHG emissions are enforced

to increase the sustainability of ammonia production, thus GHGred is set equal to 0.25.

GHGI ≤ GHGred (3.15)
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3.2.7 Objective Function

The objective function of the sustainable ammonia production is to minimize the levelized

annual cost of ammonia production. Eq. 3.16 shows all the contributions to the objective function.

min
∑

f∈Feed

Costf + CostEl + CostSeq +
∑

u∈UInv

CostUu (3.16)

Feedstock cost (Costf) contributors are natural gas, biomass, water, etc. Electricity costs (CostEl)

can be negative if the plant outputs electricity as a byproduct, otherwise it is positive. CO2

sequestration costs (CostSeq) can be paid to meet GHG emission constraints by sequestering CO2

instead of venting it. There are no byproducts of ammonia production in this process.

3.3 Deterministic Global Optimization

The process synthesis superstructure described in the preceding sections and presented in

Appendix B form a large-scale nonconvex, mixed-integer, nonlinear optimization (MINLP)

problem. The optimization model consists of 18,573 continuous, 38 binary variables, and 18,924

constraints. Nonlinearity and nonconvexity come from the bilinear, trilinear, and quadrilinear terms

that are used in modeling the splitters, equilibrium reactors/separators, data-driven models, as well

as concave power functions that describe the unit investment costs. The optimization model is

formulated in GAMS environment.

In order to solve this model to global optimality, a tailored branch-and-bound algorithm is

implemeted. The MINLP model is decomposed into lower and upper bound problems. The

lower bound problem is a mixed-integer linear optimization (MILP) model that is obtained by

replacing the nonlinear terms with linearized ones. Trilinear and quadrilinear terms are recursively

formulated into bilinear expressions and then together with the concave cost functions relaxed

with piecewise linear underestimators using logarithmic partitioning scheme where every piece is

represented with a binary variable. While piecewise linear underestimators increase the number

of binary variables in the MILP problem they provide much tighter relaxations compared to
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McCormick type convex envelopes [170]. When the MILP is solved using GAMS/CPLEX [171]

the obtained solution is a valid lower bound on the original MINLP problem. By generating a

solution pool, several starting points are generated. When the binary variables in the original

MINLP are fixed at these starting points, multiple nonlinear optimization (NLP) problems are

created as the upper bound problems. The NLPs are solved using GAMS/CONOPT [172], and the

best solution is an upper bound on the original MINLP problem. The branch-and-bound algorithm

is used to close the gap between lower and upper bound problems and converge toward the global

optimum.

At every node of the branch-and-bound tree, before the MILP relaxation, an optimality-based

bounds tightening (OBBT) routine is performed to tighthen the bounds on the total molar flow rates

and investment costs. Also, at the root node, a feasibility-based bounds tightening (FBBT) routine

is performed to tighten the bounds on molar species flow rates. When a node in the tree is branched,

two children nodes are formed. Branching is done on the continuous variables, that participate in a

nonlinear expression, that has the largest relaxation error. The upper bound is updated if the NLP

objective function at a given node is lower than the current upper bound value. Nodes with a lower

bound objective function that is greater than the current upper bound are fathomed. Since this is

a large-scale problem, the branch-and-bound algorithm is run until 100 CPU hours have passed or

all the nodes in the tree have been explored. The optimal solution to the MINLP problem is the

best reported NLP solution. For a more detailed discussion about global optimization theory and

algorithms, interested readers are directed to textbooks by Floudas [173, 174].

3.4 Computational Studies

Using the described methodology, the benefits of using different renewable feedstocks in

ammonia production are compared. These results are compared with natural gas-based production

with reduced GHG emissions via using CO2 sequestration technology.

Ammonia break-even prices are calculated for three different states: (a) Texas, (b) California,

and (c) Iowa. These states are selected because they are both producers of ammonia in the United

States [175, 176] and they are particularly rich in renewable resources that are considered in this
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work, namely biomass (hardwood, corn stover, MSW), wind, and solar. Each state considered

in this study has a different portfolio of resources. Texas is rich with pretty much all renewable

resources such as biomass (hardwood, MSW), wind, and solar energy. Texas is the leader in

the United States in terms of energy production from wind. Also the prices of natural gas and

grid electricity are relatively cheaper. California has good biomass (hardwood, MSW) and wind

resources, and it is the leading state in solar energy. Natural gas and grid electricity prices are more

expensive in California compared to those in Texas. Iowa has biomass (corn stover, MSW) and

a strong wind energy potential, however it does not have a significant solar potential, hence it is

not considered for solar powered ammonia production in this study. Availability of the renewables

have been investigated from online databases or publications of NREL [20, 177], DOE [178, 179],

and Niziolek et al. [80] to make sure that suggested production rates are feasible with the existing

resources. In addition to various renewable feedstock options, different plant scales are tested to

observe the effects economies of scale on the process performance.

Modeling and costing of wind turbines and solar PV modules are not done explicitly in this

work. The levelized cost of electricity (LCOE) coming from wind and solar energy are used that are

based on the Reports by DOE [179] and NREL [177], respectively. By using LCOE, the installed

cost and performance of the corresponding technology are captured as a part of electricity costs.

However, it is important to out point out that both wind- and solar-based electricity prices used in

this study are assumed to obey power purchase agreements (PPA), where the energy producers are

incentivized to compete with grid electricity. That is the reason why renewable LCOE are lower

than the grid electricity prices. Since these contract prices are set arbitrarily and intentionally low

via taxpayer subsidies, they might not reflect the true cost of production of electricity using that

resource. It should be mentioned that electricity coming from wind or solar is assumed not to

have a carbon footprint as opposed to the fossil fueled grid electricity. This work also assumes

continuous production and uninterrupted availability of wind and solar electricity, which is not a

reality as of today. Obtaining uninterrupted renewable power is still a topic of ongoing academic

and industrial research. This intermittency problem of the wind and solar resources is a very
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important challenge that is addressed in Sections 4 and 5 of this thesis. In this section, the

focus is instead on a comparison of price competitiveness of various renewable technologies in

the same process superstructure and global optimization framework. However, in order to observe

the effect of addition of energy storage technology to make uninterrupted renewable power supply

possible, a sensitivity analysis on renewable LCOE in included in the upcoming subsections. The

nominal cost parameters for biomass (i.e. corn stover, hardwood, MSW), RDF operation, grid

electricity, wind/solar LCOE, natural gas, water, and CO2 transportation, storage, and monitoring

(CO2 TS&M) are presented in Table 3.3.

Table 3.3: Nominal cost parameters for the ammonia production for each state.

Commodity Texas California Iowa
Corn stover [180] - - $120/dry metric ton
Hardwood [180] $70/dry metric ton $70/dry metric ton -
MSW [79] $0/dry metric ton $0/dry metric ton $0/dry metric ton
RDF operation [79] $66.67/dry metric ton $66.67/dry metric ton $66.67/dry metric ton
Grid electricity [181] $0.0533/kWh $0.1192/kWh $0.0605/kWh
Wind LCOE [179] $0.044/kWh $0.060/kWh $0.044/kWh
Solar PV LCOE [177] $0.0512/kWh $0.0450/kWh -
Natural gas [182] $3.28/TSCF $7.00/TSCF $5.24/TSCF
Water [180] $0.5/metric ton $0.5/metric ton $0.5/metric ton
CO2 TS&M [180] $5/metric ton $5/metric ton $5/metric ton

Five case studies are performed for each state at each of the reported scales. GHG emissions

from renewable-based plants are restricted to be less than 25% of that of a typical ammonia plant

(i.e. 75% reduction of GHG emissions) as described in the previous sections. Case studies will

be denoted as S-F-C, where S represents the state, F represents the feedstock type and C denotes

the plant capacity in metric tons per day. Feedstock type are (i) natural gas (N), (ii) hardwood

(H) (iii) corn stover (C), (iv) MSW (M), (v) onshore wind energy (W), and (vi) solar PV (S). 3

plant capacities are tested: 250, 500, and 1,000 metric tons of ammonia/day. To give an example,

TX-H-500 denotes a plant built in Texas using hardwood as feedstock and producing 500 metric

tons of ammonia/day. While industrial ammonia plant capacities can reach up to 2,400 tons/day,
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the largest plants are limited with 1,000 metric tons/day of production, in order not to put a big

strain on availability of renewable resources. N cases only use natural gas and grid electricity,

H/C/M cases only use biomass and grid electricity, whereas W and S cases only use renewable

wind and solar electricity, respectively.

All case studies are solved on a High-Performance Computing (HPC) machine at Texas A&M

High-Performance Research Computing facility using Ada IBM/Lenovo x86 HPC Cluster operated

with Linux (CentOS 6) using 1 node (20 cores per node with 64 GB RAM). CPLEX 12 and

CONOPT 3.16 solvers are used with GAMS 24.4.5.

Following sections will show the optimal process topologies, investment and overall cost

breakdown, and GHG emissions analysis results. Overall mass, energy, and carbon balances for

all the case studies plus the detailed flowsheet of a sample case study that includes the stream

temperature, pressure, phase, and component flow rates are included in Appendix B.

3.4.1 Optimal Process Topologies

Key topological decisions include: (i) natural gas conversion method and operating conditions,

(ii) biomass gasifier temperature, (iii) electrolyzer type selection, (iv) configuration of the

forward/reverse-water gas shift reactors, (v) bulk CO2 removal technology, (vi) ammonia synthesis

gas purification technology, (vii) ammonia synthesis reactor operating pressure, (viii) ammonia

synthesis loop configurations, (ix) natural gas utilization for process heat and electricity, (x) light

gas and/or fuel gas combustion, (xi) CO2 sequestration. Optimal process topologies are shown in

three parts in Tables 3.4, 3.5, and 3.6.

The syngas generation sections are different depending on the type of feedstock used and the

state the plant is located in. Most natural gas-based cases rely on ATR technology. For Texas, a

parallel (but smaller in capacity) train of PR and SR trains are selected next to ATR technology.

Selection of ATR and SR technologies use high purity oxygen coming from ASU to reduce energy

requirements of the steam reforming process. For Texas case studies, two stages of water-gas

shift reactors are used, whereas California and Iowa cases mostly prefer single stage water-gas

shift reactors. Texas and Iowa cases also use small alkaline electrolyzers to generate some of
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their hydrogen. This is likely to be a result of the tight 75% GHG emission reduction constraint

that are imposed. Although electrolyzers consume lots of electricity, they produce less emissions

compared to steam reforming. The reason for selecting electrolyzers can be attributed to the lower

grid electricity to natural gas price ratio. In California, a higher grid electricity to natural gas price

ratio causes electrolyzers not to be selected.

For all hardwood and corn stover-type of biomass gasification cases, the lowest gasifier

operating temperature option of 900 ◦C is selected. Texas and Iowa cases use single water-gas shift

reactors; however California case does not utilize a water-gas shift reactor. MSW gasification uses

a different gasifier and its operating temperature is selected as 800 ◦C for small-scale production

for all states. As the plant scale gets larger, 850 ◦C becomes the preferred operating temperature

for all case studies.

Rectisol unit is preferred for bulk CO2 removal in natural gas-based production, whereas

aMDEA unit is selected for all biomass-based processes. PSA unit is preferred over methanation

or liquid nitrogen wash processes options due to its more efficient performance for final ammonia

synthesis purification. CO2 sequestration is used in all natural gas and hardwood cases to reduce

the GHG emissions. It is not selected when corn stover or MSW is chosen as the feedstock.

Since wind and solar powered ammonia production do no use any hydrocarbon feedstock, syngas

generation/cleanup sections are not used in their case studies. Alkaline electrolyzers are selected

over PEM for all cases, due to their lower capital costs. Larger scale processes often use a

combustion unit to generate additional heat by utilizing some of the produced hydrogen.

In all the case studies, lowest pressure (85.5 bar) Haber-Bosch reactors are selected. As a result,

the single-pass conversion is low (∼ 20%), but there is only one compression step. Therefore, the

power requirements of the ammonia synthesis loop are minimized. Loop configurations are very

similar for almost all case studies. The 1st and 2nd recycle options are selected for all feedstock

types and capacities. Therefore, the scrubbers-distillation system and dryer units are all used. A 3rd

recycle option consisting of a membrane separator is only selected in larger scale natural gas based

production to further increase production. With each successive recycle option, more ammonia
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product or hydrogen is separated out. Hence, a recycle stream of reactants with higher purity is fed

to the reactor at the expense of increasing investment and OM costs. In most cases, two recycle

streams are enough to economically achieve a high overall ammonia yield.

Table 3.4: Optimal topologies of the ammonia plants for each case study - Part I.

Texas California Iowa

Technology TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
SMR Temp. - - - - - - - - -
ATR Y Y Y Y Y Y Y Y Y
PR and SR Y Y Y - - - - - -
Gasifier Temp. - - - - - - - - -
Alkaline EYZ Y - - - - - Y Y Y
PEM EYZ - - - - - - - - -
ASU Y Y Y Y Y Y Y Y Y
HT-WGS - - - - - - - - -
RGS Temp. 400 ◦C 400 ◦C 400 ◦C - - - - - -
HTS - Y - - - - - - -
LTS Y - Y Y Y Y Y Y Y
CHH-NHS - - - - - - - - -
Rectisol Y Y Y Y Y Y Y Y Y
aMDEA - - - - - - - - -
Liquid N2 Wash - - - - - - - - -
METH - - - - - - - - -
LT-WGS Y Y Y Y Y Y Y Y Y
PSA Y Y Y Y Y Y Y Y Y
HBR Pres. 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar
1st Recycle Y Y Y Y Y Y Y Y Y
2nd Recycle Y Y Y Y Y Y Y Y Y
3rd Recycle - Y Y - Y - - Y Y
HP H2 Recycle - - - - - - - - -
FCM Y Y Y Y Y Y Y Y Y
CO2 Seq. Y Y Y Y Y Y Y Y Y
Technology TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
SMR Temp. - - - - - - - - -
ATR - - - - - - - - -
PR and SR - - - - - - - - -
Gasifier Temp. 900 ◦C 900 ◦C 900 ◦C 900 ◦C 900 ◦C 900 ◦C 900 ◦C 900 ◦C 900 ◦C
Alkaline EYZ - - - - - - - - -
PEM EYZ - - - - - - - - -
ASU Y Y Y Y Y Y Y Y Y
HT-WGS - - - - - - Y Y Y
RGS Temp. - - - - - - - - -
HTS Y Y Y - - - - - -
LTS - - - - - - - - -
CHH-NHS - - - - - - Y Y Y
Rectisol - - - - - - - - -
aMDEA Y Y Y Y Y Y Y Y Y
Liquid N2 Wash - - - - - - - - -
METH - - - - - - - - -
LT-WGS Y Y Y Y Y Y Y Y Y
PSA Y Y Y Y Y Y Y Y Y
HBR Pres. 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar
1st Recycle Y Y Y Y Y Y Y Y Y
2nd Recycle Y Y Y Y Y Y Y Y Y
3rd Recycle - - - - - - - - -
HP H2 Recycle - - - - - - - - -
FCM Y Y Y Y Y Y Y Y Y
CO2 Seq. Y Y Y Y Y Y - - -

67



Table 3.5: Optimal topologies of the ammonia plants for each case study - Part II.

Texas California Iowa

Technology TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
SMR Temp. - - - - - - - - -
ATR - - - - - - - - -
PR and SR - - - - - - - - -
Gasifier Temp. 800 ◦C 850 ◦C 850 ◦C 800 ◦C 800 C ◦ 850 C ◦ 800 ◦C 800 ◦C 850 ◦C
Alkaline EYZ - - - - - - - - -
PEM EYZ - - - - - - - - -
ASU Y Y Y Y Y Y Y Y Y
HT-WGS - Y - - - - - - Y
RGS Temp. - - - - - - - - -
HTS - - Y - - Y - - -
LTS Y - - - - - Y Y -
CHH-NHS - - - - - - - - -
Rectisol - - - - - - - - -
aMDEA Y Y Y Y Y Y Y Y Y
Liquid N2 Wash - - - - - - - - -
METH - - - - - - - - -
LT-WGS Y Y Y Y Y Y Y Y Y
PSA Y Y Y Y Y Y Y Y Y
HBR Pres. 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar
1st Recycle Y Y Y Y Y Y Y Y Y
2nd Recycle Y Y Y Y Y Y Y Y Y
3rd Recycle - - - - - - - - -
HP H2 Recycle - - - - - - - - -
FCM Y Y Y Y Y Y Y Y Y
CO2 Seq. - - - - - - - - -
Technology TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
SMR Temp. - - - - - - - - -
ATR - - - - - - - - -
PR and SR - - - - - - - - -
Gasifier Temp. - - - - - - - - -
Alkaline EYZ Y Y Y Y Y Y Y Y Y
PEM EYZ - - - - - - - - -
ASU Y Y Y Y Y Y Y Y Y
HT-WGS - - - - - - - - -
RGS Temp. - - - - - - - - -
HTS - - - - - - - - -
LTS - - - - - - - - -
CHH-NHS - - - - - - - - -
Rectisol - - - - - - - - -
aMDEA - - - - - - - - -
Liquid N2 Wash - - - - - - - - -
METH - - - - - - - - -
LT-WGS - - - - - - - - -
PSA - - Y Y Y Y - - Y
HBR Pres. 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar
1st Recycle Y Y Y Y Y Y Y Y Y
2nd Recycle Y Y Y Y Y Y Y Y Y
3rd Recycle - - - - - - - - -
HP H2 Recycle - - - - - - - - -
FCM - - Y Y Y Y - - Y
CO2 Seq. - - - - - - - - -

3.4.2 Overall Cost Breakdown

The overall cost of the ammonia plants are minimized in the optimization problem. Break-even

ammonia prices (BEP) are measured in $/ton of NH3, and they indicate the profitability of the plant.
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Table 3.6: Optimal topologies of the ammonia plants for each case study - Part III.

Texas California

Technology TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000
SMR Temp. - - - - - -
ATR - - - - - -
PR and SR - - - - - -
Gasifier Temp. - - - - - -
Alkaline EYZ Y Y Y Y Y Y
PEM EYZ - - - - - -
ASU Y Y Y Y Y Y
HT-WGS - - - - - -
RGS Temp. - - - - - -
HTS - - - - - -
LTS - - - - - -
CHH-NHS - - - - - -
Rectisol - - - - - -
aMDEA - - - - - -
Liquid N2 Wash - - - - - -
METH - - - - - -
LT-WGS - - - - - -
PSA - Y Y - - Y
HBR Pres. 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar 85.5 bar
1st Recycle Y Y Y Y Y Y
2nd Recycle Y Y Y Y Y Y
3rd Recycle - - - - - -
HP H2 Recycle - - - - - -
FCM - Y Y - - Y
CO2 Seq. - - - - - -

The lower BEP value, the more profitable the plant is. Ammonia BEP values for Texas, California,

and Iowa case studies are presented in Table 3.7. Results show that plant size and electricity prices

has an effect on the selection of the source of power in ammonia production. Especially in Texas,

producing power from biomass is more favorable than buying electricity from the grid at smaller

plant scales as shown in TX-H-250. As the plant size gets larger, some of the biomass is sent to the

fuel combustor in the H&P integration section to generate power, since power generation section

benefits from economies of scale. In California, due to high electricity prices, the ammonia plants

do not buy electricity from the grid; instead they produce their own electricity by combusting

biomass.

A graphical comparison of the BEP for all Texas based ammonia plants is illustrated in Figure

3.5. Results indicate that ammonia BEP values are highly dependent on the state’s resources. In

Texas, natural gas and grid electricity prices are lower than those in California and Iowa. For

this reason, natural gas, hardwood, or MSW-based processes are more profitable in Texas. In

general, natural gas and biomass-based ammonia processes have lower BEP values than wind or
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Table 3.7: Overall cost breakdown for ammonia plants for each case study.

Texas California Iowa

Cost Contributions TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Natural Gas 79.03 85.34 84.98 219.11 207.53 232.87 122.73 136.52 136.40
Water 0.71 0.69 0.66 1.01 0.92 1.10 0.96 0.91 0.89
Investment 285.16 229.52 181.18 338.82 259.38 207.41 283.49 237.31 185.33
CO2 TS&M 6.78 7.26 7.17 8.61 8.11 9.20 6.62 7.23 7.21
OM 75.29 60.60 47.83 89.45 68.48 54.76 74.84 62.64 48.93
Electricity 106.59 88.66 82.46 92.38 105.29 72.66 129.74 92.92 91.39
BEP ($/ton NH3) 553.56 472.05 404.29 749.41 649.71 578.01 618.40 537.50 470.15
Cost Contributions TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
Biomass 114.28 120.21 138.09 144.00 144.06 144.05 217.80 217.79 217.79
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Water 0.96 0.99 1.19 1.28 1.30 1.30 1.24 1.24 1.24
Investment 245.55 211.77 180.91 298.10 233.40 183.38 271.06 212.06 166.37
CO2 TS&M 0.39 0.07 0.02 0.05 0.05 0.05 0.00 0.00 0.00
OM 64.83 55.91 47.76 78.71 61.61 48.42 71.57 55.98 43.93
Electricity 86.70 45.53 7.44 0.00 0.00 0.00 63.39 63.39 63.39
BEP ($/ton NH3) 512.69 434.48 375.41 522.16 440.40 377.19 625.06 550.48 492.73
Cost Contributions TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
Biomass 104.32 107.44 108.49 138.99 138.83 138.00 107.55 107.33 107.44
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Water 1.03 0.99 0.99 1.40 1.40 1.38 0.99 0.99 0.99
Investment 325.22 277.02 233.49 403.13 322.50 270.03 348.30 277.22 231.47
CO2 TS&M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OM 85.87 73.14 61.65 106.43 85.14 71.29 91.96 73.19 61.12
Electricity 84.89 56.75 52.54 0.00 0.00 0.00 62.27 62.34 64.40
BEP ($/ton NH3) 601.31 515.36 457.16 649.97 547.87 480.71 611.08 521.08 465.42
Cost Contributions TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Water 2.41 2.41 2.38 2.38 2.38 2.38 2.41 2.41 2.38
Investment 276.51 233.46 205.31 284.86 240.09 207.05 276.51 233.46 205.31
CO2 TS&M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OM 73.01 61.63 54.21 75.21 63.39 54.67 73.01 61.63 54.21
Electricity 532.42 532.43 524.63 715.40 715.40 715.58 532.42 532.43 524.63
BEP ($/ton NH3) 884.36 829.93 786.53 1077.84 1021.26 979.66 884.36 829.93 786.53
Cost Contributions TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000 - - -
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Water 2.41 2.38 2.38 2.41 2.41 2.38 - - -
Investment 276.51 240.10 205.65 276.51 233.45 205.31 - - -
CO2 TS&M 0.00 0.00 0.00 0.00 0.00 0.00 - - -
OM 73.01 63.39 54.30 73.01 61.63 54.21 - - -
Electricity 619.56 610.49 610.72 544.54 544.53 536.55 - - -
BEP ($/ton NH3) 971.48 916.33 873.02 896.46 842.03 798.45 - - -

solar powered processes. In terms of economies of scale, natural-gas based processes are the most

favorable and non-biomass renewable processes are the least. This can be observed from the cost

functions for reforming, gasification, and electrolysis, the technologies for producing hydrogen,

which is the most expensive part of the plant as described in the next section.

For Texas, TX-H processes are the most profitable options, offering 7-8% decrease in BEP

across three different plant scales when compared to TX-N ones. Even though hardwood feedstock
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costs are larger than natural gas costs, TX-N processes use more electricity for both electrolyzers

and CO2 sequestration. Almost half of the BEP comes from annualized investment costs, with

biomass and electricity costs following it. With increasing plant scale, the share of electricity prices

go down, and the process starts generating some of its own electricity by biomass combustion.

TX-N is the second most profitable option, and the TX-M case is the third. TX-M BEP values are

9-13% higher than those of TX-N. The share of investment costs in TX-M is significantly greater

due to RDF facilities used to pre-process the municipal waste. Likewise, extra RDF facilities also

increase its OM costs. TX-M becomes less competitive against TX-N at larger plant capacities.

TX-W and TX-S results are much less competitive than natural gas and biomass ones.

Investments costs of TX-W and TX-S do not benefit as much from economies of scale due to

increasing electrolyzer stack size. Moreover, electricity costs are the biggest contribution to the

high BEP values. Electrolysis consumes lots of electricity and is less energy efficient than steam

reforming or biomass gasification. The BEP of TX-W-250 is 60% more expensive than TX-N-250,

and this difference goes up to 95% for the largest scale. The BEP of TX-S-250 is 76% more

expensive than TX-N-250, and it goes up to 116% for TX-S-1000.
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Figure 3.5: Ammonia break-even prices vs. plant capacity for Texas Case Study.

Figure 3.6 shows the BEP prices for California based ammonia plants. Because of the more

expensive natural gas and grid electricity prices in California, CA-N cases have 35-42% higher

BEPs compared to TX-N ones. CA-H is 30-34% more profitable than CA-N, which makes

hardwood a very attractive feedstock in California. Since the biomass price is assumed to be

the same for both states, the difference in biomass costs comes from increased consumption of

hardwood in California. The zero cost of electricity shows that the ammonia plant produces

its own electricity through biomass combustion. The resulting BEP of all CA-H cases are very

similar to those of TX-H. CA-M cases are less competitive than CA-H ones, but still 13-17% more

profitable than those for CA-N. CA-M process also produces its own electricity since it is cheaper

to do so than purchasing grid electricity. CA-W and CA-S cases are less competitive than CA-N,

CA-H, and CA-M. Solar LCOE is cheaper than wind LCOE in California, so CA-S has a lower
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BEP. CA-S cases have 20-38% higher BEPs compared to CA-N cases, whereas CA-W cases have

44-69% higher BEPs.
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Figure 3.6: Ammonia break-even prices vs. plant capacity for California Case Study.

Figure 3.7 shows the BEP prices for Iowa based ammonia plants. Natural gas and grid

electricity prices in Iowa are between those in Texas and California. As such, the BEP of IA-N

cases are higher than those of TX-N and lower than those of CA-N. Iowa is rich in corn stover type

of biomass, but corn stover has a higher unit price than hardwood. Consequently, biomass costs

are a larger share of the IA-C BEP than for the other biomass studies. For Iowa, IA-N, IA-C, and

IA-M have very similar cost results. IA-M processes are slightly more profitable, and IA-C are

slightly less profitable. IA-W has the same characteristic of TX-W, since the reported wind LCOE

is the same for both states.
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Figure 3.7: Ammonia break-even prices vs. plant capacity for Iowa Case Study.

