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ABSTRACT 

 

Benthic habitat on the continental shelf in the northern Gulf of Mexico (NGoM) is 

dominated by large plains of unconsolidated terrigenous sediment. This unconsolidated bottom 

habitat (UBH) is presumed to be sparsely inhabited by demersal fishes, and little is known about 

the factors that structure the distribution and abundance of fishes on UBH. In this study, an 

integrated acoustic/video approach was employed to quantify the distribution of demersal fishes 

on UBH across the continental shelf off Texas. Split-beam echo sounder surveys were paired 

with simultaneous video from imaging sonar and standard cameras to determine the occurrence 

and density of demersal fishes on UBH. The relative performances of the different gear types at 

detecting and enumerating both demersal fishes and bottom relief anomalies were compared. 

Occurrence (presence/absence) and density of demersal fishes was then related to a suite of 

habitat and environmental variables using generalized additive models (GAMs) to identify the 

variables that contribute to the quality of UBH used by demersal fishes. Standard camera video 

performed poorly for detection and enumeration of demersal fishes as well as bottom relief 

anomalies associated with UBH due to the persistent nepheloid layer at all locations surveyed. 

Echo sounder and imaging sonar surveys showed similar performances in detecting fishes and 

relief anomalies, but their performance varied in enumerating both variables. GAMs constructed 

from the echo sounder dataset indicated that a shallow depth, high percent coverage and large 

size of relief anomalies, low salinity, warmer temperature and closer proximity to non-platform 

artificial structure positively influenced the quality of UBH for demersal fishes. Close proximity 

to active petroleum platforms had a slight negative influence. The results of this study provide 

insight into the factors that regulate the distribution and abundance of demersal fishes in the 



 

iii 

 

 

NGoM, and the methodological refinements developed here will guide future efforts to 

characterize populations of demersal fishes on UBH. 
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NOMENCLATURE 

 

ARIS Adaptive resolution imaging sonar 

GAM Generalized additive model 

NGoM Northern Gulf of Mexico 

NSST Narrow-scope single targets 

RALP Relief anomaly linear proportion 

SSS Sea surface salinity 

SST Sea surface temperature 

TL Total length 

UBH Unconsolidated bottom habitat 
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1. INTRODUCTION 

 

The distribution and abundance of fishes in marine ecosystems are structured by multiple 

ecological drivers working on a range of spatiotemporal scales. Immediate biotic imperatives 

such as prey availability (McCawley et al. 2006) and predation risk (Rooker et al. 2018) often 

influence individual habitat use at the seascape scale. Other factors, such as physicochemical 

conditions (Kotwicki et al. 2005, Hazen et al. 2009), the supply of recruits (Doherty and Fowler 

1994), and reproductive behaviors (e.g., spawning aggregations; Sala et al. 2001) can generate 

patterns in fish distributions that manifest on larger intervals of space and time. These structuring 

factors rarely act in isolation in marine ecosystems, and observed distributions of fishes are often 

the result of a variety of interacting factors (Bowler and Benton 2005, Ryer et al. 2010, Furey et 

al. 2013). Disentangling the relative influence of each of these factors is necessary to identify 

important scalars of fish habitat quality, which in turn will improve our ability to forecast, 

conserve, and manage demersal fish populations (Langton et al. 1996, Lloret et al. 2002). 

Previous research suggests that a suite of biotic and abiotic factors govern the suitability 

of demersal fish habitats in the northern Gulf of Mexico (NGoM). Physicochemical and 

hydrographic conditions are known to influence the distribution, abundance, and structure of 

demersal fish assemblages across the continental shelf in the NGoM (Monk et al. 2015, Plumlee 

et al. 2020). The inner shelf of the NGoM coincides with the outflow of several large rivers, most 

notably the Mississippi/Atchafalaya River System (MARS) (Walker et al. 2005), while the outer 

shelf is dominated by oceanic water associated with mesoscale oceanographic features such as 

the Loop Current and accompanying eddies (Lugo-Fernandez 1998). Inner shelf habitats in the 

region are often characterized by high primary productivity, lower and variable surface salinity, 

seasonal temperature variability, and high turbidity throughout the water column (Li et al. 1997, 
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Lohrenz et al. 1997, Lohrenz et al. 1999, Chen et al. 2000). Near the MARS delta, increased 

nutrient input during the spring results in seasonal hypoxic conditions across large portions of the 

seabed of Louisiana and Texas (Rabalais et al. 2002), which is known to affect the spatial 

distribution and survival of demersal fishes (Hazen et al. 2009, Craig 2012). The magnitude of 

freshwater discharge by MARS may generate a seasonal cross-shelf salinity gradient with areas 

closer to MARS showing estuarine character, and Monk et al. (2015) found that species 

assemblages nearest the river outflow were distinct from all other Texas/Louisiana zones 

examined. In contrast to inshore habitats, outer shelf areas experience oceanic conditions (Rezak 

et al. 1990), and the persistence of a relatively stable environment has permitted the development 

of complex benthic biogenic structure, including hermatypic coral reefs (Schmahl et al. 2008). 

Prior studies have associated this habitat gradient with shifts in fish assemblage composition 

from inner to outer shelf, and salient cross-shelf changes in community structure have been 

reported previously for fishes inhabiting both natural banks and artificial reefs (Chittenden and 

MacEachran 1976, Gallaway et al. 1981, Ajemian et al. 2015). 

One of the most influential factors that affects the distribution of demersal fishes in the 

NGoM (particularly for reef-dependent fishes) is the presence of hard substrate or vertical relief 

of the seabed (Dennis and Bright 1988), and the presence and complexity of artificial reefs 

(Ajemian et al. 2015, Plumlee et al. 2020). Available hard bottom habitat on the continental shelf 

of the NGoM is limited, with natural banks covering approximately 2% (1600 km2) and artificial 

reefs less than 0.1% (20 km2) (Parker et al. 1983, Gallaway et al. 2009). The remainder of the 

bottom habitat in this region is largely composed of plains of loose terrigenous sediments. This 

unconsolidated bottom habitat (UBH) typically supports considerably lower fish biomass relative 

to more complex natural and artificial relief structures (Stanley and Wilson 1997, Boswell et al. 
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2010). Despite their low fish densities, UBH play a critical role in the ecology of demersal fishes 

on the NGoM inner shelf, supporting robust communities of small-bodied invertebrates and 

fishes which serve as low-level consumers in regional food webs (Wells et al. 2008a, Monk et al. 

2015). Structure-associated consumers may leave complex habitats at night to forage on UBH 

(Gallaway et al. 1981, Peabody and Wilson 2006), while larger mobile predators may dissociate 

from structure altogether and inhabit UBH almost exclusively (Gallaway et al. 2009). Areas of 

UBH with some low bottom relief or unconsolidated structure such as shell rubble can serve as 

important nursery habitats for juvenile reef-associated fishes (Rooker et al. 2004, Patterson et al. 

2005, Wells et al. 2008b). Modest bottom relief features in these habitats are often associated 

with increased biodiversity and fish abundance (Thrush et al. 2001, Thrush et al. 2002, Hewitt et 

al. 2005). 

Characterizing the distribution and abundance of demersal fishes on UBH is complicated 

by the methodological restrictions imposed by typical conditions associated with this habitat. 

Commonly used sampling methodologies such as visual surveys, trawl surveys, and 

hydroacoustics each possess their own limitations that may bias abundance estimates because the 

performance and efficiency of these methods vary as functions of seabed complexity and water 

column visibility. Visual surveys conducted with SCUBA or cameras on remotely operated 

vehicles (ROV) are only occasionally useful on soft-bottom habitats in the NGoM because 

visibility is often limited by a persistent nepheloid layer (Gallaway et al. 1981, Rezak et al. 

1990). Bottom trawls can be used to quantify and identify demersal fishes, but the capture 

efficiency of this gear is affected by size and species (Wells et al. 2009), and does not perform 

well when bottom complexity or relief anomalies are encountered (Zimmerman 2003). 

Hydroacoustic surveys are capable of providing high-resolution information on fish abundance 
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across a variety of benthic habitat types, and echo sounders have been successfully used to 

quantify the relative abundance of fishes on natural (Wilson et al. 2003, Stanley et al. 2006) and 

artificial (Boswell et al. 2010) reefs in the NGoM. However, definitive species identification is 

generally unattainable from narrow-band acoustic backscatter alone (Horne 2000, Parker-Stetter 

et al. 2009), and thus assemblage composition obtained from visual surveys or bottom trawls is 

often used in conjunction with echo sounder data to apportion taxon-specific estimates of 

abundance (reviewed by McClatchie et al. 2000). New approaches such as imaging sonars which 

produce near-video quality images of acoustic targets are increasingly used to overcome 

identification problems in no or low visibility conditions, and integrated surveys that couple 

these methods show considerable promise for estimating fish abundance across multiple habitats 

and/or environmental conditions (Holmes et al. 2006, Mueller et al. 2010, Langkau et al. 2012, 

Able et al. 2014).   

