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ABSTRACT 

 

Mechanisms in the regulation of lipogenesis or lipolysis in adipose tissue significantly 

contribute to not only uncovering novel treatments for metabolic diseases in human health, but 

also creating economic profits to markets by improving livestock meat quality. This dissertation 

describes the investigation of lipid desaturation by ectopically expressed porcine stearoyl-

desaturase 1 (SCD1) in non-adipocytes and the extent of lipolysis mediated by various kinds of 

selective ß-adrenergic receptor (ß-AR) agonists ex vivo and in vitro.  

Inducible lentiviral expression vectors were generated for over-expression or knock-down 

of porcine SCD1 in the swine kidney 6 (SK6) cells. pSCD1-transduced SK6 cells successfully 

overexpressed pSCD1 expression as compared to uninduced SK6 (P < 0.05). pSCD1-transduced 

SK6 cells transfected with pSCD1shRNA significantly suppressed pSCD1 expression. 

Furthermore, the pSCD1-transduced cells incubated with 50 µM palmitic acid increased the 

synthesis of palmitoleic acid nearly 4-fold, indicating that the pSCD1-transduced cells successfully 

can induce the ∆9 desaturation of palmitic acid to palmitoleic acid. 

 ß-AR subtypes were characterized in bovine subcutaneous (s.c.) and intramuscular (i.m.) 

adipose tissues with the use of selective ß-,  ß- and ß-AR agonists. The most abundant ß-AR 

mRNA in both adipose tissues was the ß2-AR (P < 0.05). Isoproterenol, ractopamine, and zilpaterol 

stimulated the release of glycerol and nonesterified fatty acid (NEFA) from s.c. adipose tissue, but 

BRL-37344 did not affect lipolysis in s.c. adipose tissue in ex vivo cultures. A novel ß-agonist 

suppressed the stimulation of cAMP production mediated by ß1- and ß2-AR agonists in s.c. adipose 

tissue (P <0.05). In contrast, these ß-AR agonists were not effective in i.m. adipose tissue.   
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Finally, we investigated mechanisms regulating ß-AR stimulation mediated by 

dobutamine, salbutamol, and a novel ß-agonist in primary bovine s.c. and i.m. adipocytes. The 

stimulation of ß1-AR through dobutamine significantly activated adenylyl cyclase and protein 

kinase A, and concurrently increased glycerol release in s.c. adipocytes, more than salbutamol did 

(P < 0.05). The effects by ß-AR agonists were blocked by propranolol. A novel ß-agonist inhibited 

adenylyl cyclase and protein kinase A activation in s.c adipocytes (P < 0.05). In contrast, these ß-

AR agonists were not effective in i.m. adipocytes. In conclusion, this research has suggested the 

opportunity not only to develop a non-rodent biomedical model of obesity and metabolic disease 

but also to contribute to the understanding of functionality of ß-AR subtypes in adipose tissue 

during cattle growth and maturity.  
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CHAPTER I  

INTRODUCTION  

Adipose tissue is the body’s largest repository of energy, and it plays an important role in 

total energy homeostasis. When energy production exceeds energy expenditure of the body, the 

remaining energy is stored as the form of triglycerides in adipose tissue (Krahmer et al., 2013). 

Hence, the excessive accumulation of adipose tissue can be a major risk factor triggering serious 

health problems such as obesity and obesity-related disorders.    

Dietary fat is one of the most important sources of nutrients for supporting our body and 

can be derived from animal fat and vegetable oils. However, the consumption of a fat-rich diet has 

been responsible for the growing problem of obesity. In fact, many studies have demonstrated that 

a high-fat diet can easily induce obesity in human and laboratory animals (Hill et al., 2000; 

Schrauwen and Westerterp, 2000; Ghibaudi et al., 2002; Jequier, 2002; Buettner et al., 2007). 

Some studies have also reported that fatty acid composition of the diets is a more important factor 

in diet-induced obesity rather than the amount of energy from fat (Bourgeois et al., 1983; DeLany 

et al., 2000; Wang et al., 2002; Kien et al., 2005) because saturated fatty acids (SFA) are more 

obesogenic than either monounsaturated fatty acids (MUFA) or polyunsaturated fatty acids 

(PUFA) (Takeuchi et al., 1995; Piers et al., 2003; Ailhaud et al., 2006; Silva et al., 2006). 

Stearoyl-CoA desaturase 1 (SCD1) is a central lipogenic enzyme and is highly responsible 

for the obesogenic effect derived from dietary SFA since SCD1 catalyzes biosynthesis of MUFA 

from SFA that is ether derived from the diet or synthesized de novo (Paton and Ntambi, 2009). 

MUFA, especially, palmitoleic (C16:1) and oleic (C18:1) acids are then used not only as major 

substrates for the synthesis of membrane phospholipids and triglycerides (Tocher et al., 1998; 

Miyazaki et al., 2001a), but also serve as mediators in signal transduction and cellular 
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differentiation (Bradley et al., 2008; Yonezawa et al., 2008). Thus, the abnormal alteration of ratio 

SFA to MUFA has been implicated in a key metabolic pathogenesis such as obesity, cardiovascular 

disease, and diabetes (Paton and Ntambi, 2009). These points of view have been supported by 

studies that showed Scd1 deficient mice have increased energy expenditure, reduced body 

adiposity, and are resistant to diet-induced obesity (Ntambi et al., 2002). Therefore, SCD1 could 

be an important metabolic control point, and the regulations of SCD1 expression and catalytic 

activity seem to expect an important point for the treatment of obesity and obesity-related disease.  

Epidemiological studies have reported a significant correlation between MUFA intake and 

a decrease in the risk factors for coronary heart disease (CHD) (Baggio et al., 1988; Grundy et al., 

1988; Kris-Etherton et al., 2002; Mente et al., 2009). Our laboratory has also demonstrated this 

effect in the studies through beef consumption enriched in either SFA and trans-fatty acids or 

enriched in oleic acid (Adams et al., 2010; Gilmore et al., 2011; Gilmore et al., 2013). Our studies 

have provided information that the major MUFA, oleic acid, from red meat can also be a good 

source as dietary fat for heart-healthfulness.  

As the amount of intramuscular (i.m.) lipid increases, total MUFA concentration is also 

elevated in the cattle (Smith et al., 2009). The formation of i.m. adipose tissue plays an important 

economic role in U.S., Japanese, Korean and Australia beef production as i.m. adipose tissue is 

considered an important index used to evaluate beef quality traits because of its contribution to 

organoleptic attributes such as juiciness, flavor, and tenderness (Savell and Cross, 1998). 

Control of lean and excessive subcutaneous (s.c.) adipose tissue deposition in livestock and 

meat industries is important, for it is directly linked to improvement of product quality, thereby 

leading to economic profits to providers, and satisfaction of consumers that desire a lean, reliable 

healthy product of consistent quality. Various strategies have been proposed to manipulate the fat 
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and muscle ratio for livestock production (Sillence, 2004). As one of the strategies, using synthetic 

ß-agonists (ß-AA) has been applied in livestock production for more than three decades due to its 

repartitioning effects. These ß-AA redirect nutrients away from adipose tissue and toward muscle 

disposition, which results in improvement of feed utilization, lean growth rate, and carcass lean 

percentage in cattle, pigs, poultry and sheep (Anderson et al., 2005). The mechanism of 

repartitioning effects includes both increase in muscle protein synthesis and decrease in their 

muscle protein degradation, and stimulation of triacylglycerol degradation and inhibition of fatty 

acid synthesis in adipose tissue (Emery et al., 1984; Jones et al., 1985; Moloney et al., 1990; 

Schiavetta et al., 1990; Smith et al., 1995). However, the precise mechanisms how the ß-AA 

control adipose tissue growth remains unclear. At present, most ß-AA commercially available, 

such as zilpaterol, ractopamine, cimaterol, terbutaline, matuberol and salbutamol, target ß1- and 

ß2-adrenergic receptors (ß-AR). The ß3-AA have limited application in livestock production.  

Elucidating aspects of lipogenesis or lipolysis mechanisms not fully understood in adipose 

tissue will make significant contributions to human health, not only suggesting therapeutic insights 

to uncover novel treatments for metabolic diseases in human, but also creating economic profits 

to markets by improving product quality. Therefore, we hypothesized that SCD1 ectopically 

modulated can effectively regulate lipid desaturation in the body. We also hypothesized that ß-AR 

subtypes would exhibit different responses in bovine s.c. and i.m.  adipose tissues. Taken together, 

the objective of this dissertation includes the following:  

- To generate lentiviral expression vectors to overexpression or knock-down of   

    porcine SCD1 in the porcine kidney cells as a preliminary study to develop  

    porcine biomedical models for obesity-associated disorders and pork products  

    with healthy characteristics. 
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-  To characterize ß-AR subtypes in bovine s.c. and i.m.  adipose tissues with the  

 use of selective ß-AR agonists and antagonists, including a novel -agonist  

 ExperiorTM.    

-  To investigate mechanisms regulating ß-AR stimulation mediated by selective  

                ß-AR agonists and ExperiorTM in primary bovine s.c. and i.m. adipocytes. 
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CHAPTER II  

LITERATURE REVIEW 

 

Structure and physiology of adipose tissue 

 

The adipose tissue in mammals consists of one-third adipocytes and two-thirds a 

combination of small blood vessels, nerve tissue, fibroblasts and preadipocytes, referring to as the 

stromovascular fraction (Geloen et al., 1989). Adipocytes have two functionally different types of 

fat cells, white and brown. The brown adipose tissue (BAT) has polygonal, multiple small-

scattered lipid droplets with variable diameters, central nuclei, and a large number of mitochondria. 

The BAT is specialized in the dissipation of energy through cold and diet induced thermogenesis 

via mitochondrial uncoupling protein 1 (UCP1) (Hassan et al., 2012; Saely et al., 2012). Therefore, 

it is abundant in neonates and hibernating animals due to their inability to shiver. In contrast, white 

adipose tissue (WAT) is diametrically opposed to physiological function of BAT. It functions as 

the central repository of energy storage and secretion of hormones and cytokines that regulate body 

metabolism. Unlike BAT, WAT has spherical, single lipid droplet with a larger diameter (100 µm 

or more), peripheral nuclei, and variable amounts of mitochondria. In mammals, the WAT is 

mainly located beneath the skin (subcutaneous fat), around the kidney (perinephric fat), gonads 

(inguinal/gonadal fat), GI track (omental/mesenteric fat), between muscle (intermuscular fat), and 

within muscles (intramuscular fat) (Mersmann and Smith, 2005; Saely et al., 2012).  

Adipose tissue mass is determined by hyperplasia (cell proliferation) and hypertrophy (cell 

enlargement) through lipid filing. Adipocyte number and size differ from adipose depot regions. 

In cattle, subcutaneous (s.c.) adipose tissue hyperplasia is complete about 8 mo of age, but 

intramuscular (i.m.) adipose tissue hyperplasia is process at 14 mo of age, indicating that i.m. is a 

late developing depot. Further increase in both adipose tissue mass is progressed by hypertrophy 
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(Hood and Allen, 1973). Furthermore, s.c. adipocyte diameter increased before 13 mo of age, 

whereas, i.m. adipocyte diameter increased before 15 mo of age. The average adipocyte diameter 

unchanged after 17 mo of age, suggesting that adipocyte hypertrophy increased until 17 mo of age 

in cattle (Cianzio et al., 1985).  

 

Adipogenesis 

Adipogenesis defines as the overall process of preadipocyte determination, growth, and 

terminal differentiation. Preadipocyte differentiation begins in late prenatal and early postnatal 

development in different anatomical sites (Spiegelman et al., 1993). The adipocyte lineage is 

derived from multipotent mesenchymal stem cells (MSC) by sequential differentiation pathways. 

The MSCs are programmed to become committed adipocyte lineage when appropriate differential 

signals are triggered. This process, known as determination, results in the conversion of the MSCs 

to preadipocytes, but has lost the capacity to differentiate into other cell types. Although there have 

been lots of efforts to define distinct intermediate steps in determination of primitive MSCs to the 

adipocyte lineage, it is still unknown what early molecular factors are really involved (Gesta et al., 

2006). 

 Preadipocytes have a fibroblast-like morphology, and express surface markers such as 

preadipocyte factor 1(Pref-1), adipose tissue specific secretory factor (ADSF), alpha 2 chain of 

type VI collagen (COL6A2) and secreted frizzled related protein 2 (SFRP2). The SFRP2 is 

particularly plentiful in subcutaneous fat (Gesta et al., 2006). All preadipocyte markers are highly 

expressed in preadipocytes, and markedly reduced in mature adipocytes, indicating that they 

enable to control fat cell differentiation and adipose tissue development (Ibrahimi et al., 1993; Hu 

et al., 1998; Villena et al., 2002). 
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Preadipocytes undergo the terminal differentiation, that is, preadipocytes turn into mature 

adipocytes. This process involves four distinct states: growth arrest, clonal expansion, early 

differentiation, and terminal differentiation. It has been extensively studied in mouse 3T3-L1 and 

3T3-F442A cell lines and immortalized brown adipocytes (Rosen and Spiegelman, 2000; Rosen 

and MacDougald, 2006). The first stage in the differentiation of preadipocytes starts from growth 

arrest. In cultured cell model, initial growth arrest is induced by the addition of a prodifferentiative 

hormonal agent and undergoes at least one round of DNA replication and cell division known as 

clonal expansion. In very early stage of differentiation, c-fos, c-jin, junB, c-myc are expressed 

(Cornelius et al., 1994). C-myc has been shown to initiate mitogenesis in the process of 

differentiation in preadipocytes, suggesting that c-myc may act as branch point at which the growth 

arrested cells face either directly cell cycle reentry or terminal differentiation (Ntambi and Young-

Cheul, 2000).  

After clonal expansion, preadipocytes undergo a second and final period of growth arrest 

to reach terminal differentiation into mature adipose phenotype. Preadipocyte early and terminal 

differentiation is controlled by the sequential expression of key transcription factors, including the 

CCAAT/enhance binding protein (C/EBP), the peroxisome proliferator-activated receptor (PPAR) 

families, and the adipocyte determination and differentiation factor-1/sterol response element 

binding protein 1c (ADD1/SPEBP1c) (Ailhaud et al., 1992; Mandrup and Lane, 1997; Rosen et 

al., 2000). C/EBP and C/EBP are the first transcription factors, which are control of exogenous 

promoters of induction of differentiation and accumulation of terminal transcription factors of 

adipogenesis, PPAR and C/EBP (Wu et al., 1995; Clarke et al., 1997; Lane et al., 1999).  

Terminal differentiation is accompanied by dramatic increase in the expression of C/EBP 

PPAR, glycerophosphate dehydrogenase (GPDH), fatty acid synthase (FAS), acetyl CoA 
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carboxylase (ACC), malic enzyme (ME), fatty acid binding protein (FABP) (Spiegelman et al., 

1993), which is followed by de novo or enhanced expression of the genes that specialize the 

adipocyte phenotype, along with huge triglyceride accumulation.   

 

Lipid droplets 

 

Lipid droplets (or vacuoles) are ubiquitous, dynamic cellular lipid-storage organelles, 

function as lipid reservoirs for energy production, membrane synthesis, viral replication, and 

protein degradation. Lipid droplets consist of a nonpolar, neutral lipid core (i.e., triglyceride (TAG) 

and sterol esters) coated with a protein-bounded phospholipid monolayer, composing primarily of 

phosphatidylcholine, with lesser amounts of phosphatidylethanolamine, phosphatidylinositol, and 

lyso-phosphatidylcholine. Lipid droplet sizes vary dramatically from < 1 µm in diameter in 

fibroblasts to > 100 µm in white adipocytes (Tauchi-Sato et al., 2002; Walther and Farese, 2012).  

Lipid droplet formation could trigger either de novo TAG synthesis in the endometrial 

reticulum (ER) or the fusion of smaller lipoproteins. Several models of lipid droplet formation 

have been proposed such as ER budding, bicelle formation, vesicular budding and eggcup. Despite 

these models for explaining how to form lipid droplets, the molecular mechanisms of lipid droplet 

formation remain unclear.   

Wilfling et al. (2014) recently proposed a step wise model of lipid droplet formation: 1) neutral 

lipid synthesis; 2) lens formation (intramembrane lipid accumulation); and 3) lipid drop formation. 

Neutral lipid synthesis is mediated by enzymes of the membrane-bound O-acyltransferase 

(MBOAT) family (i. e., acyl CoA:cholesterol acyltransferase (ACAT1), ACAT2, and acyl-CoA: 

acyltransferase (DGAT1)) and DGAT2 gene families, generally localized to the ER. Specifically, 

TAG are formed with diacylglycerol and fatty acyl-CoA produced by acyl-CoA synthetase 
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(ACSL) via DGAT between leaflets of the ER bilayer. When neutral lipid accumulation reaches a 

crucial threshold, lipid lenses may form in the ER as the oil phase coalesces. Once lipid droplets 

achieve a certain size, the bilayer detaches and a nascent lipid droplet buds into the cytoplasm 

(Wilfling et al., 2014). Further, the growth of lipid droplets involves the local synthesis of TAG at 

the surface of lipid droplets. In an excess environments of fatty acids, the volume of lipid droplets 

rapidly expand their volumes, and several proteins are involved to regulate lipid droplet size and 

number, such as the PAT family proteins (i.e., perilipin1, perilipin2/adipophilin (ADRP), 

perilipin3/Tip47, perilipin4/S3-12) CIDE (Cell Death Including DNA Fragmentation factor) 

proteins, and several lipases (Krahmer et al., 2013). 

 

Fatty acids 

 

Fatty acids (FA) are the major components of TAG, phospholipid, cholesterol esters, and 

wax esters. Fatty acids are comprised of a hydrogen carbon and a terminal carboxyl group, which 

is either saturated or unsaturated. Saturated fatty acids (SFA) do not have double bonds in the 

hydrocarbon chain whereas unsaturated fatty acids contain at least one double bond. The double 

bonds of unsaturated fatty acids have two distinct configurations, cis or trans, and are divided two 

subclasses: monounsaturated fatty acids (MUFA) with a single double bond and polyunsaturated 

fatty acids (PUFA) with two or more double bonds. Furthermore, based on chain length, they are 

categorized as short-chain, medium-chain, long-chain, or very-long-chain fatty acids: Short-chain 

(< C6); medium-chain (C6-C12); long-chain (C13-C22); and very-long chain (> C24) (Wang et al., 

2013). In animals, the number of carbon atoms in fatty acids is typically between C14 and C24, with 

oleic acid (C18:1n-9) being the most abundant fatty acid (St. John et al., 1987b; Wood et al., 2004).  
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Fatty acid biosynthesis 

Lipogenesis is a physiological process of endogenous fatty acid synthesis (de novo), and 

subsequent TAG synthesis. It mainly takes place both liver and adipose tissue but varies among 

the spices. In rat, both liver and adipose tissue are the major lipogenic organs; the liver dominates 

in chickens, fish, and humans; and, adipose tissue is the primary site in ruminants and pigs (Vernon 

et al., 1999). Additionally, in ruminants, most dietary carbohydrate is fermented to acetate, 

propionate, and butyrate in the rumen. Thus, acetate is used as the primary precursor for de novo 

fatty acid synthesis in adipose tissue (Vernon, 1980).   

The precursors of de novo fatty acid synthesis are derived from catabolism of carbohydrates 

and their metabolites (i. e., glucose, lactate, acetate, and pyruvate), and to a lesser extent, amino 

acids. Cytosolic acetyl-CoA and reduced nicotinamide adenine dinucleotide phosphate (NADPH) 

are substrates for de novo synthesis. As lipogenesis takes place in the cytosol, mitochondrial 

acetyl-CoA itself is not directly used for de novo synthesis the mitochondrial membrane is not a 

permeable to acetyl-CoA. Instead, citrate, which is a condensation product of acetyl-CoA and 

oxaloacetate in the tricarboxylic acid (TCA) cycle, is transported to the cytosol, where it is cleaved 

into oxaloacetate and acetyl-CoA by the enzyme ATP-citrate lyase (Smith and Prior, 1981; 

Mersmann and Smith, 2005). NADPH is synthesized through pentose phosphate pathway, and 

NADP-malate dehydrogenase, and NADP-isocitrate dehydrogenase in ruminants (Smith, 1983) 

and via the pentose phosphate pathway and NADP-malate dehydrogenase in non-ruminants 

(Shingfield et al., 2010).  

De novo fatty acid synthesis is initiated by the carboxylation of acetyl-CoA to form 

malonyl-CoA via ACC. Next, another acetyl-CoA is condensed with malonyl-CoA by the FAS 

complex through multiple serial enzyme reactions, resulting in the synthesis of long-chain fatty 
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acids. The major end product of de novo synthesis is palmitic acid (C16:0). The palmitic acid has 

two fates: elongation by adding two-carbon moieties in a chain-elongation reaction, yielding 

stearic acid (C18:0) and desaturation via stearoyl-CoA desaturase. 

Insulin is considered as one of the important hormones for the regulation of fatty acid 

biosynthesis, as it activates enzymes such as acetyl-CoA carboxylase, ATP-citrate layase, and the 

pyruvate dehydrogenase complex (Potapova et al., 2000; Holness and Sugden, 2003; Brownsey et 

al., 2006).  

 

Stearoyl-coenzyme A desaturase 

 

Stearoyl-CoA desaturase (SCD) is a key enzyme in the biosynthesis of MUFA from SFA 

that are either synthesized de novo or derived from the diet. SCD catalyzes the Δ9-cis desaturation 

of fatty acyl-CoA substrates. SCD is bound to the ER and contains four membrane-spanning 

domains with the NH2 and COOH termini facing the cytoplasm. The SCD reaction is an aerobic 

process and involves a three-component enzyme system comprised of 11lavoprotein-NADH-

dependent cytochrome b5 reductase, cytochrome b5, and SCD (Heinemann and Ozols, 2003; Man 

et al., 2006; Paton and Ntambi, 2009). 

The SCD genes are ubiquitously expressed in higher organisms and have a high degree of 

variability in the gene complements of SCD in vertebrate species (Hodson and Fielding, 2013). 

Four isoforms (Scd1-Scd4) are present in the mouse, of which Scd1 is the best documented isoform 

(Sampath and Ntambi, 2006); whereas only two isoforms (SCD1 and SCD5) have been identified 

in humans, pigs, sheep, cattle, and chickens (Lengi and Corl, 2008). In mice, the Scd1 is expressed 

in the liver, brown and white adipose tissue, and sebaceous glands (Ntambi, 1999; Heinemann and 

Ozols, 2003; Miyazaki et al., 2005). Scd2 is universally expressed in most tissue except for liver 
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(Tabor et al., 1998), Scd3 is only expressed in the skin, and Scd4 is expressed solely in the heart 

(Zheng et al., 2001; Miyazaki et al., 2003). In humans and livestock species, SCD1 is expressed in 

adipose tissue, liver, muscle, lung, heart, intestine, and mammalian gland, although expression in 

the liver is lower than the mouse (Cameron et al., 1994; Wang et al., 2006; Lengi and Corl, 2008; 

Rezamand et al., 2014). SCD5 is mostly expressed in the brain and pancreas in humans, cattle, 

pigs, sheep, and chickens (Wang et al., 2005; Lengi and Corl, 2008).  