3.4.3 Investment Cost Breakdown

The investment cost analysis of ammonia production is divided into 7 sections: (i) syngas

generation, (ii) syngas cleanup, (iii) ammonia synthesis loop, (iv) water electrolysis, (v) air

separation, (vi) H&P integration, and (vii) wastewater treatment. Table 3.8 shows the investment

costs of each section in an ammonia plant for all case studies.

Ammonia synthesis gas generation includes hydrogen and nitrogen production, and this the

most significant portion of the total investment costs. For natural gas-based cases, the syngas

generation/cleanup, water electrolysis, and air separation sections constitute on average 60% of

the total investment costs. Ammonia synthesis loop takes a 25% share. The difference in states

mainly come from H&P integration. This section is used to improve the energy economics of the

ammonia production by optimally recovering waste process heat and using fuel to generate power
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Table 3.8: Investment cost breakdown for ammonia plants for each case study.

Texas California Iowa

Sections TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
Syngas Generation 31.90 51.72 83.08 19.93 31.40 51.62 17.69 28.30 46.72
Syngas Cleanup 30.45 49.71 77.58 40.01 52.79 99.30 29.00 48.51 75.87
Ammonia Syn. Loop 38.90 67.98 107.61 38.82 72.41 97.54 38.90 68.90 109.92
Water Electrolysis 4.25 0.00 0.00 0.00 0.00 0.00 9.53 8.77 15.37
Air Separation 28.88 50.14 71.50 44.37 62.14 91.14 28.88 52.15 76.13
H&P Integration 11.20 15.31 32.19 28.47 44.72 79.50 18.36 33.63 51.34
Wastewater Treat. 7.10 10.89 16.04 9.80 14.27 25.06 9.41 13.84 21.53
Total (MM$) 152.66 245.75 387.99 181.40 277.72 444.17 151.77 254.09 396.88
Sections TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
Syngas Generation 35.74 60.50 109.40 42.09 68.77 112.81 37.36 61.03 99.72
Syngas Cleanup 18.68 28.65 46.69 17.95 28.09 43.97 19.34 30.67 48.71
Ammonia Syn. Loop 38.90 61.64 97.72 38.90 61.64 97.72 38.90 61.64 97.72
Water Electrolysis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Air Separation 28.88 41.31 59.18 28.88 41.31 59.18 28.88 41.31 59.18
H&P Integration 0.00 20.76 50.68 21.22 33.77 53.73 11.07 17.61 28.02
Wastewater Treat. 9.05 13.53 23.21 10.32 15.93 24.67 9.23 14.26 22.05
Total (MM$) 131.46 226.75 387.43 159.60 249.91 392.72 145.12 227.07 356.29
Sections TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
Syngas Generation 77.02 131.72 200.91 95.31 159.37 240.27 78.78 131.64 199.46
Syngas Cleanup 20.07 31.95 45.58 20.63 32.33 48.25 20.20 31.70 45.91
Ammonia Syn. Loop 38.90 61.64 89.30 38.90 61.64 89.30 38.99 61.64 89.30
Water Electrolysis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Air Separation 28.88 41.31 55.17 28.88 41.31 55.17 28.88 41.31 55.17
H&P Integration 0.00 16.06 25.80 21.02 33.44 48.55 10.63 16.88 23.35
Wastewater Treat. 9.13 13.82 19.88 11.06 17.17 23.57 8.89 13.51 19.67
Total (MM$) 174.11 296.63 436.82 215.83 345.31 505.20 186.47 296.83 433.05
Sections TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
Syngas Generation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Syngas Cleanup 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ammonia Syn. Loop 38.90 61.64 97.72 38.90 61.64 97.76 38.90 61.64 97.72
Water Electrolysis 63.99 121.75 232.20 63.99 121.75 232.24 63.99 121.75 232.20
Air Separation 28.88 41.31 59.18 28.88 41.31 59.19 28.88 41.31 59.18
H&P Integration 0.00 0.00 11.77 4.65 7.40 11.79 0.00 0.00 11.77
Wastewater Treat. 16.08 24.97 38.32 15.90 24.67 38.47 16.08 24.97 38.32
Total (MM$) 148.04 249.97 439.68 152.50 257.08 443.38 148.04 249.97 439.68
Sections TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000 - - -
Syngas Generation 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Syngas Cleanup 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Ammonia Syn. Loop 38.90 61.64 97.72 38.90 61.64 97.72 - - -
Water Electrolysis 63.99 121.75 232.20 63.99 121.75 232.20 - - -
Air Separation 28.88 41.31 59.18 28.88 41.31 59.18 - - -
H&P Integration 0.00 7.40 11.94 0.00 0.00 11.77 - - -
Wastewater Treat. 16.08 24.67 38.33 16.08 24.97 38.32 - - -
Total (MM$) 148.04 257.08 440.38 148.04 249.97 439.68 - - -

for the plant. In California, to combat higher feedstock and electricity prices, H&P integration

costs more than that in Texas. Therefore, California ammonia plants have higher investment costs.

Hardwood and corn stover-based processes are slightly less expensive than natural gas-based

processes. The biggest difference comes from smaller syngas cleanup sections in the biomass

plants. Biomass plants use aMDEA process, whereas natural gas plants use Rectisol unit

plus additional water-gas shift reactors and sequestration units for reducing GHG emissions.
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MSW-based processes are more expensive than other biomass plants due to an extra RDF facility

used to pre-process the waste. The addition of a RDF facility can be observed in the larger costs

of syngas generation.

Wind and solar powered ammonia production plants have similar investment cost breakdowns

due to alike process topologies. Ammonia plants using electrolyzers are more capital intensive,

compared to steam reforming or biomass gasification. As expected, water electrolysis and water

treatment sections have the largest share in the plant. Their total share is between 54% and 62%,

whereas shares of ammonia synthesis loop and air separation sections decrease with increasing

plant scale. This is due to the almost linear scale-up characteristics of the alkaline electrolyzers.

3.4.4 Greenhouse Gas Emission Balances

All the case studies have a GHG Index less than or equal to 0.25, so that the proposed ammonia

production processes do not emit more than 25% of a typical natural gas-based ammonia plant.

All case studies manage to achieve this goal, and infeasibility is not observed due to emission

restrictions. Table 3.9 summarizes the GHG balances for all the case studies.

Results indicate that natural gas- and hardwood- based processes operate at the GHG emissions

limit. CO2 sequestration is only used for natural gas-based processes. The negative GHG

contribution attributed to biomass is due to its carbon sink property. Since biomass absorbs

the CO2 from the atmosphere, biomass intake negatively contributes to CO2 emissions. When

biomass is decomposed into synthesis gas, the captured CO2 is released back to the atmosphere

thus positively contributing to the emissions. There are also additional GHG emissions due to

acquisition, processing, and delivery of biomass feedstock, as well as its use in the fuel combuster

to generate power for the plant. As a result, the net CO2 emissions of the biomass-based processes

are positive. Wind or solar electricty is assumed not to produce any GHG. Negative GHGAE values

show the cases, when the plant uses electricity from the grid. If GHGAE is zero, this means in that

case study, the plant is either generating its own electricity (in case of using biomass feedstock) or

using renewable electricity (in case of wind or solar power).

To conclude these case studies, average energy consumption values for each feedstock type are
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Table 3.9: GHG balances (given in kg CO2 equivalent/s) of the ammonia plants for each case study.

Texas California Iowa

GHG Contributions TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
Biomass 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Natural Gas 0.594 1.283 2.556 0.772 1.462 3.281 0.578 1.285 2.568
Vented CO2 0.097 0.276 0.685 0.241 0.507 0.940 0.076 0.341 0.711
Seq. CO2 0.007 0.014 0.028 0.008 0.016 0.036 0.007 0.014 0.028
TGHG 0.698 1.573 3.269 1.021 1.985 4.259 0.660 1.641 3.308
GHGAE -2.110 -3.510 -6.530 -0.818 -1.864 -2.573 -2.263 -3.241 -6.376
GHGAN 4.902 9.804 19.607 4.902 9.804 19.607 4.902 9.804 19.607
GHG Index 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
GHG Contributions TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
Biomass -7.702 -16.205 -37.230 -9.707 -19.420 -38.841 -7.843 -15.686 -31.372
Natural Gas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vented CO2 8.498 18.206 41.985 10.932 21.871 43.742 8.583 17.167 34.334
Seq. CO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TGHG 0.796 2.000 4.754 1.225 2.451 4.902 0.740 1.481 2.962
GHGAE -1.716 -1.803 -0.589 0.000 0.000 0.000 -1.106 -2.211 -4.422
GHGAN 4.902 9.804 19.607 4.902 9.804 19.607 4.902 9.804 19.607
GHG Index 0.25 0.25 0.25 0.25 0.25 0.25 0.20 0.20 0.20
GHG Contributions TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
Biomass -7.730 -15.922 -28.095 -10.300 -20.575 -35.734 -7.970 -15.908 -27.822
Natural Gas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vented CO2 8.450 17.389 30.687 11.258 22.483 39.049 8.706 17.377 30.385
Seq. CO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TGHG 0.720 1.467 2.593 0.957 1.908 3.314 0.736 1.469 2.563
GHGAE -1.681 -2.247 -3.635 0.000 0.000 0.000 -1.086 -2.175 -3.925
GHGAN 4.902 9.804 17.129 4.902 9.804 17.129 4.902 9.804 17.129
GHG Index 0.22 0.19 0.19 0.20 0.19 0.19 0.19 0.19 0.19
GHG Contributions TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
Biomass 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Natural Gas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vented CO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Seq. CO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TGHG 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GHGAE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GHGAN 4.902 9.804 19.607 4.902 9.804 19.607 4.902 9.804 19.607
GHG Index 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GHG Contributions TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000 - - -
Biomass 0.000 0.000 0.000 0.000 0.000 0.000 - - -
Natural Gas 0.000 0.000 0.000 0.000 0.000 0.000 - - -
Vented CO2 0.000 0.000 0.000 0.000 0.000 0.000 - - -
Seq. CO2 0.000 0.000 0.000 0.000 0.000 0.000 - - -
TGHG 0.000 0.000 0.000 0.000 0.000 0.000 - - -
GHGAE 0.000 0.000 0.000 0.000 0.000 0.000 - - -
GHGAN 4.902 9.804 19.607 4.902 9.804 19.607 - - -
GHG Index 0.00 0.00 0.00 0.00 0.00 0.00 - - -

given in Figure 3.8. Natural gas-based process consumes about 32 GJ/ton and it is more efficient

than biomass, wind, and solar energy based processes. While reported energy consumption of

industrial ammonia plants using natural gas can go down to 28 GJ/ton, the optimization objective

in this work is to minimize the overall costs of ammonia production, that also includes investment

cost considerations.

The preliminary studies show that the energy efficiency of the process can go below 30
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GJ/ton if the objective is minimizing total energy consumption. Also, it is worth mentioning

that CO2 sequestration is an energy consuming process. Corn stover-based process has decent

energy efficiency of 33 GJ/ton. Hardwood- and MSW-based processes are less efficient with 36

and 38 GJ/ton values, respectively. Wind- or solar-powered electrolyzers are not as efficient as

steam reforming or biomass gasification, the average energy consumption of electrolyzer-based

process is 43 GJ/ton, that is 34% greater than natural gas-based process. This low efficiency

of electrolyzer-based production is one the key reasons of high ammonia BEP for wind or solar

powered processes.
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Figure 3.8: Energy consumption (given in GJ/ton NH3) for all feedstock types.
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3.4.5 Sensitivity Analysis

As shown in the previous cases, ammonia BEP is sensitive to feedstock and electricity prices.

While sensitivity to natural gas and electricity prices are investigated to some degree by doing case

studies on different states, there are also a few interesting cases that might require some attention.

In this section, the effects of GHG emission restrictions on the natural gas-based reference case

and the price sensitivity of hardwood gasification-based ammonia production are investigated. The

sensitivity analyses are done for Texas.

Table 3.10 shows the overall cost and investment cost breakdowns, and GHG balances for

cases where GHG emissions are set to be less or equation to 50, 75, and 100% of those of a

typical ammonia plant. By relaxing the GHG emission limitations, the effect of CO2 capture on

the economic performance of the natural gas-based ammonia process is investigated.

Table 3.10: Sensitivity analysis for GHG emission reductions.

Texas (50% GHG emissions) Texas (75% GHG emissions) Texas (100% GHG emissions)

Overall Cost Break. TX-N-250 TX-N-500 TX-N-1000 TX-N-250 TX-N-500 TX-N-1000 TX-N-250 TX-N-500 TX-N-1000
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Natural Gas 78.77 103.02 101.03 80.15 104.57 104.56 83.03 104.55 106.34
Water 0.98 0.94 0.91 0.94 0.94 0.94 0.96 0.94 0.96
Investment 231.55 212.68 163.74 237.42 212.03 163.58 238.20 213.16 166.02
CO2 TS&M 6.14 7.24 7.07 4.85 5.63 5.63 3.71 3.91 4.00
OM 61.13 56.14 43.23 62.68 55.99 43.18 62.89 56.29 43.84
Electricity 141.35 61.91 63.83 120.58 55.13 55.04 111.14 52.73 50.02
BEP ($/ton NH3) 519.93 441.93 379.83 506.61 434.28 372.96 499.92 431.55 371.15
Inv. Cost Break. TX-N-250 TX-N-500 TX-N-1000 TX-N-250 TX-N-500 TX-N-1000 TX-N-250 TX-N-500 TX-N-1000
Syngas Generation 17.65 31.28 48.87 15.74 29.95 47.66 15.058 31.17 48.78
Syngas Cleanup 18.61 41.56 60.24 17.37 40.29 64.32 16.808 39.42 63.39
Ammonia Syn. Loop 39.08 61.53 106.28 38.90 61.98 98.10 38.897 61.68 99.50
Water Electrolysis 8.90 0.00 0.00 9.17 0.00 0.00 9.041 0.00 0.00
Air Separation 30.15 63.46 89.48 28.88 63.13 90.58 28.875 63.76 91.67
H&P Integration 0.00 15.76 24.25 8.27 17.56 27.97 10.011 18.04 30.10
Wastewater Treat. 9.59 14.14 21.56 8.78 14.13 21.68 8.831 14.38 22.08
Total (MM$) 123.97 227.73 350.67 127.10 227.03 350.30 127.522 228.24 355.53
GHG Balances TX-N-250 TX-N-500 TX-N-1000 TX-N-250 TX-N-500 TX-N-1000 TX-N-250 TX-N-500 TX-N-1000
Biomass 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Natural Gas 0.592 1.549 3.038 0.603 1.572 3.145 0.624 1.572 3.198
Vented CO2 0.453 2.113 4.210 1.278 4.132 8.269 2.074 6.136 12.432
Seq. CO2 0.006 0.014 0.028 0.005 0.011 0.022 0.004 0.008 0.016
LGHG 1.052 3.676 7.276 1.886 5.716 11.436 2.701 7.716 15.646
GHGAE -2.799 -2.451 -5.055 -2.387 -2.183 -4.359 -2.200 -2.088 -3.961
GHGAN 4.902 9.804 19.607 4.902 9.804 19.607 4.902 9.804 19.607
GHG Index 0.50 0.50 0.50 0.75 0.75 0.75 1.00 1.00 1.00
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The decrease in overall costs and BEP of ammonia prove that relaxing GHG emission

limitations improve the profitability of natural gas-based production. 50% GHG level results in

an average of 6.2% lower BEP for each scale, whereas 75% GHG level brings BEP down by an

average of 8.1%, and 100% GHG level brings BEP down by an average of 8.8%. As a result, 50%

GHG level case become on par with hardwood-based production, and 75 and 100% GHG level

cases give slightly lower ammonia BEP. While the total investment costs are larger with less GHG

restrictions, the contribution of investments costs in overall costs decreases. Meanwhile, natural

gas consumption increases with less strict GHG emission restrictions, since natural is used as a

fuel in H&P integration section to generate power. Electricity contribution is larger for small scale

production due to existence of electrolyzers, however it drops sharply for medium and large scale

production where electrolyzers are no longer selected. Total investment costs decrease by 17% on

average for small scale production, the decrease is less sharp in medium and large scale production

as shown by an average of 8% decrease. Syngas generation and cleanup sections become smaller

compared to the 25% GHG level case, and H&P integration section has a much larger share in 50,

75, and 100% GHG level cases. GHG balances show that the plants still operate at the limiting

conditions. This is reasonable since plants use every bit of natural gas in the H&P integration to

improve the economics of ammonia production. When GHG emission restrictions are becoming

tighter, the CO2 TS&M costs increase as expected. The decreasing CO2 emissions from the natural

gas-based process can be lowered from 100% to 25% without increasing the overall process costs

by more than 9%. After CO2 is removed from the ammonia synthesis gas, the additional cost of

lowering process emissions is mostly coming from its handling and sequestration. Since removed

CO2 is already at very high purity, no further purification is needed; hence, there are no extra

investment costs coming with that. Figure 3.9 can also be seen to visually observe the change in

ammonia BEP.

To see the effect of hardwood selling prices, the nominal selling price ($70/dry metric ton)

was perturbed about 20% to obtain low ($55/dry metric ton) and high ($85/dry metric ton) selling

prices. The resulting analyses are illustrated in Table 3.11.
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Table 3.11: Sensitivity analysis for hardwood selling prices.

Texas ($55/dry metric ton) Texas ($85/dry metric ton)

Overall Cost Breakdown TX-H-250 TX-H-500 TX-H-1000 TX-H-250 TX-H-500 TX-H-1000
Biomass 110.65 111.59 113.19 148.49 170.28 145.93
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00
Water 1.24 1.28 1.30 0.96 1.24 0.99
Investment 294.13 231.57 183.38 271.19 229.92 166.58
CO2 TS&M 0.07 0.05 0.05 0.16 0.05 0.07
OM 77.65 61.13 48.42 71.59 60.71 43.98
Electricity 6.50 3.69 0.00 47.60 7.56 45.60
BEP ($/ton NH3) 490.24 409.30 346.32 539.99 469.79 403.16
Investment Cost Breakdown TX-H-250 TX-H-500 TX-H-1000 TX-H-250 TX-H-500 TX-H-1000
Syngas Generation 41.43 68.08 112.81 37.49 67.47 98.94
Syngas Cleanup 17.90 28.01 43.97 18.64 27.94 44.93
Ammonia Syn. Loop 38.90 61.64 97.72 38.90 61.64 99.05
Water Electrolysis 0.00 0.00 0.00 0.00 0.00 0.00
Air Separation 28.88 41.31 59.18 28.88 41.31 59.18
H&P Integration 20.15 32.79 53.73 12.46 31.77 33.08
Wastewater Treat. 9.96 15.74 24.67 8.71 15.68 20.99
Total (MM$) 157.47 247.95 392.72 145.19 246.19 356.76
GHG Balances TX-H-250 TX-H-500 TX-H-1000 TX-H-250 TX-H-500 TX-H-1000
Biomass -9.493 -19.148 -38.841 -8.243 -18.904 -32.403
Natural Gas 0.000 0.000 0.000 0.000 0.000 0.000
Vented CO2 10.686 21.562 43.742 9.233 21.280 36.402
Seq. CO2 0.000 0.000 0.000 0.000 0.000 0.000
TGHG 1.193 2.414 4.902 0.990 2.376 3.999
GHGAE -0.129 -0.146 0.000 -0.943 -0.300 -3.611
GHGAN 4.902 9.804 19.607 4.902 9.804 19.607
GHG Index 0.25 0.25 0.25 0.25 0.25 0.25

As expected, changing the selling price of hardwood, affects BEP of ammonia. 20% decrease

of hardwood price, results in an average 6% decrease in BEP. The advantage of using cheaper

feedstock becomes more articulate in larger scales, where the contribution of biomass to overall

cost decrease while the remaining sections stay somewhat the same. Investment costs have large

share in the overall cost in small scale plant, which decrease as the plants become larger. Electricity

costs decrease with cheaper feedstock, since the plant generates its own power by combusting

the biomass. Using biomass for generating power results in larger investment costs as evidenced

by more expensive syngas generation section. This effect is further observed by an increase in

vented CO2 in GHG balances, and a decrease in GHGAE. When the selling price of hardwood is

increased by 20%, ammonia BEP increase by an average of 7%. Total investment costs increase

at small and medium capacities, but decrease in large capacity plant. This is caused by using

electricity instead of biomass for power generation. This is also evidenced by the decreasing

vented CO2 amounts and increased GHGAE in the GHG balances. Figure 3.10 is used to illustrate
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the effect of hardwood price explained in this section. A final sensitivity analysis is done for the

Figure 3.9: Effect of GHG emission limitations on break-even price of natural gas-based processes.

renewable levelized cost of electricity (LCOE). Earlier results show that economic performance of

the wind- or solar-based ammonia production heavily depends the renewable LCOE. Table 3.12

shows how ammonia BEPs are affected by changes in renewable wind electricity prices. Tested

values of renewable LCOE are between $0.020/kWh and $0.120/kWh. As the LCOE goes down

to $0.020/kWh, ammonia BEP prices become much more lower than previous values. However,

electrolysis-based ammonia production is still more expensive than steam reforming of natural gas-

or thermochemical conversion of biomass-based production for the state of Texas. While ammonia

BEP becomes favorable with lower LCOE, such low LCOE might not be possible to achieve. In

fact, due to intermittency problems with renewable resources; wind and solar power production
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Figure 3.10: Effect of hardwood selling prices on break-even price of natural gas-based processes.

facilities should be coupled with storage technologies, if uninterrupted electricity supply is to be

provided. Such storage technologies will undoubtedly increase the LCOE of renewable resources

in the near future and make electrolysis-based production even more unfavorable, as shown by the

sensitivity analysis.

3.5 Conclusions

This work investigates the effects of feedstock type, price, and availability on the sustainable

ammonia production processes through a process synthesis and global optimization framework.

The process superstructure contains multiple competing technologies for syngas generation, syngas

cleanup, water electrolysis, and ammonia synthesis loop configurations to accommodate different

fossil and renewable feedstocks. Investigated renewables include hardwood, corn stover, MSW,

and water with wind and solar energy powering its electrolysis. Case studies are conducted for
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Table 3.12: Sensitivity analysis for renewable LCOE.

BEP ($/ton NH3)

Wind LCOE ($/kWh) TX-W-250 TX-W-500 TX-W-1000
0.020 593.73 539.30 500.08
0.040 835.53 781.10 738.26
0.060 1077.33 1022.90 976.44
0.080 1319.13 1264.70 1214.62
0.100 1560.93 1506.50 1452.80
0.120 1802.73 1748.30 1690.98

feedstock availabilities and prices in Texas, California, and Iowa. The optimal process topology,

total cost and investment costs breakdown, and GHG emission analyses for all the case studies are

reported.

The results indicate that for bringing down the emissions from ammonia plants to 25% of the

current level, biomass gasification is a more attractive choice over steam reforming of natural gas.

In Texas, hardwood is up to 8% more profitable than natural gas. In California, due to expensive

natural gas and electricity, using hardwood is 32% and MSW is 15% more profitable than using

natural gas. In Iowa, natural gas, corn stover, and MSW-based productions do not have a significant

advantage over each other. In general, hardwood type of biomass performed better than corn stover

and MSW. For all the states under investigation, high wind and solar powered ammonia production

costs indicate that wind and solar technologies need to further mature to become more competitive

over other alternatives. Unless very strict GHG emission limitations or economic incentives are

imposed, it is hard for these technologies to compete with other feedstocks. Biggest factor for

this result is the low efficiency of water electrolysis as evidenced by its high energy consumption.

In that respect, the authors would like to suggest that combining wind and solar resources with

alternative ammonia production methods, such as electrochemical ammonia production, can be

an interesting topic for future studies. One topic that has not been addressed in this work is the

by-product water electrolysis, that is high-purity oxygen. While hydrogen is directly used in the

ammonia synthesis section, oxygen, the other product of electrolysis, is not sold or even costed.

If enough demand for this high-purity oxygen is available, this can positively affect the economic
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performance of the electrolysis-based ammonia production.

The sensitivity analyses show that GHG emission limitations are key factors in performance of

natural gas-based production. It is possible to bring the emission levels from 100% to 25%, with

9% increase in BEP. As expected, when the limitations are relaxed natural gas-based production

gives lower ammonia BEP compared to nominal cases, especially in the state of Texas, where

natural gas prices are lowest. Changing the selling price of hardwood biomass by 20% results in

6-7% increase or decrease in ammonia BEP. If the renewable LCOE goes down, ammonia BEP

becomes more attractive. This might not be possible in the near future though; since uninterrupted

renewable electricity supply requires currently not-existing storage units, which will cause the

LCOE to be greater than the current prices.

The economic performance of ammonia production is very sensitive to both feedstock prices,

electricity prices, and GHG emission restrictions. An increase natural gas price in the future,

decrease in cost of renewable technologies, or implementation of carbon emission caps can open

the door to significant penetration of renewables into the ammonia market.
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4. MULTI-SCALE ENERGY SYSTEMS ENGINEERING APPROACH FOR RENEWABLE

POWER GENERATION AND STORAGE OPTIMIZATION 1

4.1 Energy Storage Technologies and Energy Vectors

Energy storage at grid-scale (GWh-scale) is one way to ensure the balance between the

renewable power supply and demand and therefore improve the capacity utilization [75]. Energy

storage in vectors, that are also called as dense energy carriers (DECs) offer the possibility of

transporting stored energy from one location to another [183]. Hydrogen (H2) and hydrogen-based

DECs like, ammonia (NH3), or methanol (CH3OH) have orders of magnitude higher volumetric

energy density compared to stationary storage options such as pumped storage-hydro (PSH),

compressed air energy storage (CAES), or battery elecric storage (BES). The attributes of various

technologies are shown in Table 4.1 for a more quantitative comparison [76].

Table 4.1: Energy storage technology comparison.

