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ABSTRACT

This work seeks to ascertain the accuracy of the Linear Discontinuous Finite Element Method

(LD) for the spatial variable in realistic neutron-transport calculations for nuclear reactors. Our

results have shown that LD is an excellent alternative to other methods, such as the Method of

Characteristics, for computing these types of problems.

We have implemented the Linear Discontinuous Finite Element Method (LD) in the massively

parallel transport code PDT. We ran problems with a range of spatial, angular, and energy dis-

cretization choices. We then analyzed the spatial accuracy in these problems. From this analysis,

we have determined spatial resolution requirements necessary when calculating accurate solutions

using LD. For a typical 2D PWR reactor assembly, using 76 spatial cells per pin cell, we achieve

an accuracy of 3 pcm in k-effective. Also we achieve an accuracy of 3 pcm in the pin power we

see in the 4 fuel pins we looked at.

We have also developed an error model that accurately predicts quantities of interest at infinite

resolution. This model treats both spatial and angular discretization error for a given energy dis-

cretization. The model is ‘trained’ using a series of training points - a range of spatial and angular

discretization choices and the corresponding QOI. The model then uses a least squares approach

to fit the QOIs as a function of our discretization choices. The model quantifies the error in our

computations when the mesh is not infinitely refined. This is important for not only predicting so-

lutions to large scale problems that cannot be run but also for quantifying the accuracy of solutions

to problems that can.

We have also compared to the Method of Characteristics (MOC) for a range of problems in

2D and 3D. Through our collaboration with researchers from the University of Michigan and their

MOC code MPACT, we have determined that for problems with geometric features or boundary

layers that are extremely small relative to the problem domain, LD achieves higher accuracy with

similar meshes when compared to MOC. This is due to the fact that the Method of Characteristics

must use small track spacing to accurately resolve fine mesh attributes. This leads to large num-

ii



bers of unknowns, compared to DFEMs, to compute solutions to problems with similar levels of

accuracy.

Finally we have observed the phenomenon of unphysical oscillations that appear in LD solu-

tions to k-eigenvalue problems in which both the problem domain and the spatial cells have high

aspect ratios. We have explained why and for what types of meshes these oscillations occur. We

can now predict, for simple problems, both the scalar flux shape and the k-eigenvalue for problems

with and without unphysical oscillations.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Neutron transport is the study of the motions and interactions of neutrons with materials. Neu-

tron transport methods fall into two categories: stochastic and deterministic. Stochastic methods

use probablities and a random number generator to ‘follow’ a particle from birth to death and

then characterize where that particle, and thousands to millions of other particles, ends up. These

methods then take averages of these ‘tracks’ to determine the characteristics of the system, such as

k-effective and reaction rates. Deterministic methods solve a system of mathematical equations to

model these systems. Today, with massively parallel computers, deterministic transport methods,

such as the Method of Characteristics (MOC) or Discontinous Finite Element Methods (DFEMs),

are still under very active development in research institutions throughout the world. The neutron

transport equation remains one of the most computationally challenging problems in the world

since it depends on the variables of space (three-dimensions), time, direction (two-dimensions),

and energy, with the variable of energy spanning vast ranges (from fractions of an eV to several

MeV).

One of the primary applications of neutron transport is reactor problems. There exists a signifi-

cant body of literature concerning the accuracy of the Method of Characteristics applied to nuclear

reactors [1], including with meshes that accurately represent the complex heterogeneous geometry

[2, 3]. However, little has been published about the performance of discontinuous finite element

methods on such problems. The purpose of this work is to study the accuracy of the Linear Discon-

tinuous (LD) Galerkin Finite Element Method on realistic reactor geometries as well as to provide

resolution requirements for accurate solutions to these types of problems.

We implemented the Linear Discontinuous Finite Element Method in the PDT massively par-

allel transport code developed at Texas A&M University. We performed a series of resolution

studies on several reactor geometries with varying complexities to determine the contributions that
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each of our discretization choices has to the error present in our models. Simultaneously, we made

comparisons to MOC. Next we studied the phenomenon of unphysical oscillations that appear in

certain types of k-eigenvalue problems. Finally we provide an understanding of resolution re-

quirements for accurate reactor analysis, specifically when using the Linear Discontinuous Finite

Element Method.

1.2 Literature Review

The thick diffusion limit is characterized by large scattering cross sections and small absorption

cross sections. In this limit, the spatial cells are many mean free paths thick. In [4] and [5] Adams

et. al. describe the properties of characteristic methods and DFEMs that ensure accurate solutions

when cells are many mean free paths thick, namely: locality and mirror-image properties. These

two properties are satisfied for LD on triangles in 2D and tetrahedra in 3D, but not for cells with

more vertices. Therefore, if LD is applied to rectangles or hexahedra, it will not in general get

accurate solutions when the material is highly scattering and the cells are many mean free paths

thick. In [4], the authors also conclude that as spatial cells become optically thick and highly

scattering, characteristic methods like MOC behave almost exactly like DFEMs.

Reactor problems do not have cells that are not many mean free paths thick for the cross

sections of the materials present. This means that this known flaw in LD does not prohibit accurate

solutions to reactor problems. The present work did uncover poor LD behavior, as described in

Chapter 6, but the cause and phenomenology differ from the behavior exhibited when the cells are

many mean free paths thick. This behavior only occurs for combinations of problem geometries

and meshes that are unlikely to be encountered in reactor calculations.

In [6], Wang and Ragusa describe the convergence properties of Discontinuous Galerkin Fi-

nite Element Methods applied to the spatial variable in transport calculations. They note that the

regularity of the solution limits the convergence order of the methods. The higher the regularity,

for example in smooth transport solutions, the less the methods are limited. In the preasymptotic

range, it is possible to see a convergence rate of (p + 1) where p is the polynomial order of the

spatial method. For many problems, the meshes are in the preasymptotic range, and therefore we
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see a convergence order of (p+ 1).

Several deterministic codes, including MPACT [3], OpenMOC [7], and CASMO [8] use the

Method of Characteristics to model the transport equation. In this method, the integral form of the

transport equation is solved along discrete ‘tracks’ in the discrete ordinates (SN ) quadrature direc-

tions. Difficulty arises when computing solutions to problems in three dimensions, as the finite

track spacing and increased SN directions yield large numbers of unknowns to solve. The MPACT

code has employed a 2D/1D scheme to overcome such challenges [9]. This scheme decomposes

the 3D problem into a 1D axial stack of 2D planes, and links those 2D planes with axial leakages.

Another solution, employed by the OpenMOC code, is to employ hierarchical parallelism with

MPI and OpenMP [1] to brute force the increase in number of unknowns.

PDT, which is built on STAPL (Standard Template Adaptive Parallel Library) and uses the

Finite Element Method to solve the differential form of the transport equation, is designed to scale

well to high processor counts. PDT uses discrete-ordinates (SN ) in direction and multi-group

(or related methods whose equations are structured like multi-group equestions) in energy to solve

steady-state, k-eigenvalue, and time-depedent neutron and gamma transport problems. The STAPL

library, developed at Texas A&M University (TAMU), handles the parallel communication, data

structures, etc. [10, 11, 12, 13]. Currently PDT uses only across node parallelism, but will soon

be able to employ nested, on-node parallelism to increase its parallel efficiency. At present PDT

demonstrates 70% parallel efficiency on approximately 768k cores in a weak scaling study in 3D

with orthogonal grids [14]. PDT has also demonstrated high parallel efficiency on high-fidelity

reactor problems out to 768k cores.

1.3 Finite Element Methods

The principle equation used in nuclear reactor analysis is the neutron transport equation, which

is a limit of the Boltzmann transport equation where the particles interact with the background

but not with each other. The solution to this equation, the angular neutron flux ψ, lies in a seven

dimensional phase space: position (x, y, z), direction (Ω̂ = [ξ, γ] ), energy, and time. For the pur-

poses of this work, the energy dimension will be discretized using the multi-group or FEDS (Finite
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Element Discontinuous Support) method, and the angular dimensions will be discretized using

the discrete-ordinates (SN ) method. The spatially dependent k-eigenvalue form of the neutron

transport equation, which is not dependent on time, can then be written as:

Ω̂m · ~∇ψgm(~r) + σgt (~r)ψ
g
m(~r) = qgtot(~r, Ω̂m). (1.1)

Here Ω̂m is the mth discrete direction in the quadrature set, ψgm(~r) is the angular neutron flux in the

mth direction in energy group g, and σt is the total cross section. The total (scattering plus fission)

source, qgtot(~r, Ω̂m), is defined as

qgtot(~r, Ω̂m) ≡
G∑
g′=1

L∑
`=0

2`+ 1

4π
σg′→gs` (~r)

∑̀
n=−`

φg′`,n(~r)Y`,n(Ω̂m)︸ ︷︷ ︸
scattering source

+
1

k

χg
4π

G∑
g′=1

νg′σg′f (~r)φg′(~r)︸ ︷︷ ︸
fission source

. (1.2)

The first term in Eq. 1.2 is the scattering source, which is approximated by a Legendre expansion

using spherical harmonics and the second term is the fission source, where k is the eigenvalue

of the equation. The angular-flux moments, φg′`,n(~r), are approximated in the discrete-ordinates

method using a quadrature set:

φg′`,n(~r)
discrete-ordinates−−−−−−−−→

M∑
m=1

Y ∗`,n(Ω̂m)ψg′(~r, Ω̂m)ωm. (1.3)

If the scattering cross sections are isotropic, as in the C5G7 benchmark problem, only the 0th

moment of the scattering cross section is non-zero and the total source simplifies to:

qgtot(~r, Ω̂)
isotropic−−−−→

G∑
g′=1

1

4π
σg′→gs (~r)φg′(~r) +

1

k

χg
4π

G∑
g′=1

νg′σg′f (~r)φg′(~r). (1.4)

The spatial dimensions are discretized using the discontinous finite element method (DFEM). The

standard DFEM spatial discretization [5] is applied to Equation (1.1) by multiplying by a test
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function, pi(~r), and integrating over all space:

∫
d3rpi(~r)

[
Ω̂m · ~∇ψgm(~r) + σgt (~r)ψ

g
m(~r)

]
=

∫
d3rpi(~r)

[
qgtot,m(~r)

]
. (1.5)

To prevent the surface discontinuity from becoming a problem, we now integrate by parts:

−
∫
d3rψgm(~r)Ω̂m · ~∇pi(~r) +

∫
δK

d2r(Ω̂m · n̂K(r))pi(~r)ψ
g
m(~r) +

∫
d3rpi(~r)σ

g
t (~r)ψ

g
m(~r)

=

∫
d3rpi(~r)

[
qgtot,m(~r)

]
. (1.6)

Where δK represents the cell boundary and n̂K(r) is the outward normal at the cell boundary K.

The unknowns are then expanded in terms of finite element basis functions, bj(~r), each of which

goes discontinuously to zero just outside of the cell on which it is defined:

ψgm(~r) =
N∑
j=1

ψgm,jbj(~r) (1.7)

Plugging this in gives:

−
∫
d3rψgmbi(~r)Ω̂m · ~∇pi(~r) +

∫
δK

d2r(Ω̂m · nK(r))pi(~r)ψ
g
m(~r) +

∫
d3rpi(~r)σ

g
t (~r)ψ

g
mbi(~r)

=

∫
d3rpi(~r)

[
qgtot,mbi(~r)

]
.

(1.8)

Notice that the limits of integration are only one cell. This is due to the fact that the basis functions

are only non-zero on one cell. A Galerkin method is one in which the test and basis functions span

the same space in every cell. The linear discontinuous basis functions can be defined on any 3D

cell as:

b0(~r) = 1, b1(~r) =
2(x− x)

∆x
, b2(~r) =

2(y − y)

∆y
, b3(~r) =

2(z − z)

∆z
. (1.9)
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Here u is the average value of u in the cell and ∆u is a measure of the span of the cell in the

direction u. These basis functions define a solution space that is planar in every cell, but can be

discontinuous across cell boundaries. As an illustration, consider Figure 1.1. An isotropic source

is incident on the left side of the problem and an S2 quadrature set is used. The scalar flux solution

is linear in every cell, but can be discontinuous in magnitude and slope across cell boundaries.

Figure 1.1: Illustration of Linear Galerkin DFEM Solution

For completeness, we will now derive the discretized equations from the continuous ones. For

simplicity, we will only be looking at the 1 group 1D equations. Using the finite element method,

we move everything over to the left hand side, multiply by a test function, and integrate over a cell:

∫ xi+1/2

xi−1/2

dx

[
pi(x)(µ

∂

∂x
)ψ(x) + σtψ(x)pi(x)−Q(x)pi(x)

]
= 0 (1.10)

Since we’re using the Galerkin method, our test function spans the same space as our basis

functions:

p0i = b0i = 1, p1i = b1i = 2
x− xi

∆x
(1.11)

Here, xi is the cell center value, and ∆x is defined as xi+1/2 − xi−1/2. Again, these basis and test

functions go discontinuously to zero at the cell edges. We will split up our integral into three terms:

a streaming term, a collision term, and a source term. For our first equation, which defines the cell
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centered value of the angular flux in terms of cell edge values, we use the basis function b0. Term

1, the streaming term, is then:

∫ xi+1/2

xi−1/2

dx

[
p0i(x)(µ

∂

∂x
)ψ(x)

]
(1.12)

Since ψ(x) is undefined at the cell edges, we cannot take the derivative of it there. Instead, we will

integrate by parts to pass the derivative onto the test function:

−
∫ xi+1/2

xi−1/2

dx(µ
∂p0(x)

∂x
)ψ(x) + µp0(x)ψ(x)|xi+1/2

xi−1/2 (1.13)

The first term here goes to zero because the derivative of a constant is zero. The second term goes

to:

µ
(
ψi+1/2 − ψi−1/2

)
(1.14)

Here ψi+1/2 and ψi−1/2 are the cell edge values. Moving onto the second term in Eq. 1.10, which

is the collision term:

∫ xi+1/2

xi−1/2

dx [σtψ(x)p0i(x)] = σt

∫ xi+1/2

xi−1/2

dxb0i

[
ψi + 2

x− xi
∆x

ψ̂i

]
(1.15)

We can now replace b0i with 1. Using u-substitution:

u = 2
x− xi

∆x
du =

2

∆x
dx

Plugging these in we get:

∆xσt
2

∫ 1

−1

du
[
ψi + uψ̂i

]
=

∆xσt
2

[
ψiu|1−1 +

1

2
u2ψ̂i|1−1

]
= ∆xσtψi (1.16)
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Similar tricks can be played to get the third term. Putting everything together gives:

µ

∆x

(
ψi+1/2 − ψi−1/2

)
+ σtψi = Qi (1.17)

This is the discretized transport equation for the cell centered neutron flux, ψi. For our second

equation, which will be the discretized transport equation for the neutron flux slopes, we use b1.

Again, we will break up the equation into three terms: a streaming term, a collision term, and a

source term. The first term, which is the streaming term, is then:

∫ xi+1/2

xi−1/2

dx(µ
∂

∂x
)ψ(x)b1(x) (1.18)

Using integration by parts we get:

−
∫ xi+1/2

xi−1/2

dx(µ
∂b1(x)

∂x
)ψ(x) + µb1(x)ψ(x)|xi+1/2

xi−1/2 (1.19)

Splitting this up into two terms, and taking the first part, we get:

− µ
∫ xi+1/2

xi−1/2

dx(
2

∆x
)

[
ψi + 2

(x− xi)
∆x

ψ̂i

]
(1.20)

Now we use u substitution with u = 2 (x−xi)
∆x

:

− µ
∫ 1

−1

du
[
ψi + uψ̂i

]
= −2µψi (1.21)

Now taking the second term:

µb1(x)ψ(x)|xi+1/2
xi−1/2 = µ

[
b1,i+1/2ψi+1/2 − b1,i−1/2ψi−1/2

]
(1.22)

= µ
[
(1)ψi+1/2 − (−1)ψi−1/2

]
= µ

[
ψi+1/2 + ψi−1/2

]

8



Here we’ve defined:

ψi+1/2 = ψi + ψ̂i i = (i, I − 1), µ > 0

ψi−1/2 = ψi − ψ̂i i = (1, I − 1), µ < 0

ψ1/2 = ψinc i = 1/2, µ > 0

ψI+1/2 = ψinc i = I + 1/2, µ < 0 (1.23)

These are the 1D closure relationships for LD. Simply put, it defines the cell edge quantities in

terms of cell centered fluxes and cell centered slopes. The last two equations in 1.23 are the

boundary conditions at the problem edges. They define the incoming flux at each boundary of the

problem. Putting these two together gives term 1:

∫ xi+1/2

xi−1/2

dx(µ
∂

∂x
)ψ(x)b1(x) = µ

[
ψi+1/2 + ψi−1/2 − 2ψi

]
(1.24)

Moving onto term 2, which is the collision term:

∫ xi+1/2

xi−1/2

σtψ(x)b(x) = σt

∫ 1

−1

∆x

2
udu

[
ψi + ψ̂i

]
(1.25)

=
∆xσt

2

∫ 1

−1

[
uψi + u2ψ̂i

]
du (1.26)

=
∆xσt

2

[
1

2
u2ψi +

1

3
u3ψ̂i

]
|1−1 (1.27)

=
∆xσt

2

[
0 +

2

3
ψ̂i

]
(1.28)

=
∆x

3
σtψ̂i (1.29)

Again, similar tricks can be played to get the source term:

∫ xi+1/2

xi−1/2

dxQ(x)b(x) =
∆x

3
Q1
i (1.30)

9



Putting everything together, we get:

3µ

∆x

[
ψi+1/2 + ψi−1/2 − 2ψi

]
+ σtψ̂i = Q̂i (1.31)

Together with equation 1.17 and the closure relations 1.23, these make up the 1D discretized SN

equations in cell i. To solve these, the closure relations are substituted into the two main equations,

for each cell, to get equations in terms of cell centered quantities. Due to the closure relations,

each cell’s solution depends on its upstream cell’s solution – cell (i− 1) for µ > 0 and cell (i+ 1)

for cell µ < 0. Together, all the cell equations form a matrix, which can be solved with sweeping

or other matrix solution techniques.

This is only an example of how to manipulate the analytic equations to derive the discretized

ones. The 2D equations applied to rectangles are similarly derived and can be seen below:

µm
ψm,i+1/2,j − ψm,i−1/2,j

∆x
+ ηm

ψm,i,j+1/2 − ψm,i,j−1/2

∆y
+ σtψmij = Qi,j , (1.32)

3µm
ψm,i+1/2,j + ψm,i−1/2,j − 2ψmij

∆x
+ ηm

ψxm,i,j+1/2 − ψxm,i,j−1/2

∆y
+ σtψ

x
mij = Qx

i,j , (1.33)

µm
ψym,i+1/2,j − ψ

y
m,i−1/2,j

∆x
+ 3ηm

ψm,i,j+1/2 + ψm,i,j−1/2 − 2ψmij
∆y

+ σtψ
y
mij = Qy

i,j . (1.34)
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2. SIMPLIFIED REACTOR MODEL

To start our investigation into LD applied to reactor problems, we looked at a set of simplified

benchmark problems: the C5G7 benchmark [15, 16]. This benchmark has 7 energy groups, with

the macroscopic cross sections predefined. The cross sections being given simplifies the compu-

tation by cutting out a major complication when performing reactor calculations. The benchmark

keeps the fuel and moderator unhomogenized, though it does not include a clad or gap. A more

detailed description of this benchmark is seen below in Section 2.1.