The purpose of this study was to determine the abundance and distribution of demersal 

fishes on UBH across the continental shelf off Texas in the NGoM using an integrated 

acoustic/video approach. Standard echo sounder surveys were used to estimate demersal fish 

occurrence and density within the survey areas. Concurrent imaging sonar and standard camera 

videos were collected with the acoustic data. The relative performances of each gear type at 

detecting and enumerating fishes and bottom relief anomalies were compared. Generalized 

additive models (GAMs) were then employed to determine the habitat characteristics and 

environmental conditions associated with the probability of fish presence and elevated fish 

density on UBH. The two main objectives of the study were evaluated under the framework of 

the following null and alternative hypotheses: 
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Hypotheses: Gear Performance Comparison 

H0_1: All 3 gear types will perform equally effectively at detecting and enumerating 

demersal fishes and bottom relief anomalies 

HA_1: Gear types will vary in their effectiveness at detecting/enumerating demersal fishes 

and bottom relief anomalies 

 

Hypotheses: Occurrence and Density of Demersal Fishes 

H0_2: Occurrence (presence/absence) and density of fishes will not be influenced by 

spatiotemporal factors or environmental conditions 

HA_2: Variation in the occurrence and density of fishes will be attributable to 

spatiotemporal factors and environmental conditions 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

 

 

 

2. METHODS 

 

Study Area 

Integrated echo sounder, imaging sonar, and standard camera video surveys were 

conducted in 2018 and 2019 across the continental shelf off Texas in the NGoM. The survey area 

was bounded between 26.0-29.3°N and 97.3-93.5°E, and surveys targeted shelf areas with no 

known bathymetric features or relief. The majority of surveys were performed in the summer and 

fall, during daylight hours or immediately before dawn/after dusk. 

 

Data Collection 

Echo Sounder Survey 

Echo sounder transects were conducted at 147 sites off Texas in the NGoM (Fig. 1) using 

a SIMRAD EK80 WBT transceiver operating a single split-beam 70 kHz ES70-18CD 

transducer. During echo sounder transects, the transducer was either mounted directly to the side 

of the vessel or deployed on a custom tow body (Fig. 2). The system was calibrated prior to 

deployment using a tungsten carbide sphere with a nominal target strength (TS) of -40.56 dB. 

The transceiver was operated at the narrow-band 70 kHz setting, at the maximum pulse rate 

permitted by the depth with a pulse duration of 0.256 ms. 

Echo sounder transects were conducted at a vessel speed of 2-4 kts for 20-30 minutes. 

Headings were selected randomly when possible, but conditions often necessitated maintaining a 

heading into the direction of the prevailing swell. Acoustic data were georeferenced at collection 

time using NMEA GPS string feeds from either a handheld GPS (small vessel) or the shipboard 

NMEA feed (large vessel). Linear distance of echo sounder transects combined was 308.8 km.  
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Imaging Sonar and Standard Camera Video Surveys 

ARIS (Adaptive Resolution Imaging Sonar) imaging sonar and standard camera video 

surveys were conducted simultaneously during echo sounder surveys at transect stations where 

conditions and vessel capabilities permitted the deployment of video collection gear (n = 44). 

Both gears were mounted on a second tow body (Fig. 3). The imaging sonar unit (ARIS Explorer 

1800 model) was mounted in the center of this tow body, with the sonar oriented perpendicular 

to the plane of the seafloor. One GoPro camera (Hero 6 Black model) was mounted directly on 

top of the imaging sonar unit, facing downward in the same direction as the sonar swath. A 

second GoPro camera was mounted at the front of the tow body, facing forward (i.e., in the 

direction of motion). The imaging sonar was not deployed at some sites in summer 2018- during 

this year, two forward-facing GoPros were mounted on a third tow body (Fig 4). 

The video collection tow body was towed at a range of 4-15m from the bottom. The 

imaging sonar was permitted to automatically adjust its operating frequency based on the range 

to the bottom, switching between the 1.8 MHz identification frequency at close range and the 1.1 

MHz detection frequency at longer range. 

 

Data Processing 

Acoustic Data Processing 

Acoustic data from the echo sounder were processed using standard echo counting and 

echo integration methods (Rudstam et al. 2012). All acoustic data processing was performed in 

Echoview 10 (Echoview, LLC). Echograms were first visually inspected for quality to remove 

echograms showing excessive transducer movement or ping dropout due to surface noise 
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(Parker-Stetter et al. 2009). Remaining echograms were first preprocessed to remove noise and 

identify a bottom line. The bottom (seabed) appears on echograms as a conspicuously strong 

echo; the bottom line delineates the uppermost boundary of this echo and serves as a lower 

bound for subsequent analyses. The bottom line was identified from the Sv (volume backscatter) 

data using Echoview’s best bottom candidate algorithm. The bottom line was manually edited to 

span gaps and then raised by 0.25 m to ensure that subsequent analyses were not contaminated 

by strong seabed echoes. Electrical impulse noise was filtered from the echogram and surface 

noise was eliminated by excluding data above 5 m range. Echograms were then visually 

inspected and large regions of non-fish backscatter were removed manually. 

The total number of targets within an echogram was determined by combining the 

abundance attributable to individual single targets (echo counting) with that attributable to school 

targets (echo integration). First, schools were detected from the cleaned Sv echograms using the 

SHAPES algorithm (Coetzee 2000) with a minimum data threshold of -60 dB (Parker-Stetter et 

al. 2009). Schools were manually edited to remove areas where the algorithm had incorporated 

single fish tracks into a school body. 

Non-school fish density was the determined through a cone model echo counting method 

(Kieser and Mulligan 1984). School regions were excluded from the echogram, and single 

targets outside of schools were detected using the split-beam single target detection algorithm of 

Soule (1997). As most of the echograms were empty save for a small number of fish tracks, 

single target detection parameters were widened from their defaults to ensure that marginal 

targets were included in the analysis. The TS (target strength) threshold was set to -75 dB, the 

normalized pulse length bounds were 0.5 - 2 lengths, the maximum beam compensation was 9 

dB, and the maximum major and minor axis deviations were 0.6 standard deviations. A higher 
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maximum beam compensation can introduce upward bias into the final counts, but the work of 

Parker-Stetter et al. (2009) suggests that increasing the maximum beam compensation to 9 dB 

likely introduces only a small bias. After target detection, single target echograms were divided 

by a 90m horizontal x 20m vertical cell grid. Single target echo density within a cell was 

calculated by dividing the cell single target count by the cell beam volume sum. 

School fish density was determined by scaling the in-school Sv by the TS (target strength) 

of single targets in close proximity to the school. This was performed under the simplifying 

assumption that the fish closely associated with a school would have a comparable TS 

distribution to the fish within the school body and thus could serve as an approximate in situ 

estimate of mean school TS (MacLennan and Menz 1996). First, a buffer zone of approximately 

5 m was drawn around each school to encompass TS measurements from nearby single targets. 

The single target detection algorithm was applied to the TS within this school buffer. This pass 

of the single target detection algorithm employed narrower parameters than the algorithm for the 

single targets described above. Maximum beam compensation was set to 6 dB, normalized pulse 

length bounds were 0.75 - 1.5 lengths, and the maximum major and minor axis deviation 

remained at 0.6 standard deviations; hereafter these single targets will be referred to as narrow-

scope single targets (NSST). 

NSST identified within the school buffer region were filtered using the Sawada index 

(Nv, Eq. 1) and the ratio of multiple echoes (M%, Eq. 2) to ensure that single targets used to scale 

the in-school Sv values were not contaminated by echoes from multiple targets (Sawada et al. 

1993). NSST were first binned into small cells (5m horizontal x 5m vertical) and Nv and M% 

were calculated for each cell. Cells where Nv < 0.1 and M% < 100 were considered to contain 
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NSST which were sufficiently isolated to be used to scale the in-school Sv values of nearby 

schools. 

Eq 1) 𝑁𝑣 =  
𝑐∙𝜏∙𝜓∙𝑟2∙𝑛

2
 

 

where c is the speed of sound in water (m/s), τ is the pulse duration (s), ψ is the equivalent beam 

angle (steradians), r is the range (m), and n is the density of targets as determined by Sv scaling. 

 

Eq. 2)  𝑀% =
𝑛−𝑛𝑠

𝑛
 

 

where n is the density of targets as determined by Sv scaling and ns is the density of targets as 

determined by echo counting. 