Ntambi and his colleges, forefront in the study of SCD, have created the Scd1 global and 

various tissue-specific knockout murine models for investigating the role of SCD1 for over two 

decades. The Scd1 global knockout model (SCD1-/-) was generated by Miyazaki et al in 2001 using 

C37BL/6 or SV129 mice (Miyazaki et al., 2001b). The Scd1 global knockout model is similar 

growth to wild-type mice on a chow diet, but they are leaner, accumulating less adipose tissue, 

although they consume 25% more food than wild type mice (Ntambi et al., 2002). In addition, the 

Scd1 global knockout mice had elevated levels of plasma ketones and greater insulin sensitivity 

but reduced levels of plasma insulin and leptin compared with the wild-type mice (Ntambi et al., 

2002). Moreover, the Scd1 global knockout had very low levels of TAG in the VLDL and low-

density lipoprotein (LDL) fractions compared to wild-type mice (Attie et al., 2002). Liver-specific 

Scd1 knockout mice were generated by Miyazaki et al. in 2007 using Cre-lox technology 

(Miyazaki et al., 2007). Liver-specific Scd1 knockout mice have the tolerance to high-carbohydrate 

diet, but not high-fat diet, which induced obesity and liver steatosis. Additionally, this model 

triggered a marked decrease in lipogenesis and a severe impairment of gluconeogenesis, leading 

to hyperglycemia and a reduction of liver carbohydrate (Miyazaki et al., 2007). Adipose tissue-

specific Scd1 knockout mice were generated by Hyun et al. in 2010 using Cre-lox technology 

(Hyun et al., 2010). The adipose tissue-specific Scd1 knockout mice displayed an increase in 
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GLUT1 and TFN- expression but a decrease in adiponectin expression (Hyun et al., 2010). 

Combined liver and adipose tissue-specific Scd1 knockout mice (Flowers et al., 2012) showed a 

robust reduction in SCDl MUFA products in both s.c. and WAT but were not protected from either 

genetic obesity or diet-induced obesity.      

SCD gene expression is highly regulated by dietary lipids (PUFAs, cholesterol, and vitamin 

A), hormonal factors, developmental processes, temperature, metals, alcohol, and peroxisomal 

proliferation (Ntambi, 1999). The predominant products of SCD are palmitoleoyl-and oleaoyl-

CoA (Ntambi, 1999). Palmitoleic and oleic acid serve as the major constituents of membrane 

phospholipids and TAG, cholesterol ester (CE), and wax ester found in fat depots (Miyazaki et al., 

2000; Miyazaki et al., 2001a; Miyazaki et al., 2001b). The ratio of stearic to oleic acids directly 

influences cell membrane fluidity, cell-cell interaction, signal transduction, and cellular 

differentiation (Kates et al., 1984; Gyorfy et al., 1997). An increasing SCD activity and, thereby, 

abnormal alteration between the ratio of stearic to oleic acids results in physiological and disease 

states such as aging, diabetes, obesity, heart disease and cancer (Ntambi, 1999). Therefore, the 

regulation of the SCD gene expression is an important for human health (Spector and Yorek, 1985; 

Clandinin et al., 1991). 

 

ß-Adrenergic receptor 

 

The adrenergic receptors (AR) belong to the G-protein-coupled receptors (GPCR), and 

have been divided into two major isoforms,  and ß. To date, seven -AR subtypes (1A, 1B, 

1D, 2A, 2B, 2C, and 2D) and three ß-AR subtypes (ß1, ß2, and ß3) have been identified in 

various tissues in the body, with the ß-AR subtypes predominating in cardiac, airway smooth 

muscle and adipose tissue (Woodcock, 2007; Lynch and Ryall, 2008).  
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The bovine ß1-, ß2-, and ß3-AR genes are located on chromosome 26, 7, and 27, 

respectively. The ß1- and ß2-AR genes encode an intronless gene transcript, whereas the 3-AR 

gene encodes a transcript containing a single intron. The bovine ß-AR consist of 405-467 amino 

acid residues with a protein molecular weight ranging from 42.9 to 50.1 kDa (Table 1). There is a 

64 to 69% homology between ß3-, ß2, and ß1-AR. Like all GPCR, the ß-AR have seven 

transmembrane-spanning -helices, which are connected with three extracellular loops with an 

amino-terminus and with three intracellular loops with a carboxy-terminus (Liggett, 2002). The 

sequences of seven transmembrane-spanning -helices are highly conserved between the ß-AR 

and have amino acid residues for either agonist- or antagonist-induced receptor trafficking. The 

third intracellular loop of the ß-AR has specific domains for central roles for G-protein coupling, 

desensitization, and downregulation  (Liggett, 2002; Johnson, 2006). 

  ß-AR oscillate between inactivated and activated states, and these two states are in 

equilibrium under resting conditions. The predominant state is the inactivated state (Liggett, 2002).  

The activation of the ß-AR is initiated when ligands such as hormones or neurotransmitters bind 

to agonist binding sites within transmembrane-spanning -helices. Ligand binding induces a 

conformational change in the ß-AR that leads to coupling with G-proteins that consist of , ß, and 

 subunits bound to the intracellular plasma membrane. Based on their amino acid sequences and 

function, G subunits are divided into four subfamilies, Gs, GI, Gq and G12. Upon the binding 

of a ligand to ß-AR, G subunits release G-protein-bound guanosine diphosphate (GPD), and 

subsequently bind to guanosine triphosphate (GTP). This activates the G subunits and dissociates 

it from Gß  subunits (Liggett, 2002). ß-AR predominantly couple with Gs and GI subunits 

(Wenzel-Seifert and Seifert, 2000). The ß-AR solely couples with Gs subunits, whereas the ß-

AR has dual coupling with both Gs and GI subunits (Xiao, 2001), which activates downstream 
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signaling pathways including adenylyl cyclase (AC), phosphoinositide 3-kinase/Ser and Thr 

kinase (PI3K/Akt), protein kinase A (PKA), ion-channel, extracellular-signal-regulated kinase 

(ERK), exchange protein activated by cAMP (Epac), and cyclic nucleotide-gated (CNG) signaling 

pathways (de Rooij et al., 1998; Murga et al., 1998; Dascal, 2001; Tasken and Aandahl, 2004; 

Craven and Zagotta, 2006; Robidoux et al., 2006). G subunits bound to GTP drastically reduces 

the affinity of ß-AR for their ligands, which causes dissociation of G subunits into the ß-AR and 

induces ß-AR to return to their inactive state (Johnson, 2006).  

Continuous, short-term stimulation of agonists to ß-AR triggers a rapid attenuation of 

receptor responsiveness, known as desensitization. This mechanism includes three main processes: 

1) uncoupling of the receptors from G-proteins in response to receptor phosphorylation; 2) 

internalization of uncoupled receptors; and 3) phosphorylation of internalized receptors (Ferguson, 

2001; Johnson, 2006). The degree and duration of the ß-AR/agonists responses have various 

influences on the extent of desensitization. There are two principal mechanisms of desensitization, 

homologous and heterologous. Homologous desensitization is initiated when the Gß subunits of 

the activated G-protein bind with an activated G-protein-coupled receptor kinase (GRK). GRK 

selectively phosphorylates the C-terminus of the agonist-bound ß-AR, thereby recruiting and 

binding cytosolic cofactor proteins called ß-arrestins to ß-AR and resulting in dissociation of the 

receptors from G-proteins. This leads to limiting receptor functions. In contrast, heterologous 

desensitization begins when second messenger-dependent PKA phosphorylates not only the 

agonist-bound ß-AR but also agonist-unbound ß-AR (Madamanchi, 2007). ß-AR phosphorylation 

recruits ß-arrestins, and ß-arrestins interfere with further binding of G-proteins to receptors, 

ultimately releasing G-proteins from receptors. At more prolonged agonist exposure, some 

receptors are sequestered from the cell surface, termed sequestration, which leads to occurrence of 
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receptor internalization. Following internalization, receptors are transported to endosomes where 

the receptors are recycled back to the plasma membrane to receive new signals. In response to 

chronic agonist over-exposure, down-regulation of the cellular receptors occurs. This process 

reduces not only ß-AR mRNA and protein synthesis but degrades also pre-existing receptors in 

the liposome and plasma membrane. The time frames over which these processes take place are 

from seconds (phosphorylation) to minutes (endocytosis) and hours (down-regulation) (Ferguson, 

2001; Johnson, 2006; Madamanchi, 2007).      

                 

Table 1. Structural characteristics of the ß-Adrenergic receptors 

Subtypes Location Transcript length (bp) Translation length Mr, Da 

1 Chromosome 26 1404 467 50,137 

 Chromosome 7 1257 418 47,136 

 Chromosome 27 1959 405 42,903 

 

 

ß-Adrenergic receptor agonists and antagonists 

 

Agents such as drugs, hormones, or neurotransmitters that interact with ß-AR can be 

classified as agonists or antagonists based on their actions to ß-AR. Agonists are compounds that 

stimulate ß-AR to induce the chemical and physiological changes by only modulating functions or 

processes already existent without de novo effects. In contrast, antagonists bind specifically to the 

same receptor sites where agonists bind and block the ability of agonists to occupy and activate 

that receptor, thereby inactivating intracellular signaling pathways (Hershberger, 1994). There are 

two general types of antagonists, competitive and noncompetitive. Competitive antagonists trigger 

agonist dissociation by increasing concentration of agonist, whereas noncompetitive antagonists 
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do not allow receptors to be activated by agonists despite extremely high agonist concentrations 

because of their irreversible binding to receptors (Hershberger, 1994).  

ß-agonists have an asymmetric center with aromatic group, hydroxyl group linked to the 

ß-carbon, and aliphatic nitrogen (Smith, 1998). Due to the presence of an asymmetric center, ß-

agonists form a pair of optical isomers, the R- and S-enantiomers (or [-] and [+]). Some agonists, 

such as fentoterol, formoterol, and ractopamine, have two asymmetric centers, and there are four 

enantiomers, RR, SS, RS, and SR, present (Mills et al., 2003; Johnson, 2006). The molecular 

structure of ß-agonists is crucial for determining the way in which they interact with the ß-AR. 

Short-acting ß-agonists (e.g., salbutamol) are hydrophilic in nature, so they are able to access the 

active site of the ß-AR directly from the extracellular aqueous compartment, thereby provoking a 

rapid onset of action. However, as short-acting ß-agonists rapidly re-equilibrate, their duration at 

the receptor active site is short (4-6 h) (Johnson, 2001, 2006). In contrast, long-acting ß-agonists 

such as fermoterol and salmeterol are lipophilic in nature, and they are absorbed into the cell 

membrane in the form of a depot. The size of the depot depends on the concentration of long-

acting ß-agonists. Therefore, the onset of action of these ß-agonists is slower than that of short-

acting ß-agonists, but the duration of action is longer and concentration-dependent (Johnson, 2001, 

2006).   

  ß-AR waver between inactivated and activated states, and these two states are in 

equilibrium under resting conditions. The inactivated state is dominant (Liggett, 2002). ß-agonists 

bind to the ß-AR and shifts the equilibrium to the active state. ß-agonists interchangeably behave 

as full or partial agonists in compliance with their potencies and receptor densities. When ß-

agonists completely shift the equilibrium in the direction of active state of receptor, they are called 

full agonists. In contrast, ß-agonists that promote an intermediate state of receptor activation vs 
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inactivation are called partial agonists (Hershberger, 1994). For these reasons, full ß-agonists have 

a high efficacy (Emax), the maximum response reachable from a dosed agent; partial ß-agonists 

have an intermediate efficacy; and pure ß-antagonists have low or zero efficacy (Johnson, 2006). 

Most ß2-agonists have an intermediate efficacy. If enough densities of ß-AR are present, then, ß2-

agonists behave as full agonists. However, receptor densities are too low, or receptor couplings are 

inadequate, they behave as partial agonists. Therefore, a partial agonist requires a higher 

occupation of receptors than a full agonist to reach its maximum effect (Johnson, 2006).  

ß-agonists have been used for the treatment of chronic bronchitis, chronic obstructive 

pulmonary disease, asthma, uterine relaxants, and cardiac irregularities for more than 30 years 

(Barnes, 1999).  Interestingly, some ß-agonists have identified “repartitioning effects”, inducing 

increase in skeletal muscle mass and decrease in body fat (Emery et al., 1984). As a consequence 

of repartitioning effects, many studies on revealing the effects of ß-agonists have been conducted 

in human medicine and livestock industry with the aim of discovering new pharmaceuticals for 

muscle wasting disorders (Carter et al., 1991; Maltin et al., 1993; Kissel et al., 1998; Lynch et 

al., 2001), and of improving feed efficiency and meat quality (Hamby et al., 1986; Hoey et al., 

1995; Bell et al., 1998; Mersmann, 1998).  

   In the livestock industry, many studies demonstrate that the oral administration of ß-

agonists (e.g., clenbuterol, cimaterol, ractopamine, and zilpaterol) with high doses and/or 

extended days in cattle, pigs, chickens, and sheep resulted in a muscle hypertrophic response due 

to the increase in muscle protein synthesis (Smith et al., 1995) and reduction of their muscle 

protein degradation. Furthermore, they concomitantly reduce the adipose tissue mass due to the 

stimulation of TAG degradation and inhibition of fatty acid synthesis (Baker et al., 1984; 

Dalrymple et al., 1984; Ricks et al., 1984; Jones et al., 1985; Moser et al., 1986; Beermann et al., 
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1987; Coleman et al., 1988; Miller et al., 1988; Schiavetta et al., 1990; Mersmann, 2002; Allen et 

al., 2009; Elam et al., 2009). In addition, some studies also demonstrate that certain ß-agonists 

such as clenbuterol and cimaterol increase the peripheral blood flow and influence the release of 

insulin, growth hormone, thyroid hormones, and corticosteroids (Bassett, 1970; Beermann et al., 

1986; Beermann et al., 1987). For instance, clenbuterol upregulates the concentration of glucose, 

insulin, and free fatty acids in calves and increases activity of specific liver enzyme alanine 

aminotransferase and alkaline phosphatase in pigs (Luthman and Jacobsson, 1993; Gojmerac et 

al., 2002). The mechanism regulating tissue responsiveness to ß-agonists differs from species to 

species and even tissues within a species because of variations of each receptor subtype in 

species and tissues within a species (Hill et al., 1998). 

 

Lipid turnover 

 

In response to cellular signal cascades caused by ß-agonists in adipocytes, lipid droplets 

are subjected to lipolysis to release mobilized fatty acids and other metabolites derived from stored 

neutral lipids, which are used for energy generation, membrane biogenesis, protein modification, 

and secretion within lipoproteins (Barbosa et al., 2015). These processes are highly regulated by 

specific enzymes and hormones. In adipocytes, lipolysis of TAG in lipid droplets is initiated by 

the binding of ß-agonists such as epinephrine and isoproterenol to their receptors, which are 

coupled to stimulatory G protein Gs, and in turn, interacts with the membrane-bound AC to 

catalyze the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate 

(cAMP), the “intracellular second messenger”. The increased concentration of cAMP results in 

activation of PKA by binding to the PKA regulatory subunits. PKA phosphorylates perilipin and 

hormone-sensitive lipase (HSL), and phosphorylated perilipin undergoes a conformational change, 
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allowing HSL to gain access to stored lipid. Adipose tissue TAG lipase first cleaves the sn-1 fatty 

acyl group from the TAG. Then, HSL acts on diacylglycerol to hydrolyze the sn-3 fatty acyl group. 

Finally, the sn-2 fatty acyl group is hydrolyzed by monoacylglycerol lipase. Free fatty acids and 

glycerol, the net products of lipolysis, are liberated and released from cells. The liberated fatty 

acids may reenter the adipocyte intracellular fatty acid pool where they may either be reesterified 

to neutral lipids or be utilized for oxidation in mitochondria to generate ATP. However, adipocytes 

cannot metabolize the glycerol produced resulting from TAG lipolysis because adipocytes lack 

glycerol kinase, which is responsible for de novo synthesis of TAG and glycerol-phospholipids 

(Mersmann and Smith, 2005; Walther and Farese, 2009). 

In cattle and sheep, isoproterenol, a non-selective ß-agonist, shows a strong lipolytic effect; 

terbutaline, a ß2-agonist, shows a slight lipolytic effect; and dobutamine, a ß1-agonist, has no effect 

on lipolysis in heifer and lambs (Ferlay and Chilliard, 1999; Ferlay et al., 2001). In addition, 

CL316,243, a 3-agonist, has no effect on lipolysis in ewes (Ferlay et al., 2001).    
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CHAPTER III 

THE LENTIVIRAL-SYSTEM CONSTRUCTION FOR HIGHLY EXPRESSED PORCINE 

SCD1 AND FUNCTIONAL CHARACTERIZATION IN STABLY TRANSDUCED PORCINE 

SK6 CELLS 

 

Introduction 

Epidemiological studies and randomized controlled studies have provided conflicting 

evidence regarding dietary and risk for cardiovascular disease (CVD). Whereas epidemiological 

studies (Posner et al., 1991; Xu et al., 2006) indicated significant positive associations between the 

incidence of CVD and the proportion of dietary energy intake from monounsaturated fatty acids 

(MUFA), randomized controlled studies indicated that increasing dietary oleic acid (18:1n9) 

reduced risk factors for CVD (Kris-Etherton et al., 1999; Adams et al., 2010; Gilmore et al., 2011; 

Gilmore et al., 2013).  However, endogenously produced oleic acid may promote obesity, hepatic 

steatosis, and lipid accumulation in muscle (Ntambi and Miyazaki, 2004; Hulver et al., 2005). 

The conversion of saturated fatty acids (SFA) to MUFA by the fatty acid Δ9 desaturase, 

stearoyl-CoA desaturase-1 (SCD1) accounts for the majority of MUFA in porcine muscle and 

adipose tissue (St. John et al., 1991; Klingenberg et al., 1995). SCD1 is also responsible for the 

conversion of trans-vaccenic acid to its corresponding conjugated linoleic acid (CLA) isomer, 18:2 

cis-9, trans-11 CLA (Ntambi and Miyazaki, 2003). In laboratory rodents, SCD1 is expressed in 

both liver (Ntambi, 1992; Waters and Ntambi, 1994) and adipose tissue (Kang et al., 2004), 

although SCD1 activity is at least two orders of magnitude higher in mouse liver than in adipose 

                                                 

 Reprinted from “The lentiviral-system construction for highly expressed porcine scd1 and functional 

characterization in stably transduced porcine sk6 cells” by Hwang et al., Lipid, In press, 2019.   
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tissue (Enser, 1979). Oleic acid is the preferred substrate for acyl-CoA:cholesterol acyltransferase 

(Landau et al., 1997; Miyazaki et al., 2000), and adipose tissue stores cholesterol primarily as 

cholesterol ester (Sweeten et al., 1990). 

We have used the pig as a model to document the effects of dietary fatty acids on lipid 

metabolism (St. John et al., 1987a; Smith et al., 1996a; Smith et al., 1996b; Smith et al., 1999; 

Demaree et al., 2002; Smith et al., 2002; King et al., 2004; Go et al., 2012). Feeding palmitic acid 

(16:0) or a combination of myristoleic acid (14:1n5) plus palmitoleic acid (16:1n7) to pigs 

depressed lipid synthesis from glucose and subcutaneous adipocyte size (Smith et al., 1996b), 

whereas the myristoleic/palmitoleic acid combination increased plasma LDL cholesterol (Smith et 

al., 1996a).  SCD1 activity in porcine adipose tissue increases when fed a starch-based diet, and is 

greater in obese pig adipose tissue than in lean pigs (Smith et al., 1999).  In contrast to rodents, 

porcine adipose tissues exhibit substantially higher SCD1 catalytic activity than liver or intestinal 

mucosal cells (Klingenberg et al., 1995).  However, we demonstrated that there were no differences 

in SCD1 gene expression across liver, muscle, adipose tissue, and intestinal mucosal cells (Go et 

al., 2012), suggesting translational or post-translational control of activity.   

SCD1 expression was previously demonstrated in mouse kidneys, which was depressed 

during the onset of diabetes (Wilson et al., 2003). SCD1 is expressed in proximal kidney tubule 

cells, and SCD1 expression is increased during uromodulin-associated kidney disease (Horsch et 

al., 2014). The predominant isoform of SCD in mouse kidneys is SCD1 (Ntambi and Miyazaki, 

2003), and SCD1 is upregulated in the glomeruli of patients with diabetic nephropathy (Sieber et 

al., 2013). Palmitic acid induces glomerular podocyte death, whereas palmitoleic acid and oleic 

acid attenuate palmitic acid-induced lipotoxicity in podocytes (Sieber et al., 2010).   
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Measurement of SCD1 activity requires large amounts of microsomal protein and the assay 

inherently has high intra-sample variability (St. John et al., 1991; Yang et al., 1999; Smith et al., 

2002; Chung et al., 2007). SCD1 activity has not been described in porcine kidney cells.  The 

porcine SK6 cell line has been used to study viral infections such as hog cholera (Terpstra et al., 

1990) and classical swine fever (van Gennip et al., 1999; Chen et al., 2015). However, to date, 

SCD1 expression has not been documented in SK6 cells. We predicted that endogenous SCD1 

expression would be low in this kidney cell line, and hypothesized that SCD1 expression would 

be upregulated in SK6 cells by exposure to palmitic acid. Therefore, one objective of this study 

was to establish an effective and highly reproducible means of estimating functional SCD1 

catalytic activity. To accomplish this goal, we used SK6 cells, which do not contain detectable 

SCD1 mRNA or protein and further, SK6 cells transduced with an inducible pSCD1 lentiviral 

construct. SCD1-transduced SK6 cells effectively converted supplemental palmitic acid to 

palmitoleic acid, consistent with profound increases in SCD1 mRNA and protein. The long-term 

goal of this research is to generate transgenic pigs for the study of obesity and muscle and liver 

steatosis using the lentiviral constructs utilized in this study. 