We modeled the 2D and 3D version of this benchmark for our study. We performed a resolution

study in space and angle to determine the accuracy of LD in moderately difficult problems. We

also compared to benchmark solutions to show that LD can be used to compute highly accurate

solutions.

2.1 C5G7 Specification

The C5G7 is a well-known benchmark problem developed by the Organisation for Economic

Co-operation and Development’s Nuclear Energy Agency (OECD/NEA). The problem has a con-

figuration of 16 assemblies surrounded by a water reflector region, which can be seen in Figure

2.1. The problem is modeled using reflective boundary conditions on the -x and +y boundaries

(and -z for the 3D version) and vacuum boundary conditions on the +x and -y boundaries (and +z

for the 3D version). The top-left and bottom-right assemblies have UO2 fuel while the top-right

and bottom-left assemblies contain three different MOX fuel enrichments.

Two side views of the 3D version of the benchmark can be seen in Figure 2.2. The fuel assem-

blies are broken up into three axial regions. Three control rod configurations are defined in [16]

where control rods are inserted from the top and bottom of the core due to the reflecting boundary

conditions.

The materials in the benchmark are characterized using 7-group transport-corrected cross sec-

tions, generated using the collision probability code DRAGON (G. Marleau, et al.) and the WIMS-
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Figure 2.1: Assembly Layout of C5G7 Benchmark Problem

Figure 2.2: Top-Down and Two Side Layouts of the 3D C5G7 Benchmark Problem

AECL 69-group library. The scattering cross sections are isotropic. The fuel rods, fission chamber,

guide tubes, and control rods are homogenized, but no fuel-moderator homogenization was per-

formed.
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The quantities of interest for the C5G7 are the individual fission rate densities in each fuel pin,

the average fission rate densities in each assembly, and keff. For more details on this benchmark

problem see [15] and [16].

2.2 PDT Model of C5G7 Benchmark Problem

Our computational models were developed in the massively parallel transport code PDT, being

developed at Texas A&M University. PDT is designed to run on meshes with arbitrary polygonal

(2D) or polyhedral (3D) cells. Such meshes can efficiently and accurately represent complex ge-

ometries and are well suited to modeling reactor lattices. Examples of meshes in a single pincell

can be seen in Figure 2.3. The mesh is refined by adding “rings" to the different material regions.

Our pin-cell meshes, shown in Figure 2.3, range from 3 rings in the fuel and 1 in the water, i.e.

(3,1), to 10 rings in the fuel and 5 in the moderator, i.e (10,5). At the time of the testing reported

here, our mesh-generation capability was limited to N ×N quadrilateral spatial cells per pin cell,

with vertices placed to best approximate the geometry. This is not ideal, because it forces the

azimuthal refinement to equal the radial refinement. That is, if we want 8 radial rings in the fuel,

we must have more than 16 cell edges along each pincell edge. We have since employed more

efficient grids, with separately chosen radial and azimuthal resolution.

At the time of this study, our mesh generation capability also required vertices to connect across

pin cell boundaries, i.e. no hanging nodes. This means that we must keep the mesh spacing in the

water assemblies equal to that in the fuel region in the direction perpindicular to the core, e.g. in

the y direction in the water assemblies to the right of the core and in the x direction in the water

assemblies below the core. We do allow the mesh spacing to coarsen as we move away from the

fuel region, e.g. in the x direction in the water assemblies to the right of the core and in the y

direction in the water assemblies below the core. This allows us to coarsen the mesh in regions

where the solution is smooth and not changing excessively.

For the 2D problem, we treated the water reflector region as if it were five assemblies of 17×17

pin cells, but we divided each of the resulting "water pin-cells" into simple rectangular mesh cells.

We then allowed rows (or columns) of these water pin-cells to coarsen as we move away from the

13



Figure 2.3: Meshes Used for Pin Cells, Ranging from (3,1) to (10,5), Where (n,m) Means n Rings
in Fuel and m in Coolant.

fuel region. We defined the 5 to 7 rows (or columns) of water pin-cells next to the fuel region as

our fine region, the 5 to 8 rows (or columns) farthest from the fuel region as our coarse region,

and the rows (or columns) in the middle as our intermediate region. The fine region had a mesh

spacing twice the average spacing in the fuel region and the coarse region had a spacing 4-6 times

the average mesh spacing in the fuel. An example reflector mesh for the 2D study can be seen in

Figure 2.4.

Our mesh generation capability improved between when we studied the 2D problem and when

we studied the 3D problem. For the 2D version of the problem, each pin cell was required to have

the same physical dimension, but the number of mesh cells per pin cell could vary pin to pin. For

the 3D version, the code required the same number of mesh cells per pin cell, but the pin cells

themselves could vary in physical dimension. This allows for more straight forward specification

of the water assemblies.

Similarly to the 2D problem, we divided up the reflector for the 3D problem into 5 water

assemblies. We then separated the assemblies into three equal regions between the core and each

14



Figure 2.4: A Portion of the (3,1) Mesh in the 2D Study Illustrating Fine, Intermediate, and Coarse
Regions of the Reflector.

boundary in the x-y plane. The region closest to the fuel was divided into 3 water-pin-cells, the

region in the middle into 2 water-pin-cells, and the outer region into 1 water-pin-cell. This means

that the assemblies to the +x direction of the core had a 6 × 17 pin cell layout, the assemblies to

the−y direction of the core had a 17×6 pin cell layout, and the corner water assembly had a 6×6

pin cell layout. Each section then was discretized into simple rectangular mesh cells, but with the

same number of cells per water-pin-cell as the fuel region. This results in the water being 3 times

finer in resolution near the fuel region than in the periphery of the problem. An example reflector

mesh can be seen in Figure 2.5. For both the 2D and 3D problems, the meshes were chosen such

that the total problem had a pseudo 40× 40 pin cell layout.

In order to make use of the optimal transport sweeping algorithm in PDT we must define sets

of cells ("cell-sets") with regular rectangular shapes. Cell-sets, in this context, refer to mesh cells

that are grouped together when performing parallel transport sweeps. In the spatial meshes used
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Figure 2.5: A Portion of the (3,1) Mesh in the 3D Study Illustrating Fine, Intermediate, and Coarse
Regions of the Reflector.

here, the rectangular requirement means cell-sets cannot be smaller than quarter-pin-cells in the

core region. Parallel load balancing is best if each cell-set has the same number of cells, so we

impose this requirement as well. With the reflector meshes we have chosen, each of our meshes

looks to PDT like an 80 × 80 array of quarter-pin-cells, which it can aggregate into cell-sets as is

appropriate for best parallel performance.

For the axial mesh in the 3D benchmark, we divided the problem into 4 regions: three equally

spaced layers in the fuel, as defined by [16], and one layer in the reflector region above the core.

Each layer was discretized with an equal number of axial mesh cells ranging from 8 total axial

cells to 80 total axial cells. We used a Product-Gauss-Legendre-Chebychev quadrature for all

the problems. This means that the total number of angles in our quadrature set is equal to the

number of polar angles multiplied by the number of azimuthal angles. The polar angles have a

Gauss-Legendre distribution and the azimuthal angles are equally spaced around the x-y plane.
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2.3 Truncation Error Model

To determine the truncation error contributed by each discretization choice, we refined each

variable (radial spatial resolution, axial resolution, number of polar angles, number of azimuthal

angles) individually and studied how the quantities of interest changed. The quantities of inter-

est, or QOI’s, for the truncation error analysis were the k-eigenvalue and the pin powers. We can

describe each QOI computed as the sum of the exact solution and the errors contributed from our

discretizations.

QOI(∆x,∆z,∆ξ,∆γ) = QOIexact + Cx

(
∆x

∆xmax

)px
+ Cz

(
∆z

∆zmax

)pz
+

Cξ

(
∆ξ

∆ξmax

)pξ
+ Cγ

(
∆γ

∆γmax

)pγ
(2.1)

where:

∆x =
Pitch/2

Fuel Rings + Moderator Rings
, (2.2)

∆z =
Problem Height

Number of z planes
, (2.3)

∆ξ =
1

Number of Polar Angles
, (2.4)

∆γ =
π/2

Number of Azimuthal Angles per Quadrant
, (2.5)

the p’s are the orders by which each error shrinks and the C’s are constants for a given QOI. Each

variable is normalized to its largest value to better see which variable has the greatest impact on

our solution. To determine these p’s and C’s, we ran a series of test runs where we refined each

variable one at a time. We then used all the series to perform a least squares analysis to determine

the powers and coefficients. The error present due to a particular discretization choice, EN , is
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defined as:

EN = QOIexact − QOI(∆x,∆z,∆ξ,∆γ) = −Cx
(

∆x

∆xmax

)px
− Cz

(
∆z

∆zmax

)pz
−

Cξ

(
∆ξ

∆ξmax

)pξ
− Cγ

(
∆γ

∆γmax

)pγ
(2.6)

Here the QOIexact is computed using our Python script which computes the exact solution, as well

as the powers and coefficients in our truncation error model using the data from our series of test

runs. Note that the z component of the truncation error model is only present in our 3D results.

Several remarks are in order concerning our error model. First, transport problems are notori-

ous for their lack of smoothness. If a solution has a discontinuous first derivative, then ultimately

even a high-order method can achieve no better than first-order truncation error for most QOIs [17].

Even seemingly benign transport problems have solutions with discontinuous first derivatives in

space and often discontinuous solutions in angle (across quadrant boundaries, for example). Nev-

ertheless, until meshes get exceedingly fine, high-order methods can achieve much better than

first-order error reductions. The problems we consider here are mostly in this limit, with relatively

fine but not exceedingly fine meshes.

Second, it is known [18] that spatial truncation error is a function of angular discretization (i.e.,

a function of the quadrature set in discrete-ordinates methods), and that spatial error can increase

when the quadrature set is refined. (As an example, consider a slab-geometry spatial discretization

scheme whose accuracy degrades as σt∆x/|µ| increases, which happens if smaller values of |µ| are

introduced.) In the 2D problems considered here, the analog is increasing chord lengths through

cells for directions that approach vertical (along z). Refining the polar quadrature set introduces

directions that are closer to vertical, thereby challenging a given spatial discretization. In our error

model this translates to a Cx that depends on polar-angle resolution and in fact increases for a

sufficiently large number of polar angles. It is possible for polar refinement to produce poorer

results if the spatial mesh is not sufficiently resolved. We are aware of this and have studied this

interaction in Chapter 3.
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2.4 Results

This section is divided into two subsections: 2D and 3D results. In each subsection we first

provide tables of the QOI solutions for each case in the resolution study. We then show the trun-

cation error analysis for each of the discretization variables. For reference we have provided the

MCNP solution for each of the QOI’s, with the 2σ value reported in the benchmark, as well as our

finest resolution result calculated using PDT. Our QOI’s are the k-eigenvalue, maximum pin power,

minimum pin power, and assembly powers for the Inner UO2, Outer UO2, and MOX assemblies.

Finally we show the relative difference between those QOI’s and the MCNP reference solution as

well as between them and the finest resolution result from PDT.

2.4.1 2D

We have run a “high-resolution" model of the C5G7 benchmark problem using PDT to generate

what we believe is a highly accurate reference solution, in addition to running a series of problems

for resolution and error studies. The maximum and minimum pin powers, assembly powers, and

the k-eigenvalue for this high-resolution model, as well as the models used in the error study, can

be seen in Table 2.1. The high-resolution model used the (10,5) mesh (which has 1.44 million

cells), 24 polar angles, and 256 azimuthal angles. All quantities of interest computed using this

model are within 2 standard deviations of the MCNP reference results. The relative differences of

the QOI’s for all the PDT models, as compared to MCNP reference results, can be seen in Table

2.2. Those same QOI’s compared to the high-resolution PDT results can be seen in Table 2.3.

Earlier versions of Tables 2.1, 2.2, and 2.3 appeared in conference proceedings in [19].

Assuming that our errors can be described by Equation 2.1, the truncation error analysis esti-

mates that our “high resolution” model of the 2D C5G7 has approximately 0.7 pcm of error in the

k-eigenvalue and less than 0.004% error in the worst pin power. The pin powers computed by PDT

were within 1σ of MCNP pin powers 86.6% of the time (914 pins), and all pin powers were within

2σ, or 160 pcm. The flux solutions computed using the fine resolution PDT model, for Groups 0,

2, and 5, can be seen in Figure 2.6, which were generated using Visit. The color scale for Figure
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2.6 is linear.

Figure 2.6: Flux Solution for Groups 0, 2, and 5 for the 2D C5G7

Figure 2.7 shows a side by side comparison of our Group 5 flux solutions for the high-resolution

mesh (900 cells per pin cell) and a coarser mesh (64 cells per pin cell). The image shows the four

corner pins where the four fuel assemblies meet. Close inspection reveals discretization artifacts

in the coarse-mesh solution, but this solution is remarkably close to the ultra-fine-mesh solution,

showing the robustness and accuracy of the LD method for this kind of problem.

The 2D resolution study included three series: radial mesh, polar angles and azimuthal angles.

The radial mesh parameters used in the resolution study can be seen in Table 2.4. The four dis-

cretization levels for the polar angle series were 2, 4, 8, and 16 polar angles per quadrant and the

five discretization levels of the azimuthal angle series were 8, 16, 32, 64, and 128 azimuthal angles

per quadrant. For each series, the variables not being refined were held at the common point: (4,2)

spatial mesh, 8 polar angles per quadrant, and 64 azimuthal angles per octant.

The results of our study, for 3 QOI’s (k-effective, max pin power, and inner UO2 assembly

power) can be seen in Figures 2.8 - 2.10. The common point ( (4,2) mesh, 8 polar angles, and 64

azimuthal angles per quadrant) can be seen where the curves interesect. In addition to the study

results, the MCNP benchmark answer, together with its error bars, is presented in each figure. Both
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Figure 2.7: Flux Solution for Group 5 on the (10,5) Mesh (left) and (3,1) Mesh (right).

Table 2.1: 2D QOIs

Mesh Polar Azim. Max Pin Min Pin Inner UO2 MOX Outer UO2 k
MCNP 2.49770 0.23150 492.847 211.695 139.764 1.186550

MCNP 2σ 0.16% 0.58% 0.10% 0.18% 0.20% 0.008%
PDT-fine resolution (10,5) 24 64 2.49882 0.23173 492.992 211.680 139.647 1.186456

PDT-MCNP
MCNP 0.03% -0.12% 0.04% -0.01% -0.11% -0.005%

Spatial

(3,1) 8 64 2.49863 0.23179 492.968 211.689 139.654 1.186620
(4,2) 8 64 2.49905 0.23174 493.022 211.666 139.646 1.186477
(6,3) 8 64 2.49912 0.23173 493.032 211.662 139.644 1.186462
(8,4) 8 64 2.49913 0.23173 493.034 211.661 139.644 1.186458
(10,5) 8 64 2.49913 0.23173 493.034 211.661 139.643 1.186599

Polar

(4,2) 2 64 2.50539 0.23172 493.754 211.321 139.604 1.186392
(4,2) 4 64 2.50053 0.23176 493.213 211.575 139.638 1.186394
(4,2) 8 64 2.49905 0.23174 493.022 211.666 139.646 1.186477
(4,2) 16 64 2.49878 0.23174 492.984 211.684 139.648 1.186508

Azimuthal

(4,2) 8 16 2.49936 0.23174 493.064 211.648 139.640 1.186376
(4,2) 8 32 2.49909 0.23174 493.026 211.664 139.645 1.186465
(4,2) 8 64 2.49905 0.23174 493.022 211.666 139.646 1.186477
(4,2) 8 128 2.49905 0.23174 493.022 211.666 139.646 1.186478
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Table 2.2: Percent Differences with Respect to MCNP Reference Solutions for 2D Problem

Mesh Polar Azimuthal Max Pin Min Pin Inner UO2 MOX Outer UO2 k
Fine Resolution (10,5) 24 64 0.033 -0.116 0.039 -0.009 -0.110 -0.005

Spatial

(3,1) 8 64 0.025 -0.093 0.034 -0.005 -0.105 0.006
(4,2) 8 64 0.042 -0.111 0.045 -0.016 -0.110 -0.006
(6,3) 8 64 0.045 -0.115 0.047 -0.018 -0.112 -0.007
(8,4) 8 64 0.045 -0.116 0.047 -0.018 -0.112 -0.008

(10,5) 8 64 0.045 -0.117 0.048 -0.018 -0.112 0.004

Polar

(4,2) 2 64 0.296 -0.120 0.193 -0.179 -0.140 -0.013
(4,2) 4 64 0.101 -0.103 0.084 -0.059 -0.116 -0.013
(4,2) 8 64 0.042 -0.111 0.045 -0.016 -0.110 -0.006
(4,2) 16 64 0.031 -0.111 0.037 -0.008 -0.109 -0.004

Azimuthal

(4,2) 8 16 0.054 -0.114 0.054 -0.025 -0.114 -0.015
(4,2) 8 32 0.043 -0.112 0.046 -0.017 -0.111 -0.007
(4,2) 8 64 0.042 -0.111 0.045 -0.016 -0.110 -0.006
(4,2) 8 128 0.042 -0.111 0.045 -0.016 -0.110 -0.006

Table 2.3: Percent Differences with Respect to PDT Reference Solutions for 2D Problem

Mesh Polar Azimuthal Max Pin Min Pin Inner UO2 MOX Outer UO2 k

Spatial

(3,1) 8 64 -0.008 0.0231 -0.0049 0.0040 0.0052 0.0107
(4,2) 8 64 0.009 0.0046 0.0060 -0.0068 -0.0007 -0.0013
(6,3) 8 64 0.012 0.0002 0.0081 -0.0088 -0.0019 -0.0026
(8,4) 8 64 0.012 -0.0006 0.0084 -0.0091 -0.0022 -0.0029
(10,5) 8 64 0.012 -0.0008 0.0085 -0.0092 -0.0022 -0.0030

Polar

(4,2) 2 64 0.263 -0.0045 0.154 -0.170 -0.0306 -0.0085
(4,2) 4 64 0.068 0.0123 0.045 -0.050 -0.0065 -0.0083
(4,2) 8 64 0.009 0.0046 0.006 -0.007 -0.0007 -0.0013
(4,2) 16 64 -0.002 0.0050 -0.002 0.002 0.0012 0.0013

Azimuthal

(4,2) 8 16 0.0214 0.0020 0.015 -0.016 -0.0044 -0.009
(4,2) 8 32 0.0106 0.0041 0.007 -0.008 -0.0009 -0.0023
(4,2) 8 64 0.0090 0.0046 0.006 -0.007 -0.0007 -0.0013
(4,2) 8 128 0.0090 0.0050 0.006 -0.007 -0.0007 -0.0012

the common point and the most refined cases are within the error bars of the benchmark answer

for all QOI’s studied. It is unclear why the curve for spatial mesh increases between the second

most refined case and the most refined case for k-effective, though the difference between the two

is only 12 pcm. Finally, the infinitely refined point, as predicted by our model (discussed below) is

plotted for each of the QOIs. They are all within the error bars of the MCNP answer.