To scale in-school Sv values, a school mean TS value was first calculated by averaging 

the backscattering cross-sections (σbs = 10TS/10) of all NSST within 5m of the school border. The 

school Sv echogram was then divided into a 90m horizontal x 20m vertical grid, and the density 

of single fish targets within the school was calculated according to Eq. 3 

 

Eq. 3) 𝜌 =
𝑠𝑣

𝜎𝑏𝑠_𝜇
  

 

where ρ is the volume density of fish targets (ind.‧m-3), sv is the linear volume backscattering 

coefficient and σbs_μ is the average backscattering cross-section of the NSST associated with that 

school. The total density of fish within a cell was calculated by a cell-wise summation of the 

density of school-associated targets with the density of single targets. A cell fish abundance was 
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also calculated by multiplying the cell fish density by the cell volume. Cells at depths >20m from 

the bottom were omitted from further analyses, as the focus of this study was demersal fishes. 

Relief anomalies (patches of habitat where relief height diverged from the surrounding 

flat bottom) were identified from echograms by visual inspection using two criteria: 1) a visible 

height divergence from the surrounding bottom in the echogram; and 2) a discontinuity in bottom 

echo strength. Once located, the length and height of each relief anomaly feature was 

approximated by drawing a bounding box around the feature. 

 

Imaging Sonar Video Processing 

Imaging sonar recordings from the ARIS were examined for the presence of fish and 

relief anomalies within a transect. Fish targets were enumerated and their size along their largest 

presented aspect was estimated using the measurement tool in Echoview. Fish targets were 

classified into one of four size targets (Fig. 5): micro (too small to measure individual targets); 

small (5-20cm total length [TL]); medium (20-50cm TL); and large (>50cm TL). Distinguishing 

individual fish targets in compact schools was often difficult and, in these cases, the number of 

fish in the school was estimated based on the dimensions of the school and the size of targets 

within the school was estimated from targets at the school margins. Relief anomalies were 

identified by disruptions in the shape of the bottom echo. As the dimensions of these disruptions 

were difficult to measure accurately, relief anomaly size was classified by the duration a feature 

remained in the sonar swath and by a qualitative estimate of its size (Small, Medium, Large) 

compared with other relief anomalies (Fig. 6). 
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Standard Camera Data Processing 

Fish appearing in the standard camera videos were counted and identified to the lowest 

possible taxonomic level. Species or genus designations were only assigned if a positive 

identification could be made (Fig. 7). Fish were dispersed enough within videos for each 

individual to be counted. Fish which were seen to follow or track the tow body were only 

counted on their first appearance in the frame. 

 

Habitat Models 

Models of the demersal fish distribution on UBH were constructed from both occurrence 

(presence) and density data generated by the echo sounder because this gear was used at all 

stations and thus had the widest spatial coverage. Generalized additive models (GAMs) were 

selected to model associations between demersal fish density and habitat variables. GAMs are an 

extension of the generalized linear model that can approximate relationships between 

explanatory and response variables as complexity-penalized smooth functions (Hastie and 

Tibshirani 1987). The general formula for a GAM is as follows: 

 

 μ = g-1(β0 + s(x1) + … + s(xi)) 

 

where μ is the expected value of the response variable, β0 is the intercept, s(xi) is a smooth 

function of covariate xi, and g is a link function which maps the linear predictor to the response 

variable. All GAMs were constructed using the mgcv package in R (Wood 2019, R Core Team). 

The distribution of demersal fishes on UBH was modeled in two steps following Barry 

and Welsh (2002). In the first, the presence of fish in a 90m horizontal x 20m vertical grid cell 
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was modeled as a binomially distributed response probability with a logit link function. In the 

second, log-transformed fish density in cells where fish targets were detected was modeled as a 

Gaussian-distributed variable with an identity link function. 

The set of potential explanatory variables was generated from a variety of sources (Table 

1). Sea surface temperature data were obtained from NOAA’s L4 Nighttime Global High-

Resolution Sea Surface Temperature product at 5km resolution 

(https://coastwatch.noaa.gov/cw/satellite-data-products/sea-surface-temperature). Sea surface 

salinity data were obtained from HYCOM’s GOFS 3.1 1/12° Analysis (GLBv0.08, exp. 93.0). 

Chlorophyll-a concentration data were obtained from NOAA’s MSL 12 L4 Ocean Color product 

at 9km resolution (https://coastwatch.noaa.gov/cw/satellite-data-products/ocean-color). Bottom 

rock composition was obtained from USGS’s usSEABED dataset; the rock composition 

percentage field in this dataset was kriged into a rock composition percentage surface, from 

which a cell rock composition value was extracted (Buczkowski et al. 2020). Mean transect 

depth was extracted from the GEODAS US Coastal Relief model 

(https://www.ngdc.noaa.gov/mgg/coastal/crm.html). Locations of natural hard bottom habitats 

were provided by M. Streich of the Harte Research Institute’s Fisheries and Ocean Health Lab 

(M. Streich, pers. comm.). Locations of active petroleum platforms and pipelines were obtained 

from the Bureau of Ocean Energy Management (https://data.boem.gov). Locations of wrecks 

were obtained from NOAA’s Office of Coastal survey 

(https://nauticalcharts.noaa.gov/data/wrecks-and-obstructions.html). Locations of artificial 

structures were obtained from the Texas Parks and Wildlife Department 

(https://tpwd.texas.gov/gis/ris/artificialreefs/). Wrecks and artificial reefs were combined into a 

single dataset, from which the “distance from artificial structure” variable was derived. All 

https://coastwatch.noaa.gov/cw/satellite-data-products/sea-surface-temperature
https://coastwatch.noaa.gov/cw/satellite-data-products/ocean-color
https://www.ngdc.noaa.gov/mgg/coastal/crm.html
https://data.boem.gov/
https://nauticalcharts.noaa.gov/data/wrecks-and-obstructions.html
https://tpwd.texas.gov/gis/ris/artificialreefs/
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spatial variable extraction was performed in ArcMap (ESRI). Many variables were ln(x) or 

ln(x+1)-transformed to improve normality (Table 1). 

Characteristics of the bottom relief anomalies within a cell were also included as 

explanatory variables in GAM construction. Cell variables that were associated with relief 

anomalies were mean and maximum relief anomaly height, mean and maximum relief anomaly 

length, and Relief Anomaly Linear Proportion (RALP), the summed length of all relief anomaly 

features in the cell divided by the cell linear distance. 

The number of potential explanatory variables was reduced prior to initial model fitting 

in a two-stage process. In the first stage, GAMs modeling the response as a function of each 

individual explanatory variable were constructed and their deviance explained (DE) recorded. 

Any variable that explaining less than 1% of the deviance (<1% DE) in the absence of any other 

variables was eliminated from the potential variable set. Next, collinearity between explanatory 

variables was assessed with a Spearman’s ρ correlation matrix. Variables that were correlated at 

|ρ| > 0.6 were incorporated into single-variable GAMs and their AIC values (Akaike Information 

Criterion, Akaike 1974) were compared. The explanatory variable that generated the model with 

the lowest AIC was included in the model selection process. 

Model selection was conducted via an exhaustive search process using the Multi-Model 

Inference package in R (Barton 2020). As the full dataset had several thousand cells and adjacent 

cells were not necessarily spatially independent from one another, GAM selection was not 

performed on the full dataset but rather on random data subsets consisting of a group of cells 

whose centroids were spaced at least 1000m apart from one another (Wood et al. 2015). Once a 

random subset was selected, the distribution of the subset response variable was compared to the 

response variable distribution of the full dataset using a Chi-square (Χ2) goodness-of-fit test. The 
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random subset was discarded if the probability of the goodness-of-fit test was < 0.1. This process 

was repeated until 10 different data subsets had been generated. 

For each of the 10 data subsets, GAMs containing all possible combinations of the 

explanatory variables were generated. Smooth functions for all variables were restricted to a 

maximum of 4 degrees of freedom to avoid overfitting, and an offset term consisting of the log 

of the volume water in each cell was included in every model. Models were ranked in order of 

increasing AIC, and all models within 2 AIC of the most likely model were recorded (Burnham 

and Anderson 2002). This process was repeated for each of the 10 data subsets. GAMs that 

appeared most frequently (>4 times) were selected as candidate models, and refit to the full 

dataset for further examination. Candidate model smooth plots were examined visually to ensure 

that neither the direction or magnitude of the smooth terms changed significantly after refitting 

from the data subset to the full dataset. Final binomial and Gaussian models were selected from 

the candidates based on three criteria (Zuur et al. 2009): 1) parsimony, with models containing 

fewer terms being preferred over a model with more terms; 2) ecological explicability, with all 

variable effects having some straightforward ecological interpretation; and 3) performance 

validation, the method for which varied between the binomial and Gaussian models. 