 

Materials and Methods 

Cell Lines 

Swine kidney 6 cells (SK6) were obtained from the Foreign Animal Disease Diagnostic 

Laboratory (APHIS) at Plum Island Animal Disease Center (PIADC), Greenport, NY. Cells were 

cultured under standard tissue culture conditions, using minimum essential media (MEM) (Life 

Technologies/Invitrogen, Grand Island, NY) containing 10% FBS (Atlanta Biologicals, Flowery 

Branch, GA) and supplemented with 1% antibiotics (Life Technologies/Invitrogen, Grand Island, 



 

 24 

NY) and 1% non-essential amino acids. Lenti-X 293T cell line (Clontech Laboratories, Inc., 

Mountain View, CA) is a HEK cell line, transformed with adenovirus type 5 DNA that also 

expresses the SV40 large T antigen. The cell line was subcloned for high transfectability and high-

titer virus production. This cell line was used to produce recombinant lentiviruses. These cells 

were also cultured under similar standard conditions as explained above.  

 

Generation of all-in-one Tet Inducible bidirectional lentiviral vector for pSCD1 overexpression 

The all-in-one bidirectional lentiviral vector system was derived from pLVX-Tre3G-IRES 

(Clontech Laboratories Inc., Mountain View, CA) (Figure 1a) and consisted of a CMV-driven rt-

TA (Tet-On 3G transactivator) in the reverse orientation with gene of interest (GOI) under the 

influence of Tre3G (TRE) promoter in forward direction (Figure 1b). The promoters (CMV and 

Tre3G) in bidirectional orientation were separated by a ubiquitous chromatin opening element 

(UCOE) known to promote sustained and reliable transgene expression by resisting DNA 

methylation (Zhang et al., 2010). In the presence of doxycycline, the rt-TA (Tet-On 3G) is 

expressed, which in turn binds to tetracycline responsive element (Tre3G) to drive the expression 

of the transgene. 

The full-length coding sequence of porcine SCD1 was amplified from reverse transcribed 

porcine mRNA using primers listed in Table 2. The amplified pSCD1 gene was inserted at BamHI-

NotI sites of a bidirectional lentiviral vector, pLVX-UCOE-Tre3G-GOI, under the influence of 

Tre3G in forward orientation followed by IRES-GFP to create pLVX- UCOE-Tre3G-pSCD1 

(Figure 1c). The recombinant lentiviral vectors also consisted of a puromycin antibiotic selection 

marker driven by PGK promoter for selection of transduced cells. The correct orientation and 

http://www.clontech.com/
http://www.clontech.com/
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integrity of recombinant lentiviral vector was confirmed by restriction enzyme analysis followed 

by DNA sequencing. 

 

 

Figure 1. Schematics of the lentiviral vector constructs for pSCD1 overexpression. SK6 were 

transduced with the bidirectional lentivector construct depicted in Figure 1c followed by 

puromycin selection to generate SK6-I-pSCD1 cells that could be induced with doxycycline to 

express pSCD1 and GFP. The transcription direction of the CMV, Tre3G and PGK promoters are 

indicated with arrows. The lentiviral bidirectional promoter constructs were packaged as 

recombinant lenti viruses in HEK293T cells. (a) Schematics of pLVX-Tre3G-IRES (Clontech). 

(b) Schematics of bidirectional pLVX-UCOE-Tre3G-GOI. (c) Schematics of bidirectional pLVX-

UCOE-Tre3G-pSCD1.  LTR, long-terminal repeat; ψ, packaging signal; Ze, zeocin; rt-TA, Tet 

responsive transactivator; Tre3G, Tet promoter; CMV, cytomegalovirus promoter; PGK, 

Phosphoglyceratekinase promoter; UCOE, ubiquitous chromatin opening element; pSCD1, 

porcine stearoyl-CoA desaturase-1; IRES, internal ribosome entry site; GFP, green fluorescent 

protein. 
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Table 2. Primers for RT-qPCR, cloning of pSCD1and pSCD1shRNA 

Gene 
Accession 

number 
Sequence 

Amplicon 

length (bp) 

Primers for qPCR  

pSCD1a NM_213781.1 F: 5’-ACACTTGGGAGCCCTGTATG-3’ 

R: 5’-GGGCAGTCGAGCTTTGTAAG-3’ 

152 

 

pGAPDHb NM_001206359.1 F: 5’-TCGGAGTGAACGGATTTG-3’ 

R: 5’-CCTGGAAGATGGTGATGG-3’ 

219 

pYWHAGc XM_005661962.3         F: 5’-TTTTTCCAACTCCGTGTTTCTCT-3’ 

F: 5’-CCATCACTGAGGAAAACTGCTAA-3’ 

75 

pYWHAZd XM_021088756.1         F: 5’-ATGCAACCAACACATCCTATC-3’ 

R: 5’-ATGCAACCAACACATCCTATC-3’ 

178 

Primers for Cloning 

pSCD1 NM_213781.1 F: 5’- ATGCCGGCCCACTTGCTGC-3’ 

R: 5’- AAGGGACCCCAAACTCAG-3’ 

1094 

pSCD1shRNA1 oligo TGCTGTTGACAGTGAGCGAGCCCAAGCTTGAATATGTTTG

TAGTGAAGCCACAGATGTACAAACATATTCAAGCTTGGG

CCTGCCTACTGCCTCGGA 

pSCD1shRNA2 oligo TGCTGTTGACAGTGAGCGCGGAGTCACCGAACTTACAAA

GTAGTGAAGCCACAGATGTACTTTGTAAGTTCG 

GTGACTCCATGCCTACTGCCTCGGA 

apSCD1, porcine stearoyl-CoA desaturase-1; bpGAPDH, porcine glyceraldehyde 3-phosphate 

dehydrogenase; cpYWHAG, porcine tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein gamma; dpYWHAZ, yrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein zeta 
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Generation of all-in-one Tet-inducible bidirectional lentiviral vector for knockdown of pSCD1 

To generate the all-in-one bidirectional lentiviral vector system for suppression of pSCD1, 

we utilized the same lentiviral backbone utilized for pSCD1 overexpression, which was modified 

as shown in Figure 2b.  Two different short hairpin RNAs (shRNA1 and shRNA2) were designed 

to target different regions of pSCD1 and a scrambled shRNA was designed as a control. shRNAs 

for pSCD1 were designed using a web-based tool (RNAi Central; 

http://cancan.cshl.edu/RNAi_central/RNAi.cgi?type=shRNA). Each shRNA was cloned using 

second-generation shRNA-mirs by the PCR-based strategy described previously (Silva et al., 

2005) into a non-inducible lentiviral vector (PEG) consisting of a mir (miR30 microRNA) cassette 

(Figure 2a) (Golding and Mann, 2011) to create PEG-pSCD1shRNA1, PEG-pSCD1shRNA2, and 

PEG-scrambled shRNA. The shRNA-mir cassette was cloned into the 3’ UTR of GFP under the 

influence of elongation factor 1 (EF1) promoter for constitutive expression of hairpins (Figure 

2a). The sequences for pSCD1shRNA oligos are listed in Table 2. Restriction enzyme analysis and 

DNA sequencing confirmed all cloned pSCD1shRNAs. The GFP-pSCD1shRNA fragment was 

cut from PEG-pSCD1shRNA and cloned at BamHI-sphI in bidirectional lentiviral vector pLVX- 

UCOE-Tre3G to create pLVX-UCOE-Tre3G-pSCD1shRNA (Figure 2b). 

 

  

http://cancan.cshl.edu/RNAi_central/RNAi.cgi?type=shRNA
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Figure 2. Schematics of the lentiviral vector constructs for pSCD1 knockdown. The 

transcription direction of the CMV, Tre3G,  PGK and EF1α promoters are indicated with arrows. 

The lentiviral bidirectional constructs (pLVX-Tre3G-GFP-pSCD1shRNA and pLVX-UCOE-

Tre3G-GFP-pSCD1shRNA) and lentiviral unidirectional construct (PEG-pSCD1shRNA) were 

packaged as recombinant lentiviruses in HEK293T cells. (a) Schematics of PEG-pSCD1shRNA. 

(b) Schematics of bidirectional pLVX-UCOE-Tre3G-pSCD1shRNA.  LTR, long-terminal repeat; 

ψ, packaging signal; Ze, zeocin; rt-TA, Tet responsive transactivator; Tre3G, Tet promoter; CMV, 

cytomegalovirus promoter; PGK, phosphoglyceratekinase promoter; UCOE, ubiquitous chromatin 

opening element; pSCD1, porcine stearoyl-CoA desaturase-1; EF1α, elongation factor ; GFP, 

green fluorescent protein ; miR , flanking and loop sequences from an endogenous miRNA which 

directs the excision of the engineered miRNA from a pri-miRNA. 

 

Production of recombinant lentiviral vector stock 

The lentiviral vector stocks were generated by triple plasmid co-transfection of HEK293T 

cells, with a Calcium Phosphate Transfection Kit (Life Technologies, Grand Island, NY) or X-

Fect Transfection Reagent (Clontech Laboratories Inc., Mountain View, CA). Briefly, the 

HKE293T cells were co-transfected with bidirectional lentiviral vectors expressing the pSCD1 or 

pSCD1shRNA cassettes along with envelope plasmid pMD.G and packaging plasmid pCMV8.91 

described previously (Case et al., 1999).  A total of 13.8 µg of vector, 10.2 µg of pCMV8.91 and 

6 µg of pMD.G plasmids were used to transfect a 10 cm tissue culture dish. The transfection 

http://www.clontech.com/
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efficiency was determined by green fluorescent protein (GFP) expression by fluorescence 

microscopy. The medium was replaced with DMEM after 24 h of transfection. The supernatant 

fractions were harvested 48 and 72 h after transfection, centrifuged at 1,000 x g for 10 min and 

filtered through a 0.45 µm polyethersulfone (PES) (low protein binding) filter. The recombinant 

lentiviral vector stocks were concentrated using Lenti-X™ Concentrator (Clontech Laboratories 

Inc., Mountain View, CA) as per manufacturer’s protocol. Briefly, the lentiviral vector particles 

were concentrated by combining 1 volume of Lenti-X Concentrator with 3 volumes of clarified 

supernatant fraction followed by incubation at 4°C for 60 min and centrifugation at 1,500 x g for 

45 min. The supernatant fraction was removed carefully, and pellet was resuspended in 1/100th of 

the original volume using complete DMEM.  

Viral titers were determined by standard viral titration protocol which consists of 

transducing SK6 cells with serial dilutions of these recombinant lentivirus stocks and then 

selecting for stable transductants with antibiotic (3 g/mL of puromycin) and counting the 

resulting cell colonies. This dose of puromycin was selected based on the kill curve in unmodified 

SK6 cells. The titer of virus corresponds to the number of colonies generated by the highest 

dilution. Viral titers were 4.5 x 105 colony forming units (CFU). 

 

Generation of transgenic SK6 expressing pSCD1 

SK6 cells were transduced with recombinant lentiviral stocks at the multiplicity of 

infection (MOI) of 1 along with 4 g/mL of polybrene. Media was replaced 24 h after transduction 

with DMEM supplemented with 10% tetracycline free heat inactivated FBS. After 48 h, transduced 

cells were subjected to puromycin drug selection at the dose of 3 g/mL for 7-14 d to obtain stable 

transductants. Puromycin-resistant colonies were picked using cloning cylinders and expanded in 

http://www.clontech.com/
http://www.clontech.com/
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presence of puromycin at a maintenance dose of 0.25 g/mL. These colonies were selected and 

expanded to create SK6-I-pSCD1 cells. SK6-I-pSCD1 cells were induced with dox at a dose of 4 

g/mL for transgene (pSCD1 and GFP) expression. Transduction efficiency in SK6 cells upon 

induction with dox was estimated based on GFP fluorescence. This dose of dox was optimized in 

SK6 cells by a dose response experiment. Dox was replenished in media every 48-72 h.  

 

 

Testing shRNA knockdown of pSCD1 

Inserting shRNA into the mir cassette ensured efficient processing of the expressed 

hairpins (Manjunath et al., 2009). The efficiency of the hairpins was validated in SK6-I-pSCD1 

cells which were overexpressing pSCD1, since SK6 cells exhibited very low or undetectable levels 

of pSCD1. SK6-I-pSCD1 cells in 6-well plates were induced pSCD1 and GFP expression 48 h 

before transfection by induction with dox. Following 48 h, the cells were mock transfected or with 

2 g/mL of PEG-pSCD1shRNA1, PEG-pSCD1shRNA2 and PEG-scrambled shRNA using 

Lipofectamine 3000 (Thermo Fisher Scientific, Waltham, MA). The medium was replaced with 

DMEM after 24 h of transfection. The cells were harvested 48 h post-transfection for RNA and 

protein analysis.  

 

Quantitative real-time RT-qPCR 

Total RNA was isolated from cells using the RNAeasy kit (Qiagen, Valencia, CA) as per 

manufacturer’s protocol followed by DNAseI (Sigma-Aldrich, St. Louis, MO) treatment. The 

DNAseI treated RNA was quantified and used to produce cDNA with the qScript kit (Quanta 

Biosciences, Gaithersburg, MD) according to the manufacturer’s instructions. Relative mRNA 

levels were determined by comparative threshold cycle (CT) analysis (Livak and Schmittgen, 
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2001) for pSCD1 using the PerfeCTa® SYBR® Green FastMix, ROX (Quanta Biosciences, 

Gaithersburg, MD) on a ABI Prism 7500 thermocycler (Applied Bio systems, Carlsbad, CA). 

Porcine GAPDH, YWHAZ and YWHAG were used as endogenous controls for these experiments. 

Relative mRNA levels were expressed as fold change over transfection control. The primers used 

in these studies are listed in Table 2. 

 

Western blot 

Protein concentrations in samples were measured using Pierce™ BCA Protein Assay Kit 

(Life Technologies, Grand Island, NY).  Total protein (30 µg) was separated on a 12% SDS-PAGE 

gel at constant current. Proteins in the gel were transferred onto a polyvinylidene fluoride 

membrane using Mini Trans-Blot (Bio-Rad, Hercules, CA). Porcine SCD1 and ß-actin were 

detected using a polyclonal anti-SCD1 (2 µg/mL) and anti-ß-actin antibodies (0.2 µg/mL) (Abcam, 

Cambridge, MA). For quantification of SCD1 protein, the pixel intensity of SCD1 signal was 

normalized to that of β-actin for each sample using Image J software. 

 

Palmitic acid treatment and fatty acid analysis 

SK6 and SK6-I-pSCD1 cells (dox+ and dox-) in T-175 flasks were mock treated or treated 

with a SCD1 inhibitor (ab 142089, Abcam, Cambridge, MA) at a dose of 2 µM. Twenty-four hours 

later, cells were exposed to 50 µM palmitic acid or ethanol (control). Six hours after palmitic acid 

treatment, cells were harvested for fatty acid, RNA, and protein analyses. The extraction of fatty 

acids was conducted by a modification of the method of (Folch et al., 1957). Total lipids from SK6 

cells were extracted in chloroform/methanol (2:1, vol/vol) and then methylated by 14% (wt/vol) 

boron trifluoride-methanol (Sigma-Aldrich Corp, St. Louis, MO). The fatty acid methyl esters 



 

 32 

(FAME) were analyzed using a gas chromatography equipped with a CP-8200 auto sampler and 

flame ionization detector (FID) (Varian CP-3800 GC system, Varian Inc., Walnut Creek, CA). 

FAME were separated on a CP-Sil88 fused silica capillary column (100 m x 0.25 mm internal-

diameter with 0.2-mm film thickness), with hydrogen as the carrier gas at a flow rate of 35 mL/min 

(split ratio 20:1) (Chrompak Inc., Middleburg, Netherlands). The oven temperature was 

programmed to increase from 150°C at 5°C/min to 220°C and held for 22 min. Front inlet and FID 

temperature were at 270°C and 300°C, respectively. Individual fatty acid peaks were identified by 

genuine external standard GLC-68D (Nu-Chek Prep, Inc., Elysian, MN) and calculated as the ratio 

of individual areas to that of total identified fatty acids. 

 

Statistical analyses 

Statistical analysis was performed using either Student’s t-test or one-way analysis of 

variance followed by Tukey’s Multiple Comparison Test (Graph Pad Prism 6.0, Graph Pad 

Software, La Jolla, CA). Means for fatty acid percentages were compared by analysis of variance 

and when significant (P < 0.05), means were separated by Fisher’s Protected LSD method. All the 

experiments were performed in triplicates with at least two independent runs. The data are 

presented as mean ± SE. The treatment means were considered significantly different when P < 

0.05. 

 

Results 

SCD1 is a key enzyme in lipid metabolism and plays a major role in health and disease 

states of animals and humans. The main aim of this study was to generate porcine cell culture 



 

 33 

models for sustained over expression or suppression of porcine SCD1 in a controlled manner (dox 

inducible) and to assess their functionality in lentiviral-transduced SK6 cells. 

 

 

Over expression of pSCD1 in transduced SK6 cells 

The expression of pSCD1 in lentiviral-transduced SK6 cells (SK6-I-pSCD1 cells) was 

validated by both RT-qPCR and western blot. SK6-I-pSCD1 cells were subjected to puromycin 

selection at a dose of 3 g/mL, which resulted in death of majority of the SK6 cells within 3-4 

days, with only SK6-I-pSCD1 cells surviving in colonies. These colonies were expanded in 

presence of puromycin (3 g/mL) for 10-14 days and thereafter they were grown in maintenance 

dose of puromycin (0.5 g/mL). Two colonies (Cl 1 and Cl 2), seeded in 6-well plates were 

induced with different doses of dox as indicated in Fig. 3a to test the dose response. Twenty-four 

hours after dox induction (dox+), GFP expression was monitored under a microscope. Both Cl 1 

and Cl 2 exhibited GFP expression upon induction with dox. Cells were harvested for RNA 48 h 

post-dox induction for RT-qPCR. A dose-dependent increase in pSCD1 transcripts was seen in 

Fig. 3a. There was a significant increase in pSCD1 mRNA levels in both Cl 1 and Cl 2 upon 

induction with dox at 2 μg/mL (> 600-fold increase) and 4 μg/mL (> 800-fold increase) as 

compared to uninduced (dox-) SK6-I-pSCD1 cells (Figure 3a). The mRNA levels of pSCD1 Cl 2 

at either level of dox was not different than Cl 1 (Figure 3a). However, in Cl 1, 4 µg/mL dox 

increased the level of pSCD1 mRNA compared to the lower dose (P < 0.05). To determine the 

optimum time after dox induction for harvesting and analyzing our samples for transgene (pSCD1) 

expression, we performed a time-response study. 

Cells from two transgenic colonies, Cl 1 and Cl 2, were seeded in 6-well plates and induced 

with dox at a dose of 4 μg/mL. The samples were harvested at indicated time points after dox 
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induction (Figure 3b). Total RNA was extracted for RNA analysis by RT-qPCR. There was a 

significant increase in pSCD1 transcripts in transduced Cl 1 and Cl 2 cells upon induction with 

dox as compared to induction without dox in SK6-I-pSCD1 cells at all time points (Figure 3b). 

The increase in pSCD1 mRNA levels in SK6-I-pSCD1 cells (dox+) was detected as early as 24 h 

post-dox induction and maintained until 72 h (Figure 3b). There was a substantial decrease, though 

not significant, in the pSCD1 mRNA levels 96 h after addition of dox to culture media (Figure 3b), 

suggesting that fresh dox has to be replenished after every 48-72 h in the culture media.  

The expression of pSCD1 also was confirmed by western blot analysis (Figure 3c), wherein 

a pSCD1-specific band corresponding to 37 kDa was seen in cell lysates of SK6-I-pSCD1 cells 

induced with dox (Figure 3c). Interestingly, no band was observed in cell lysates of normal SK6 

cells, indicating that pSCD1 is expressed at very low or undetectable levels in these cells (Figure 

3c).    
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Figure 3. Doxycycline-induced expression of porcine SCD1 in SK6-I-pSCD1 cells. SK6 cells 

were transduced with recombinant  lentivirus, pLVX-UCOE-Tre3G-pSCD1, selected with 

puromycin  (3 µg/ml) and clonally expanded to create SK6-I-pSCD1 cells which is overexpressing 

pSCD1. (a) Dose response in two colonies of SK6-I-pSCD1 cells. (b) SK6-I-pSCD1 cells were 

induced with dox at the dose of 4 µg/ml and  total RNA was extracted  at indicated time points 

from two colonies of SK6-I-pSCD1 cells to measure mRNA levels of pSCD1 by RT-qPCR. mRNA 

levels were normalized to the geometric mean of endogenous porcine GAPDH, YWHAG and 

YWHAZ and are represented as fold increase compared to control. (c) pSCD1 protein levels were 

detected by western blot using anti-SCD1 or anti-ß-actin antibodies. dox, doxycycline; SK6-I-

pSCD1, SK6 cells overexpressing pSCD1. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

shRNA effectively suppressed expression of pSCD1 

Transfection of SK6-I-pSCD1 cells (overexpressing pSCD1) with PEG-pSCD1shRNA1 or 

PEG-pSCD1shRNA2 led to significant knockdown of pSCD1 as compared to PEG-scrambled 

shRNA (Figure 4a). A similar trend was observed with western blot analysis (Figure 4b). PEG-

pSCD1shRNA2 showed a better knockdown efficiency of pSCD1 as compared to PEG-
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pSCD1shRNA1. A significant decrease in pSCD1 protein expression was observed in cell lysates 

of PEG-pSCD1shRNA2 as compared to PEG-scrambled shRNA (Figure 4c). Therefore, we used 

PEG-pSCD1shRNA2 in our inducible all-in-one lentiviral system and for further experiments. To 

generate the inducible all-in-one lentiviral system for knocking down pSCD1, we cloned the GFP-

pSCD1shRNA2-mir fragment from PEG-pSCD1shRNA2 in bidirectional pLVX-UCOE-Tre3G-

GOI at BamHI-SphI sites replacing GOI-IRES-GFP to create bidirectional pLVX-UCOE-Tre3G-

GFP-pSCD1shRNA2-mir (Figure 2b).  
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Figure 4. Knockdown of pSCD1 in SK6 and SK6-I-pSCD1 cells overexpressing pSCD1. SK6 

cells (6-well plates) or SK6-I-pSCD1 cells overexpressing pSCD1 were mock transfected or  

transfected with lentivector shRNA constructs, PEG-SCD1shRNA1, PEG-SCD1shRNA2 or PEG-

Scrambled shRNA at a dose of  2.0 µg using lipofectamine 3000. Transfection efficiency was 

determined next day by GFP expression. Cells were harvested 48 h post-transfection for RNA and 

protein analysis by RT-qPCR and western blot. (a) pSCD1 mRNA levels were normalized to the 

geometric mean of endogenous porcine GAPDH, YWHAG  and YWHAZ and are represented as 

percentage knockdown. The data represent means ± SE from three independent experiments 

performed in duplicates. (b) Knockdown of pSCD1 protein by western blot analysis using anti-

SCD1 or anti-ß-actin antibodies. (c) pSCD1 protein levels detected by western blot were quantified 

and normalized to ß-actin from three independent experiments and expressed as means ± SE 

(Image J). dox, doxycycline; SK6-I-pSCD1, SK6 cells overexpressing pSCD1. *P < 0.05, **P < 

0.01, determined by two-tailed Student's t-test. 
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Functional assessment of pSCD1 in SK6-I-pSCD1cells 

The functionality of pSCD1 in SK6 and SK6-I-pSCD1 cells was assessed by fatty acid 

analysis in absence or presence of supplemental palmitic acid and a SCD1 inhibitor. We previously 

had demonstrated that supplemental palmitic acid enhanced bovine SCD1 gene expression, 

putatively through interaction with the intrinsic SCD1 promoter (Choi et al., 2016). Therefore, we 

first established the effect of supplemental palmitic acid and SCD1 inhibitor treatment in SK6 and 

SK6-I-pSCD1cells on pSCD1 gene expression. We found no significant difference in pSCD1 

transcript (Figure 5a) in absence or presence of palmitic acid (50 µM) and SCD1 inhibitor (2 µM), 

indicating that supplemental palmitic acid has no effect on pSCD1 gene expression in the SK6-I-

pSCD1 cell model. However, SCD1 inhibitor significantly decreased pSCD1 protein level in SK6-

I-pSCD1 cells induced with dox (P < 0.05). In the absence of supplemental palmitic acid, palmitic 

acid, stearic acid (18:0), and oleic acid were the most abundant fatty acids in SK6 cells and 

comprised approximately 19, 21, and 29% of total fatty acids (Table 3). Less abundant fatty acids, 

palmitoleic acid and cis-vaccenic acid (18:1n7), comprised approximately 4 and 5%, respectively. 