The results of our least squares model can be seen in Table 2.5. The square root of the average
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Table 2.4: Specifications of 2D Spatial Meshes

Core Reflector
Rings/pincell # pincells × # cells/pincell

Fuel Moderator Fine Medium Coarse

Mesh

(3,1) 3 1 5 × 4 4 × 3 8 × 2
(4,2) 4 2 7 × 6 3 × 3 7 × 3
(6,3) 6 3 7 × 9 3 × 8 7 × 3
(8,4) 8 4 7 × 12 4 × 9 6 × 4

(10,5) 10 5 7 × 15 5 × 10 5 × 5

Figure 2.8: k-effective vs Resolution for 2D

of the square of the error summed over all training points between the model k-effective and the

training data was 1.6 pcm. Also, the model predicted a k-effective for our most refined case of

1.186465. This is 0.8 pcm different than what PDT computed.

2.4.2 3D

We ran a “high-resolution" model of the C5G7 benchmark problem using PDT to generate

what we believe is a highly accurate reference solution, in addition to the series of problems run
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Figure 2.9: Max Pin Power vs Resolution for 2D

Figure 2.10: Inner UO2 Assembly Power vs Resolution for 2D

for our resolution and error studies. The maximum and minimum pin powers, assembly powers,

and the k-eigenvalue for this high-resolution model, as well as the cases used in the error study,

can be seen in Table 2.6. The high-resolution model used the (8,4) mesh with 60 z planes (over
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Table 2.5: Parameters and Their Values in our Full Model of k-effective (2D C5G7)

Power Value
px 2.0
pξ 2.0
pγ 2.0

Coefficient Value
k0 1.1864607
Cx 5.53E-06
Cξ -1.85E-06
Cγ -4.80E-09

55 million cells), 16 polar angles per hemisphere, and 192 total azimuthal angles. The relative

differences of the QOI’s for all the PDT models, as compared to MCNP reference results, can be

seen in Table 2.7. Those same QOI’s compared to the high-resolution PDT results can be seen in

Table 2.8. Earlier versions of Tables 2.6, 2.7, and 2.8 appeared in conference proceedings in [20].

Again assuming our errors can be described using Equation 2.1, the truncation error analysis

estimates that our “high-resolution” model of the C5G7 has approximately 5 pcm of error in the

k-eigenvalue and less than 0.028% error in the worst pin power.

The 3D resolution study included 4 series: radial mesh, axial mesh, polar angles and azimuthal

angles. The radial mesh study was performed on the (3,1), (4,2), (6,3) and (8,4) pin cell meshes as

seen in Figure 2.3. The axial mesh study included runs with 8, 16, 20, 40, 60, and 80 z-planes. The

polar angle series was done with 6, 8, 12, and 16 polar angles per octant and the azimuthal angle

series was done with 8, 16, 32, and 48 azimuthal angles per octant. For each series, the variables

not being refined were held at the common point: (4,2) spatial mesh, 40 z-planes, 8 polar angles

per octant, and 32 azimuthal angles per octant.

The results of our study, for 3 QOI’s (k-effective, max pin power, and inner UO2 assembly

power) can be seen in Figures 2.11 - 2.13. The common point ( (4,2) mesh, 40 z-planes, 8 polar

angles, and 32 azimuthal angles per quadrant) can be seen where the curves interesect. In addition

to the study results, the MCNP benchmark answer, together with its error bars, is presented in

each figure. Both the common point and the most refined cases are within the error bars of the

benchmark answer for all QOI’s studied. Finally we have also plotted our models prediction for

each QOI at infinite resolution. All quantities of interest’s predictions lie within the error bars for
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Table 2.6: 3D QOIs

Mesh Z Planes Polar Azim. Max Pin Min Pin Inner UO2 MOX Outer UO2 k
MCNP 2.48126 0.23110 491.211 212.701 139.387 1.143080

MCNP 2σ 0.14% 0.38% 0.29% 0.21% 0.15% 0.006%
PDT (8,4) 60 16 48 2.48070 0.23025 491.157 212.720 139.402 1.143081

PDT-MCNP
MCNP -0.023% -0.368% -0.011% 0.009% 0.011% 0.000%

Pin Mesh

(3,1) 40 8 32 2.48030 0.23032 491.144 212.717 139.421 1.143257
(4,2) 40 8 32 2.48063 0.23025 491.178 212.709 139.404 1.143118
(6,3) 40 8 32 2.48061 0.23023 491.169 212.717 139.397 1.143103
(8,4) 40 8 32 2.48059 0.23023 491.164 212.721 139.394 1.143101

Z Planes

(4,2) 8 8 32 2.47119 0.22971 490.316 213.192 139.300 1.143471
(4,2) 16 8 32 2.47713 0.23004 490.875 212.883 139.358 1.143470
(4,2) 20 8 32 2.47848 0.23013 490.995 212.815 139.375 1.143356
(4,2) 40 8 32 2.48063 0.23025 491.178 212.709 139.404 1.143118
(4,2) 60 8 32 2.48103 0.23028 491.210 212.690 139.410 1.143064
(4,2) 80 8 32 2.48117 0.23028 491.221 212.684 139.411 1.143046

Polar

(4,2) 40 6 32 2.48100 0.23026 491.227 212.686 139.401 1.143090
(4,2) 40 8 32 2.48063 0.23025 491.178 212.709 139.404 1.143118
(4,2) 40 12 32 2.48041 0.23025 491.148 212.723 139.406 1.143139
(4,2) 40 16 32 2.48035 0.23025 491.140 212.727 139.407 1.143146

Azim.

(4,2) 40 8 8 2.48219 0.23018 491.397 212.616 139.370 1.142812
(4,2) 40 8 16 2.48089 0.23025 491.215 212.693 139.399 1.143041
(4,2) 40 8 32 2.48063 0.23025 491.178 212.709 139.404 1.143118
(4,2) 40 8 48 2.48060 0.23026 491.174 212.711 139.404 1.143126

the MCNP solution.

Figure 2.11: k-effective vs Resolution for 3D
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Table 2.7: Percent Differences with Respect to MCNP Reference Solutions for 3D Problem

Mesh Z Planes Polar Azim. Max Pin Min Pin Inner UO2 MOX Outer UO2 k
PDT Fine Res. (8,4) 60 16 48 -0.023 -0.368 -0.011 0.009 0.011 0.000

Pin Mesh

(3,1) 40 8 32 -0.039 -0.337 -0.014 0.008 0.024 0.015
(4,2) 40 8 32 -0.026 -0.365 -0.007 0.004 0.012 0.003
(6,3) 40 8 32 -0.026 -0.375 -0.009 0.008 0.007 0.002
(8,4) 40 8 32 -0.027 -0.378 -0.010 0.009 0.005 0.002

Z Planes

(4,2) 8 8 32 -0.406 -0.600 -0.182 0.231 -0.062 0.034
(4,2) 16 8 32 -0.167 -0.457 -0.068 0.086 -0.020 0.034
(4,2) 20 8 32 -0.112 -0.421 -0.044 0.053 -0.008 0.024
(4,2) 40 8 32 -0.026 -0.365 -0.007 0.004 0.012 0.003
(4,2) 60 8 32 -0.009 -0.356 0.000 -0.005 0.017 -0.001
(4,2) 80 8 32 -0.004 -0.353 0.002 -0.008 0.018 -0.003

Polar

(4,2) 40 6 32 -0.011 -0.364 0.003 -0.007 0.010 0.001
(4,2) 40 8 32 -0.026 -0.365 -0.007 0.004 0.012 0.003
(4,2) 40 12 32 -0.034 -0.365 -0.013 0.010 0.014 0.005
(4,2) 40 16 32 -0.037 -0.365 -0.014 0.012 0.014 0.006

Azim.

(4,2) 40 8 8 0.037 -0.396 0.038 -0.040 -0.012 -0.023
(4,2) 40 8 16 -0.015 -0.368 0.001 -0.004 0.009 -0.003
(4,2) 40 8 32 -0.026 -0.365 -0.007 0.004 0.012 0.003
(4,2) 40 8 48 -0.027 -0.365 -0.008 0.004 0.013 0.004

Table 2.8: Percent Differences with Respect to PDT Reference Solutions for 3D Problem

Mesh Z Planes Polar Azim. Max Pin Min Pin Inner UO2 MOX Outer UO2 k

Pin Mesh

(3,1) 40 8 32 -0.016 0.031 -0.003 -0.001 0.013 0.015
(4,2) 40 8 32 -0.003 0.002 0.004 -0.005 0.001 0.003
(6,3) 40 8 32 -0.004 -0.007 0.002 -0.001 -0.004 0.002
(8,4) 40 8 32 -0.005 -0.010 0.001 0.000 -0.006 0.002

Z Planes

(4,2) 8 8 32 -0.383 -0.233 -0.171 0.222 -0.073 0.034
(4,2) 16 8 32 -0.144 -0.090 -0.058 0.077 -0.031 0.034
(4,2) 20 8 32 -0.089 -0.054 -0.033 0.045 -0.019 0.024
(4,2) 40 8 32 -0.003 0.002 0.004 -0.005 0.001 0.003
(4,2) 60 8 32 0.013 0.012 0.011 -0.014 0.005 -0.001
(4,2) 80 8 32 0.019 0.015 0.013 -0.017 0.007 -0.003

Polar

(4,2) 40 6 32 0.012 0.004 0.014 -0.016 -0.001 0.001
(4,2) 40 8 32 -0.003 0.002 0.004 -0.005 0.001 0.003
(4,2) 40 12 32 -0.012 0.002 -0.002 0.001 0.003 0.005
(4,2) 40 16 32 -0.014 0.003 -0.003 0.003 0.003 0.006

Azim.

(4,2) 40 8 8 0.060 -0.029 0.049 -0.049 -0.023 -0.024
(4,2) 40 8 16 0.008 0.000 0.012 -0.013 -0.002 -0.003
(4,2) 40 8 32 -0.003 0.002 0.004 -0.005 0.001 0.003
(4,2) 40 8 48 -0.004 0.003 0.003 -0.004 0.001 0.004

The results of our least squares model can be seen in Table 2.9. The square root of the average

of the square of the error summed over all training points between the model k-effective and the
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Figure 2.12: Max Pin Power vs Resolution for 3D

Figure 2.13: Inner UO2 Assembly Power vs Resolution for 3D

training data was 1.8 pcm. The prediction by the model for the most resolved case we ran with

PDT was 2.1 pcm different than what we computed with PDT.
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Table 2.9: Parameters and Their Values in our Full Model of k-effective (3D C5G7)

Power Value
px 2.0
pz 2.0
pξ 2.0
pγ 2.0

Coefficient Value
k0 1.143095
Cx 2.01E-05
Cz 4.23E-06
Cξ -7.11E-06
Cγ -9.94E-06

2.5 Comparing to Spider Web Grids

As a final note, we have compared our results using a morphed grid (results seen in this chapter)

with results using our updated meshing capability: spiderweb grids. We ran the common point (

(4,2) mesh, 8 polar angles and 64 azimuthal angles per quadrant) using both the morphed grid and

the spiderweb grid capability. The difference in k-effective between the two types of meshes was

5 pcm. This gives us confidence that using spiderweb grids, while more efficient, gives us similar

solutions to morphed grids.

2.6 Conclusions

We have modeled the 2D and 3D versions of the C5G7 benchmark problem. We have charac-

terized the error in our computed solution using a least squares fit error model. We have determined

from this error model that we need to take into account the interaction between our spatial and an-

gular discretizations. Finally, we have computed what we believe to be highly resolved solutions

to these benchmark problems using PDT.
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3. INTERACTION BETWEEN SPACE AND ANGLE

In two dimensions we have determined that our polar discretization choice and our spatial

mesh size interact in their effects on the transport solution. Pitkaranta and Scott observed this

relationship in [18]. The reason for the interaction between space and angle in 2D is, as we increase

the number of polar angles near the pole, the path length for a particle travelling through a given

mesh cell increases. This interaction is limited in 3D as the vertical size of the of the spatial cells,

and therefore the path-length of the particles within a cell, is limited by the discretization in the

z-dimension.

3.1 Single Pin Cell Problems

To begin our study we started with a small model problem: a single 2D pin cell with a few

energy groups. Specifically we are using cross sections from the C5G7 benchmark problem [15].

We studied the problem with two types of meshes: orthogonal and spider web. The orthogonal

meshes had fuel and moderator with no cladding. The spider web meshes conform to the circular

geometry and included a cladding. All results are comparing to the most finely resolved run of the

set because we made up this problem, and therefore have no benchmark to compare to.

3.1.1 Orthogonal Mesh

Examples of the orthogonal meshes we ran with can be seen in Figure 3.1. The red in the figure

is fuel and blue is moderator. The results of our study can be seen in Figure 3.2. The number of

mesh cells is seen on the x-axis and the relative difference in k-effective between the most refined

mesh and polar angle discretization and the current run is on the y-axis. The different curves

are different number of polar angles per quadrant. We used 32 azimuthal angles per quadrant for

this study to make sure the error associated with azimuthal angles was negligible compared to the

spatial or polar error. We determined this number of azimuthal angles would be sufficient from our

study of the C5G7 problem.

We achieve first order convergence - the error goes down by a factor of two when the mesh is
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refined by a factor of 2 - with the exception of the 4 polar angle per quadrant case. We believe

that this is due to not having enough polar angles to resolve the problem, and therefore the error in

the problem is predominantly from the polar discretization. Once we have enough polar angles to

resolve the problem, our error is dominated by our spatial mesh. It takes almost 1000 mesh cells

to achieve a relative difference in k-effective of 10 pcm. It should be noted that this plot, Figure

3.2, is a log-log plot.

Figure 3.1: Meshes of Orgothonal Mesh Problem

Figure 3.2: Relative Difference (in pcm) in k-effective for Orthogonal Mesh Problem
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3.1.2 Spider Web Mesh

We next moved onto spider web meshes. Examples of the spider web meshes we ran with can

be seen in Figure 3.3. The red in the figure is fuel, the blue is moderator, and the green is cladding.

These meshes have 8 azimuthal segments in the fuel and 12 azimuthal segments in the cladding

and moderator. The results of our study can be seen in Figure 3.4. Again the number of mesh

cells is on the x-axis and the relative difference in k-effective between the finest resolution run

and the current run is on the y-axis. The different curves are different numbers of polar angles per

quadrant. Again we used 32 azimuthal angles per quadrant for all the runs.

Figure 3.3: Meshes of Spider Web Mesh Problem

The solution in the coarsest mesh is within 10 pcm of the finest resolution mesh for each of the

polar angle runs. There is a bigger difference between the 4 and 8 polar angle runs than between

the 8 and 32 polar angle runs. This means that the solution is rapidly converging with polar angle

refinement. There is also a bigger difference between the coarsest mesh and the second coarsest

mesh than between the second coarsest mesh and the finest mesh. This means that our solution is

also rapidly converging with spatial refinement.

In addition to refining the spatial mesh in the radial direction, the spider web mesh capability

has the option of refining each radial section in the azimuthal direction separately. This means that

a user can define the number of azimuthal segments in the fuel and the number of segments in the
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Figure 3.4: Percent Difference in k-effective for Spider Web Mesh Problem

moderator independently. We ran a study to see how the selection of azimuthal segments in each

section affects the solution.

Figure 3.5 shows the different azimuthal discretization choice we made in the study. The left

mesh has 8 azimuthal segments in each section of the problem. The right mesh has 12 azimuthal

segments in each section of the problem. The middle mesh has 8 azimuthal segments in the fuel

and 12 segments in the cladding and the moderator.

Figure 3.6 shows the results of this study. In this investigation, only the radial mesh was refined,

leaving the number of azimuthal segments per radial section constant. On the x-axis is the number

of mesh cells and on the y-axis is the relative difference in k-effective between the finest resolution

run (12 azimuthal segments everywhere, 8 radial rings in the fuel and 4 in the moderator) and the

current run. All the problems were run with 32 polar and 32 azimuthal angles per quadrant.

As expected, the different meshes converge to slightly different solutions. This is because the

approximations made in each mesh are slightly different. All the solutions are within 10 pcm of

the finest resolution case, even the coarsest mesh. Again, the difference between the coarsest mesh

and the second coarsest mesh is smaller than the difference between the second coarsest mesh and

the finest mesh. This means that our solution is rapidly converging with spatial refinement.
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Figure 3.5: Spider Web Mesh with 8, Mixed, and 12 Azimuthal Segment per Ring

Figure 3.6: Percent Difference in k-effective for Azimuthal Segment Study

3.1.2.1 Separating Fuel and Moderator

We noticed in this study that our convergence rate was not monotonic, and wanted to discover

why. To do this, we put together another run set, but this time with all the combinations of numbers

of cells in the fuel and moderator. As an example of the meshes we ran, Figure 3.7 shows the

different number of cells in the fuel, ranging from 2 to 8, for a single moderator radial cell count

(4), and Figure 3.8 shows the different number of cells in the moderator, ranging from 1 to 5, for a

single fuel radial cell count (4). We ran all the possibilities in the following set: number of radial

34



cells in the fuel ranging from 2 to 8 and the number of radial cells in the moderator ranging from

1 to 5. For all these meshes, we used 8 azimuthal segments in the fuel and 12 segments in the

cladding and moderator. We also used 32 polar angles and 32 azimuthal angles per quadrant as our

quadrature to ensure that the error in our solution was mostly attributed to our spatial meshes.

Figure 3.7: Meshes with Different Number of Cells in the Fuel

Figure 3.9 shows the results of our study. We looked at the relative difference in k-effective (in

pcm) between each case and the most refined case: 8 cells in the fuel and 5 cells in the moderator.

On the left, the curves each represent a single number of fuel cells. On the right, the curves each

represent a single number of moderator cells. The data in both of these graphs are the same, just

represented differently to show the different relationships. For a constant number of radial cells in

the fuel, the curves are concave down, while for a constant number of radial cells in the moderator,

the curves are concave up. This explains our non-monotonic relationships in our previous study,

as we alternated adding cells in the fuel and the moderator.
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Figure 3.8: Meshes with Different Number of Cells in the Moderator

Figure 3.9: Relative Difference (pcm) in k-effective for Different Numbers of Cells in the Fuel
(left) and Moderator (right)

In addition to our qualitative analysis, we also modeled this data using the following relation-

ship:

k = k0 + f1f
q + f2f

2q +m1m
r +m2m

2r + c1f
smt + c2f

2smt + c3f
sm2t (3.1)

Here, k0 is the k-effective for an infinitely refined problem. Also, f and m are a measure of

the cell areas in the fuel and moderator respectively, normalized to the highest resolution case.
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They are computed by using the number of cells in the fuel (or moderator) and dividing by the

number of cells in the fuel (or moderator) the highest resolution case has. This means that the

highest resolution case has 1′s for f and m, and all other cases have larger than 1 for f and m.