 

Model Validation 

Candidate binomial models were validated using a repeated 5-fold cross validation 

method (Molinaro et al. 2005). The dataset was randomly split into 5 equally sized subsets, each 

containing a similar proportion of fish presence as the original dataset. Candidate models were 

refit on 80% of the subset and the resulting model used to predict fish presence/absence at the 

remaining 20% of the data. AUC or area under the ROC (receiver operating characteristic) curve 
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was used as measures of model performance and calculated using the ROCR package (Sing et al. 

2005). Model refitting and AUC calculation was repeated for each of the 5 folds generated by the 

randomized data splitting. The randomized splitting process was then repeated 10 times to 

generate a total of 50 estimates of AUC for each model. AUCs of the candidate models were 

evaluated according to the performance criteria of Hosmer and Lemeshow (2000), where AUC 

0.7 to 0.8 is acceptable, 0.8 to 0.9 is good, and 0.9 to 1 is excellent. 

Candidate Gaussian GAMs were validated using a leave-one-out mean squared error of 

prediction (LOO-MSEP) minimization method (Mevik and Cederkvist 2004). A single 

observation was omitted from the dataset and the candidate GAM was refit to the remaining data. 

The refit GAM was then used to predict the response density of the omitted observation. The 

error of the resulting prediction was calculated and retained. This process was repeated for each 

observation in the dataset. The mean of the squared prediction errors was then calculated. This 

LOO-MSEP provided a framework for comparing the prediction performance of candidate 

models when presented with new data, with lower LOO-MSEP values being preferred. 

 

Model Visualization 

Once final binomial and Gaussian GAMs were selected, the influences of the explanatory 

variables on the responses were visualized over a grid of points with 0.0125° x 0.0125° spacing. 

Point grid values for most explanatory variables were obtained from the same data sources used 

in the model dataset. In the case of relief anomaly variables, point grid values were instead 

randomly generated from the dataset by drawing values of the required relief anomaly variable 

from that variable’s empirical distribution in the cell dataset. Final GAMs were then applied to 

the point grid dataset to generate response predictions for each point in the grid. To account for 
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the effects of including randomly drawn data in the point grids, this generation-prediction 

process was repeated 500 times for both the binomial and Gaussian models. The final 

visualizations show the pointwise mean of the 500 point grid predictions. A prediction of overall 

UBH demersal fish habitat quality was generated by pointwise multiplication of the binomial and 

Gaussian point grid predictions. The habitat quality prediction was standardized to a 0-1 range, 

where 0 denotes areas with the lowest combined values of predicted fish presence/density and 1 

denotes the highest combined values. Habitat quality was then divided by quartile into four 

quality categories: poor (1st quarter), fair (2nd quarter), good (3rd quarter) and excellent (4th 

quarter). The areal coverage of each habitat quality category was then calculated for each of 5 

depth zones. 
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3. RESULTS 

 

Echo Sounder Survey 

Echo sounder transects were conducted at 147 stations on UBH (Fig. 8) but the quality of 

echograms from 7 transects was too poor for analysis, and these were removed from the dataset. 

The remaining 140 transects were further divided into 3,323 90m x 20m cells for estimating 

occurrence/density at a smaller spatial scale. Demersal fish were detected in 929 cells (28.0%, 

Fig. 9), and in cells where fish were present, acoustically derived densities ranged from < 0.1 to 

139.3 fish‧1000m-3; mean of 1.0 fish‧1000m-3 (Fig. 10). Mean target strength (TS, correlates 

positively with fish target size) of fish targets increased linearly with depth (R2 = 0.27, p < 

0.0001, Fig. 11). Bottom relief anomalies were detected in 412 echogram cells (12.4%). A mean 

of 1.2 relief anomalies were detected in cells where relief was present, and ranged from 1 to 6. 

Mean Relief Anomaly Linear Proportion (RALP) was 12.0% for cells with bottom relief detected 

and ranged from 0.3% to 87.2%. 

 

Imaging Sonar and Standard Camera Video Surveys 

Concurrent imaging sonar data were collected at 44 (31.4%) of the stations on UBH, and 

fish targets were detected in 41 (93.2%) imaging sonar transects. Small (5-20 cm TL), medium 

(20-50 cm) and large (> 50 cm) fish targets were detected in 86.3%, 68.1% and 9.0% of 

transects, respectively. Mean per-transect counts of small, medium and large fish targets were 

208.3, 21.5 and 0.2, respectively. Bottom relief anomalies were detected in 32 (78.0%) of 

imaging sonar transects. Small (mean duration 2.2 ± 0.05 seconds), medium (10.8 ± 0.24 s) and 
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large (16.0 ± 0.45 s) structures were detected in 59.0%, 38.6% and 29.5% of the imaging sonar 

transects, respectively. 

Standard camera video data were collected at 61 (45%) of the stations on UBH. A 

nepheloid layer near the bottom was present during all standard camera transects, and nearly all 

successful detections of fishes occurred when the cameras mounted on the tow body were several 

meters above the bottom and above the nepheloid layer. Fish were detected on 28 (45.9%) of the 

camera transects, with a total of 524 individual fishes observed (Table 2). Of these, 82.6% of the 

individual fish were identified to family and 55.0% to species level. Six families of bony fishes 

(Balistidae, Carangidae, Echeneidae, Lutjanidae, Rachycentridae, and Scombridae) and one 

family of sharks (Carcharhinidae) were positively identified in camera transects (Table 2). The 

majority of fishes identified to species were red snapper (Lutjanus campechanus), with this 

species accounting for 46.0% of all fishes identified to at least the family level.  Red snapper 

were also the most frequently detected species and observed in 18.0% of the camera transects. 

Other frequently observed taxa included scombrids (11.5%) and carangids (11.5%). Bottom 

relief anomalies of any kind were never detected in camera transects. 

 

Gear Performance Comparison 

All three gear types (echo sounder, imaging sonar, standard camera) were deployed at 40 

transects. Given that fish were rarely observed in camera transects due to poor visibility, this 

gear type was omitted from gear performance comparisons. Thus, the gear comparison was 

limited to those transects where both the echo sounder and imaging sonar were deployed (n = 

44).  In terms of fish detection, both gears detected fishes in 42 of the of the paired transects 

(93% agreement) with each gear failing to detect fish in one transect (Table 3). The echogram of 
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the transect in which the imaging sonar failed to detect fishes contained only a single fish track, 

and overall echo sounder derived fish abundance was low (11th percentile). 

Correlation of fish target numbers between paired echo sounder and imaging sonar 

transects was significant although correlation was relatively low (F-test, r = 0.25, p = 0.03, Fig. 

12a). To examine the influence of school target abundances on the overall enumeration 

comparison, echo sounder data was restricted solely to single targets (i.e. school targets were 

omitted) and imaging sonar fish targets were restricted to the medium and large size classes. 

Omitting schooling targets and small size classes resulted in a correlation between the two 

enumeration methods that was considerably higher (F-test, r = 0.75, p < 0.001, Fig. 12b). 

Detection of relief anomalies was generally consistent between the echo sounder and 

imaging sonar (66% agreement), but detection of relief anomalies using the echo sounder was 

higher than the imaging sonar (Table 4).  The height of the relief anomalies affected their 

detectability with both gears. All relief anomalies identified in the imaging sonar transects where 

the echo sounder failed to detect relief were classified as small. Relief anomaly height in 

transects where the imaging sonar did not detect relief anomalies was significantly lower 

(Welch’s 2-sample t-test, p < 0.001, Fig. 13a) than in transects where the imaging sonar and echo 

sounder both detected relief anomalies, and depth in transects where the imaging sonar did not 

detect relief anomalies was significantly shallower (Welch’s 2-sample t-test, p = 0.025, Fig. 13c) 

than transects where the imaging sonar and echo sounder both detected relief anomalies. 

In relief anomaly enumeration, no correlation between echo sounder relief anomaly 

counts and imaging sonar relief anomaly counts was observed (r = -0.032, p = 0.837, Fig. 14a). 

When imaging sonar-derived relief anomalies were restricted to larger features (defined as those 
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having a screen duration >1 sec), agreement between the echo sounder and imaging sonar counts 

was much stronger (r = 0.753, p < 0.001, Fig. 14b). 

 

Habitat Modeling 

The final binomial GAM of fish presence/absence on UBH included six explanatory 

variables: relief anomaly linear proportion (RALP), depth, distance from artificial structure, 

distance from active platforms, sea surface salinity, and sea surface temperature (Table 5). 