With the addition of 50 µM palmitic acid, cellular palmitic acid increased to from 19 to 27% of 

total lipids (Table 3).  

The base-catalyzed fatty acid methylation procedure used in this study methylates only 

esterified fatty acids (Smith et al., 1998), so any changes in the proportions of fatty acids with 

treatment reflected alterations in cellular neutral lipids and phospholipids. Proportions of 

palmitoleic acid and cis-vaccenic acid in cellular lipids were highest in SK6-I-pSCD1 cells (dox+), 

and incubated with supplemental palmitic acid (Figure 6a). Transfection with PEG-

pSCD1shRNA2 followed by treatment with SCD1 inhibitor strongly depressed the proportions of 

palmitoleic acid and cis-vaccenic acid (Figure 6b). Palmitoleic acid is produced endogenously 
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from the ∆9 desaturation of palmitic acid, which subsequently is elongated to cis-vaccenic acid. 

Therefore, depression in the proportion of these n-7 fatty acids under these conditions represents 

inhibition of pSCD1 gene expression plus reduction in pSCD1 catalytic activity. 

In the absence of dox, supplemental palmitic acid increased the proportion of cellular 

palmitic acid (P < 0.05) and induction with dox followed by treatment with the SCD1 inhibitor 

further increased palmitic acid (Table 3), indicating low pSCD1 activity under both conditions. 

The highest concentration of cellular palmitoleic acid was observed in SK6-I-pSCD1 cells (dox+) 

supplemented with palmitic acid. 

Palmitoleic acid is inversely proportional to stearic acid (Figure 6c), as the concentration 

of each is reciprocally established by SCD1 activity. Therefore, the palmitoleic:stearic acid ratio 

(an index of SCD1 activity), was highest in SK6-I-pSCD1 cells (dox+), incubated with 

supplemental palmitic acid (Table 3). Similarly, the fold increase in palmitoleic acid was greatest 

in SK6-I-pSCD1 cells (dox+) incubated with supplemental palmitic acid (Figure 6d). The fold 

increase in palmitoleic acid in SK6-I-pSCD1 cells was depressed by transfecting these cells with 

PEG-pSCD1shRNA2 followed by treatment with SCD1 inhibitor (Figure 6d). 
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Figure 5. pSCD1 in SK6 and SK6-I-pSCD1 cells after palmitic acid treatment. SK6 cells or 

SK6-I-pSCD1 cells were treated with 50 µM palmitic acid or  ethanol (control). Six hours after 

palmitic acid treatment, cells were harvested for RNA and protein analyses. (a) mRNA levels were 

normalized to the geometric mean of endogenous porcine GAPDH, YWHAG  and YWHAZ and are 

represented as fold increase compared to control. (b) western blot analysis using anti-ß-actin or 

anti-SCD1 antibodies. (c) SCD1 protein levels detected by western blot were quantified and 

normalized to ß-actin from three independent experiments and expressed as means ± SE (Image 

J).  abcMeans within with common superscripts are not different (P > 0.05). 16:0, palmitic acid; 

dox, doxycycline; SCD1Inh, SCD1 inhibitor.  
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Figure. 6. Partial gas/liquid chromatograms showing FAME profiles of total cellular lipids 

of SK6-I-pSCD1 cells. SK6 or SK6-I-pSCD1 cells were mock treated or treated with SCD1 

inhibitor at a dose of 2 µM. Twenty-four hours later, cells were exposed to 50 µM palmitic acid 

or ethanol (control). Following 6 h after palmitic acid treatment, cells were harvested for fatty 

acid analysis. Total lipids from cells were extracted in chloroform/methanol (2:1, vol/vol) and 

then methylated by 14% (wt/vol) boron trifluoride-methanol. The fatty acid methyl esters 

(FAME) were analyzed using a gas chromatography equipped with a CP-8200 auto sampler and 

flame ionization detector (FID). (a) FAME from SK6-I-pSCD1 cells treated with palmitic acid. 

(b) FAME from SK6-I-pSCD1 cells transfected with PEG-pSCD1shRNA2 and treated with 

palmitic acid plus SCD1 inhibitor. The peaks in A and B reflect FAME detector signals (mEV).  

(c) Relationship between cellular palmitoleic acid and stearic acid.  Data are proportions of 

palmitoleic acid (16:1n7) as a function proportion of stearic acid (18:0). (d) Fold change in 

palmitoleic acid. The data represent means ± SE from three independent experiments. abcMeans 

within with common superscripts are not different (P > 0.05). 16:0, palmitic acid; dox, 

doxycycline;SCD1 Inh, SCD1 inhibitor. 
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Table 3. Fatty acid composition of SK6 cells and SK6-I-pSCD1 cells. SK6 or SK6-I-pSCD1 cells 

(with or without dox) were incubated in the absence and presence of palmitic acid (16:0) and SCD1 

inhibitor.  

 
Fatty acid composition, 

mg/100 mg total fatty acids 

16:1n7/ 

18:0 

Treatment 16:0 16:1n7 18:0 18:1n9 ratio 

 

SK6 -16:0 

 

 

19.14def 

 

  3.74de 

 

21.63ab 

 

31.33bc 

 

0.174bc 

SK6 + 16:0 

 
27.03b   3.49de 20.70abc 29.15cd 0.169bc 

SK6 + 16:0  

+ SCD1 inhibitor 
26.26bc   2.64e 23.07a 26.80de 0.117c 

 

SK6-I-pSCD1/dox(-) - 16:0 

 

 

20.73cde 

  

 4.89cd 

 

18.31bc 

 

36.50a 

 

0.271bc 

SK6-I-pSCD1/dox(-) + 16:0 

 
24.67bcd   6.30c 16.30cd 29.21cd 0.401b 

SK6-I-pSCD1/dox(-) + 16:0    

+SCD1 inhibitor 
29.91ab   3.40de 20.53abc 24.38de 0.166b 

 

SK6-I-pSCD1/dox(+) - 16:0 

 

 

13.45f 

 

10.17b 

 

17.20cd 

 

32.08abc 

 

0.596a 

SK6-I-pSCD1/dox(+) + 16:0 

 
25.00bcd 13.49a 14.08d 25.97de 0.999a 

SK6-I-pSCD1/dox(+) + 16:0      

+ SCD1 inhibitor 
34.28a   6.48c 16.41cd 22.27e 0.397b 

 

SK6-I-pSCD1/dox(+) -16:0       

+ pSCD1shRNA2 

 

15.19ef 

   

4.95cd 

 

20.65abc 

 

35.25ab 

 

0.247b 

 

SK6-I-pSCD1/dox(+) + 16:0     

+ pSCD1shRNA2 

 

22.75bcde 

   

4.67cd 

 

19.50abc 

 

32.79abc 

 

0.244b 

 

SK6-I-pSCD1/dox(+) + 16:0      

+ pSCD1shRNA2 

+ SCD1 inhibitor 

 

23.97bcd 

   

3.43de 

 

22.29ab 

 

28.71c 

 

0.164b 

 

Pooled SE 

 

 

1.10 

 

0.57 

 

0.60 

 

0.76 

 

0.047 

P-values 

 
0.0012 0.0001 0.0136 0.004 0.0001 

abcdMeans within a column with common superscripts are not different (P > 0.05). 
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Discussion 

The conventional TET On/TET Off inducible lentiviral vector systems generally used to 

produce transgenic animals are based on two separate lentiviral vectors (Koponen et al., 2003; 

Park, 2007; Sheng et al., 2010). One vector encodes the inducible transcriptional activator 

(tetracycline-controlled transactivator protein (rt-TA)) and the other vector encodes the gene of 

interest under the influence of a tetracycline-responsive element (TRE). The expression of the 

transgene can thus be regulated in a quantitative and reversible manner by exposing the transgenic 

animal to varying amounts of tetracycline or its derivatives (dox) (Sheng et al., 2010). In the 

presence of dox, the rt-TA (Tet-On 3G) gets expressed, which in turn will bind to tetracycline 

responsive element (Tre3G) to drive the expression of transgene. However, the efficiency of the 

two-vector system is low as co-transduction of the target cells with both vectors is required. In that 

regard, our combination of the two vectors into one contributed to improved transduction 

efficiency and, in turn, increased porcine SCD1 expression in transduced SK6 cells (SK6-I-pSCDl 

cells).    

The SCD1 isoform is the most abundant in lipogenic tissues and is common to most 

species. The pSCD1 gene has been mapped to chromosome 14 (Uemoto et al., 2012), and has > 

80% homology with other mammalian SCD1 genes (Ren et al., 2004).  As in humans, the only 

other SCD isoform identified in livestock species is SCD5, which has 90% homology with human 

SCD5 (Lengi and Corl, 2007, 2008). SCD5 gene expression is primarily limited to the brain, 

although low levels of SCD5 mRNA have been detected in liver and muscle (Lengi and Corl, 2007, 

2008). 

Proportions of the endogenously produced fatty acids in SK6 cells were similar to fatty 

acid proportions observed in porcine tissues (St. John et al., 1987b; Klingenberg et al., 1995; Go 
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et al., 2012). Thus, oleic acid was the most abundant MUFA and palmitic acid the most abundant 

SFA in SK6 cells. The high relative abundance of stearic acid indicated an active fatty acid 

elongase under all incubation conditions. This was supported by the relative increases in cis-

vaccenic acid in SK6-I-pSCD1 cells, which provided evidence that some portion of the palmitoleic 

produced by the ∆9 desaturation of supplemental palmitic acid was elongated. However, in spite 

of the relative abundance of oleic and cis-vaccenic acid, in SK6 cells we detected only small 

amounts of pSCD1 mRNA, and pSCD1 protein was below detection limits by western blot. 

Porcine SCD1 protein also was not detectable in SK6-I-pSCDl cells in the absence of dox, even 

though pSCD1 mRNA levels were detectable. The small increases in pSCD1 mRNA and the 

significant increases in palmitic and cis-vaccenic acid in SK6-I-pSCD1 cells (dox-) indicates that, 

even in the absence of dox, there was some functional pSCD1 gene expression. We interpret this 

to mean that post-transcriptional regulation of pSCD1 mRNA may control protein levels and that 

even undetectable levels of pSCD1 are catalytically active.   

The SCD1 inhibitor effectively decreased proportions of palmitoleic acid and cis-vaccenic 

acid. In previous research we have used the palmitoleic:stearic acid ratio as an index of SCD1 

catalytic activity (Smith et al., 2006).  Only small amounts of palmitoleic and stearic acid naturally 

occur in diets of animals, and dietary factors that promote SCD1 activity increase tissue 

concentrations of palmitoleic acid and concomitantly decrease stearic acid. Similarly, in the 

current study, SK6 cells had the highest proportions of stearic acid and lowest proportions of 

palmitoleic acid; the converse was true for SK6-I-pSCD1 cells incubated with dox. Essentially 

identical results were obtained when data were expressed as fold increase in palmitoleic acid. 

Previous researchers have transfected cells with SCD1 with varying results. Lu et al. (2014) 

demonstrated that transfection of bone marrow mesenchymal stem cells with SCD1 enhanced 
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SCD1 gene expression, but did not document changes in fatty acid composition (Lu et al., 2014). 

Nakaya et al. (2013) transfected 293A macrophages with mouse Scd1 and demonstrated small but 

significant increases in HDL-mediated cholesterol efflux (Nakaya et al., 2013). However, neither 

palmitoleic nor oleic acid proportions were increased in the SCD1 transgenic macrophages. Wu et 

al. (2010) demonstrated that SCD1 transfection of human embryo kidney (HEK) 293 cells 

increased palmitoleic acid, cis-vaccenic acid, and cis-9, trans-11 conjugated linoleic acid (CLA) 

(all products of SCD activity) by two- to three-fold (Wu et al., 2010). Wang et al. (2014) reported 

that an SCD1 mammary-specific vector caused a 50% increase in palmitoleic acid and an 11% 

increase in oleic acid in goat ear skin-derived fibroblastic cells (Wang et al., 2014). We attribute 

the profound increases in palmitoleic acid (four-fold) in the current study to the stability of our 

SK6-I-pSCD1 cells. 

Collectively, these data indicate that our lentiviral expression system was successfully 

established, and thereby stably and functionally expresses pSCD1 in SK6 cells. The lentiviral 

constructs utilized in this study can be further utilized to generate transgenic animals or other cell 

lines to enhance our understanding of the contribution of fatty acid desaturation to the promotion 

of disease states such as obesity.  
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CHAPTER IV 

CHARACTERIZATION OF ß-ADRENERGIC RECEPTORS IN BOVINE 

INTRAMUSCULAR AND SUBCUTANEOUS ADIPOSE TISSUE 

 

Introduction 

For more than three decades, the mechanism of action of ß-adrenergic receptor (ß-AR) 

agonists (i.e., cimaterol, clenbuterol, ractopamine, and zilpaterol) has been studied extensively in 

livestock species (i.e., cattle, pigs, chickens, and sheep). Depending on species and compounds, ß-

AR agonists can cause a considerable increase in carcass muscle mass and a decrease in fat 

accumulation, thus promoting the production of lean meat as a source of high quality protein 

(Dalrymple et al., 1984; Jones et al., 1985; Moser et al., 1986; Coleman et al., 1988; Miller et al., 

1988; Schiavetta et al., 1990; Allen et al., 2009; Elam et al., 2009). Decreased lipid in adipose 

tissue occurs through the ß-adrenergic receptors (ß-AR)/adenylyl cyclase (AC)/cAMP-dependent 

protein kinase A (PKA) signaling cascade, in turn activating perilipin and hormone-sensitive lipase 

(Wallukat, 2002).  

Three subtypes of ß-AR (ß1-AR, ß2-AR, and ß3-AR) are expressed in tissues of most 

species, and the distribution and specificity for synthetic ligands in adipose tissue differs widely 

among species. For example, the most predominant subtype is ß2-AR in bovine adipose tissue, 

whereas ß1-AR is the primary subtype in porcine adipose tissue (Sillence and Matthews, 1994; 

McNeel and Mersmann, 1999). For example, the synthetic ligand, ICI118,551 is a selective 

antagonist for ß2-AR in both bovine skeletal muscle and adipose tissue, while it has no effect on 

ß2-AR in porcine adipose tissue (Sillence and Matthews, 1994; Mersmann, 1998).  
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Recently, a new synthetic ß-AR ligand, lubabegon fumarate (as known as ExperiorTM) has 

been developed by Elanco Animal Health. Preliminary data indicated that ExperiorTM acts as ß3-

AR agonist and a ß1-AR and ß2-AR antagonist in Chinese hamster ovary cells (M. E. Spurlock, 

unpublished data). In this study, we tested the hypothesis that bovine adipose tissues express ß3-

AR, and therefore ExperiorTM would exert similar effects in bovine adipose tissue. Furthermore, 

we hypothesized subcutaneous (s.c.) adipose tissue would exhibit grater response to ß3-agonists 

and antagonists than intramuscular (i.m.) adipose tissue. Therefore, the aim of this study was to 

characterize ß-AR in bovine s.c. and i.m. adipose tissues with the use of selective ß-AR agonists 

and antagonists, including ExperiorTM. 

 

Materials and Methods 

Materials 

Lubabegon fumarate (ExperiorTM) and ractopamine hydrochloride (RH) were provided by 

Elanco Animal Health (Elanco Animal Health, Indianapolis, IN). Other drugs and reagents were 

purchased from the following companies: dobutamine, salbutamol, zilpaterol hydrochloride (ZH), 

propranolol, Glycerol Assay Kit and DNAseI (Sigma-Aldrich, St. Louis, MO); L-748,337 and 

BRL-37344 (R&D system, Minneapolis, MN); Cyclic AMP XP® Assay Kit (Cell Signaling 

Technology, Danvers, MA); nonesterified fatty acid (NEFA) kit (Wako Life Sciences, Inc., 

Mountain View, CA); qScriptTM cDNA synthesis kit and Perfecta® SYBR® Green fastmix® 

(Quanta Biosciences, Gaithersburg, MD). 
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Animals 

Angus crossed bred steers (BW = 498 ± 59 kg) (n = 20) were fed a standard, corn-based 

finishing diet at the Texas A&M University McGregor Research Center, McGregor, TX, and then 

transported approximately 190 km to the Texas A&M Animal Science Teaching Research and 

Extension Complex (ASTREC), College Station, TX.  

 

Bovine adipose tissue sampling 

Bovine s.c. and i.m. adipose tissues were obtained as described previously (Miller et al., 

1988; Miller et al., 1989; Miller et al., 1991; Brooks et al., 2011). Briefly, cattle were stunned 

using a captive bolt followed by exsanguination. Immediately after exsanguination, the 

longissimus muscle (LM) overlying s.c adipose tissue from the 8th to 10th thoracic region was 

removed by cutting through the hide immediately lateral to the spinal process. The muscle was 

immediately transported to the laboratory in oxygenated Krebs-Henselheit Ca2+-free bicarbonate 

buffer (KHB) (120 mM NaCl, 4.8 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM NaHCO3; 

37°C; pH 7.4) plus 5 mM glucose and 10 mM HEPES. The time elapsed between the stunning and 

arrival of the LM muscle at the laboratory was less than 20 min.  

 

Adipose tissue explant culture 

Fresh s.c. adipose tissue was cut into small pieces (50 to 100 mg) and i.m. adipose tissue 

was dissected from the LM as described previously (Smith and Crouse, 1984; Miller et al., 1988). 

The s.c. and i.m. adipose tissues were incubated according to three different sets of experimental 

conditions. Experiment 1: small pieces of s.c. and i.m. adipose tissues were pre-incubated in 6-

well tissue culture plates for 30 min at 37°C, 5% CO2 in KHB plus 5 mM glucose, 10 mM HEPES, 
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and 0.5 mM theophylline. After the 30 min pre-incubation, isoproterenol (non-selective ß-AR 

agonist), RH, ZH, ExperiorTM, and BRL-37344 were added to the culture plate wells in a dose-

dependent manner (10-9 to 10-4 M) for an additional 30 min. Experiment 2: the s.c. and i.m. 

adipose tissues were pre-incubated in KHB plus 5 mM glucose, 10 mM HEPES, and 0.5 mM 

theophylline in the presence or absence of either 10 µM L-748,337 or 50 µM propranolol. After 

the 30 min pre-incubation, ExperiorTM was added to the culture plate wells in a dose-dependent 

manner (10-9 to 10-4 M) for an additional 30 min. Experiment 3: the s.c. and i.m. adipose tissues 

were pre-incubated in KHB plus 5 mM glucose, 10 mM HEPES, and 0.5 mM theophylline in the 

presence or absence of 1 µM Experior™ or 1 µM Experior™ plus 10 µM L-748,337. After the 30 

min pre-incubation, either dobutamine (ß1-AR agonist) or salbutamol (ß2-AR agonist) was added 

to the culture plate wells in a dose-dependent manner (10-9 to 10-4 M) for an additional 30 min. 

For all experiments, there were at least three wells per treatment condition. After a total 1 h 

incubation, s.c. and i.m. adipose tissues were homogenized in 1 mL cell lysis buffer (Cell Signaling 

Technology, Danvers, MA) with 1 mM phenymethylsulfony fluoride and centrifuged at 14,000 x 

g for 30 min to remove tissue debris. The supernatant fractions were stored at -80°C until 

subsequent analyses were performed.  

 

Viability of adipose tissue 

To confirm viability of adipose tissue samples following incubation with 

agonists/antagonists, lipogenesis in vitro in s.c. and i.m. adipose tissues was measured at sample 

collection and after 60 min incubation as described previously (May et al., 1995). Briefly, s.c and 

i.m. adipose tissue pieces (~100 mg) were incubated for 0 or 60 min at 37°C with oxygenated 

(95%:5% O2:CO2) KHB (pH 7.35-7.40) plus 5 mM glucose, 5 mM acetate, 10 mM HEPES, 1 μCi 



 

 50 

[1-14C]acetate (sodium salt) (American Radiolabeled Chemicals, Inc.). After incubation, neutral 

lipids in adipose tissues were extracted (Folch et al., 1957). Total lipids were resuspended in 10 

mL of scintillation cocktail (Bio-safe2, Research Product International Corp., Mount Prospect, IL). 

Radioactivity of lipid extracts was counted with a scintillation counter (Packard 1600TR Liquid 

Scintillation Analyzer, Downers Grove, IL). Results are reported as nmol acetate converted to fatty 

acids/(1 h•100 mg adipose tissue). 

 

Cyclic AMP 

The concentration of cAMP was determined based on the principle of competitive binding 

using the Cyclic AMP XP® Assay Kit according to the manufacturer’s instructions. Briefly, 

cytosolic extracts from s.c and i.m adipose tissue explants were co-incubated in 96-well plates 

with the HRP-linked cAMP substrate coated onto an immobilized rabbit monoclonal cAMP 

antibody at room temperature for 3 h on a horizontal orbital plate shaker. After the reaction, color 

development was measured at 450 nm using an Epoch microplate reader (Biotek Instruments, 

Winooski, VT). All samples analyzed in duplicate. A standard curve and cAMP concentrations 

were calculated using GrapPad Prism 6.04 software (GraphPad Software Inc., San Diego, CA). 