This was to make the model non-dimensional and to better see which terms have the greatest

impact. We used a python script with a series of powers, in multiples of 0.5 ranging from 0.5 to

2.0, for each of the {q, r, s, t}, and performed a least squares fit to determine the best coefficients

{k0, f1, f2,m1,m2, c1, c2, c3}, that give the lowest absolute value of difference between our model

and the results we calculated using PDT, when summed over all training points. Table 3.1 shows

the powers and coefficients determined from this analysis. The term with the largest (in magnitude)

coefficient, which therefore has the greatest effect, is the first term: f q.

Table 3.1: Parameters and Their Values in our Full Model of k-effective (Fuel and Moderator)

Power Value
q 1.5
r 1.0
s 1.5
t 1.0

Coefficient Value
k0 1.318101
f1 -1.41E-05
f2 6.25E-07
m1 -8.96E-06
m2 8.53E-06
c1 3.37E-09
c2 -1.35E-08
c3 -1.88E-09

The L1 and L2 norm of the error between the predicted k-effective and the training data was

smaller than the tolerance we used in our least squares fit. This means that our model is predicting

our training data well. We left out the most refined case, the (8,5) mesh, from our training data.

We then used our model to predict what k-effective that PDT would compute with that mesh. The

difference between our model k-effective and the k-effective that PDT computed was 0.08 pcm.

Also, the difference between the model k-effective and k0 (the model’s prediction of the k-effective

at infinite resolution) was 1 pcm. This means that our model can extrapolate to higher resolution

well and that the most refined case is converged, according to our model.
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3.1.3 Modeling Space and Angle

We used the same process as the previous section to model both our spatial and angular reso-

lution contributions to our k-effective. The model we used was:

k = k0 + f1f
q + f2f

2q +m1m
r +m2m

2r + p1p
u + p2p

2u

+a1a
w + a2a

2w + c1f
smtpvax + c2f

2smtpvax

+c3f
sm2tpvax + c4f

smtp2vax + c5f
smtpva2x (3.2)

Here, again, k0 is the model predition of k-effective at infinite resolution, f is the average area of

the cells in the fuel,m is the average area of the cells in the moderator, p is π divided by the number

of polar angles and a is 2π divided by the number of azimuthal angles. We then normalized all

our variables (f , m, p, and a) to the most resolved case. This was again to make the model non-

dimensional and to better see which terms have the greatest impact on our model. We ran cases

that ranged from a (3,2) mesh to a (8,4) mesh, 12 polar angles to 32 polar angles per quadrant, and

8 azimuthal angles to 32 azimuthal angles per quadrant. We again used a python script to vary the

powers {q,r,s,t,u,v,w,x} from 0.5 to 2.0 in increments of 0.5. We then performed a least squares

analysis to find the best coefficients for each set of powers and computed the error in k-effective

for all our test cases, where error is the absolute value of the difference between the model k-

effective and the k-effective in our training data, when summed over all our training data. Finally,

we picked the powers and coefficients that gave us the lowest error. Table 3.2 shows the powers

and coefficients determined by our python script. The L1 norm of the error between the predicted

k-effective and the training data was 0.1 pcm. The L2 norm was 0.1 pcm. Again, this means

that our model is predicting our training data well. Similar to the previous study, the spatial term

with the highest magnitude coefficient is f q, while the term with the highest magnitude coefficient

overall is aw

To verify our model is accurate we ran an additional case to the cases used in building our

model: a (10,5) mesh, 48 polar angles and 48 azimuthal angles per quadrant. This case is more
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Table 3.2: Parameters and Their Values in our Full Model of k-effective (Space and Angle)

Power Value
q 1.0
r 1.0
s 1.0
t 2.0
u 2.0
v 0.5
w 2.0
x 2.0

Coefficient Value
k0 1.318138
f1 -1.99E-05
f2 1.76E-09
m1 8.71E-06
m2 5.03E-06
p1 -2.40E-06
p2 -2.30E-08
a1 -3.52E-05
a2 1.94E-07
c1 2.15E-07
c2 -1.54E-08
c3 -9.62E-09
c4 -2.78E-08
c5 -4.53E-09

refined in all four parameters. The model k-effective and the calculated k-effective disagree by 0.5

pcm, and the calculated k-effective is 2.1 pcm different than k0. Also to guard against cancellation

of errors, the sum of the absolute value of the error terms for this case was 2.7 pcm. This means

that the most refined case is resolved, and the model can accurately extrapolate to more refined

cases.

We also wanted to determine a ‘good enough’ resolution. The most resolved case we ran in

the training data was an (8,4) mesh with 32 polar angles and 32 azimuthal angles per quadrant.

The k-effective computed using this run was 4.3 pcm different than k0 (7.1 pcm when summing

the absolute value of the error terms rather than letting them cancel). This is the ‘error’ in the

computation, according to our model. We then looked at a series of ‘mid range’ runs to determine

if there was a level of resolution we could stop at and still get the same level of accuracy as the

high resolution run. We found that a case with a (4,2) mesh and 24 polar angles and 32 azimuthal

angles per quadrant had an error of 4.1 pcm (12.0 pcm when summing the absolute value of the

error terms). This means that we do not necessarily need the highest resolution to get an accurate

solution.
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3.2 Assembly Problems

In addition to the single pin cell problems, we also ran a larger, more difficult assembly level

problem. Also, in addition to using our model to determine our k-effective at an infinite resolution,

we also want to use it to determine spatial mesh, polar, and azimuthal resolution requirements for

an ‘acceptable’ level of error.

The test problem we used was a 17 by 17 layout of the pins we used in our single pin cell

calculations, with 25 water holes interspersed throughout the assembly. Figure 3.10 shows the

assembly. We ran cases with resolutions ranging from a (3,2) spatial mesh to an (8,4) spatial mesh,

12 to 32 polar angles per quadrant, and 8 to 32 azimuthal angles per quadrant. Table 3.3 shows

the powers and coefficients our python script determined for our model for the assembly problems.

The average absolute value of the error between the model k-effective and the training data was

0.03 pcm.

Figure 3.10: Assembly Used in the Space Angle Study
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Table 3.3: Parameters and Their Values in our Full Model of k-effective for Assembly Problems

Power Value
q 0.5
r 2.0
s 2.0
t 2.0
u 1.0
v 0.5
w 0.5
x 2.0

Coefficient Value
k0 1.334449
f1 5.39E-06
f2 -1.32E-05
m1 5.37E-06
m2 2.09E-08
p1 9.17E-07
p2 -2.24E-06
a1 4.88E-04
a2 -2.90E-04
c1 1.01E-07
c2 4.34E-11
c3 -1.47E-08
c4 -9.22E-09
c5 -1.01E-09

We then ran a more refined problem than any of the training cases we used to build our model,

in order to check the accuracy of that model. We got a disagreement in the model k-effective and

the computed k-effective of 0.08 pcm. This means that the model can extrapolate accurately.

Finally we looked at the error we incur by using different resolution sizes. We did this by

looking at the difference in the models ‘error’ terms, which are all the terms except k0. Our fine

resolution case, which was a (10,5) spatial mesh, 48 polar angles per quadrant, and 48 azumthal

angles per quadrant, had an error of 15 pcm (21 pcm when summing the absolute value of the error

terms). Our least resolved case used in training our model, which has a (3,2) spatial mesh, 12 polar

angles per quadrant, and 8 azimuthal angles per quadrant, had an error of -17 pcm (22 pcm when

summing the absolute value of the error terms). This means that we are effectively resolved using

our least refined case.

3.3 Conclusions

We have studied the interaction between spatial and angular resolution and its effect k-effective

for both pin cell and assembly level problems. We have performed a least squares analysis to
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determine the coefficients and powers in our model. This model is shown to be accurate both for

the training data we used to create it, but also for extrapolatory problems where the resolution used

is more refined than any training data point. This gives us confidence that the form of our model is

accurate enough to predict k-effective solutions to problems we have not yet run.
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4. ENERGY DISCRETIZATION

As the energy discretization in a problem gets more realistic, boundary layers become more

prominent. This is due to large cross sections in the resonance region. We studied this phenomenon

to determine the level of spatial resolution required to resolve these boundary layers using LD. We

have used the spiderweb mesh capability in PDT for this study as these meshes are better able to

conform to the geometry over orthogonal meshes.

We have used FEDS (Finite Element Discontinuous Support) cross sections for this investi-

gation. This energy discretization method was developed by Dr. Andrew Till [21]. These cross

sections have exceedingly large cross sections in the resolved resonance region due to how this

method forms the ‘groups’, even for a small number of energy unknowns. This magnitude of

cross section only arises with a large number (thousands) of energy groups using the multi-group

(MG) method. The large cross sections cause boundary layers to form for much smaller number

of unknowns in the FEDS method than in the MG method.

We have studied the formation of boundary layers using both small model problems (single pin

cell) and more moderately sized problems (assembly level). The cross sections were created using

the FEDS method from specifications found in the VERA benchmark from CASL [22, 23].

4.1 Single Pin Cell

The first problem chosen for studying the boundary layers that form with realistic energy dis-

cretization was a single pin cell with a pitch of 1.26cm. The meshes used can be seen in Figures

4.1 and 4.2. The red material is fuel, the green material is cladding, and the blue material is the

moderator. The meshes range from 3 cells in the fuel and 2 cells in the moderator (with one cell in

the cladding) to 6 cells in the fuel and 3 cells in the moderator (again with one cell in the cladding).

The fuel has an outer radius of 0.4096 cm and the clad is a thickness of 0.0654 cm.

As a note, the quadrature used was a product quadrature with 24 polar angles and 32 azimuthal

angles per quadrant. We know from previous studies that the azimuthal angle is converged at
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32 angles per quadrant. This means that the error due to the azimuthal angle resolution is small

enough that other errors overshadow it. Also, we compared our k-effective solutions to a (16,32)

quadrature. The solutions were within 1 pcm for all quantities of interest studied. From this, we

know that the polar angle is also converged.

Figure 4.1: Meshes Used for Energy Study

In Figure 4.2, the meshes have a radial cell in the outer 10% of the fuel (by area), which is

counted towards the radial cell count in the fuel. The cell is used to capture the steep gradient

in the solution near the outer edge of the fuel. FEDS cross sections with 65 and 244 energy

unknowns (with 30 and 108 unknowns in the resolved resonance region, respectively) were used

for comparison.

Figure 4.2: Meshes Used for Energy Study with 10% outer Fuel Cell

In addition to the meshes in Figure 4.2, another mesh was used as a reference. It is the same as
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the (6,3) mesh, but there are two cells in the outer 10% of the fuel. Figure 4.3 shows a comparison

of the (6,3) mesh and what we are calling the (7,3) mesh.

Figure 4.3: Comparison of (6,3) Mesh with 1 Cell (left) and 2 Cells (right) in Outer 10%

Figures 4.4 and 4.5 show the scalar flux for the right side of the problem for all meshes used,

both without (left) and with (right) the cell in the outer 10% of the fuel for the 65 energy unknowns

cross sections in ‘group’ 30 and for the 244 energy unknowns cross sections in ‘group’ 105. The

solution is taken along a cutline of y = 0.63cm (the midpoint in y) from the center (in x) to the

right side of the problem. These two energy ‘groups’ were chosen because they have the largest σt,

which means the boundary layers will be most pronounced for these ‘groups’. The red curves are

the (3,2) meshes, blue are the (4,2) meshes, magenta are the (5,3) meshes, and green are the (6,3)

meshes. For the meshes with the cell in the outer 10%, the (7,3) mesh is also plotted for reference

in black.

For the meshes without the cell in the outer 10% of the fuel there is a marked dip in the solution

near the outer edge of the fuel, which occurs in slightly different places for the different resolutions

of meshes used. The solution goes below zero in these dips. This is because the outer most cell

in the fuel’s width is too large to accurately capture the solution gradient. As more cells are added

in the fuel, and those cells get thinner, the dip gets thinner and closer to the outer edge and the

negativities get smaller.

The right side of Figures 4.4 and 4.5 shows the scalar flux solution for meshes with the cell
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Figure 4.4: Scalar Flux Solution for 65 Energy Unknowns Without (left) and With (right) Cell in
the Outer 10% of the Fuel

in the outer 10% of the fuel for 65 energy unknowns cross sections and 244 energy unknowns

cross sections, respectively. The marked dip in the solution seen in the meshes without the cell

is compressed to a discontinuity at the fuel edge. This is because the outermost cell is now thin

enough to capture the solution gradient. The solution looks almost identical, at least in the fuel,

for the (3,2) mesh and the (6,3) mesh. This can be seen in Figure 4.7, which is a zoom in of the

solution at the fuel edge for both the 65 energy unknowns cross sections (left) and 244 energy

unknowns cross sections (right). In addition to the meshes with 1 cell in the outer 10% of the fuel,

the mesh with 2 cells in that region is also plotted. For the 65 energy unknowns plot, the dip in the

solution disappears. For the 244 energy unknowns plot, the negativity disappears. This shows that

adding an additional cell in the outer region of the fuel can reduce or remove negativities, or at the

very least smooth out the flux profile.

We realize that the lineouts for the meshes without the outer 10% cell are curved in the cell

where the flux goes negative. This is an artifact of the plotting software we used to plot these

figures. Figure 4.6 is a lineout where we manually grabbed the fluxes from the output file for the

(3,2) mesh. The reader can see that the flux does go negative in the outermost cell of the fuel, while

the flux is not curved in that cell. Also the flux at the cell edges in this plot match that of Figure
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Figure 4.5: Scalar Flux Solution for 244 Energy Unknowns Without (left) and With (right) Outer
10% Cell for Each Mesh

4.4, giving us confidence that the curved line is just an artifact of the plotting software.

Figure 4.6: Scalar Flux Solution for 65 Energy Unknowns for (3,2) Mesh Without Outer 10% Cell

Figure 4.8 shows a comparison of the (6,3) mesh both with and without the cell in the outer

10% of the fuel for 65 energy unknowns.

Table 4.1 shows the relative difference in k-effective (in pcm) between cases run and the bench-

mark answer for cases without the 10% cell and with the 10% cell for 65 energy unknowns (left)

and 244 energy unknowns (right). The meshes without the outer 10% cell have effectively the same
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Figure 4.7: Zoom of Scalar Flux solution for 65 Energy Unknowns Cross Sections (left) and 244
Energy Unknowns (right) for Meshes With a Cell in the Outer 10% of the Fuel

Figure 4.8: Scalar Flux Solution with (Magenta) and Without (Green) the Outer 10% Cell for the
(6,3) Mesh

magnitude of error in k-effective as the meshes with those cells. The reason the cases with the outer

10% cell are so close to the cases without the cell in this comparison is because k-effective is a

integrated quantity, not a pointwise one.

It is now informative to look at the relative difference in k-effective, compared to the most

refined case we ran: the (7,3) mesh. This is to show the spatial error more clearly, as opposed to
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Table 4.1: Relative Difference (pcm), Compared to the Benchmark, in k-effective for 65 Energy
Unknowns (left) and 244 Energy Unknowns (right)

Mesh Without Cell With Cell
(3,2) 3986 3946
(4,2) 3980 3946
(5,3) 3981 3951
(6,3) 3979 3951
(7,3) 3946

Mesh Without Cell With Cell
(3,2) 272 226
(4,2) 264 224
(5,3) 266 230
(6,3) 263 230
(7,3) 225

the energy error which is much larger. Table 4.2 shows this comparison. The most refined case

here is the (7,3) mesh for each set of cross sections. Here we can see that without the radial cell in

the outer 10% of the fuel, the solution for k-effective is 35-50 pcm different than the most resolved

case. With the cell in the outer 10% of the fuel, the error in k-effective is approximately 5 pcm,

regardless of the spatial mesh or cross section set used. This shows that resolving the outer region

of the fuel does not change k-effective much, as again it is an integrated quantity. The reaction

rates show a different picture, as they are more pointwise quantities.

Table 4.2: Relative Difference (pcm), Compared to the Most Refined Case, in k-effective for 65
Energy Unknowns (left) and 244 Energy Unknowns (right)

Mesh Without Cell With Cell
(3,2) 41 0
(4,2) 35 -1
(5,3) 36 5
(6,3) 34 5
(7,3) 0

Mesh Without Cell With Cell
(3,2) 47 1
(4,2) 39 -1
(5,3) 42 6
(6,3) 38 6
(7,3) 0

Table 4.3 shows the percent reaction rate (absorption and fission) in the outer 10% of the fuel.

Table 4.4 shows the relative difference (in pcm) of those quantities between the most resolved case

((7,3) mesh for each of the cross section sets) and each of the other cases. The most resolved case
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was chosen as the comparison point because the benchmark does not have this quantity of interest

in its collection of ‘solutions’, and the most resolved case is the best guess for the correct answer.

Table 4.3: Percent Absorption and Fission in the Outer 10% of the Fuel for 65 (left) and 244 (right)
Energy Unknowns

Mesh Absorption Fission
(3,2) 12.540 10.351
(4,2) 12.544 10.353
(5,3) 12.545 10.353
(6,3) 12.546 10.354
(7,3) 12.470 10.352

Mesh Absorption Fission
(3,2) 13.245 10.397
(4,2) 13.249 10.399
(5,3) 13.251 10.400
(6,3) 13.252 10.401
(7,3) 13.145 10.399

The tables in Table 4.4 shows there is relatively little difference between the (3,2) case and

the (6,3) case for each of the cross section sets, compared to the magnitude of the error overall.

This is further proof that if there is a cell in the outer 10% of the fuel, a (3,2) mesh can achieve

approximately the same spatial error as a (6,3) mesh. Though, at least for the absorption rate, it

might be necessary to further resolve the outer region of the fuel with an extra cell, as seen in the

magnitude of the error compared to the (7,3) mesh.

Table 4.4: Percent Relative Difference (in pcm) in Percent Absorption and Percent Fission in the
Outer 10% of the Fuel for 65 (left) and 244 (right) Energy Unknowns

Mesh Absorption Fission
(3,2) -561 17
(4,2) -590 -4
(5,3) -601 -8
(6,3) -608 -14
(7,3) 0 0

Mesh Absorption Fission
(3,2) -758 22
(4,2) -793 -2
(5,3) -809 -9
(6,3) -818 -16
(7,3) 0 0
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4.2 2D Assembly

The problem chosen for the assembly level comparison was taken from the VERA benchmark

from CASL, specifically problem 2B from that benchmark. This problem is a 2D 17x17 assembly

with 25 water holes, and 264 fuel pins that have a pitch of 1.26 cm. There is also a 4 mm water

gap around all edges of the assembly. Figure 4.9 shows the layout of the assembly. The blue cells

are water holes, the white cells are fuel pins, and the yellow cells are the 4 pins that have been

chosen for further study. The yellow pins have the same composition as the rest of the fuel pins;

their location in the assembly with respect to the water holes and the edge of the assembly makes

them of interest for a closer look.

Figure 4.9: Layout of the 2D Assembly Problem

Table 4.5 shows the relative difference (in pcm) in k-effective for the 2D assembly problem

using the 65 energy unknowns cross sections (left) and the 244 energy unknowns cross sections

(right) for fuel pins with a radial cell in the outer 10% of the fuel. These are compared to the

benchmark solution for k-effective. The different meshes do not seem to make a difference in

the solution – only the energy unknowns structure in the cross sections used. This suggests that
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the (3,2) mesh is resolved enough for this problem to get k-effective to within 3 pcm of the more

refined (7,3) mesh. The cross sections dominate the error in the solution. It should be noted that

this quantity of interest is an integrated quantity, which is why it is now important to look at the

reaction rates and pin powers, which rely more on the details of the flux shape, in the four pin cells

spelled out in Figure 4.9.