Overall deviance explained (DE) by the model was 24.2% with a mean AUC of 0.722 ± 0.0003 

(acceptable, per Hosmer and Lemeshow 2000). The most influential variable was depth (ΔDE = 

5.7%, ΔAIC = 247.1), with fish presence decreasing with increasing depth to a minimum at 

approximately 50m. RALP was another influential variable (ΔDE = 5.0%, ΔAIC = 218.5) and 

showed a direct relationship with fish presence increasing with on UBH with higher RALP. 

Increasing sea surface temperature (ΔDE = 1.7%, ΔAIC = 72.8) positively influenced the 

probability of fish presence, while increasing the distance from an artificial structure (ΔDE = 

1.1%, ΔAIC = 47.2) generally decreased the probability of fish presence. Sea surface salinity 

(ΔDE = 1.0%, ΔAIC = 39.7) and distance from active platforms (ΔDE = 0.4%, ΔAIC = 13.1) 

were the least influential variables retained in the model and had slight positive and negative 

effects on the probability of fish presence, respectively (Fig. 15). Variables included in the 

presence/absence GAM selection process that were not retained in the final model were bottom 

rock composition and distance to natural hard bottom habitat. 

 The final Gaussian GAM of demersal fish density included three explanatory variables: 

mean RALP length, depth, and sea surface salinity (Table 6). DE from the final density-based 

GAM was 65.1%, and the model LOO-MSE was 4.8% higher than that of the model with the 
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lowest error. Depth was the most influential variable in the density-based GAM (ΔDE = 27.8%, 

ΔAIC 538.9), with increasing depth having a negative effect on fish density (Fig. 16). Less 

influential variables were mean relief anomaly length (ΔDE = 1.3%, ΔAIC 24.0), which had a 

positive effect on fish density at high values, and sea surface salinity (ΔDE = 0.8%, ΔAIC 16.2), 

which had a negative effect on fish density. Variables included in the density GAM selection 

process that were not retained in the final model were bottom rock composition, distance to 

pipelines, distance to oil and gas platforms, distance to manmade structure and distance to 

natural hard bottom habitat. 

The binomial GAM predicted that the probability of demersal fish presence on UBH was 

generally higher inshore (Fig. 17). Depth was the most influential variable in this model, and 

thus it is not surprising that the effect of depth on the probability of presence is the most readily 

apparent in the model visualization, with a strong decrease in probability of demersal fish 

presence from inshore to offshore areas. The positive effect of artificial structure on the response 

probability appears as rings of increased probability surrounding structures, while the weaker 

negative effect of active petroleum platforms can be seen as smaller rings of decreased 

probability on UBH near these structures (Fig. 17). 

Of the three variables retained by the Gaussian model of demersal fish density, one 

variable (salinity) was temporally dependent and thus approximated in the grid visualization by 

the dataset mean salinity value. Mean relief anomaly length was determined empirically, and was 

randomly generated to create the visualization dataset. As such, the only variable which strongly 

influenced the Gaussian model visualization was depth, which was sourced from a region-wide 

dataset. Logged demersal fish density on UBH is predicted to be much higher at shallower 

depths (Fig. 18). 
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Combining the two models in the index of UBH quality resulted in a compounding of the 

effect of depth, with very high predicted quality on the inner shelf and lower predicted qualities 

for the outer shelf (Fig. 19). The effects of nearby high relief habitats are still apparent as regions 

of increased (artificial structure) and decreased (active platforms) predicted habitat quality; 

however, on the inner shelf this effect is less apparent due to the strong positive influence of 

shallow depth. The influence of depth is also apparent in the quartile partition of habitat quality, 

and 99.9% (11,588 km2) of UBH on the inner shelf from 10-20 m depth was classified as 

excellent habitat (i.e. highly suitable) for demersal fishes (Table 7). There was an order of 

magnitude decline in percent coverage of highly suitable UBH moving into the 20-40 m depth 

zone, with only 7.6% of the area and less than 1,500 km2 classified as excellent for demersal 

fishes. For the next three depth zones (40-60, 60-80, 800-100m), the percentage of suitable 

habitat (classified as good or excellent) was 0% in all three zones. UBH classified as fair 

continued to decline with increasing depth and comprised less than 1% of all UBH in the deepest 

depth zone (80-100m) (Table 7, Fig. 20). 
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4. CONCLUSIONS 

 

Survey methods employed in this study revealed that demersal fishes were widely 

distributed on UBH off Texas in the NGoM. Echo sounder transects showed that the distribution 

and abundance of demersal fishes varied spatially and small-scale patchiness was driven by the 

presence of bottom relief anomalies, which were also relatively common on UBH. Towed 

imaging sonar transects provided additional high-resolution information on both the distribution 

and abundance of demersal fishes as well as the extent and complexity of bottom relief 

anomalies. Imaging sonar deployments are often fixed, with a sonar unit continuously surveying 

a single area (Holmes et al. 2006, Langkau et al. 2012, Giorli et al. 2018, Plumlee et al. 2020). 

Mobile imaging sonar surveys have been conducted in relatively calm conditions such as lakes, 

estuaries, and nearshore sublittoral habitats (Able et al. 2014, Becker et al. 2017, Chang et al. 

2017). This study represents one of the first attempts to use mobile imaging sonar surveys to 

examine large areas of open shelf habitat, and the results suggest that it shows considerable 

promise as a complement to traditional echo sounders in quantifying fish distributions on UBH. 

Echo sounder and imaging sonar performed similarly at detecting demersal fishes on a 

transect-by-transect basis on UBH, with these gears only failing to detect fish on transects where 

fish density was very sparse (imaging sonar) or where fishes were closely associated with the 

seabed (echo sounder). The abundances of isolated fish targets as determined by the two methods 

were moderately correlated, suggesting that data collected by either method may be comparable 

after the application of some correction factor. However, correlation between fish counts from 

the two gears was much higher when small imaging sonar targets and schools detected by the 

echo sounder were excluded, suggesting that variation in the counts of closely packed school 
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target is the main source of disagreement between the fish counts produced by each data type. 

Enumerating individual fish targets in schools from echogram data requires a variety of 

assumptions regarding the acoustic properties of the fish within the school (Simmonds and 

MacLennan 2005). Such assumptions are not required to enumerate schooling fish from imaging 

sonar videos, but difficulties in distinguishing single targets in schools where fish are closely 

associated (e.g., tightly packed bait balls) can bias counts (Keefer et al. 2017). Automated target 

counting algorithms have been developed for static imaging sonar deployments (Boswell et al. 

2008) and for mobile deployments in calm conditions (Jing et al. 2017). The expansion of these 

algorithms to survey designs involving open-ocean conditions, moving backgrounds and dense 

fish schools would be a useful tool for future imaging sonar assessments of fishes on UBH and 

UBH-like habitats. 

In contrast to fish targets, the detection of bottom relief anomalies differed between the 

echo sounder and imaging sonar (34% disagreement in paired transects). In cases where the echo 

sounder did not detect relief anomalies, this was likely a consequence of its wider field of view 

compared to the imaging sonar. To be detected in the echogram, a relief anomaly needed to be 

conspicuously larger than the surrounding bottom surveyed in a given ping. Because the echo 

sounder was towed at a consistent depth of ~4m below the surface and surveyed an 

approximately cone shaped volume during each ping cycle, the area of bottom sampled per ping 

was larger at deeper sites. Thus, relief anomalies at deeper stations needed to be more dramatic 

than shallower stations in order to be detected. All five transects where the echo sounder failed to 

detect relief were deeper than the median transect depth (44m) and all relief anomalies detected 

in the corresponding imaging sonar videos were classified as small, suggesting that the echo 
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sounder is not effective at detecting diminutive relief at long ranges (Simmonds and MacLennan 

2005). 