Attribute PSH CAES BES (Li-ion) BES (NaS) H2 (l) H2 (g) NH3 (l) CH3OH (l)
Energy density (kWh/L) 0.001 0.005 0.2-0.7 0.3 2.5 1.0 4.3 4.6
H2 Content (wt.%) - - - - 100.0 100.0 17.8 12.6
H2 Density (kg/m3) - - - - 71.2 24 - 40 105 99.8
Storage T (◦C) 20 20 -10-20 300-350 -253 20 -33 / 20 20
Storage P (atm) 1 300 1 1 1 350 / 700 1 / 10 1
Storage range (GWh) 1-100 0.01-10 <0.01 <0.01 <10 <10 scalable scalable
Power range (GW) 1 0.3 0.01 0.01 0.01 0.01 scalable scalable
Storage duration Months Months Hours Hours Weeks Months Months Months

Among the DEC, hydrogen stands out due to its high gravimetric energy density (33 kWh/kg)

[184]. Hydrogen can make way for a low-carbon economy and research on the move to a

hydrogen-economy has been the focus of discussions since the 1970s [185]. Japan recently

became the first country to take a step towards hydrogen economy [186] and for stranded countries

1Reprinted with permission from "A Multiscale Energy Systems Engineering Approach for Renewable Power
Generation and Storage Optimization" by Demirhan, C.D. and Tso, W.W. and Powell, J.B. and Heuberger, C.F. and
Pistikopoulos, E.N., 2020, Industrial & Engineering Chemistry Research, Vol. 59, No. 16, pp. 7706–7721, Copyright
2020 by American Chemical Society.
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with scarce resources and little available land, such as Japan, import of renewable DEC will be

important [187]. However, hydrogen’s low volumetric energy density under ambient conditions

(0.003 kWh/L) is a drawback and extreme pressures or cryogenic temperatures are required for its

large-scale storage and transportation [183]. Ammonia and methanol can be promising alternatives

since they have higher volumetric energy density and more favorable storage conditions. They are

readily produced in large amounts as commodities and they have their own distribution network

[188]. Using ammonia and methanol as DEC can benefit from economies of scale if deployed

in GWh-scale energy storage. An earlier supply chain optimization study by Tso et al. [189] on

replacing Texas’ partial power demand with renewable DEC shows that ammonia and methanol

can be more attractive than hydrogen when seasonal and long-term storage is considered.

Optimization of design and operation of energy systems with time-varying resources is

challenging. The previous work of Tso et al. [189] assumed performance coefficients for the

dynamically operated units to approximate their aggregate output over a time horizon. While this

approach is one way to consider the effect of intermittency, it tends to overestimate the process

costs while underestimating the process efficiency. Furthermore, solving the process synthesis

problem with the steady-state assumption and then solving the scheduling problem for that fixed

design can at best result in suboptimal, if not infeasible, operation.

Thus, there is a need for simultaneous consideration of design and operation. This topic

of optimization-based design and scheduling or planning and scheduling has been receiving

increasing attention in the last few years in the process systems engineering community

[190, 22]. Investigated topics include design and operation of power systems [191, 192],

industrial demand-side management [193, 194], hydrogen networks [195], EV vehicle deployment

strategies [196], ammonia production [127, 197, 198], solar power generation and storage systems

[199, 200, 201, 202, 203], and power & fuels production [204, 205].
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4.2 Modeling and Optimization of Renewable-based Energy Systems

4.2.1 Problem Definition

In order to analyze different scenarios involving renewable-based energy system networks,

the temporal and spatial variability of renewable supply and power demand need to be explicitly

considered in the optimization formulation. For this purpose, a multi-period and multi-location

simultaneous design, operation, and supply chain strategy is developed. The multi-period

formulation addresses the intermittency in the resource availability, whereas multi-location aspect

allows for the production and transportation of DECs between high- and low-potential regions.

The overall approach is multi-scale by nature since it deals with problems of multiple time and

length scales that are design, scheduling, and supply chain. The pictorial representation of the

such a framework is shown in Figure 4.1.

This design, operation, and supply chain strategy should take the following as inputs:

• the time-dependent solar and wind resource availability at each location,

• the time-dependent profile of the power load demand at each location,

• the detailed process input-output and costing information for power generation, storage, and

DEC production technologies,

• the operational limitations such as maximum production rate changes and operating mode

switches,

• the available transportation and storage infrastructure.

And return the optimal solution that includes:

• the process and storage unit capacities,

• the time-dependent production rates in each process,

• the material and energy flow rates between processes in the process network,

• the unit commitment and operating mode selections for power production, storage, and DEC

production technologies,

• the inventory management for storage of resources,
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Figure 4.1: Conceptual depiction of novel power generation and storage networks.

• the transportation flows of DEC.

In the following sections, the details of the modeling and optimization formulation will be

described.

4.2.2 Resource-Task Network Representation

This work uses a resource-task network (RTN) formulation [206], where the resources can

be purchased, consumed, generated, sold, stored, or transported to a different location and

the processes can convert material and/or energy resources to other resources. The renewable

resource availability changes during the day so the temporal space is discretized for multi-period

operational decisions. Inventory constraints keep track of all the resources entering and leaving

the process network in one location and connect the consecutive time periods. All the input-output
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relationships are linearly correlated.

4.2.3 Process Network Superstructure

Figure 4.2 shows the superstructure for the renewable-based energy generation and storage

process network. The resources are represented by circles and the processes by rectangles.

Although all the resources and the processes are modeled in the same way and can be represented

with a few generic constraints, a color code is used to help the readers better visualize interaction

between different resource and process types. Dark blue and light blue circles represent material

resources that can be stored and cannot be stored, respectively. Similarly, brown and red circles

represent the energy resources that can be stored and cannot be stored, respectively. The solid

black lines with arrows show the unidirectional material flows (in kg/h) between the processes and

the energy flows (in MW) are shown by dashed red lines. Grey rectangles show the conversion

processes that are converting mainly material resources to other materials, that can consume or

generate power or heat. Black colored rectangles show the energy storage processes that convert

electrical power that cannot be stored by itself to a form that can be stored such as battery charge

or elevated water. Green rectangles are indicating back-to-power processes, that convert fuels or

energy carriers to power that is used to meet the power load demand.

In the process network, the sources of renewable power are solar and wind. The modeled

processes include power generation from solar PV and wind farms and stationary energy storage

(SES) options like sodium-sulfur (NaS) BES, PSH, and CAES, that can store power in battery

charge, elevated water, and compressed air, respectively. SES technologies consist of storage and

power conversion systems (PCS) to store and convert stored resources back to power, respectively.

Hydrogen is produced from water using electrolyzers. Hydrogen can be stored either as a cryogenic

liquid or a pressurized gas in liquefaction or compression processes, respectively. Haber-Bosch

process is used for ammonia synthesis from high-purity hydrogen coming from the electrolyzers

and nitrogen coming from the air separation unit (ASU). Carbon dioxide is captured from air with

the direct air capture (DAC) unit. Hydrogen and carbon dioxide are sent to a reverse water-gas shift

(R-WGS) unit to produce syngas that is later sent to a methanol synthesis unit to produce methanol.
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Figure 4.2: Process network superstructure for renewable power generation and storage pathways
and technologies.

The stored DECs can be transported to a different location by railroad or trucks. Hydrogen,

ammonia, and methanol can be converted back to power using H2 fuel cell, NH3 gas turbine,

or CH3OH gas turbine, respectively. Power outputs of solar PV and wind farm, and many other

processes are in dc form, which need to be converted to ac with an inverter unit in order to be sent

to the power grid. The outputs of fuel cell and gas turbines are in AC. Additionally, electricity
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from the local grid can be purchased at a price for backup power.

The input-output parameters for all the processes are taken from previously studied

MINLP-based design problems as described in Chapter 3. The full process models are given

in Appendix C.

4.2.4 Time Representation and Data Clustering

The availability of wind and solar resources exhibits both daily and seasonal variation.

Hence, the temporal space needs to be discretized. Daily solar irradiation can be approximated

with a handful of discrete regimes, while wind speed fluctuates almost all the time. In order

to successfully integrate wind and solar energy with the energy storage and DEC production

processes, hourly resolution is used for discretization. This means, the RTN model has continuous

and discrete decision variables for every time step of the horizon. Modeling the optimization

problem for an entire year (8760 time steps/periods) can capture a lot of variability, however, it

makes the problem intractable, as the size of multi-period problems scales linearly with the total

number of periods considered [207].

In order to reduce the computational burden of solving a simultaneous design and operation

problem while considering a significant portion of the resource variability, a small subset of time

periods is used that capture the characteristics of variability in a few representative periods similar

to the works of Heuberger et al. [208], Lara et al. [209], and Zhang et al. [205]. With this

time representation (depicted in Figure 4.3), weights are assigned to characteristic time periods to

indicate their overall contribution to the annual operation. Each characteristic time period is named

a season. For this study, the length of a season is selected as a day (i.e. 24 hours). The weight

of a season corresponds to the number of times that a representative season is observed in a year.

By the concept of cycling a season as many times as its weight, a year can be simulated without

increasing the problem size.

For computational efficiency, the largest variability in resources should be captured with the

least number of representative seasons. K-means clustering is a popular approach in the literature

to reduce large data sets into a small number of clusters. It is easy to implement, however,
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Figure 4.3: An illustration of the representative seasons. Each representative season is cycled
(repeated) according to its cluster size obtained from the AHC analysis before moving the next
one. This approach assigns a weight to each season without growing the size of the optimization
problem.

the quality of the clusters is initialization dependent. Also, k-means clustering approach alone

does not preserve the time chronology while constructing representative days. As an alternative,

hierarchical clustering techniques offer some advantages [112, 113]. In their recent work, Pineda

and Morales [114] used agglomerative hierarchical clustering (AHC) to find representative weeks,

days, and hours in a capacity expansion planning problem. They use a bottom-up approach that

identifies clusters that are closest to each other and merge them using a distance matrix. In this

work, their strategy is applied to cluster hourly data consisting of wind speed, solar irradiation,

electricity prices, and power load. A cutoff criteria of 1% within cluster variation is used to choose

the number of clusters. The details of the AHC implementation is explained in the work of Tso et

al. [210].

4.2.5 Mathematical Model

The complete mixed-integer linear programming (MILP) model consists of: (i) the network

design constraints for production and storage facilities, (ii) the operating mode selection with

ramp up/down constraints, (iii) the resource balance constraints, (iv) the seasonal continuity

constraints, (v) the investment and operational cost functions, and (vi) the objective function. The

complete mathematical model with the nomenclature and the modeling parameters are presented

in Appendices A and B, respectively. The full optimization model is presented below.
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4.2.5.1 Network Design Constraints

Equations for network design, that allow for processes i and storage vessels for resources j to

be selected or not are shown in Equations 4.1 and 4.2:

CAP P
a,i ≤ CAP P−max

i xPa,i ∀a, i (4.1)

CAP S
a,j ≤ CAP S−max

j xSa,j ∀a, j (4.2)

4.2.5.2 Operating Mode Selection and Ramp Up and Down Constraints

Each process i can have multiple modes m among which only one can be selected at a time t.

Equations for mode selection are shown in Equations 4.3 to 4.8:

∑
m∈Modesi,m

ya,i,m,h,t = xPa,i ∀a, i, h ∈ Seasonh, t ∈ Timeh,t (4.3)

Pa,i,h,t =
∑

m∈Modesi,m

Pm
a,i,m,h,t ∀a, i, h ∈ Seasonh, t ∈ Timeh,t (4.4)

Pm
a,i,m,h,t ≥ CAP Pm−min

i,m CapPa,i ∀i,m ∈Modesi,m, h, t ∈ Timeh,t (4.5)

Pm
a,i,m,h,t ≤ CAP Pm−max

i,m CapPa,i ∀a, i,m ∈Modesi,m, h, t ∈ Timeh,t (4.6)

Pm
a,i,m,h,t ≥ CAPMode−min

i,m ya,i,m,h,t ∀a, i,m ∈Modesi,m, h, t ∈ Timeh,t (4.7)

Pm
a,i,m,h,t ≤ CAPMode−max

i,m ya,i,m,h,t ∀a, i,m ∈Modesi,m, h, t ∈ Timeh,t (4.8)

Equations 4.5 and 4.6 set the lower and upper bounds of the production range of mode m of process

i. During dynamic operation, a processing unit might change its throughput in a fixed mode or

switch to a different mode. Below are the equations used to represent mode switch. Equations 4.9

and 4.10 bound the up ramping and down ramping rates of throughput of a unit by using a big-M
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parameter to bound change of Pm
i,m,h,t between consecutive time periods t-1 and t.

Pm
a,i,m,h,t − Pm

a,i,m,h,t−1 ≥ −∆Ratemaxi,m −M(2− ya,i,m,h,t − ya,i,m,h,t−1)

∀a, i,m ∈Modesi,m, h, t ∈ Timeh,t
(4.9)

Pm
a,i,m,h,t − Pm

a,i,m,h,t−1 ≤ ∆Ratemaxi,m +M(2− ya,i,m,h,t − ya,i,m,h,t−1)

∀a, i,m ∈Modesi,m, h, t ∈ Timeh,t
(4.10)

Equation 4.11 is used to designate mode switch. The binary variable zi,m′,m,h,t−1 is equal to 1

process i switches from mode m to m’ at time t of season h:

∑
m′∈Transi,m,m′

za,i,m′,m,h,t−1 −
∑

m∈Transi,m′,m

za,i,m,m′,h,t−1 = ya,i,m,h,t − ya,i,m,h,t−1

∀a, i,m ∈Modesi,m, h, t ∈ Timeh,t

(4.11)

Equations 4.12 and 4.13 put restrictions on the minimum time required to switch between modes

and a sequence that needs to be followed in case it is required, respectively.

ya,i,m′,h,t ≥
θi,m,m′∑
k=1

za,i,m,m′,h,t−k ∀i, (m,m′) ∈ TransModesi,m,m′ , a, h, t ∈ Timeh,t (4.12)

za,i,m,m′,h,t−θi,m,m′,m′′
= za,i,m′,m′′,h,t ∀a, i, (m,m′,m′′) ∈ Seqi,m,m′,m′′ , h, t ∈ Timeh,t (4.13)

4.2.5.3 General Resource Balance Constraints

The mass balance for each resource is written in terms of inventory balances in the network.

Equation 4.14 is a total mass balance for resource j at any time t in season h.
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Inva,j,h,t = (1− Lossj,h)Inva,j,h,t−1 +
∑
i

∑
m∈Modesi,m

Conversioni,m,j,tP
m
a,i,m,h,t

+Ba,j,h,t − Sa,j,h,t

+
∑
a′,q

(1− Losstransa,a′,j,q)Transa′,a,j,q,h,t − Transa,a′,j,q,h,t

∀a, j, h, t ∈ Timeh,t

(4.14)

Conversioni,m,j,t is a parameter that sets the input-output relationships for each process that are

written with respect to the reference resource j for each mode m of process i. The full list of inputs

and outputs to processes are given in Appendix C. Equations 4.15 and 4.16 sets upper bounds for

nameplate process and inventory storage capacities, respectively:

Pa,i,h,t ≤ CapPa,i ∀a, i, h, t ∈ Timeh,t (4.15)

Inva,j,h,t ≤ CapSa,j ∀a, j, h, t ∈ Timeh,t (4.16)

Supply and demand constraints are written for each resource j in forms of Equations 4.17 to 4.19:

Ba,j,h,t ≤ Bmax
a,j,h,t ∀a, j, h, t ∈ Timeh,t (4.17)

Sa,j,h,t ≤ Da,j,h,t ∀a, j ∈ Demandj, h, t ∈ Timeh,t (4.18)

Sa,j,h,t = 0 ∀a, j ∈ NoDischargej, h, t ∈ Timeh,t (4.19)

4.2.5.4 Seasonal Continuity Constraints

Equations ranging from 4.20 to 4.26 show the connection between subsequent seasons, where

nh is the number of times a season is cycled. The continuity condition shows that inventory needs

to be accumulated over the course of a season and carried over to the next one. These constraints
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are adapted from [205].

ya,i,m,h,0 = ya,i,m,h,|T imeh,t|

∀a, i,m ∈Modesi,m, h

(4.20)

za,i,m,m′,h,t = za,i,m,m′,h,t+|T imeh,t|

∀a, i, (m,m′) ∈ TransModesi,m,m′ , h,−θmaxi − 1 ≤ t ≤ −1

(4.21)

ya,i,m,h,|T imeh,t| = ya,i,m,h+1,0

∀a, i,m ∈Modesi,m, h ∈ Seasonh \ |Seasonh|
(4.22)

za,i,m,m′,h,t+|T imeh,t| = za,i,m,m′,h+1,t

∀a, i, (m,m′) ∈ TransModesi,m,m′ , h ∈ Seasonh \ |Seasonh|,−θmaxi − 1 ≤ t ≤ −1

(4.23)

Invexcessa,j,h = Inva,j,h,|T imeh,t| − Inva,j,h,0

∀a, j, h
(4.24)

Inva,j,h,0 + nhInv
excess
a,j,h = Inva,j,h+1,0

∀a, j, h ∈ Seasonh \ |Seasonh|
(4.25)

Inva,j,|Seasonh|,0 + n|Seasonh|Inv
excess
a,j,|Seasonh| = Inva,j,1,0 ∀a, j (4.26)

4.2.5.5 Investment and Operational Cost Functions

Capital investment cost are approximated by piecewise linear functions of the processing plant

capacities as shown in Equations 4.27 to 4.30:

CapPa,i =
∑

l∈PLi,l

[
λa,i,j(CAP

segment
i,l−1 − CAP segment

i,l ) + CAP segment
i,l wa,i,l

]
∀a, i (4.27)
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Capexa,i =
∑

l∈PLi,l

[
λa,i,j(CAPEX

segment
i,l−1 − CAPEXsegment

i,l ) + CAPEXsegment
i,l wa,i,l

]
∀a, i

(4.28)

λa,i,l ≤ wa,i,l ∀a, (i, l) ∈ PLi,l (4.29)

∑
l∈PLi,l

wa,i,l = xPa,i ∀i (4.30)

Total capital expenses consist of sum of unit investment costs, storage costs, and the land purchase

costs as given in Equation 4.31:

Capextotala =
∑
i

[
Capexa,i + Costlanda,i Cap

P
a,i

]
+
∑
j

[
CostS−fixedj xSa,j + CostS−varj CapSa,j

] (4.31)

Operational expenses as shown in Equation 4.32 are the sum of unit processing costs, resource

purchase and discharge costs:

Opexa =
∑
h

∑
t∈T imeh,t

nh

[∑
i

∑
m∈Modesi,m

(CostP−fixedi,m,h ya,i,m,h,t + CostP−vari,m,h Pm
a,i,m,h,t)

+
∑
j

CostPurchasea,j,h,t Ba,j,h,t/ρj + CostDischargea,j,h,t Sa,j,h,t/ρj

] (4.32)

Transportation costs are calculated using Equation 4.33:

Transtotalj,q =
∑
h

∑
t∈T imeh,t

nh

[∑
a

∑
a′

Costtrans−fixj,q

+Costtrans−varj,q Distancea,a′Transa,a′,j,q,h,t

]
∀(j, q) ∈ TPModesj,q

(4.33)
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4.2.5.6 Objective Function

The model is solved to minimize the annualized production cost of meeting the power demand.

This is also called the levelized cost of electricity (LCOE). For this purpose, total capital investment

is annualized using 8% annual discount rate. Sum of annualized capital cost and operational costs

gives the objective function value TotalCost as shown in Equation 4.34:

TotalCost =
∑
a

[
(0.08)Capextotala +Opexa

]
+

∑
j,q∈TPModesj,q

Transtotalj,q (4.34)

The resulting optimization problem is:

min (Equation 4.34)

s.t. Equations 4.1− 4.33

(4.35)

4.3 Computational Studies

4.3.1 Case Studies

The simultaneous design and operation strategy is used to investigate the impact of DEC

production in a high renewable energy potential region in Amarillo, Texas to reduce the cost of

renewable energy penetration in a low renewable energy potential region in New York City, New

York. For simplicity the locations are referred to as TX and NY, from this point on. The problem

is illustrated in Figure 4.4.

With the computational studies, the following questions are aimed to be answered: (a) Can the

high renewable potential in Texas be used to partially power a city in a low renewable potential

region in the Northeast (e.g. New York City)? (b) Can DECs be used to transport the renewable

energy in Texas to the Northeast? (c) How would this compare against using the local renewable

potential and battery storage in the Northeast? (d) What should be the targeted energy demand

(e.g. base load or peak matching)? (e) What renewable energy penetration would give the best

economic return?
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Figure 4.4: Illustration of the DEC supply chain problem.

The objective of the optimization problem is to minimize the levelized cost of electricity

(LCOE) of meeting the power demand. Case studies are investigated for (i) base load matching

(BL) and (ii) peak demand matching (PM) relying only on solar and wind resources in TX or

NY. The total annual power demand replaced by renewables in both studies is the same and it

accounts for 10% of NY’s annual power demand, that is 5,430 GWh. For both case studies, three

scenarios are investigated. Scenario 1 focuses on local power production and battery storage in

NY. The base case for all comparisons is solar PV and BES-based renewable power generation

and storage. In scenario 2, renewable energy is produced and stored in DECs in TX using both

solar and wind energy. DECs are later transported to NY where they are converted to power with

power conversion technologies. Scenario 3 investigates production of DEC in TX together with

local power production and battery storage in NY. In scenarios 2 and 3, by considering multiple

sites, design, scheduling, and supply chain decisions are optimized at the same time.

Each case investigated is referred to with a unique case ID that has with four indicators:

[Demand Profile]-[Scenario]-[DEC in TX]-[Renewable Energy (RE) in NY]. To give an example:

BL-1-x-SW indicates a case where the demand profile is base load, the scenario under investigation

is 1, there is no DEC production (its non-existence is showed with "x"), and solar (S) and wind

(W) resources in NY are used. PM-3-HA-S indicates peak matching (PM) profile with scenario 3,
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with hydrogen (H) and ammonia (A) production in TX along with local solar (S) energy use in NY.

In scenarios 2 and 3, where DECs are produced in TX, both solar and wind resources are allowed

to be used for power production. The full list of the investigated cases in this work is presented in

Table 4.2.

Table 4.2: List of the investigated cases.

Case ID Demand Profile DEC in TX RE in NY Case ID Demand Profile DEC in TX RE in NY
BL-1-x-S Base load - S PM-1-x-S Peak matching - S
BL-1-x-SW Base load - S, W PM-1-x-SW Peak matching - S, W
BL-2-H-x Base load H - PM-2-H-x Peak matching H -
BL-2-HA-x Base load H, A - PM-2-HA-x Peak matching H, A -
BL-2-HM-x Base load H, M - PM-2-HM-x Peak matching H, M -
BL-3-H-S Base load H S PM-3-H-S Peak matching H S
BL-3-HA-S Base load H, A S PM-3-HA-S Peak matching H, A S
BL-3-HM-S Base load H, M S PM-3-HM-S Peak matching H, M S
BL-3-H-SW Base load H S, W PM-3-H-SW Peak matching H S, W
BL-3-HA-SW Base load H, A S, W PM-3-HA-SW Peak matching H, A S, W
BL-3-HM-SW Base load H, M S, W PM-3-HM-SW Peak matching H, M S, W

All case studies are solved on a high-performance computing (HPC) machine at Texas A&M

High-Performance Research Computing facility using Ada IBM/Lenovo x86 HPC Cluster operated

with Linux (CentOS 6) using 1 node (20 cores per node with 64 GB RAM). CPLEX 12.8 solver is

used with GAMS 26.1.0. The solution time is limited to 24 hours.

4.3.2 Modeling Assumptions

Below are given the modeling assumptions and some of the modeling parameters used for the

computational studies. The full list of modeling parameters are presented in Appendix C.

• The only sources of power are solar and wind resources.

• Grid electricity purchase is not allowed for any case study.

• Location dependent solar direct normal irradiation (DNI) and wind speed are taken from

NSRDB [18] and Wind Toolkit [19]. Wind speed is taken at 80 m.

• Available land for solar energy in Texas and New York are 1,459 and 839 km2, respectively

[211].
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• Available land for wind farms in Amarillo, Texas and New York City, New York are 1,700

and 164 km2 [211].

• Renewable electricity provided to the grid is not sold at a price.

• Water purchase cost is $0.4/ton. Water availability does not have an upper bound.

• Electricity prices from Texas are taken from Ercot resources [212], whereas the electricity

prices and load demand information for NY are taken from LCG Consulting’s website [213].

• Solar DNI, wind speed, load demand, and electricity prices are clustered together using AHC

method.

• 12 representative seasons are used.

• Investment cost parameters are location independent.

• Investment costs are annualized such that 8% of the total overnight cost is paid annually.

• Hydrogen can be stored as compressed gas at 700 bar and 20◦C or a cryogenic liquid at 1

atm and -259◦C.

• Available transportation modes are railroad and truck.

• Time lag in transportation is not considered. Instead, 20% of cryogenic hydrogen and 3% of

ammonia are assumed boil-off during transportation. Boil-off of methanol and compressed

hydrogen are assumed to be negligible.

• All processing units have ramping constraints.

• PSH and CAES technologies are not considered in the process network for the case studies.

• NaS-type baterries are considered for the case studies. Battery storage self-discharge rate is

8%/day.

Available technologies for each location are listed in Table 4.3:

4.3.3 Clustered Data for the Case Studies

Solar and wind resource potentials given in W/m2 and m/s, respectively are converted to their

MW-equivalent resource availabilities using Equations 4.36 and 4.37:

Bmax
a,Solar,h,t = (Solar DNI)(Landmaxa,Solar) (4.36)
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Table 4.3: List of available technologies for each location.

Technology Texas New York
Solar PV Y Y
Wind Farm Y Y
Electrolyzer Y -
Air Separation Unit Y -
Haber-Bosch Process Y -
CH3OH Synthesis Y -
Direct Air Capture Y -
H2 Compression Y Y
H2 Liquefaction Y Y
NaS BES/PCS Y Y
H2 Fuel Cell - Y
NH3 Gas Turbine - Y
CH3OH Gas Turbine - Y
dc-ac Inverter - Y

Bmax
a,Wind,h,t =

1

2
ρairπ(SA)2(Wind Speed)3(Landmaxa,Wind)(10−6) (4.37)

WhereBmax
a,Solar,h,t andBmax

a,Solar,h,t are solar and wind resource availability in MW, ρair is the density

of air given in kg/m3, SA is the swept area by the rotor blades (where rotor blade diameter is 108

m), wit Landmaxa,Solar and Landmaxa,Wind are the maximum land available for solar and wind energy,

respectively.

Solar and wind availabilities in TX and NY for all representative seasons along the weights of

the seasons are shown in Figures 4.5 and 4.6. The same scale on solar and wind energy potential is

used in both figures to quantitatively compare renewable potentials in two locations. From Figures

4.5 and 4.6 it is observed that TX has a significant advantage over NY in both solar and wind energy

potential. This is not surprising, since TX is the nation’s leading wind energy producer. Solar

energy potential in TX is also extremely promising due to availability of land and consistent solar

irradiation profiles. It is interesting to note from Figure 4.5, that most of the time the peak solar and

wind energy in TX are asynchronous. Solar energy has a consistent presence from morning to early

evening, whereas wind energy potential more often than not peaks from night to early morning.

