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ABSTRACT

Principle component analysis (PCA) has been a widely used tool for statistics and

data analysis for many years. A good result of PCA should be both interpretable

and accurate. However, neither interpretability nor accuracy could be achieved well

in “big data” scenarios where there are large numbers of original variables. There-

fore people developed sparse PCA, in which obtained principle components (PCs)

are linear combinations of a limited number of original variables, which yields good

interpretability. In addition, some theoretical results showed that, when the genuine

model is sparse, PCs obtained via sparse PCA instead of traditional PCA are consis-

tent estimators. These aspects have made sparse PCA a hot research topic in recent

years.

In this dissertation, we developed a comprehensive and systematic way for doing

sparse PCA by using an SVD-based approach. In detail, we proposed the formulation

and algorithm and showed its consistency and convergence. We even showed conver-

gence to global optima using a limited number of trials, which is a breakthrough in

sparse PCA area. In addition, to guarantee orthogonality or uncorrelatedness when

multiple PCs are extracted, we developed a method for sparse PCA with orthogonal

constraint, proposed its algorithm, and showed the convergence. In addition, to deal

with missing values in the design matrix which often happens in reality, we developed

a method for sparse PCA with missing values, proposed its algorithm, and showed

the convergence. Moreover, to provide a good way of selecting tuning parameter

in these formulations, we designed an entry-wise cross validation method based on

sparse PCA with missing values. All these contributions and breakthroughs make

our results practically useful and theoretically complete. Simulation study and real-
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world data analysis are also provided, which showed that our method has competing

results with others in “without missing” cases, and good results in “with missing”

cases in which currently we are the only practical method.
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1. INTRODUCTION: SPARSE PRINCIPLE COMPONENT ANALYSIS AND

REGULARIZED SINGULAR VALUE DECOMPOSITION

1.1 Principle Component Analysis and Its Properties

Principle component analysis (PCA, or standard PCA, to be different from sparse

PCA) has been a popular feature extraction and dimension reduction tool for several

decades. PCA seeks the linear combinations of the original variables, the obtained

variables are called principle components (PCs). The criterion of extraction is to

capture maximal variance of the original data matrix and therefore can guarantee

minimal information loss. Thus PCA usually can be obtained via either maximizing

variance or minimizing reconstruction error.

Suppose X is an n × p data matrix, then the first k PCs can obtained via the

following optimization problem

max
V:p×k,VTV=I

Tr(VTXTXV) =
k∑
i=1

vTi XTXvi, (1.1)

where V = (v1, ...,vk) are the first k PCs.

As we know, this is a typical eigen-decomposition problem for variance-covariance

matrix XTX, therefore it has all mathematical properties of eigen-decomposition,

which further makes PCs have corresponding statistical properties.

The first property of standard PCA is that the simultaneous way described in

(1.1) is equivalent to the sequential way. The sequential way is that first we extract

the leading PC via the following formulation

max
v:p×1,vTv=1

vTXTXv, (1.2)
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then we use the deflation method to update data matrix X via

X← X−XvvT , (1.3)

and then we solve the optimization problem (1.2) again using the updated data

matrix. To extract k PCs, we repeat this procedure k times.

The second property is that the obtained PCs are both geometrically orthogonal

and statistically uncorrelated with each other, for i 6= j,

vi ⊥ vj, Xvi ⊥ Xvj. (1.4)

The third property is the convergence of the optimization problems. Either

using the simultaneous way or using the sequential way, we are solving an eigen-

decomposition problem, and typically the power iteration can solve it efficiently and

if we can make a correct initialization (in the sense that it is not orthogonal to the

truth, and we know this is not difficult if you repeat for several times) we can get

the global optima.

1.2 Sparse Principle Component Analysis

PCA has made great power in traditional data analysis, e.g., it is an important

exploratory data analysis technique, it can be used for feature extraction and di-

mension reduction, and it can be used in principle component regression to solve

the multi-colinearity problem. However, the rapid development of data science has

proposed great challenge on this method. In modern times, “Big Data” has been

a popular topic, in which the data set usually has thousands of or even millions of

variables. In this case, for each PC, the loadings are typically nonzero, which makes

it a linear combination of thousands original variables, and this is quite difficult to
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explain and almost impossible to identify important variables. In addition, theoreti-

cally, the obtained PCs are inconsistent estimates for the true PCs (see [15], [14] and

[7]).

To address the drawbacks of standard PCA, various modified PCA methods have

been proposed to form PCs where each PC is the linear combination of a small subset

of the original variables and can still explain high percentage of variance. All these

results can be called Sparse Principle Component (sparse PCA). The corresponding

literature review is introduced in next section. In this section, we talk about the

difficulty for sparse PCA.

As we mentioned in previous section, standard PCA is an eigen-decomposition

problem, sparse PCA can be considered as a perturbation from this eigen-structure,

therefore it does not have those good properties from eigen-decomposition.

The first problem is that the simultaneous way is not equivalent to the sequential

way any more. In the literature review, we could see that some papers use the

simultaneous way while others use the sequential way, and it is difficult to find their

relationship or equivalence.

The second one is the orthogonality and uncorrelatedness can not be guaranteed

naturally. Some papers just ignore this, while others try to put orthogonal con-

straint on the optimization problem, which could obtain orthogonality yet make the

optimization more complicated.

The third one is that it’s difficult to obtain the convergence to global optima,

especially when the formulation used in many papers is not a convex optimization

problem.
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1.3 Singular Value Decomposition and Regularization

Singular Value Decomposition (SVD) is another powerful tool both in mathemati-

cal and statistical science. As we know, SVD is also an eigen-decomposition problem,

therefore SVD is equivalent to PCA, in more details, the left singular vector of data

matrix X is equivalent to PC loadings of variance-covariance matrix XTX. Therefore

people also use SVD to obtain PCs. SVD also has those mathematical properties,

(1) the simultaneous way is equivalent to the sequential way; (2) orthogonality can

be guaranteed; (3) convergence (even to global optima) can be guaranteed.

For data matrix X, its singular value decomposition can be obtained simultane-

ously via the following optimization problem

max
V,U:VTV=I,UTU=I

||X−UVT ||22, (1.5)

or sequentially via the following optimization problem

max
v,u
||X− uvT ||22, (1.6)

and the following deflation

X← X− uvT . (1.7)

Similar as PCA, the traditional SVD also has some problem when dealing with

modern data sets. For some data analysis, we require either sparse (or smooth)

left (or right) singular vectors. For example in fMRI data analysis, the left singular

vectors corresponds to temporal domain therefore is required to be smooth (i.e., to be

continuous along with time), the right singular vector corresponds to spatial domain

4



therefore is required to be sparse (i.e., a sparse active region is expected). To deal

with this, people designed regularized SVD (see [5] and [4]).

The main topic of our thesis is to use regularized SVD to obtain sparse PCA

for the data matrix. We make a thorough investigation on all kinds of regularized

SVD and build a systematic way of proposing regularization terms for SVD problem

given different requirements. Especially when regularized SVD is for sparse PCA,

we build a complete approach, which includes convergence, consistency, orthogonal

constraint, missing values, cross validation, and convergence to global optima, which

make our approach to be the most comprehensive. A detailed comparison could be

seen in section of literature review.
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2. LITERATURE REVIEW: A DETAILED COMPARISON ON DIFFERENT

SPARSE PCA METHODS

2.1 Performance Table

We found tens of papers for sparse PCA and related issue. To make a systematic

comparison, before the literature review, we build a list of measurements to help

compare the performance of sparse PCA methods.

2.1.1 Separate-Processing/Regularization/Iteration

This aspect is about the basic strategy used to obtain sparse loading vectors for

PCA. Some papers performed a separate processing before or after the standard PCA

to achieve sparsity (e.g., [6]). Many other papers used the regularization strategy,

which means a regularization term is added to the model-fitting term to form a

formulation, which is then solved to obtain sparse PCs. Some others just proposed

an algorithm based on iterations between multiplication by X (or XT ) and vector

filtering, without a formulation for their method, and we call this way iteration.

2.1.2 Simultaneous-Extraction/Sequential-Extraction

As we mentioned in introduction section, both PCA and SVD can be obtained

by either the sequential way or the simultaneous way. The sequential way is that

we extract the leading layer from data matrix X first, then do deflation to update

X and continue extraction. The simultaneous way is that we extract all necessary

layers simultaneously via some matrix-based formulation. We know that these two

methods are the same for traditional PCA, however for sparse PCA, they are not

equivalent any more.

Which strategy is better is still an open question. On one hand, if the extraction
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of leading layers are far from the truth, then the deflation is greatly affected by

leading layer and the extraction of following layers becomes less convincible. In this

aspect, we may conclude that the simultaneous way is more robust. On the other

hand, one should do tuning parameter selection for k parameters simultaneously for

the simultaneous way, whose repetition number is mk if we use m equally spaced

candidate values for each tuning parameter. As a comparison, the sequential way

only needs m× k repetitions.

2.1.3 Convergence

Some papers not just proposed their method, but also showed that the algorithm

provided converges to a stationary point (local optima), in some cases even to a

global optima. Many other papers failed to show this. A method that can not

provide this guarantee may make the algorithm failing to stop or converging to an

incorrect solution.

2.1.4 Consistency

In addition to algorithmic convergence, people are also interested in the conver-

gence in probabilistic aspect, i.e., the (statistical) consistency property. Some meth-

ods could make corresponding consistency guarantee, while others couldn’t. Besides,

to prove consistency, different models are used. Specifically, people usually used the

spike model to show the consistency for SVD-based methods (e.g., see [16]).

2.1.5 Tuning Parameter Selection

There usually exists a tuning parameter (even more than one) for sparsity-induced

penalty in the formulation, whose goal is to make balance between model-fitting and

required property (sparsity). So proper value for tuning parameter should be chosen.

Some papers used cross validation to do the selection, while others did not consider

7



this part, which is practically not complete.

2.1.6 Orthogonality

As mentioned in comparison between the sequential and the simultaneous ex-

traction, for traditional PCA, different layers are orthogonal and we could get or-

thogonality from either the sequential way or the simultaneous way. However in

sparse PCA, this may not be true. To achieve orthogonality, some papers used a

post-processing after their algorithm, some others added an orthogonal constraint to

the formulation, while many other papers just ignored this aspect.

2.1.7 Missing Values

In reality, the data matrix is not always complete, and there could be kinds

of reasons that cause missing values in the data matrix. Therefore, a practically

complete method should be able to do sparse PCA with missing values. This is one

of the main contribution for our method, given that only few papers mentioned how

to do sparse PCA with missing values. In addition, if we have a method of sparse

PCA with missing values, then we could develop the cross-validation for tuning

parameter selection, by leaving some entries of data matrix out, and splitting the

whole matrix as training set and validation set.

2.2 Descriptions and Summaries for Reviewed Papers

In the following we make a brief introduction to the papers that we mainly inves-

tigated (mainly in temporal order). We first talk about the methods used, show the

formulation and then make a summary on the performance as listed above (shown

in a table).
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2.2.1 Jolliffe, Trendafilov, and Uddin [8]

This paper proposed a constraint optimization problem:

max aTkRak, sub to aTk ak = 1, aThak = 0(h < k), ||ak||1 ≤ t, (2.1)

where R is the sample correlation (or covariance) matrix and a′ks are PC loading

vectors. Then they used a gradient-based method to solve the problem (2.1). We

can see this is the sequential way of doing extraction. The convergence and consis-

tency results are not provided, while orthogonality is guaranteed. Tuning parameter

selection and missing value are not considered neither. A summary result could be

seen in table (2.1).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Simultaneous
Convergence No
Consistency No
Tuning-Parameter Selection Not Provided
Orthogonality Yes
Missing-Values No

Table 2.1: Performance summary for Jolliffe, Trendafilov, and Uddin [8]

2.2.2 Johnstone and Lu [6]

In this paper, the authors used a separate-processing strategy, in the very begin-

ning they used a wavelet-based algorithm for selecting a subset of coordinates with

largest sample variances, and they showed that if PCA is done on the selected subset,

the consistency is recovered, even if p is much larger than n. They used 1-s.d. rule
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to select tuning parameter, they also suggested using median absolute difference to

estimate standard deviation. A summary result could be seen in table (2.2).

Performance List Results and Comments
Regularization/Pre/Post Pre-Processing
Sequential/Simultaneous Simultaneous
Convergence Yes (Standard PCA)
Consistency Yes
Tuning-Parameter Selection 1-sd Rule
Orthogonality Yes (Standard PCA)
Missing-Values No

Table 2.2: Performance summary for Johnstone and Lu [6]

2.2.3 Zou, Hastie, and Tibshirani [26]

In this paper, the authors transformed the PCA problem into a regression prob-

lem:

min
A,B

n∑
i=1

||xi −ABTxi||22 + λ
k∑
j=1

||βj||22, sub to ATA = I, (2.2)

where B = [β1, ...,βk] and xi is i-th sample of data matrix X = (xT1 , . . . ,x
T
n )T .

Then they added an elastic-net penalty on the regression problem to encourage

sparsity:

min
A,B

n∑
i=1

||xi −ABTxi||22 + λ

k∑
j=1

||βj||22 +
k∑
j=1

λ1,j||βj||1, sub to ATA = I, (2.3)

where B = [β1, ...,βk].

The authors used alternating-direction algorithm to solve the above optimization

problem. More details can be seen in table (2.3).
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Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Simultaneous
Convergence No
Consistency No
Tuning-Parameter Selection Not Provided
Orthogonality No
Missing-Values No

Table 2.3: Performance summary for Zou, Hastie, and Tibshirani [26]

2.2.4 Shen and Huang [20]

This paper also used an SVD-based method. Their formulation is

||X− ũṽT ||2F + Pλ(ṽ), sub to ||ũ||2 = 1, (2.4)

where Pλ(ṽ) could be any sparsity-induced penalty, such as lasso, SCAD, or MCP.