The reasons that the imaging sonar did not detect relief anomalies in paired transects 

where the echo sounder did identify bottom relief is not entirely clear, but may be attributed to a 

depth-dependent spatial mismatch between the area of bottom surveyed by the two acoustic gear 

types combined with the variable size of relief anomalies on UBH. Transects where the imaging 

sonar detected relief anomalies were significantly deeper than transects where the imaging sonar 

did not detect relief (Fig. 13c). As previously discussed, the echo sounder was towed at a fixed 

depth relative to the surface, and surveyed an athwartship (i.e. along the vessel’s port-starboard 

axis) swath of bottom that increased with depth. In contrast, the imaging sonar was towed at a 

fixed depth relative to the bottom, and thus surveyed a similarly sized swath (~5-7.5 m) 

regardless of site depth. In addition, the echo sounder tow body was towed relatively close to the 

stern of the vessel, while the imaging sonar tow body required more line payout to reach the 

bottom and so was necessarily deployed at a further distance from the stern of the vessel, making 

the imaging sonar vulnerable to subsurface currents that could deflect the tow body in an 

athwartship direction. At deeper sites the swath surveyed by the echo sounder is relatively wide 

(e.g. ~25 m across at 80 m depth), and is likely to coincide with the swath surveyed by the 

imaging sonar regardless of any minor deflection. At shallower sites the swath surveyed by the 

echo sounder is much narrower (e.g. ~6 m across at 20 m depth), and the echo sounder swath is 

less likely to fully overlap with that of the imaging sonar in the presence of an athwartship 

deflection of the imaging sonar tow body. Any resulting spatial mismatch in the bottom surveyed 

by the two gears would be most likely to cause a disagreement in the detection of small relief 

anomalies, which is supported by the significant relationship between mean relief anomaly 
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height and imaging sonar relief anomaly detection (Fig. 13a). The spatial mismatch issue is 

difficult to alleviate, but it is at least possible to account for its effects through more accurate 

georeferencing of the imaging sonar tow body. This could be accomplished through the use of a 

USBL (Ultra-Short Baseline, Vickery 1998) or similar acoustic positioning system. In any case, 

the ability of each acoustic gear to detect relief anomalies under certain conditions where the 

other gear is unable to detect them demonstrates the utility of employing both gears in tandem to 

measure relief over open bottom areas. 

While echo sounder and imaging sonar surveys show considerable promise for 

characterizing the distribution of demersal fishes on UBH and the complexity of relief in this 

habitat, data derived from standard camera video were limited in their ability to provide 

information on fish assemblage compositions or habitat characteristics. This was due to the 

consistent presence of a turbid nepheloid layer that was present in all tows and drastically 

reduced visibility several meters above the bottom. The nepheloid layer frequently impedes 

visual surveys on natural and artificial structure in the NGoM; however, the layer is generally 

restricted to the base of the water column at the seabed interface and often permits visual surveys 

of high-relief habitats that extend well above the layer (Streich et al. 2017). The thickness and 

persistence of the nepheloid layer varies seasonally and regionally in the NGoM (Rezak et al. 

1990), and additional standard camera transects may reveal periods where near-bottom visibility 

over UBH increases. Despite its limitations, the standard camera video provided some useful 

information on the composition of the UBH fish assemblage. Red snapper was a major 

constituent of the UBH fish community, which is consistent with observations from other low-

relief habitat in the NGoM (Wells et al. 2009, Plumlee et al. 2020). A mix of reef-associated (e.g. 
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lutjanids) and pelagic transient (e.g. scombrids) fishes were detected, evidence that UBH serves 

as important habitat for species commonly associated with both the seabed and water column. 

GAMs generated from echo sounder data found underlying structure in the distribution of 

demersal fishes on UBH.  This suggests that variability was present across this habitat in the 

NGoM and influenced the occurrence and density of demersal fishes. Depth emerged as an 

important predictor in both presence- and density-based GAMs, with inner shelf areas being 

associated with a higher probability of fish presence as well as higher fish densities. Nearly 

11,600 km2 of the highest quality UBH was predicted to occur in the depth zone extending from 

the shallowest zone surveyed (10-20m) (Table 7). The explanation for this result is likely related 

to both ecological and methodological considerations. Depth is generally positively associated 

with body size in demersal fishes (Macpherson and Duarte 1991), and the increasing trend in TS 

with depth observed in this study suggests a similar pattern of increasing demersal fish size with 

depth (Love 1977, Rudstam et al. 2012). Our results also suggest demersal fish size increasing 

with increasing depth on UBH in the NGoM, with larger fish preferentially inhabiting deeper 

regions of the shelf.  Findings from a recent study by Dance and Rooker (2019) on the cross-

shelf movements of red snapper on unconsolidated substrates in the NGoM indicated that 

preferred depth of this species increased with increasing size/age, which is in accord with 

modeling results reported here. In the NGoM, many reef-associated fishes move to progressively 

more complex structured habitats as they grow larger, while low-relief habitat serves as nursery 

habitats for juveniles and subadults (Rooker et al. 2004, Wells et al. 2008b). The movement of 

larger, older fish to both deeper and more complex habitat types from a cohort that has 

experienced age-specific mortality (i.e., reductions in numbers per age class) may contribute to 

the negative relationship between depth and fish presence and density on UBH observed in this 
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study. Depth was also strongly correlated with chlorophyll-a concentration (ρ = -0.85), and thus 

the significant effect of depth likely incorporates the influence of primary productivity. During 

the summer and early fall, increased riverine input combined with a general northeasterly flow of 

water form a cross-shelf gradient of primary productivity, with high nearshore productivity and 

lower productivity offshore (Chen et al. 2000, Martínez-López and Zavala-Hidalgo 2009). Much 

of the highest-quality UBH identified in this study was restricted to a narrow band inshore of the 

20m isobath (Fig. 20). The location of this discontinuity in habitat quality corresponds closely to 

the boundaries of the inner Texas shelf productivity region identified by Salmerón-García et. al 

(2011), who classified this region by its high riverine input and seasonal productivity cycles. In 

their study of fish and biofouling assemblages on oil platforms, Gallaway and Lewbel (1982) 

proposed that riverine input and water turbidity were the driving mechanisms behind a divide in 

assemblage composition that occurred near the 30 m isobath, where an inshore coastal/estuarine 

assemblage transitioned to an offshore assemblage. The results of this study suggest the 

existence of a similar transition zone for UBH in the 20-40 m depth range on the Texas shelf, 

where decreases in both demersal fish presence and density were noted relative to inshore sites. 

While depth serves as a useful predictor for this gradient in UBH quality, it is likely that other 

depth-correlated variables (e.g. productivity, turbidity, estuarine character) are also important 

ecological drivers of this gradient.  It is also important to note that the detection of small fishes 

decreases with increasing echo sounder survey depth due to a decrease in the signal-to-noise 

ratio at larger distances from the transducer face (Simmonds and MacLennan 2005). This may 

also explain the observed lack of small fishes at deeper sites, although such losses should be low 

at the relatively shallow depths sampled in this study (De Robertis and Higginbottom 2007). 
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Additional explanatory variables linked to the presence and/or density of demersal fishes 

from GAMs were the percent cover and mean horizontal length of bottom relief. 

Microtopographic features such as shell patches, sand waves, and depressions are known to 

influence the distribution and behavior of demersal fishes on UBH (Auster et al. 1995, Wells et 

al. 2008b, Schultz et al. 2014, Ferrari et al. 2018), and increasing coverage and mean size of 

bottom relief anomalies on UBH were positively associated with demersal fish presence and 

density, respectively. The degree to which habitat complexity influences the distribution of 

demersal fishes on UBH is difficult to quantify from this study, as data were collected in linear 

transects while relief anomalies presumably have a radial influence on the fish distribution 

(Schultz et al. 2012). Assuming a nominal beam width of 18°, the echo sounder transect width at 

the maximum survey depth of 100m would be approximately 32m. As a result, it is possible that 

some of the survey cells contained fish that were associated with a bottom relief feature that was 

outside the transect width, and vice-versa. When considered in conjunction with limitations of 

echo sounder and imaging sonar surveys to detect bottom relief on UBH, it is clear that increased 

spatial coverage of echo sounder and imaging sonar transects within grid cells is needed to 

identify bottom relief characteristics that represent important habitat attributes for demersal 

fishes. Moreover, these relief features can be ephemeral (Gallaway et al. 2009), so repeated 

sampling at the same location would also be an important component of any future studies. 

Proximity to complex manmade structures was also predictive of habitat quality for 

demersal fishes. However, the effect varied depending on the type of nearby structure, with 

submerged non-platform artificial structures such as intentional manmade reefs and shipwrecks 

having a positive effect on fish presence and active oil platforms having a marginal negative 

effect. Moreover, the effect was apparent on a large spatial scale: a cell within 500m of a non-
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platform structure was 3.6 times more likely to have fish present than a cell 10km from a 

structure, but a cell 10km away was still 1.6 times more likely to have fish present compared 

with a cell 30km from a non-platform structure. Non-platform structures in the NGoM span a 

wide range of sizes, materials and vertical relief, but generally have lower vertical relief and 

complexity compared with standing platforms and are associated with a more structure-

dependent fish assemblage (Plumlee et al. 2020). The predicted increase in quality of UBH in 

areas surrounding non-platform artificial structures may be due to a spillover of demersal fishes 

from these artificial habitats to UBH (Shultz et al. 2012). In the case of active oil platforms, a 

negative effect was observed. Cells 5000m away from a platform were 3.3 times more likely to 

have fish present than cells 500m away from a platform. Since standing oil and gas platforms are 

often inhabited by large transient piscivores (e.g. greater amberjack, carcharhinid sharks) that 

often utilize the entire water column including the seabed (Dokken et al. 2000, Ajemian et al. 