This creates a potential for synergy in integrating solar and wind, since one resource can take over

the power load when the other fades. Figure 4.6 indicates that while NY has some potential for

solar energy production, even though the solar availability is less consistent compared to that in
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Figure 4.5: Solar (straight lines) and wind (dashed lines) potential of representative seasons in TX.

TX. Although high wind speeds are observed in NY, the available land for wind energy production

is significantly small. As a result, the wind potential is orders of magnitude lower compared to that

in TX. NY’s solar energy has a much higher potential than its wind energy.

Figure 4.7 shows the power load demand profiles for base load and peak matching cases. Peak

matching requires significant ramp up and down requirements as the power demand increases

towards the evening, whereas base load requires a constant output of renewable power. A close

inspection of Figures 4.5, 4.6, and 4.7 reveals that there is enough solar or wind potential in TX

to meet the chosen power demand in NY. Although NY’s wind potential is low, the local solar

potential is strong enough to meet the the power demand in many seasons.
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Figure 4.6: Solar (straight lines) and wind (dashed lines) potential of representative seasons in NY.

4.4 Results and Discussion

10% of NYC’s power load demand is equivalent to 5,430 GWh per year. Base load and

peak matching examples are investigated in case studies I and II, respectively. In this section,

a total of six examples will be investigated in detail. Table 4.4 presents the location-dependent

generation and storage capacity, power and DEC production, whereas Table 4.5 presents the

location-dependent CAPEX and OPEX for selected examples. Figure 4.8 shows the total annual

cost breakdown of capital and operating costs. The full set of results for all the cases that are

previously described in Table 4.2 can be found in Tables D.1 to D.4 of Appendix D.
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Figure 4.7: NY Power load demand profiles of base load (dashed lines) and peak load (straight
lines) matching cases.

4.4.1 Case Study I: Base Load Matching

The first case study investigates the cost of meeting a constant base load for the entire year.

To illustrate how DECs can improve local renewable energy generation and storage, the following

examples are compared: BL-1-x-S, BL-2-H-x, and BL-3-H-S. Top three entries in Tables 4.4 and

4.5 show the details of these example cases.

BL-1-x-S case shows that, solar potential in NY is strong enough to penetrate 10% of the power

demand. However, due to intermittency both the solar PV and the battery storage capacity need

to be oversized to meet the power demand feasibility conditions. 17.49 GWh of BES capacity to

provide 10% solar-based continuous power is the main drawback in relying solely on local solar

energy potential. Due to the losses during storage, the total renewable energy that needs to be
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Table 4.4: Renewable energy generation and storage capacity and DEC production targets for
selected case studies.

LCOE TX-RE Cap. TX-NaS TX-RE Gen. NY-RE Cap. NY-NaS NY-RE Gen. Hydrogen
Case ID ($/kWh) (GW) (GWh) (GWh/a) (GW) (GWh) (GWh/a) (ton/a)
BL-1-x-S 0.284 0 0 0 10.51 17.42 6,493 0
BL-2-H-x 0.341 4.94 0 22,962 0 0 0 330,921
BL-3-H-S 0.157 0.38 0 1,796 2.43 10.49 6,164 26,199
PM-1-x-SW 0.142 0 0 0 3.7 8.29 6,255 0
PM-2-H-x 0.371 5.15 0 23,048 0 0 0 333,034
PM-3-H-SW 0.109 0.09 0 640 1.95 5.19 6,025 9,166

Table 4.5: CAPEX and OPEX for selected case studies.

LCOE Tot. Cost Tot. CAPEX TX-CAPEX/a TX-OPEX/a NY-CAPEX/a NY-OPEX/a Transport.
Case ID ($/kWh) ($ MM/a) ($ MM) ($ MM/a) ($ MM/a) ($ MM/a) ($ MM/a) ($ MM/a)
BL-1-x-S 0.284 1,533.21 18,535.07 0.00 0.00 1,482.81 50.41 0.00
BL-2-H-x 0.341 1,839.96 10,696.19 848.05 448.66 95.57 120.48 327.20
BL-3-H-S 0.157 848.55 9,070.79 95.33 42.96 630.33 53.02 26.91
PM-1-x-SW 0.142 777.58 9,158.34 0.00 0.00 732.67 44.91 0.00
PM-2-H-x 0.371 2,026.97 17,129.99 933.72 413.88 208.98 119.80 350.59
PM-3-H-SW 0.109 594.79 6,540.24 20.58 16.03 502.64 48.56 6.98

generated in NY is 6,493 GWh/a, that is 20% larger than the total annual power load demand

(5,430 GWh/a). The LCOE is $0.284/kWh. BL-2-H-x case meets the same power demand by

relying on hydrogen produced in TX. Due to the low round trip efficiency of the hydrogen route,

the total renewable energy that needs to be generated in TX is 16,115 GWh/a, that is 420% larger

than the annual power load demand. Due to high potential of solar and wind energy in TX and

their integration, renewable energy production in TX is much cheaper than that in NY. It has a

much higher capacity utilization, evidenced by 53% smaller total renewable energy generation

capacity. The LCOE of BL-2-H-x is $0.341/kWh, 20% more expensive than that of BL-1-x-S.

While producing DECs in TX and sending them to NY is less capital intensive, its operating costs

are significantly high due to increasing transportation costs and OPEX of hydrogen storage and

electrolysis processes. The resulting process networks for BL-1-x-S and BL-2-H-x can be found

in Appendix D in Figures D.1 and D.2, respectively.

BL-3-H-S is the case that highlights the synergy of using DECs together with local renewable

resources. Renewable energy generation in TX and NY are 1,796 and 6,164 GWh/a, respectively.
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Figure 4.8: Total annual cost breakdown of selected cases for base and peak load matching.

The main portion of the renewable power production is coming from local NY resources. It is

interesting to note that, the renewable energy generated in this case is only 5% smaller than that in

BL-1-x-S with a 40% smaller battery storage and 77% smaller solar PV capacity. Availability of

DEC backup prevents the need for oversizing to make up for the additional power requirements.

Thus, capacity utilization is increased. Due to this increase, BL-3-H-S has a LCOE of $0.157/kWh,

45% lower than that of BL-1-x-S. The process network for BL-3-H-S is presented in Figure 4.9.
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Figure 4.9: Process network for BL-3-H-S.
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The contributions of annualized CAPEX, OPEX, and transportation costs to the total annual

cost for these three cases are given in Figure 4.8. The results show that BL-1-x-S costs are heavily

dominated by the solar PV and BES units. BL-1-x-S suffers from power generation and storage

capacity oversizing and the resulting low capacity utilization. BL-2-H-x has smaller solar PV

and wind farm costs, even though the generated renewable energy is almost 3.5 times as much as

that by BL-1-x-S as mentioned earlier. However, the electrolyzer costs in TX for BL-2-H-x are

high. Hydrogen is stored and transported mainly as a cryogenic liquid, hence transportation costs

and liquefaction OPEX are significantly contributing to the total cost. The sum of the largescale

hydrogen storage, operation, and transportation costs make the total cost 20% more than that

of BL-1-x-S. BL-3-H-S cost has a significant share coming from battery storage, however, total

transportation and renewable power generation costs are much smaller compared to BL-2-H-x.

Finally, the power scheduling results from BL-3-H-S case are presented to explain how and

when DECs help the local power generation and battery storage systems. Figure 4.10 shows that

for most of the seasons, local solar PV and NaS battery power conversion system (PCS) are capable

of meeting the power load. Hydrogen as a DEC is used mainly as a backup fuel. Especially on

the days with low renewable availability such as are s1, s3, s4, or s12. While case BL-1-x-S shows

that NY resources are strong enough to be self-sufficient, the low renewable days are causing

power generation and energy storage units to be overdesigned by 77% and 40% over the best case

BL-3-H-S in order to ensure the feasibility condition throughout the entire year.

For sake of simplicity, the detailed results are presented for the cases where hydrogen is the

only DEC and the wind power in NY not available. It can be seen from Tables D.1 and D.2, that the

cases where ammonia or methanol are considered alongside hydrogen can provide improvements

in OPEX and transportation costs. In most cases, ammonia and methanol are sent as DEC together

with cryogenic hydrogen. Another source of improvement is integration of wind power in NY to

the process network. By using combined solar and wind power, BL-1-x-SW case has the LCOE of

$0.147/kWh, 48% lower than BL-1-x-S. The advantage of solar and wind integration is improved

capacity utilization as evidenced by smaller solar PV and wind farm units as well as smaller battery
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Figure 4.10: Power scheduling results for BL-3-H-S case.

storage requirement. The lack of synchronicity between solar and wind power provides a more

balanced supply of renewable power to the process network. When solar and wind power in NY is

combined with DEC coming from TX, LCOE can be as low as $0.116/kWh-$0.104/kWh for the

cases of BL-3-H-SW, BL-3-HA-SW, and BL-3-HM-SW.

4.4.2 Case Study II: Peak Load Matching

In this case study, the power output of the system in NY is not constant at base load throughout

the year, but increasing and decreasing according to the actual power demand. The results for

scenarios 1, 2, and 3 indicate similar trends between base load matching cases. In order to highlight

the benefits of using both solar and wind in NY, detailed results are shown for the examples of

PM-1-x-SW, PM-2-H-x, and PM-3-H-SW.
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PM-1-x-SW case shows that integration of solar and wind power brings the total renewable

power generation capacity and battery storage requirements down. Due to asynchronous

availability of solar and wind power, the need the battery storage is 43% less than that in PM-1-x-S

(see Table 4.4). The resulting LCOE is $0.142/kWh. PM-2-H-x is found to be plagued by high

CAPEX for electrolyzer and fuel cell along with storage and transportation costs as shown in

Figure 4.8. Since the peaking power demand requires high nameplate capacity for electrolyzer

and fuel cell units, the capacity utilization is low and the installed capacity is not used for most

of the time. The LCOE for replacing the peaking power demand with hydrogen is found to be

$0.371/kWh. The process networks for PM-1-x-SW and PM-2-H-x can be found in Appendix D

in Figures D.3 and D.4, respectively.

PM-3-H-SW finds a good balance between using the local resources in NY and DEC coming

from TX as evidenced by the low LCOE of $0.109/kWh. Most of the renewable energy used is

generated in NY (6,025 GWh/a) and only a small backup power is provided by DEC, hence the

renewable energy generated in TX is much smaller (640 GWh/a). The battery storage requirement

in NY is 37% less than that in PM-1-x-SW and 64% less than that in PM-1-x-S. The power

scheduling for PM-3-H-SW is shown in Figure 4.12. The contribution of DEC to total power

supplied is small and only used in days when either the local renewable power is low or the power

demand is very high as in s1, s3, s7, or s10. The process network for PM-3-H-SW is presented in

Figure 4.11.

Similar to base load matching studies, integration of local solar and wind power in NY to be

very beneficial to reduce the costs. Also, use of ammonia and methanol along with hydrogen offers

further improvements in process economics as in the cases of PM-3-HA-SW and PM-3-HM-SW

as shown in Tables D.3 and D.4.
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Figure 4.11: Process network for PM-3-H-SW.

4.4.3 Sensitivity of Results

4.4.3.1 Effects on Energy Storage on the Cost of Electricity

Using this design and operation strategy, the cost of renewable electricity without storage is

calculated. For this purpose, the model is set to meet the aggregate annual energy demand instead

meeting hourly commitments by changing Equation 4.18 with Equation 4.38. The optimizer

minimizes the cost by eliminating the storage facilities and the process network provides the output

power to the grid whenever renewable energy is available. Table 4.6 shows the LCOE for each

technology for each location.

∑
h

∑
t∈T imeh,t

nhSa,j,h,t ≥
∑
h

∑
t∈T imeh,t

nhDa,j,h,t ∀a, j ∈ Demandj (4.38)

Table 4.6: LCOE for solar- and wind-based technologies in TX and NY.

LCOE CAPEX CAPEX/a OPEX/a Capacity Demand Load
Technology ($/kWh) ($ MM/a) ($ MM/a) ($ MM/a) (GW) (GWh/a)
TX-Solar PV 0.042 2,479.50 198.36 30.14 1.36 5,401
TX-Wind Farm 0.041 1,737.06 138.96 83.04 0.72 5,401
TX-Grid Electricity [212] 0.117 N/A N/A N/A N/A N/A
NY-Solar PV 0.046 2,749.61 219.97 30.14 1.50 5,401
NY-Wind Farm 0.0532 755.78 60.46 24.91 0.31 1,620
NY-Grid Electricity [213] 0.210 N/A N/A N/A N/A N/A
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Figure 4.12: Power scheduling results for PM-3-H-SW case.

In Chapter 3, solar PV and wind-based levelized cost of electricity values reported by NREL

[177] and DOE [179] are used in TX case studies to produce ammonia from renewable hydrogen.

The base case studies used solar PV-based and wind-based power at the price of $0.051/kWh and

$0.044/kWh, respectively. While these values are lower than mostly fossil-based grid electricity

due to PPA, energy storage in the power generation systems is not considered. The optimal LCOEs

calculated from the model to be very similar to the values reported by DOE and NREL.

The addition of local energy storage methods in NY increases the cost of renewable electricity

roughly six times (see BL-1-x-S and PM-1-x-S). With the use of DECs, the cost of electricity

can potentially be only three times more expensive. With DECs as back-up fuel, the cost of

2Wind potential in NY is not strong enough to meet 10% of NY power demand. The reported value is only for
meeting 3% total demand.
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zero-emission renewable energy can be cost competitive with fossil-based grid electricity.

4.4.3.2 Renewable Energy Penetration Level

The case study results shown thus far are aiming to meet 10% of total NY power load. In this

section, a sensitivity analysis is done to see how the renewable penetration level affects the LCOE.

Results for three scenarios comparing batteries, hydrogen, and their combined use are presented

for levels of 5, 10, 15, and 20% renewable penetration in NY in Table 4.7.

Table 4.7: LCOE various levels of renewable energy penetration in NY.

5% Load 10% Load 15% Load 20% Load 5% Load 10% Load 15% Load 20% Load
LCOE LCOE LCOE LCOE LCOE LCOE LCOE LCOE

Case ID ($/kWh) ($/kWh) ($/kWh) ($/kWh) Case ID ($/kWh) ($/kWh) ($/kWh) ($/kWh)
BL-1-x-S 0.222 0.284 0.334 infeas. PM-1-x-S 0.205 0.247 0.297 0.322
BL-2-H-x 0.333 0.341 0.344 0.349 PM-2-H-x 0.368 0.371 0.373 0.378
BL-3-H-S 0.157 0.157 0.160 0.162 PM-3-H-S 0.133 0.134 0.134 0.134

The LCOE is highly sensitive to renewable penetration level if the system only relies on local

solar energy and battery storage in NY. In Case Studies I and II, in the absence of a backup fuel

or wind energy, both solar PV and battery storage capacities are oversized to ensure feasibility on

days with low solar irradiation. Due to low renewable energy potential in NY, the LCOE goes

up roughly 50% for both BL-1-x-S and PM-1-x-S cases as the penetration level increases. Larger

solar penetration in NY indicates even lower capacity utilization.

With the presence of DEC as a backup fuel and local battery storage, the LCOE of the energy

systems to be more stable in the face of varying penetration level. Cases BL-3-H-S and PM-3-H-S

indicate the LCOE does not change significantly as the renewable penetration changes from 5 to

20%. As described earlier, DECs prevent oversizing the power generation and storage capacity.

The share of DEC in power mixture increase slightly versus the shares of the local power generation

and storage. For the cases relying solely on DEC coming from TX for power, BL-2-H-x and

PM-2-H-x, the cost of electricity to increase with the level of penetration. However, this increase

is not as much as that of BL-1-x-S or PM-1-x-S. The results indicate that for renewable energy to
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penetrate easier, both local resources and backup options in the form of DECs are important.

4.4.3.3 Number of Representative Seasons

The design and operation decisions are dependent on the renewable resource availability. The

focus of this study is not on how to select the most appropriate number of representative seasons.

Also, the size of the multi-location scheduling problem is too large to be solved for an entire year

(365 clusters), even when the design decisions are fixed. This section aims to highlight the effects

of time clustering on the design and operation by showing results obtained when different number

of representative seasons are used. For this analysis, optimal results obtained from 4, 12 (base

case), and 16 clusters are compared with each other. The MILP with 4 clusters is easily solved. At

16 clusters, some case studies fail to find a solution within the solution time limitations when more

than one DEC is considered. This is due to the increasing problem size with more time periods

considered.

Table 4.8: LCOE for solar- and wind-based technologies in TX and NY.

4 Seasons 12 Seasons 16 Seasons 4 Seasons 12 Seasons 16 Seasons
LCOE LCOE LCOE LCOE LCOE LCOE

Case ID ($/kWh) ($/kWh) ($/kWh) Case ID ($/kWh) ($/kWh) ($/kWh)
BL-1-x-S 0.287 0.284 0.368 PM-1-x-S 0.230 0.247 0.327
BL-1-x-SW 0.146 0.147 0.148 PM-1-x-SW 0.129 0.142 0.143
BL-2-H-x 0.345 0.341 0.341 PM-2-H-x 0.357 0.371 0.372
BL-2-HA-x 0.345 0.341 0.341 PM-2-HA-x 0.357 0.370 0.371
BL-2-HM-x 0.323 0.321 0.330 PM-2-HM-x 0.331 0.335 0.344
BL-3-H-S 0.157 0.157 0.163 PM-3-H-S 0.147 0.134 0.139
BL-3-HA-S 0.146 0.151 0.150 PM-3-HA-S 0.135 0.121 0.129
BL-3-HM-S 0.134 0.135 0.139 PM-3-HM-S 0.123 0.117 0.117
BL-3-H-SW 0.107 0.116 0.116 PM-3-H-SW 0.104 0.109 0.110
BL-3-HA-SW 0.103 0.111 0.112 PM-3-HA-SW 0.099 0.106 no sol.
BL-3-HM-SW 0.103 0.104 0.105 PM-3-HM-SW 0.099 0.103 0.104

Table 4.8 shows the LCOE obtained for some of the cases shown earlier. As the number of

representative seasons increase, days with higher and lower renewable potential are added to the

inputs. The combined effect is a potential increase in the variability in the input space. As a result,

the network design needs to be feasible and optimal on potentially resource-scarce seasons. This
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leads the way to overdesign and low capacity utilization. In the case of using solely local resources

(i.e. Scenario 1) optimal decisions hedge against variability by designing larger energy storage

units so that feasibility is ensured. When DECs are introduced to the problem (i.e. Scenarios 2 and

3), the design decisions of both energy production and storage units to be less sensitive to input

variability.

An interesting conclusion can be made here: Optimizing the design of a renewable power-based

energy system with battery storage as only option can suggest overdesign of battery storage for

strict feasibility constraints. On the other hand, relying on DECs for zero-emission backup fuel,

can improve the reliability of the power systems. While a comprehensive analysis of representative

season selection and their effects on the design and operation are beyond the scope of this particular

work, future studies should focus on decomposition algorithms to make the most reliable and

flexible design and operation decisions.

4.5 Conclusions

In this study, an optimization-based multi-scale design and operation strategy is introduced

to analyze the techno-economic feasibility of renewable power generation and storage systems.

A process network is formulated with renewable power generation and storage options, DEC

production processes, and back-to-power conversion units. The dynamic changes in renewable

resource availability and power demand are explicitly handled by hourly scheduling decisions that

are a part of the design phase.

The strategy is tested to integrate wind and solar energy in TX to produce DECs and send

them to NY to compare feasibility of using DECs alongside local renewable energy generation and

storage. Various scenarios are compared where (i) local renewable power generation and storage

in NY, (ii) fully replacing the energy demand via DECs produced in TX, and (iii) combined use of

DECs and local power generation and storage technologies are considered.

Case study results show that when used together with local battery storage, hydrogen-based

DECs can offer up to 50% cost reductions for solar PV and BES in both base load and peak

matching scenarios. The main advantage of using DECs is providing a clean backup fuel for times
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when local intermittent renewable resources are scarce. DECs can improve capacity utilization

of renewable power networks by preventing power generation and storage capacity oversizing.

Fully replacing the energy demand via DECs produced at a high renewable energy potential region

like TX offer less promising economics due to increased transportation and storage costs. The

DEC-local resource synergy is found to be more valuable to exploit. The cost of local power

generation and storage, if available, is highly sensitive to renewable penetration levels. Availability

of a clean backup power source helps to stabilize it. Also, integration of solar and wind power to

be highly beneficial since these two resources generally peak at different times. Integration of solar

and wind mitigates the intermittency effects of a single resource.

Three type of DECs are investigated within this work: hydrogen, ammonia, and methanol. All

DEC options showed promising potential. Hydrogen production from water electrolysis is useful

to handle intermittent power supply from solar and wind resources. In many case studies, both

ammonia and methanol offer slightly lower overall costs due to cheaper storage and transportation

costs over hydrogen, even though production CAPEX and OPEX increase slightly.
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5. INTEGRATED MULTI-PRODUCT PROCESS NETWORK OPTIMIZATION FOR

RENEWABLE AND FOSSIL ENERGY SYSTEMS

5.1 Integrated Renewable and Fossil Energy Systems

Natural gas (or methane) conversion is a versatile route for not only power and heat generation

but also chemical feedstocks like synthesis gas (syngas) and hydrogen production. Natural

gas can be used as a feedstock for liquid transportation fuels production via gas-to-liquids

(GTL) processes like Fischer-Tropsch synthesis (FTS), Methanol-to-Gasoline (MTG) and

Metanol-to-Olefins-Gasoline-Distillate (MOGD). The US has a nation-wide pipeline infrastructure

that enables strong logistics for natural gas distribution. Natural gas conversion technologies are

cleaner than those of petroleum or coal. Nevertheless, if no carbon capture technology is used,

both (i) combustion to produce heat & power and (ii) traditional steam reforming to produce

syngas or hydrogen still have significant carbon footprints. To meet low-emission conversion of

methane, direct decomposition of methane via pyrolysis technology can offer a solution. Methane

pyrolysis produces elemental carbon and hydrogen, a very high quality and emission-free fuel for

both power and heat generation. If done in the absence of an oxidizing environment and some of

the product hydrogen is used to provide the required heat supply for the reaction, pyrolysis can be

an emission-free hydrogen and power production technology. While promising, methane pyrolysis

technology is still in the early phase of development with limited data available in the literature.

As a lower-emission alternative, renewable sources of power like solar and wind energy are

also promising to enable sector integration via electrification. However, both resources suffer from

intermittency and seasonal variability, resulting in low capacity utilization in the absence of energy

storage technologies [17, 14, 214]. Biomass has been a candidate replacement for fossil fuels and

its application in power, fuels, and chemicals sectors have been studied extensively by national labs

and academia. Crop residues like corn stover and forest residues like hardwood type of biomass

can be economically feasible with gasification technology if provided at a steady supply. For the
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transportation sector, there has been significant work on design and supply chain optimization of

systems of biomass-to-liquids (BTL) and hybrid mixtures of coal-biomass-gas-to-liquids (CBGTL)

[215, 216, 78, 79, 217].

While many renewable resources provide promising alternatives to fossil fuels, they suffer

heavily from intermittency and uneven geographical distribution. Recall from Figure 1.2 the

geographical distribution of solar, wind, and biomass resources for the United States. Each

renewable resource is stranded at a different part of the country. Additionally, they are often

isolated and far from strong demand locations like metropolitan areas and industrial zones. As

a result, the optimal renewable utilization strategies should be location specific and consider the

value chain aspect of the products [183].

In order to analyze different scenarios involving energy system networks that include both

fossil and renewable resource, the temporal and spatial variability of renewable supply and power

demand need to be considered explicitly in the optimization formulation. For this purpose,

the multi-period and multi-location simultaneous design, operation, and supply chain strategy

developed in Chapter 4 is used.

5.2 Modeling and Optimization of Integrated Energy Systems

5.2.1 Problem Definition

The conceptual depiction of the multi-scale modeling and optimization approach is given in

Figure 5.1. This approach allows for simultaneous optimization of both process synthesis at each

location and the supply chain of multiple locations. A single-location integrated multi-product

process network is illustrated in Figure 5.1(a). A multi-product process network takes a variety of

feedstocks as inputs to produce different products via different process blocks. At the center of the

network lies the hydrogen generation and storage processes. Hydrogen is generated from either

reformation of natural gas or water electrolysis. Produced hydrogen can be stored as energy carrier

or used as a feedstock for hydrogen-based energy carrier, chemicals, and fuels production. Other

feedstocks such as nitrogen, oxygen, and carbon oxide species are obtained via air separation,

119



methane conversion, and carbon capture processes. The demand for products like power, fuels,

and chemicals is unevenly distributed. Furthermore, many metropolitan and industrial areas might

demand more than one type of product. Hence, there is the supply chain aspect of the problem

that needs to be addressed where transportation alongside production needs to be optimized as

illustrated in 5.1(b).
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Figure 5.1: Conceptual depiction of novel power generation and storage networks.

The design, operation, and supply chain strategy should take the following as inputs:

• the time-dependent resource availability at each location,

• the time-dependent profile of the resource demand at each location,

• the detailed process input-output and costing information for all available process

technologies,

• the operational limitations such as maximum production rate changes and operating mode

switches,

• the available transportation and storage infrastructure.
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And returns the optimal solution that comprises:

• the process and storage unit capacities,

• the time-dependent production rates in each process,

• the material and energy flow rates between processes in the process network,

• the unit commitment and operating mode selections for all process technologies,

• the inventory management for storage of resources,

• the transportation flows of products.

In the following section, the details of the modeling and optimization formulation are described.

5.2.2 Network and Time Representation

The resource-task network (RTN) formulation [206] used in study work has previously been

described in Chapter 4. With the RTN formulation, the resources can be purchased, consumed,

generated, sold, stored, or transported to a different location and the processes can convert material

and/or energy resources to other resources. The renewable resource availability changes during

the day so the temporal space is discretized for multi-period operational decisions. Inventory

constraints keep track of all the resources entering and leaving the process network in one location

and connect the consecutive time periods. All the input-output relationships are linearly correlated.

The time representation used in this study has previously been introduced in Chapter 4 and

illustrated in Figure 4.3.