The authors used the alternating direction strategy to solve the problem. They

also provided a way of doing cross validation. They did not show the model consis-

tency, however in a following paper ([19]) they completed this part. More details on

all listed aspects can be seen in table (2.4).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Sequential
Convergence No
Consistency Yes
Tuning-Parameter Selection Cross-Validation
Orthogonality No
Missing-Values No

Table 2.4: Performance summary for Shen and Huang [20]
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2.2.5 Leng and Wang [10]

This paper is an extension of [26]. First extension is that the tuning parameter

was generalized from λj to λkj, which made the model more general yet difficult to

do selection. Second aspect is that the authors added weights for sample points.

The authors also showed some consistency results, yet based on a strong assump-

tion: ᾱj − βj = Op(n
−1/2), where ᾱj is a parameter in their optimization problem,

and it is fixed when they used the alternating direction strategy to solve the opti-

mization problem. However we could not know the true value for βj (βj is the j-th

true PC loading vector). In addition, they used BIC for tuning parameter selec-

tion, however the selection is within each iteration, which means in actual they used

a varying tuning parameter, not exactly followed their formulation. More details

could be seen in table (2.5).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Simultaneous
Convergence No
Consistency Yes (assumption too strong)
Tuning-Parameter Selection BIC (nested selection)
Orthogonality No
Missing-Values No

Table 2.5: Performance summary for Leng and Wang [10]
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2.2.6 Witten, Tibshirani, and Hastie [22]

This paper used an SVD-based approach, the formulation for extracting leading

layer is:

||X− duvT ||2F , sub to ||u||2 = 1, ||v||2 = 1,P1(u) ≤ c1,P2(v) ≤ c2, d ≥ 0, (2.5)

where P1(u) and P2(v) are sparsity-induced penalty functions. When only v needs

to be sparse, one can remove the constraint P1(u) ≤ c1.

They used the alternating-direction strategy to do optimization (fix u and update

v, then fix v and update u). They also considered missing values (only in method-

ology part, not in data analysis part) and orthogonal constraint. More details could

be seen in table (2.6).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Sequential
Convergence No
Consistency No
Tuning-Parameter Selection Cross-Validation
Orthogonality Yes
Missing-Values Yes

Table 2.6: Performance summary for Witten, Tibshirani, and Hastie [22]
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2.2.7 Richtarik, Takac, and Ahipasaoglu [17]

This paper proposed a family of methods with eight different ways, by starting

from a standard constraint optimization problem:

max ||Ax||2, sub to ||x||2 ≤ 1, ||x||0 ≤ s. (2.6)

Then by changing constraint form to penalty form, or changing `2 norm in the

objective function to `1 norm, or changing `0 norm in regularization term to `1

norm, they came up with seven variants.

Similarly, alternating-direction is used to solve the problem by creating an aug-

mented variable y as follows:

||Ax||2 = max
{y:||y||2≤1}

yTAx

||Ax||1 = max
{y:||y||∞≤1}

yTAx

(2.7)

A detailed comparison could be seen in table (2.7).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Sequential
Convergence No
Consistency No
Tuning-Parameter Selection Not Provided
Orthogonality No
Missing-Values No

Table 2.7: Performance summary for Richtarik, Takac, and Ahipasaoglu [17]
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2.2.8 Yang, Ma, and Buja [24]

This paper used the simultaneous way to extract principal components. The

method is a modification from power iteration, while there is no formulation for it,

which is not good for convergence and consistency proof (therefore these two aspects

are not provided in the paper). The algorithm is as follows:

1. Right-to-left multiplication U← XV

2. Left thresholding U← η(U)

3. Left ortho-normalization using QR decomposition U = QR, U← Q

4. Left-to-right multiplication V← XTU

5. Right thresholding V← η(V)

6. Right ortho-normalization using QR decomposition V = QR, V← Q

A detailed comparison could be seen in table (2.8).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Simultaneous
Convergence No
Consistency No
Tuning-Parameter Selection Estimation
Orthogonality No
Missing-Values No

Table 2.8: Performance summary for Yang, Ma, and Buja [24]
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2.2.9 Allen [1]

This paper also used an SVD-based approach, the formulation is

max
u,v

uTXv − λuPu(u)− λvPv(v)

sub to uT (I + αuΩu)u ≤ 1,vT (I + αvΩv)v ≤ 1,

(2.8)

where Ωu and Ωv are the second-order difference matrices to induce smoothness.

When λu = αu = αv = 0, the formulation is actually equivalent to [20], but the

algorithms used for two methods are different. In addition, in [1], the convergence is

proved. A detailed comparison list could be seen in table (2.9).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Sequential
Convergence Yes
Consistency Yes
Tuning-Parameter Selection Not Provided
Orthogonality No
Missing-Values No

Table 2.9: Performance summary for Allen [1]

2.2.10 Qi, Luo, and Zhao [16]

This paper proposed an approach for sparse PCA by introducing a new penalty

based on mixed `1 and `2 norm:

||u||α =
[
(1− α)||u||22 + α||u||21

]1/2
,∀u ∈ Rp. (2.9)
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The main formulation is:

max
u

uTΣu, sub to ||u||α ≤ 1, (2.10)

where Σ = XTX is the variance-covariance matrix.

By investigation on convexity and strict convexity, the authors found that this

form is better than

max
u

uTΣu, sub to ||u||2 = 1 and ||u||1 ≤ t, (2.11)

which is one of the mainstream formulation used in sparse PCA area.

The authors also showed the convergence and consistency. They also tried to

complete the method for sparse PCA with orthogonal constraint. They proposed

the method and proved the convergence, however, the convergence can not be always

guaranteed.

More importantly, this method has some equivalence result with our approach,

although we start from a totally different philosophy. The equivalence is shown in

the methodology section.

A detailed comparison could be seen in table (2.10).

Performance List Results and Comments
Regularization/Pre/Post Regularization
Sequential/Simultaneous Sequential
Convergence Yes
Consistency Yes
Tuning-Parameter Selection Not Provided
Orthogonality No
Missing-Values No

Table 2.10: Performance summary for Qi, Luo, and Zhao [16]
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2.2.11 Other Papers

In addition to papers introduced above, there are many other papers that we

investigated. For example, in [13], the authors investigated many different ways of

deflations (which is a key step for the sequential way) and made a comparison w.r.t.

orthogonality, explained variance, etc. In [9], the authors developed a smart way to

transform their original formulation into a computationally efficient one. They also

considered multi-layer cases with orthogonal constraint. In [11], the authors made

some meaningful transformations on the mainstream sparse PCA formulation (2.11)

and used a first-order gradient optimization method to solve the problem. In [3], the

authors made some convex relaxations from their original formulation (sparse PCA

using `0 penalty), and then used the warm-start trick for optimization. In [25], the

authors used a block coordinate descent algorithm and reduced the computational

complexity for [3]. These papers made important contributions to sparse PCA,

however due to description space limit, we did not show more details for them.
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3. MAIN FORMULATION

3.1 Sparse PCA via Regularized SVD: from a Scale-Invariance Viewpoint

A standard single-layer SVD for data matrix X could be done via the following

optimization problem:

min
u,v
||X− uvT ||2F . (3.1)

If we do some investigations on this optimization problem, we could see it has

the following properties:

(i) Scale-invariance property, under u← cu, v← v/c, ∀c > 0.

(ii) Equivariance property, under X← cX, u← cu, ∀c > 0.

This is very different from standard regression problem:

min
β
||y −Xβ||22, (3.2)

where it only has equivariance property, under X← cX, y← cy, ∀c > 0.

This big difference results in totally different story when we change traditional

problem into regularized problem for SVD and regression.

For regression problem, if we would like to make regression coefficient vector β

to be sparse, we can directly add a sparsity-induced penalty:

min
β
||y −Xβ||22 + λ||β||1, (3.3)

which is the lasso problem.
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On the other hand, if we do the same thing on SVD problem, we would have:

min
u,v
||X− uvT ||2F + λ||v||1. (3.4)

This looks reasonable but actually doesn’t work according to the following inves-

tigations. Given any point (u0,v0), we could let u1 ← 2u0 and v1 ← v0/2, then

we could see that the fitting-error term ||X − uvT ||2F in (3.4) doesn’t change, and

the penalty term λ||v||1 reduces its value by half. We could do this kind of transfor-

mation by multiplying a large value c (even infinity), which makes the penalty term

have no influence on the whole formulation.

Therefore any finite solution (u∗,v∗) of (3.4) could be improved via u† ← 2u∗,

v† ← v∗/2, and thus the problem (3.4) is actually ill posed.

The scale-invariance and equivariance properties are first proposed by [5]. In this

paper, the authors tried to analyze two-way functional data via two-way regularized

SVD, their formulation is as follows:

min
u,v
||X− uvT ||2F + λuuTΩuu · vTv + λvuTu · vTΩvv+

λuλvuTΩuu · vTΩvv,

(3.5)

where Ωu and Ωv are the second-order difference matrices to induce smoothness.

We can see that this formulation satisfies the scale-invariance and equivariance

properties. Besides, the stationary equations for u and v are

u =
(I + λuΩu)−1Xv

vT (I + λvΩv)v
, v =

(I + λvΩv)−1XTu

uT (I + λuΩu)u
, (3.6)

and we can see the two smoothers (I+λuΩu)−1 and (I+λvΩv)−1 only involve tuning
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parameters. As a comparison, if we use

min
u,v
||X− uvT ||2F + λuuTΩuu + λvvTΩvv, (3.7)

as the formulation for two-way functional data analysis, we could see it does not

satisfy the two properties, and has the stationary equations

u =
(I + λu/(v

Tv)Ωu)−1Xv

vTv
, v =

(I + λv/(u
Tu)Ωv)−1XTu

uTu
, (3.8)

from which we can see the two smoothers (I+λu/(v
Tv)Ωu)−1 and (I+λv/(u

Tu)Ωv)−1

involves not only two tuning parameters but also scales of u and v.

Similarly, if we check the stationary equations for sparse PCA formulation (3.4),

we would get:

u =
Xv

vTv
, v +

1

2
· λ

uTu
· sgn(v) =

XTu

uTu
, (3.9)

where sgn(·) is the sign function, which returns value 1 for positive number, −1 for

negative number, and value between −1 and 1 for 0.

As a comparison, the stationary equation for standard Lasso Signal Approxima-

tion (LSA) problem

min
v
||x− v||22 + λ||v||1 (3.10)

is

v +
1

2
· λ · sgn(v) = x. (3.11)
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Therefore, by using formulation (3.4), we are actually processing the standardized

signal XTu/(uTu) using lasso signal approximation with tuning parameter λ/(uTu).

Based on the analysis above, we propose our new formulation for sparse PCA

using regularized SVD as follows (Eckart-Young form):

min
u,v
||X− uvT ||2F + λuTu · ||v||21, (3.12)

which is equivalent to (Rayleigh-Quotient form)

min
u,v
−2uTXv + uTu · (λ||v||21 + ||v||22). (3.13)

If we check its stationary equation, we get:

u =
Xv

λ||v||21 + ||v||22
, v + λ||v||1 · sgn(v) =

XTu

uTu
. (3.14)

Define Squared Lasso Signal Approximation (SLSA) as follows:

min
v
||x− v||22 + λ||v||21, (3.15)

then its stationary equation is

v + λ||v||1 · sgn(v) = x. (3.16)

Therefore we can see that, by using (3.12), we are actually processing the stan-

dardized signal XTu/(uTu) using squared lasso signal approximation with tuning

parameter λ.

Comparing two pairs of smoothers (I+λuΩu)−1, (I+λvΩv)−1, (I+λu/(v
Tv)Ωu)−1
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and (I + λv/(u
Tu)Ωv)−1 in two-way functional data analysis problem, or compar-

ing two “actual” tuning parameters λ/(uTu) and λ in sparse PCA problem, we can

see that when the scale-invariance and equivariance properties are not satisfied, the

tuning parameter(s) and scale(s) of u (and v) are confounded together. This Con-

fonding effect may cause lots of problems in convergence, iteration, consistency and

other aspects.

3.2 A Different Viewpoint: New Type of Penalty and an Equivalence Result

In [16], the authors investigated the sparse PCA in a different view point from

scale properties and the confounding effect. They started from the “maximize-

variance” approach for standard PCA problem:

max
v

vTXTXv, (3.17)

for which the usual way of inducing sparsity is to add two constraints:

||v||2 = 1, ||v||1 ≤ t. (3.18)

This constraint set is convex, but not strictly convex, which yields problem in

both algorithmic convergence and sparsity (see section 2 in [16] and Theorem 4 or 5

in [21]). Then they developed another constraint set by introducing a new penalty

(see the new designed norm (2.9) in section 2) , and has the following optimization

problem (equation 2.10):

max
v

vTXTXv, sub to ||v||α ≤ 1.

One can verify that the constraint set ||v||α ≤ 1 is a strictly convex set. In
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addition, they also developed algorithm and showed consistency results for their

method.

Besides, if we substitute ||v||1 by ||v||α in (3.12), we would have the third formu-

lation:

min
u,v
||X− uvT ||2F + λuTu · ||v||2α (3.19)

Now we have three formulations: first one designed from the viewpoint of scale-

invariance and equivariance; second one designed from a new penalty and strictly

convex constraint set; the third one is designed from using a “stronger” penalty to en-

hance the formulation. However, all these three formulations are actually equivalent

due to some tuning parameter transformation, as shown in following theorem:

Theorem 1. Formulations (3.12), (2.10), and (3.19) are equivalent up to tuning

parameter transformation, or in other words, they has the same full solution path.