Table 4.5: Relative Difference (in pcm) in k-effective for the 2D Assembly Problem

Mesh 65 Energy Unknowns 244 Energy Unknowns
(3,2) 3498 168
(4,2) 3498 167
(5,3) 3501 171
(6,3) 3501 171
(7,3) 3497 166

Tables 4.6 - 4.9 show the relative difference, in percent, in pin powers compared to the bench-

mark for pins A-D, respectively. Again we see that we are essentially converged using the (3,2)

mesh, and that the energy unknowns structure of the cross sections is the main provider of error in

this simulation. We do get some cancellation of errors, which is why in some of the tables, the 65

energy unknowns cross sections get more accurate answers than the 244 energy unknowns cross

sections. We also see that the errors are slightly larger for pin D using the 244 energy unknowns

cross sections, which is at the edge of the assembly, rather than directly by a water hole. There is

a 4 mm assembly gap around the assembly, made up of water, that contributes to this larger error.

Still, all pin powers shown are within 1% of the benchmark solution, showing that with a radial

cell in the outer 10% of the fuel, accurate solution can be computed even with the (3,2) mesh.

In addition to looking at individual pin powers, we looked at the pin powers over the whole

assembly. We computed the RMS of the assembly for each mesh and cross section set. The RMS

is computed by:

RMS =

√∑
N e

2
n

N
(4.1)
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Table 4.6: Relative Difference (in percent) in Pin Power for Pin A for the 2D Assembly Problem

Mesh 65 Energy Unknowns 244 Energy Unknowns
(3,2) 0.332 0.186
(4,2) 0.332 0.187
(5,3) 0.335 0.189
(6,3) 0.335 0.189
(7,3) 0.335 0.189

Table 4.7: Relative Difference (in percent) in Pin Power for Pin B for the 2D Assembly Problem

Mesh 65 Energy Unknowns 244 Energy Unknowns
(3,2) 0.128 0.235
(4,2) 0.128 0.235
(5,3) 0.130 0.237
(6,3) 0.130 0.237
(7,3) 0.130 0.237

Table 4.8: Relative Difference (in percent) in Pin Power for Pin C for the 2D Assembly Problem

Mesh 65 Energy Unknowns 244 Energy Unknowns
(3,2) 0.004 0.335
(4,2) 0.005 0.335
(5,3) 0.007 0.332
(6,3) 0.007 0.332
(7,3) 0.007 0.332

where en is the error in pin n, or the percent difference between the computed pin power and the

benchmark solution. Table 4.10 shows the RMS computed for each mesh and each cross section

set. Similar to k-effective, the RMS is an integrated quantity. This is seen by the fact that the RMS

is nearly identical for all the meshes used, and only changes with cross section set.
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Table 4.9: Relative Difference (in percent) in Pin Power for Pin D for the 2D Assembly Problem

Mesh 65 Energy Unknowns 244 Energy Unknowns
(3,2) 0.227 0.795
(4,2) 0.227 0.795
(5,3) 0.227 0.796
(6,3) 0.227 0.796
(7,3) 0.227 0.796

Table 4.10: RMS for the 2D Assembly Problem

Mesh 65 Energy Unknowns 244 Energy Unknowns
(3,2) 0.18305 0.29173
(4,2) 0.18324 0.29159
(5,3) 0.18454 0.29181
(6,3) 0.18454 0.29179
(7,3) 0.18454 0.29173

4.3 Conclusions

As the energy discretization in a problem gets more realistic, i.e. more energy unknowns, the

flux shape gets more complicated and harder to model. We studied this phenomenon for both pin

cell problems and assembly level problems. We found that for both cross section sets we looked

at, resolving the outer region of the fuel with a cell in the outer 10% is required to get accurate

solutions for k-effective and the flux shape. For the 244 energy unknowns cross section set, it is

sometimes required to have two cells in the outer 10% of the fuel to get non-negative flux shapes.

We found for the assembly problem, once the outer region in the fuel is resolved, the resolution of

the mesh does not need to be incredibly refined to compute pin powers to within 2 pcm of the most

resolved mesh. The energy discretization is the main source of error in these simulations.
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5. COMPARISON TO THE METHOD OF CHARACTERISTICS

The Method of Characteristics (MOC) has become the most widely used transport spatial dis-

cretization for solving reactor problems [3, 7, 8]. This work compares MOC and LD for reactor

problems. A series of reactor calculations, ranging from simple to complex, have been performed

to this end. Some of these calculations include geometric features or boundary layers that are ex-

tremely small relative to the problem domain, both of which require fine ray spacing for MOC to

resolve, but for which LD is expected to perform well.

We first ran a series of single pin cell problems using the VERA benchmark from CASL -

both with and without a thin annular ring of IFBA around the fuel. As a reference solution, we

ran highly resolved versions of the problems using our DFEM code. We then ran the 2D C5G7

problem and compared several QOIs from that benchmark.

In addition to numerical comparisons, we have also performed analytic geometric comparisons.

This was to show that the approximation that MOC codes use when using ‘tracks’ to compute trans-

port calculations incurs comparable errors to DFEM codes that approximate cylindrical geometry

with polygons.

5.1 Geometry Comparison

The purpose of this study is to calculate the geometry errors that DFEM and MOC codes incur

when meshing problems of interest, particularly reactor problems. DFEM codes use polygons to

approximate the cylindrical shape of fuel pins. MOC codes mesh the the problem exactly, but when

computing transport calculations, use ‘tracks’ which are rectangular. The goal of this study is to

show that while DFEM codes do not mesh the problem exactly, the errors they incur by meshing

circles with polygons are comparable to those incurred by MOC codes when computing transport

calculations with tracks.
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5.1.1 DFEMs

Figure 5.1 shows the approximation DFEMs make when attempting to mesh a cylinder. We

have a circle and an n sided polygon that share a center and an area. The areas of the parts of the

polygon that lie inside the circle exactly equal the area of the parts of the polygon that lie outside

the circle. We want to compute the total ‘error’ area, i.e. add up the areas of the polygon that

are outside the circle and the areas of the circle that are outside the polygon without letting them

cancel. This will give us as measure of the geometry error we incur by approximating a circle with

an n sided polygon.

Figure 5.1: Circle and Approximating Polygon used in DFEMs

Because both the polygon and circle are radially symmetric, we can compute the ‘error’ areas

for one side of the polygon and multiply by the number of sides, n. In Figure 5.2 we zoom in to

one side of the polygon.

The radius of the circle is R and the sides of the triangle formed by the polygon are b, b, and

p/n, where p is the perimeter of the polygon and n is the number of sides. The apothem of the

polygon, which is the distance between the center and the middle of one side, is a. The angle

subtended by both the polygon side and the circle arc is δ. The polygon intersects the circle two

times. The angles subtended by these triangles/arcs are α and β, respectively. These two angles

can be computed by finding the equation of the side of the polygon in radial coordinates and setting
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Figure 5.2: Zoom in on One ’Side’

the radius equal to R.

To do this, first let us define b in terms of R and n. To that end let us define the apothem in

terms of the side length, s, and n:

a =
1

2
s cot(

π

n
) (5.1)

Now we know that the areas of the circle and polygon are equal:

πR2 =
1

2
nsa (5.2)

=
1

2
ns

(
1

2
s cot(

π

n
)

)
(5.3)

=
1

4
s2 cot(

π

n
) (5.4)

s2 =
4πR2

n cot(π
n
)

(5.5)

Now we can plug this into the equation for b:

b =
1

2
s csc(

π

n
) (5.6)

=

√
4πR2

2n cot(π
n
)

csc(
π

n
) (5.7)

=

√
2πR2

n

√
cot(

π

n
) sec(

π

n
) (5.8)
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The points that define the line segment of the side of the polygon are (0, b) and (b cos(π −

δ), b sin(π − δ). The equation of the line is:

y =

[
sin(π − δ)− 1

cos(π − δ)

]
x+ b (5.9)

We can define a variable m as the term multiplying x in this equation. Putting this into radial

coordinates gives:

r sin(θ) = mr cos(θ) + b (5.10)

Now we need to solve this equation for r and set it equal to R:

r =
b

sin(θ)−m cos(θ)
= R (5.11)

The roots of this equation are α and β as defined before:

α = tan−1

(
−
√
−b2R2 +m2R4 +R4 − bmR

m2R2 +R2
,
−mR

√
−b2R2+m2R4+R4

m2R2+R2 − bm2R2

m2R2+R2 + b

R

)
(5.12)

β = tan−1

(
−
√
−b2R2 +m2R4 +R4 − bmR

m2R2 +R2
,
mR
√
−b2R2+m2R4+R4

m2R2+R2 − bm2R2

m2R2+R2 + b

R

)
(5.13)

Now the triangle/circle combination can be broken up into 3 pieces: the piece between the right

edge and α, the piece between the two intersection points, and the piece between the β and the left

edge. The error terms can be computed by taking the difference in areas between the circle and the

polygon for each of these three sections and adding them up.

The pieces in between the edges and the intersection points are equal and therefore only the

right side needs to be computed. Also, those two pieces added together equal the difference in area

in between the intersection points. Therefore, 4 times the area in between the right edge and α is
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the total ‘error’ area.

Eα = Atri − Acirc (5.14)

=
1

2
Rb sin(α)− 1

2
αR2 (5.15)

Etotal = 4nEα (5.16)

= 4n

(
1

2
Rb sin(α)− 1

2
αR2

)
(5.17)

Since we have expressed b in terms in R and n, the error can also be expressed solely in terms of

R and n.

5.1.2 Method of Characteristics

A common misconception is that the method of characteristics makes no approximation when

meshing circular geometries. This is not entirely true, particularly when computing transport solu-

tions. The transport solutions are computed using what are called ‘tracks’. These tracks intersect

the problem geometry and are associated with a rectangular area. It is this rectangular area that

produces the geometry error in MOC. Take, for example, Figure 5.3, which shows the track spac-

ing for a vertically aligned direction. The red arrows are the tracks and the black rectangles are the

areas associated with those tracks. There will be a picture like this for every azimuthal direction in

the problem, but for simplicity we will only analyze this direction. We can do this because of the

symmetry of the circular shape of the pin cell.

For simplicity, we will assume that there are an even number of tracks and that the tracks

exactly span the circle. This is one of the more favorable cases for MOC, and is not always true.

The x-location of the edges of the rectangles formed by the tracks are defined as xi:

xi = −R + i
2R

n
(5.18)
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Figure 5.3: Track Spacing in MOC

The x-location of the centers of the tracks are defined as x′i:

x′i = −R +
2R

n

(
i+

1

2

)
(5.19)

Here n is the number of tracks within the circle and R is the radius of the circle. The center of the

tracks are also the intersection points of the tracks with the circle. The equation of the circle is

y =
√
R2 − x2, (5.20)

while the equation of the top of the track is

y =
√
R2 − x′2i . (5.21)

We can split the circle into two parts: the top and the bottom. We will only analyze the top of

the circle and multiply by two due to symmetry. We will also break up the tracks into two pieces:
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those left of center and those right of center. This will allow for easier computation of the error.

E = 2

n/2∑
i=1

(∫ x′i

xi

√
R2 − x′2i −

√
R2 − x2 +

∫ xi+1

x′i

√
R2 − x2 −

√
R2 − x′2i

)

+ 2
n−1∑

i=n/2+1

(∫ x′i

xi

√
R2 − x2 −

√
R2 − x′2i +

∫ xi+1

x′i

√
R2 − x′2i −

√
R2 − x2

)
(5.22)

5.1.3 Results

Figure 5.4 shows the results of the geometry error study, based on equations 5.17 and 5.22,

setting the radius of the circle to one. The y axis, which represents the error, has a logarithmic

scale. The x axis is the n, which is the number of sides to the polygon in the DFEM case, and

the number of tracks in the MOC case. As can be seen in Figure 5.4, polygons (used in DFEMs)

converge much faster than stair-stepping (used in MOC).

Figure 5.4: Comparison of Geometry Error between DFEMs and MOC

The shape of these two curves are as expected. MOC approximates a circle effectively with

Riemann sums, while DFEMs approximate a circle with something similar to the trapezoidal rule.
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The polygonal representation is third order accurate, meaning that if we increase the number of

sides of the polygon by a factor of two, the error in the geometric approximation goes down by a

factor of eight. Riemann sums are first order accurate, meaning if we increase the number of tracks

by a factor of two, then the geometric approximation error goes down by a factor of two. We see

this in Figure 5.4.

5.2 Numerical Comparison

Now we move on to the numerical study. The purpose of this study is to show for which

type of problems each method, MOC and DFEMs, is more accurate, given a set level of spatial

discretization. We have run a series of problems, both with and without a thin layer of IFBA,

or integral fuel burnable absorber, around the fuel. We expect to show that for problems with

large numbers of energy groups and with thin annular regions, LD will outperform MOC. To this

purpose, we have run both pincell and 2D assembly problems and compared quantities of interest

such as k-eff, reaction rates, and pin powers.

5.2.1 Pin Cell Calculations

To start, we ran a series of pin cell calculations taken from the VERA benchmark suite - specif-

ically problems 1B and 1E. We modified problem 1B to match the fuel temperature of problem 1E,

which has a layer IFBA around the fuel. This was done to determine the effect adding a layer of

IFBA has on our solution metrics. This also means that we do not have a benchmark solution to

our version of problem 1B.

Figure 5.5 shows the pin cell meshes used in problem 1B. The MOC code’s we compared to,

MPACT, mesh has three volumetrically equal radial rings in the fuel, one in the gap, one in the

cladding, and two in the moderator. The DFEM mesh has three radial rings in the fuel (one being

in the outer 10% - from our energy study), one ring in the gap, one in the cladding, and two rings

in the moderator. These meshes were chosen because of their similar number of spatial cells. The

mesh for MOC in the left image of Figure 5.5 shows more azimuthal segments than were run in the

calculation (8). This is because the visualization software used to visualize these meshes does not
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allow curved mesh boundaries, and the increased number of azimuthal segments makes the circles

look more circular. MPACT also used a 0.05 cm track spacing for problem 1B.

Figure 5.5: Meshes for MOC (left) and DFEMs (right) for Problem 1B (modified) of the VERA
Benchmark

Figure 5.6 shows the meshes used by MOC and DFEMs for problem 1E. The meshes are similar

to those in 1B, with the addition of a thin ring around the fuel for the IFBA. For the IFBA runs,

MPACT used a track spacing of 0.005 cm and 8 azimuthal segments.

In addition to similar meshes, the same cross sections (multi-group) and quadrature were used

between the two codes. Two cross section sets were used, a 51 group and a 252 group structure.

The quadrature was a Tabuchi-Yamamoto-Chebychev product quadrature with 16 azimuthal angles

and 3 polar angles per quadrant. This was taken from MPACT.

5.2.1.1 51 Groups

The first thing we looked at is k-effective between the two codes for the 51 group cross sections.

Table 5.1 shows those results. We got a 157 pcm difference in k-effective between MOC and

DFEMs for problem 1B using the 51 group cross section set. Because we modified problem 1B,

we do not have a benchmark solution to compare to. To rectify this, we ran a highly resolved
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Figure 5.6: Meshes for MOC (left) and DFEMs (right) for Problem 1E of the VERA Benchmark

version of our modified problem using our DFEM code to serve as a benchmark answer. This

highly resolved problem used a (10,5) mesh with 48 azimuthal and 48 polar angles per octant.

From our studies in Chapter 3, we believe this problem has less than 1 pcm difference to the true

k-effective. MOC had a 154 pcm difference to this benchmark solution and DFEMs had a -4 pcm

difference.

Table 5.1: k-effective and Relative Difference (pcm) to Benchmark for Problem 1B with 51 Groups

MOC DFEM
k-effective 1.183006 1.1848683

pcm difference 154 -4

We then looked at problem 1E of the VERA benchmark suite. It is a single pin cell with a thin

layer of IFBA (a burnable absorber) around the fuel. When comparing to the MCNP benchmark

solution, MOC had a -250 pcm relative difference and PDT had a 305 pcm relative difference in k-

effective. The magnitude of the error is mostly due to the energy discretization, as the benchmark

solution was computed using continuous energy cross sections. As a better comparison, we again
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ran a highly resolved version of problem 1E (using the same mesh and quadrature as problem 1B’s

benchmark). When comparing to the DFEM benchmark solution, MOC had a -490 pcm relative

difference and DFEMs had a 63 pcm relative difference in k-effective. The relative difference in

pcm between each code and the DFEM benchmark is seen in Table 5.2.

Table 5.2: k-effective and Relative Difference (pcm) to Benchmark for Problem 1E with 51 Groups

MOC DFEM
k-effective 0.769760 0.7740459

pcm difference (benchmark) -250 305
pcm difference (DFEM benchmark) -490 63

Next we looked at reaction rates in the fuel pin, specifically the group-summed volume-averaged

absorption rate and ν times the group-summed volume-averaged fission rate. Before we could

compare them, though, we had to renormalize our solutions, due to the fact that the the codes

normalize their flux using different metrics. We did this by taking the energy group-summed

volume-averaged flux throughout the problem and using the ratio of this metric between the codes

as our normalization factor.

First we compared the group-summed volume-averaged absorption rate in the fuel. Table 5.3

shows this quantity of interest for MOC and DFEMs, for both problems 1B (left) and 1E (right),

and the relative difference (in pcm) between the codes and the benchmark solution. We used

the same high resolution run as our benchmark solution as we did when comparing k-effective.

DFEMs had better agreement to the benchmark for both problems 1B and 1E.

Next we compared the group-summed volume-averaged ν times the fission rate in the fuel.

Table 5.4 shows this quantity of interest for MOC and DFEM, for both problems 1B (left) and 1E

(right), and the relative difference (in pcm) between the codes and the benchmark solution.DFEMs

and MOC have comparable differences to the benchmark solution for problem 1B, but DFEM is

much closer to the benchmark for problem 1E.
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Table 5.3: Absorption Rate for 1B (left) and 1E (right) and Relative Difference to the Benchmark
Solution for 51 Groups

MOC DFEM
Abs. Rate 1.6458 1.6448

pcm difference 55 -5

MOC DFEM
Abs. Rate 1.1582 1.2097

pcm difference -4247 9

Table 5.4: ν times Fission Rate for 1B (left) and 1E (right) and Relative Difference to the Bench-
mark Solution for 51 Groups

MOC DFEM
Fission Rate 2.2483 2.2480

pcm difference 16 3

MOC DFEM
Fission Rate 1.4540 1.4686

pcm difference -929 63

5.2.1.2 252 Group - MultiGroup

For the 252 group cross section set, again we started by comparing k-effective for both codes

against a reference solution. We again used a (10,5) mesh and 48 azimuthal angles and 48 polar

angles per octant for our reference solution. Tables 5.5 and 5.6 show those comparisons for 1B and

1E, respectively. DFEM is more accurate for problem 1B and MOC is more accurate for problem

1E, at least when comparing k-effective.