5.2.3 Process Superstructure

The work in this chapter further extends the process superstructure by including fossil-based

technologies for methane conversion and fuels production via two different pathways. The

extended process superstructure is shown in Figure 5.2 for the renewable- and fossil-based

processes in the RTN representation. As before, the resources are represented by circles and the

processes by rectangles. The specifics of the color codes are the same as in Chapter 4 and will not

be repeated here for sake of brevity.
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Figure 5.2: Process network superstructure for integrated multi-product facilities.

In the process network, the primary sources of power can either renewable (i.e. solar and wind)

or fossil fuels (i.e. methane (CH4)). Alternatively, the network can purchase power from grid

that is assumed to be generated from fossil fuels. Power generation processes include solar PV,

wind farms, and CH4 gas turbine. Power cannot be stored unless an energy storage technology

is used such as sodium-sulfur (NaS) battery electric storage (BES), pumped-storage hydro (PSH),
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and compressed air energy storage (CAES), that can store power in battery charge, elevated water,

and compressed air, respectively. These processes consist of storage and power conversion systems

(PCS) to store and convert stored resources back to power, respectively. Hydrogen can be produced

from water using electrolysis or from methane conversion technologies such as steam reforming

(SMR) or pyrolysis (MP). Hydrogen can be stored either as a cryogenic liquid or a pressurized

gas in liquefaction or compression processes, respectively. Hydrogen can be used as (i) DEC to

store and transport power, (ii) precursor to transportation fuels production, or (iii) precursor to

chemicals production. For fuels production, hydrogen is mixed with carbon dioxide and sent to

a reverse-water-gas shift (R-WGS) process to obtain a syngas mixture with H2:CO ratio of 2.2:1.

Carbon dioxide is captured from air with the direct air capture (DAC) unit. Alternatively the

syngas can be obtained from autothermal reforming of methane (ATR). Syngas can be converted

to transportation fuels via GTL technologies such as (i) FTS and (ii) MTG/MOGD processes. FTS

produces gasoline and diesel, whereas MTG/MOGD can produce gasoline, diesel, and kerosene.

FTS can produce liquid fuels from syngas, however, MTG/MOGD route requires an additional step

for methanol synthesis. For chemicals production, current options include ammonia synthesis via

Haber-Bosch process or methanol synthesis. The high-purity nitrogen and oxygen used in fuels or

chemicals production are generated via an air separation unit (ASU). The stored fuels, chemicals,

and DECs can be transported to a different location by railroad or trucks. Hydrogen, ammonia,

and methanol can be converted back to power using H2 fuel cell, NH3 gas turbine, or CH3OH gas

turbine, respectively to produce renewable power. Power outputs of solar PV and wind farm, and

many other processes are in direct current (dc), which need to be converted to alternative current

(ac) with dc-ac inverter unit in order to be sent to the power grid. The outputs of fuel cell and gas

turbines are in ac.

The input-output parameters for all the processes are taken from previously studied

MINLP-based design problems as described in Chapter 3. The full process models are given

in Appendix C.
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5.2.4 Mathematical Model

The complete mixed-integer linear programming (MILP) model consists of: (i) the network

design constraints for production and storage facilities, (ii) the operating mode selection with

ramp up/down constraints, (iii) the general resource balance constraints, (iv) the specific resource

balance constraints mainly for carbon accounting and fuels productions section, (v) the seasonal

continuity constraints, (vi) the investment and operational cost functions, and (vii) the objective

function. Most of the mathematical model is presented in Chapter 4. Here, only the new constraints

added to the formulation are presented.

5.2.4.1 Resource Specific Balance Constraints

In addition to the more general resource balance constraints, more specific balance constraints

are added for certain resources. Fuel production ratios are imposed with Equations 5.1 and 5.2.

Sa,j,h,t ≥ (FuelsRatioUSj − 0.05)
∑

j∈LiquidFuelsj

S(a, j, h, t)

∀a, j ∈ LiquidFuelsj, h, t ∈ Timeh,t

(5.1)

Sa,j,h,t ≤ (FuelsRatioUSj + 0.05)
∑

j∈LiquidFuelsj

S(a, j, h, t)

∀a, j ∈ LiquidFuelsj, h, t ∈ Timeh,t

(5.2)

Equations 5.3 and 5.4 present the demand constraints that are specific for liquid transportation

fuels written in barrel and energy equivalency. Equation 5.3 imposes the fuel ratios on the liquid

transportation fuels.

Sa,j,h,t ≥ Dtotal
FuelsFuelsRatio

US
j ρj

∀a, j ∈ LiquidFuelsj, h, t ∈ Timeh,t
(5.3)

Equation 5.4 calculates the total energy content of a fuels plant with the fuel ratios given with a

specific plant scale by Dtotal
Fuels and makes sure that the produced fuels have the fuel products with

124



equivalent higher heating value (HHV).

∑
j∈LiquidFuelsj

Sa,j,h,tHHVj ≥
∑

j∈LiquidFuelsj

Dtotal
FuelsFuelsRatio

US
a,j ρjHHVj

∀a, h, t ∈ Timeh,t

(5.4)

5.2.4.2 Process Emission Constraints

The process GHG emissions are accounted with Equation 5.5. The only GHG considered in

the process network is carbon dioxide. For the accounting purposes, the carbon dioxide entering

or leaving the network is accounted in each unit it appears. Equation 5.6 calculates the total net

process emissions.

LocalGHGa =
∑
h

∑
t∈T imeh,t

nh
[
− Pa,DAC,h,t + Sa,V entedCO2,h,t − Sa,SeqCO2,h,t

]
∀a (5.5)

TotalGHG =
∑
a

LocalGHGa (5.6)

5.2.4.3 Objective Function

The model is solved to minimize the annualized production cost of meeting the power demand.

This is also called the levelized cost of electricity (LCOE). For this purpose, total overnight capital

investment, Capextotala , is annualized using 8% annual discount rate. Sum of annualized capital

cost and operational costs, Opexa and Transtotalj,q along with the carbon tax penalty or gain gives

the objective function value TotalCost as shown in Equation 5.7:

TotalCost =
∑
a

[
(0.08)Capextotala +Opexa

]
+

∑
j,q∈TPModesj,q

Transtotalj,q

+(CarbonTax)TotalGHG

(5.7)
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The resulting optimization problem is:

min TotalCost (Equation 5.7)

s.t. Equations 4.1− 4.33

Equations 5.1− 5.6

(5.8)

5.3 Computational Studies

The multi-scale strategy for optimal design and operation of multi-product process networks

is applied to examples from three different sectors: (i) synthetic fuels production, (ii) chemicals

(i.e. hydrogen, ammonia, and methanol) production, and (iii) renewable power generation and

storage. Technologies for these sectors are included in the process superstructure. First, these

three examples are optimized as three separate energy systems. Later, they are integrated in a

multi-product process network.

5.3.1 Synthetic Fuels Production

The transport sector, including road, air, and waterborne transport, contributes to slightly more

than 20% of the global GHG emissions. In 2018, about 92% of the total U.S. transportation sector

needs were accounted by petroleum products [218]. According to 2018 data, the U.S. consumed

an average of value of 20.5 million barrels of petroleum per day [219]. With growing concerns

over expensive crude oil prices and increased scrutiny over high levels of GHG emissions, the

U.S. transportation sector faces major challenges that must be addressed through the investigation

of novel processes to produce liquid fuels. While governments all over the world aim to reduce

the GHG emissions from transport drastically by mid century, in the absence of vital measures,

emissions are expected to continue increasing due to the increasing demand for transport [220].

One way to bring down the GHG emissions without totally replacing the transportation

infrastructure is to produce low-emission fuels require using renewable energy sources such as

biomass, solar, and wind energy, as well as captured carbon. Previous multi-scale engineering

work by Floudas and coworkers focused on process synthesis of transportation fuels production
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from hybrid feedstock routes including coal, biomass, and municipal solid waste gasification, and

natural gas reforming; their efforts mainly focused on optimal steady-state designs [215, 216, 78,

79, 217]. Product facilities are optimized for production scales between 1-100 kbpd of liquid

transportation fuels. Levelized cost of fuels for GTL, BTL, and CBGTL pathways are found

between $8.2-$24.5/GJ, $13.6-$25.8/GJ, and $16.1-$18.8/GJ respectively. This chapter focuses on

synthetic fuels production from novel methane pyrolysis pathway and water electrolysis powered

by renewable solar and wind.

5.3.2 Chemicals Production

Hydrogen, ammonia, and methanol provide dual opportunities for both chemicals and DEC

use. Production of hydrogen and ammonia have been studied in detail in Chapter 3. In Chapter 3,

costs of ammonia production for 250-1000 tpd scale in Texas for natural gas, hardwood biomass,

municipal solid waste, solar, and wind pathways are found between $404-$553/ton, $375-$521/ton,

$457-$601/ton, $873-$971/ton, and $786-$884/ton, respectively. These numbers provide 50%

GHG emission reduction compared to a typical ammonia plant and continuous supply of renewable

solar and wind energy is costed based on current PPA, which does not include any energy storage

technology. In Chapter 4, all three chemicals are produced as DECs and used in the context

of energy transportation from Texas to New York. Individual production is not studied. In this

chapter, the levelized costs of chemicals are investigated for zero-emission hydrogen, ammonia,

and methanol production.

5.3.3 Renewable Power Generation and Storage

Energy storage at grid-scale (GWh-scale) is one way to ensure the balance between the

renewable power supply and demand and therefore improve the capacity utilization [75]. Energy

storage in vectors, that are also called as dense energy carriers (DECs) offer the possibility of

transporting stored energy from one location to another. For strict stationary storage applications

the available technologies also include pumped storage-hydro (PSH), compressed air energy

storage (CAES), or battery electric storage (BES). In Table 4.6 from Chapter 4, the cost of solar
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and wind power in Texas the absence of any storage is shown as $0.042/kWh and $0.041/kWh,

respectively. This power output is not steady. In this chapter, the cost of steady renewable power

using BES and DEC is investigated.

5.3.4 Case Studies

Below are given a list of case studies in Table 5.1 that can complete the picture of hybrid

feedstock to fuels, chemicals, and power production by incorporating renewables like solar and

wind into the picture along with methane conversion technologies like reforming and pyrolysis.

5.3.5 Modeling Assumptions

Below are given the modeling assumptions and some of the modeling parameters used for the

computational studies. The full list of modeling parameters are presented in Appendix C.

• The primary sources of energy are methane, solar and wind.

• Cost of methane is assumed to be $2.80/TSCF for Texas as an average value for 2019 [15].

• Grid electricity purchase is not allowed for any case study.

• Location dependent solar direct normal irradiation (DNI) and wind speed are taken from

NSRDB [18] and Wind Toolkit [19]. Wind speed is taken at 80 m.

• Available land for solar energy in Texas is 1,459 km2 [211].

• Available land for wind farms in Amarillo, Texas is 1,700 km2 [211].

• Renewable electricity provided to the grid is not sold at a price.

• Water purchase cost is $0.4/ton. Water availability does not have an upper bound.

• Electricity prices from Texas are taken from Ercot resources [212].

• Solar DNI, wind speed, load demand, and electricity prices are clustered together using AHC

method.

• 12 representative seasons are used.

• Investment costs are annualized such that 8% of the total overnight cost is paid annually.

• Hydrogen can be stored as compressed gas at 700 bar and 20◦C or a cryogenic liquid at 1

atm and -259◦C.
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Table 5.1: List of case studies for fuels production investigate fuels production with United States
ratio (U) and its energy equivalent without any fuel ratio restrictions (E). Energy content of 5
kbpd transportation fuels with Unites States ratio is equal to 2868 GWh/day. For chemicals
production hydrogen (H), ammonia (A), and methanol (M) are studied at 50, 500, and 500 tpd
scales, respectively. Power production (P) cases focus on 500 MW steady ac output. Primary
energy source and technologies considered are methane autothermal reforming (ATR), methane
pyrolysis (MP), solar PV (S), and wind farms (W). Integrated multi-product plant integrates (NT)
fuels, chemicals, and power production from all available energy sources and technologies.

Case ID Products
Production Primary Energy Primary Energy
Scale Source Conversion Technology

Fuels Production
U-ATR Fuels (US Ratio) 5 kbpd Methane Autothermal Reforming
U-MP Fuels (US Ratio) 5 kbpd Methane Pyrolysis
U-S Fuels (US Ratio) 5 kbpd Solar Solar PV
U-W Fuels (US Ratio) 5 kbpd Wind Wind Farm
U-SW Fuels (US Ratio) 5 kbpd Solar, Wind Solar PV, Wind Farm
E-ATR Fuels (n/r) 2,868 GWh/a Methane Autothermal Reforming
E-MP Fuels (n/r) 2,868 GWh/a Methane Pyrolysis
E-S Fuels (n/r) 2,868 GWh/a Solar Solar PV
E-SW Fuels (n/r) 2,868 GWh/a Wind Wind Farm
E-SW Fuels (n/r) 2,868 GWh/a Solar, Wind Solar PV, Wind Farm
Chemicals Production
H-MP Hydrogen 50 tpd Methane Pyrolysis
H-S Hydrogen 50 tpd Solar Solar PV
H-W Hydrogen 50 tpd Wind Wind Farm
H-SW Hydrogen 50 tpd Solar, Wind Solar PV, Wind Farm
A-MP Ammonia 500 tpd Methane Pyrolysis
A-S Ammonia 500 tpd Solar Solar PV
A-W Ammonia 500 tpd Wind Wind Farm
A-SW Ammonia 500 tpd Solar, Wind Solar PV, Wind Farm
M-MP Methanol 500 tpd Methane Pyrolysis
M-S Methanol 500 tpd Solar Solar PV
M-W Methanol 500 tpd Wind Wind Farm
M-SW Methanol 500 tpd Solar, Wind Solar PV, Wind Farm
Power Generation and Storage
P500-S Power 500 MW Solar Solar PV
P500-W Power 500 MW Wind Wind Farm
P500-SW Power 500 MW Solar, Wind Solar PV, Wind Farm
Integrated Fuels, Chemicals, and Power Production

INT-NT

Fuels (n/r) 2868 GWh/a

Methane, Solar, Wind No restrictions
Hydrogen 50 tpd
Ammonia 500 tpd
Methanol 500 tpd
Power 500 MW
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• Carbon tax can be $0, $50, or $100/ton of net carbon dioxide emissions.

• Process emissions are restricted to be less than or equal to 0 t CO2/a. Negative emissions,

results in receiving carbon tax credits.

• Gasoline, diesel, and kerosene are the transportation fuels considered.

• United States fuel ratios for gasoline, diesel, and kerosene are 66.6, 21.5, and 11.9 vol%,

respectively.

• All processing units have ramping constraints.

• PSH and CAES technologies are not considered in the process network for the case studies.

• NaS-type baterries are considered for the case studies. Battery storage self-discharge rate is

8%/day.

All case studies are solved on a high-performance computing (HPC) machine at Texas A&M

High-Performance Research Computing facility using Ada IBM/Lenovo x86 HPC Cluster operated

with Linux (CentOS 6) using 1 node (20 cores per node with 64 GB RAM). CPLEX 12.8 solver is

used with GAMS 26.1.0. The solution time is limited to 24 hours.

5.3.6 Input Clustered Data for Time-dependent Resources

Solar and wind resource potentials given in W/m2 and m/s, respectively are converted to their

MW-equivalent resource availabilities using Equations 4.36 and 4.37 as described in Chapter 4.

Solar and wind availabilities in Texas for all representative seasons along the weights of the seasons

are shown in Figure 4.5. It is important to point out that, Texas has a significant wind and solar

potential. Texas is the nation’s leading wind energy producer. Solar energy potential in TX is

also extremely promising due to availability of land and consistent solar irradiation profiles. It is

interesting to note from Figure 4.5, that most of the time the peak solar and wind energy in TX

are asynchronous. Solar energy has a consistent presence from morning to early evening, whereas

wind energy potential more often than not peaks from night to early morning. This creates a

potential for synergy in integrating solar and wind, since one resource can take over the power

load when the other fades.
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5.4 Results and Discussion

5.4.1 Case Study I: Synthetic Fuels Production

The results of the synthetic fuels production are shown in Table 5.2 and Figure 5.3.

Table 5.2: Results for synthetic fuels production from methane autothermal reforming (ATR),
methane pyrolysis (MP), electrolysis powered by solar (S), wind (W), and integrated solar-wind
(SW). Case studies are done for 5 kbpd fuels production with US ratio (U) and HHV-equivalent
without fuel ratio restrictions (E). Levelized cost of fuels (LCOF) is given in $/MWh and $/GJ.

LCOF Total Cost Gasoline Diesel Kerosene Net Emissions1

Case ID ($/MWh) ($/GJ) ($ MM/a) (kbpd) (kbpd) (kbpd) (kt CO2/a)
U-ATR 40.9 11.4 117.18 3,482 1,207 324 0.0
U-MP 77.7 21.6 222.77 3,482 1,207 324 -382.5
U-S 304.7 84.6 873.94 3,221 1,207 559 -691.3
U-W 215.6 59.9 618.21 3,482 1,207 324 -709.7
U-SW 168.9 46.9 484.36 3,482 1,207 324 -709.7
E-ATR 32.4 9.0 92.88 1,314 3,446 0 0.0
E-MP 62.7 17.4 179.92 1,314 3,446 0 -737.1
E-S 297.8 82.7 854.08 590 2,686 1,427 -664.3
E-W 213.2 59.2 611.54 632 2,731 1,343 -763.9
E-SW 157.6 43.8 451.88 1,314 3,446 0 -797.0

For synthetic fuels production via GTL process, methane reforming pathway is found to be

the most efficient method with at a cost of $32-$41/MWh ($9.0-$11.4/GJ), followed by methane

pyrolysis pathway and direct air capture $62-$77/MWh ($17.4-$21.6/GJ). Fuels production from

solar and with powered pathway to produce fuels (also called electrofuels) is much more energy

intensive with fuels costs ranging between $213-$305/MWh. Integration of solar and wind energy

can bring the cost down to $158-$169/MWh. Although this is a good improvement, it is still much

above methane pathways.

1Net emissions only include CO2 emissions from the processes. Emissions related to raw material acquisition,
processing unit construction, installing, or end product use are not included in the values.
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Figure 5.3: Total annual cost breakdown of synthetic fuels production results show that
methane pathways (U-ATR, U-MP, E-ATR, and E-MP) are more efficient that renewable-powered
electrolysis pathways (U-S, U-W, U-SW, E-S, E-W, and E-SW.). Removal of fuel production ratio
restriction favor FTS over MTG/MOGD route to produce more diesel instead of kerosene.

Total annual cost breakdown of synthetic fuels production results show that methane pathways

(U-ATR, U-MP, E-ATR, and E-MP) are more efficient that renewable-powered electrolysis

pathways (U-S, U-W, U-SW, E-S, E-W, and E-SW.). Removal of fuel production ratio restriction

favor FTS over MTG/MOGD route to produce more diesel as shown in Table 5.2. If combined

with carbon credits due to using carbon dioxide captured from air, synthetic fuels production from

methane pyrolysis can produce fuels at a cost of $49 and $37/MWh for carbon tax of $50 and

$100/t, respectively.

5.4.2 Case Study II: Chemicals Production

Chemicals production cases study results are presented in Table 5.3 and Figures 5.4, 5.5, and

5.6. Results from Table 5.3 show that steady output hydrogen production via methane pyrolysis

is 58-70% cheaper than renewable powered water electrolysis. Integrating solar and wind power
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can bring the costs down, however, electrolysis is still highly energy intensive. High hydrogen

production costs of electrolysis pathway is the reason solar and wind powered ammonia and

methanol productions are more costly that the methane pathway.

Table 5.3: Results for hydrogen (H), ammonia (A), and methanol (M) production from methane
pyrolysis (MP), electrolysis powered by solar (S), wind (W), and integrated solar-wind (SW) are
shown. Case studies are done for 50 tpd hdyrogen production and 500 tpd ammonia or methanol
production scales. Levelized cost of chemicals (LCOC) is given in $/MWh and $/GJ.

LCOE Total Cost NG Purc. RE Gen. H2 Prod. Net Emissions
Case ID ($/kg or $/t) ($ MM/a) (MSCF/a) (GWh/a) (kt/a) (kt CO2/a)
H-MP $1.52/kg 32.28 5.56 0 21.3 0.0
H-S $5.06/kg 107.73 0 1,360 21.3 0.0
H-W $3.64/kg 77.41 0 1,360 21.3 0.0
H-SW $3.41/kg 72.53 0 1,360 21.3 0.0
A-MP $341/t 72.71 10.95 0 37.8 0.0
A-S $1,426/t 303.69 0 2,911 37.8 0.0
A-W $883/t 188 0 2,609 37.8 0.0
A-SW $773/t 164.49 0 2,616 37.8 0.0
M-MP $381/t 81.09 11.83 0 41.3 -113.6
M-S $1,487/t 316.61 0 3,274 41.3 -254.5
M-W $933/t 198.61 0 2,934 41.3 -254.5
M-SW $796/t 169.56 0 2,922 41.3 -254.5
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Figure 5.4: Total cost breakdown of hydrogen (H) production from methane pyrolysis (MP), solar
(S), wind (W), and solar-wind (SW) powered water electrolysis.
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Figure 5.5: Total cost breakdown of ammonia (A) production from methane pyrolysis (MP), solar
(S), wind (W), and solar-wind (SW) powered water electrolysis.
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Figure 5.6: Total cost breakdown of methane (M) production from methane pyrolysis (MP), solar
(S), wind (W), and solar-wind (SW) powered water electrolysis. Effect of carbon tax on methanol
production is also investigated.

Figures 5.4, 5.5, and 5.6 show that production costs of hydrogen, ammonia, and methanol

depend heavily on power generation, BES-PCS, and hydrogen generation & storage CAPEX.

Methane pyrolysis is more cost effective pathway to produce hydrogen compared to water

electrolysis powered by intermittent solar and wind. Integration of solar and wind power can

bring the BES-PCS CAPEX down dramatically, due to synergistic effect of asynchronous solar

and wind power availability. However, it should be noted that the strong solar and wind potential

in Amarillo, Texas might not be easy to find in other parts of the world. It is highly likely that solar

and wind power might not be available at the same time.

5.4.3 Case Study III: Power Production

Power production results are presented in Table 5.4. For steady 500 MW output, the strong

solar and wind potential in Amarillo, Texas results in low cost of electricity. Integrated solar and

wind powered power (P-SW) production cost is $0.054/kWh, that only 10% more than unsteady

solar or wind electricity price as mentioned in the earlier chapters.
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Table 5.4: Results for power (P) from solar (S), wind (W), and integrated solar-wind (SW) are
shown. Case studies are done for 500 MW steady ac power output. Levelized cost of electricity
(LCOE) is given in $/kWh.

LCOE Total Cost RE Cap. RE Gen. BES Storage DEC Prod. Net Emissions
Case ID ($/kWh) ($ MM/a) (GW) (GWh/a) (GWh) (kt/a) (kt CO2/a)
P-S 0.116 592.82 1.74 6,498 10.50 28.2 0.0
P-W 0.077 394.96 0.86 6,250 2.22 74.3 0.0
P-SW 0.054 273.67 1.14 5,447 0.30 1.4 0.0

5.4.4 Case Study IV: Multi-product Networks

In this final case study, the combination of the results obtained from separate energy systems

are compared with an integrated multi-product process network that has the same output. The best

performing cases for individual fuels, hydrogen, ammonia, methanol, and power production are

E-ATR, H-MP, A-MP, M-MP, and P-SW, respectively. For this comparison case study, all the five

aforementioned separate facility costs are added to obtain the combined results. The details of the

integrated process network and its total cost breakdown are given in Table 5.5 and Figure 5.7 in

comparison with the combined process network.

Table 5.5: Results for integrated fuels, chemicals, and power process network (INT-NT) are
compared with the combination of best separate fuels, chemicals, and power production facilities
(Combined) that are E-ATR, H-MP, A-MP, M-MP, and P-SW.

Units INT-NT Combined
Total Production Costs ($ MM/a) 455.36 547.70
Annualized CAPEX ($ MM/a) 213.43 292.68
Annual OPEX (w/o Purchases) ($ MM/a) 134.86 137.10
Annual Resource Purchases ($ MM/a) 107.07 117.89
Natural Gas Purchase (MSCF/a) 38.04 41.81
Renewable Energy Capacity (GW) 0.66 1.14
Renewable Energy Production (GWh/a) 4,583 5,447
Total Energy Storage Capacity (GWh) 0.12 0.30
Net Emissions (kt CO2/a) 0.00 -113.55

Results from Table 5.5 show that integrated multi-product process network (INT-NT) brings
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the total production cost 16.9% down compared to individual plants. Figure 5.7 shows that the

INT-NT has the biggest advantage in reduced costs of power and hydrogen generation and storage

sections. For hydrogen generation, INT-NT relies entirely on methane. For power generation

methane gas turbine is combined with solar PV and wind farms. INT-NT requires a smaller

renewable power generation and storage capacity, since methane gas turbine is used to back it

up. While combined process network can give negative process emissions due to some forced

pathways, INT-NT uses full advantage of the net zero emission constraint. There are scale-up

synergies in methanol synthesis and air separation units. Methanol synthesis is found to play an

important role in both fuels production and chemicals production. In Chapter 4, its role as a DEC

is also shown.
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Figure 5.7: Total annual cost breakdown of selected cases for base and peak load matching.

The process network for INT-NT with the process capacities is given in Figure 5.8.
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Figure 5.8: Optimal process network for integrated fuels, chemicals, and power production facility
(INT-NT).

5.5 Conclusions

In this study, an optimization-based multi-scale design and operation strategy is used to analyze

process networks of fuels, chemicals, and power production. With this method, each energy sector

can be modeled separately or integrated in a multi-product process network.

This strategy is tested in synthetic transportation fuels (i.e. gasoline, diesel, kerosene),

hydrogen, ammonia, methanol, and steady renewable power production using the resources in

Amarillo, Texas. Case studies aimed to test various pathways ranging from methane reforming,

methane pyrolysis, water electrolysis powered by solar and wind energy to generate power and
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hydrogen. Carbon dioxide is either produced via methane reforming or captured from air via

direct air capture method.

Integration of fuels, chemicals, and power production networks results in significant synergies

in hydrogen and power generation systems. With such integrated facilities, methane conversion

technologies, and methanol synthesis can play important roles, since they are versatile pathways

leading to power and fuel&chemicals, respectively.