Proof. (1) First we compare (3.12) and (2.10).

Note that the stationary equation of u for (3.12) is

u =
Xv

λ||v||21 + ||v||22
, (3.20)

plug this result in (3.13) (equivalent form of (3.12)), we get the marginal optimization

problem:

max
v

vTXTXv

λ||v||21 + ||v||22
, (3.21)

Denote its solution by v0, define ṽ0 = v0/(λ||v0||21 + ||v0||22), then we could see

that ṽ0 is the solution of (2.10) with tuning parameter α = 1/(1 + λ). Therefore
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these two formulations are equivalent.

(2) Now we consider (3.19), transform this formulation as Rayleigh-quotient form,

we have:

min
u,v
−2uTXv + uTu · [(1 + λ− λα)||v||22 + λα||v||21]. (3.22)

Therefore, (3.12) is equivalent to (3.19), with tuning parameter correspondence

λ←→ λα

1 + λ− λα
. (3.23)

3.3 Consistency Results in High Dimensions

In [16], the authors showed that under some mild conditions, the stationary point

they obtained via their algorithm convergences to the true value of the PC loading

vector. Since we have built the equivalence result to their method, we could have

the consistency result under the same condition (single component SVD model). We

recast the result as following theorem.

Theorem 2. Suppose the data point xi comes from the following model

x
(n)
i = ω

(n)
i v(n) + σz

(n)
i , i = 1, ..., n, (3.24)

where v(n) = (v
(n)
1 , ..., v

(n)
p(n)), the single component, is the true signal. ω

(n)
i , i = 1, ..., n

is a set of i.i.d standard normal variables and z
(n)
i are standard normally distributed

noise vectors.
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Suppose the true signal has the `q decay property, i.e.,

|v(n)|(ν) ≤ Cν−1/q, ν = 1, ..., p(n), (3.25)

where |v(n)|(ν) is the ν-th largest components of |v(n)|.

Suppose an extra technique condition is satisfied:

lim sup
m→∞

sup
n≥1

S
(n)
2m − S

(n)
m

S
(n)
m

< 1, (3.26)

where S
(n)
i =

∑i
ν=1 |vn|(ν).

Then given that ||v(n)||2 = 1, p(n)/n → c as n → ∞ and 4σ
√
c + 4σ2

√
c +

6σ2c < 1, also, there exists 0 < α < 1/3 such that lim infn→∞ λ
(n)nα > 0 and

limn→∞ λ
(n) = 0, we have

lim inf
n→∞

||v̂(n) − v(n)||2 = 0, (3.27)

where v̂(n) is the optimal point for the sparse PCA problem.

Proof. See section 3 in [16].

26



4. ALGORITHM FOR MAIN FORMULATION

4.1 Alternating-Direction Strategy

In (3.12), there are two variables u and v, and when one variable is fixed, the

formulation becomes a penalized regression problem for the other. Therefore, we use

alternating-direction strategy to solve the problem. Note that this is a commonly

used strategy, which could be seen in [20], [26], [5], etc.

When v is fixed, problem (3.12) becomes:

min
u
−2uTXv + uTu · (λ||v||21 + ||v||22), (4.1)

by taking derivatives w.r.t. u, we can see the solution for (4.1) is

u =
Xv

λ||v||21 + ||v||22
, (4.2)

which only involves basic arithmetic and matrix-vector multiplication.

When u is fixed, the problem becomes:

min
v
−2uTXv + uTu · (λ||v||21 + ||v||22), (4.3)

which is equivalent to

min
v
||v − XTu

uTu
||22 + λ||v||21. (4.4)

Therefore, to solve this problem, we need to develop an algorithm for the SLSA
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problem defined in (3.15):

min
x∈Rn

||y − x||22 + λ||x||21,

whose solution is denoted as SLSA(y, λ).

The algorithm to solve SLSA(y, λ) is provided in next subsection. Before doing

that, we summarize our alternating-direction algorithm for problem (3.12) as follows.

Alternating-Direction-Algorithm to solve (3.12):

Input: X ∈ Rn×p and λ > 0.

Output: u ∈ Rn, v ∈ Rp;

Algortihm:

1. Set initial value v0 for v;

2. For m = 0, 1, 2, ..., repeat the following steps until convergence:

um+1 =
Xvm

λ||vm||21 + ||vm||22

vm+1 =SLSA
( XTum+1

(um+1)Tum+1
, λ
)
,

(4.5)

where SLSA(·, ·) can be solved via SLSA-Algorithm in next section.

4.2 SLSA-Algorithm

First we investigate some properties for SLSA(·, ·) function and have the following

theorem:

Theorem 3. Suppose y = (y1, ..., yn)T is the source signal, t = (t1, ..., tn) is the

signal obtained after thresholding (or called estimator of y), t = SLSA(y, λ), then

we have
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(a) (sign preservation) If yi > 0, then ti ≥ 0; if yi = 0, then ti = 0; if yi < 0,

then ti ≤ 0.

(b) (order preservation) If |yi| > |yj|, then |ti| ≥ |tj|, and the equality holds only

when ti = tj = 0.

(c) (mass preservation) If |yi| = |yj|, then |ti| = |tj|.

(d) (compression) |ti| ≤ |yi|, 1 ≤ i ≤ n.

We can see most commonly used threshold functions, such as soft-threshold, hard-

threshold and SCAD-threshold, satisfy the above properties. These properties also

justify that our squared lasso penalty is a meaningful penalty.

Proof. We call a set of points S a complete class for optimization problemminxf(x) =

||y − x||22 + λ||x||21, if ∀x, there exists x0 ∈ S such that f(x) ≤ f(x0). We can see

the optimal point is always in the complete class.

(a) For any source signal y with yi > 0, and any estimator x with xi < 0, let x̃

take the same value as x except that x̃i = 0, then ||x||1 = ||x̃||1 + |xi| > ||x̃||1 and

f(x)− f(x̃) = x2i + λ(||x||1 − ||x̃||1)2 > 0. (4.6)

For any estimator x with xi ≥ 0, just take x̃ = x, thus S = {x : xi ≥ 0} is a

complete class for this given y, and therefore (SLSA(y))i ≥ 0.

For cases of yi = 0 and yi < 0, just note that their complete classes are S = {x :

xi = 0} and S = {x : xi ≤ 0}, respectively. All others are similar.

(b) For any source signal y with |yi| > |yj|, and any estimator x with |xi| < |xj|,

let x̃ take the same value as x except that x̃i = sgn(yi)|xj| and x̃j = sgn(yj)|xi|,
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then |x̃i| > |x̃j|, ||x||1 = ||x̃||1 and

f(x)− f(x̃)

=(yi − xi)2 + (yj − xj)2 − (yi − sgn(yi)|xj|)2 − (yj − sgn(yj)|xi|)2

=2(|yi||xj|+ |yj||xi| − xiyi − xjyj)

≥2(|yi||xj|+ |yj||xi| − |xi||yi| − |xj||yj|)

=2(|yi| − |yj|)(|xj| − |xi|)

>0

(4.7)

For another estimator z with |zi| = |zj| 6= 0, let z̃ take the same value as z except

that z̃i = sgn(yi)(|zi| + ε) and z̃j = sgn(yj)(|zj| − ε), where ε is a enough small

number, then |z̃i| > |z̃j|, ||z||1 = ||z̃||1 (note that if |zi| = |zj| = 0, we cannot have

this equality), and

f(z)− f(z̃)

=(yi − zi)2 + (yj − zj)2−

(yi − sgn(yi)(|zi|+ ε))2 − (yj − sgn(yj)|zj| − ε))2

=− 2(yizi + yjzj) + 2(|yi||zi|+ |yj||zj|)− 2ε2+

2ε[(yi − sgn(yi)|zi|)sgn(yi)− (yj − sgn(yj)|zj|)sgn(yj)]

=− 2(yizi + yjzj) + 2(|yi||zi|+ |yj||zj|)− 2ε2 + 2ε(|yi| − |yj|)

>0 (when ε is small enough)

(4.8)

Therefore S = {x : |xi| > |xj| or |xi| = |xj| = 0} is a complete class for this given

y, thus we finish the proof of (b).

(c) For any source signal y with |yi| = |yj| and any estimator x with |xi| > |xj|,

let x̃ take the same value as x except that x̃i = sgn(yi)(|xi| + |xj|)/2 and x̃j =
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sgn(yj)(|xi|+ |xj|)/2, then |x̃i| = |x̃j|, ||x||1 = ||x̃||1 and

f(x)− f(x̃)

=(yi − xi)2 + (yj − xj)2−

(yi − sgn(yi)(|xi|+ |xj|)/2)2 − (yj − sgn(yj)(|xi|+ |xj|)/2)2

=(x2i + x2j)/2− |xi||xj| − 2xiyi − 2xjyj + (|yi|+ |yj|)(|xi|+ |xj|)

>0.

(4.9)

Therefore S = {x : |xi| = |xj|} is a complete class for this given y, thus we finish

the proof of (c).

(d) For any source signal y with |yi| ≥ 0 and any estimator x with |xi| > |yi|, let

x̃ take the same value as x except that x̃i = yi, then |x̃i| ≤ |yi|, ||x||1 > ||x̃||1 and

f(x)− f(x̃) = (yi − xi)2 + λ(||x||1 − ||x̃||1)2 > 0. (4.10)

Therefore S = {x : |xi| ≤ |yi|, 1 ≤ i ≤ n} is a complete class for this given y,

thus we finish the proof of (d).

According to those properties we obtained for SLSA problem, for a given signal

y, first we sort its coordinates by absolute values: |yk1| ≥ |yk2| ≥ ... ≥ |ykn|, define

z = φ(y) = (yk1 , ..., ykn), then SLSA(y) = φ−1(SLSA(z)), and SLSA(z) should have

the form (z̃1, ..., z̃r, 0, ..., 0)T , where z̃i has the same sign as zi and has smaller or same

absolute value, 1 ≤ i ≤ r. Therefore, to solve problem (3.15), we need to:

1. determine the value of r.

2. determine values of z̃i, 1 ≤ i ≤ r.

Suppose the solution of equation (3.15) substituting y by z is SLSA(z) = z̃, take
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subdifferential for the problem, then we have

0 ∈ 2(z̃− z) + 2λ||z̃||1 · sgn(z̃) (4.11)

For 1 ≤ i ≤ r, sgn(z̃i) = sgn(zi) ∈ {1,−1}, therefore we have

z̃i − zi + λ||z̃||1 · sgn(zi) = 0

⇔ zi = z̃i + λ||z̃||1 · sgn(zi)

⇔ |zi| = |z̃i|+ λ||z̃||1,

(4.12)

where the last equation is obtained by multiplying sgn(zi) on both sides. Note that

||z̃||1 = Σn
i=1|z̃i| = Σr

i=1|z̃i|, therefore we have a system of linear equations about

|z̃0| = (|z̃1|, ..., |z̃r|)T and |z0| = (|z1|, ..., |zr|)T :

(Ir + λ1r1
T
r )|z̃0| = |z0|

⇒ |z̃0| = (Ir + λ1r1
T
r )−1|z0| = (Ir −

λ

λr + 1
1r1

T
r )|z0|.

(4.13)

This result implies that once we know the value of r, z̃i’s can be determined easily.

To determine the value of r, first note that z̃i has the same sign as zi (1 ≤ i ≤ r),

then |zi| − λ
λr+1

Σr
j=1|zj| > 0, 1 ≤ i ≤ r.

Secondly, for r < i ≤ n, we have

0 ∈ 2(z̃i − zi) + 2λ||z̃||1 · sgn(z̃i)

⇔zi/(λ||z̃||1) ∈ sgn(z̃i) = [−1, 1]

⇒|zi| ≤ λ||z̃||1 = λΣr
j=1(|zj| −

λ

λr + 1
Σr
k=1|zk|)

=
λ

λr + 1
Σr
j=1|zj|.

(4.14)
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Therefore we can see the relationship between |zi| and λ
λr+1

Σr
j=1|zj| is a boundary

between nonzero elements and zero elements. Most importantly, we have theoretical

support on the existence and uniqueness of this boundary:

Lemma 1. The value r such that

|zi| >
λ

λr + 1
Σr
j=1|zj|, 1 ≤ i ≤ r (4.15)

and

|zi| ≤
λ

λr + 1
Σr
j=1|zj|, r < i ≤ n (4.16)

exists and is unique. Furthermore, (sgn(z1)(|z1| − λ
λr+1

Σr
j=1|zj|), ..., (sgn(zr)(|zr| −

λ
λr+1

Σr
j=1|zj|), 0, ..., 0)T is the unique solution of problem (3.15).

Proof. Because |zi| ≥ |zr| (1 ≤ i ≤ r) and |zi| ≤ |zr+1| (r < i ≤ n), it is equivalent

to show the uniqueness of r satisfying

|zr| >
λ

λr + 1
Σr
j=1|zj|, |zr+1| ≤

λ

λr + 1
Σr
j=1|zj|. (4.17)

Define Sr = |zr| − Σr
j=1|zj| and Tr = |zr+1| − λ

λr+1
Σr
j=1|zj| (1 ≤ r ≤ n), then,

define P = {i : 1 ≤ i ≤ n, Sr > 0} and Q = {i : 1 ≤ i ≤ n, Tr ≤ 0}.