Table 5.5: k-effective and Relative Difference (pcm) to Benchmark for Problem 1B with 252
Groups

MOC DFEM
k-effective 1.217555 1.216991

pcm difference 51 5

Next we looked at reaction rates - again the group-summed volume averaged absorption rate

and ν times the fission rate. We used the same normalization as the 51 group set - the group-
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Table 5.6: k-effective and Relative Difference (pcm) to Benchmark for Problem 1E with 252
Groups

MOC DFEM
k-effective 0.785407 0.786202

pcm difference -28 73

summed volume-averaged flux. Tables 5.7 and 5.8 show the comparisons for the absorption rate

and ν times the fission rate, respectively.

Table 5.7: Absorption Rate for 1B (left) and 1E (right) and Relative Difference to the Benchmark
Solution for 252 Groups

MOC DFEM
Abs. Rate 1.63146 1.63234

pcm difference -59 -5

MOC DFEM
Abs. Rate 1.1751 1.1764

pcm difference -111 5

Table 5.8: ν times the Fission Rate for 1B (left) and 1E (right) and Relative Difference to the
Benchmark Solution for 252 Groups

MOC DFEM
Abs. Rate 2.3055 2.30897

pcm difference -145 5

MOC DFEM
Abs. Rate 1.4874 1.4916

pcm difference -210 75

The relative differences in both these QOIs are larger for both problems for MOC than they are

for DFEMs. This is due the solution being much more dependent on resolving spatial characteris-

tics of the problem. We believe our DFEM code does this with the mesh we chose, while the MOC

code does not.
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5.2.2 2D Assembly Calculations

A significant portion of the errors we compute in our QOIs for our pin cell problems are due to

the cross sections. We wish to explore spatial errors without the complication of energy discretiza-

tion. To this end, we chose the 2D C5G7 problem to study next, which has pre-generated 7-group

multi-group cross sections. This is the same problem we studied in our simplified reactor model

in Chapter 2. In addition to the benchmark problem, we have also studied the 2D C5G7 problem

with a gap and clad - a problem that is closer to realistic reactor geometries. We used a higher

resoltuion quadrature than our pin cell calculations. We used a Tabuchi-Yamamoto-Chebychev

product quadrature with 64 azimuthal angles and 3 polar angles per quadrant. This was to ensure

the errors we incur with our quadrature approximation were small compared to our spatial errors.

5.2.2.1 2D C5G7

To begin, we ran the 2D C5G7 problem as it was specified in the benchmark [15]. Figure 5.7

shows the meshes the MOC code used in modelling this problem. On the left is their low resolution

mesh and on the right is their high resolution mesh. In their low resolution case, they used a track

spacing of 0.03 cm, and in their high resolution case they used a track spacing of 0.001 cm. The

azimuthal segments used in computation (rather than visualization) are bolded in Figure 5.7. The

low resolution mesh has five radial rings in the fuel, and three in the moderator. The high resolution

mesh has ten radial rings in the fuel and six in the moderator. Both low and high resolution meshes

use flat source regions.

Figure 5.8 shows the mesh used by DFEM to model the 2D C5G7 problem. There are four

radial rings in the fuel and two in the moderator. A lower resolution mesh was also run with three

rings in the fuel and one in the moderator, and the QOIs computed using this mesh were close

enough to the (4,2) mesh to say that the (4,2) mesh is sufficiently resolved.

Table 5.9 shows the results of our comparisons for different QOIs between MOC and DFEMs.

The results in this table are relative differences (in pcm) between each methods QOIs and the

benchmark QOIs. The QOIs we chose to compare were the maximum and minimum pin power,
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Figure 5.7: MOC Low Res (left): 0.03 cm Spacing, and High Res (right): 0.001 cm Spacing Pin
Cell Meshes

Figure 5.8: DFEM C5G7 Pin Cell Mesh

the assembly powers in the inner and outer UO2 assembly and the MOX assembly, and k-effective.

The first row is the DFEM results, while the last two rows are the low and high resolution MOC

results, respectively.

First look at the last column: k-effective. Both spatial discretization methods compute k-

effective to within 10 pcm of the benchmark solution. This is expected, as k-effective is a integral

quantity and therefore is easier to compute accurately, due to cancellation of errors. The other

columns - the pin powers and assembly powers - paint a different picture. These QOIs depend
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Table 5.9: QOI Comparison (Relative Difference in pcm) for the 2D C5G7 Problem between MOC
and DFEMs

Max Pin Min Pin Inner UO2 MOX Outer UO2 k
DFEM-MCNP

MCNP 51 -270 37 -41 -8 5
MOClow-MCNP

MCNP 313 -1730 245 -207 -237 -10
MOChigh-MCNP

MCNP -78 611 -62 76 -12 5

more heavily on the granular detail in space of the transport solution. The DFEM solutions to these

QOIs are closer to the benchmark solution than both the low and high resolution MOC solutions

for all of the QOIs, sometimes by an order of magnitude, even with fewer numbers of spatial

unknowns. We believe this is due to MOC code’s meshes not resolving the spatial characteristics

of the problem well enough to compute the QOIs accurately.

5.3 Conclusions

We have compared an MOC code to a DFEM code for several problems - both pin cell level

and assembly level. We have found that, in general, DFEMs compute more accurate solutions to a

range of QOIs, for a given level of spatial resolution compared to MOC. We have also found that

k-effective is easier to compute accurately, compared to more granular QOIs such as pin powers.

When going from 2D to 3D, the complexity of LD goes from computing 3x3 matrices to 4x4

matrices. MOC must add many more tracks per cell to achieve adequate accuracy in 3D versus 2D.

Also, in general, the ray tracing in 3D becomes much more costly. Because of this, for 3D reactor

analysis, LD looks especially promising.
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6. OSCILLATIONS

We have observed unphysical oscillations in the solutions of simple k-eigenvalue problems,

including problems as simple as homogeneous rectangles with vacuum boundaries and a single

energy group. Here we analyze the relevant equations in an attempt to understand the oscillations

and the conditions under which they can occur.

6.1 LD Equations

Consider a 2D Cartesian-geometry k-eigenvalue problem with one energy group, vacuum

boundaries, and with a rectangular grid that has uniform cell spacing of ∆x×∆y. The LD discrete-

ordinates equations for the i, j-th cell include the exact 0th- x-, and y-moment equations:

µm
ψm,i+1/2,j − ψm,i−1/2,j

∆x
+ ηm

ψm,i,j+1/2 − ψm,i,j−1/2

∆y
+ σtψmij =

(νσf
k

+ σs

) φij
4π

,

(6.1)

3µm
ψm,i+1/2,j + ψm,i−1/2,j − 2ψmij

∆x
+ ηm

ψxm,i,j+1/2 − ψxm,i,j−1/2

∆y
+ σtψ

x
mij =

(νσf
k

+ σs

) φxij
4π

,

(6.2)

µm
ψym,i+1/2,j − ψ

y
m,i−1/2,j

∆x
+ 3ηm

ψm,i,j+1/2 + ψm,i,j−1/2 − 2ψmij
∆y

+ σtψ
y
mij =

(νσf
k

+ σs

) φyij
4π

,

(6.3)

along with closure equations:

ψm,i±1/2,j = ψmij ± ψxmij, µm
>
< 0 , (6.4)

ψm,i,j±1/2 = ψmij ± ψymij, ηm
>
< 0 , (6.5)

ψym,i±1/2,j = ψymij, µm
>
< 0 , (6.6)

ψxm,i,j±1/2 = ψxmij, ηm
>
< 0 , (6.7)

71



and vacuum boundary conditions, which specify that the incoming angular flux is zero on problem

boundaries.

The 0th angular moments1 of the LD system are obtained by operating on Eqs. (6.1)-(6.3) with∑
mwm(·):

Jµ,i+1/2,j − Jµ,i−1/2,j

∆x
+
Jη,i,j+1/2 − Jη,i,j−1/2

∆y
=
(νσf
k
− σa

)
φij , (6.8)

3
Jµ,i+1/2,j + Jµ,i−1/2,j − 2Jµij

∆x
+
Jxη,i,j+1/2 − Jxη,i,j−1/2

∆y
=
(νσf
k
− σa

)
φxij , (6.9)

Jyµ,i+1/2,j − J
y
µ,i−1/2,j

∆x
+ 3

Jη,i,j+1/2 + Jη,i,j−1/2 − 2Jηij
∆y

=
(νσf
k
− σa

)
φyij . (6.10)

At this point we have made no approximations to the LD equations.

6.2 Test Problem

We consider a problem that has only one cell in the x dimension, of width a. There are Ny

cells in the y dimension, with ∆y = b/Ny. The problem has vacuum boundaries. Because there is

only one cell in x, we drop the i index. By symmetry we have several simplifying identities (still

without approximation):

φxj = 0 , (6.11)

φxyj = 0 . (6.12)

Equation 6.11 is due to the x symmetry in the problem, and Equation 6.12 states that the LD

formulation of the problem does not allow for the y-slope to depend on x and vice versa.

Because of the symmetry we can solve the problem for µ > 0 and infer everything we need

1We use nonstandard notation for the components of the net current density, to avoid confusion between angular
and spatial moments. The x and y components of the net current density are normally denoted Jx and Jy , but we use
Jµ and Jη . Then we use x and y superscripts to denote first spatial moments in x and y.
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from that. For µ > 0 with one cell in x, Eqs. (6.1) - (6.3) become

µm
ψm,3/2,j − 0

∆x
+ ηm

ψm,j+1/2 − ψm,j−1/2

∆y
+ σtψmj =

Qj

4π
≡
(νσf
k

+ σs

) φj
4π

, (6.13)

3
ψm,3/2,j + 0− 2ψmj

∆x
+ ηm

ψxm,j+1/2 − ψxm,j−1/2

∆y
+ σtψ

x
mj = 0 , (6.14)

µm
ψym,3/2,j − 0

∆x
+ 3ηm

ψm,j+1/2 + ψm,j−1/2 − 2ψmj
∆y

+ σtψ
y
mj =

Qy
j

4π
≡
(νσf
k

+ σs

) φyj
4π

, (6.15)

Define

τx ≡ σta , (6.16)

τy ≡ σt∆y , (6.17)

q̃j ≡
Qj

4πσt
− ηm

ψm,j+1/2 − ψm,j−1/2

τy
, (6.18)

q̃xj ≡ −ηm
ψxm,j+1/2 − ψxm,j−1/2

τy
. (6.19)

Recall that ψ3/2,j = ψxj + ψj and ψy3/2,j = ψxyj + ψxj
LD−−→ ψyj . Then

µm
τx

(
ψxj + ψj

)
m

+ ψmj = q̃j

⇒ ψj =
q̃jτx − µmψxmj
τx + µm

, (6.20)

3
µm
τx

(
ψxj − ψj

)
m

+ ψxmj = q̃xj

⇒ ψxj (τx + 3µm) = q̃xj τx + 3µmψmj , (6.21)

3ηm
ψm,j+1/2 + ψm,j−1/2 − 2ψmj

σt∆y
+ ψymj

(
1 +

µm
τx

)
=

Qy
j

4πσt
, (6.22)
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Algebra on the average and x-moment equations yields:

ψxj (τx + 3µm) = q̃xj τx + 3µm
q̃jτx − µmψxmj
τx + µm

,

⇒ ψxj

(
τx + 3µm + 3µm

µm
τx + µm

)
= q̃xj τx + q̃j3µm

τx
τx + µm

,

⇒ ψxj
(
τ 2
x + τxµm + 3µ2

m + 3µmτx + 3µ2
m

)
= q̃xj τx(τx + µm) + q̃j3µmτx ,

⇒ ψxj

(
τ 2
x

µ2
m

+ 4
τx
µm

+ 6

)
= q̃xj

τx
µm

(
τx
µm

+ 1

)
+ q̃j

3τx
µm

. (6.23)

Define

d ≡ τ 2
x

µ2
m

+ 4
τx
µm

+ 6 (6.24)

Return to Eq. (6.20) and manipulate:

(
µm
τx

+ 1

)
ψjm = q̃j −

µm
τx
ψxj

= q̃j −
µm
τx

1

d

[
q̃xj
τx
µm

(
τx
µm

+ 1

)
+ q̃j

3τx
µm

]
=
d− 3

d
q̃j − q̃xj

1

d

(
τx
µm

+ 1

)

⇒ ψjm

(
1 +

µm
τx

)(
d

d− 3

)
= q̃j − q̃xj

1 + τx/µm
d− 3

(6.25)

Insert definition of q̃j , summarize results, and also repeat the y-moment equation:
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ηm
τy

(
ψm,j+1/2 − ψm,j−1/2

)
+ ψjm

(
1 + µm

τx

) (
d
d−3

)
=

Qj
4πσt
− q̃xj

1+τx/µm
d−3

, µm > 0,

(6.26)

ψxj = q̃xj
τx
µmd

(
τx
µm

+ 1
)

+ q̃j
3τx
µmd

, µm > 0 , (6.27)

3ηm
τy

(
ψm,j+1/2 + ψm,j−1/2 − 2ψmj

)
+ ψymj

(
1 + µm

τx

)
=

Qyj
4πσt

µm > 0 . (6.28)

We recognize that for the S2 equations there are four directions that we can characterize by

m = NE, NW, SE, and SW. We define:

ψN ≡ π
(
ψNE + ψNW

)
, (6.29)

ψS ≡ π
(
ψSE + ψSW

)
, (6.30)

µ0 ≡
1√
3
. (6.31)

We also recognize by symmetry that

ψx,NWj = −ψx,NEj , (6.32)

q̃x,NWj = −q̃x,NEj , (6.33)

ψx,SWj = −ψx,SEj , (6.34)

q̃x,SWj = −q̃x,SEj (6.35)

We spell out the balance equations for the S2 case:

µ0
τy

(
ψNEj+1/2 − ψNEj−1/2

)
+ ψNEj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
4πσt

+ 1+τx/µ0
d−3

µ0
τy

(ψx,NEj+1/2 − ψ
x,NE
j−1/2) , (6.36)

µ0
τy

(
ψNWj+1/2 − ψNWj−1/2

)
+ ψNWj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
4πσt
− 1+τx/µ0

d−3
µ0
τy

(ψx,NWj+1/2 − ψ
x,NW
j−1/2 ) , (6.37)
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−µ0
τy

(
ψSEj+1/2 − ψSEj−1/2

)
+ ψSEj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
4πσt
− 1+τx/µ0

d−3
µ0
τy

(ψx,SEj+1/2 − ψ
x,SE
j−1/2) , (6.38)

−µ0
τy

(
ψSWj+1/2 − ψSWj−1/2

)
+ ψSWj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
4πσt

+ 1+τx/µ0
d−3

µ0
τy

(ψx,SWj+1/2 − ψ
x,SW
j−1/2) . (6.39)

Henceforth, d is understood to be evaluated with µm = µ0. Recall that q̃x,NWj = −q̃x,NEj ,

with similar relation for the South directions. Add the two North equations and add the two South

equations, after multiplying by 2π:

µ0
τy

(
ψNj+1/2 − ψNj−1/2

)
+ ψNj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
2σt

+ 2π 1+τx/µ0
d−3

µ0
τy

(ψx,NEj+1/2 − ψ
x,NE
j−1/2) ,

(6.40)

−µ0
τy

(
ψSj+1/2 − ψSj−1/2

)
+ ψSj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
2σt
− 2π 1+τx/µ0

d−3
µ0
τy

(ψx,SEj+1/2 − ψ
x,SE
j−1/2) .

(6.41)

Do the same for the y-moment equations, which do not have any complicating terms:

µ0
τy

(
ψNj+1/2 + ψNj−1/2 − 2ψNj

)
+ 1

3
ψy,Nj

(
1 + µ0

τx

)
= 1

3

Qyj
2σt

, (6.42)

−µ0
τy

(
ψSj+1/2 + ψSj−1/2 − 2ψSj

)
+ 1

3
ψy,Sj

(
1 + µ0

τx

)
= 1

3

Qyj
2σt

, . (6.43)
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Work on the x moment, recognizing that ψx,NEj
LD−−→ ψx,NEj+1/2:

2πψx,NEj+1/2 = 2πψx,NEj = 2πq̃j
3τx
µ0d

+ 2πq̃xj
τx
µ0d

(
τx
µ0

+ 1
)

= 3τx
µ0d

[
Qj
2σt
− µ0

τy
2π(ψNEj+1/2 − ψNEj−1/2)

]
+ τx

µ0d

(
τx
µ0

+ 1
) [
−µ0
τy

2π(ψx,NEj+1/2 − ψ
x,NE
j−1/2)

]
(6.44)

Recall that ψNEj+1/2 = ψNWj+1/2 ⇒ 2πψNEj+1/2 = ψNj+1/2. Define:

ξ ≡ τx
µ0d

(
τx
µ0

+ 1
)
µ0
τy

= 1
d
τx
τy

(
1 + τx

µ0

)
. (6.45)

Then:

2πψx,NEj+1/2 = 3τx
µ0d

[
Qj
2σt
− µ0

τy
(ψNj+1/2 − ψNj−1/2)

]
− ξ2π(ψx,NEj+1/2 − ψ

x,NE
j−1/2) (6.46)

and

2πψx,NEj+1/2 (1 + ξ) = 3τx
µ0d

[
Qj
2σt
− µ0

τy
(ψNj+1/2 − ψNj−1/2)

]
+ ξ2πψx,NEj−1/2 (6.47)

or

2π(ψx,NEj+1/2 − ψ
x,NE
j−1/2) = ( ξ

1+ξ
− 1)2πψx,NEj−1/2 + 1

1+ξ
3τx
µ0d

[
Qj
2σt
− µ0

τy
(ψNj+1/2 − ψNj−1/2)

]
(6.48)

or

2π(ψx,NEj+1/2 − ψ
x,NE
j−1/2) = − 1

1+ξ
2πψx,NEj−1/2 + 1

1+ξ
3τx
µ0d

[
Qj
2σt
− µ0

τy
(ψNj+1/2 − ψNj−1/2)

]
(6.49)

In words, this says that: (out-slope minus in-slope) = (negative #)times in-slope + positive
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number times source + negative number times (out-avg - in-avg). Write the similar expression for

SE direction:

−2π(ψx,SEj+1/2 − ψ
x,SE
j−1/2) = − 1

1+ξ
2πψx,SEj+1/2 + 1

1+ξ
3τx
µ0d

[
Qj
2σt

+ µ0
τy

(ψSj+1/2 − ψSj−1/2)
]

(6.50)

Insert these equations into the N and S balance equations:

µ0
τy

(
ψNj+1/2 − ψNj−1/2

)
+ ψNj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
2σt

+ 1+τx/µ0
d−3

µ0
τy

(
− 1

1+ξ
2πψx,NEj−1/2 + 1

1+ξ
3τx
µ0d

[
Qj
2σt
− µ0

τy
(ψNj+1/2 − ψNj−1/2)

])
,

(6.51)

−µ0
τy

(
ψSj+1/2 − ψSj−1/2

)
+ ψSj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
2σt

+ 1+τx/µ0
d−3

µ0
τy

(
− 1

1+ξ
2πψx,SEj+1/2 + 1

1+ξ
3τx
µ0d

[
Qj
2σt

+ µ0
τy

(ψSj+1/2 − ψSj−1/2)
])