 

Lipolysis  

Lipolysis was measured with a glycerol assay kit and a nonesterified fatty acid (NEFA) kit 

according to the manufacturer’s procedures. In brief, to determine glycerol released from tissue, 

10 µL of the cell extracts was reacted with 100 µL glycerol reaction reagent for 20 min at room 

temperature and the absorbance was read at 570 nm. The glycerol standard from the kit was used 

for the calibration curve. To analyze the level of NEFA released from the adipose tissues, 25 µL 
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of each cell fraction plus 200 μL of the first reagent were incubated for 5 min at 37°C, then 100 

µL of the second reagent was incubated for another 5 min at 37°C. The absorbance was read at 

550 nm. Oleic acid was used to plot a standard curve and to calculate concentration of NEFA in 

the supernatant fractions.   

 

Quantitative real-time RT-qPCR 

Approximately 200 mg of s.c. and i.m. adipose tissues (n = 10) stored at -80°C were used 

to isolate the total RNA using a combination of the Trizol reagent (Invitrogen, Carlsbad, CA) and 

HiBind® RNA mini column (Omega Bio-tek, Inc., Norcross, GA) followed by DNAseI treatment. 

Total RNA was quantified on the NanoDropTM 2000 Spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA) and reverse transcription was performed with the qScriptTM cDNA 

synthesis kit. The gene expressions of ß-AR subtypes (ADRB) in s.c. and i.m. adipose tissues were 

analyzed in a CFX384TM Real-Time System (Bio-rad, Hercules, CA) using the Perfecta® SYBR® 

Green fastmix® kit. The different efficacy of cDNA synthesis between samples was normalized 

with three reference genes (RSP9, GAPDH, and SDHA). The relative expression of mRNA was 

determined by the cycle threshold (CT) deviation of an unknown sample versus geometric mean 

of three reference genes and data were presented as 2-ΔCT. The primers used in this assay are listed 

in Table 4. 
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Table 4. Primers for RT-qPCR 

Gene 
Accession 

Number 
Sequence 

Amplicon 

Length (bp) 

ADRB1 NM_194266.1 
F: 5’-CAGAAGGCACTCAAGACGCT-3’ 

R: 5’-CACCACGTTGGCTAGGAAGA-3’ 
81 

ADRB2 NM_174231.1 
F: 5’-TGATCGCTGTGGATCGCTAC-3’ 

R: 5’-CCGGTACCAGTGCATCTGAA-3’ 
149 

ADRB3 NM_174232.2 
F: 5’-ACCTTCATTCTGTTCCTTCTG-3’ 

R: 5’-CTGTGAGGTAGGTGTGTCTA-3’ 
145 

GAPDH NM_001034034.2 
F:5’-CTGCCCGTTCGACAGATAG-3’  

R: 5’-CTCCGACCTTCACCATCTTG-3’ 
76 

RPS9 NM_001101152.2 
F: 5’-GAGCTGGGTTTGTCGCAAAA-3’ 

R: 5’-GGTCGAGGCGGGACTTCT-3’ 
65 

SDHA NM_174178.2 
F:5’-ACCTGATGCTTTGTGCTCTG-3’ 

R: 5’-TCGTACTCGTCAACCCTCTC-3’ 
106 

 

Statistical analysis 

The data are expressed as means ± SEM. Statistical analysis of the change in gene 

expression obtained by RT-qPCR was tested with a two-sided, unpaired student’s t-test and 

Tukey’s honest significant difference test using JMP Pro 12 software (SAS Institute Inc., Cary, 

NC). A P < 0.05 was considered significant. Otherwise, nonlinear regression model was used to 

test effects on either ß-AR agonists or ß-AR antagonists against lipolytic response. Non-parametric 

Friedman test and one-way analysis of variance (ANOVA) were used where it was appropriate for 

statistical comparison of drug effects with the control and different ß-AR agonists or antagonists 

using GraphPad prism 6.0. 
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Results 

ß-adrenergic receptor gene profiling in subcutaneous (s.c.) and intramuscular (i.m.) adipose 

tissue 

 All three ADRB genes were detected in bovine s.c.  and i.m. adipose tissues (Figure 7).  

Regardless of adipose tissue type, the predominant ADRB was ADRB2 (P < 0.05). The gene 

expression of ADRB3 was not different from ADRB1 expression in either s.c. or i.m. adipose tissue 

(P > 0.05). The expression of ADRB mRNA were 5.3, 2.9, and 8.3 times higher in s.c. adipose 

tissue than in i.m. adipose tissue for ADRB1, ADRB2, and ADRB3, respectively (P < 0.05). The 

gene expression of the ADRB2 in the s.c. adipose tissue was 5.3 and 3.1 times higher than that of 

ADRB1 and ADRB3, respectively. The ADRB2 mRNA level was 9.6 and 10 times higher compared 

to ADRB1 and ADRB3, respectively, in i.m. adipose tissue. 

 
Figure 7. ß-Adrenergic receptor gene populations in growing steers. The data are expressed as 

means ± SEM (n = 10). ABmeans within s.c. adipose tissue not sharing common superscripts differ 

(P < 0.05). abmeans within i.m. adipose tissue not sharing common superscripts differ (P < 0.05). 

* P < 0.05, **< P < 0.01 s.c vs i.m. adipose tissue. 
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Lipogenesis 

Lipogenesis from acetate increased (P < 0.05) in s.c. adipose tissue was greater following 

incubation for 60 min compared to rates observed in fresh samples (time 0) (Table 5). Rates of 

lipogenesis did not differ (P > 0.05) between fresh and incubated i.m. adipose tissue. We conclude 

that there was no indication of loss of viability during the pre-incubation/incubation period. 

 

 

Table 5. Fatty acid synthesis from acetate in s.c. and i.m. adipose tissue1 

Incubation time, min 0 60 

s.c. 45.56 ± 8.57b 89.63 ± 17.79a 

i.m. 26.65 ± 8.46b 39.21 ± 9.91b 

1Values are means ± SEM for n = 16 steers.  Rates are nmol acetate converted to fatty acids per 

100 mg adipose tissue per 1 h incubation. abMeans with common superscripts do not differ (P > 

0.05).  The main effect of tissue (s.c. vs i.m.) was significant (P = 0.003). 

 

 

Accumulation of cAMP accumulation following treatment with ß-adrenergic receptor agonists 

in s.c. and i.m. adipose tissues 

The non-selective ß-AR agonist, isoproterenol, the ß1-and ß2-AR agonist RH, and the ß2-

AR agonist ZH were used to assess the ß-AR-cAMP signaling cascade in s.c. and i.m. adipose 

tissue. Isoproterenol increased cAMP production in s.c. adipose tissue, indicating that the test 

system effectively activated adenylyl cyclase (Figure 8a). Stimulation of production of cAMP by 

isoproterenol in s.c. adipose tissue reached a plateau at 10-6 M. The EC50 of isoproterenol in s.c. 

adipose tissue was 0.22 µM. The concentration of cAMP in i.m. adipose tissue was slightly higher 

than in s.c. adipose tissue (Figure 8b). The EC50 of isoproterenol in i.m. adipose tissue was 2.1 

nM. However, the cAMP accumulation was not dose-dependent in i.m. adipose tissue. Neither RH 

nor ZH affected cAMP production in s.c. and i.m. adipose tissue at low concentrations (10-8 to 10-

6 M) (P > 0.05) (Table 6).   
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Figure 8. cAMP production in s.c. (a) and i.m. (b) adipose tissue in response to isoproterenol. 

Tissues were incubated with isoproterenol for 30 min at 37˚C. Data are expressed as mean values 

(n = 5). The results at each concentration of isoproterenol were fitted together by nonlinear 

regression.  

   

Isoproterenol, RH, and ZH-stimulated lipolysis in s.c. and i.m. adipose tissue 

To determine the effects isoproterenol, RH, and ZH on lipolysis, the release of glycerol 

and NEFA from s.c. and i.m. adipose tissues was measured. Isoproterenol increased glycerol 

concentrations in a dose-response manner in s.c. adipose tissue (EC50 = 5.1 µM), whereas it had 

no effect on glycerol release in i.m. adipose tissue (Figures 9a and 9b). RH and ZH increased 

glycerol concentrations in a dose-response manner in s.c. adipose tissue, but RH and ZH did not 

affect glycerol release in i.m. adipose tissue (Table 6). Likewise, isoproterenol increased glycerol 

release in s.c. adipose tissue, and isoproterenol also increased NEFA concentrations in a dose-

dependent manner in s.c. adipose tissue (EC50 = 0.18 µM) (Figure 9c). However, isoproterenol 

decreased the NEFA release in a dose-dependent manner in i.m. adipose tissue and (Figure 9d). 

Although RH and ZH increased NEFA release from s.c. adipose tissue at all concentrations 

compared to the basal level, NEFA release was not dose-dependent (Table 6). None of the ß-AR 

agonists affected NEFA release from i.m. adipose tissue (P > 0.05). 
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Figure 9. Glycerol and NEFA release in s.c. (a and c) and i.m. (b and d) adipose tissue in 

response to isoproterenol. Tissues were incubated with isoproterenol for 30 min at 37˚C (n = 5). 

Glycerol (a and b) and non-esterified fatty acid (NEFA) (c and d) released in tissue supernatant 

were determined. Data are expressed as mean values (n = 5). The results at each concentration of 

isoproterenol were fitted together by nonlinear regression.    
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Table 6. Tissue cAMP, glycerol, and NEFA release stimulated by RH and ZH 

 RH1 ZH2 

 s.c. i.m. s.c. i.m. 

cAMP (pmol/ 100 mg tissue) 

Baseline 0.42 ± 0.06 0.64 ± 0.19 0.42 ± 0.06 0.64 ± 0.19 

10-8 0.39 ± 0.09 0.86 ± 0.22 0.76 ± 0.37 0.79 ± 0.30 

10-7 0.38 ± 0.08 0.76 ± 0.18 0.61 ± 0.27 0.51 ± 0.13 

10-6 0.44 ± 0.14 0.70 ± 0.18 0.62 ± 0.27 0.78 ± 0.39 

Glycerol (nmol/ 100 mg tissue) 

Baseline 50.0 ± 12.8 48.6 ± 10.3 50.0 ± 12.8 48.6 ± 10.3 

10-8 50.3 ± 7.60 52.4 ± 16.4 54.8 ± 8.00 67.4 ± 21.6 

10-7 52.6 ± 11.1 81.7 ± 25.5 59.3 ± 15.4 48.6 ± 13.7 

10-6 63.3 ± 9.20 42.6 ± 11.4 65.9 ± 12.6 46.0 ± 14.5 

NEFA (mol/ 100 mg tissue) 

Baseline 0.99 ± 0.40 0.65 ± 0.20 0.99 ± 0.40 0.65 ± 00.20 

10-8 1.10 ± 0.15 0.75 ± 0.21 1.06 ± 0.30 0.78 ± 0.28 

10-7 1.20 ± 0.21 1.18 ± 0.50 1.25 ± 0.31 0.91 ± 0.30 

10-6 1.06 ± 0.13 0.56 ± 0.13 1.17 ± 0.35 0.50 ± 0.16 

Values are means ± SEM; n = 6 steers. Means within treatment and tissue were not different (P > 

0.05). 1RH; Ractopamine Hydrochloride, 2ZH; Zilpaterol Hydrochloride. 

 

Lipolytic response to BRL-37344 and ExperiorTM for ß3-AR 

To determine if binding of ExperiorTM to ß3-AR might contribute to its lipolytic response, 

the selective ß3-AR agonist, BRL-37344, was used as a positive control to compare the effects on 

ExperiorTM in s.c. and i.m. adipose tissue. The pD2 value for ExperiorTM was similar to the BRL-

37344 pD2 value in s.c. adipose tissue, whereas the pD2 value for ExperiorTM was not applicable 

in i.m. adipose tissue (Table 7). No lipolytic responses for cAMP or NEFA were observed in s.c. 

adipose tissue for BRL-37344 or ExperiorTM (Figures 10a and 10c). Total cAMP production from 

i.m. adipose tissue was significantly less in BRL-37344-treated i.m. adipose tissue than in 

ExperiorTM-treated in i.m. adipose tissue at 10-6 and 10-5 M (P < 0.05), but no difference in NEFA 

release was observed in i.m. adipose tissue for BRL-37344 or ExperiorTM (Figures 10b and 10d). 
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Figure 10. cAMP and NEFA release in response to BRL-37344 and ExperiorTM in s.c. (a and 

c) and i.m. (b and d) adipose tissue. Tissues were incubated with either BRL-37344 or 

ExperiorTM for 30 min at 37˚C. Data are expressed as means ± SEM (n = 6). *P < 0.05 ExperiorTM 

vs BRL-37344. 

 

 

Table 7. Adipose tissue lipolytic sensitivity to ß-AR agonists 

       s.c.       i.m. 

ExperiorTM 7.40± 1.78 1N.A. 

BRL-37344 7.00 ± 3.27 N.A. 

Salbutamol 6.23 ± 0.35 4.59 ± 4.42 

Salbutamol + ExperiorTM 3.34 ± 0.59 *** 8.07 ± 4.90 

Salbutamol + ExperiorTM + L-748.337 4.04 ± 0.34 *** N.A. 

Dobutamine 5.50 ± 0.68 6.52 ± 1.23 

Dobutamine + ExperiorTM 6.44 ± 3.20 7.29 ± 1.44 

Dobutamine + ExperiorTM + L-748.337 5.87 ± 0.81 6.12 ± 1.70 

Values are means ± SEM of sensitivity (pD2) of adipose tissue = -log EC50; n = 12 cattle. pD2 was 

calculated from the individual concentration-response to agonists fitted together by nonlinear 

regression. EC50, half maximum effective response. 1N.A., not applicable. It was not possible to 

calculate pD2 from the data.  ***P < 0.001, vs salbutamol.  
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ExperiorTM as a ß1-and ß2-AR antagonist in s.c. adipose tissue 

We set the optimal concentrations of propranolol (50 µM), a non-selective ß-AR 

antagonist, and L-748,337 (10 µM), a selective ß3-AR antagonist based on preliminary tests, which 

caused depression of cAMP production in s.c. adipose tissue. Subcutaneous and i.m. adipose 

tissues were preincubated with either 50 µM propranolol or 10 µM L-748,337 for 30 min before 

adding ExperiorTM in a dose-response manner. The production of cAMP was reduced by 

ExperiorTM in a dose-response manner in s.c. adipose tissue pretreated with either 50 µM 

propranolol or 10 µM L-748,337 (Figures 11a and 11c). There was no effect of ExperiorTM on 

cAMP production in i.m adipose tissue preincubated with propranolol (Figure 11b). However, 

ExperiorTM depressed cAMP production in i.m. adipose tissue preincubated with L-748,337 

(Figure 11d).  
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Figure 11. Depression of cAMP production in response to propranolol (a and b) and L-

748,337 (c and d) in s.c. and i.m. adipose tissue. Tissues were pre-incubated with 10 µM L-

748,337 or 50 µM propranolol, and then ExperiorTM was added for an additional 30 min. Data are 

expressed as mean values (n = 8). The results at each concentration of ExperiorTM were fitted 

together by nonlinear regression.    

 

Antagonism of ß1-and ß2-AR by ExperiorTM 

In s.c. adipose tissue, ExperiorTM blunted the production of cAMP in the presence of ß-AR 

antagonists, suggesting that ExperiorTM is also a ß-AR antagonist (Figure 11). To address this 

hypothesis, a selective ß1-AR agonist, dobutamine and a selective ß2-AR agonist, salbutamol, were 

used to stimulate cAMP production mediated directly by individual ß1-AR and ß2-AR subtypes. 

Dose-response curves for cAMP production induced by either dobutamine or salbutamol in s.c. 

and i.m. adipose tissue were indicated in Figure 12, and pD2 values are summarized in Table 7. 

Both salbutamol and dobutamine increased cAMP production in s.c. adipose tissue in a dose-

dependent manner (Figures 12a and 12c) but were without effect in i.m. adipose tissue (Figures 

12b and 12d). To investigate the antagonism of ExperiorTM to ß1- and ß2-AR, s.c. and i.m. adipose 
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tissues were pretreated with 1 µM ExperiorTM in the presence or absence of 10 µM L-74,337 before 

adding dobutamine or salbutamol. ExperiorTM and ExperiorTM plus 10 µM L-748,337 pre-

treatment to salbutamol significantly shifted the EC50 in s.c. adipose tissue (Figure 12a) (F (2, 99) 

= 19.21, P < 0.0001). Furthermore, ExperiorTM with or without L-748,337 significantly blunted 

cAMP production mediated by salbutamol in s.c. adipose tissue and the cAMP reduction was 

remarkable from 10-6 to 10-4 M of salbutamol (P < 0.05) (Figure 12a). There was no significant 

change in EC50 shift in response to dobutamine in the presence of ExperiorTM and ExperiorTM plus 

L-748,337 in s.c. adipose tissue (P > 0.05). However, ExperiorTM plus L-748,337 significantly 

inhibited cAMP production mediated by dobutamine in s.c. adipose tissue (P < 0.05) (Figure 12c). 

Neither dobutamine nor salbutamol had any effect on cAMP production in i.m. adipose tissue. In 

addition, there was no antagonistic effect of ExperiorTM in i.m. adipose tissue (Figures 12b and 

12d). 
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 Figure 12. cAMP production in response to selective ß1- and ß2-AR agonists in s.c. (a and 

c) and i.m. adipose tissue (b and d). With 1 µM ExperiorTM or 1 µM ExperiorTM + 10 µM L-

748,337, salbutamol and dobutamine reduced cAMP production in s.c. and i.m. adipose tissues. 

Tissues were pre-incubated with 1 µM ExperiorTM or 1 µM ExperiorTM + 10 M L-748,337, and 

then salbutamol (a, b) or dobutamine (c, d) was added for an additional 30 min. The results of 

each individual concentration-response to salbutamol and dobutamine were fitted together by 

nonlinear regression. Data are expressed as means (n = 5). *P < 0.05.  

 

Discussion 

 In the present study, s.c. and i.m. adipose tissues were used to investigate the effects of 

different ß-AR agonists and antagonists along with the novel ß-AR ligand ExperiorTM on cAMP 

production induced by adenylyl cyclase/PKA/hormone sensitive lipase cascade. The results of this 
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study indicated that s.c. and i.m. adipose tissue have physiologically different responses to ß-AR 

agonists. Isoproterenol, RH and ZH stimulated glycerol and NEFA release from s.c. adipose tissue. 

In contrast, those ß-AR agonists were not effective in elevation of cAMP production or in release 

of glycerol or NEFA in i.m. adipose tissue. ExperiorTM significantly inhibited stimulation of cAMP 

production mediated by interaction of ß1-AR and ß2-AR and adenylyl cyclase in s.c. adipose tissue, 

whereas ExperiorTM did not have any effect in i.m. adipose tissue. 

ß-adrenergic receptors are G protein-coupled receptors, and three ß-AR subtypes (ß1-AR, 

ß2-AR, and ß3-AR) are expressed in most mammalian cells. The cellular proportion of each 

subtype present on the surface of membranes varies among tissues and across species. 

Furthermore, ß-AR subtypes, even in single cells, have different distributions among adipocytes 

(Seydoux et al., 1996). This suggests that each ß-AR subtype may be transcriptionally regulated 

to vary the proportion of their receptor subtypes on the cell surface. Early ADRB gene expression 

was reported in bovine oocytes and preimplantation embryos (Cikos et al., 2014). The first 

transcription gene of ADRB was the ß2-AR in the morula, and then all ADRB genes were expressed 

in the blastocyst, indicating that transcription of these genes begins early after embryonic genome 

activation. The current study confirmed ADRB expression in s.c. and i.m. adipose tissue from 

growing cattle and reported the distribution of ADRB in bovine i.m. adipose tissue for the first 

time. Both s.c. and i.m. adipose tissues expressed all three ß-AR, and the most abundant ADRB 

was the ADRB2. Interestingly, the ß1-AR and ß3-AR subtypes showed similar levels of gene 

expression in both s.c. and i.m. adipose tissues.  In the past, ADRB3 was believed to be expressed 

primarily on the surface of white and brown adipocytes in rodents (Strosberg, 1997). For two 

decades, the expression of ADRB3 had been identified and confirmed in various tissues of livestock 

spices. The ADRB3 gene is expressed in brown adipose tissue in cattle, s.c. adipose tissue in pigs, 
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most of the tissues of sheep, and s.c. adipose tissue, mammary gland, gastrointestinal tracts, and 

liver of dairy cattle (Casteilla et al., 1994; Pietri-Rouxel et al., 1995; McNeel and Mersmann, 1999; 

Inderwies et al., 2003; Meylan et al., 2004; Carron et al., 2005; Kobel et al., 2006; Sumner and 

McNamara, 2007; Wu et al., 2010). However, there were no reports for the identification ADRB3 

gene expression in s.c. and i.m. adipose tissue of beef cattle. Therefore, our findings are noteworthy 

in that we confirmed ADRB3 gene expression in adipose tissues of beef cattle for the first time.  