2015), foraging activity by these highly mobile predators may suppress fish densities on UBH in 

areas near these platforms (Gallaway et al. 2009).  

Sea surface temperature was also associated with the predicted quality of UBH. Sampling 

for this study occurred from late spring through early winter, and water temperature was strongly 

correlated with day of year (ρ = -0.69); of the two, temperature had a lower AIC on its own, 

which led to the exclusion of day of year in the model fitting process (Table 1). Cooler waters 

were associated with lower habitat quality, and similar observations of lower fish biomass on 

UBH during winter (lower water temperature) has been previously reported (Chittenden and 

MacEachran 1979). Reef fishes in the NGoM reduce the size of their movements away from 

structured habitat during winter months (Herbig and Szedlmayer 2016, Williams-Grove and 

Szedlmayer 2016), which may have led to less frequent detections over UBH during periods of 
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lower water temperature. Two methodological considerations may also have influenced the 

apparent importance of water temperature. First, demersal fishes such as red snapper are known 

to associate more closely with the bottom during the winter (Williams-Grove and Szedlmayer 

2017), which would increase the probability of their acoustic backscatter being obscured by 

stronger echoes from the seabed (Ona and Mitson 1996). Second, due to limitations imposed by 

the size of the region sampled for this survey, water temperature was confounded with sampling 

location to a degree. Sampling stations with the lowest sea surface temperatures (< 24°C) were 

concentrated in the middle of the sampling corridor off central Texas, meaning that the effect of 

colder temperatures was estimated from a relatively small geographic area instead of the entire 

sampling corridor. This raised the possibility that the apparent decreased probability of detecting 

fish in colder waters was due to geographic variability instead of temperature, i.e. the transects 

surveyed during winter months may have been poor UBH regardless of temperature. However, 

when the winter transects are compared with nearby transects on the central Texas shelf region, 

the percentage of cells with fish present was still considerably lower in winter transects (11.7%) 

compared with transects conducted in nearby areas during the summer (36.8%). This suggests 

that temperature -not geographic variation- was the driver of fish absence at colder sites. 

Regardless, year-round sampling on other areas of the Texas shelf would clarify the relationship 

between UBH quality and seasonal temperature variation. 

Sea surface salinity was retained as an explanatory variable in both the presence/absence 

and density models, with lower salinity associated with a higher probability of fish presence and 

density. The NGoM displays a cross-shelf gradient in estuarine character with salinity on the 

inner shelf often markedly lower than the outer shelf due to freshwater inflow from MARS and 

other rivers (Walker et al. 2005). The inshore-offshore salinity gradient likely plays a role in 
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creating distinct nearshore and offshore fish assemblages in the NGoM (Gallaway and Lewbel, 

1982). Ajemian et al. (2015) found that this assemblage gradient varied between structure-

associated fishes on nearshore (inner shelf) habitats to a more pelagic-associated schooling fishes 

chub on offshore (outer shelf) sites. If similar cross-shelf assemblage shifts in species 

composition also occurs on UBH, then reductions in the presence and density of demersal fishes 

with increasing salinity may be due in part to a cross-shelf shift to more pelagic species in high 

salinity, offshore waters of the NGoM because pelagic taxa show less association with the 

bottom and thus would be less likely to be classified as demersal fishes. The effect of salinity 

was relatively minor in both GAMs (Tables 5 and 6), which is likely a consequence of the 

simultaneous inclusion of depth in the models. While depth and salinity were not correlated 

enough to warrant excluding either from the GAM selection process, much of the information 

about the fish distribution which could be explained by a cross-shelf variation in salinity was 

encapsulated in the variation explained by depth, leaving little residual variation for salinity to 

explain. 

Overall, the predicted quality of UBH for demersal fishes was found to be highly variable 

across the shelf areas surveyed, contradicting the supposition that this habitat is of uniform and 

homogenous ecological utility to demersal fishes. Echo sounder and imaging sonar surveys 

provided complementary data that were used successfully characterize cross-shelf patterns of 

occurrence and density of demersal fishes on UBH, and future improvement of the 

synchronization of the two data types shows considerable promise for assessments of demersal 

fishes in large, low visibility habitats that cannot be accurately surveyed with widely used visual 

approaches (e.g., ROVs, camera sleds, drop cameras). Several environmental factors were found 

to affect the quality of UBH, particularly depth and bottom relief. Much of the shelf inshore of 
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the 20 m isobath was predicted to be high quality UBH with a steep decline in high-quality UBH 

coverage observed in the 20-40 m depth zone, suggesting that this depth zone is a transitional 

area for demersal fish habitat quality in the region. The apparent importance of relief anomalies 

in structuring the distributions of demersal fishes on UBH merits particular focus, and a 

comprehensive knowledge of the sizes, shapes, and complexity of relief anomalies is needed to 

fully understand the ecological value of these habitat features. Species composition of the 

assemblage beneath the nepheloid layer on UBH remains unresolved, and future applications 

using multi-frequency (Kang et al. 2002) or broadband surveys (Benoit-Bird and Waluk 2020) 

that can apportion backscatter to taxonomic groups based on multifrequency echo responses 

(with caveats, see Bassett et al. 2018) may shed light on the distribution and abundance of key 

species that make up assemblage(s) on UBH.  More refined habitat models that are based on a 

species presence or density—rather than the entire demersal fish community—will enhance our 

understanding the ecological role and function of UBH on the population dynamics of associated 

fishes. Given the enormous areal coverage of UBH in the NGoM and the demonstrated 

variability in its quality for demersal fishes, the need for such an understanding is clear. 
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Table 1. Explanatory variables considered for inclusion in the binomial and Gaussian GAM selection process, including any 

transformations applied to the data and their sources. Binomial GAM Selection and Gaussian GAM Selection columns indicate 

whether variables were eliminated from selection for explaining less than one percent of the deviance (<1% DE), eliminated due to 

correlation with a more highly explanatory variable (* followed by the correlated variable), or whether they were included in the final 

model (Included). 

Temporal 

Units Transformation Source 

Binomial 

GAM 

Selection 

Gaussian 

GAM 

Selection 

Day of year Days None - *SST *SST 

Environmental      

Distance to shore m Log(x)  *Depth *Depth 

Depth m None GEODAS US Coastal Relief Model Included Included 

Chlorophyll-a concentration mg/m3 Log(x) VIIRS Multi-Sensor Gap-Filled Chlorophyll *Depth *Depth 

Chlorophyll-a monthly average mg/m3 Log(x) VIIRS Multi-Sensor Gap-Filled Chlorophyll *Depth *Depth 

Chlorophyll-a 3-month average mg/m3 Log(x) VIIRS Multi-Sensor Gap-Filled Chlorophyll *Depth *Depth 

Bottom Rock Composition % Rock Log(x+1) USSeaBed <1% DE Included 

Sea Surface Temperature (SST) °C None NOAA Coastwatch Included Included 

Sea Surface Salinity PSU None HYCOM Included Included 

Relief Anomaly Variables      
Relief Anomaly Linear Proportion 

(RALP) None Log(x+0.0001) Echograms Included *μRA Len. 

Mean Relief Anomaly Length 

(μRA Len.) m Log(x+1) Echograms *RALP Included 

Max Relief Anomaly Length m Log(x+1) Echograms *RALP *μRA Len. 

Mean Relief Anomaly Height m Log(x+1) Echograms *RALP <1% DE 

Max Relief Anomaly Height m Log(x+1) Echograms *RALP <1% DE 
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Feature Proximity      

Distance to pipeline m Log(x+1) BOEM <1% DE Included 

Distance to active petroleum 

platforms m Log(x+1) BOEM Included Included 

Distance to artificial structure m Log(x+1) NOAA Office of Coastal Survey, TPWD Included Included 

Distance to hardbottom habitat m Log(x+1) M. Streich (pers. comm) Included Included 
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Table 2. Summary of fishes identified from camera transects, including their counts, the number 

of transects in which they were detected and the frequency of occurrence in transects. 

 

Family Species Count n Transects Freq. of. Occ. 

Balistidae 

(Triggerfishes) 

Balistes capriscus 

(Grey triggerfish) 
1 1 1.6% 

Carangidae 

(Jacks) 
Unknown 12 5 8.2% 

- 
Decapterus sp. 