,

(6.52)

or

µ0
τy

(
ψNj+1/2 − ψNj−1/2

) (
1 + 1+τx/µ0

d−3
µ0
τy

1
1+ξ

3τx
µ0d

)
+ ψNj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
2σt

(
1 + 1+τx/µ0

d−3
µ0
τy

1
1+ξ

3τx
µ0d

)
− 1+τx/µ0

d−3
µ0
τy

1
1+ξ

2πψx,NEj−1/2 , (6.53)

−µ0
τy

(
ψSj+1/2 − ψSj−1/2

) (
1 + 1+τx/µ0

d−3
µ0
τy

1
1+ξ

3τx
µ0d

)
+ ψSj

(
1 + µ0

τx

) (
d
d−3

)
=

Qj
2σt

(
1 + 1+τx/µ0

d−3
µ0
τy

1
1+ξ

3τx
µ0d

)
− 1+τx/µ0

d−3
µ0
τy

1
1+ξ

2πψx,SEj+1/2 , (6.54)
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We will multiply through by the factor:

1

1 + 1+τx/µ0
d−3

µ0
τy

1
1+ξ

3τx
µ0d

=
d(1 + ξ) τy

τx

d(1 + ξ) τy
τx

+
(

1 + τx
µ0

)
3
d−3

(6.55)

and define

Rx ≡
(

1 + µ0
τx

) (
d
d−3

) d(1 + ξ) τy
τx

d(1 + ξ) τy
τx

+
(

1 + τx
µ0

)
3
d−3

− 1 , (6.56)

Λ ≡
d(1 + ξ) τy

τx

d(1 + ξ) τy
τx

+
(

1 + τx
µ0

)
3
d−3

1 + τx
µ0

d− 3

µ0

τy

1

1 + ξ

=
µ0 + τx

d(1 + ξ)τy +
(

1 + τx
µ0

)
3
d−3

τx

d

d− 3
. (6.57)

Then our North and South equations become:

µ0
τy

(
ψNj+1/2 − ψNj−1/2

)
+ ψNj (1 +Rx) =

Qj
2σt
− Λ2πψx,NEj−1/2 , (6.58)

−µ0
τy

(
ψSj+1/2 − ψSj−1/2

)
+ ψSj (1 +Rx) =

Qj
2σt
− Λ2πψx,SEj+1/2 , (6.59)

µ0
τy

(
ψNj+1/2 + ψNj−1/2 − 2ψNj

)
+ 1

3
ψy,Nj

(
1 + µ0

τx

)
= 1

3

Qyj
2σt

, (6.60)

−µ0
τy

(
ψSj+1/2 + ψSj−1/2 − 2ψSj

)
+ 1

3
ψy,Sj

(
1 + µ0

τx

)
= 1

3

Qyj
2σt

(6.61)

2π(1 + ξ)
(
ψx,NEj+1/2 − ψ

x,NE
j−1/2

)
+ 2πψx,NEj+1/2 = 3τx

µ0d

[
Qj
2σt
− µ0

τy
(ψNj+1/2 − ψNj−1/2)

]
,

(6.62)

−2π(1 + ξ)
(
ψx,SEj+1/2 − ψ

x,SE
j−1/2

)
+ 2πψx,SEj−1/2 = 3τx

µ0d

[
Qj
2σt

+ µ0
τy

(ψSj+1/2 − ψSj−1/2)
]

(6.63)

At this point we have created what looks like a 1D problem in y, with the exception of the ψx
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terms. We did this by solving for the x moment of the angular flux and modifying the average and

y-moment equations to account for leakage out of the x surfaces.

At this point our only “approximation” has been to use the S2 quadrature set to evaluate the

x-leakage correction terms.

6.3 Ansatz

We rewrite our equations in terms of point values at edges instead of averages and slopes,

because we believe we can more readily write down an ansatz for those variables that matches the

observed behaviors. We continue to use North and South for direction of travel. We now introduce

Top and Bottom to denote cell edges. We have:

ψ
N/S
j ≡ 1

2
(ψ

N/S
jT + ψ

N/S
jB ) (6.64)

ψ
y,N/S
j ≡ 1

2
(ψ

N/S
jT − ψN/SjB ) (6.65)

ψNj+1/2 ≡ ψNjT (6.66)

ψSj−1/2 ≡ ψSjB (6.67)

We introduce the ansatz:

ψNj,T = A
[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
≡ iD

[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
(6.68)

ψNj,B = Ceiλ(yj−1/2+b/2) + Ce−iλ(yj−1/2+b/2) (6.69)

ψSj,B = iD
[
e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
(6.70)

ψSj,T = Ce−iλ(yj+1/2−b/2) + Ceiλ(yj+1/2−b/2) (6.71)

2πψx,NEj+1/2 = F
[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
(6.72)

2πψx,SEj−1/2 = F
[
e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
(6.73)
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Here we have recognized that since all angular fluxes must be real, the constant A must be purely

imaginary (since it multiplies a purely imaginary number to produce a real number), and for con-

venience we have defined A to equal iD where D is real. Again, since all angular fluxes are real,

the constant in front of the exponential in the second term of the expressions for ψNj,B and ψSj,T must

be C, which is the complex conjugate of C. Note that we have used the same constants (A,C, F )

for the South angular fluxes as for the North ones. Examination of the ansatz shows that we are

simply imposing symmetry, so that a North angular flux a certain distance above the center of the

problem is the same as the South flux the same distance below center.

This ansatz holds both in the interior of the problem and at the boundaries—the constants in

the ansatz have been chosen so that the expressions satisfy the vacuum boundary conditions.

6.3.1 Scalar Fluxes and Net Current Densities

In our eigenvalue problem the source is from fission, which depends only on the scalar flux, not

on each angular flux individually. The eigenvector will therefore be determined by two quantities

per cell, which we can represent either as {φjT , φjB} or {φj, φyj}. Let us see what the ansatz says

about these quantities:

φjT ≡ ψNj,T + ψSj,T

= iD
[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
+ Ce−iλ(yj+1/2−b/2) + Ceiλ(yj+1/2−b/2)

= eiλyj+1/2
[
iDeiλb/2 + Ce−iλb/2

]
+ e−iλyj+1/2

[
−iDe−iλb/2 + Ceiλb/2

]
= eiλyj

[
iDeiλb/2eiθ/2 + Ce−iλb/2eiθ/2

]
+ e−iλyj

[
−iDe−iλb/2e−iθ/2 + Ceiλb/2e−iθ/2

]
,

(6.74)

where

θ ≡ λ∆y . (6.75)
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Define

G ≡ iDeiλb/2eiθ/2 (6.76)

H ≡ Ce−iλb/2eiθ/2 (6.77)

This yields

φjT = (G+H)eiλyj + (G+H)e−iλyj . (6.78)

Similarly,

φjB ≡ ψSj,B + ψNj,B

= iD
[
e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
+ Ceiλ(yj−1/2+b/2) + Ce−iλ(yj−1/2+b/2)

= eiλyj−1/2
[
−iDe−iλb/2 + Ceiλb/2

]
+ e−iλyj−1/2

[
iDeiλb/2 + Ce−iλb/2

]
= eiλyj

[
−iDe−iλb/2e−iθ/2 + Ceiλb/2e−iθ/2

]
+ e−iλyj

[
iDeiλb/2eiθ/2 + Ce−iλb/2eiθ/2

]
= (G+H)eiλyj + (G+H)e−iλyj (6.79)

It follows that

φj ≡ 1
2

(φjT + φjB)

= 1
2

(
(G+H)eiλyj + (G+H)e−iλyj + (G+H)eiλyj + (G+H)e−iλyj

)
= 1

2

(
eiλyj + e−iλyj

) (
(G+H) + (G+H)

)
(6.80)

=
(
eiλyj + e−iλyj

)
(< [G] + < [H]) , (6.81)
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where <[z] ≡ real part of the complex number z, and

φyj ≡ 1
2

(φjT − φjB)

= 1
2

(
(G+H)eiλyj + (G+H)e−iλyj − (G+H)eiλyj + (G+H)e−iλyj

)
= 1

2

(
eiλyj − e−iλyj

) (
(G+H)− (G+H)

)
(6.82)

=
(
eiλyj − e−iλyj

)
(= [G] + = [H]) , (6.83)

where =[z] ≡ imaginary part of the complex number z. Collect φ expressions:

φjT = (G+H)eiλyj + (G+H)e−iλyj , (6.84)

φjB = (G+H)eiλyj + (G+H)e−iλyj , (6.85)

φj =
(
eiλyj + e−iλyj

)
< [G+H] , (6.86)

φyj =
(
eiλyj − e−iλyj

)
i= [G+H] . (6.87)

It will be convenient to have similar expressions for the net current densities:

JjT ≡ µ0

(
ψNj,T − ψSj,T

)
⇒ 1

µ0
JjT = iD

[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
− Ce−iλ(yj+1/2−b/2) − Ceiλ(yj+1/2−b/2)

= eiλyjeiθ/2
[
iDeiλb/2 − Ce−iλb/2

]
+ e−iλyje−iθ/2

[
−iDe−iλb/2 − Ceiλb/2

]
(6.88)

or

JjT = µ0

(
(G−H)eiλyj + (G−H)e−iλyj

)
. (6.89)

83



Similarly,

JjB ≡ µ0

(
ψNj,B − ψSj,B

)
⇒ 1

µ0
JjB = Ceiλ(yj−1/2+b/2) + Ce−iλ(yj−1/2+b/2) − iD

[
e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
= eiλyje−iθ/2

[
iDe−iλb/2 + Ceiλb/2

]
+ e−iλyjeiθ/2

[
−iDeiλb/2 + Ce−iλb/2

]
= eiλyj

[
−(G−H)

]
+ e−iλyj [−(G−H)]

= −
(
(G−H)eiλyj + (G−H)e−iλyj

)
(6.90)

It follows that

Jj ≡ 1
2

(JjT + JjB)

= µ0
2

(
(G−H)eiλyj + (G−H)e−iλyj − (G−H)eiλyj − (G−H)e−iλyj

)
= µ0

2

(
eiλyj − e−iλyj

) (
(G−H)− (G−H)

)
= µ0

(
eiλyj − e−iλyj

)
i= [G−H] , (6.91)

and

Jyj ≡ 1
2

(JjT − JjB)

= µ0
2

(
(G−H)eiλyj + (G−H)e−iλyj + (G−H)eiλyj + (G−H)e−iλyj

)
= µ0

2

(
eiλyj + e−iλyj

) (
(G−H) + (G−H)

)
= µ0

(
eiλyj + e−iλyj

)
< [G−H] . (6.92)

Collect J expressions:
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JjT = µ0

(
(G−H)eiλyj + (G−H)e−iλyj

)
, (6.93)

JjB = −µ0

(
(G−H)eiλyj + (G−H)e−iλyj

)
, (6.94)

Jj = µ0

(
eiλyj − e−iλyj

)
i= [G−H] , (6.95)

Jyj = µ0

(
eiλyj + e−iλyj

)
< [G−H] . (6.96)

6.3.2 Cell-Edge Quantities

Other terms will arise on cell edges as we proceed with our analysis. Let us study them:

Jj+1/2 ≡ µ0

(
ψNj+1/2 − ψSj+1/2

)
≡ µ0

(
ψNjT − ψSj+1,B

)
⇒ 1

µ0
Jj+1/2 = iD

[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
− iD

[
e−iλ(yj+1/2−b/2) − eiλ(yj+1/2−b/2)

]
1
µ0
Jj+1/2 = iDeiλyjeiθ/2

[
eiλb/2 + e−iλb/2

]
− iDe−iλyje−iθ/2

[
e−iλb/2 + eiλb/2

]
Jj+1/2 = µ0iD

(
eiλyjeiθ/2 − e−iλyje−iθ/2

) (
eiλb/2 + e−iλb/2

)
. (6.97)

Similarly,

Jj−1/2 ≡ µ0

(
ψNj−1/2 − ψSj−1/2

)
≡ µ0

(
ψNj−1,T − ψSj,B

)
⇒ 1

µ0
Jj−1/2 = iD

[
eiλ(yj−1/2+b/2) − e−iλ(yj−1/2+b/2)

]
− iD

[
e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
1
µ0
Jj−1/2 = iDeiλyje−iθ/2

[
eiλb/2 + e−iλb/2

]
− iDe−iλyjeiθ/2

[
e−iλb/2 + eiλb/2

]
Jj−1/2 = µ0iD

(
eiλyje−iθ/2 − e−iλyjeiθ/2

) (
eiλb/2 + e−iλb/2

)
. (6.98)
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Continue with other edge terms:

φj+1/2 ≡
(
ψNj+1/2 + ψSj+1/2

)
≡
(
ψNjT + ψSj+1,B

)
= iD

[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2)

]
+ iD

[
e−iλ(yj+1/2−b/2) − eiλ(yj+1/2−b/2)

]
= iDeiλyjeiθ/2

[
eiλb/2 − e−iλb/2

]
+ iDe−iλyje−iθ/2

[
eiλb/2 − e−iλb/2

]
= iD

(
eiλyjeiθ/2 + e−iλyje−iθ/2

) (
eiλb/2 − e−iλb/2

)
. (6.99)

and

φj−1/2 ≡
(
ψNj−1/2 + ψSj−1/2

)
≡
(
ψNj−1,T + ψSj,B

)
= iD

[
eiλ(yj−1/2+b/2) − e−iλ(yj−1/2+b/2)

]
+ iD

[
e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
= iDeiλyje−iθ/2

[
eiλb/2 − e−iλb/2

]
+ iDe−iλyjeiθ/2

[
eiλb/2 − e−iλb/2

]
= iD

(
eiλyje−iθ/2 + e−iλyjeiθ/2

) (
eiλb/2 − e−iλb/2

)
. (6.100)

These terms appear as sums and differences in the equations we will be using:

Jj+1/2 − Jj−1/2 = µ0iD
(
eiλyjeiθ/2 − e−iλyje−iθ/2

) (
eiλb/2 + e−iλb/2

)
− µ0iD

(
eiλyje−iθ/2 − e−iλyjeiθ/2

) (
eiλb/2 + e−iλb/2

)
= µ0iD

(
eiλb/2 + e−iλb/2

) (
eiλyj + e−iλyj

) (
eiθ/2 − e−iθ/2

)
, (6.101)

Jj+1/2 + Jj−1/2 = µ0iD
(
eiλyjeiθ/2 − e−iλyje−iθ/2

) (
eiλb/2 + e−iλb/2

)
+ µ0iD

(
eiλyje−iθ/2 − e−iλyjeiθ/2

) (
eiλb/2 + e−iλb/2

)
= µ0iD

(
eiλb/2 + e−iλb/2

) (
eiλyj − e−iλyj

) (
eiθ/2 + e−iθ/2

)
. (6.102)
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and

φj+1/2 − φj−1/2 = iD
(
eiλyjeiθ/2 + e−iλyje−iθ/2

) (
eiλb/2 − e−iλb/2

)
− iD

(
eiλyje−iθ/2 + e−iλyjeiθ/2

) (
eiλb/2 − e−iλb/2

)
= iD

(
eiλb/2 − e−iλb/2

) (
eiλyj − e−iλyj

) (
eiθ/2 − e−iθ/2

)
, (6.103)

φj+1/2 + φj−1/2 = iD
(
eiλyjeiθ/2 + e−iλyje−iθ/2

) (
eiλb/2 − e−iλb/2

)
+ iD

(
eiλyje−iθ/2 + e−iλyjeiθ/2

) (
eiλb/2 − e−iλb/2

)
= iD

(
eiλb/2 − e−iλb/2

) (
eiλyj + e−iλyj

) (
eiθ/2 + e−iθ/2

)
. (6.104)

There are also x-slope terms on cell edges:

2π
(
ψx,NEj+1/2 + ψx,SEj+1/2

)
= F

[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2) + e−iλ(yj+1/2−b/2) − eiλ(yj+1/2−b/2)

]
(6.105)

= F
(
eiλyjeiθ/2(eiλb/2 − e−iλb/2)− e−iλyje−iθ/2(e−iλb/2 − eiλb/2)

)
= F

(
eiλyjeiθ/2 + e−iλyje−iθ/2

) (
eiλb/2 − e−iλb/2

)
(6.106)

and

2π
(
ψx,NEj−1/2 + ψx,SEj−1/2

)
= F

[
eiλ(yj−1/2+b/2) − e−iλ(yj−1/2+b/2) + e−iλ(yj−1/2−b/2) − eiλ(yj−1/2−b/2)

]
(6.107)

= F
(
eiλyje−iθ/2(eiλb/2 − e−iλb/2)− e−iλyjeiθ/2(e−iλb/2 − eiλb/2)

)
= F

(
eiλyje−iθ/2 + e−iλyjeiθ/2

) (
eiλb/2 − e−iλb/2

)
. (6.108)
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So:

2π
(
ψx,NEj+1/2 + ψx,SEj+1/2

)
− 2π

(
ψx,NEj−1/2 + ψx,SEj−1/2

)
= F

(
eiλyjeiθ/2 + e−iλyje−iλ/2

) (
eiλb/2 − e−iλb/2

)
− F

(
eiλyje−iθ/2 + e−iλyjeiθ/2

) (
eiλb/2 − e−iλb/2

)
= F

(
eiλyj − e−iλyj

) (
eiθ/2 − e−iθ/2

) (
eiλb/2 − e−iλb/2

)
(6.109)

Also:

2π
(
ψx,NEj+1/2 − ψ

x,SE
j−1/2

)
= F

[
eiλ(yj+1/2+b/2) − e−iλ(yj+1/2+b/2) − e−iλ(yj−1/2−b/2) + eiλ(yj−1/2−b/2)

]
(6.110)

= F
(
eiλyj(ei(λb+θ)/2 + e−i(λb+θ)/2)− e−iλyj(e−i(λb+θ)/2 + ei(λb+θ)/2)

)
= F

(
eiλyj − e−iλyj

) (
ei(λb+θ)/2 + e−i(λb+θ)/2

)
(6.111)

Define the constants:

Sb ≡ sin(λb/2), (6.112)

Cb ≡ cos(λb/2), (6.113)

Sθ ≡ sin(θ/2) = sin(λ∆y/2), (6.114)

Cθ ≡ cos(θ/2) = cos(λ∆y/2). (6.115)

Collect edge-term expressions:
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Jj+1/2 − Jj−1/2 = µ0iD
(
eiλb/2 + e−iλb/2

) (
eiλyj + e−iλyj

) (
eiθ/2 − e−iθ/2

)
= −4µ0DCbSθ

(
eiλyj + e−iλyj

)
, (6.116)

Jj+1/2 + Jj−1/2 = µ0iD
(
eiλb/2 + e−iλb/2

) (
eiλyj − e−iλyj

) (
eiθ/2 + e−iθ/2

)
= 4µ0iDCbCθ

(
eiλyj − e−iλyj

)
, (6.117)

φj+1/2 − φj−1/2 = iD
(
eiλb/2 − e−iλb/2

) (
eiλyj − e−iλyj

) (
eiθ/2 − e−iθ/2

)
= −4iDSbSθ

(
eiλyj − e−iλyj

)
, (6.118)