Because |z1| > λ
λ+1

Σ1
j=1|zj| = λ

λ+1
|z1| and zn+1 = 0 ≤ λ

λn+1
Σn
j=1|zj| always hold,

we have 1 ∈ P and n ∈ Q.
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Note that

Sr = |zr| −
λ

λr + 1
Σr
j=1|zj|

=
λ(r − 1) + 1

λr + 1
|zr| −

λ

λr + 1
Σr−1
j=1|zj|

=
λ(r − 1) + 1

λr + 1
(|zr| −

λ

λ(r − 1) + 1
Σr−1
j=1|zj|)

≤ λ(r − 1) + 1

λr + 1
(|zr−1| −

λ

λ(r − 1) + 1
Σr−1
j=1|zj|)

=
λ(r − 1) + 1

λr + 1
Sr−1,

(4.18)

thus Sr > 0⇒ Sr−1 > 0.

Similarly,

Tr = |zr+1| −
λ

λr + 1
Σr
j=1|zj|

=
λ(r + 1) + 1

λr + 1
|zr+1| −

λ

λr + 1
Σr+1
j=1|zj|

=
λ(r + 1) + 1

λr + 1
(|zr+1| −

λ

λ(r + 1) + 1
Σr+1
j=1|zj|)

≥ λ(r + 1) + 1

λr + 1
(|zr+2| −

λ

λ(r + 1) + 1
Σr+1
j=1|zj|)

=
λ(r + 1) + 1

λr + 1
Tr+1,

(4.19)

thus Tr ≤ 0⇒ Tr+1 ≤ 0.

Therefore if define p = maxP , q = minQ, then P = {1, ..., p}, Q = {q, ..., n}.

On the other hand, note that

Sr =
λ(r − 1) + 1

λr + 1
(|zr| −

λ

λ(r − 1) + 1
Σr−1
j=1|zj|) (from (4.18) )

=
λ(r − 1) + 1

λr + 1
Tr−1.

(4.20)
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Therefore

p+ 1 /∈ P ⇒ Sp+1 ≤ 0⇒ Tp ≤ 0⇒ p ∈ Q⇒ p ≥ q, (4.21)

and

p ∈ P ⇒ Sp > 0⇒ Tp−1 > 0⇒ p− 1 /∈ Q⇒ p− 1 < q. (4.22)

Thus p = q and P ∩Q = {p}, and we complete the proof.

Given the results above, we could design an algorithm for SLSA problem as

follows.

SLSA-Algorithm to solve (3.15):

Input: y ∈ Rn and λ > 0.

Output: SLSA(y;λ) ∈ Rn;

Algorithm:

1. Sort the coordinates yi’s of y by their absolute values: |yk1| ≥ |yk2| ≥ ... ≥ |ykn|.

Let zi = yki , 1 ≤ i ≤ n and define zn+1 = 0. Then we say z = (z1, ..., zn)T =

φ(y), with φ a transformation of permuting the coordinates.

2. Compute Si = Σi
j=1|zj| and find the unique r ∈ {1, 2, ..., n} satisfying

|zr+1| ≤
λSr

1 + rλ
< |zr|.

3. Compute z̃i =

 sgn(zi) · (|zi| − λSr

1+rλ
) if i ≤ r,

0 if i > r.

4. Then SLSA(y;λ) = φ−1(z̃), with z̃ = (z̃1, ..., z̃n)T .
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5. MULTIPLE PCS: SPARSE PCA WITH ORTHOGONAL CONSTRAINT

5.1 Alternating-Direction Strategy and SLOCSA Problem

There are three ways to extract multiple layers of singular value decomposition

for principle components: (1) extract multiple layers simultaneously; (2) use defla-

tion method (there are many kinds of deflation methods, see [12]); and (3) extract

higher-order layers with orthogonal constraint to previous layers. It is difficult to de-

sign proper regularization term to method (1), while different layers obtained from

deflation method (2) may not necessarily be orthogonal to each other. Therefore

we consider adding orthogonal constraint when solving the optimization problem for

extracting higher-order layers.

Suppose we already extracted k-layers, and obtained {v1,v2, ...,vk}, denote the

basis matrices of span{v1, ...,vk} as Vk, when {v1, ...,vk} are mutually orthogonal

and have unit length, Vk = (v1, ...,vk), otherwise we need to do QR decomposition,

then the formulations for (k+1)-th layer regularized SVD with orthogonal constraint

is:

min
u,v
||X− uvT ||2F + λuTu · ||v||21, sub to v ⊥ Vk, (5.1)

We still use alternating direction strategy to solve the above problem above.

When we fix v and update u, the problem becomes

min
u
−2uTXv + uTu · (λ||v||21 + ||v||22), (5.2)
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taking derivative w.r.t. u, we get its solution

u =
Xv

λ||v||21 + ||v||22
, (5.3)

which is the same as the one without constraint.

When we fix u and update v, the problem becomes

min
v
−2uTXv + uTu · (λ||v||21 + ||v||22), sub to v ⊥ Vk, (5.4)

which is equivalent to

min
v
||v − XTu

uTu
||22 + λ||v||21, sub to v ⊥ Vk, (5.5)

In other words, when v is fixed, problem (5.5) is a squared lasso penalized regres-

sion problem with identity design matrix and orthogonal constraint, which is also

called squared lasso with orthogonal constraint signal approximation (SLOCSA)

problem.

Therefore to utilize the alternating-direction strategy here, we need to design an

algorithm for SLOCSA problem:

min
x∈Rn

||y − x||22 + λ||x||21, sub to x ⊥ V. (5.6)

This problem is investigated in next subsection. Before that, we summarize

the alternating direction algorithm for regularized SVD with orthogonal constraint,

which uses SLOCSA-ADMM-Algorithm or SLOCSA-QP-Algorithm in fol-

lowing subsections.
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Alternating-Direction-Algorithm to solve (5.1):

Input: X ∈ Rn×p and λ > 0, Vk ∈ Rk×p.

Output: u ∈ Rn, v ∈ Rp;

Algortihm:

1. Set initial value v0 for v;

2. For m = 0, 1, 2, ..., repeat the following steps until convergence:

um+1 =
Xvm

λ||vm||21 + ||vm||22

vm+1 =SLOCSA
( XTum+1

(um+1)Tum+1
, λ,Vk

)
,

(5.7)

where SLOCSA(·, ·, ·) can be solved via SLOCSA-ADMM-Algorithm or

SLOCSA-QP-Algorithm in following subsection.

5.2 SLOCSA Using ADMM Algorithm

In this section, we solve the SLOCSA problem using alternating direction method

of multipliers (ADMM). ADMM is a popular and widely-used optimization method

which can be considered as a version of method of multipliers where a single Gauss-

Seidel pass is used. Consider the following optimization problem (see equation (3.1)

in page 13 of [2]):

min
x∈Rn,z∈Rm

f(x) + g(z), sub to Ax + Bz = c, (5.8)

where A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp, with both f : Rn 7→ R and g : Rm 7→ R

are convex.
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The augmented Lagrangian of (5.8) is defined as

Lρ(x, z,φ) = f(x) + g(z) + φT (Ax + Bz− c) + ρ/2||Ax + Bz− c||22. (5.9)

ADMM consists of the following iteration step

xk+1 :=argmin
x
Lρ(x, z

k,φk)

zk+1 :=argmin
x
Lρ(x

k+1, z,φk)

φk+1 :=φk + ρ(Axk+1 + Bzk+1 − c)

(5.10)

Remark 1. To facilitate the description, we change the notation of y in [2] into φ

here.

To utilize ADMM method and solve SLOCSA problem, first define the basis

matrix of orthogonal complement of span(V) as V⊥ : n × (n − k), then x ⊥ V ⇔

x = V⊥z, with z ∈ Rn−k. Let f(x) = λ||x||21, g(z) = ||y − V⊥z||22, A = In,

B = −V⊥, c = 0 and m = n− k, p = n, then (5.8) becomes

min
x∈Rn,z∈Rn−k

λ||x||21 + ||y −V⊥z||22, sub to x−V⊥z = 0, (5.11)

and we can see this is equivalent to SLOCSA problem (5.6). In addition, f(x) =

λ||x||21 and g(z) = ||y −V⊥z||22 are convex functions.

The augmented Lagrangian becomes

Lρ(x, z,φ) = λ||x||21 + ||y −V⊥z||22 + φT (x−V⊥z) + ρ/2||x−V⊥z||22. (5.12)
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The iteration step (5.10) becomes:

xk+1 =argmin
x
Lρ(x, z

k,φk)

=argmin
x
λ||x||21 + ||y −V⊥zk||22 + (φk)T (x−V⊥zk) + ρ/2||x−V⊥zk||22

=argmin
x
λ||x||21 + (φk)Tx + ρ/2||x−V⊥zk||22

=SLSA(V⊥zk − φk/ρ; 2λ/ρ).

zk+1 =argmin
z
Lρ(x

k+1, z,φk)

=argmin
z
λ||xk+1||21 + ||y −V⊥z||22 + (φk)T (xk+1 −V⊥z) + ρ/2||xk+1 −V⊥z||22

=argmin
z
||y −V⊥z||22 − (φk)TV⊥z + ρ/2||xk+1 −V⊥z||22

=(V⊥)T (2y + φk + ρxk+1)/(2 + ρ).

φk+1 =φk + ρ(Axk+1 + Bzk+1 − c)

=φk + ρ(xk+1 −V⊥zk+1)

(5.13)

Usually k � n, and it is difficult to calculate and store the matrix V⊥, therefore

we need to modify our iteration step to avoid calculating V⊥.
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Define w = V⊥z, we can see the iteration step can be rewritten as

xk+1 =SLSA(V⊥zk − φk/ρ; 2λ/ρ)

=SLSA(wk − φk/ρ; 2λ/ρ)

wk+1 =V⊥zk+1

=V⊥(V⊥)T (2y + φk + ρxk+1)/(2 + ρ)

=(In −VVT )(2y + φk + ρxk+1)/(2 + ρ)

φk+1 =φk + ρ(xk+1 −V⊥zk+1)

=φk + ρ(xk+1 −wk+1)

(5.14)

We can see iteration step for φ only involves vector addition, iteration step for

w only involves elementary matrix operations, and iteration step for x requires per-

forming a standard SLSA algorithm, which only involves sorting of elements and

elementwise thresholding, therefore all three steps are computationally efficient.

We summarize the results above as the following algorithm.

SLOCSA-ADMM-Algorithm to solve (5.6):

Input: y ∈ Rn, λ > 0, V ∈ Rn×k, and ρ > 0.

Output: SLOCSA(y;λ,V) ∈ Rn;

Algorithm:

1. Set initial values for x0, w0, and φ0.
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2. For m = 0, 1, 2, ..., repeat the following steps until convergence:

xm+1 =SLSA(wm − φm/ρ; 2λ/ρ)

wm+1 =(In −VVT )(2y + φm + ρxm+1)/(2 + ρ)

=V⊥(V⊥)T (2y + φk + ρxk+1)/(2 + ρ)

φm+1 =φm + ρ(xm+1 −wm+1)

(5.15)

3. Set SLOCSA(y;λ,V) = x∗, where x∗ is the value of x at convergence.

First we have the following lemma for SLSA problem and SLOCSA problem.

Lemma 2. For any vector y and orthogonal constraint matrix V, we have

(a) The SLSA problem (3.15) is strictly convex, therefore the solution exists and is

unique.

(b) The solution for SLOCSA problem (5.6) also exists and is unique.

(c) There exists t∗ ∈ Rk such that SLOCSA(y;λ,V) = SLSA(y + Vt∗, λ), and

SLSA(y + Vt∗) ⊥ V.

Proof. (a) is trivial.

For (b), denote the basis matrix of orthogonal complement of V as V⊥, then

x ⊥ V⇔ x = V⊥s, where s ∈ Rn−k, and the SLOCSA problem becomes:

min
s∈Rn−k

||y −V⊥s||22 + λ||V⊥s||21, λ > 0. (5.16)

Since V⊥ has full column rank, we can see this problem is strictly convex, thus the

solution exists and is unique, therefore the solution of (5.6) also exists and is unique.
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For (c), the KKT condition (note that our objective function is not differentiable,

thus we are actually using the subdifferential version of KKT condition, see [18]) for

problem (3.15) and (5.6) are

0 ∈2(x∗ − y) + 2λ · sgn(x∗), (5.17)

and

0 ∈2(x∗ − y) + 2λ · sgn(x∗)− 2Σk
j=1t

∗
jmj

=2(x∗ − y − Σk
j=1t

∗
jmj) + 2λ · sgn(x∗),

(5.18)

respectively, where V = (m1, ...,mk). By comparing the KKT conditions, we can see

x∗ is also the solution of SLSA problem with y ← y + Vt∗. Therefore we complete

the proof.

In [2], the authors listed two assumptions under which the convergence of ADMM

can be guaranteed (see pages 16-17 of their paper).

Assumption 1. The functions f and g are closed, proper, and convex. Or in other

words, the epigraph epif and epig are closed nonempty convex sets.

We can see our two functions f(x) = λ||x||21 and g(z) = ||y −V⊥z||22 are contin-

uous, proper and convex, thus this assumption can be easily satisfied.

Assumption 2. The unaugmented Lagrangian L0 has a saddle point. Or in other

words, there exists (x∗, z∗,φ∗), not necessarily unique, for which

L0(x
∗, z∗,φ) ≤ L0(x

∗, z∗,φ∗) ≤ L0(x, z,φ
∗) (5.19)

holds for all x, z, and φ.
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One way to find a saddle point is to find a φ∗ such that there exists (x∗, z∗)

satisfying

(x∗, z∗) ∈ argmin
x,z

L0(x, z,φ
∗), Ax∗ + Bz∗ = c, (5.20)

note that argminx,z L0(x, z,φ
∗) may not be unique. Then L0(x

∗, z∗,φ) = L0(x
∗, z∗,φ∗)

because Ax∗+ Bz∗ = c, and L0(x
∗, z∗,φ∗) ≤ L0(x, z,φ

∗), which is due to (x∗, z∗) ∈

argminx,z L0(x, z,φ
∗).