Case study results show that methane pyrolysis method can produce emission-free hydrogen

at a lower cost that water electrolysis method. While still at prototype level, due to high process

efficiency of the process it might offer a much stronger alternative against water electrolysis to

generate low-carbon hydrogen. Intermittent solar and wind power are found to be most useful in

power generation. In separate and integrated facilities, hydrogen production via water electrolysis

powered by renewables is 2-3 times more expensive than methane pathways.
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6. CONCLUSION AND FUTURE WORK

6.1 Concluding Remarks

The challenges related to the energy transition is multi-faceted and multi-scale. There is no

silver bullet to solve all the problems, instead there are a multitude of alternatives that need to

work together. To help better understand those systems while advancing the field of PSE, this

dissertation develops new frameworks to optimally design and operate fossil and renewable energy

systems. The studies are organized under four chapters. Below are given insightful concluding

remarks on each chapter.

In Chapter 2, it is shown that given operational data, accurate nonlinear data-driven

input-output models for refinery processing and mixing units can be obtained. Regularization

methods are used to obtain sparse process models that can be efficiently used in large-scale

multi-period NLP problems. Optimal production plans provide improvement over the actual plans

by allocating the streams more efficiently between units to reduce raw material and operating costs.

Multi-period planning approach provides further improvement over single-period planning.

In Chapter 3, production of ammonia is investigated for a variety of fossil and renewable

pathways via a process synthesis and global optimization framework to reduce the carbon footprint

of ammonia production. The effects of feedstock availabilities and prices in Texas, California, and

Iowa are investigated via location-specific case studies. Biomass gasification is found to be an

attractive choice over steam reforming of natural gas for bringing down the emissions of ammonia

plants to 25% of the current level. Hardwood type of biomass performed better than corn stover

and MSW. For all the states under investigation, wind and solar powered ammonia production

costs are found to be much higher. Unless very strict GHG emission limitations or economic

incentives are imposed, it is hard for these technologies to compete with natural gas and biomass

pathways. Biggest reason for this is the high energy consumption of hydrogen production via water

electrolysis.
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In Chapter 4, an optimization-based multi-scale design and operation strategy is introduced

to analyze the techno-economic feasibility of renewable power generation and storage systems

that use battery electric storage and dense energy carriers. Single-location and multi-location case

studies are investigated to find out that when DECs used together with local battery storage, they

can offer up to 50% cost reductions. The main advantage of using DECs is providing a clean

backup fuel for times when local intermittent renewable resources are scarce. In the absence of

such backup fuels, local power generation and storage capacities are oversizing to make up for

scarce resource period. Fully replacing the energy demand via DECs produced at a high renewable

energy potential region like TX offer less promising economics due to increased transportation and

storage costs. The DEC-local resource synergy is found to be more valuable to exploit. The cost

of local power generation and storage, if available, is highly sensitive to renewable penetration

levels. Availability of a clean backup power source helps to stabilize it. Also, integration of solar

and wind power to be highly beneficial since these two resources generally peak at different times.

Integration of solar and wind mitigates the intermittency effects of a single resource.

In Chapter 5, the multi-scale simultaneous design and operation strategy is extended to

integrated power, fuels, and chemicals production. With this method, each energy sector can be

modeled separately or in an integrated fashion for a multi-product process network. Integrated

facilities successfully bring down the process costs by 17%. The key synergies in integration are

observed at power and hydrogen generation and storage sections. For fuels or chemicals production

via low-carbon pathways, methane pyrolysis is shown to have a promising potential. Intermittent

solar and wind power are found to be most useful in power generation. In both separate and

integrated facilities, hydrogen production via water electrolysis powered by renewables is 2-3 times

more expensive than methane pathways. While increasing renewable penetration in power sector

can have an impact on lowering the emissions, using renewable power to produce liquid products

might not be the most cost effective pathway as of today’s technological capability.

6.2 Key Contributions

The key contributions of this dissertation are summarized below:
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1. Development of a framework that combines data-driven modeling with nonlinear

multi-period planning formulation that is used for optimizing refinery production plans using

real plant data. Nonlinear input-output models for all processing units are created using

real plant data. The developed feature selection procedure allows for efficient integration

of modeling and multi-period optimization. The multi-period production plan allows for

inventory management to increase the degrees of freedom of the optimization problem.

2. Implementation of process synthesis and global optimization methods to synthesize

sustainable ammonia production processes with significant GHG reductions. Aim of this

study is to compare biomass-, wind-, and solar-based ammonia production routes with

natural gas-based reference case study via having all process options in the same process

superstructure. Case studies are done for different geographical locations, where feedstock

and electricity prices and availability vary greatly.

3. Development a multi-scale modeling and optimization strategy relying on mixed-integer

linear programming techniques to find the optimal design and operational decisions of

multi-location GWh-scale energy generation and storage systems. The strategy uses

multi-period formulation to address the intermittency in the resource availability. The

multi-location aspect allows for the production and transportation of DECs between high-

and low-potential regions to account for the supply chain problems. Hierarchical clustering

techniques are used to find representative seasons to reduce the size of the problem. The

overall approach is multi-scale by nature since it deals with problems of design, scheduling,

and supply chain simultaneously.

4. Further extension of the multi-scale modeling and optimization strategy developed for

renewable energy generation, storage, and transportation to power, fuels, and chemicals

production to optimally design and operate multi-product process networks. Using

multi-period formulation the intermittent renewable resources are integrated with fossil fuel

technologies.
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6.3 Future Work

This dissertation is aimed to develop novel strategies for tackling energy transition challenges

by using the process systems engineering methods. The methods presented are designed to be

generalizable, however, it is not possible to cover the entire landscape with this dissertation. In

this section, a brief list of possible future directions is presented. Each direction aims to follow the

natural extensions of the completed work, introduce the fundamental difficulties that can manifest

itself as a result of such effort, and finally present a strategy.

6.3.1 Uncertainty as a Part of Design and Operation of Energy Systems

Uncertainty appears in any optimization work. The parameter estimates that are used in raw

material costs, performance coefficient, unit capital costs, or product demands are assumed to

be at nominal values, making the problems deterministic. However, in reality all parameters are

uncertain with different intervals of confidence. An optimal profitable design that is made based

on a certain cost of natural gas, might be unprofitable if that cost changes. All models and optimal

solutions are subjected to uncertainty in Chapters 2, 3, 4, and 5.

The impacts of parameter uncertainty on the optimal solutions can be quantitatively assessed

via either robust optimization or stochastic programming. One application of these methods can

be assessing the effects of uncertainty of solar DNI, wind speed, and electricity prices on the

renewable power generation and storage problem. In Chapters 4 and 5, the design decisions are

made based on representative days, that are centroids of each data cluster they represent. However,

if the best and worst cases of each cluster are also included in the data set, the optimal design can

be different. It will be interesting to see the effects of uncertainty on network designs.

6.3.2 Life Cycle GHG Analysis as a Part of Decision-Making Processes

In Chapter 3, the GHG emissions related with process byproducts, feedstock acquisition, and

end-product use are accounted and restricted. In Chapters 4 and 5, only the process emissions

are acounted and restricted. For a more thorough life cycle GHG analysis, the GHG emissions

related with manufacturing, installation, and maintenance of each technology need to be considered
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along the aforementioned sources of emissions. For this purpose, there are published work and

available software tools to estimate system level GHG emissions such as NREL’s GREET or MIT’s

Sustainable Energy System Analysis Modelling Environment (SESAME).

The incorporation of such life cycle GHG emission analysis can change to decision-making

process. By putting strict limitations on GHG emissions via policy decisions, the techno-economic

performance of the process networks change. It can be interesting to see the trade-offs between

competing objectives of cost minimization, profit maximization, and GHG emisison minimization.

Multi-objective optimization strategies to produce Pareto curves can provide insights to the

decision-makers.

6.3.3 Strategic Planning and Capacity Expansion of Renewable and Fossil Energy Systems

The multi-scale design and operation strategy developed for Chapters 4 and 5, assume a static

investment horizon. The decision of investment is made here-and-now, and there is no recourse or

capacity expansion that follows that initial decision. However, as history has shown, both process

efficiencies and capital costs are functions of time. The energy transition will definitely not take

place in a decade, but over a period of multiple decades. In this picture, there is a great value in

analyzing long-term strategic planning and capacity expansion methods [221].

The RTN formulation that is used in Chapters 4 and 5 is well-suited for a strategic planning

formulation. By including an investment period horizon to the decisions, great insights into

possible future evolution of the energy systems can be investigated. With such an approach, it

is important to include learning curves to all the technologies. Just to give an example, from 2009

to 2017, the cost of solar PV modules and wind turbines decreased up to 81 and 50%, respectively

[74]. Such changes can significantly improve the attractiveness and the penetration of certain

technologies over time. Because of the growing size of the problem, rolling horizon method can

be implemented to solve the optimization model.

144



6.3.4 The Reliability and Resilience of Integrated Process Networks

As the process networks become more interconnected, they also become more interdependent.

The security of the energy, fuels, and chemicals supply chains are vulnerable to natural disasters

like hurricanes, earthquakes, and pandemic spreads. Integrated systems provide efficient resource

utilization and distribution, however, with the current approach the reliability (i.e. if a site closes

down, how does the rest of the networks work) and resilience (i.e. if a system goes on outage,

how can it come back to operation) of the process networks are not considered in the design and

operation optimization.

The RTN formulation used with multiple sites can be used in a network analysis to test different

scenarios to investigate how the entire supply chain is affected after a partial or complete shutdown

or fail takes place at a site. Through such an analysis, the importance of backup and auxiliary units

can be determined.
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APPENDIX A

SUPPORTING INFORMATION FOR CHAPTER 2

The list of all the units, subscripts, superscripts, sets, variables, and parameters are given in this

section.

Sets & Indices

u Unit

s Stream

p Property

t Period

i Model parameter index 1

j Model parameter index 2

Subsets

Upro Processing units

Uhyp Hypothetical units

Sin
u Inlet streams to unit u

Sout
u Outlet streams from unit u

P in
s,u Inlet stream properties for stream s to unit u

P out
s,u Outlet stream properties for stream s from unit u

UC Stream connection from stream s of unit u to stream s’ of unit u’

Iyield,u Set of inputs for yield prediction models of unit u

Iprop,u Set of inputs for property prediction models of unit u

Subscripts

in Inlet

out Outlet
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Processing Units

CDU Crude distillation unit

GHT Gasoil hydrotreating unit

KMX1 Kerosene mercaptan oxidation unit #1

KMX2 Kerosene mercaptan oxidation unit #2

LMX LPG mercaptan oxidation unit

LER Light ends recovery unit

NHT Naphtha hydrotreating unit

PLT Platforming unit

HMU Hydrogen manufacturing unit

DCU Delayed coker unit

HCR Hydrocracker unit

LBO Lube base oil unit

V DU Vacuum distillation unit

LER Mixer Mixer for light ends recovery unit

NHT Mixer Mixer for naphtha hydrotreating unit

PLT Mixer Mixer for platforming unit

DCU Mixer Mixer for delayed coker unit

HCRMixer Mixer for hydrocracker unit

Hypothetical Units

PURC Unit for all the purchased raw materials

SALES Unit for all the sold products

Properties

ACN Acid number

API API density

ARO Aromatics content

BENZ Benzene content

C1 C1 content

C2 C2 content
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CEN Cetane number

D05 Temperature at which 5% of the mixture boils

D10 Temperature at which 10% of the mixture boils

D95 Temperature at which 95% of the mixture boils

Fe Fe content

FP Flash point

H2S H2S content

NAPH Naphthenes content

PP Pour point

RON Research octane number

PAR Paraffins content

RV P Reed vapor pressure

SALT Salt content

SUL Sulfur content

V 60 Viscosity at 60 ◦C

V 100 Viscosity at 100 ◦C

Continuous Variables

F (s, u, s′, u′, t) Mass flow rate of stream s from unit u to unit u’ as stream s’ at period t

Fin(s, u, t) Inlet mass flow rate of stream s to unit u at period t

Fout(s, u, t) Outlet mass flow rate of stream s from unit u at period t

Y ield(s, u, t) Percent yield of outlet stream s from unit u at period t

Pin(p, s, u, t) Property p of inlet stream s to unit u at period t

Pout(p, s, u, t) Property p of outlet stream s from unit u at period t

Profit Total profit ($/day)

LossY ield(u, t) Percent loss yield of unit u at period t

UnitSlacks(u, t) Slacks for sum of yields for unit u at period t

Y ieldSlacks(s, u, t) Slacks for yield prediction of stream s from unit u at period t

PropSlacks(p, s, u, t) Slacks for property prediction of property p of stream s from unit u at period t

Inv(s, t) Initial inventory level for product s at the beginning of time period t

Inv0(s, t) Inventory level for product s at time period t after demands are satisfied

W (s, t) Mass flow rate of the waste stream s at period t
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Parameters

γ Weight parameter for the sum of slack variables in the objective function

βyield,0(s, u) Parameter for constant term in yield prediction equation of stream s from unit u

βyield,i(s, u) Parameter for linear terms in yield prediction equation of stream s from unit u

βyield,i,j(s, u) Parameter for bilinear and quadratic term in yield prediction equation of stream s from unit u

βprop,0(p, s, u) Parameter for constant term in yield prediction equation of property p stream s from unit u

βprop,i(p, s, u) Parameter for linear terms in yield prediction equation of property p of stream s from unit u

βprop,i,j(p, s, u) Parameter for bilinear and quadratic term in yield prediction equation of property p of stream

s from unit u

Fup
in (s, u) Upper bound on inlet mass flow rate of stream s to unit u

F low
in (s, u) Lower bound on inlet mass flow rate of stream s to unit u

Fup
out(s, u) Upper bound on inlet mass flow rate of stream s to unit u

F low
out (s, u) Lower bound on outlet mass flow rate of stream s from unit u

Y ieldup(s, u) Upper bound on percent yield of outlet stream s from unit u

Y ieldlow(s, u) Lower bound on percent yield of outlet stream s from unit u

Pup
in (p, s, u) Upper bound on property p of inlet stream s to unit u

P low
in (p, s, u) Lower bound on property p of inlet stream s to unit u

Pup
out(p, s, u) Upper bound on property p of outlet stream s from unit u

P low
out (p, s, u) Lower bound on property p of outlet stream s from unit u

OperatingCost(u) Operational cost of unit u as a function of unit throughput ($/ton)

Price(s, t) Price of product stream s ($/ton) at period t

Cost(s, t) Cost of raw material stream s ($/ton) at period t

InvCost(s, t) Inventory cost of storing product s ($/ton) at period t

CAPmin(u) Minimum capacity for unit u

CAPmax(u) Maximum capacity for unit u

MinDemand(s, t) Minimum demand requirement for product s at period t

MaxDemand(s, t) Maximum demand requirement for product s at period t
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APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 3

B.1 Nomenclature for the MINLP Process Synthesis Model

Process Units

The set of process units in the ammonia plant is outlined in Table B.1. Equation B.1 defines

these units formally. Multiple realizations of the same unit may occur within the process synthesis

framework. Such units operate with their own distinct set of operating conditions and are defined

as un, where n represents the n-th realization of a given unit. These units are modeled using binary

variables.

u ∈ U = {Complete set of process units listed in Table B.1} (B.1)
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Table B.1: Process units describing the ammonia plant are listed below. Multiple realizations of
the same unit may exist and are denoted with the subscript n.

Unit Name Unit Index Unit Name Unit Index

Process Inlets

Inlet Air IN-AIR Inlet Water IN-H2O

Inlet Natural Gas IN-NG Inlet Biomass IN-BIO

Process Outlets

Outlet Sequestered CO2 OUT-CO2 Outlet Wastewater OUT-WW

Outlet Vent OUT-V Outlet Ammonia OUT-NH3

Natural Gas Conversion

Autothermal Reformer ATRn Steam Methane Reformer SMRn

Primary Reformer AM-PR Secondary Reformer AM-SR

Biomass Gasification

Biomass Dryer BDR Biomass Dryer Air Heater X-BDR

Biomass Lockhopper BLK Biomass Gasifier BGSn

First Biomass Vapor Cyclone BC1 Second Biomass Vapor Cyclone BC2

Tar Cracker TCK Tar Cracker Splitter SP-TC

Tar Cracker Cooler X-TCK

Syngas Cleanup

Dedicated Reverse Water-Gas Shift Unit RGSn RGS Effluent Cooler X-RGS

HT Forward Water-Gas Shift Unit HT-WGS Raw Syngas Splitter SP-RS

High Temperature Shift AM-HTS Low Temperature Shift LTS

COS-HCN Hydrolyzer CHH NH3-HCl Stripper NHS

Acid Gas Flash Vapor Cooler X-AGF Acid Gas Flash 2-Phase Cooler X-AGFn

Acid Gas Flash Unit AGF Acid Gas Thermal Analyzer X-AGR

Rectisol Unit AGR-CREC aMDEA unit AM-CO2SEP

First CO2 Compressor CO2C CO2 Recycle Compressor CO2RC

CO2 Sequestration Compressor CO2SC Acid Gas Compressor AGC

LT Water-Gas Shift Unit LT-WGS Pressure Swing Adsorption Unit PSA

PSA Effluent Splitter SP-PSA PSA Hydrogen Preheater X-H2P

PSA Hydrogen Splitter SP-H2P PSA Hydrogen Compressor for ASL CMP-AM-H2

Liquid Nitrogen Was Unit AM-N2WASH Clean Acid Gas Splitter SP-AGR

Methanator AM-METH Dryer AM-DRYER1
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Table B.1: (continued)

Unit Name Unit Index Unit Name Unit Index

Water Electrolysis

Alkaline Electrolyzer AL-EYZ PEM Electrolyzer PEM-EYZ

Deionizer DEION Oxygen Compressor for AL-EYZ CMP-EYZ-O2

First Compressor for AL-EYZ CMP1-EYZ Second Compressor for AL-EYZ CMP12-EYZ

Electrolyzer Hydrogen Splitter SP-H2E

Air Separation

Air Compressor AC Air Separation Unit ASU

Oxygen Compressor OC Nitrogen Compressor CMP-N2

ASU Oxygen Preheater X-O2A OC Oxygen Splitter SP-O2C

OC Oxygen Preheater X-O2C

Ammonia Synthesis Loop

First Loop Compressor CMP-AM-HBR1 Second Loop Compressor CMP-AM-HBRn

Haber-Bosch Reactor HBRn Letdown Vessel AM-LETDOWN

Letdown Vapor Splitter SP-LV NH3-H2O Scrubber AM-SCRUB

NH3-H2O Distillation AM-DIST Dryer AM-DRYER2

Second Recycle Splitter SP-HB-O Membrane Separator AM-MEMBRANE

Haber-Bosch Reactor HBRn Letdown Vessel AM-LETDOWN

First Recycle Compressor CMP-LET-REC Second Recycle Compressor CMP-AM-REC

Recycle Gas Treatment

Light Gas Compressor LGC Light Gas Splitter SP-LG

Fuel Combustor FCM Fuel Combuster Effluent Cooler X-FCM

Fuel Combustor Flash Unit FCF First Gas Turbine Air Compressor GTAC1

Second Gas Turbine Air Compressor GTAC2 Gas Turbine Combustor GTC

First Gas Turbine GT1 Second Gas Turbine GT2

Gas Turbine Effluent Cooler X-GT Gas Turbine Flash Unit GTF

Gas Turbine Effluent Compressor GTEC CO2 Recovery Unit CO2R

Water Treatment

Biological Digestor BD Reverse Osmosis RO

Cooling Tower CLTR Process Cooling COOL-P

Heat & Power System HEP Heat & Power Utilities HEAT-P

Deaerator DEA Process Water Economizer X-WPR

Process Water Boiler X-WBL
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Process Species

All the species that exist in the ammonia plant are included in Table B.2. Equation B.2 defines

these species formally.

s ∈ S = {Complete set of species listed in Table B.2} (B.2)

Table B.2: Species present in the ammonia plant

Species Name Species Index Species Name Species Index Species Name Species Index

Light Non-Hydrocarbon Gases

Oxygen O2 Nitrogen N2 Argon Ar

Nitric Oxide NO Nitrous Oxide N2O Water H2O

Carbon Monoxide CO Hydrogen H2 Carbon Dioxide CO2

Hydrocarbons

Methane CH4 Acetylene C2H2 Ethylene C2H4

Ethane C2H6 Propylene C3H6 Propane C3H8

Isobutylene iC4H8 1-Butene nC4H8 Isobutane iC4H10

Methanol CH3OH

Products

Ammonia NH3
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Indices/Sets

The indices used in the process synthesis mathematical model are the following.

u : Process unit index

s : Species index

a : Atom index

p : Proximate analysis index

r : Reaction index

pr : Set of products

i : General counting index

As mentioned earlier, the complete set of process units is defined as U . Several subsets of units are

defined for specific sections of the GTL refinery. Examples of these subsets are shown below.

UATR = {u : u = ATRn}

USMR = {u : u = SMRn}

UHBR = {u : u = HBRn}

UCMP−AM−HBR = {u : u = CMP-AM-HBRn}

u ∈ UFl = {Set of flash units}

u ∈ USp = {Set of splitter units}

The set of all atoms, A, includes C, H, O, N, S, Cl, and Ar as illustrated below.

a ∈ A = {C, H, O, N, S, Cl, Ar}
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The list of all unit connections, UC, is presented below.

UC = {(u, u′) : ∃ a connection between unit u and unit u′ in the superstructure}

Using a priori knowledge about each unit in the ammonia plant, the set of species that can exist

in a stream from unit u to unit u′ is known and defined as SUCu,u′ . The set (u, u′, s) ∈ SUF is then

constructed from all streams in UC. Likewise, the set of all species s that exist within a given unit

u is also delineated as SU .

SUF = {(u, u′, s) : ∃s ∈ SUCu,u′}

SU = {(s, u) : ∃(u, u′, s) ∈ SUF or ∃(u′, u, s) ∈ SUF}

Parameters

The atomic weight of atoms a (AWa) andARs,a are then used to calculate the molecular weight

of species s (MWs) from Equation B.3.

AWa : Atomic weight of atom a

MWs =
∑
a

AWa · ARs,a (B.3)

For flash separation units equilibrium split fraction of stream s leaving unit u, KV LE
u,s , is taken from

Aspen Plus simulations and shown as:

KV LE
u,s : Vapor-liquid equilibrium split fraction of stream s leaving unit u

For equilibrium limited reactions, reaction equilibrium constant for reaction r taking place in unit

u,Kr
u, is taken from Aspen Plus and shown as:

Kr
u : Reaction equilibrium constant for reaction r taking place in unit u
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The coefficients of reactions are taken from reaction stoichiometry and entered as:

νr,s : Coefficient of species s in reaction r

Variables

Continuous variables are used to model the species molar flow rates (NS
u,u′,s), the total molar

flow rates (NT
u,u′), the extent of reaction in a process unit (ξur ), the molar composition of a stream

(xSu,u′,s), the split fraction of a stream between two units (spu,u′), the total stream enthalpy flow rate

(HT
u,u′), the heat lost from a unit (QL

u ), the heat transferred to or absorbed from a unit (Qu), the

delivered cost of feedstock (Costf ), the cost of CO2 sequestration (CostSeq), the cost of electricity

(CostEl), and the levelized unit investment cost (CostUu ). The subscripts u and u′ are both denote

an element of the set U and can be used interchangeably in the stream flow indices.

NS
u,u′,s : Molar flow of species s from unit u to unit u′

NT
u,u′ : Total molar flow from unit u to unit u′

ξur : Extent of reaction r in unit u

xSu,u′,s : Molar composition of species s from unit u to unit u′

spu,u′ : Split fraction of stream going from unit u to unit u′

HT
u,u′ : Total enthalpy flow from unit u to unit u′

QL
u : Heat lost from unit u

Qu : Heat transferred to or absorbed from from unit u

Costf : Total delivered cost of feedstocks

CostSeq : Total sequestration cost of CO2

CostEl : Total cost of electricity

CostUu : Total levelized cost of unit u
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Binary variables (yu) are used to represent the logical existence of a process unit in the

mathematical model. Only a few specific process units require binary variables as many of the

units in the ammonia plant are always required.

yu : Logical existence of process unit u (i.e., it takes the value of one if unit u is selected

and zero otherwise)
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B.2 The Mathematical Model

General Constraints

Material Balances

Species Balances

∑
(u′,u)∈UC

NS
u′,u,s −

∑
(u,r,s′)∈RU

νr,s
νr,s′
· ξur −

∑
(u,u′)∈UC

NS
u,u′,s = 0 ∀s ∈ SUu , u ∈ UBal

Sp (B.4)

Extent of Reaction

ξur − fcur ·
∑

(u′,u,s)∈SUF

NS
u′,u,s = 0 ∀(u, r, s) ∈ RU (B.5)

Atom Balances

∑
(u′,u,s)∈SUF

ARs,a ·NS
u′,u,s −

∑
(u,u′,s)∈SUF

ARs,a ·NS
u,u′,s = 0 ∀a ∈ AUu , u ∈ UBal

At (B.6)

Total Mole Balance

NT
u′,u −

∑
(u,u′,s)∈SUF

NS
u′,u,s = 0 ∀(u, u′) ∈ UC (B.7)

Process Splitters

Set Unit Split Fractions

NS
u,u′,s −

∑
(u′,u′′)∈UC

spu′,u′′ ·NS
u′,u′′,s = 0 ∀(u, u′, s) ∈ SUF , u ∈ USp (B.8)
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Split Fractions Sum to 1

∑
(u,u′,s)∈SUF

xSu,u′,s − 1 = 0 ∀(u, u′) ∈ UCComp (B.9)

Flash Units

Upper Bound of Liquid Phase Split Fraction

xSu,uL,s −min{1,
1

KV LE
u,s

} ≤ 0 ∀(u, uL, s) ∈ SUF , u ∈ UFl (B.10)

Upper Bound of Vapor Phase Split Fraction

xSu,uV ,s −min{1, K
V LE
u,s } ≤ 0 ∀(u, uV , s) ∈ SUF , u ∈ UFl (B.11)

Set Liquid Phase Split Fraction

xSu,uL,s ·N
T
u,uL
−NS

u,uL,s
= 0 ∀u ∈ UFl (B.12)

Set Vapor Phase Split Fraction

xSu,uV ,s ·N
T
u,uV
−NS

u,uV ,s
= 0 ∀u ∈ UFl (B.13)

Set Phase Equilibrium

xSu,uV ,s −K
V LE
u,s · xSu,uL,s = 0 ∀u ∈ UFl (B.14)
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Heat Balances

Conservation of Energy

∑
(u,u′)∈UC

HT
u,u′ −

∑
(u′,u)∈UC

HT
u′,u −Qu −QL

u −Wu = 0 ∀u ∈ U/UAgg (B.15)

Total Heat Balance

HT
u,u′ −

∑
(u,u′,s)∈SUF

HS
u,u′,s = 0 ∀(u, u′) ∈ UC (B.16)

Logical Unit Existence

Bound on Molar Flows

∑
(u′,u)∈UC

NT
u′,u − UBN

u · yu ≤ 0 ∀u ∈ UEx (B.17)

Upper Bound on Inlet Enthalpy Flow

HT
u′,u − UBH

u′,u · yu ≤ 0 ∀(u′, u) ∈ UC, u ∈ UEx (B.18)

Lower Bound on Inlet Enthalpy Flow

LBH
u′,u · yu −HT

u′,u ≤ 0 ∀(u′, u) ∈ UC, u ∈ UEx (B.19)

Upper Bound on Outlet Enthalpy Flow

HT
u,u′ − UBH

u′,u · yu ≤ 0 ∀(u, u′) ∈ UC, u ∈ UEx (B.20)
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Lower Bound on Outlet Enthalpy Flow

LBH
u,u′ · yu −HT

u,u′ ≤ 0 ∀(u, u′) ∈ UC, u ∈ UEx (B.21)

Process Inlets

Known Stream Compositions

Set Stream Compositions for Inlet Streams

NS
u,u′,s − xKu,s ·NT

u,u′ = 0 ∀(u, u′, s) ∈ SUF , u = {INAIR,INNG} (B.22)

Greenhouse Gas Emissions Reduction

Set Reduction from Petroleum Based Processes

GHGGTO −GHGRed · (GHGPet +GHGElec +GHGChem) = 0 (B.23)

Sum Emissions from GTO Components

GHGGTO −GHGSeq −GHGProc −GHGFeed = 0 (B.24)

Set Emissions from Feedstock Acquisition

GHGFeed −
∑
u∈UIn

∑
(u,u′,s)∈SUF

GHGT
s ·MWs ·NS

u,u′,s = 0 (B.25)

Set Emissions from CO2 Sequestration

GHGSeq −GHGT
CO2 ·MW − CO2 ·NS

CO2SC,OUTCO2,CO2 = 0 (B.26)
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Set Emissions from CO2 Venting

GHGProc −MWCO2 ·NS
CO2R,OUTV,CO2 = 0 (B.27)

Natural Gas Conversion

Steam Methane Reformer and Primary Reformer

SMR and AM-PR units are modeled with the same equations. Here the modeling equations

are shown for SMR unit.