φj+1/2 + φj−1/2 = iD
(
eiλb/2 − e−iλb/2

) (
eiλyj + e−iλyj

) (
eiθ/2 + e−iθ/2

)
= −4DSbCθ

(
eiλyj + e−iλyj

)
, (6.119)

2π
(
ψx,NEj+1/2 + ψx,SEj+1/2

)
− 2π

(
ψx,NEj−1/2 + ψx,SEj−1/2

)
= F

(
eiλyj − e−iλyj

) (
eiθ/2 − e−iθ/2

) (
eiλb/2 − e−iλb/2

)
= −4FSbSθ

(
eiλyj − e−iλyj

)
, (6.120)

2π
(
ψx,NEj+1/2 − ψ

x,SE
j−1/2

)
= F

(
eiλyj − e−iλyj

) (
ei(λb+θ)/2 + e−i(λb+θ)/2

)
= 2F

(
eiλyj − e−iλyj

)
(CbCθ − SbSθ) . (6.121)

6.3.3 X-Slope Terms

When we add the N and S balance equations we obtain a sum of x-slope terms. Simplify the

sum:

2πψx,NEj−1/2 + 2πψx,SEj+1/2 = F
[
eiλ(yj−1/2+b/2) − e−iλ(yj−1/2+b/2)

]
+ F

[
e−iλ(yj+1/2−b/2) − eiλ(yj+1/2−b/2)

]
= Feiλyj

[
e−iθ/2eiλb/2 − eiθ/2e−iλb/2

]
+ Fe−iλyj

[
−eiθ/2e−iλb/2 + e−iθ/2eiλb/2

]
= F

(
eiλyj + e−iλyj

) (
eiλ(b−∆y)/2 − e−iλ(b−∆y)/2

)
= 2iF

(
eiλyj + e−iλyj

)
(SbCθ − CbSθ) . (6.122)
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When we subtract theN and S balance equations we obtain a difference of x-slope terms. Simplify

the difference:

2πψx,NEj−1/2 − 2πψx,SEj+1/2 = F
[
eiλ(yj−1/2+b/2) − e−iλ(yj−1/2+b/2)

]
− F

[
e−iλ(yj+1/2−b/2) − eiλ(yj+1/2−b/2)

]
= Feiλyj

[
e−iθ/2eiλb/2 + eiθ/2e−iλb/2

]
+ Fe−iλyj

[
−eiθ/2e−iλb/2 − e−iθ/2eiλb/2

]
= F

(
eiλyj − e−iλyj

) (
eiλ(b−∆y)/2 + e−iλ(b−∆y)/2

)
= 2F

(
eiλyj − e−iλyj

)
(CbCθ + SbSθ) . (6.123)

6.3.4 Zeroth and First Angular Moments

Now we begin to manipulate our equations and plug in our ansatz. First we take the zeroeth

moment of our cell balance equations by adding Eq. 6.58 and 6.59:

1
τy

(
Jj+1/2 − Jj−1/2

)
+ (1 +Rx)φj = (1 +Rx +Ry)φj − Λ2π

(
ψx,NEj−1/2 + ψx,SEj+1/2

)
(6.124)

or

1
τy

(
Jj+1/2 − Jj−1/2

)
= Ryφj − Λ2π

(
ψx,NEj−1/2 + ψx,SEj+1/2

)
(6.125)

Here we have used the fact that:

νσf
k

+ σs =
(νσf
k
− σa

)
+ σt

= σt (Rx +Ry) + σt

= σt (1 +Rx +Ry) (6.126)

Inserting results from the previous section and cancelling out
(
eiλyj + e−iλyj

)
from every term

gives:
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−4µ0
τy
DCbSθ = Ry< [G+H]− ΛF2i (SbCθ − CbSθ) . (6.127)

Now we take the first moment of the cell balance equations by subtracting Eq. (6.58) − (6.59),

after multiplying by µ0:

1
3τy

(
φj+1/2 − φj−1/2

)
+ (1 +Rx) Jj = −µ0Λ2π

(
ψx,NEj−1/2 − ψ

x,SE
j+1/2

)
. (6.128)

Inserting results from the previous section and cancelling out
(
eiλyj − e−iλyj

)
from every term

gives:

−4 1
3τy
iDSbSθ + µ0 (1 +Rx) i = [G−H] = −µ0ΛF2 (CbCθ + SbSθ) . (6.129)

Now we take the zeroth moment of the cell y-slope equations by adding Eqs. (6.60) and (6.61):

1
τy

(
Jj+1/2 + Jj−1/2 − 2Jj

)
+ 1

3

(
1 + µ0

τx

)
φyj = 1

3
(1 +Rx +Ry)φ

y
j (6.130)

or

1
τy

(
Jj+1/2 + Jj−1/2 − 2Jj

)
= 1

3
(ρ+Ry)φ

y
j , (6.131)

where

ρ ≡ Rx − µ0
τx

(6.132)
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We insert results from the previous section and cancel out i(eiλyj − e−iλyj) from every term:

1
τy

(4µ0DCbCθ − 2µ0= [G−H]) = 1
3
(ρ+Ry)i= [G+H] . (6.133)

Now we take the first moment of the cell y-slope equations by subtracting Eqs. (6.60)−(6.61),

after multiplying by µ0:

1
3τy

(
φj+1/2 + φj−1/2 − 2φj

)
+ 1

3

(
1 + µ0

τx

)
Jyj = 0 . (6.134)

Inserting results from the previous section and cancelling
(
eiλyj + e−iλyj

)
from every term gives:

1
3τy

(−4DSbCθ − 2< [G+H]) + 1
3
µ0

(
1 + µ0

τx

)
< [G−H] = 0 . (6.135)

6.3.5 X-Slope Terms

Next we subtract Eq. (6.63) from Eq. (6.62):

2π(1 + ξ)
(
ψx,NEj+1/2 − ψ

x,NE
j−1/2

)
+ 2πψx,NEj+1/2 + 2π(1 + ξ)

(
ψx,SEj+1/2 − ψ

x,SE
j−1/2

)
− 2πψx,SEj−1/2

= 3τx
µ0d

[
−µ0
τy

(ψNj+1/2 − ψNj−1/2)− µ0
τy

(ψSj+1/2 − ψSj−1/2)
]
,

= −3τx
dτy

[
φj+1/2 − φj−1/2

]
(6.136)
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or

2π(1 + ξ)
(
ψx,NEj+1/2 + ψx,SEj+1/2 − ψ

x,NE
j−1/2 − ψ

x,SE
j−1/2

)
+ 2π

(
ψx,NEj+1/2 − ψ

x,SE
j−1/2

)
= −3τx

dτy

[
φj+1/2 − φj−1/2

]
(6.137)

Insert previous results and cancel the common
(
eiλyj − e−iλyj

)
factor:

F (1 + ξ)
(
eiθ/2 − e−iθ/2

) (
eiλb/2 − e−iλb/2

)
+ F

(
ei(λb+θ)/2 + e−i(λb+θ)/2

)
= −3τx

dτy
iD
(
eiλb/2 − e−iλb/2

) (
eiθ/2 − e−iθ/2

)
(6.138)

or

−4F (1 + ξ)SbSθ + 2F (CbCθ − SbSθ) = 43τx
dτy
iDSbSθ (6.139)

or

F (3 + 2ξ)SbSθ − FCbCθ = −23τx
dτy
iDSbSθ (6.140)

or

F = faiD where fa ≡ −
3τx
τyd

2SbSθ
(3 + 2ξ)SbSθ − CbCθ

(6.141)

6.3.6 Collect and Solve

We adopt the definition of fa and collect four previous equations, which we recall have the

physical meaning of cell-avg 0th moment, cell-avg 1st moment, cell-y-slope 0th moment, and cell-
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y-slope 1st moment:

−4µ0
τy
DCbSθ = Ry< [G+H] + 2ΛfaD (SbCθ − CbSθ) , (6.142)

−4 1
3τy
DSbSθ + µ0 (1 +Rx) = [G−H] = −2µ0ΛfaD (CbCθ + SbSθ) , (6.143)

1
τy

(4µ0DCbCθ − 2µ0= [G−H]) = 1
3
(ρ+Ry)= [G+H] , (6.144)

1
3τy

(−4DSbCθ − 2< [G+H]) + 1
3
µ0

(
1 + µ0

τx

)
< [G−H] = 0 . (6.145)

Solve Eq. (6.145) for <[H]:

1
3τy

(−4DSbCθ − 2< [G+H]) + 1
3
µ0

(
1 + µ0

τx

)
< [G−H] = 0

τyµ0

(
1 + µ0

τx

)
<[G−H] = 4DSbCθ + 2<[G+H]

⇒ <[H]
(

2 + τyµ0

(
1 + µ0

τx

))
= −4DSbCθ −<[G]

(
2− τyµ0

(
1 + µ0

τx

))

or

⇒ <[H] = −
4DSbCθ + <[G]

(
2− τyµ0

(
1 + µ0

τx

))
2 + τyµ0

(
1 + µ0

τx

) (6.146)

Solve Eq. (6.143) for =[H]:

−4 1
3τy
DSbSθ + µ0 (1 +Rx) = [G−H] = −2µ0ΛfaD (CbCθ + SbSθ)

⇒ −4DSbSθ + 3τyµ0(1 +Rx)=[G−H] = −6τyµ0ΛfaD(CbCθ + SbSθ)
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or

⇒ =[G−H] = D
4SbSθ − 6τyµ0Λfa (CbCθ + SbSθ)

3τyµ0 (1 +Rx)

⇒ =[H] = =[G]−D4SbSθ − 6τyµ0Λfa (CbCθ + SbSθ)

3τyµ0 (1 +Rx)
(6.147)

Use these results in Eq. (6.142) and (6.144):

−4µ0
τy
DCbSθ = Ry< [G+H] + 2ΛfaD (SbCθ − CbSθ)

Ry = −D

(
4µ0
τy
CbSθ + 2Λfa (SbCθ − CbSθ)

)
<[G+H]

(6.148)

The only unknowns in this equation are λ (buried in theC and S terms) andRy (which contains

k). The D cancels out because <[G+H] is proportional to D.

Continue with Eq. (6.144):

1
τy

(4µ0DCbCθ − 2µ0=[G−H]) = 1
3
(ρ+Ry) (=[G+H])

⇒ Ry =

3
τy

(4µ0DCbCθ − 2µ0=[G−H])

=[G+H]
− ρ
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Ry =

3
τy

(4µ0DCbCθ − 2µ0=[G−H])− ρ=[G+H]

=[G+H]
(6.149)

Again, the only unknowns in this equation are λ (buried in the C and S terms) and Ry (which

contains k). Also, this equation does not depend on D because =[G] and =[H] both are propor-

tional to D. Putting together the equations for Ry:

Ry = −D

(
4µ0
τy
CbSθ + 2Λfa (SbCθ − CbSθ)

)
<[G+H]

(6.150)

Ry =

3
τy

(4µ0DCbCθ − 2µ0=[G−H])− ρ=[G+H]

=[G+H]
(6.151)

If both of these equations are to hold for the same value of Ry, they must be linearly dependent.

That is, if they are expressed as a1 = b1Ry and a2 = b2Ry, we recognize the necessary condition

a1b2 − a2b1 = 0. This equation can be obtained several different ways, such as solving equation

equation for Ry and equating them. But written this way, we have the best chance of avoiding

numerical issues such as trying to evaluate 0/0.

Once we have a λ that satisfies our equation, we can determine Ry using either Equation 6.150

or 6.151. For numeric reasons, we choose to use Equation 6.150 to avoid dividing my zero in the

small-∆y limit. When we determine Ry, this specifies k-effective. Also we can determine the

scalar flux shape using Equations 6.84 and 6.85 along with:
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<[H] = −
4DSbCθ + <[G]

(
2− τyµ0

(
1 + µ0

τx

))
2 + τyµ0

(
1 + µ0

τx

) (6.152)

=[H] = =[G]−D4SbSθ − 6τyµ0Λfa (CbCθ + SbSθ)

3τyµ0 (1 +Rx)
(6.153)

<[G] = −D (CbSθ + SbCθ) (6.154)

=[G] = D (CbCθ − SbSθ) (6.155)

The D in these equations is a scaling factor, and can be chosen to be anything. Therefore we

will chose it to match our test cases by integrating over the problem and taking the ratio of our test

case data and the flux shape we get from this analysis.

6.4 Results

To test our analysis we developed a series of test problems, both with and without oscillations.

Table 6.1 shows the details of these problems.

Table 6.1: Details of Test Problems

Case Number ∆y b a Oscillations?
1 0.5 50 10,000 no
2 0.5 50 0.5 no
3 2.5 50 0.5 yes
4 2.5 50 1.0 yes
5 2.5 50 2.0 no
6 2.5 50 0.05 yes

We then developed a python script that executes the analysis we have derived here. As a

sanity test, our first test case imitates a 1D problem. In Figure 6.1 we have plotted the k-effective
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computed where the function a1b2 − a2b1 crosses zero for test case 1. The python script then

searches for the largest k-effective for λ between [0, π
∆y

]. This range was chosen because, for the

problems we tested, the function cycles on that interval. For the test problem used in Figure 6.1,

the k-effective chosen as the largest was 1.19944, which is 3e-5 pcm different than the k-effective

computed using PDT. Figure 6.2 shows the flux shape for both the test case and what was computed

with our analysis. Our analysis gets very good agreement for the flux shape.

Figure 6.1: k-effective vs λ for Case 1

In Figure 6.3 we have plotted the k-effective computed where the function a1b2 − a2b1 crosses

zero for test case 2. For the test problem used in Figure 6.3, the k-effective chosen as the largest

was 0.55687, which is 4562 pcm different than the k-effective computed using PDT. All other test

cases had a pcm difference much lower than this. The source of this large discrepency is on-going

work.

Figure 6.4 shows the flux shape for both the test case and what was computed with our analysis.
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Figure 6.2: Flux Shape for Case 1

Figure 6.3: k-effective vs λ for Case 2

Our analysis gets very good agreement for the flux shape.

In Figure 6.5 we have plotted the k-effective computed where the function a1b2 − a2b1 crosses
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Figure 6.4: Flux Shape for Case 2

zero for test case 3. The only difference between test case 1 and 3 is ∆y. The k-effective chosen by

our analysis for test case 3 was 0.64117, which is 15 pcm different than the k-effective computed

with PDT for this problem.

Figure 6.6 shows the flux shape for case 3. Again, we get very good agreement between our

model and what PDT computes.

In Figure 6.7 we have plotted the k-effective computed where the function a1b2 − a2b1 crosses

zero for test case 4. The only difference between test case 3 and 4 is a. The k-effective chosen by

our analysis for test case 4 was 0.79198, which is 12 pcm different than the k-effective computed

with PDT for this problem.

Figure 6.8 shows the flux shape for case 4. Again, we get very good agreement between our

model and what PDT computes.

In Figure 6.9 we have plotted the k-effective computed where the function a1b2 − a2b1 crosses

zero for test case 5. The only difference between test case 3 and 5 again is a. The k-effective

chosen by our analysis for test case 5 was 0.96290, which is 361 pcm different than the k-effective

computed with PDT for this problem.
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Figure 6.5: k-effective vs λ for Case 3

Figure 6.6: Flux Shape for Case 3

Figure 6.10 shows the flux shape for case 5. Again, we get very good agreement between our

model and what PDT computes.
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Figure 6.7: k-effective vs λ for Case 4

Figure 6.8: Flux Shape for Case 4

In Figure 6.11 we have plotted the k-effective computed where the function a1b2−a2b1 crosses

zero for test case 5. The only difference between test case 3 and 6 again is a. This case was chosen
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Figure 6.9: k-effective vs λ for Case 5

Figure 6.10: Flux Shape for Case 5

to see if our analysis holds for small a. The k-effective chosen by our analysis for test case 5 was

0.13761, which is 0.3 pcm different than the k-effective computed with PDT for this problem.
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Figure 6.11: k-effective vs λ for Case 6

Figure 6.12 shows the flux shape for case 6. Again, we get very good agreement between our

model and what PDT computes.

Table 6.2 summarizes the results we obtained for k-effective for each of our test cases.

Table 6.2: k-effective Results

Case Number Model k PDT k pcm difference
1 1.19944 1.19944 3e-5
2 0.55687 0.53147 4562
3 0.64117 0.64107 15
4 0.79198 0.79188 12
5 0.96290 0.95942 361
6 0.13761 0.13760 0.3
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Figure 6.12: Flux Shape for Case 6

6.5 Conclusions

We have studied the oscillation phenomenon we see in k-eigenvalue problems and have deter-

mined when and why they occur. We see that they occur when ∆y is large compared to ∆x and

when the total problem width is small compared to its height. We have demonstrated with a series

of problems that our mathematical derivation is accurate in determining when oscillations occur,

at least for these simple problems.

We do see a discrepency in the k-eigenvalue produced using our mathematical derivation and

that computed using PDT for problems 2 and 5. The math derived here makes no approximations

given the problems we study here - single cell in x, S2 quadrature, homogeneous material. We

believe that there is a sign error or coefficient wrong somewhere in the derivation but have yet been

unable to find it.
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7. SUMMARY

The Linear Discontinuous Finite Element Method has been implemented in the massively par-

allel transport code PDT and applied to reactor calculations. A series of problems featuring a

range of spatial, angular, and energy discretization choices in 2D and 3D problems were run and

the spatial accuracy was analyzed. We found that for a typical 2D PWR reactor assembly, using

76 spatial cells per pin cell, we achieve an accuracy of 3 pcm in k-effective. We also found that in

those problems, the energy error was much greater than the spatial error.

We developed an error model which treats both spatial and angular discretization error for a

given energy discretization. This error model, which uses a least squares approach, accurately pre-

dicts quantities of interest computed with both our training data and meshes more refined than our

training data. This gives us confidence that our predictions for quantities of interest computed us-

ing infinitely refined meshes are also accurate. This allows to accurately predict QOIs for problems

we do not yet have the means to run.

We have compared to the Method of Characteristics through a collaboration with researchers

at the University of Michigan and their MOC code MPACT. We have concluded that for problems

with geometric features or boundary layers that are extremely small relative to the problem domain,

LD more accurately computes quantities of interest when using meshes similar to MOC. We also

note that when going from 2D to 3D problems, the complexity of LD only raises from solving 3x3

matrices to solving 4x4 matrices while MOC must compute many more tracks and the ray spacing

becomes much more computationally expensive. This gives us confidence that LD is a promising

alternative to MOC for 3D reactor problems.

Finally unphysical oscillations in LD solutions to k-eigenvalue problems have been observed

and explained using Fourier analysis. We have described the cause of these oscillations as well

as what conditions are present when they occur. We have determined that the oscilllations appear

when ∆y is large compared to ∆x and when the problem height is large compared to its width. We

can now predict, for simple problems, both the scalar flux shape and the k-eigenvalue for problems
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with and without unphysical oscillations.

Future work includes finding the error in the oscillation math that produces discrepancies in

k-effective for certain problems. Also, extending this analysis to more computationally complex

3D problems such as full reactor cores would benefit the community.
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