ß-Adrenergic agonists act as repartitioning agents that lead to the redirection of nutrients 

from lipid synthesis to protein synthesis, modulating animal growth in various species of mammals 

and birds, including cattle, pigs, poultry, and sheep (Jones et al., 1985; Moloney et al., 1990; 

Schiavetta et al., 1990; Smith et al., 1995). Oral administration of these ß-AR agonists (e.g., 

cimaterol, clenbuterol, L-644,969, and RH) increased muscle mass by increasing muscle protein 

synthesis and depressing adipose tissue accretion in livestock species by directly stimulating the 

triacylglycerol degradation and by inhibiting fatty acid and triacylglycerol synthesis in adipose 

tissue. The effects of ß-AR agonists begin with the stimulation of ß-AR through the G-coupled 

proteins to activate adenylyl cyclase which, in turn, stimulates production of cAMP. In current 

study, isoproterenol was chosen as the non-specific agonist for all ß-AR subtypes, to compare the 

effects of ZH and RH on cAMP-dependent lipolysis in response to ß-AR stimulation. After 30 min 

incubation, isoproterenol increased cAMP production and, consequently, induced increases in 

glycerol and NEFA release from s.c. adipose tissue in a dose-response manner. However, we 

prolonged the incubation time 60, 90, and 270 min, cAMP production was dramatically reduced 

(data not shown). This suggests that extended exposure to isoproterenol causes ß-AR to be 

sequestered and degraded, resulting in diminished sensitivity to agonists due to desensitization to 

ß-AR agonists. 
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 Although RH and ZH had no effect on cAMP production, the release of glycerol by RH 

and ZH in s.c. adipose tissue was increased. This suggest that the lipolytic response is controlled 

by even a very small range of cAMP levels (Allen and Quesenberry, 1988). The release of NEFA 

in response to RH and ZH was similar at individual concentrations, but the ZH effect was not 

significant. Activation of ß-AR stimulated by ß-AR agonists, including isoproterenol, cimaterol, 

clenbuterol, and RH in porcine adipose tissue increased the release of glycerol and NEFA (Peterla 

and Scanes, 1990). Meanwhile, oral administration of RH to pigs reduced fat accretion owing to 

suppression of the activity of lipogenic enzymes and, in turn, the depression of de novo fatty acid 

synthesis (Mills et al., 1990). Additionally, gene expression associated with lipid synthesis 

including sterol regulatory element binding protein-1(SREBP1), fatty acid synthase (FAS), and 

proliferator-activated receptor-2 (PPAR2) was also reduced in pigs by RH (Reiter et al., 2007; 

Halsey et al., 2011). Page et al. (2004) postulated that RH can trigger apoptosis in mouse adipose 

tissue (Page et al., 2004). Unfortunately, knowledge of altering lipogenic gene expression induced 

by ß-AR agonists is limited in cattle. Taken together, reduction in fat accretion induced by RH 

may be through increased lipolysis and depressed lipogenesis.  

Species have different expression and functional roles for ß-AR subtypes because of their 

potential redundancy and complexity in signaling responses, and the function of the ß3-AR is 

species-specific (Langin et al., 1991). The ß3-AR predominantly mediates the lipolytic response 

through selective ß3-AR agonists such as CL-316243 and BRL-37344 in rodents, rabbits, and dogs, 

whereas it is poorly responsive to ß3-AR agonists in humans, primates, guinea pigs, and pigs 

(Bousquet-Melou et al., 1994; Carpene et al., 1994; Langin et al., 1995; Mills, 2000). To date, 

there is no clear evidence for the existence of a functional ß3-AR in bovine adipose tissue from 

physiologically mature cattle. In our present study, we attempted to examine the presence of a 
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functional ß3-AR in response to BRL-37344, a selective ß3-AR agonists, and ExperiorTM, a newly 

synthesized, putative ß3-AR agonists in bovine adipose tissues. Both BRL-37344 and ExperiorTM 

failed to stimulate cAMP production and NEFA release from s.c. and i.m. adipose tissues. Similar 

results were previously reported in porcine adipose tissue by Mills (2000), which tested ß3-

mediated lipolysis in response to BRL-37344 in porcine adipose tissue, in which BRL-37344 did 

not increase cAMP production or increase lipolysis (Mills, 2000). Our ADRB gene expression data 

showed that ß1-AR and ß3-AR were expressed similar levels in bovine s.c. and i.m. adipose tissues, 

which may propose a possibility of low Gs coupling with ß3-AR. Moreover, Soeder et al. (1999) 

demonstrated that ß3-AR can be constitutively coupled to Gs as well as Gi protein to control lipid 

metabolism (Soeder et al., 1999). This result raises another possibility as to why the concentrations 

of cAMP or NEFA produced by ß3-AR activation remained unchanged with increasing in ß3-AR 

agonist concentrations. In addition, ExperiorTM exhibited similar sensitivity (pD2) to adipose tissue 

as BRL-37344 in both adipose tissues, suggesting that ExperiorTM may function as a ß3-AR agonist 

in rodents or rabbits to same extent of BRL-37344. Taken together, ß3-AR may not be functional 

in bovine adipose tissue and the tissue distribution of ß3-AR in cattle is very different from that of 

rodents. 

Individual ß1-AR or ß2-AR subtypes have different abilities to evoke the cAMP production. 

Dobutamine, a ß1-AR agonist, modestly increased cAMP production, while salbutamol, a ß2-AR 

agonist, strongly evoked cAMP production in s.c. adipose tissue, suggesting that ß2-AR is the 

primary regulator of lipolysis in cattle, and that the ß1-AR has a lesser function in lipolysis.  

To investigate the antagonism of ExperiorTM, we co-incubated ExperiorTM with tissues pre-

treated propranolol, a non-selective ß-AR antagonist. cAMP production was depressed strongly 

by increasing ExperiorTM concentrations. Further, following pre-treatment with ExperiorTM, 
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ExperiorTM inhibited the ability for salbutamol and dobutamine to increase cAMP accumulation. 

This supports the concept that ExperiorTM functions better as a selective antagonist for ß1-AR or 

ß2-AR than as a ß3-AR agonist in bovine adipose tissue. Backer et al. (2003) proposed the existence 

of two separate binding sites of the human ß1-AR: 1) one for classic agonists and ß-antagonists 

and 2) the other for another agonist (i.e., CGP 12177) (Baker et al., 2003). CGP 12177 is an agonist 

that is relatively resistant to inhibition by propranolol and CGP 20712A (Konkar et al., 2000). The 

results of the current study demonstrated that dobutamine and salbutamol had agonistic effects on 

individual ß1-AR and ß2-AR, respectively, and also depressed cAMP production by ExperiorTM at 

higher concentrations of dobutamine and salbutamol. Furthermore, the combination of propranolol 

plus ExperiorTM decreased cAMP production. This suggests that bovine ß1-AR or ß2-AR may have 

two separate binding sites, and each ß-AR agonist and ExperiorTM may act on different binding 

sites in bovine adipose tissue.  

In the current study, i.m. adipose tissue did not show a reproducible lipolytic response to 

ß-AR agonists, although cAMP production was greater in i.m. adipose tissue than in s.c. adipose 

tissue for all experiments. Adipocyte diameter and volume in i.m. adipose tissue are less than in 

s.c. adipose tissue (Smith and Crouse, 1984; Miller et al., 1989). Subcutaneous adipose tissue may 

develop initially as brown adipose tissue, subsequently dedifferentiating and redifferentiating to 

white adipose tissue (Landis et al., 2002). The current study demonstrated that the levels of gene 

expression of ß-AR were much lower in i.m. adipose tissue than that of s.c. adipose tissue, which 

indicates small amounts of ß-AR populations in i.m. adipose tissue. Therefore, i.m. adipose tissue 

apparently would be less responsive to lipolysis induced by synthetic or parasympathetic 

stimulation than s.c. adipose tissue.   
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In conclusion, our results indicate the potential specificity of adipose tissue in the 

expression of particular ß-AR subtypes during cattle growth and different physiological responses 

of ß-AR subtypes to ß-AR agonists administration in s.c. and i.m. adipose tissue. We also 

investigated cAMP accumulation and lipolysis mediated by the interaction of ß-AR and ß-AR 

agonist, resulting in increased lipolysis in s.c. adipose tissue.  ExperiorTM, a novel ß-AR agonist, 

may be both a ß3-AR agonist and a ß1-AR and ß2-AR antagonist.  These unique combinations of 

agonistic and antagonistic effects may have confounding impacts on lipolysis and muscle 

hypertrophy compared to traditional ß-AR agonist supplementation to cattle. 
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CHAPTER V 

ASSESSMENT OF ANTAGONISTIC EFFECTS ON 1/2-ADRENERGIC RECEPTORS 

USING A NOVEL -AR LIGAND IN BOVINE ADIPOCYTES 

 

Introduction 

The adrenergic receptors ( and ß) are a class of G protein-coupled receptors, and three ß-

AR subtypes have been identified in the most mammalian tissues, ß1-AR, ß2-AR, and ß3-AR 

(Strosberg, 1997). The proportions of ß-AR subtypes in adipose tissue varies with species. For 

example, ß2-AR is the most predominant subtype in bovine adipose tissue and human adipose 

tissue, ß1-AR is the primary subtype in porcine adipose tissue, and ß3-AR is the most abundant 

subtype in rodent adipose tissue (Sillence and Matthews, 1994; McNeel and Mersmann, 1999; 

Johnson et al., 2014). These ß-AR subtypes either stimulate or inhibit the physiological response 

in binding to ß-agonists (ß-AA) or ß-antagonists (Hershberger, 1994; Woodcock, 2007; Lynch and 

Ryall, 2008), which the stimulation of ß-AR by ß-AA signals through G-protein Gs to activate 

the adenylate cyclase (AC)-cAMP-protein kinase A (PKA) signaling cascade (Mersmann, 1998; 

Wallukat, 2002).  

Adipose tissue is uniquely sensitive to ß-AA. The activation of ß-AR by  ß-AA promotes 

lipolysis of triglyceride in lipid droplets, thereby releasing mobilized fatty acids and other 

precursors derived from stored triglyceride, which are used for energy generation (Barbosa et al., 

2015). The lipolysis is known to be induced by ß1-AR and ß2-AR in mammals except for rodents, 

as the ß3-AR in rodent white and brown adipocytes mainly mediates lipolysis. Nevertheless, 

lipolysis mediated by ß-AR has also been reported in various mammals, but the effects were low 

(Bousquet-Melou et al., 1994). For instance, ß3-AR agonists induced lipolysis in white adipocytes 
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from marmosets, dogs, and rats, while they were ineffective in stimulating lipolysis in white 

adipocytes from baboons, macaques and humans. Lipolysis induced by ß3-AR on bovine white 

adipose tissue remain unclear. In addition, specificity between synthetic ß-AA and ß-AR reveals 

species-specific differences. Ractopamine and clenbuterol are partial ß-agonists in porcine 

adipocytes (Liu et al., 1989), and they are reacted as antagonists in porcine adipocytes under certain 

conditions (Liu and Mills, 1989). BRL- 37,344 and CL-316,243, selective ß3-agonists, had full 

agonistic effects in rat and dog white adipocytes, whereas another ß3-agonists such as CGP-12,177 

and SR-56,811A were partial agonists in rat and dog white adipocytes (Bousquet-Melou et al., 

1994).  

ß-Adrenergic agonists traditionally have been used for the treatment of chronic bronchitis, 

chronic obstructive pulmonary disease, asthma, uterine relaxants, and cardiac irregularities for 

more than 30 year (Barnes, 1999). Interestingly, some ß-AA (e.g., zilpaterol, ractopamine, 

cimaterol, terbutaline, matuberol and salbutamol) in livestock industry revealed repartitioning 

effects, which promotes muscle hypertrophy through increase in muscle protein synthesis and 

decrease in adipose tissue mass by stimulation through triacylglycerol degradation and inhibition 

of their synthesis and fatty acid synthesis (Emery et al., 1984; Jones et al., 1985; Moloney et al., 

1990; Schiavetta et al., 1990; Smith et al., 1995). Therefore, these ß-AA contribute to improvement 

of feed utilization, lean growth rate, and carcass lean percentage in cattle, pigs, poultry and sheep. 

At present, most ß-AR agonists commercially available, such as zilpaterol, ractopamine, cimaterol, 

terbutaline, matuberol and salbutamol target ß1-AR and ß2-AR. Recently, a new ß-AR modulator, 

lubabegon fumarate (as known as ExperiorTM) has been synthesized by Elanco Animal Health. 

Preliminary data indicated that ExperiorTM acted as ß3-AR agonist and a ß1-AR and ß2-AR 

antagonist in Chinese hamster ovary cells (M. E. Spurlock, unpublished data). Our previous study 
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(chapter 4) revealed that ExperiorTM showed strong antagonistic effects on ß1-AR and ß2-AR in 

bovine subcutaneous (s.c.) adipose tissue explant culture. Based on these observations, we used 

primary bovine s.c. and intramuscular (i.m.) adipocytes to investigate the mechanisms regulating 

ß-AR stimulation mediated by ExperiorTM. 

 

Materials and Methods 

 

Materials 

Lubabegon fumarate (ExperiorTM) was provided by Elanco Animal Health (Elanco Animal 

Health, Indianapolis, IN). Other drugs and reagents were purchased from the following companies: 

dobutamine, salbutamol, propranolol, insulin, dexamethasone, gentamicin, Glycerol Assay Kit, 

DNAseI, bovine serum albumin (BSA), phenymethylsulfony fluoride (PMSF), and phosphatase 

inhibitor cocktail (Sigma-Aldrich, St. Louis, MO); troglitazone, rosiglitazone, ciglitazone, 3-

isobutyl-1-methylxanthine (IBMX), and forskolin (Cayman Chemical, Ann Arbor, MI); Cell 

Counting kit-8 (Dojindo, Rockville, MD); Cyclic AMP XP® Assay Kit, Hormone Sensitive Lipase 

(HSL) antibody and phospho-HSL (Ser563) antibody  (Cell Signaling Technology, Danvers, MA); 

antibiotic-antimycotic, Dulbecco’s modified Eagle’s Medium, nutrient mixture Ham’s F12 

(DMEM/F12), Dulbecco’s phosphate-buffer saline (DPBS), collagenase II, gentamicin, 

amphotericin B, Protein Kinase A Colorimetric Activity Kit, Pierce BCA Protein Assay Kit, and 

protease inhibitor (Thermo Fisher Scientific, Waltham, MA); nonesterified fatty acid (NEFA) kit 

(Wako Life Sciences, Inc., Mountain View, CA); qScriptTM cDNA synthesis kit and Perfecta® 

SYBR® Green fastmix® (Quanta Biosciences, Gaithersburg, MD); HiBind® RNA mini column 

(Omega Bio-tek, Inc., Norcross, GA); polyvinylidene fluoride (PVDF) membrane (GE Healthcare 
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Bio-Sciences, Pittsburgh, PA); anti-ß-actin (Santa Cruz Biotechnology, Inc., Dallas, TX); 

horseradish peroxidase-conjugated rabbit anti-goat IgG (Abcam, Cambridge, MA). 

 

Bovine adipose tissue sampling at slaughter 

Angus crossed bred steers were fed a standard, corn-based finishing diet at the Texas A&M 

University McGregor Research Center, McGregor, TX, and then transported approximately 190 

km to the Texas A&M Rosenthal Meat Science and Technology Center, College Station, TX. 

Cattle were stunned using a captive bolt followed by exsanguination. The longissimus muscle 

(LM) and overlying s.c. adipose tissue from the 8th to 10th thoracic region was removed by cutting 

through the hide immediately lateral to the spinal process. The muscle was immediately 

transported to the laboratory in pre-warmed DPBS with 3% antibiotic-antimycotic within 30 min. 

 

Primary preadipocyte isolation from bovine adipose tissues 

Fresh LM and overlying s.c. adipose tissue were rinsed with pre-warmed DPBS containing 

1% antibiotic-antimycotic to remove blood clots. Subcutaneous adipose tissue and i.m. adipose 

tissues (dissected fresh from the LM muscle) were minced into small pieces using surgical scissors 

and incubated in pre-warmed digestion buffer containing DMEM/F12 (1:1 vol/vol), 0.15% 

collagenase II, and 1% BSA (essentially fatty acid free) for 45 min at 37°C in a shaking incubator. 

Following incubation, the digest was filtered through a 100-m nylon mesh to eliminate 

undigested adipose tissues, mature adipocytes and large cell aggregates. The filtered stromal 

vascular fractions were centrifuged at 1,500 rpm for 10 min at room temperature, and then were 

incubated in erythrocyte lysis buffer for additional 5 min at room temperature to lyse red blood 

cells. The suspension was centrifuged at 1,500 rpm for 10 min, and resuspended in fresh growth 
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medium (DMEM/F12, 10% FBS and 1% antibiotic-antimycotic). The preadipocytes were counted 

and directly cultured at 37°C in a humidified incubator with 5% CO2 or were frozen in lipid 

nitrogen until further use. 

 

Cell viability assay 

Subcutaneous preadipocytes were seeded at a density of 5×103 cells/well in 96-well 

microplates. Cells were incubated with or without dobutamine, salbutamol, or ExperiorTM for 

varying time periods and with various concentrations. Viabilities were evaluated by the cell 

counting kit-8 (CCK-8) according to the manufacturer’s instructions. Eight wells were set in each 

group. Following treatment, 10 L of CCK-8 was added into each well, and then the cells were 

incubated for additional 2 h in an incubator at 37°C. The absorbance of the formazan product was 

measured at 450 nm using an Epoch microplate reader (Biotek Instruments, Winooski, VT). 

 

Preadipocytes differentiation 

Subcutaneous and i.m. preadipocytes were cultured in normal growth media until 80% 

confluent. Cells were differentiated for 14 d into mature adipocytes in DMEM/F12 containing 

2% FBS, 1 μM dexamethasone, 20 μg/mL insulin, 0.5 mM IBMX, 50 µg /mL gentamicin, 2.5 

µg/mL amphotericin B, 1% antibiotic-antimycotic supplemented with PPAR agonists (10 μM 

troglitazone, 10 μM ciglitazone, and 1 μM rosiglitazone) for the first 8 d. From d 8 to d 14, 

maintenance medium supplemented only with 20 μg/mL insulin and 1 μM rosiglitazone was 

used. The medium was replaced every 48 h. Morphologic changes of the s.c. and i.m. adipocytes 

were monitored under a microscope. 
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Production of cAMP 

The level of cAMP production in s.c. and i.m. adipocytes was determined by using the 

Cyclic AMP XP® Assay Kit according to the manufacturer’s instructions. Briefly, s.c and i.m 

preadipocytes were seeded at a density of 2×104 cells/well in 24-well microplates. At d 14 of 

differentiation, s.c. and i.m. adipocytes were starved for 1 h in DMEM/F12 containing 0.5% BSA, 

0.5 mM IBMX, 10 μM forskolin and 1% antibiotic-antimycotic at 37°C. After starvation, the cells 

were pre-stimulated in the presence or absence of either 1 μM ExperiorTM or 10 μM propranolol 

for 5 min. Following 5 min, the cells were stimulated with 10 μM dobutamine, 10 μM salbutamol, 

or 1 μM ExperiorTM for 15 min. The cells in 24-well plates were lysed in 200 μL of cell lysis buffer 

provided by the kit with 1 mM PMSF and 10 μL/ mL of protease inhibitor. The cell lysate was 

centrifuged at 14,000 x g for 10 min at 4 °C to remove cell debris. Fifty microliters of cell lysates 

from s.c. and i.m. adipocytes or standards were co-incubated in 96-well plates with the horseradish 

peroxidase (HRP)-linked cAMP substrate coated onto an immobilized rabbit monoclonal cAMP 

antibody at room temperature for 3 h on a horizontal orbital plate shaker. Next, 100 μL of the TMB 

substrate were added to each well and incubated at room temperature for 30 minutes. Afterward, 

100 μL of stop solution was added to each well. After the reaction, color development was 

measured at 450 nm using an Epoch microplate reader. A standard curve was generated by a four-

parameter logistic regression, and cAMP concentrations were calculated using GrapPad Prism 6.04 

software (GraphPad Software Inc., San Diego, CA). Protein concentrations were determined by 

Pierce BCA Protein Assay Kit. Levels of cAMP were normalized to cellular protein content. 
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Protein Kinase A activity  

Protein Kinase A activity was measured using PKA Colorimetric Activity Kit following 

manufacturer’s protocol. Briefly, cells in 24-well plates were lysed in 200 μL of activated cell lysis 

buffer provided by the kit with 1 mM PMSF, 1 μL/mL protease inhibitor and 1 μL/mL phosphatase 

inhibitor cocktail and incubated for 30 min on ice with occasional vortexing. The lysates were 

centrifuged at 10,000 rpm for 10 min at 4°C. The supernatant fraction was used as substrates for 

the PKA enzymes. All supernatant fractions were diluted 1:1 in kinase assay buffer provided by 

the kit, adding 1 mM PMSF and 0.5 μL/mL protease inhibitor. Forty microliters of samples or 

standards and 10 μL of ATP were co-incubated in 96-well plates at 30°C for 90 min on a horizontal 

orbital plate shaker. The wells then were aspirated and washed 4 times with wash buffer. Twenty-

five microliters of rabbit phospho PKA substrate antibody and 25 μL of secondary goat anti-rabbit 

IgG-HRP were co-incubated at room temperature for 60 min with shaking. Next, 100 μL of the 

TMB substrate were added to each well and incubated at room temperature for 30 min. Afterward, 

50 μL of stop solution was added to each well. Color development was measured at 450 nm using 

an Epoch microplate reader. A standard curve was generated by a four-parameter logistic 

regression, and the PKA activity was calculated using GrapPad Prism 6.04 software. 

 

Lipolysis assay 

To test lipolysis, s.c and i.m preadipocytes were seeded at a density of 2×104 cells/well in 

24-well microplates. At day 14 of differentiation, s.c. and i.m. adipocytes were starved for 2 h in 

DMEM/F12 containing 0.5% BSA, 0.5 mM IBMX, and 1% antibiotic-antimycotic at 37°C. 

Following starvation, the cells were pre-stimulated in the presence or absence of either 1 μM 

ExperiorTM or 10 μM propranolol for 30 min. After 30 min, the cells were stimulated with 10 μM 
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dobutamine, 10 μM salbutamol or 1 μM ExperiorTM for 6 h. After 6 h, media were harvested for 

measuring concentration of glycerol and NEFA. The cells were harvested for protein 

quantification. Lipolysis was measured with a glycerol assay kit and a NEFA kit according to the 

manufacturer’s procedures. In brief, to determine glycerol released from cells, 10 µL of media was 

reacted with 100 μL glycerol reaction reagent for 20 min at room temperature and the absorbance 

was measured at 570 nm. The glycerol standard was used to generate a calibration curve. To 

analyze the level of NEFA released from the cells, 10 μL of media plus 200 μL of the first reagent 

was incubated for 5 min at 37°C, then 100 L of the second reagent was incubated for another 5 

min at 37°C. The absorbance was read at 550 nm. Oleic acid was used to plot a standard curve and 

to calculate concentration of NEFA in the media. Glycerol and NEFA release were normalized to 

cellular protein content. 

 

Quantitative real-time RT-qPCR 

Subcutaneous and i.m preadipocytes were seeded at a density of 5×105 cells in T-25 flasks. 

At d 14 of differentiation, the cells were stimulated with 10 μM dobutamine, 10 μM salbutamol, 1 

μM ExperiorTM, dobutamine plus ExperiorTM, and salbutamol plus ExperiorTM for 3 d in 

DMEM/F12 containing 2% FBS, and 1% antibiotic-antimycotic at 37°C. Total RAN was isolated 

from s.c. and i.m. cells using HiBind® RNA mini columns followed by DNAseI treatment. Total 

RNA was quantified on the NanoDropTM 2000 Spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA) and reverse transcription was performed with the qScriptTM cDNA synthesis kit. 