Specified to our problem, we need to find φ∗ such that there exists (x∗, z∗) sat-

isfying

(x∗, z∗) ∈ argmin
x,z

L0(x, z,φ
∗)λ||x||21 + ||y −V⊥z||22 + (φ∗)T (x−V⊥z) (5.21)

and x∗ = V⊥z∗.

Since

L0(x, z,φ
∗) =λ||x||21 + ||y −V⊥z||22 + (φ∗)T (x−V⊥z)

=(λ||x||21 + (φ∗)Tx) + (||y −V⊥z||22 − (φ∗)TV⊥z)

(5.22)

and argminz ||y−V⊥z||22−(φ∗)TV⊥z is unique and equals to (V⊥)T (y+φ∗/2) = z∗,

which implies x∗ = V⊥z∗ = V⊥(V⊥)T (y +φ∗/2). Thus we need to look for φ∗ ∈ Rn

such that

V⊥(V⊥)T (y + φ∗/2) ∈ argmin
x
λ||x||21 + (φ∗)Tx. (5.23)
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Define ξ = y +φ/2, then φ = −2(y− ξ) and we need to look for ξ∗ ∈ Rn such that

V⊥(V⊥)Tξ∗ ∈ argmin
x
λ||x||21 − 2(y − ξ∗)Tx. (5.24)

Decompose ξ = ξ1+ξ2, with ξ1 ∈ span(V) and ξ2 ∈ span(V⊥), now it is equivalent

to looking for ξ∗1 ∈ span(V) and ξ∗2 ∈ span(V⊥) such that

V⊥(V⊥)Tξ∗ = ξ∗2 ∈ argmin
x
λ||x||21 − 2(y − ξ∗1 − ξ∗2)

Tx. (5.25)

Note that the right hand side of (5.25) is a convex function, by looking at its

subdifferential, we can see finding the saddle point is equivalent to looking for ξ∗1 and

ξ∗2 such that

0 ∈
(
2λ||x||1 · sgn(x)− 2(y − ξ∗1 − ξ∗2)

)∣∣
x=ξ∗2

, (5.26)

or equivalently,

0 ∈ 2λ||ξ∗2||1sgn(ξ∗2)− 2(y − ξ∗1 − ξ∗2)
)
. (5.27)

Note that the right hand side is the subdifferential of λ||x||21 + ||y− ξ∗1− x||22, where

this function is strictly convex, thus finding the saddle point is equivalent to looking

for ξ∗1 ∈ span(V) and ξ∗2 ∈ span(V⊥) such that

ξ∗2 = argmin
x
λ||x||21 + ||y − ξ∗1 − x||22, (5.28)

According to result (c) of Lemma 2, there exists t∗ ∈ Rk such that SLOCSA(y;λ,V) =

SLSA(y + Vt∗, λ) and SLSA(y + Vt∗) ⊥ V. Note that −Vt∗ ∈ span(V) and

45



SLSA(y + Vt∗) ⊥ V thus belongs to span(V⊥), therefore the existence of ξ∗1 and ξ∗2

can be guaranteed, and so does the saddle point of L0(x, z,φ).

When the two assumptions hold, the ADMM iterates satisfy f(xk) + g(zk)→ p∗

as k → ∞, where p∗ = inf{f(x) + g(z) | Ax + Bz = c}. Therefore the convergence

of our algorithm to the unique optima can be guaranteed.

We summarize the results above in the following theorem.

Theorem 4. The SLOCSA-ADMM-Algorithm above converges to the unique

global optima of SLOCSA problem (5.6).

5.3 SLOCSA Using Quadratic Programming Algorithm

ADMM algorithm is parallel-computing friendly, however usually the convergence

is slow. Therefore for small dimension cases, ADMM method is not competitive. In

this section, we use quadratic programming method to solve SLOCSA problem.

First, by introducing augmented variables x1 and x2 as positive part and negative

part of x, we have x = x1 − x2 and ||x||1 = 1Tp |x| = 1Tp (x1 + x2), therefore we can

transform the original SLOCSA problem (5.6) as follows:

min
x1, x2

||x1 − x2 − y||22 + λ(1Tp (x1 + x2))
2, (5.29)

sub to x1 − x2 ⊥ V, x1 ≥ 0, x2 ≥ 0, and x1 has no common nonzero entry locations

with x2.

For any coordinate i, if (x1)i > 0 and (x2)i > 0 (say (x2)i = c is smaller), then

we could see that by subtracting c from both vectors, the objective function gets

smaller value and the point is still feasible.

Therefore the solution of equation (5.29) must satisfy that “the nonzero entries for

x1 and x2 have no common locations”, therefore SLOCSA problem is also equivalent
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to:

min
x1, x2

||x1 − x2 − y||22 + λ(1Tp (x1 + x2))
2

sub to x1 − x2 ⊥ V,x1 ≥ 0,x2 ≥ 0.

(5.30)

We could see that problem (5.30) is a positive semi-definite problem, to transfer

it to a positive definite one, consider the following new problem:

min
x1, x2

2xT1 x2 + ||x1 − x2 − y||22 + λ(1Tp (x1 + x2))
2,

sub to x1 − x2 ⊥ V,x1 ≥ 0,x2 ≥ 0.

(5.31)

Given that x1 ≥ 0,x2 ≥ 0, we know the solution of problem (5.30) minimizes

2xT1 x2 (since its minimum is zero given the constraint, and it is zero at the solution of

problem (5.30)), it also minimizes the rest part of the objective function for problem

(5.31), so it is also the solution of problem (5.31). Therefore (5.6)⇔ (5.29)⇔ (5.30)

⇔ (5.31).

To reform problem (5.31) as a standard positive definite programming problem,

define w = (xT1 ,x
T
2 )T , then we have the following problem:

min
w

wT (I2p + λJ2p)w − 2(yT ,−yT )w,

sub to (VT ,−VT )w = 0,w ≥ 0.

(5.32)

Then we can utilize standard algorithm for quadratic programming to solve

SLOCSA. Those algorithms have been designed very efficient and the convergence

can be guaranteed according to convergence results for quadratic programming (for

example see [23]).
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6. CONVERGENCE FOR THE ALTERNATING-DIRECTION ALGORITHM

Alternating-direction algorithm is a useful strategy when there exists more than

one variables, and it has been used in many problems. Alternating-direction and

coordinate-descent algorithm (e.g., algorithm for lasso) both belong to Block Coor-

dinate Descent Algorithm (or BCD-Algorithm for short) family.

BCD is a family of widely used algorithms with many successful examples (such

as described above). BCD-algorithm also has some failure cases, such as it cannot

solve fussed lasso problem. The key thing is whether the function to be optimized

is regular or not. In [21], the author showed some useful results on regularity and

convergence. In this section, we make analysis, arrangement, and, more importantly,

some useful improvements on its results. Finally we provide a unified approach for

proving the convergence of regularized SVD problems, using our enhanced results,

which of course include our sparse PCA method as example.

6.1 Introduction and Definitions

Definition 1. For any function f : Rn 7→ R, any point in its domain x ∈ dom(f),

and any direction d ∈ Rn, the lower directional derivative of f at x in the

direction d is defined as:

f ′(x; d) = lim inf
λ↓0

f(x + λd)− f(x)

λ
. (6.1)

We could see for any function lower directional derivative always exists, since

lower limit always exists; also for any function f differentiable at x in direction d,

the lower directional derivative is the directional derivative.

Definition 2. For any n-dimension coordinate system, a block coordinate par-
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tition is a partition of the coordinate system into several coordinate blocks, and is

denoted as π = {b1, b2, ..., br}, where bi’s are disjoint blocks that consist a partition

of {1, 2, ..., n}.

We say that a partition π1 is stronger than another partition π2, if π2 can be

obtained by combining some blocks in π1. The strongest partition is π = {b1, ..., bn}

with bi = {i}, 1 ≤ i ≤ n, and the weakest partition is π = {b} with b = {1, 2, ..., n}.

Definition 3. We say that x is a stationary point of function f , if for any

direction d we have f ′(x; d) ≥ 0.

Note that this is equivalent to the usual definition of stationary point: “a sta-

tionary point is such that there exists a neighbor and it takes minimum in this

neighbor”.

Definition 4. We say that a direction d is a block coordinate direction (or BC-

direction for short) under partition π = {b1, ..., br}, if it takes nonzero values in at

most one coordinate block of π.

Under the weakest block coordinate partition, any direction is a block coordi-

nate direction; while under the strongest partition, a direction is a block coordinate

direction only if it is the direction along one coordinate axis.

Definition 5. We say x is a (block) coordinatewise minimum point (or BCM

point for short) of function f under partition π, if for any BC-direction d we have

f ′(x; d) ≥ 0.

Note that a BCM point under a weaker partition π1 is also a BCM point under

a stronger partition π2. A stationary point is exactly a BCM point under weakest

partition, and thus is BCM point under any partition. Also note that this definition
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is slightly different from the one in [21], in which the author’s definition is a global one

(equation (4) in his paper), and thus not good enough, since, analytically, stationarity

should be a local property. Therefore according to their definition, even a stationary

point may not necessarily be a BCM point.

Usually when we perform a BCD-Algorithm, the converging point is a BCM

point. Our goal is to make it a stationary point, i.e., we want to fill the gap between

the two concepts (stationarity vs. BCM stationarity). The extra property filling this

gap is regularity:

Definition 6. We say a function f is weak regular at point x under partition π,

if stationarity is equivalent to block coordinate minimality under π at this point, or

mathematically,

f ′(x; d) ≥ 0,∀ direction d⇔ f ′(x; d) ≥ 0,∀ BC-direction d under π. (6.2)

Also, we say a function is weak regular, if it is weak regular at every point in its

domain.

Note that the definition of regularity used by [21] is weaker than the one in A.

Auslender (1976), in which the author first introduced decomposition of a direction:

Definition 7. Any direction d can be decomposed uniquely as a summation of BC-

directions under a partition π,

d = Σr
i=1di, (6.3)

where di takes the same value as d in i-th coordinate block of π and takes zero values

in all other blocks. Σr
i=1di is called block coordinate direction decomposition

of direction d under π.
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Then the regularity in [21] can be defined as:

Definition 8. A function f is strong regular at point x under partition π, if

f ′(x; d) = Σr
i=1f

′(x; di),∀ direction d, (6.4)

where Σr
i=1di is block coordinate direction decomposition of d under π.

Note that if f is strong regular at point x under π, then it is also weak regular

at x (under π), that’s why we use “strong” and “weak” for the two concepts.

However, further investigation on these two concepts shows that (i): strong reg-

ularity is “too strong to transmit” (for example in Lemma (5) we find that even

summation of marginal functions are not strong regular, given that any marginal

function is strong regular); (ii) weak regularity is “too weak to take summation” (for

example in Lemma (3) we find that summation of a differentiable function and a weak

regular function may not be a weak regular function). Based on this consideration,

we propose a new definition on regularity:

Definition 9. A function f is standard regular at point x under partition π, if

f ′(x; d) ≥ Σr
i=1f

′(x; di),∀ direction d, (6.5)

where Σr
i=1di is block coordinate direction decomposition of d under π.

We could easily see that “weak regularity < standard regularity < strong regular-

ity”, thus all three property could guarantee a BCM point to be a stationary point.

In addition, we have the following results on additivity and scalar multiplicity:

Lemma 3. Suppose f1 and f2 are two functions defined on the same domain, π is a

partition,
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(a) (weak additivity) If f1 is differentiable, f2 is standard (strong) regular under

π, then f1 + f2 is also standard (strong) regular under π.

(b) (nonnegative scalar multiplicity) If f is standard (strong, weak) regular

under π, c is a nonnegative scalar, then c · f is also standard (strong, weak)

regular under π.

Proof. All results follow the property of lower limit. We only need to note that for

any functions L1(λ), L2(λ), and nonnegative scalar c,

lim inf
λ↓0

(
L1(λ) + L2(λ)

)
≥ lim inf

λ↓0
L1(λ) + lim inf

λ↓0
L2(λ), (6.6)

lim inf
λ↓0

(
L1(λ) + L2(λ)

)
= lim

λ↓0
L1(λ) + lim inf

λ↓0
L2(λ), if lim

λ↓0
L1(λ) exists, (6.7)

and

lim inf
λ↓0

c · L1(λ) = c · lim inf
λ↓0

L1(λ), (6.8)

(a):

Denote g = f1 + f2, then for any direction d = (dT(1), ...,d
T
(r))

T = Σr
i=1di,

g′(x; d) = lim inf
λ↓0

g(x + λd)− g(x)

λ

= lim inf
λ↓0

[f1(x + λd)− f1(x)

λ
+
f2(x + λd)− f2(x)

λ

]
= lim

λ↓0

f1(x + λd)− f1(x)

λ
+ lim inf

λ↓0

f2(x + λd)− f2(x)

λ
(due to (6.7))

=f ′1(x; d) + f ′2(x; d).

(6.9)

Then if f2 is standard regular, g′(x; d) = f ′1(x; d) + f ′2(x; d) ≥ Σr
i=1f

′
1(x; di) +
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Σr
i=1f

′
2(x; di) = Σr

i=1g
′(x; di).

If f2 is strong regular, g′(x; d) = f ′1(x; d)+f ′2(x; d) = Σr
i=1f

′
1(x; di)+Σr

i=1f
′
2(x; di) =

Σr
i=1g

′(x; di).