(Round scads) 
40 1 1.6% 

- 
Caranx crysos 

(Blue runner) 
6 1 1.6% 

Carcharhinidae 

(Requiem sharks) 
Unknown 29 6 9.8% 

Echeneidae 

(Remoras) 
Unknown 9 5 8.2% 

Lutjanidae 

(Snappers) 
Unknown 3 1 1.6% 

- 
Lutjanus campechanus 

(Red snapper) 
241 11 18.0% 

Rachycentridae 

(Cobia) 
Unknown 5 1 1.6% 

Scombridae 

(Tunas/Mackerals) 
Unknown 87 7 11.5% 

Unknown Unknown 91 14 23.0% 
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Table 3. Contingency table showing the agreement of the echo sounder (ES) and imaging sonar 

at detecting fish in transects. Bold numbers on the diagonal show the number of transects where 

the gears agreed on fish detection, italic numbers show the number of transects in which one gear 

detected fish and the other did not. Marginal row/column percentages show the probability of 

gear agreement in that row/column; The percentage in the bottom right hand corner is the overall 

percentage of agreement. 

 

 

  Imaging Sonar 

  Present Absent 

ES 
Present 40 1 98% 

Absent 1 2 66% 

  98% 66% 95% 
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Table 4. Contingency table showing the agreement of the echo sounder (ES) and imaging sonar 

at detecting relief anomalies in transects. Bold numbers on the diagonal show the number of 

transects where the gears agreed on relief anomaly detection, italic numbers show the number of 

transects in which one gear detected relief anomaly and the other did not. Marginal row/column 

percentages show the probability of gear agreement in that row/column; The percentage in the 

bottom right hand corner is the overall percentage of agreement. 

 

 

  Imaging Sonar 

  Present Absent 

ES 
Present 27 10 73% 

Absent 5 2 29% 

  84% 17% 66% 
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Table 5. Summary of the terms included in the final binomial model of fish presence/absence. 

EDF = effective degrees of freedom of the smooth term; Χ2 = Chi-square test statistic of the 

smooth term; p-value = probability of the calculated test statistic, under a null hypothesis of no 

term effect; ΔDE = loss of deviance explained from removing the variable from the model; 

ΔAIC = increase in AIC from removing the variable from the model 

 

Smooth Term EDF Χ2 p-value ΔDE ΔAIC 

s(Depth) 2.882 289.29 < 0.001 5.7% 247.1 

s(RALP) 2.548 197.4 < 0.001 5.0% 218.5 

s(SST) 2.916 66.68 < 0.001 1.7% 72.8 

s(Dist. Art. Structure) 1 48.23 < 0.001 1.1% 47.2 

s(SSS) 2.549 37.26 < 0.001 1.0% 39.7 

s(Dist. Platform) 2.111 12.37 < 0.01 0.4% 13.1 
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Table 6. Summary of the terms included in the final Gaussian model of logged fish density. 

 EDF = effective degrees of freedom of the smooth term; F = test statistic of the smooth term; p-

value = probability of the calculated test statistic, under a null hypothesis of no term effect;  

ΔDE = Loss of deviance explained from removing the variable from the model; ΔAIC = Increase 

in AIC from removing the variable from the model 

 

 

Smooth Term EDF F p-value ΔDE ΔAIC 

s(Depth) 2.982 251.411 < 0.001 27.8% 538.9 

s(Mean Relief Anomaly 

Length) 
2.845 8.321 < 0.001 1.3% 24.0 

s(SSS) 2.741 6.477 < 0.001 0.8% 16.2 
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Table 7. Coverage by area and percentage of each level of predicted UBH quality by depth zone. Note that the first depth zone does 

not span 20m. 

  
Areal Coverage (km2) by Category Percentage by Category 

Depth Zone Poor Fair Good Excellent Poor Fair Good Excellent 

10-20 0 0 10 11588 0.0% 0.0% 0.1% 99.9% 

20-40 0 5089 13074 1498 0.0% 25.9% 66.5% 7.6% 

40-60 5045 6977 0 0 42.0% 58.0% 0.0% 0.0% 

60-80 5481 1018 0 0 84.3% 15.7% 0.0% 0.0% 

80-100 2560 2 0 0 99.9% 0.1% 0.0% 0.0% 
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APPENDIX B 

FIGURES 
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Fig. 1: Location, year and survey extent of the 147 echo sounder transects conducted in this 

study. 
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Fig. 2: Tow body for the echo sounder transducer (orange cylinder at frame center). 
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Fig. 3: Video collection tow body for the imaging sonar unit and the standard cameras. 
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Fig. 4: Standard camera video collection tow body deployed during 2018. 
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Fig. 5: Examples of fish size categories as determined from the imaging sonar video: a) a school of micro fish; b) small fish; c) 

medium fish; d) a large fish. Numbering shows range from the sonar unit in m. 
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Fig. 6: Examples of semi-quantitative relief anomaly categories as determined from the imaging sonar video: a) open bottom, no relief 

anomalies; b) small relief anomaly; c) medium relief anomaly; and d) large relief anomaly, with a demersal fish in frame (red circle). 

Numbering shows range from the sonar unit in m. 
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Fig. 7: Examples of identifiability of fish detected in the standard camera video. a) Shows an example of two fish identifiable to 

species (Lutjanus campechanus); b) shows a fish identifiable to family (Carcharhinidae); c) shows an unidentifiable fish target.
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Fig. 8: Locations of the 140 transects on UBH on the continental shelf off Texas in the NGoM 

used for data analysis. Symbol colors denote which gear types were deployed at each station. 

The solid black line marks the 100m isobath. 
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Fig. 9: Proportion of 90m x 20m grid cells where demersal fishes were detected for each transect 

on UBH on the continental shelf off Texas in the NGoM 
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Fig. 10: Density of demersal fishes (ind./1000m3) from echo sounder transects of UBH on the 

continental shelf off Texas in the NGoM. 
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Fig. 11. Mean target strength (TS, in dB) in grid cell versus the minimum cell depth (m) for all 

cells which had any TS measurement (n = 1022). The fitted linear model has the equation TSμ = 

-41 + 0.12 x Depth (R2 = 0.26, F-test p-value < 0.0001). 
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Fig. 12: Fish enumeration comparison between the echo sounder and imaging sonar a) Log-

transformed total echo sounder target abundance vs. imaging sonar target count; b) Log-

transformed total echo sounder target abundance vs. summed imaging sonar medium and large 

target counts. Blue line shows a linear regression; Grey shading denotes a 95% CI. 
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Fig. 13: Boxplots comparing a) Mean ES relief anomaly height; b) Number of relief anomalies 

and c) Depth, stratified by the success (TRUE) or failure (FALSE) of the imaging sonar to detect 

relief anomalies. * denote means which are significantly different at α = 0.05 (Welch’s 2-sample 

t-test). 
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Fig. 14:  Relief anomaly enumeration comparison between the echo sounder and imaging sonar; 

a) Echo sounder total relief anomaly count vs. imaging sonar total relief anomaly count; b) echo 

sounder total relief anomaly count vs. imaging sonar relief anomaly count, with the smallest 

imaging sonar relief anomaly class omitted. Points falling on the same coordinates have a slight 

vertical jitter. Blue line shows a linear regression; Grey shading denotes a 95% CI. 
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Fig. 15: Response plots for the binomial GAM of demersal fish presence/absence for a) depth; 

b) logged relief anomaly linear proportion (RALP); c) sea surface temperature (SST); d) logged 

distance to artificial structure; e) sea surface salinity (SSS); f) logged distance to petroleum 

platforms. Blue shading shows a 95% CI. 
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Fig. 16:  Response plots for the Gaussian GAM for the effect on transect logged fish density of 

a) depth; b) logged mean relief anomaly (RA) feature length; c) sea surface salinity (SSS). Blue 

shading shows a 95% CI. 
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Fig. 17: Visualization of the binomial GAM of demersal fish presence/absence on UBH on the 

continental shelf off Texas in the NGoM. Predictions were generated over a 0.0125° x 0.0125° 

grid. Blues indicate a predicted probability of presence <0.5, reds indicated a predicted 

probability of presence >0.5. 
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Fig. 18: Visualization of the Gaussian GAM of demersal fish density on UBH on the continental 

shelf off Texas in the NGoM. Predictions were generated for a 0.0125° x 0.0125° grid. Darker 

reds indicate higher predicted demersal fish density. Logged density predictions were back-

transformed to linear values for visualization. 
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Fig. 19: Combined binomial GAM and Gaussian GAM predictions of UBH demersal fish habitat 

quality on the continental shelf off Texas in the NGoM. Values were standardized to a 0-1 range 

between the minimum and maximum prediction values. Yellow indicates areas where high-

quality UBH is predicted; Blue indicates areas where UBH quality is predicted to be lower. 
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Fig. 20: UBH quality visualized by category, with each category containing a quarter of the data. 

Cyan lines show 20m isobaths. 