The gene expressions of lipid metabolism related genes in s.c. and i.m. cells were analyzed in a 

CFX384TM Real-Time System (Bio-rad, Hercules, CA) using the Perfecta® SYBR® Green 

fastmix® kit. The different efficacy of cDNA synthesis between samples was normalized with 



 

 77 

three reference genes (ribosomal protein 9 (RSP9), glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), and succinate dehydrogenase (SDHA)).  The relative expression of mRNA was 

determined by the cycle threshold (CT) deviation of an unknown sample vs geometric mean of 

three reference genes and data were presented as either 2-ΔCT or 2-ΔΔCT. The primers used in this 

assay are listed in Table 8. 
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Table 8. List of primers used in RT-qPCR 

Gene 
Accession 

number 
sequence 

Amplicon 

length 

(bp) 

ADRB1 NM_194266.1 
F: 5’-AGAAGGCACTCAAGACGCT-3’ 

R: 5’-CACCACGTTGGCTAGGAAGA-3’ 
81 

ADRB2 NM_174231.1 
F: 5’-TGATCGCTGTGGATCGCTAC-3’ 

R: 5’-CCGGTACCAGTGCATCTGAA-3’ 
149 

ADRB3 NM_174232.2 
F: 5’-ACCTTCATTCTGTTCCTTCTG-3’ 

R: 5’-CTGTGAGGTAGGTGTGTCTA-3’ 
145 

ARRB1 NM_174243.3 
F: 5’-TTCAACACAGCCCAGTACAA-3’ 

R: 5’-GTAGACCTTGCAGAACGTAGAG-3’ 
87 

ARRB2 NM_001205277.2 
F: 5’-GGACCAGGGTCTTCAAGAAAT-3’ 

R: 5’-CACTAGCACCACACCATCTAC-3’ 
116 

BARK1 NM_174710.2 
F: 5’-GAGATCTTCGACACGTACATCAT-3’ 

R: 5’-CACCTGCTTCTTCACCAGAT-3’ 
105 

BARK2 NM_174500.2 
F: 5’-GCCTTCCACACTCCAGATAAA-3’ 

R: 5’-AAACCGCATCTCCTTCTCAG-3’ 
111 

ATGL NM_001046005.2 
F: 5’-TCTGCCTGCTGATTGCTATG-3’ 

R: 5’-GCAGACATTGGCCTGGATAA-3’ 
130 

HSL NM_001080220.1 
F: 5’-GAGACTGGCATCAGTGTGAC-3’ 

R: 5’-TGCACGTCTAGGTTCTGAATG-3’ 
113 

MGLL NM_001206681.1 
F: 5’-AAAGTTCTGAACCTCGTCCTG-3’ 

R: 5’-GATGTCCACCTCCGTCTTATTC-3’ 
87 

PLIN1 NM_001083699.1 
F: 5’-CTGAAGGACACCATCTCCAC-3’ 

R: 5’-CATACTCGGCAGTGTCTCTC-3’ 
145 

ABHD5 NM_001076063.2 
F: 5’-CATCCAGGGTTAGTCATCTCATT-3’ 

R: 5’-CCAAGGCTCTGATCCAAACT-3’ 
105 

FABP4 NM_174314.2 
F: 5’-GGAAAGTCAAGAGCATCGTAAAC-3’ 

R: 5’-TGGCAGTGACACCATTCAT-3’ 
141 

FASN NM_001012669.1 
F: 5’-CCATCCTTCTGACCAAGAAGTC-3’ 

R: 5’-AGGTGACGCCTTTCTCTTTG-3’ 
99 

CEBPA NM_176784.2 
F: 5’-ATCGACATCAGCGCCTACAT-3’ 

R: 5’-GCCCGGGTAGTCAAAGTCG-3’ 
141 

PPARG NM_181024.2 
F: 5’-ATCTGCTGCAAGCCTTGGA-3’ 

R: 5’-TGGAGCAGCTTGGCAAAGA-3’ 
76 

GAPDH NM_001034034.2 
F: 5’-CTGCCCGTTCGACAGATAG-3’ 

R: 5’-CTCCGACCTTCACCATCTTG-3’ 
76 

RPS9 NM_001101152.2 
F: 5’-GAGCTGGGTTTGTCGCAAAA-3’  

R: 5’-GGTCGAGGCGGGACTTCT-3’ 
65 

SDHA NM_174178.2 
F: 5’-ACCTGATGCTTTGTGCTCTG-3’  

R: 5’-TCGTACTCGTCAACCCTCTC-3’ 
106 
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Immunoblotting 

To measure HSL activity, at d 14 of differentiation, s.c. and i.m. adipocytes in T-25 flasks 

were starved for 1 h in DMEM/F12 containing 2% FBS, 0.5mM IBMX, and 1% antibiotic-

antimycotic at 37°C. After starvation, the cells were pre-stimulated in the presence or absence of 

1 μM ExperiorTM for 30 min. After 30 min of pre-treatment, the cells were stimulated with 10 μM 

dobutamine, 10 μM salbutamol or 1 μM ExperiorTM for 6 h, then cells were harvested for protein 

extraction. Protein concentrations in samples were quantified using Pierce™ BCA Protein Assay 

Kit.  Total protein (10 µg) was separated on a 10% SDS-PAGE gel at constant current.  Proteins 

in the gel were transferred onto a PVDF membrane using a Trans-blot® SD Semi-dry Transfer 

Cell (Bio-Rad, Hercules, CA) for 1 h. The membrane was immediately blocked with ether a 5% 

non-fat milk solution or 5% BSA (for phosphor-protein detection) at room temperature for 1 h. 

The membrane was then incubated overnight at 4°C with anti-HSL (1:500), phospho-HSL 

(Ser563) (1:500), anti-ß-actin (1:10,000). The membranes were incubated with horseradish 

peroxidase-conjugated rabbit anti-goat IgG (1:1,000) for 2 h at room temperature. The proteins on 

the membrane were visualized using an enhanced chemiluminescence detection kit (Bio-Rad, 

Hercules, CA). Bands were quantified using Image Studio Lite version 5.2 software (LI-COR 

Biotechnology, Lincoln, NE) and protein levels were normalized to ß-actin on the same membrane. 

 

Statistical analysis 

All the experiments were performed in triplicates with at least three independent runs. The 

data are expressed as means ± SEM. Statistical analyses were tested either the two-sided, unpaired 

student’s t-test or one-way analysis of variation (ANOVA) with either LSMeans Student’s t or 
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Dunett’s test using JMP Pro 13 software (SAS Institute Inc., Cary, NC). A P-value < 0.05 was 

considered significant.  

 

Results 

Induction of differentiation in bovine s.c. and i.m. preadipocyte and validation of concomitant 

gene expression 

In this study, we have successfully induced adipogenic differentiation in bovine primary 

cultured preadipocytes (Figure 13). Before inducing adipogenic differentiation, s.c. and i.m. 

preadipocytes were phenotypically fibroblasts-like morphologies (Figures 13a and 13b). With the 

introduction of differentiation media, small lipid droplets were starting to become visible under a 

light microscope from d 3. Exposure to the differentiation media for 8 d led to an enhanced 

adipogenic differentiation of s.c and i.m. preadipocytes. For six additional days, cultured in 

maintenance medium supplemented only with 20 μg/mL insulin and 1 μM rosiglitazone, these s.c. 

and i.m. preadipocytes had further formations of medium to large lipid droplets (Figures 13c and 

13d).   

To further validate the adipogenic differentiation of s.c. and i.m preadipocytes, 

differentiation was confirmed by genes expressed in the commitment (C/EBPα and PPARγ) and 

terminal phase (FABP4) of adipogenesis through RT-qPCR. There were significant increases in 

expression of adipogenic genes in differentiated s.c. and i.m adipocytes (P < 0.05) (Figures 13e 

and 13f). The expression of C/EBP and PPAR was 2- and 6-fold higher expression in 

differentiated s.c. adipocytes than in s.c. preadipocytes, respectively (Figure 13e). Unlike s.c 

adipocytes, the expression of C/EBP was 1.7-fold upregulated, but the expression of PPAR was 

not different in differentiated i.m adipocytes compared with i.m. preadipocytes (Figure 13f). The 



 

 81 

FABP4 gene was highly expressed in both s.c. adipocytes (50-fold) and i.m. adipocytes (14-fold) 

compared to s.c. and i.m. preadipocytes, respectively even though levels of FABP4 expression in 

i.m. adipocytes were less than in s.c. adipocytes.  

 

 

Figure 13. Morphological changes after induction of differentiation in bovine s.c. and i.m. 

preadipocyte and validation of concomitant gene expression. (a) s.c. preadipocytes. (b) i.m. 

preadipocytes. (c) Differentiated s.c. adipocytes. (d) Differentiated i.m. adipocytes. (e) relative 

gene expression levels in s.c. adipocytes. (f) relative gene expression in i.m. adipocytes. Data are 

expressed as means ± SEM (n = 5). *P < 0.05, **P < 0.01, ***P <0.001, differentiated 

adipocytes vs preadipocytes. 
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ß-adrenergic receptor genes (ADRB) profiling in primary s.c. and i.m. adipocytes 

We have successfully detected all three ß-adrenergic receptor (ADRB) genes in both 

preadipocytes and differentiated adipocytes (Figures 14a and 14b). All ADRB genes were observed 

at least 2.5 times higher in differentiated s.c. adipocytes than in s.c. preadipocytes (P < 0.05). The 

predominant ß-AR subtype was ß2-AR in s.c. preadipocytes, whereas the proportions of ADRB 

genes were not different in s.c. adipocytes upon differentiation (Figure 14a). In contrast, the 

expressions of ADRB genes did not differ in i.m. adipocytes compared to preadipocytes except for 

ß2-AR. The ADRB2 gene was highly expressed in i.m preadipocytes (P < 0.05). After induction of 

differentiation, the expression of ADRB2 gene was significantly depressed in i.m. adipocytes 

(Figure 14b).   

 

 

Figure 14. Investigation of ß-adrenergic receptor subtypes by RT-qPCR in bovine primary 

preadipocytes and differentiated adipocytes. (a) ß-AR gene profiling in s.c. preadipocytes and 

differentiated adipocytes. (b) ß-AR gene profiling in i.m. preadipocytes and differentiated 

adipocytes. Data are expressed as means ± SEM (n = 5). *P < 0.05, ***P < 0.001, differentiated 

adipocytes vs preadipocytes. abMeans across each ADRB receptors within each preadipocyte 

sharing a common superscript do not differ (P < 0.05). 
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Changes in s.c. preadipocytes proliferation after exposure to ß-AR agonists 

We have evaluated the proliferation of s.c. preadipocytes to select optimal concentrations 

of ß-AR agonists for further studies. The cells were treated with various concentrations of 

dobutamine, salbutamol, and ExperiorTM for various time points, and cell proliferation was 

measured by cell counting kit-8 (CCK-8). The CCK-8 assay indicated that individual ß-AR 

agonists showed different proliferative influences on s.c preadipocytes, especially at high 

concentrations after 1h incubation of these ß-AA (Figure 15). Following 1 h incubation, the 

treatment of dobutamine, a selective ß1-AA, promoted the proliferation of preadipocytes by 59% 

and 200% at concentrations of 10 µM and 100 µM, respectively (P < 0.05) (Figure 15a). However, 

the exposure of various concentrations of salbutamol, a selective ß2-AA, did not alter the 

proliferation of preadipocytes (Figure 15d). In contrast, the treatment of ExperiorTM, a novel ß-AR 

modulator, inhibited the proliferation of preadipocytes by 46% and 63% at concentrations of 10 

µM and 100 µM, respectively (P < 0.05) (Figure 15g). Based on these results, we decided to 

prolong the exposure time up to 6 h for dobutamine and salbutamol. Furthermore, we selected 1 

µM ExperiorTM to evaluate proliferation of preadipocytes for extended time points (3 to 72 h) and 

10 µM ExperiorTM for testing toxic effect on preadipocytes. Dobutamine treatment promoted cell 

proliferation up to 126% and 293% at concentrations of 10 µM and 100 µM, respectively, by 

increase in time (P < 0.05) (Figures 15b and 15c). In addition, 1 µM dobutamine also significantly 

increased cell proliferation by 67% at 6 h incubation (Figure 15c). In contrast, no changes in the 

proliferation of the preadipocytes were observed after treatment with serial concentration ranges 

of salbutamol until 3 h (Figure 15e). However, salbutamol promoted at least 50% cell proliferation 

at all concentrations at 6 h incubation (P < 0.05) (Figure 15f). There was no change in cell 

proliferation treated with 1 µM ExperiorTM until 24 h but a significant increase in cell proliferation 
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after 48 h (P < 0.05) (Figure 15h). ExperiorTM (10 µM) reduced proliferation of preadipocytes by 

21% after 5 min incubation. After 45 min, the rate of proliferation of preadipocytes was reduced 

by 38% (Figure 15i). Taken together, we selected 10 µM dobutamine and salbutamol and 1 µM 

ExperiorTM for further studies. 

 

Figure 15. Cell viability after treatment with dobutamine, salbutamol, or ExperiorTM in 

bovine preadipocytes. Dose responses for cell viability after exposure to dobutamine at 1 h (a), 3 

h (b), and 6 h (c). Dose responses for cell viability after exposure to salbutamol at1 h (d), 3 h (e), 

and 6 h (f). Dose responses for cell viability after exposure to ExperiorTM (g). Cell viability after 

exposure to 1 µM ExperiorTM at different time points (f). Cell viability after exposure to 10 µM 

ExperiorTM at different time points (i). Data are expressed as means ± SEM (n = 4). *P < 0.05, **P 

< 0.01, ***P <0.001, ****P < 0.0001, vs control (either MeOH or DMSO). 
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ExperiorTM as a ß1-and ß2-AR antagonist in s.c and i.m. adipocytes  

Our previous study demonstrated that ExperiorTM inhibited the activity of AC in bovine 

s.c. adipose tissue. Based on these results, we hypothesized that ExperiorTM acts as a ß-AR 

antagonist. To address this hypothesis, we used a selective ß1-AA, dobutamine, and a selective ß2-

AA, salbutamol, to stimulate individual ß1-AR and ß2-AR in s.c. and i.m. adipocytes. As an index 

of activation of ß1-AR and ß2-AR, we estimated the activity of AC by measuring cAMP 

production. We treated 10 µM dobutamine, 10 µM salbutamol, and 1 µM ExperiorTM for 15 min 

in s.c. and i.m adipocytes that were pre-starved for 1 h in starvation media supplemented with 0.5 

mM IBMX and 10  µM foreskin at d 14 of differentiation. The activity of AC was significantly 

increased by dobutamine treatment (P < 0.05), somewhat increased by salbutamol treatment, but 

was not altered by ExperiorTM treatment as compared to control s.c adipocytes (Figure 16a). In 

contrast, AC activity was not changed by these ß-AA and ExperiorTM treatments in i.m. adipocytes 

(Figure 17a). To investigate the antagonism of ExperiorTM against ß1-AR and ß2-AR in s.c. and 

i.m. adipocytes, the cells were pretreated with 1 µM ExperiorTM for 5 min before adding 

dobutamine or salbutamol. In addition, as a positive control, 10 µM propranolol, a non-selective 

ß-AR antagonist was prior to assess dobutamine or salbutamol. Following pre-treatment with 

either ExperiorTM or propranolol, they strongly blocked the potency for dobutamine and 

salbutamol to stimulate ß1-AR and ß2-AR, resulting in less stimulation of AC, and thereby less 

cAMP production than either dobutamine or salbutamol alone in s.c. adipocytes produced cAMP 

(P < 0.05) (Figures 16b and 16c). In contrast, dobutamine did not activate ß1-AR in i.m. adipocytes 

(Figure 17a), and neither ExperiorTM nor propranolol treatment also exhibited antagonistic effects 

on ß1-AR (Figure 17b). However, ExperiorTM effectively blunted the stimulation of ß2-AR in i.m. 

adipocytes (P < 0.05) (Figure 17c).  
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  The results on PKA activity were similar to that of AC activity in s.c. and i.m. adipocytes. 

PKA activity was significantly increased in dobutamine treatment (P < 0.05), somewhat increased 

in salbutamol treatment, but was not different from control with ExperiorTM treatment in s.c 

adipocytes (Figure 16d). There were no differences of PKA activity among treatments in i.m. 

adipocytes (Figure 17d). The activity of PKA was strongly reduced with co-treatment of 

ExperiorTM or propranolol with either dobutamine or salbutamol when compared to treatments of 

dobutamine or salbutamol alone in s.c. adipocytes (P < 0.05) (Figures 16e and 16f). However, 

PKA was not activated by either dobutamine alone or combined treatments in i.m. adipocytes 

(Figure 17e). In salbutamol treatment group, PKA activity tended to be reduced by ExperiorTM and 

propranolol, but no statistical differences were observed in i.m. adipocytes (Figure 17f). 
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Figure 16.  The effect of dobutamine, salbutamol, and ExperiorTM on adenylyl cyclase and 

PKA activity in differentiated s.c. adipocytes. At d 14 of differentiation, s.c. adipocytes were 

starved for 1 h in DMEM/F12 containing 0.5% BSA, 0.5 mM IBMX, 10 µM forskolin and 1% 

antibiotic-antimycotic at 37°C. After starvation, cells were pre-stimulated in the presence or 

absence of either 1 µM ExperiorTM or 10 µM propranolol for 5 min. Following 5 min, the cells 

were stimulated with 10 µM dobutamine, 10 µM salbutamol, or 1 µM ExperiorTM for 15 min. (a-

c) Adenylyl cyclase activity in the presence or absence of either 1 µM ExperiorTM or 10 µM 

propranolol. (d-f) PKA activity in the presence or absence of ExperiorTM or propranolol. Data are 

expressed as means ± SEM (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. C, 

basal; E, ExperiorTM; D, dobutamine; S, salbutamol; P, propranolol; DE, dobutamine plus pre-

treated with ExperiorTM; DP, dobutamine plus pre-treated with propranolol; SE, salbutamol plus 

pre-treated with ExperiorTM; SP, salbutamol plus pre-treated with propranolol. 
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Figure 17. The effect of dobutamine, salbutamol, and ExperiorTM on adenylyl cyclase and 

PKA activity in differentiated i.m. adipocytes. At d 14 of differentiation, s.c. adipocytes were 

starved for 1 h in DMEM/F12 containing 0.5% BSA, 0.5 mM IBMX, 10 µM forskolin and 1% 

antibiotic-antimycotic at 37°C. After starvation, cells were pre-stimulated in the presence or 

absence of either 1 µM ExperiorTM or 10 µM propranolol for 5 min. Following 5 min, the cells 

were stimulated with 10 µM dobutamine, 10 µM salbutamol, or 1 µM ExperiorTM for 15 min. (a-

c) Adenylyl cyclase activity in the presence or absence of either 1 µM ExperiorTM or 10 µM 

propranolol. (d-f) PKA activity in the presence or absence of ExperiorTM or propranolol.  Data are 

expressed as means ± SEM (n = 3). **P < 0.01. C, basal; E, ExperiorTM; D, dobutamine; S, 

salbutamol; P, propranolol; DE, dobutamine plus pre-treated with ExperiorTM; DP, dobutamine 

plus pre-treated with propranolol; SE, salbutamol plus pre-treated with ExperiorTM; SP, salbutamol 

plus pre-treated with propranolol.  
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The effects of ExperiorTM on lipolysis in s.c. and i.m. adipocytes 

Previous results revealed that ExperiorTM repressed the ß-AR/AC/PKA signaling cascades 

in s.c and i.m adipocytes.  Based on these results, we hypothesized that binding of ExperiorTM to 

ß1-AR and ß2-AR would inhibit lipolysis in s.c and i.m adipocytes. To test this hypothesis, we 

measured the levels of glycerol and NEFA release from s.c. and i.m. adipocytes as an index of 

lipolysis. The cells were treated with 10 µM dobutamine, 10 µM salbutamol, and 1 µM ExperiorTM 

for 6 h after 2 h in starvation media supplemented with 0.5 mM IBMX at d 14 of differentiation. 

Glycerol release was increased by dobutamine (P < 0.05) but not altered by ExperiorTM and 

salbutamol treatments as compared to control s.c adipocytes (Figure 18a). Glycerol release was 

not altered by dobutamine, salbutamol, or ExperiorTM in i.m. adipocytes (Figure 19a). To test the 

effects of ExperiorTM on lipases in s.c. and i.m. adipocytes, adipocytes were pretreated with either 

1 µM ExperiorTM or 10 µM propranolol for 30 min before adding dobutamine or salbutamol. 

Propranolol was used as positive control. Following pre-treatment with either ExperiorTM or 

propranolol, propranolol reduced glycerol release compared to dobutamine alone (P < 0.05) in s.c 

adipocytes (Figure 18b). ExperiorTM had no effect on glycerol release. There was also not a 

significant effect with ExperiorTM or propranolol with salbutamol treatment (Figure 18c). Neither 

ExperiorTM nor propranolol treatments exhibited antagonistic effects on lipolysis for dobutamine 

or salbutamol treatments in i.m. adipocytes (Figures 19b and 19c). The release of NEFA release 

was markedly decreased by dobutamine treatment in both s.c. and i.m adipocytes (P < 0.05) 

(Figures 18d and 19d). With dobutamine treatment, NEFA release was not reduced by ExperiorTM 

or propranolol in s.c adipocytes (Figure 18e). Overall NEFA results indicated that either ß-AA 

alone or combination did not affect NEFA release for 6 h incubations in either s.c. or i.m. 

adipocytes (Figures 18 and Figure 19). 
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 Based on these data, HSL activity was measured using the ratio of phospho-HSL to total 

HSL using western blots. We successfully detected both phospho-HSL and HSL in s.c. and i.m. 

adipocytes (Figure 20). The activity of HSL did not differ (P > 0.05) between treatments in s.c. 

and i.m. adipocytes. 