(b):

We denote g = c · f , if c = 0, then g = 0, which is differentiable thus strong

regular, therefore we assume c > 0. For any direction d = (dT(1), ...,d
T
(r))

T = Σr
i=1di,

g′(x; d) = lim inf
λ↓0

g(x + λd)− g(x)

λ

= lim inf
λ↓0

c · f(x + λd)− f(x)

λ

=c · lim inf
λ↓0

f(x + λd)− f(x)

λ
(due to (6.8))

=c · f ′(x; d).

(6.10)

Then if f is standard regular, g′(x; d) = c · f ′(x; d) ≥ c · Σr
i=1f

′(x; di) =

Σr
i=1g

′(x; di).

If f is strong regular, g′(x; d) = c · f ′(x; d) = c · Σr
i=1f

′(x; di) = Σr
i=1g

′(x; di).

If f is weak regular,

g′(x; d) ≥ 0(∀ BC-direction d)

⇒f ′(x; d) = g′(x; d)/c ≥ 0(∀ BC-direction d)

⇒f ′(x; d) ≥ 0(∀ direction d)

⇒g′(x; d) = f ′(x; d) · c ≥ 0(∀ direction d).

(6.11)

Remark 2. We cannot obtain any additivity results on regularity, because if f1 and

f2 are strong regular, f1 + f2 even may not be weak regular.
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For block coordinate minimality and partition, we have the following lemma:

Lemma 4. Suppose π1 and π2 are two block coordinate partitions, π1 is weaker than

π2,

(a) If x is a BCM point under partition π1, then it is also a BCM point under π2.

(b) If function f is standard (strong, weak) regular at x under π2, then it is also

standard (strong, weak) regular at x under π1.

One way to understand this result is that we always have

BCM + Regularity = Stationarity, (6.12)

where “BCM” stands for block coordinatewise minimality here. When the partition

gets stronger (↑), the regularity gets stronger (↑) and BCM gets weaker (↓), and

makes the summation being constant. One extreme case is, for weakest partition,

BCM becomes Stationarity, while Regularity becomes “zero” (thus any function is

standard (strong, weak) regular under weakest partition). On the other hand, for

lasso problem

min
β∈Rp
||y −Xβ||22 + λ||β||1, (6.13)

people have shown that this objective function is weak regular under strongest parti-

tion, so any coordinatewise (not block coordinatewise) minimum point is stationary

point, and we can use coordinate descent algorithm to solve it.

6.2 Results on Regularity

We propose a systematic results on (standard, strong, and weak) regularity in

the following lemma.
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Lemma 5. Suppose π is a block coordinate partition of Rn, then we have the following

results:

(a) Any differentiable function is strong regular (thus standard and weak regular)

under strongest partition; any function is strong regular under weakest partition;

any one-dimensional function is strong regular (only one possible partition).

(b) Any marginal function f of π is strong regular under π, where a marginal function

f of partition π is a function of at most one coordinate block of π.

(c) If g : R1 7→ R1 is differentiable and has g′(·) ≥ 0 on its domain, h : Rn 7→ R1

is a continuous function and is standard (strong, weak) regular under π, then

f(·) = g(h(·)) is also standard (strong, weak) regular under π.

(d) Suppose π0 = {b1, ..., br} is a partition of Rn with bi having si coordinates

(Σr
i=1si = n), any point x can be written as x = (xT(1), ...,x

T
(r))

T under π0.

{hi : Rsi 7→ R1, 1 ≤ i ≤ r} are r continuous functions, and are standard

regular under partitions {πi : 1 ≤ i ≤ r}, respectively. For consistency, πi is

partition of set {Si−1 + 1, ..., Si}, where Si = Σi
j=1si. If g : Rr 7→ R1 is differ-

entiable, and all r partial derivative functions are continuous and nonnegative,

then f(x) = f(x(1), ...,x(r)) = g(h1(x(1)), ..., hr(x(r))) is standard regular under

π̄, where π̄ =
⋃r
i=1 πi is a partition of Rn stronger than π0.

Besides, if hi’s are strong regular, we get f is standard regular (not strong regu-

lar); if hi’s are weak regular, we get f is weak regular.

π̄ is a stronger partition than π0, e.g., when n = 6, π0 =
{
{1, 2, 3}, {4, 5, 6}

}
,

π1 =
{
{1, 2, 3}

}
, π2 =

{
{4, 5}, {6}

}
, then π̄ =

{
{1, 2, 3}, {4, 5}, {6}

}
.
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Proof. The requirement of nonnegative derivatives in (c) and (d) is due to the fact

lim inf
λ↓0

L1(λ) · L2(λ) = lim
λ↓0

L1(λ) · lim inf
λ↓0

L2(λ), if lim
λ↓0

L1(λ) ≥ 0. (6.14)

(a):

Suppose f is differentiable, then its lower directional derivatives are all directional

derivatives, and we have the total derivative decomposition

f ′(x; d) = Σn
i=1f

′(x; di), (6.15)

where di is the i-th coordinate of d. Therefore f is strong regular under strongest

partition. The other two results are trivial.

(b):

Suppose f is a function of k-th block of π, i.e., f(x) = g(x(k)). Then for any

direction d = (dT(1), ...,d
T
(r))

T = Σr
i=1di,

f ′(x; d) = lim inf
λ↓0

f(x + λd)− f(x)

λ

= lim inf
λ↓0

g(x(k) + λd(k))− g(x(k))

λ

=g′(x(k); d(k)),

(6.16)

thus for i 6= k, f ′(x; di) = 0, and for i = k, f ′(x; di) = f ′(x; d). Therefore we have

f ′(x; d) = Σr
i=1f

′(x; di), and thus strong regularity holds.

(c):
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For any point x ∈ dom(f) and any direction d, we have

f ′(x; d)

= lim inf
λ↓0

f(x + λd)− f(x)

λ

= lim inf
λ↓0

g(h(x + λd))− g(h(x))

λ

= lim inf
λ↓0

g(h(x + λd))− g(h(x))

h(x + λd)− h(x)
· h(x + λd)− h(x)

λ

= lim
λ↓0

g(h(x + λd))− g(h(x))

h(x + λd)− h(x)
· lim inf

λ↓0

h(x + λd)− h(x)

λ
( due to (6.14))

=g′(h(x)) · h′(x; d),

(6.17)

where the last two steps hold, since h(·) is continuous and g(·) has nonnegative

derivative.

For any point x and any direction d = (dT(1), ...,d
T
(r))

T = Σr
i=1di, if g′(h(x)) = 0,

then f ′(x; d) = 0 always holds, thus f is strong regular at point x, therefore we

assume g′(h(x)) > 0.

(1) If h is standard regular, then f ′(x; d) = g′(h(x)) · h′(x; d) ≥ g′(h(x)) ·

Σr
i=1h

′(x; di) = Σr
i=1g

′(x; di).

(2) If h is strong regular, then f ′(x; d) = g′(h(x))·h′(x; d) = g′(h(x))·Σr
i=1h

′(x; di) =

Σr
i=1g

′(x; di).

(3) If h is weak regular, then

f ′(x; d) ≥ 0,∀ BC-direction d

⇒h′(x; d) = f ′(x; d)/g′(h(x)) ≥ 0,∀ BC-direction d

⇒h′(x; d) ≥ 0,∀ direction d

⇒f ′(x; d) = g′(x; d) · g′(h(x)) ≥ 0,∀ direction d

(6.18)
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(d):

We denote the partial derivative function of g(·) w.r.t. i-th coordinate as g′i(·),

1 ≤ i ≤ r.

For any point x and any direction d = (dT(1), ...,d
T
(r))

T = Σr
i=1di, we have:

f ′(x; di) = lim inf
λ↓0

f(x + λdi)− f(x)

λ

= lim inf
λ↓0

g(h1(x(1)), ..., hi(x(i) + λd(i)), ..., hr(x(r)))− g(h1(x(1)), ..., hr(x(r)))

λ

= lim inf
λ↓0

g(h1(x(1)), ..., hi(x(i) + λd(i)), ..., hr(x(r)))− g(h1(x(1)), ..., hr(x(r)))

hi(x(i) + λd(i))− hi(x(i))

·
hi(x(i) + λd(i))− hi(x(i))

λ

= lim
λ↓0

g(h1(x(1)), ..., hi(x(i) + λd(i)), ..., hr(x(r)))− g(h1(x(1)), ..., hr(x(r)))

hi(x(i) + λd(i))− hi(x(i))

· lim inf
λ↓0

hi(x(i) + λd(i))− hi(x(i))

λ

=g′i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i)).

(6.19)

where the last two steps hold, since hi(·) is continuous and g′i(·) is nonnegative.
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For direction d, we have

f ′(x; d) = lim inf
λ↓0

f(x + λd)− f(x)

λ

= lim inf
λ↓0

g(h1(x(1) + λd(1)), ..., hr(x(r) + λd(r))))− g(h1(x(1)), ..., hr(x(r)))

λ

= lim inf
λ↓0[g(h1(x(1) + λd(1)), ..., hr(x(r) + λd(r)))− g(h1(x(1)), ..., hr(x(r) + λd(r)))

λ
+

...+
g(h1(x(1)), ..., hr−1(x(r−1)), hr(x(r) + λd(r)))− g(h1(x(1)), ..., hr(x(r)))

λ

]
.
= lim inf

λ↓0

(
T1(λ) + ...+ Tr(λ)

)
≥ lim inf

λ↓0
T1(λ) + ...+ lim inf

λ↓0
Tr(λ)( due to (6.6)).

(6.20)

For the i-th term lim infλ↓0 Ti(λ), we have

lim inf
λ↓0

Ti(λ)

= lim inf
λ↓0

[g(h1(x(1)), ..., hi−1(x(i−1)), hi(x(i) + λd(i)), ..., hr(x(r) + λd(r)))

− g(h1(x(1)), ..., hi(x(i)), hi+1(x(i+1) + λd(i+1)), ..., hr(x(r) + λd(r)]/λ

= lim inf
λ↓0

[(g(h1(x(1)), ..., hi−1(x(i−1)), hi(x(i) + λd(i)), ..., hr(x(r) + λd(r)))

− g(h1(x(1)), ..., hi(x(i)), hi+1(x(i+1) + λd(i+1)), ..., hr(x(r) + λd(r))

/(hi(x(i) + λd(i))− hi(x(i)))] · [(hi(x(i) + λd(i))− hi(x(i)))/λ]

=g′i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i)).

(6.21)

where the last step holds, since hi(·) is continuous, g′i(·) is continuous and nonnega-

tive.
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Therefore we have

f ′(x; d) ≥ Σr
i=1g

′
i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i)). (6.22)

Suppose di has decomposition di = Σri
i=1eij under partition πi, or equivalently,

d(i) = Σri
i=1e(i)j, then d = Σr

i=1Σ
ri
j=1eij.

(1) If hi’s are standard regular under πi, then

f ′(x; d)

≥Σr
i=1g

′
i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i))

≥Σr
i=1g

′
i(h1(x(1)), ..., hr(x(r))) ·

(
Σri
j=1h

′
i(x(i); e(i)j)

)
=Σr

i=1Σ
ri
j=1g

′
i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); e(i)j)

(6.23)

Note that eij is also a BC-direction of π0, thus according to (6.19), we have

f ′(x; eij) = g′i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); e(i)j). (6.24)

Plug this result into (6.23), we get f ′(x; d) ≥ Σr
i=1Σ

ri
j=1f

′(x; eij), thus f is stan-

dard regular under π̄.

(2) If hi’s are weak regular under πi, then suppose x is a BCM point under π̄,

i.e., f ′(x; eij) ≥ 0, ∀ BC-direction eij under π̄.

(i) If g′i(h1(x(1)), ..., hr(x(r))) = 0, then g′i(h1(x(1)), ..., hr(x(r))) ·h′i(x(i); d(i)) = 0 ≥

0.
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(ii) If g′i(h1(x(1)), ..., hr(x(r))) > 0, then

f ′(x; eij) = g′i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); e(i)j) ≥ 0,

(∀ BC-direction eij under π̄, or ∀ BC-direction e(i)j under πi)

⇒h′i(x(i); e(i)j) ≥ 0,∀ BC-direction e(i)j under πi

⇒h′i(x(i); d(i)) ≥ 0,∀ direction d(i) of Rsi (due to weak regularity of hi)

⇒g′i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i)) ≥ 0,∀ direction d(i) of Rsi .

(6.25)

Under either (i) or (ii), we have g′i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i)) ≥ 0, thus

f ′(x; d) ≥ Σr
i=1g

′
i(h1(x(1)), ..., hr(x(r))) · h′i(x(i); d(i)) ≥ 0, therefore f is weak regular

at any point e under π̄, and we complete the proof of (d).

Remark 3. In both (c) and (d), we assume function(s) h(·) (or hi(·)) to be con-

tinuous, this is needed in term

lim
λ↓0

g(h(x + λd))− g(h(x))

h(x + λd)− h(x)
,

besides, (d) also assumes g′i(·) to be continuous, this is needed in term

lim inf
λ↓0

[(g(h1(x(1)), ..., hi−1(x(i−1)), hi(x(i) + λd(i)), ..., hr(x(r) + λd(r)))

− g(h1(x(1)), ..., hi(x(i)), hi+1(x(i+1) + λd(i+1)), ..., hr(x(r) + λd(r))

/(hi(x(i) + λd(i))− hi(x(i)))],

while (b) does not need this assumption, because in one-dimensional case, it does

not have this decomposition.

Remark 4. We cannot obtain strong regularity of function f in (d), because in
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equation (6.22) there occurs inequality, further, this is due to the property of lower

limit (6.6).