Logical Use of One Temperature

∑
u∈USMR

yu − 1 = 0 (B.28)

Water-Gas-Shift Equilibrium

NS
u,u′,CO2

·NS
u,u′,H2

−KRGS
u ·NS

u,u′,CO ·NS
u,u′,H2O = 0 ∀(u, u′) ∈ UC, u ∈ USMR (B.29)

CH4 Steam Reforming Equilibrium

xSu,u′,CO · xSu,u′,H2

3 −KSR
u,CH4

· xSu,u′,CH4
· xSu,u′,H2O = 0 ∀(u, u′) ∈ UC, u ∈ USMR (B.30)

Bypass of Inert Species

∑
(u′,u,s)∈SUF

NS
u′,u,s −

∑
(u,u′,s)∈SUF

NS
u,u′,s = 0 ∀u ∈ U_SMR, s ∈ SInSMR (B.31)

Autothermal Reformer and Secondary Reformer

Both ATR and AM-SR units are modeled with the same equations. Here the modeling

equations are shown for ATR unit.
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Logical Use of One Temperature

∑
u∈U_ATR

yu − 1 = 0 (B.32)

Water-Gas-Shift Equilibrium

NS
u,u′,CO2

·NS
u,u′,H2

−KRGS
u ·NS

u,u′,CO ·NS
u,u′,H2O = 0 ∀(u, u′) ∈ UC, u ∈ UATR (B.33)

CH4 Steam Reforming Equilibrium

xSu,u′,CO · xSu,u′,H2

3 −KSR
u,CH4

· xSu,u′,CH4
· xSu,u′,H2O = 0 ∀(u, u′) ∈ UC, u ∈ UATR (B.34)

Bypass of Inert Species

∑
(u′,u,s)∈SUF

NS
u′,u,s −

∑
(u,u′,s)∈SUF

NS
u,u′,s = 0 ∀u ∈ U_ATR, s ∈ SInATR (B.35)

Biomass Conversion

Biomass Drier

Upper Bound for Biomass Drier Activation

MWH2O ·NS
u,u′,H2O−

MT_Bio ·
∑

(u,u′,s)∈SUF

MWs ·NS
u,u′,s

−UB · yu

≤ 0 (u, u′) = (INBIO, BDR) (B.36)
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Lower Bound for Biomass Drier Activation

MT_Bio ·
∑

(u,u′,s)∈SUF

MWs ·NS
u,u′,s−

MWH2O ·NS
u,u′,H2O − UB · (1− yu)

≤ 0 (u, u′) = INBIO, BDR (B.37)

Upper Bound for Biomass Drier Moisture Evaporation

MT_Bio ·
∑

(u,u′,s)∈SUF

MWs ·NS
u,u′,s−

MWH2O ·NS
u,u′,H2O − UB · (1− yu)

≤ 0 (u, u′) = (BDR,BLK) (B.38)

Lower Bound for Biomass Drier Moisture Evaporation

MWH2O ·NS
u,u′,H2O−

MT_Bio ·
∑

(u,u′,s)∈SUF

MWs ·NS
u,u′,s

−UB · (1− yu)

≤ 0 (u, u′) = (BDR,BLK) (B.39)

Gasifier Lockhopper

Set CO2 Lockhopper Flow Rate

MWCO2 ·NS
CO2C2,BLK,CO2

−mfu ·
∑
s∈SBio

MWs ·NS
BDR,BLK,s = 0 (B.40)

Biomass Gasifier

Water-Gas-Shift Equilibrium

Nu,BC1,CO ·Nu,BC1,H2O −KRGS
u ·Nu,BC1,CO2 ·Nu,BC1,H2 = 0 ∀u ∈ UBGS (B.41)
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Hydrocarbon Conversion Fraction

MWs ·Nu,BC1,s −
∑

(u′,u,s)∈SUF

cfHCu,s ·MS,Calc
s = 0 ∀s ∈ SHC , u ∈ UBGS (B.42)

Hydrocarbon Generation from Pyrolysis

S,Calc
s −

∑
s′∈SBio

∑
(u′,u,s′)∈SUF

PyrHCs,s′ ·MWs ·NS
u′,u,s′ −

∑
(u′,u)∈UC

MWs ·NS
u′,u,s

= 0

u ∈ UBGS

(B.43)

Set Ratio of NO to N2O

Nu,BC1,NO − sru, NO
N2O
·Nu,BC1,N2O = 0 ∀u ∈ UBGS (B.44)

Set Ratio of HCN to NH3

Nu,BC1,HCN − sru,HCN
NH3

·Nu,BC1,NH3 = 0 ∀u ∈ UBGS (B.45)

Set Amount Input Nitrogen to NH3 and N2

Nu,BC1,NH3 + 2 ·Nu,BC1,N2 − nfu ·
∑

(u,BC1,s)∈SUF

NS
u,BC1,s · ARs,N = 0 ∀u ∈ UBGS (B.46)

Set Ratio of NH3 to N2

Nu,BC1,NH3 − (a1
u,N2

+ a2
u,N2
· Tu) · (Nu,BC1,NH3 + 2 ·Nu,BC1,N2) = 0 ∀u ∈ UBGS (B.47)

Set Ratio of COS to H2S

Nu,BC1,COS − sru,COS
H2S
·Nu,BC1,H2S = 0 ∀u ∈ UBGS (B.48)
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Amount of Char Production

WChar ·NS
u,BC1,Char − (a1

u,Char + a2
u,Char · Tu) ·

∑
s∈SBio

MWs ·NS
BLK,u,s

= 0

∀u ∈ UBGS

(B.49)

Rate of Ash Removal

NS
u,OUT_ASH,Ash − sfu,Ash ·

∑
(u′,u)∈UC

NS
u′,u,Ash = 0 ∀u ∈ UBGS (B.50)

Gasifier Heat Loss

QL
u + hlu ·

∑
s∈SBio

MWs ·NS
BLK,u,s · LHVs = 0 ∀u ∈ UBGS (B.51)

Logical Use of One Gasifier Temperature

∑
u∈UBGS

yu − 1 = 0 (B.52)

Biomass Gasifier Solids

Removal of Solids from First Cyclone

rfBC1 ·NT
BGS,BC1 −NT

BC1,BGS = 0 (B.53)

Removal of Solids from Second Cyclone

rfBC2 ·NT
BC1,BC2 −NT

BC2,BGS = 0 (B.54)
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Water Electrolysis

Set Alkaline Electrolyzer Hydrogen Production

NS
DEION,AL-EYZ,H2O · convAL-EYZ· = NS

AL-EYZ,CMP-EYZ,H2
(B.55)

Set PEM Electrolyzer Hydrogen Production

NS
DEION,AL-PEM,H2O · convPEM-EYZ· = NS

AL-EYZ,MX-H2E,H2
(B.56)

Select Only One Type of Electrolyzer

yAL-PEM + yPEM-PEM = 1 (B.57)

Rectisol Unit

Set CO2 Molar Fraction in Clean Output

NS
AGR-CREC,SP_AGR-CREC,CO2

− rfAGR-CREC ·NT
AGR-CREC,SP_CG = 0 (B.58)

Set CO2 Output Flow Rates

NT
AGR-CREC,CO2C − sfAGR · (NT

AGR-CREC,CO2C +NT
AGR-CREC,MX_CO2RC) = 0 (B.59)

aMDEA Unit

Set CO2 Molar Fraction in Clean Output

NS
AM-CO2SEP,SP_AM-CO2SEP,CO2

− rfAM-CO2SEP ·NT
AM-CO2SEP,SP_CG = 0 (B.60)
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Set CO2 Output Flow Rates

NT
AM-CO2SEP,CO2C − sfAGR · (NT

AM-CO2SEP,CO2C +NT
AM-CO2SEP,MX_CO2RC) = 0 (B.61)

Pressure-Swing Adsorption

Set Recovery Fraction of H2 from Inlet

NS
PSA,SP_H2P,H2

−RevH2
PSA ·

∑
(u,PSA)∈UC

NS
u,PSA,H2

= 0 (B.62)

Set Inlet Mole Fraction of H2

∑
(u,PSA)∈UC

NS
u,PSA,H2

− InH2
PSA ·

∑
(u,PSA)∈UC

NT
u,PSA = 0 (B.63)

Haber-Bosch Reactor

Calculate Extent of Reaction

HBRConv = A+B · T + C · P +D · xsuc,H2
+ E · xsuc,N2

+ F · xsuc,NH3
+G · xsuc,sinert

(B.64)

Calculate Outlet Flow Rate of Hydrogen for Hydrogen as the Limiting Reactant

NS
uc2,H2

= NS
uc,H2

· (1−HBRConv) (B.65)

Calculate Outlet Flow Rate of Nitrogen for Hydrogen as the Limiting Reactant

NS
uc2,N2

= NS
uc,N2

− (1/3) · (NS
uc,H2

−NS
uc2,H2

) (B.66)
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Calculate Outlet Flow Rate of Ammonia for Hydrogen as the Limiting Reactant

NS
uc2,NH3

= NS
uc,NH3

+ (2/3) · (NS
uc,H2

−NS
uc2,H2

) (B.67)

Calculate Outlet Flow Rate of Hydrogen for Nitrogen as the Limiting Reactant

NS
uc2,H2

= NS
uc,H2

− 3 · (NS
uc,N2

−NS
uc2,N2

) (B.68)

Calculate Outlet Flow Rate of Nitrogen for Nitrogen as the Limiting Reactant

NS
uc2,N2

= NS
uc,N2

· (1−HBRConv) (B.69)

Calculate Outlet Flow Rate of Ammonia for Nitrogen as the Limiting Reactant

NS
uc2,NH3

= NS
uc,NH3

+ 2 · (NS
uc,N2

−NS
uc2,N2

) (B.70)

Recycle Gas Treatment

Fuel Combustor

Set Inlet Combustor Oxygen Level

∑
(u,FCM)∈UC

NS
u,FCM,O2

− erFCM ·
∑

(SP_LG,FCM,s)∈SUF

NS
SP_LG,FCM,s · sors = 0 (B.71)

Gas Turbine

Set Air Leakage From First Compressor

NS
GTAC1,OUT_V,s − lk_GTAC1 ·NS

IN_AIR,GTAC1,s = 0 ∀(GTAC1, s) ∈ SU (B.72)
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Set Air Bypass From First Compressor

NS
GTAC1,GT2,s − by_GTAC1 ·NS

IN_AIR,GTAC1,s = 0 ∀(GTAC2, s) ∈ SU (B.73)

Set Inlet Oxygen Flow Rate in Combustor

erGTC ·
∑

(u,GTC,s)∈SUF

sors ·NS
u,GTC,s −

∑
(u,GTC,s)∈SUF

NS
u,GTC,O2 = 0 (B.74)

Set Heat Loss in Combustor

QL
GTC − hl_GTC · (HT

SP_LG,GTC −HT
X_GTF,GTF) = 0 (B.75)

Wastewater Treatment

Biological Digestor

Set Biogas Ratio of CH4 to CO2

NS
BD,CC,CH4

− crBD ·NS
BD,CC,CO2

= 0 (B.76)

Reverse Osmosis

Set Removal Fraction of Solids

NS
RO,SP_RO,s − rfRO ·NS

MX_RO,RO,s = 0 ∀s ∈ SSol (B.77)

Cooling Cycle

Cooling Tower Flow Rate from Energy Requirement

QC − hrCOOL-P ·NS
CLTR,COOL-P,H2O = 0 (B.78)
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Cooling Tower Evaporation Loss

NEvap
CLTR − 0.00085 ·∆TCLTR ·NS

CLTR,COOL-P,H2O = 0 (B.79)

Cooling Tower Drift Loss

NDrift
CLTR − 0.001 ·NS

MX_CLTR,CLTR,H2O = 0 (B.80)

Sum Total Cooling Tower Losses

NEvap
CLTR +NDrift

CLTR −NS
CLTR,OUT_V,H2O = 0 (B.81)

Set Known Cooling Tower Output Solid Concentrations

xKnCLTR,SP_CLTR,s ·NT
CLTR,SP_CLTR −NS

CLTR,SP_CLTR,s = 0 ∀s ∈ SSol (B.82)

Steam Cycle

Set Known Process Steam Boiler Output Solid Concentrations

xKnX_PWB,MX_BLR,s ·NT
X_PWB,MX_BLR −NS

X_PWB,MX_BLR,s = 0 ∀s ∈ SSol (B.83)

Set Known Heat Engine Boiler Output Solid Concentrations

xKnHEP,MX_BLR,s ·NT
HEP,MX_BLR −NS

HEP,MX_BLR,s = 0 ∀s ∈ SSol (B.84)

Outlet Wastewater

Upper Bound on Output Wastewater Concentrations

NS
MX_WW,OUT_V,s − xMax

MX_WW,OUT_V,s ·NT
MX_WW,OUT_V ≤ 0 ∀s ∈ SWW (B.85)
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Air Separation

Air Separation Unit

Recovery Fraction of O2

NS
ASU,OUT_V,s − (1− sfASU) ·NS

AC,ASU,s = 0 ∀s ∈ SUASU (B.86)

Process Hot/Cold/Power Utility Requirements

Set Electricity Needed for Process Units

QEl
P −

∑
u∈UUtil

Su · ElBaseu = 0 (B.87)

Set Cooling Water Needed for Process Units

QCW
P −

∑
u∈UUtil

Su · CWBase
u = 0 (B.88)

Set Heating Fuel Needed for Process Units

QFCM −
∑

u∈UUtil

Su · FBase
u = 0 (B.89)

Set Utilities Needed for Process Units

QHU
u,ut − Su · UBase

u,ut = 0 ∀ut, u ∈ UUtil (B.90)
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Process Costs

Feedstock Costs

Levelized Cost of Natural Gas Feedstock

CostNG =
∑

(IN_NG,u)∈UC

(
∑

s∈SNG

MWs ·NS
IN_NG,u,s) · CF

NG

Prod
(B.91)

Levelized Cost of Freshwater Feedstock

CostH2O =
MW_H2O ·NS

IN_H2O,SP_WRI,H2O · CF
H2O

Prod
(B.92)

Levelized Cost of Ammonia

CostNH3 =
∑

(u,OUT_NH3)∈UC

(
∑

s∈SNH3

MWs ·NS
u,OUT_NH3,s) · CP

NH3

Prod
(B.93)

Electricity Costs

Levelized Cost of Electricity

CostEl =
FEl
In · CEl

In − FEl
Out · CEl

Out

Prod · LHVProd
(B.94)

CO2 Sequestration Costs

Levelized Cost of CO2 Sequestration

CostSeq =
MW_CO2 ·NS

CO2SC,OUT_CO2,CO2 · CSeq

Prod · LHVProd
(B.95)
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Levelized Investment Costs

Total Overnight Cost of Process Units

TOCu = (1 + ICu) · (1 +BOPu) · Co,u · (
Su
So,u

)sfu (B.96)

Variable Capital Costs of Process Units

CCu = LCCR · IDCF · TOCu (B.97)

Levelized Cost of Process Units

CostUu =
CCu · (1 +OM)

CAP · Prod·
(B.98)

Objective Function

Levelized Cost of Fuels Production

MIN
∑

f∈Feed
Costf + CostEl + CostSeq +

∑
u∈UInv

CostUu − SalesLPG (B.99)
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Simultaneous Heat, Power, and Water Integration

Pinch Points

Set Pinch Points Based on Inlet Temperatures



Tpi = THP−inu,u′ ∀(u, u′) ∈ HP ; Tpi = Tu ∀u ∈ HPtHB;

Tpi = Tut ∀(ut, pi) ∈ HPt− PIUt;

Tpi = T PC−inb,c,t ∀(b, c, t) ∈ HEP ; Tpi = Tc

Tpi = TCP−inu,u′ + ∆T ∀(u, u′) ∈ CP ; Tpi = TEC−inb,c + ∆T ∀(b, c) ∈ CPEC ;

Tpi = T SH−inb,t + ∆T ∀(b, t) ∈ CP SH ;

Tpi = Tut + ∆T ∀(ut, pi) ∈ CPt− PIUt;

Tpi = Tb + ∆T



(B.100)

Temperature Differences

Process Unit Hot Stream Inlets

∆THP−inu,u′,pi = max{0, THP−inu,u′ − Tpi} (B.101)

Process Unit Hot Stream Outlets

∆THP−outu,u′,pi = max{0, THP−outu,u′ − Tpi} (B.102)

Process Unit Cold Stream Inlets

∆TCP−inu,u′,pi = max{0, TCP−inu,u′ − (Tpi −∆T )} (B.103)

Process Unit Cold Stream Outlets

∆TCP−outu,u′,pi = max{0, TCP−outu,u′ − (Tpi −∆T )} (B.104)
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Heat Engine Precooler Inlets

∆T PC−inb,c,t,pi = max{0, T PC−inb,c,t − Tpi} (B.105)

Heat Engine Precooler Outlets

∆T PC−outb,c,t,pi = max{0, T PC−outb,c,t − Tpi} (B.106)

Heat Engine Economizer Inlets

∆TEC−inb,c,pi = max{0, TEC−inb,c − (Tpi −∆T )} (B.107)

Heat Engine Economizer Outlets

∆TEC−outb,c,pi = max{0, TEC−outb,c − (Tpi −∆T )} (B.108)

Heat Engine Superheater Inlets

∆T SH−inb,t,pi = max{0, T SH−inb,t − (Tpi −∆T )} (B.109)

Heat Engine Superheater Outlets

∆T SH−outb,t,pi = max{0, T SH−outb,t − (Tpi −∆T )} (B.110)

Heat Engine Logical Existence

Bound on Heat Engine Flow Rate

FUp
b,c,t · y

En
b,c,t ≥ FEn

b,c,t ∀(b, c, t) ∈ HEP (B.111)

199



Bound on Total Amount of Heat Engines

∑
(b,c,t)∈HEP

yEnb,c,t ≤ EnMax (B.112)

Heat Balances

Heat Engine Electricity Balance

∑
(b,c,t)∈HEP

(wTurb,c,t − wPumb,c,t ) · FEn
b,c,t = FEl (B.113)

Upper Heat Balance for Pinch Points

QH
pi =

∑
(u,u′)∈HP

∑
s

N s
u,u′,s · CpPu,u′,s · (∆THP−inu,u′,pi −∆THP−outu,u′,pi )

+
∑

(b,c,t)∈HEP
FEn
b,c,t · CpHE−P · (∆T PC−inb,c,t,pi −∆T PC−outb,c,t,pi )

+
∑

(ut,pi)∈HPt−PIUt

∑
(u,ut)∈HPt

QHU
u,ut +

+
∑

(u,pi)∈HPt−PIHB

Qu +
∑
b

∑
(c,pi)∈HPt−PIC

∑
t

FEn
b,c,t · dHC

c (B.114)

Lower Heat Balance for Pinch Points

QC
pi =

∑
(u,u′)∈CP

∑
s

N s
u,u′,s · CpPu,u′,s · (∆TCP−outu,u′,pi −∆TCP−inu,u′,pi )

+
∑

(b,c,t)∈HEP
FEn
b,c,t · CpHE−E · (∆TEC−outb,c,pi −∆TEC−inb,c,pi )

+
∑

(b,c,t)∈HEP
FEn
b,c,t · CpHE−S · (∆T SH−outb,t,pi −∆T SH−inb,t,pi )

+
∑

(ut,pi)∈CPt−PIUt

∑
(u,ut)∈CPt

QHU
u,ut +

∑
(b,pi)∈CPt−PIB

∑
c

∑
t

FEn
b,c,t · dHB

b (B.115)

Pinch Point Heating Deficit

zpi = QC
pi −QH

pi (B.116)
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Negativity of Pinch Deficits

zpi ≤ 0 (B.117)

Total Heating Deficit

Ω−Qc = 0 (B.118)

Total Heat Balance

Ω =
∑

(u,u′)∈HP

∑
s

N s
u,u′,s · CpPu,u′,s · (THP−inu,u′ − THP−outu,u′ )

+
∑

(b,c,t)∈HEP
FEn
b,c,t · CpHE−P · (T PC−inb,c,t − T PC−outb,c,t )

+
∑

(u,ut)∈HPt
QHU
u,ut +

∑
u∈HPtHB

Qu +
∑

(b,c,t)∈HEP
FEn
b,c,t · dHC

c

−
∑

(u,u′)∈CP

∑
s

N s
u,u′,s · CpPu,u′,s · (TCP−outu,u′ − TCP−inu,u′ )

−
∑

(b,c,t)∈HEP
FEn
b,c,t · CpHE−E · (TEC−outb,c − TEC−inb,c )

−
∑

(b,c,t)∈HEP
FEn
b,c,t · CpHE−S · (T SH−outb,t − T SH−inb,t )

−
∑

(u,ut)∈CPt
QHU
u,ut −

∑
(b,c,t)∈HEP

FEn
b,c,t · dHB

b (B.119)
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B.3 The Process Superstructure

Light Gas Handling

The light gases (C1/C2 hydrocarbons, unreacted syngas, and inert species) are handled in two

different ways. An internal loop design recycles the light gases back to process units such as the

reformers, chemical looping FRs, MEOHS, FT units, and pressure swing absorption to increase the

overall conversion to desired products. To avoid a build-up of inert species, not all the light gases

can be recycled. As such, a split of the light gases is purged through an external loop configuration.

In this loop, the purged gases are sent to either a fuel combustor or gas turbine to provide heat or

electricity for the process, respectively. Based on GHG emissions constraints, the effluent from

these units is either vented or sent to a CO2 recovery unit.

FCM
Fuel 

Combuster 

Knockout 
water

GTC
Gas Turbine
Combustor

FCF
Fuel Combuster 

Flash

AGR2
CO2 Recovery 

Unit

Recovered CO2

CO2

GTF
Gas Turbine 

Flash

Knockout 
water

Natural Gas Recycle Gases

INAIR
Input Air

INAIR
Input Air

OUTV
Output Vent

Figure B.1: Light gas handling section.

Air Separation

Pressure swing absorption (PSA) or EYZ can deliver high purity H2 (>90%) to any process

unit that requires it. Similarly, high purity O2 (>99%) can be supplied through an ASU or EYZ.
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Pressure 
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Water
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SPH2

SPPSA

PSA Offgas

Clean/Dry 
Syngas 
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WGS 
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Water Gas 

Shift 
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Steam
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MXPSA

H2 (to process)
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Input Air

OUTV
Vented Oxygen

OUTV
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Figure B.2: Air separation section.

Wastewater Treatment

The wastewater from various process units is treated with a sour stripper and a biological

digestor. A reverse osmosis unit and a cooling tower further purifies the treated water. Along with

any necessary fresh water input, the treated water is heated in boilers to generate steam for the

process. Excess purified water is discharged.
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Figure B.3: Process wastewater treatment section.
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Figure B.4: Utility wastewater treatment section.
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B.4 Data-driven Modeling of the Haber-Bosch Reactor

We did not use an equilibrium model for the ammonia synthesis reactors because the conversion

does not reach the equilibrium value. Instead, the reactors are modeled through a data-driven

approach using a data set of 25 industrial (Imperical Chemical Industries, Kellogg Brown &

Root, Haldor Topsøe, Uhde GmbH, Casale) and experimental values. We employ a bootstrapping

technique to create random samples of size 55. Regression models with different linear and

nonlinear terms are then fitted and best model is selected based on 5-fold cross-validation. In

the selected model, we allowed the conversion Xr, based on the limiting reactant of either H2 or

N2, to be linearly dependent on inlet composition, temperature, and pressure (Eq. B.121).

N2 + 3H2 → 2NH3 (B.120)

Xr(T, P, yi) = (−3.8404× 10−1) + (−6.7630× 10−1) · T + (9.4042× 10−2) · P

+(3.4163× 10−1) · yH2 + (2.1362× 10−1) · yN2 + (9.4756× 10−2) · yInert (B.121)

The fitted parameters are determined from the data-driven approach. We separate our dataset into

training, validation, and testing subsets. After performing 5-fold cross-validation with the training

and validation sets, we test the fitted parameters on the testing data not included in training and

validation. The data set is shown in Table B.3.