 

Figure 18. Glycerol and NEFA release in differentiated s.c. adipocytes in response to 

dobutamine, salbutamol, and ExperiorTM.  At d 14 of differentiation, s.c. adipocytes were 

starved for 2 h in DMEM/F12 containing 0.5% BSA, 0.5 mM IBMX, and 1% antibiotic-

antimycotic at 37°C. Following starvation, cells were pre-stimulated in the presence or absence 

of either 1 µM ExperiorTM or 10 µM propranolol for 30 min. After 30 min, the cells were 

stimulated with 10 µM dobutamine, 10 µM salbutamol or 1 µM ExperiorTM for 6 h. (a-c) 

Glycerol release in the presence or absence of ExperiorTM or propranolol. (d-f) NEFA release in 

the presence or absence of ExperiorTM or propranolol. Data are expressed as means ± SEM (n = 

3). *P < 0.05, **P < 0.01. C, basal; E, ExperiorTM; D, dobutamine; S, salbutamol; P, 

propranolol; DE, dobutamine plus pre-treated with ExperiorTM; DP, dobutamine plus pre-treated 

with propranolol; SE, salbutamol plus pre-treated with ExperiorTM; SP, salbutamol plus pre-

treated with propranolol. 
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Figure 19. Glycerol and NEFA release in differentiated i.m. adipocytes in response to 

dobutamine, salbutamol, and ExperiorTM. At d 14 of differentiation, i.m. adipocytes were 

starved for 2 h in DMEM/F12 containing 0.5% BSA, 0.5 mM IBMX, and 1% antibiotic-

antimycotic at 37°C. Following starvation, cells were pre-stimulated in the presence or absence of 

either 1 µM ExperiorTM or 10 µM propranolol for 30 min. After 30 min, the cells were stimulated 

with 10 µM dobutamine, 10 µM salbutamol or 1 µM ExperiorTM for 6 h. (a-c) Glycerol release in 

the presence or absence of ExperiorTM or propranolol. (d-f) NEFA release in the presence or 

absence of ExperiorTM or propranolol. Data are expressed as means ± SEM (n = 3). **P < 0.01. C, 

basal; E, ExperiorTM; D, dobutamine; S, salbutamol; P, propranolol; DE, dobutamine plus pre-

treated with ExperiorTM; DP, dobutamine plus pre-treated with propranolol; SE, salbutamol plus 

pre-treated with ExperiorTM; SP, salbutamol plus pre-treated with propranolol. 
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Figure 20. The ratio HSL Ser563 phosphorylation to total HSL in differentiated s.c. and i.m. 

adipocytes.  Data are expressed as means ± SEM (n = 3). C, basal; E, ExperiorTM; D, dobutamine; 

S, salbutamol; P, propranolol; DE, dobutamine plus pre-treated with ExperiorTM; DP, dobutamine 

plus pre-treated with propranolol; SE, salbutamol plus pre-treated with ExperiorTM; SP, salbutamol 

plus pre-treated with propranolol. 

 

Gene expression associated with lipolysis and lipogenesis by ß-AA and ExperiorTM  

Gene expressions associated with lipolysis and lipogenesis were measured following the 

treatment of ß-agonists and ExperiorTM. At d 14 of differentiation, adipocytes were treated with 10 

µM dobutamine, 10 µM salbutamol, 1 µM ExperiorTM, dobutamine plus ExperiorTM, and 

salbutamol plus ExperiorTM for 3 d in DMEM/F12 containing 2% FBS, and 1% antibiotic-

antimyotic at 37℃. The mRNA levels associated with lipolysis (adipose triglyceride lipase 

(ATGL), hormone-sensitive lipase (HSL), monoacylglycerol lipase (MGLL), perilipin 1 (PLIN1), 

and abhydrolase domain containing 5 (ABHD5)) were measured by RT-qPCR (Figures 21a and 

21b). The expression of HSL was increased by salbutamol, dobutamine plus ExperiorTM, and 

salbutamol plus ExperiorTM compared to control (basal expression) in s.c. adipocytes (P < 0.05). 
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The expression of PLIN1 was upregulated by dobutamine, salbutamol, dobutamine plus 

ExperiorTM, salbutamol plus ExperiorTM in differentiated s.c. adipocytes (P < 0.05). However, 

expression of ATGL, MGLL, and ABHD5 were not affected by ß-AA and ß-AA plus ExperiorTM 

in s.c. adipocytes (Figure 21a). Expression of ATGL was depressed by salbutamol plus ExperiorTM 

as compared to control (P < 0.05) in differentiated i.m. adipocytes. Expression of HSL was 

increased by dobutamine and dobutamine plus ExperiorTM in i.m. adipocytes (P < 0.05). There 

were no differences in MGLL, PLIN1, or ABDH5 gene expression by these treatments in i.m. 

adipocytes (Figure 21b). 

We also measured the expression of genes associated with lipid synthesis and adipocyte 

differentiation: fatty acid-binding protein 4 (FABP4), fatty acid synthase (FASN), and PPAR 

(Figures 21c and 21d). The expression of FABP4 was increased by salbutamol plus ExperiorTM as 

compared to control differentiated s.c. adipocytes (P < 0.05) (Figure 21c). The gene expression of 

FASN and PPAR  were not altered by ß-AA or ß-AA plus ExperiorTM in s.c. adipocytes. There 

were no differences in FABP4, FASN, or PPAR gene expression with any the treatments in i.m. 

adipocytes (Figure 21d). 
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Figure 21. Gene expression associated with lipolysis and lipogenesis after 3 d treatment with 

ß-adrenergic agonists and ExperiorTM in differentiated s.c. (a and c) and i.m. (b and d) 

adipocytes. Data are expressed as means ± SEM (n = 3). abcMeans within each treatment sharing 

common superscripts are not different (P < 0.05). C, basal; E, ExperiorTM; D, dobutamine; S, 

salbutamol; P, propranolol; DE, dobutamine plus pre-treated with ExperiorTM; DP, dobutamine 

plus pre-treated with propranolol; SE, salbutamol plus pre-treated with ExperiorTM; SP, salbutamol 

plus pre-treated with propranolol; ATGL, adipose triglyceride lipase; HSL, hormone-sensitive 

lipase; MGLL, monoacylglycerol lipase; PLIN1, perilipin-1; ABHD5, abhydrolase domain 

containing-5; FABP4, fatty acid-binding protein-4; FASN, fatty acid synthase; PPAR, 

peroxisome proliferator-activated receptor gamma. 
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Expression of ADRB genes after prolonged exposure of ß-AA and ExperiorTM  

Prolonged stimulation of ß-AA to ß-AR triggers a rapid attenuation of receptor 

responsiveness, known as desensitization.  In response to chronic agonist over-exposure, down-

regulation of the cellular receptors occurs (Ferguson, 2001; Johnson, 2006). Thus, we 

hypothesized that ADRB gene expression would be decreased by ß-AA treatments. The mRNA 

levels of ADRB, ß-adrenergic receptor kinase (BARK) and ß-arrestins (ABBR) were measured 

after chronic exposure of ß-AA and ExperiorTM for 3 d in s.c. and i.m. adipocytes. Subcutaneous 

and i.m. adipocytes exhibited different responses to ß-AA (Figure 22). The expression of ADRB 

was not affected by either ß-AA or ß-AA plus ExperiorTM in in differentiated s.c. adipocytes 

(Figure 22). In contrast, the mRNA levels of ADRB2 were down-regulated by all treatments except 

dobutamine alone in differentiated i.m. adipocytes (P = 0.07). The expression of ADRB3 was 

decreased by all treatments expect salbutamol plus ExperiorTM (Figure 22b). The expression of 

BARK1, BARK2, ARRB1, and ARRB2 was not altered by ß-AA and   ß-AA plus ExperiorTM in both 

s.c. and i.m. adipocytes (Figures 22c and Figure 22d).  
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Figure 22. Relative mRNA expression of ADRB and gene associated with receptor-

desensitization after 3 d treatment with ß-adrenergic agonists and ExperiorTM in 

differentiated s.c. (a and c) and i.m. (b and d) adipocytes. Data are expressed as means ± SEM 

(n = 3). abMeans within each treatment sharing common superscripts are not different (P < 0.05). 

C, basal; E, ExperiorTM; D, dobutamine; S, salbutamol; P, propranolol; DE, dobutamine plus pre-

treated with ExperiorTM; DP, dobutamine plus pre-treated with propranolol; SE, salbutamol plus 

pre-treated with ExperiorTM; SP, salbutamol plus pre-treated with propranolol; BARK1, ß-

adrenergic receptor kinase-1; BARK2, ß-adrenergic receptor kinase-2; ABBR1, ß-arrestin-1; 

ABBR2, ß-arrestin -2.   

 

Discussion 

This study was designed to examine the effects of a novel ß-AR ligand ExperiorTM on ß1-

and ß2-AR. Also, for the first time we have demonstrated the relative importance of ß1-AR and ß2-

AR in the AC/ PKA/HSL cascade in s.c. and i.m. adipocytes. The current study demonstrated that 

s.c. and i.m. adipocytes have physiologically different responses to ß-AR stimulation by ß-AA. 
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Adenylyl cyclase was highly stimulated by dobutamine (a ß1-AA) and somewhat activated by 

salbutamol (a ß2-AA), but was not affected by EexperiorTM in s.c. adipocytes. The data for PKA 

activity and glycerol release were similar to results for AC activation in s.c adipocytes. In contrast, 

these ß-AA were not effective in the activation of AC and concomitant PKA activation or in 

glycerol release in i.m. adipocytes. ExperiorTM significantly antagonized the effects of dobutamine 

and salbutamol with in turn suppressed the activations of AC and PKA in s.c. adipocytes. The 

antagonistic efficacy of ExperiorTM was equivalent the effects propranolol, which antagonized the 

stimulation of ß1-AR and ß2-AR in s.c. adipocytes, even though the concentration of ExperiorTM 

was 10-fold lower (1 µM) than that of propranolol (10 µM), indicating that ExperiorTM is a 

powerful antagonist of ß-AR.  

During the differentiation of adipocytes, the expression of ß-AR is especially important, 

because catecholamine sensitivity to ß-AR plays a central role in the mechanism for the regulation 

of the transmembrane signaling system that controls energy balance and thermogenesis (Collins, 

2011; Cypess et al., 2015). Adipocytes acquire their responsiveness to catecholamine during 

differentiation (Lai et al., 1982; Feve et al., 1990). Augmentation of ß-AR numbers is paralleled 

by increased levels of ß-AR mRNA because development of catecholamine sensitivity results from 

de novo ß-AR biosynthesis (Feve et al., 1990). There are several reports that changes in ß-AR 

numbers can be also exerted by the action of glucocorticoids like dexamethasone during murine 

3T3 adipocyte differentiation (Lai et al., 1982; Nakada et al., 1987; Feve et al., 1990; Guest et al., 

1990). Upon differentiation, ß1-AR and ß3-AR expression was totally depressed, but ß2-AR 

expression was up-regulated by dexamethasone. Furthermore, in fully mature adipocytes, ß2-AR 

expression was increased, but ß1-AR and ß3-AR expression remained depressed. In contrast, ß2-

AR mRNA expression was not changed upon induction by dexamethasone in bovine skeletal 
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muscle cells (Bridge et al., 1998). In rat C6 glioma cells, ß2-AR mRNA was increased, but there 

was no alteration in ß1-AR mRNA levels after exposure to dexamethasone (Zhong and Minneman, 

1993). Glucocorticoid treatment increased ß1-AR mRNA levels in preterm piglet hearts (Kim et 

al., 2014). Our current study demonstrated that all ß-AR mRNA levels increased during 

differentiation of s.c. adipocytes without a depression of ß1-AR mRNA, even though the cells were 

exposed to dexamethasone during differentiation. These observations illustrate that 

dexamethasone may differently act among species, and other mechanism, including modifying 

membrane composition and the coupling properties of cellular G-proteins, and post-transcriptional 

modifications of ß-AR may be involved in increasing ß-AR numbers during differentiation of 

bovine adipocytes (Lai et al., 1981; Gierschik et al., 1986; Benovic et al., 1987; Storch et al., 1989).  

The current study tested the viability of s.c. preadipocytes after exposure to dobutamine, 

salbutamol, and ExperiorTM in different doses and for different time points using CCK-8 kit. 

Subcutaneous preadipocytes responded differently to individual ß-AA treatments, especially at 

high concentrations (10 µM and 100 µM). Dobutamine highly promoted the proliferation of the 

cells at 10 µM and 100 µM, salbutamol did not induce proliferation at any concentration, and 

ExperiorTM showed toxicity 10 µM and 100 µM after 1 h incubation. In addition, prolonged 

exposures (6 h) to salbutamol significantly induced proliferation. The CCK-8 kit is an enzyme 

based-method that measures mitochondrial dehydrogenase activity. Dobutamine plays an 

important role in mitochondrial bioenergetic function by enhancing the efficiency of mitochondrial 

respiration and by regulating mitochondrial activity in response to increases in energy demands 

(Mukae et al., 1997; Porta et al., 2006; Radhakrishnan et al., 2013). The data of the current study 

suggest the possibility that high concentrations of dobutamine may promote stimulation of 

mitochondrial dehydrogenase in bovine preadipocytes. These results indicate that the chronic ß1-
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AA and ß -AA exposures potentially stimulates proliferation of s.c. adipocytes via stimulation of 

ß-AR.  

Dobutamine strongly activated AC activity in differentiated adipocytes, whereas 

salbutamol did not affect AC activity. Similar results were obtained for PKA activity and glycerol 

release in s.c adipocytes. Although both dobutamine and salbutamol are potent ß-AA, they may 

modulate different levels of receptor occupation because very small populations of receptors could 

produce large responses (Kenakin, 1995). Therefore, data of the present study suggest that agonist-

receptor efficacy between ß1-AR and dobutamine may be much stronger than agonist-receptor 

efficacy between ß2-AR and salbutamol in bovine s.c. adipocytes differentiated in culture, which 

would cause greater Gs coupling with AC via the ß1-AR.  

Pre-treatment with ExperiorTM strongly antagonized individual ß1-AR and ß2-AR and 

subsequently depressed the AC and PKA activity stimulated by dobutamine and salbutamol in s.c. 

adipocytes differentiated in culture. The antagonism of the ß2-AR with ExperiorTM was also 

observed in i.m. adipocytes.  Although, ExperiorTM significantly suppressed PKA activity, neither 

glycerol nor NEFA release was influenced in s.c. and i.m adipocytes by ExperiorTM. In addition, 

ExperiorTM had no effect on gene regulation such as ADRB, or genes associated with lipid filing 

and lipolysis. Hence, ExperiorTM may function only in modulating ß-AR activation. The 

antagonistic efficacy of ExperiorTM was similar to propranolol, a non-selective ß-AR antagonist. 

These findings support the concept that ExperiorTM works as an antagonist for ß1-AR or ß2-AR in 

bovine adipocytes. According to Freddolino et al. (2004) the agonists epinephrine, norepinephrine, 

salbutamol, and isoproterenol strongly bind to Ser-203, Ser-204, and Ser-207 at transmembrane 5 

(TM5). Antagonists such as propranolol and butoxamine bind to Ser-203 but not to Ser-207 at 

TM5, which leads to more flexible binding to TM5 not to transit to the activated state (Freddolino 
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et al., 2004). This suggests the possibility that ExperiorTM may have similar binding properties as 

propranolol in bovine ß1-AR or ß2-AR. Further, the activities of antagonists can be completely 

dependent upon the tissues or cell types (Kenakin, 1987). This also would explain why both 

ExperiorTM and propranolol strongly blocked individual both ß1-AR and ß2-AR in s.c. 

differentiated adipocytes, but only antagonized ß2-AR in i.m. adipocytes. 

An increased catabolism and a decreased anabolism of lipid in the adipocytes by ß-AR 

stimulation would decrease hypertrophy of the adipocyte through a consequent decrease in 

formation of lipid droplets (Smith, 1987). In lipid catabolism, ATGL, HSL and MGL are the most 

important lipases. Upon ß-AR stimulation, PKA phosphorylates PLIN on the surface of lipid 

droplets, leading to ABHD5 release, which then binds and activates ATGL to hydrolyze 

triglycerides. PKA also phosphorylates HSL in the cytoplasm, after which HSL translocates to 

lipid droplets where it binds to PLIN to hydrolyzes diacylglycerides, and MGL hydrolyzes 

monoglycerides (Zimmermann et al., 2009; Zechner et al., 2012). Thus, ATGL activity is 

indirectly induced by PKA stimulation by ß-AR whereas HSL activity is induced by direct HSL 

phosphorylation.  Our current study examined the expression of these five genes after exposure to 

dobutamine, salbutamol, and ExperiorTM for 3 d. Salbutamol and dobutamine increased HSL gene 

expression in s.c. adipocytes and i.m. adipocytes, respectively, and both dobutamine and 

salbutamol increased PLIN gene expression in s.c adipocytes. Taken together, the data suggest that 

the expression of HSL and PLIN contributes to an increase in lipolysis by increasing these lipolytic 

proteins. Because we only measured mRNA abundance, we can only speculate the importance of 

the role of the ß-AR in the current study. These contributions of individual ß-AR likely involve 

multiple factors such as ß-AR function, transcription factors, and the rate of mRNA decay. 
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In conclusion, we have demonstrated for the first time the pattern of ADRB expression in 

i.m. adipocytes. In spite of expressing all three ADRB subtypes, i.m. adipocytes were refractory 

of specific ß-AA, suggesting that treatment of cattle with commercial ß-AA would not directly 

affect lipid filling in i.m. adipose tissue. This study also demonstrated different physiological 

responses of ß-AR subtypes to selective ß1-AA, ß2-AA, and ExperiorTM in differentiated s.c. and 

i.m. adipocytes. Even though the ß2-AR is considered the predominant ß-AR subtype in the adipose 

tissue, the three ß-AR mRNA levels in differentiated adipocytes were not different. Dobutamine, 

a selective ß1-AA, significantly stimulated AC/PKA activity and lipolysis in s.c. adipocytes and 

was more potent than salbutamol, a selective ß2-AA. These findings imply that the efficacious 

ligands for regulating adipose tissue accretion could effectively signal through both the ß1-AR and 

ß2-AR in bovine species. The antagonistic efficacy of ExperiorTM was similar that of propranolol 

even the concentration of propranolol was 10-fold higher than that of ExperiorTM. Our findings 

also indicate that ExperiorTM may function as a potent antagonist for both ß1-AR and ß2-AR in 

bovine adipose tissue.    
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CHAPTER VI 

SUMMARY 

The objectives of this research were to investigate lipid desaturation by ectopically 

expressed pSCD1 in non-adipocytes and to investigate the extent of lipolysis mediated by ß-AR 

subtypes through various kinds of selective ß-AR agonists ex vivo and in vitro.  

The first major point of this research was to successfully generate inducible lentiviral 

expression vectors to overexpression or knock-down of pSCD1 and to validate its stably expression 

and functional catalytic activity in SK6-I-pSCD1 cells through RT-qPCR, western blot and fatty 

acid analysis. SK6-I-pSCD1 cells incubated with palmitic acid increased the synthesis of 

palmitoleic acid nearly 4-fold, indicating that the pSCD1- transduced cells successfully can induce 

the ∆9 desaturation of palmitic acid to palmitoleic acid. Based on these results, we confirmed that 

pSCD1 expression was ectopically controlled using inducible lentiviral system. Further, it implies 

that the lentiviral constructs utilized in this study can be utilized to generate transgenic pigs or 

other cell lines to enhance our understanding of the contribution of fatty acid desaturation and 

concomitant to lipogenesis to the promotion of disease states such as obesity and metabolic 

disease.  

 The second major point of this research was to characterize ß-AR subtypes in bovine s.c. 

and i.m.  adipose tissues with the use of selective ß-,  ß- and ß-AR agonists. This study 

documented the distribution of ADRB in bovine s.c. and i.m. adipose tissues from growing cattle. 

In addition, the distribution of ADRB in i.m. adipose tissue was demonstrated for the first time. 

The interesting findings of this study were that ADRB1and ADRB3 mRNA showed similar levels 

of expression in both s.c. and i.m. adipose tissues; ADRB3 in cattle had been believed to be 

expressed only in BAT.  
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We also demonstrated that s.c. and i.m. adipose tissues have physiologically different 

responses to ß-AR agonists. ß1/2-AR agonists including isoproterenol, RH, and ZH, increased 

lipolysis in s.c. adipose tissue but were not effective in i.m. adipose tissue, even though cAMP 

production was greater in i.m. adipose tissue than in s.c. adipose tissue for all experiments. We 

speculated the reasons that the levels of gene expression of ß-AR were much lower in i.m. adipose 

tissue than that of s.c. adipose tissue, which indicated a small amount of ß-AR populations in i.m. 

adipose tissue. Therefore, ß-AR would be easily occupied even at very low concentrations of ß-

AR agonist in i.m. adipose, which would lead to low efficacy to signal downstream inducing 

lipolysis.   

The ß3-AR predominantly mediates the lipolytic response through selective ß3-AR agonists 

such as CL-316243 and BRL-37344 in rodents, rabbits, and dogs, but there is no evidence for the 

existence of a functional ß3-AR in bovine adipose tissue from physiologically mature cattle. Our 

study examined the presence of a functional ß3-AR in response to BRL-37344, and ExperiorTM 

revealed that neither 3-AR agonists stimulated cAMP production or NEFA release from s.c. and 

i.m. adipose tissues. The data suggested that ß3-AR may not be functional in bovine adipose 

tissue, regardless of the fact that the tissue distribution of ß3-AR in cattle was similar ß1-AR in 

bovine adipose tissue.  

The final major objective of this research was to investigate antagonistic effects on ß-AR 

mediated by ExperiorTM in primary bovine s.c. and i.m. adipocytes. The results of this study 

demonstrated that ExperiorTM depressed cAMP production in the presence of either propranolol or 

L-748,337 in s.c. adipose tissue. Further, ExperiorTM strongly depressed the cAMP accumulation 

stimulated by dobutamine and salbutamol in a dose-dependent manner. These findings suggested 

that ExperiorTM may function as a competitive antagonist for ß1-AR or ß2-AR in bovine adipose 
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tissue. Thus, we further investigated antagonistic effects on ß-AR/AC/PKA/HSL signaling cascade 

through ExperiorTM in bovine s.c and i.m. mature adipocytes. The data demonstrated that 

ExperiorTM strongly repressed the ß-AR/AC/PKA signaling cascades in s.c and i.m adipocytes. 

However, neither glycerol and NEFA release nor HSL activity was not influenced by ExperiorTM 

in s.c. and i.m adipocytes. In addition, ExperiorTM did not affect gene expression such as ADRB 

and lipogenesis- and lipolysis- associated gene expression. Hence, these results suggested that 

ExperiorTM may function by only modulating receptor activation. The antagonistic efficacy of 

ExperiorTM was similar to that of propranolol, even though the concentration of ExperiorTM was 

10-fold lower than that of propranolol in our experiments. Through these finding, we confirmed 

again that ExperiorTM acts as an antagonist for ß1-AR or ß2-AR in bovine adipose tissue. 

 Taken together, this dissertation has suggested the opportunity not only to develop a non-

rodent biomedical model of obesity and metabolic disease but also to produce beef products with 

heart healthy characteristics, which can contribute to human health and economic profits to the 

beef cattle industry. It has also contributed to the understanding of functionality of ß-AR subtypes 

in adipose tissue during cattle growth and maturity. This research also demonstrated different 

physiological responses of ß-AR subtypes to ß-AR agonists in bovine s.c. and i.m. adipose tissue. 
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