Remark 5. “The micro essence of differentiability is linearity”, therefore from (6.17)

we can see (c) actually corresponds to “nonnegative scalar multiplicity”, thus there

is nothing strange that all standard, strong and weak regularity can be transmitted;

from (6.22) we can see (d) actually corresponds to “additivity of marginal functions

with disjoint blocks”, or equivalently we take g(t1, ..., tr) = t1+ ...+tr, in which strong

regularity still cannot be transmitted if we look at its details.

Note that any function is strong regular under weakest partition, thus by letting

πi in (d) be the weakest partition (then π̄ = π0), we have the following results:

Corollary 1. For any functions hi’s in (d) of Lemma (5) (not necessarily regular),

we have f(x) = f(x(1), ...,x(r)) = g(h1(x(1)), ..., hr(x(r))) is standard regular under

π0.

The results in Lemma (3) and Lemma (5) consist our main results on regular-

ity, and in following sections, we use these results to show the convergence for our

algorithm.

6.3 Convergence of Alternating-Direction Algorithms for Regularized SVD

Now go back to our formulation for regularized SVD problem:

−2uTXv + uTu · (vTv + λ||v||21).

Since we use an alternating direction scheme, which is a special case of block

coordinate descent, our proof is based on the regularity results in previous section

and convergence results in [21] (Theorem 4.1 and theorem 5.1).
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It is easy to check that the formulation above is strictly convex w.r.t. u when v is

fixed, and vice versa. As we know strictly convex function has at most one minimum

point, therefore this satisfies the condition of theorem 4.1 (c) in [21]: ”If f(x1, ..., xN)

has at most one minimum in xk for k = 2, ..., N − 1” (here we only have two blocks,

x1 is u, x2 is v). Thus, our alternating-direction algorithm will converge to a BCM

point under partition
{
{1, ..., n}, {n+ 1, ..., n+ p}

}
.

To show it converges to a stationary point, we need to show the objective function

is regular under the above partition.

We use Corollary 1 to prove the regularity, now π0 =
{
{1, ..., n}, {n+1, ..., n+p}

}
,

r = 2, s1 = n, s2 = p, π1 =
{
{1, ..., n}

}
, π2 =

{
{1, ..., p}

}
, h1(u) = uTu, h2(v) =

vTv + λ||v||21, g(t1, t2) = t1 · t2, with t1 ≥ 0 and t2 ≥ 0.

g(·) is continuously differentiable, and its partial derivatives are nonnegative given

t1 ≥ 0 and t2 ≥ 0, thus uTu · (vTv + λ||v||21) is standard regular under π0.

In addition, −2uTXv is a differentiable function, thus using result (a) in Lemma

(3), the objective function in sparse-smooth problem is standard regular under π0.

Therefore we showed that the alternating-direction algorithm we used converges

to a stationary point for our regularized SVD problem (3.12).

6.4 Convergence for Regularized SVD with Orthogonal Constraint

When adding orthogonal constraint on our regularized SVD problem, the formu-

lation becomes:

−2uTXv + uTu · (vTv + λ||v||21), sub to v ⊥ Vk

By introducing basis matrices Vk and V⊥k , v ⊥ Vk can be denoted as v = V⊥k t
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(t ∈ Rp−k), and the formulation becomes:

min
u,t
−2uTXV⊥k t + uTu · (tT (V⊥k )TVkt + λ||(V⊥k )T t||21).

We can see this formulation is marginally strictly convex w.r.t. u and v, respec-

tively thus it has unique minimum when updating u or v. Thus again according to

Theorem 4.1 (c) in [21], our algorithm (using formulation about u and t) converges

to a block coordinatewise minimum (BCM) point under partition
{
{1, ..., n−k}, {n−

k + 1, ..., n+ p− 2k}
}

.

To show it converges to a stationary point, we need to prove the regularity, again

we use Corollary 1, now π0 =
{
{1, ..., n − k}, {n − k + 1, ..., n + p − 2k}

}
, r = 2,

s1 = n − k, s2 = p − k, π1 =
{
{1, ..., n − k}

}
, π2 =

{
{1, ..., p − k}

}
, h1(u) = uTu,

h2(t) = tT (V⊥k )TVkt + λ||(V⊥k )T t||21, g(t1, t2) = t1 · t2, with t1 ≥ 0 and t2 ≥ 0.

g(·) is continuously differentiable, and its partial derivatives are nonnegative given

t1 ≥ 0 and t2 ≥ 0, thus uTu · (tT (V⊥k )TVkt+λ||(V⊥k )T t||21) is standard regular under

π0.

In addition, −2uTXV⊥k t is a differentiable function, thus using result (a) in

Lemma (3), the objective function in sparse-smooth problem with orthogonal con-

straint is standard regular under π0.

Therefore we showed that the alternating-direction algorithm we used converges

to a stationary point for our regularized SVD problem (5.1).
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7. FURTHER PROGRESS: CONVERGENCE TO GLOBAL OPTIMA

7.1 Regularized SVD Problem and Convergence for Power Iteration

We still starts from our main formulation (problem (3.12)):

min
u,v
||X− uvT ||2F + λuTu · ||v||21,

which is equivalent to (Rayleigh-Quotient form) (problem (3.13))

min
u,v
−2uTXv + uTu · (λ||v||21 + ||v||22).

In previous section, we have proved that our algorithm converges to a stationary

point. Any stationary point of (3.13) must satisfies:

0 ∈ −2XTu + uTu ·
(
2v + 2λv||v||1 · sgn(v)

)
,

0 = −2Xv + 2(||v||22 + λv||v||21)u.
(7.1)

In the aspect of algorithm, the updating rules for u and v are

u← Xv

||v||22 + λv||v||21
∝ Xv,

v← SLSA(XTu;λv)/uTu.

(7.2)

We plan to utilize the convergence result about standard power’s iteration, there-

fore we need a matrix-vector multiplication form for iteration above.

Updating rule of u is already in the form of matrix-vector multiplication.

As for v, since it is a squared lasso signal approximation (SLSA) problem, to

develop a generally-used result, let’s switch the scenario to standard SLSA problem
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in next section.

7.2 Matrix-Vector Multiplication Form for SLSA Problem

Suppose the original signal is x = (x1, x2, ..., xn)T and the tuning parameter is λ.

The main procedure for SLSA is

1. First order the entries of x by absolute value in an increasing order: |xk1| ≥

|xk2| ≥ · · · ≥ |xkn|.

2. Then denote zi = xki , 1 ≤ i ≤ n.

3. Find the cutting point, i.e., find a unique integer r between 1 and n, such that

|zi| >
λ

λr + 1

r∑
j=1

|zj|, 1 ≤ i ≤ r, |zi| ≤
λ

λr + 1

r∑
j=1

|zj|, r < i ≤ n. (7.3)

Or,

|zr| >
λ

λr + 1

r∑
j=1

|zj|, |zr+1| ≤
λ

λr + 1

r∑
j=1

|zj|. (7.4)

4. Threshold to zero for zi’s, r < i ≤ n.

5. Linearly shrinkage for zi’s, 1 ≤ r ≤ r. Denote z0 = (z1, . . . , zr), the subvector

to be shrank, and z̃0 = (z̃1, . . . , z̃r), which is the subvector of entries after

shrinking, then we have |z̃0| = (Ir − λ
λr+1

1r1
T
r )|z0|.

To translate the whole procedure above, we need the following notations and

manipulations:

1. For the step of transformation x → z, define the order transformation matrix

T(x) such that T(x)x = z. We know T(x) is an orthogonal matrix, also we have

T(x)diag(x)T T(x) = diag(z).

In addition, T(x̃) = T(x), T(x)x̃ = z̃, where x̃ = SLSA(x;λ) and z̃ = SLSA(z;λ)

66



2. Define S(x) = diag(sgn(x)), and same for S(z). Then we have S(x)x = |x|,

S(z)z = |z|, T(x)sgn(x) = sgn(z), T(x)|x| = |z|, and T(x)S(x)T T(x) = S(z).

3. For z, we have z = (zT0 , z
T
1 )T , the partition of being thresholded and shrank,

similarly we have z̃ = (z̃T0 , z̃
T
1 )T . Then |z̃0| = (Ir− λ

λr+1
1r1

T
r )|z0|, by multiplying

S(z̃0) (note that S(z̃0) = S(z0), since z0 is the shrank part, not thresholded part),

we have z̃0 = S(z0)(Ir − λ
λr+1

1r1
T
r )S(z0)z0. As for z̃1, we have z̃1 = 0 · z1.

4. Therefore

z̃ =

 z̃0

z̃1

 =

 S(z0)(Ir − λ
λr+1

1r1
T
r )S(z0)z0

0 · z1


= S(z) ·

 Ir − λ
λr+1

1r1
T
r , 0

0, 0

 · S(z) · z.
(7.5)

5. On the other hand, T(x)x̃ = z̃, because threshold is one-by-one, and does not

affect the order.

6. Thus,

x̃ = T −1(x) z̃ = T −1(x) · S(z) ·

 Ir − λ
λr+1

1r1
T
r , 0

0, 0

 · S(z) · z (7.6)

= (T(x)S(x))T ·

 Ir − λ
λr+1

1r1
T
r , 0

0, 0

 · T(x)S(x) · x. (7.7)

7. If we denote

M = (T(x)S(x))T ·

 Ir − λ
λr+1

1r1
T
r , 0

0, 0

 · T(x)S(x), (7.8)
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then we have

x̃ = SLSA(x;λ) = Mx. (7.9)

For regularized SVD problem, the signal x (which is XTu/(uTu)) to be processed

changes during iterations (since u and v changes), we need to investigate the stability

and different possibilities for M.

As we know, u changes (diverges at first and converges finally) during iterations,

as function of u, M = M(u) needs to be stable after certain iteration step, so that

our analysis above could make sense.

According to equation (7.8), the stability of M depends on S(x), T(x), and number

r. The only nonzero part of

 Ir − λ
λr+1

1r1
T
r , 0

0, 0

 (7.10)

is its left-upper corner, which makes the corresponding part of T(x)S(x) not impor-

tant, or, S(z1) not important. Ir − λ
λr+1

1r1
T
r is a sequentially symmetric matrix,

which makes S(z0) not important. The only thing matters is the boundary be-

tween shrank part and thresholded part, or equivalently, we need |zr+1| < |zr| and

|zr+1| < λ
λr+1

∑r+1
j=1 |zj| ≤ zr. As [16] already analyzed, this requirement only excludes

a zero measure set.

Suppose

|zr+1| <
λ

λr + 1

r+1∑
j=1

|zj|

holds, then there exists a neighbor of the current point x, say o(x, δ0), such that

∀x0 ∈ o(x, δ0), SLSA(x0, λ) has the same “pattern”, in the sense that zero locations
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and shrank locations are the same (not to mention the same r), or more meaningfully,

SLSA(x0, λ) = Mx0, with M being fixed.

To count how many different possibilies M has, again due to special form of

 Ir − λ
λr+1

1r1
T
r , 0

0, 0

 , (7.11)

there are only two things that matter, the number r and the r nonzero locations,

therefore, the number of possibilities for M should be
∑n

r=0C
r
n2r = 3n, which is a

huge yet finite number.

7.3 Convergence Result for Regularized SVD

Go back to problem (3.13), based on results in previous section, we have

u ∝ Xv, v ∝ SLSA(XTu, λ) ∝MXTu, (7.12)

which is equivalent to

u ∝ XM1/2(M−1/2v), M−1/2v ∝M1/2XTu, (7.13)

where

M−1/2 = (T(x)S(x))T ·

 (Ir − λ
λr+1

1r1
T
r )−1/2, 0

0, 0

 · T(x)S(x), (7.14)

Note that M is not invertible, however when v ∝M1/2XTu, we can easily verify

that XM1/2(M−1/2v) = Xv.
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If we denote ξ = u, η = M−1/2v, and P = XM1/2, then we have

ξ ∝ Pη, η ∝ PTξ. (7.15)

We can see (ξ,η) are a pair of singular vectors of P = XM−1/2, and the iteration

step

u← Xv

||v||22 + λv||v||21
∝ Xv,

v← SLSA(XTu;λv)/uTu.

(7.16)

is equivalent to

ξ ← Pη

ηTη
· ηTη

||v||22 + λv||v||21
, η ← PTξ

ξTξ
, (7.17)

which is the standard alternating direction algorithm for SVD (up to a small scale dif-

ference, and when v begins to converge, the scale difference converges to a constant),

which differs from standard power iteration only at scale. Alternating direction al-

gorithm and power iteration have the same convergence result, moreover, as long as

the scale difference finally converges and does not make trouble, any variant method

has same converging property as standard power iteration.

As we know, the global optima of (3.13) must be a stationary point (may not be

the unique stationary point), therefore it must corresponds one M (since you can

see we actually many possibilities for M, which would be discussed in the end of

this section), therefore if we could find the correct M (say M0), the global optima

is actually the leading singular vector of XM
1/2
0 .

As a summary, the structure of convergence to global/local optimal has been made

clear (given that the correct M is identified), and we have same global optimality
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result as in standard power iteration.

The convergence to global optima of power iteration is based on two conditions:

1. Leading singular value of X is strictly greater in magnitude than its other

singular values;

2. The initialization vector u0 has a nonzero component in the direction of an left

singular vector associated with the dominant singular value.

Due to the huge number of possibilities for M, our result here has contribution

in theoretic level, not practical level. However, one can follow this strategy and

design some quick filtering method to reduce possible number of M (for example

make local search based on standard SVD plus post threshold). Given that most

SVD-based algorithm fails to show their convergence, not to mention convergence to

global optima, our results here could be considered as a significant breakthrough.
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8. MISSING VALUES AND ENTRYWISE CROSS-VALIDATION

8.1 Single-Layer Regularized SVD with Missing Values

Suppose the data matrix X has some missing values, we denote the missing loca-

tions and observed locations as m and o, respectively; also denote their corresponding

indicator matrix as Im and Io, respectively, then we have the following decomposition

X = X� (Im + Io) = Xm + Xo, (8.1)

where � stands for elementwise product.