Statistics of the cross validated linear models are shown in Table B.4.

We observe that the linear model closely approximates the actual conversion values. After

calculating the conversion, amount of ammonia produced in the reactor is determined using

reaction stoichiometry. For example, if N2 is the limiting reactant, the following equations are

used:

N out
2 = N in

2 (1−Xr) (B.122)

Hout
2 = H in

2 − 3(N in
2 −N out

2 ) (B.123)
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Table B.3: Data set for data-driven modeling of Haber-Bosch Reactor.

# Tout (◦C) P (bar) yH2 yN2 yNH3 Inert H2/N2 Conversion References
1 354 171.0 0.659 0.210 0.018 0.113 3.14 0.313 US 5,736,116
2 401 171.0 0.650 0.240 0.020 0.090 2.71 0.368 US 5,736,116
3 395 85.6 0.660 0.220 0.040 0.080 3.00 0.201 US 4,681,745
4 438 93.0 0.620 0.280 0.050 0.050 2.21 0.197 US 4,681,745
5 370 199.0 0.653 0.217 0.010 0.120 3.01 0.287 US 6,171,570
6 432 104.0 0.650 0.216 0.037 0.097 3.01 0.219 US 4,695,442
7 402 85.5 0.605 0.275 0.038 0.082 2.20 0.143 US 4.778.662
8 473 128.0 0.625 0.215 0.023 0.137 2.91 0.214 Gaines
9 450 127.0 0.667 0.230 0.022 0.081 2.90 0.207 Azarhoosh
10 480 200.0 0.639 0.213 0.013 0.135 3.00 0.212 Azarhoosh
11 455 229.0 0.670 0.222 0.028 0.081 3.02 0.305 Singh
12 440 179.0 0.651 0.196 0.032 0.121 3.32 0.295 Singh
13 440 210.0 0.621 0.206 0.032 0.141 3.01 0.311 Singh
14 438 283.0 0.650 0.219 0.052 0.079 2.97 0.287 Singh
15 460 272.0 0.658 0.212 0.030 0.100 3.10 0.317 Singh
16 443 362.0 0.595 0.188 0.030 0.187 3.16 0.370 Singh
17 469 185.0 0.612 0.235 0.042 0.111 2.60 0.269 Appl
18 460 177.0 0.682 0.227 0.043 0.048 3.00 0.246 US 4,296,085
19 460.3 144.0 0.672 0.224 0.020 0.084 3.00 0.210 US 4,755,362
20 459.5 146.0 0.672 0.224 0.020 0.084 3.00 0.246 US 4,755,362
21 448 240.0 0.658 0.219 0.018 0.105 3.00 0.338 US 6,214,296 B1
22 350 134.0 0.736 0.254 0.000 0.010 2.90 0.430 US 6,955,797
23 453 88.6 0.622 0.309 0.020 0.050 2.01 0.331 US 20080161428 A1
24 455 88.6 0.627 0.309 0.019 0.045 2.03 0.332 US 20080161428 A1
25 472 265.8 0.634 0.211 0.035 0.120 3.00 0.338 US 4,181,701
26 419 105.0 0.656 0.222 0.038 0.084 2.96 0.224 US 4,311,671
27 445 223.0 0.628 0.209 0.035 0.128 3.00 0.333 Panahandeh
28 455 229.0 0.670 0.222 0.028 0.080 3.02 0.305 Elnashaie

NHout
3 = NH in

3 + 2(N in
2 −N out

2 ) (B.124)
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Table B.4: Model predictions of testing data using the fitted parameters from cross-validation.
Error is reported for each prediction.

Testing Set Model 1 Model 2 Model 3 Model 4 Model 5 Actual
Test 1 0.327 0.329 0.332 0.324 0.327 0.338
Test 2 0.303 0.299 0.300 0.297 0.301 0.305
Test 3 0.315 0.316 0.284 0.329 0.318 0.331
Test 4 0.213 0.209 0.209 0.211 0.209 0.224
Test 5 0.209 0.238 0.220 0.214 0.220 0.214

Test RMSE 0.061 0.089 0.130 0.056 0.062 -

B.5 Material and Energy Balance Results

Material Balances

Table B.5: Overall material balances for the case studies.

TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
Biomass (dt/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Natural gas (MSCF/h) 0.251 0.542 1.080 0.326 0.618 1.386 0.244 0.536 1.085
Fresh water (kBD) 2.248 4.352 8.309 3.210 5.754 13.940 3.012 4.160 11.179
Seq. CO2 (MT/h) 14.132 30.279 59.828 17.956 33.831 76.640 13.803 29.867 60.022
Vented CO2 (MT/h) 0.349 0.994 2.467 0.866 1.824 3.387 0.272 1.060 2.562
Ammonia (MT/h) 10.416 20.832 41.664 10.416 20.832 41.664 10.416 20.832 41.664

TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
Biomass (dt/h) 17.004 35.776 82.192 21.430 42.874 85.747 18.001 36.002 72.005
Natural gas (MSCF/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fresh water (kBD) 3.019 6.244 14.862 4.045 8.097 16.194 3.925 7.850 15.700
Seq. CO2 (MT/h) 0.801 0.322 0.204 0.097 0.196 0.392 0.000 0.000 0.000
Vented CO2 (MT/h) 30.594 65.540 151.145 39.357 78.736 157.473 30.900 61.801 123.602
Ammonia (MT/h) 10.416 20.832 41.664 10.416 20.832 41.664 10.416 20.832 41.664

TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
Biomass (dt/h) 15.996 32.949 58.137 21.315 42.577 73.946 16.492 32.920 57.573
Natural gas (MSCF/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fresh water (kBD) 3.226 6.278 10.997 4.397 8.802 15.197 3.115 6.228 10.953
Seq. CO2 (MT/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vented CO2 (MT/h) 30.420 62.601 110.475 40.528 80.938 140.575 31.341 62.558 109.386
Ammonia (MT/h) 10.416 20.832 41.664 10.416 20.832 41.664 10.416 20.832 41.664

TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
Biomass (dt/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Natural gas (MSCF/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fresh water (kBD) 7.587 15.174 29.911 7.478 14.955 29.922 7.587 15.174 29.911
Seq. CO2 (MT/h) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vented CO2 (MT/h) 0.007 0.013 0.026 0.007 0.013 0.026 0.007 0.013 0.026
Ammonia (MT/h) 10.416 20.832 41.664 10.416 20.832 41.664 10.416 20.832 41.664

TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000 - - -
Biomass (dt/h) 0.000 0.000 0.000 0.000 0.000 0.000 - - -
Natural gas (MSCF/h) 0.000 0.000 0.000 0.000 0.000 0.000 - - -
Fresh water (kBD) 7.587 14.955 29.921 7.587 15.174 29.911 - - -
Seq. CO2 (MT/h) 0.000 0.000 0.000 0.000 0.000 0.000 - - -
Vented CO2 (MT/h) 0.007 0.013 0.026 0.007 0.013 0.026 - - -
Ammonia (MT/h) 10.416 20.832 41.664 10.416 20.832 41.664 - - -
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Energy Balances

Table B.6: Overall energy balances for the case studies.

Energy bal. (MW) TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Natural Gas 68.54 148.00 294.81 89.04 168.66 378.51 66.63 137.09 296.18
Electricity 20.83 34.65 64.46 8.07 18.40 25.40 22.34 41.66 62.95
Total 89.37 182.65 359.27 97.11 187.06 403.91 88.96 178.75 359.12
Energy bal. (MW) TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
Biomass 84.28 177.31 407.35 106.21 212.49 424.97 84.25 168.50 337.00
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electricity 16.94 17.80 5.82 0.00 0.00 0.00 10.91 21.83 43.66
Total 101.22 195.11 413.17 106.21 212.49 424.97 95.16 190.33 380.66
Energy bal. (MW) TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
Biomass 94.67 195.00 344.08 126.15 251.98 437.64 97.61 194.83 340.74
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electricity 16.59 22.18 35.88 0.00 0.00 0.00 10.72 21.47 38.75
Total 111.26 217.18 379.95 126.15 251.98 437.64 108.33 216.30 379.49
Energy bal. (MW) TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electricity 126.05 252.10 496.81 124.20 248.41 496.93 126.05 252.10 496.81
Total 126.05 252.10 496.81 124.20 248.41 496.93 126.05 252.10 496.81
Energy bal. (MW) TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000 - - -
Biomass 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Natural Gas 0.00 0.00 0.00 0.00 0.00 0.00 - - -
Electricity 126.05 248.41 497.00 126.05 252.10 496.81 - - -
Total 126.05 248.41 497.00 126.05 252.10 496.81 - - -
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Carbon balance

Table B.7: Overall Carbon balance for the case studies.

C bal. (kg/s) TX-N-250 TX-N-500 TX-N-1000 CA-N-250 CA-N-500 CA-N-1000 IA-N-250 IA-N-500 IA-N-1000
Biomass 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Natural Gas 1.0966 2.3678 4.7167 1.4245 2.6984 6.0559 1.0660 2.1933 4.7386
Vented CO2 0.0265 0.0753 0.1870 0.0656 0.1382 0.2567 0.0206 0.0529 0.1942
Seq CO2 1.0713 2.2954 4.5355 1.3612 2.5647 5.8100 1.0464 2.1426 4.5502
C bal. (kg/s) TX-H-250 TX-H-500 TX-H-1000 CA-H-250 CA-H-500 CA-H-1000 IA-C-250 IA-C-500 IA-C-1000
Biomass 2.3708 4.9879 11.4592 2.9878 5.9775 11.9549 2.3407 4.6814 9.3628
Natural Gas 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vented CO2 2.3193 4.9685 11.4581 2.9836 5.9689 11.9378 2.3425 4.6850 9.3701
Seq CO2 0.0607 0.0244 0.0155 0.0073 0.0149 0.0298 0.0000 0.0000 0.0000
C bal. (kg/s) TX-M-250 TX-M-500 TX-M-1000 CA-M-250 CA-M-500 CA-M-1000 IA-M-250 IA-M-500 IA-M-1000
Biomass 2.3021 4.7418 8.3668 3.0675 6.1274 10.6419 2.3735 4.7376 8.2856
Natural Gas 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vented CO2 2.3061 4.7457 8.3750 3.0723 6.1358 10.6568 2.3759 4.7424 8.2924
Seq CO2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C bal. (kg/s) TX-W-250 TX-W-500 TX-W-1000 CA-W-250 CA-W-500 CA-W-1000 IA-W-250 IA-W-500 IA-W-1000
Biomass 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Natural Gas 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Vented CO2 0.0005 0.0010 0.0020 0.0005 0.0010 0.0020 0.0005 0.0010 0.0020
Seq CO2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C bal. (kg/s) TX-S-250 TX-S-500 TX-S-1000 CA-S-250 CA-S-500 CA-S-1000 - - -
Biomass 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - -
Natural Gas 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - -
Vented CO2 0.0005 0.0010 0.0020 0.0005 0.0010 0.0020 - - -
Seq CO2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - - -
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Sample Flowsheet
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Figure B.5: Sample flowsheet for CA-N-1000 case.
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Table B.8: Stream conditions and flow rates for the sample flowsheet of CA-N-1000 case.

Stream ID 1 2 3 4 5 6 7 8 9 10
Temperature (◦C) 25 25 25 400 600 900 900 250 35 35
Pressure (bar) 31 1.01 1.01 32 32 30 30 28.5 24.5 24.5
Vapor fraction 1 1 0 1 1 1 1 1 1 0
Flow rates (mol/s)
O2 0.00 213.28 0.00 213.28 0.00 213.28 0.00 0.00 0.00 0.00
CO 0.00 0.00 0.00 0.00 0.00 0.00 351.44 53.11 53.11 0.00
CO2 4.84 0.37 0.00 0.00 0.00 4.84 99.49 397.82 397.81 0.01
H2 0.00 0.00 0.00 0.00 0.00 0.00 978.32 1276.64 1276.64 0.00
N2 7.74 795.08 0.00 1.06 0.00 8.80 8.80 8.80 8.80 0.00
H20 0.00 0.00 1423.82 0.00 519.11 519.11 404.92 106.59 4.02 102.57
Ar 0.00 9.51 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.00
CH4 450.50 0.00 0.00 0.00 0.00 450.50 53.27 53.27 53.27 0.00
C2H6 15.48 0.00 0.00 0.00 0.00 15.48 0.00 0.00 0.00 0.00
C3H8 3.39 0.00 0.00 0.00 0.00 3.39 0.00 0.00 0.00 0.00
nC4H10 1.94 0.00 0.00 0.00 0.00 1.94 0.00 0.00 0.00 0.00
Stream ID 11 12 13 14 15 16 17 18 19 20
Temperature (◦C) 25 25 60 237.4 35 28.6 28.6 25 30 30
Pressure (bar) 3 20.1 25 32 31 31 31 1.01 32 31
Vapor fraction 1 1 1 0 1 1 1 1 1 1
Flow rates (mol/s)
O2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 313.74 0.00 0.00
CO 0.00 53.11 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00
CO2 358.03 39.78 0.00 0.00 92.89 0.00 92.89 0.54 0.00 0.00
H2 0.00 1276.64 1051.06 0.00 2380.81 2071.31 309.51 0.00 0.00 2071.31
N2 0.00 8.80 439.12 0.00 447.92 0.00 447.92 1169.58 779.18 779.18
NH3 0.00 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.00 0.00
H20 0.00 4.02 0.00 49.09 0.00 0.00 0.00 0.00 0.00 0.00
Ar 0.00 0.01 0.00 0.00 0.01 0.00 0.01 13.99 0.00 0.00
CH4 0.00 53.27 0.00 0.00 53.27 0.00 53.27 0.00 0.00 0.00
Stream ID 21 22 23 24 25 26 27 28 29 30
Temperature (◦C) 400 440 -20 -20 60 60 150 105.9 105.9 58.3
Pressure (bar) 85.5 85.5 25 25 25 25 25 25 25 25
Vapor fraction 1 1 1 0 1 1 0 1 0 0
Flow rates (mol/s)
H2 4845.60 3825.86 3825.36 0.50 2613.23 1212.12 0.00 1212.12 0.00 0.00
N2 1938.24 1598.33 1598.18 0.14 1091.77 506.41 0.00 506.41 0.00 0.00
NH3 357.04 1036.87 522.62 514.25 357.02 165.60 0.00 0.17 165.43 165.38
H20 0.00 0.00 0.00 0.00 0.00 0.00 231.60 2.87 228.73 0.05
Stream ID 31 32 33 34 - - - - - -
Temperature (◦C) 222.5 60 60 60 - - - - - -
Pressure (bar) 25 25 25 25 - - - - - -
Vapor fraction 0 1 0 1 - - - - - -
Flow rates (mol/s) - - - - - -
H2 0.00 1212.12 0.00 161.06 - - - - - -
N2 0.00 506.41 0.00 67.29 - - - - - -
NH3 0.05 0.17 0.00 0.02 - - - - - -
H20 228.68 0.00 2.87 0.00 - - - - - -
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APPENDIX C

SUPPORTING INFORMATION FOR CHAPTERS 4 AND 5

C.1 Nomenclature for MILP Design and Operation Model

Sets

t Time periods in hours

h Representative seasons

a Location

i Processes

j Resources

m Operating modes

q Transportation modes

l Piecewise cost function segments

Subsets

Timeh,t Time periods t in season h

Seasonh Set of seasons considered

Modesi,m Operating modes m in process i

TransModesi,m,m′ Possible mode transitions from m to m’ in process i

Seqi,m,m′,m′′ Predefined sequences of mode transitions for process i

Demandj Resources j for which demand exists

LiquidFuelsj Resources j that are to liquid transportation fuels

TPModesj,q Allowed transportation modes q for resource j

PLSegmentsi,l Segments l in piecewise linear approximations for process i

Variables

TotalCost Total annualized cost

Invexcessa,j,h Excess inventor for resource j in season h at location a

LocalGHGa Net GHG emissions the process network at location a

TotalGHG Total emitted CO2
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Positive Variables

Ba,j,h,t Amount of resource j purchased in time t of season h at location a

CapPa,i Production capacity for process i at location a based on reference resource

CapSa,j Storage capacity for resource j at location a

Capexa,i Overnight capital cost for process i at location a

Capextotala Total overnight capital expenses at location a

Inva,j,h,t Inventory level of resource j in time t of season h at location a

λa,i,l Coefficient for segment l in piecewise linear approximation for process i at location a

Opexa Total annual operation cost at location a

Pa,i,h,t Amount of reference resource consumed or produced by process i in time t of season h at

location a

Pm
a,i,m,h,t Amount of reference resource consumed or produced by process i in mode m in time t of

season h at location a

Sa,j,h,t Amount of resource j sold in time t of season h at location a

Transa,a′,j,q,h,t Amount of resource j transported from location a to a’ using transportation mode q in time t of

season h

Transcostj,q The transportation cost for resource j using transportation mode q

Transtotalj,q The total transportation cost for resource j using transportation mode q

Binary Variables

wa,i,l Equals 1 if the capacity for process i at location a is in the range of line segment l

xPa,i Equals 1 if process i at location a is built

xSa,j Equals 1 if storage facility for resource j is built at location a

ya,i,m,h,t Equals 1 if process i at location a operates in mode m in time t of season h

za,i,m,m′,h,t Equals 1 if process i at location a in mode m changes to mode m’ in time t of season h

Parameters

Bmax
a,j,h,t Maximum amount of resource j that can be consumed in time t of season h at location a

BigM Big M parameter

CAPP−max
i Maximum production capacity for process i

CAPS−max
j Maximum storage capacity for resource j

CAP segment
i,l Capacity of process i at the right end point of segment l

CAPutil−min
i,m Minimum capacity utilization fraction for mode m of process i

CAPutil−max
i,m Maximum capacity utilization fraction for mode m of process i

CAPmode−min
i,m Minimum production capacity for mode m of process i

CAPmode−max
i,m Maximum production capacity for mode m of process i
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CAP∆rate
i,m Maximum rate of change of production for mode m of process i

CAPEXsegment
i,l Capital cost for process i at the right hand side of segment l

CarbonTax Carbon tax paid per amount of carbon dioxide emitted

Conversioni,m,j,h Conversion factor for resource j with respect to the reference resource in mode m of process i

in season h

Costdischargea,j,h,t Cost of discharging resource j in time t of season h at location a

Costlanda,i Land cost for process i at location a

CostP−fixi,m,h Fixed operational cost for process i operating in process i in mode m of season h

CostP−vari,m,h Variable operational cost for process i operating in process i in mode m of season h

Costpurchasea,j,h,t Cost of purchasing resource j in time t of season h at location a

CostS−fixj Fixed capital cost for storage of resource j

CostS−varj Variable capital cost for storage of resource j

Costtrans−fixj,q Fixed transportation cost of resource j using mode q

Costtrans−varj,q Variable transportation cost of resource j using mode q

Da,j,h,t Demand for resource j in time t of season h at location a

Dseason
a,j,h Seasonla demand for resource j for season h at location a

Dtotal
a,j Aggregated demand for resource j of the annual operation

Dtotal
Fuels Total fuels demand for annual operation given in thousand barrels

Distancea,a′ Distance between locations a and a’

FuelsRatioUS
j United States fuel ratio given in fractions for resources j

HHVj Higher heating value (HHV) of resource j

Landmax
a,j Maximum land availability for resource j at location a

LossSa,j Fractional loss from storing resource j in season h

Losstransa,a′,j,q Fractional loss from of transportation between locations a and a’

nh The weight of the representative season h in annual operation

ρj Density parameter to convert standard material flow unit (kg/h) of resource j to a different unit
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C.2 Modeling Parameters

Resource Data

Table C.1: Set of resources and the design and operational parameters for their storage.

Resource Description CAP S−max
j CostS−fixj CostS−varj HHVj

Solar Direct normal irradiation (DNI) potential in W/m2 - - - -

Wind Wind power potential in m/s - - - -

Power Electrical power - - - -

PowerLoad Local electrical power demand - - - -

GridPower Power provided by the local electricity grid - - - -

H2O Water - - - -

Air Air comprised of nitrogen and oxygen - - - -

O2 Oxygen 1e9 0 0.9 -

N 2 Nitrogen 1e9 0 1.2 -

H2 Gaseous hydrogen - - - -

CompressedH2 Compressed hydrogen at 700 bar 1e9 0 1400 0.0394

CryogenicH2 Cryogenically liquefied hydrogen 1e9 0 14 0.0394

NH3 Ammonia 6e7 0 1.5 0.00625

CH3OH Methanol 6e7 0 0.9625 0.00639

CO2 Carbon dioxide consumed or produced by processes - - - -

CH4 Methane - - - 0.0154

Coke Elemental carbon product of the methane pyrolysis - - - -

V entedCO2 Vented carbon dioxide to the atmosphere - - - -

SeqCO2 Sequestered carbon dioxide - - - -

Syngas Synthesis gas with H2:CO ratio of 2.2 - - - -

FuelGas Fuel gas that can be combusted for heat and power - - - -

Gasoline Synthetic gasoline fuel 1e11 - - 0.01289

Diesel Synthetic diesel fuel 1e11 - - 0.01267

Kerosene Synthetic kerosene fuel 1e11 - - 0.01283

WasteWater Waste water 1e11 - - -

BatteryCharge NaS battery charge for power storage BES 1e8 0 340,000 -

ElevatedWater Elevated water for power storage in PCS 2.5e5 0 80,000 -

CompressedAir Compressed air for power storage in CAES 2e6 0 50,000 -
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Transportation Data

Table C.2: Transportation parameters.

Resource Transportation Mode Costtrans−fixj,q Costtrans−fixj,q

CompressedH2 Rail road 0 1.667e-3

CryogenicH2 Rail road 0.5935 1.01e-4

NH3 Rail road 1.0674e-2 3.5e-5

CH3OH Rail road 1.1746e-2 2.9478e-5
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Process Data

Table C.3: Set of processes.

Process Description

WindFarm Farm of wind turbines that generate Power from wind

SolarPV Solar photovoltaic (PV) cells that produce Power from solar irradiation

Electrolyzer Electrolysis process to produce H2 and O2 from water

ASU Air separation unit to produce nitrogen and oxygen

DAC Direct air capture process to capture CO2 from Air

CO2Sequestration Process to sequester process CO2

Haber −Bosch Haber-Bosch process to produce ammonia from nitrogen and hydrogen

MethanolSynthesis Methanol synthesis process to produce methanol from Syngas

ATR Autothermal reforming of methane to produce Syngas

MethanePyrolysis Methane pyrolysis to produce H2

CH4GasTurbine Methane gas turbine to produce Power

MTG Methanol-to-Gasoline process to produce Gasoline

MOGD Metanol-to-Olefins-Gasoline-Distillate to produce Gasoline, Diesel, and Kerosene

FTS Fischer-Tropsch Synthesis to produce Gasoline and Diesel

R−WGS Reverse water-gas shift process to produce Syngas from CO2 and H2

H2Compression H2 is converted to CompressedH2

H2Liquefaction H2 is converted to CryogenicH2

DC/AC − Inverter DC/AC inverter to convert Power (DC) to PowerLoad (AC)

NaS − Storage Sodium-sulfur battery storage to produce Power from BatteryCharge

NaS − PCS Sodium-sulfur BES PCS to produce Power from BatteryCharge

PSH − Storage Pumped storage hydro storage process to store Power in ElevatedWater

PSH − PCS Pumped storage hydro PCS to produce Power from ElevatedWater

CAES − Storage Compressed air energy storage process to store Power in CompressedAir

CAES − PCS CAES PCS to produce Power from CompressedAir

H2FuelCell Hydrogen fuel cell to produce PowerLoad

NH3GasTurbine Methanol gas turbine to produce PowerLoad

CH3OHGasTurbine Methanol gas turbine to produce PowerLoad
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Table C.4: Operational cost and rate change parameters for Processes.

Process Basis CAP∆rate
i,m CAP util−min

i,m CAP util−max
i,m CostP−fixi,m,h CostP−vari,m,h

WindFarm [222] MW 1 0 1 0 14.6

SolarPV [177] MW 1 0 1 0 5.3

Electrolyzer [75, 183] MW 0.95 0 1 0 5.625

ASU [183] kg/h 0.1 0 1 0 8.32e-3

DAC [223] kg/h 0.95 0.5 1 0 0.03

CO2Sequestration [183] MW 0.95 0 1 0 0

Haber −Bosch [183] kg/h 0.05 0.7 1 0 1.54e-2

MethanolSynthesis [224] kg/h 0.05 0.5 1 0 1.08e-2

ATR [183] kg/h 0.05 0.5 1 0 0.01538

MethanePyrolysis [225] kg/h 0.05 0 1 0 0.13995

CH4GasTurbine [226] MW 0.2 0 1 0 9

MTG [217] kg/h 0.01 0.8 1 0 1.8473e-3

MOGD [217] kg/h 0.01 0.8 1 0 1.9564e-2

FTS [217] kg/h 0.05 0.8 1 0 0.0108

R−WGS [183] kg/h 0.1 0.4 1 0 2.732e-3

H2Compression [227] kg/h 0.5 0 1 0 0.2

H2Liquefaction [227] kg/h 0.5 0 1 0 0.4

DC/AC − Inverter MW 1 0 1 0 0

NaS − Storage [228] MW 1 0 1 0 2.2

NaS − PCS [228] MW 1 0 1 0 2.2

PSH − Storage [228] MW 0.95 0 1 0 0.9

PSH − PCS [228] MW 0.95 0 1 0 0.9

CAES − Storage [228] MW 1 0 1 0 0.7

CAES − PCS [228] MW 1 0 1 0 0.7

H2FuelCell [229] MW 0.95 0 1 0 3.5

NH3GasTurbine [226] MW 0.5 0 1 0 2.28

CH3OHGasTurbine [226] MW 0.2 0 1 0 2.28
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APPENDIX D

ADDITIONAL RESULTS FOR CHAPTER 4

Solar Radiation 
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Power

10.51 GW

NaS Battery

Battery Charge
17.49 GWh

DC-AC Inverter

0.62 GW
0.65 GW

Power 
(Load)

NY-Network
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Figure D.1: Process network for BL-1-x-S.
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Figure D.2: Process network for BL-2-H-x.
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Solar Radiation 
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Figure D.3: Process network for PM-1-x-SW.
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Figure D.4: Process network for PM-2-H-x.
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