Therefore under single-layer SVD model X = uvT + E, E = (eij), eij iid. ∼

N (0, σ2), the observed log-likelihood function is proportional to:

||(X− uvT )� Io||2F . (8.2)

We hope v to be sparse, no matter if the data entries are completely observed or

not, thus we have the following penalized observed likelihood:

||(X− uvT )� Io||2F + λuTu · ||v||21. (8.3)

We can see the solution (u∗,v∗) of optimizing (8.3) is also the solution in

min
u,v,Xm

||Xo + Xm − uvT ||2F + λuTu · ||v||21. (8.4)

The equivalence is due to the following fact: given any (u,v), the optima of Xm
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in (8.4) would be uvT � Im, which results in

min
u,v,Xm

||Xo + Xm − uvT ||2F + λuTu · ||v||21,

⇔min
u,v

{
min
Xm

||Xo + Xm − uvT ||2F + λuTu · ||v||21
}
,

⇔min
u,v
||Xo + uvT � Im − uvT ||2F + λuTu · ||v||21,

⇔min
u,v
||Xo − uvT � Io||2F + λuTu · ||v||21,

⇔min
u,v
||(X− uvT )� Io||2F + λuTu · ||v||21.

(8.5)

To optimize (8.4), we could use alternating-direction strategy. In particular, we

have three optimizing blocks: u, v, and Xm (or, more precisely, Xm, which is a

vector obtained by first stretching Xm then removing zero entries.), the updating

rules all have closed form: u and v can be updated as in non-missing case, Xm can

be updated by uvT � Im.

We summarize above analysis as the following algorithm.

Alternating-Direction-Entry-Completion-Algorithm to solve (8.3):

Input: Xo ∈ Rn×p with missing values and λ > 0.

Output: u ∈ Rn, v ∈ Rp;

Algortihm:

1. Set initial value u0 and v0 for u and v, respectively;

2. For i = 0, 1, 2, ..., repeat the following steps until convergence:

Xi+1
m =ui(vi)T � Im

ui+1 =
(Xo + Xi+1

m )vi

λ||vi||21 + ||vi||22

vi+1 =SLSA
((Xo + Xi+1

m )Tui+1

(ui+1)Tui+1
, λ
)
.

(8.6)
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8.2 Convergence to Stationary Point

First, we have the following standard form of objective function:

f(u,v,Xm) = f0(u,v,Xm) + f1(u,v),

= ||Xo + Xm − uvT ||2F + λuTu · ||v||21,

∝ ||Xm||2F − 2uT (Xo + Xm)v + uTu · (vTv + λ||v||21).

(8.7)

Same as in non-missing case, we use the results we developed in section 6 and

Theorem 3.1 and Theorem 4.1 in [21].

It is easy to check that (8.7) is marginally strictly convex w.r.t. Xm, u, and

v. As we know strictly convex function has at most one minimum point, there-

fore this satisfies the condition of theorem 4.1 (c) in [21]: “If f(x1, ...,xN) has at

most one minimum in xk for k = 2, ..., N − 1” (here we have three blocks, x1 is u,

x2 is v, and x3 is Xm). Thus, our Alternating-Direction-Entry-Completion-

Algorithm will converge to a BCM (block coordinatewise minimum) point under

partition
{
{1, ..., n}, {n+ 1, ..., n+ p}, {n+ p+ 1, ..., n+ p+ τ}

}
, where τ is length

of Xm, i.e. number of missing entries.

To show it converges to a stationary point, we need to show the objective function

is regular under the above partition.

We use Corollary 1 to prove the regularity, now π0 =
{
{1, ..., n}, {n + 1, ..., n +

p}, {n + p + 1, ..., n + p + τ}
}

, r = 3, s1 = n, s2 = p, and s3 = τ , π1 =
{
{1, ..., n}

}
,

π2 =
{
{1, ..., p}

}
, π3 =

{
{n+p+1, ..., n+p+τ}

}
, h1(u) = uTu, h2(v) = vTv+λ||v||21,

h3(Xm) = 0, g(t1, t2, t3) = t1 · t2, with t1 ≥ 0, t2 ≥ 0, and t3 ∈ R.

g(·) is continuously differentiable, and its partial derivatives are nonnegative given

t1 ≥ 0, t2 ≥ 0, and t3 ∈ R, thus uTu · (vTv + λ||v||21) is standard regular under π0.

In addition, ||Xm||2F − 2uT (Xo + Xm)v is a differentiable function, thus using
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result (a) in Lemma (3), the objective function (8.7) is standard regular under π0.

Therefore we complete the proof to the convergence.

8.3 Multi-Layer Regularized SVD with Missing Values

The formulation regularized SVD with orthogonal constraint and missing values

is

min
u,v,Xm

||Xo + Xm − uvT ||2F + uTu · (vTv + λ||v||21), sub to v ⊥ Vk, (8.8)

By introducing basis matrices Vk and V⊥k , v ⊥ Vk can be denoted as v = V⊥k t

(t ∈ Rp−k), and the above formulation becomes:

min
u,t,Xm

||Xm||2F − 2uT (Xo + Xm)V⊥k t + uTu · ((tTV⊥k )TV⊥k t + λ||V⊥k t||21). (8.9)

To optimize (8.9), we could use alternating-direction strategy. In particular, we

have three optimizing blocks: u, t, and Xm, the updating rules all have closed form:

u and t can be updated as in non-missing case, Xm can be updated by uvT � Im,

or utT (V⊥k )T � Im.

8.4 Convergence to Stationary Point

It is easy to check that formulation (8.9) is marginally strictly convex w.r.t. u,

t, and Xm. Again this satisfies the condition of theorem 4.1 (c) in [21]. Thus,

our Generalized Algorithm for Regularized SVD Problem with Orthogo-

nal Constraint and Missing Values converges to a BCM point under partition{
{1, ..., n− k}, {n− k+ 1, ..., n+ p− 2k}, {n+ p− 2k+ 1, ..., n+ p− 2k+ τ}

}
, where

τ is number of missing entries.

To show it converges to a stationary point, we need to prove its regularity, again
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we use Corollary 1, now π0 =
{
{1, ..., n−k}, {n−k+ 1, ..., n+p−2k}, {n+p−2k+

1, ..., n+ p− 2k + τ}
}

, r = 3, s1 = n− k, s2 = p− k, s3 = τ , π1 =
{
{1, ..., n− k}

}
,

π2 =
{
{n − k + 1, ..., n + p − 2k}

}
, π3 =

{
{n + p − 2k + 1, ..., n + p − 2k + τ}

}
,

h1(u) = uTu, h2(t) = (tTV⊥k )TV⊥k t + λ||V⊥k t||21, h3(Xm) = 0, g(t1, t2, t3) = t1 · t2,

with t1 ≥ 0, t2 ≥ 0, and t3 ∈ R.

g(·) is continuously differentiable, and its partial derivatives are nonnegative given

t1 ≥ 0, t2 ≥ 0, and t3 ∈ R, thus (uTu · ((tTV⊥k )TV⊥k t+λ||V⊥k t||21) is standard regular

under π0.

In addition, ||Xm||2F − 2uT (Xo + Xm)V⊥k t is a differentiable function, thus using

result (a) in Lemma (3), the objective function of problem (8.9) is standard regular

under π0. Therefore we complete the proof to the convergence.

8.5 Cross Validation for Regularized SVD

In [20], the authors developed a row-based cross-validation methods. It cannot

deal with missing values in X, also, it can not be generalized to two-way regularized

SVD. In this section, we propose an entrywise cross-validation, which can deal with

missing values and can be generalized.

To perform cross-validation, one can randomly split the set of entries in data

matrix X into training data and testing data (say, X� Itrain and X� Itest). Given

the training data, we can get a regularized SVD model using algorithm above, say,

the estimators are (û, v̂), then we have the following loss function:

||(X− ûv̂T )� Itest||2F . (8.10)

To make a reasonable cross-validation, we can use following principles or strategies

to make a systematic subsampling:

1. Method 1: We can partition the indices of rows and columns as {1, 2, . . . , n} =
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R = Σr
i=1si and {1, 2, . . . , p} = C =

⋃c
j=1 bi. By doing so, we partition the

whole data set as r × c parts. We can use similar strategy as 5-fold cross-

validation, by each time leaving one part out as testing set, and all rest as

training part.

2. Method 2: We can randomly generate several sets of indices, and each time

use one set as testing set, rest as training set.

3. Note that if a whole row (or column) is missing, say, i-th row (or j-th column),

then we won’t have reasonable estimation of ui (or vj), while the testing error

is also not reasonable. Therefore, we have to make sure the set of indices for

testing data in Method 2 does not include any whole row (or whole column).

While Method 1 does not have this concern.

4. Besides, if X contains missing values, we can split X into three parts Xm,

Xtrain, and Xtest, where Xtrain and Xtest consists of Xo.
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9. SIMULATION AND REAL WORLD DATA ANALYSIS

9.1 Data Generation for Simulation

For simulation data analysis, we generate data sets whose covariance matrix ac-

tually has sparse leading eigenvectors. We describe here a general scheme to generate

such data. Suppose we want to generate data from Rp such that the q (q < p) leading

eigenvectors of the covariance matrix Σ are sparse. Denote the first q eigenvectors

as v1, ...,vq, which are specified to be sparse and orthonormal. The remaining p− q

eigenvectors are not specified to be sparse. Denote the positive eigenvalues of Σ in

decreasing order as c1, ..., cp.

We first generate the other q−p orthonormal eigenvectors of Σ. To this end, form

a full-rank matrix V = [v1, ...,vq,v
∗
q+1, ...,v

∗
p], where v1, ...,vq are the pre-specified

sparse eigenvectors and v∗q+1, ...,v
∗
p are arbitrary. For example, the vectors v∗q+1, ...,v

∗
p

can be randomly drawn from U(0, 1); if V is not of full-rank for one random draw, we

can draw another set of vectors. Then, we apply the GramSchmidt orthogonalization

method to V to obtain an orthogonal matrix V = [v1, ...,vq,vq+1, ...,vp], which is

actually the matrix Q from the QR decomposition of V∗. Given the orthogonal

matrix V, we form the covariance matrix Σ using the following eigen decomposition

expression,

Σ = c1v1v
T
1 + c2v2v

T
2 + c3v3v

T
3 + + cpvpv

T
p = VCVT ,

where C = diag{c1, ..., cp} is the eigenvalue matrix. The first q eigenvectors of Σ

are the pre-specified sparse vectors v1, ...,vq. To generate data from the covariance

matrix Σ, let Z be a random draw from N(0, Ip) and X = VC1/2Z, then cov(X) = Σ,
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as desired.

9.2 Simulation of Low-Dimension Case

Example 1. We considered a covariance matrix with two specified sparse leading

eigenvectors. The data are in R10 and generated as X ∼ N(0,Σ1). Let

ṽ1 = (1, 1, 1, 1, 0, 0, 0, 0, 0.9, 0.9)T , ṽ2 = (0, 0, 0, 0, 1, 1, 1, 1,−0.3, 0.3)T .

The first two eigenvectors of Σ1 are then chosen to be

v1 = ṽ1/||ṽ1|| = (0.422, 0.422, 0.422, 0.422, 0, 0, 0, 0, 0.380, 0.380)T ,

v2 = ṽ2/||ṽ2|| = (0, 0, 0, 0, 0.489, 0.489, 0.489, 0.489,−0.147, 0.147)T ,

both of which have a degree of sparsity of 4. The ten eigenvalues of Σ1 are respectively

200, 100, 50, 50, 6, 5, 4, 3, 2 and 1. The first two eigenvectors explain about 70% of

the total variance.

We simulated 100 datasets of size n = 30 and n = 300 respectively with the

covariance matrix being Σ1. For each simulated dataset, the first two sparse loading

vectors are calculated using (1) standard PCA; (2)-(4) methods from [20] (called

sPCA-rSVD) with the soft, hard and SCAD thresholding rules, the procedures are

referred as sPCA-rSVD-soft, sPCA-rSVD-hard and sPCA-rSVD-SCAD respectively;

(5) simple thresholding with true degree of sparsity; (6)-(7) methods from [26], which

are referred as SPCA (k = 2) and SPCA (k = 1); (8)-(9): our sparse PCA methods,

which are referred as sPCA-SL (sparse PCA using squared lasso penalty) and sPCA-

SL-OC (with orthogonal constraint).

To facilitate comparison with simple thresholding and SPCA, for which there

is no automatic way of selecting the degree of sparsity of the PC loading vectors,
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the true degree of sparsity is used when applying the sPCA-rSVD, sPCA-SL, and

sPCA-SLOC procedures (referred to as the oracle methods below).

Table (9.1) reports the medians of the angles between the extracted loading vec-

tors and the corresponding truth for each procedure, as well as the percentages of

correctly/incorrectly identified zero loadings for the loading vectors.

We can see our two methods appear to perform reasonably well and give compa-

rable results with sPCA-rSVD family. Comparing with standard PCA, our methods

result in smaller median angles, which suggests that sparsity does improve statisti-

cal efficiency. Comparing with SPCA family, our method outperforms in all three

measurements.

Table (9.2) reports the comparison results for sparse PCA methods using cross

validation. Since standard PCA, simple threshold method, and SPCA family can-

not do cross validation, we only do comparison with sPCA-rSVD family. Similarly,

we can see our results is comparable, and we can offer both rowwise method and

entrywise method.

9.3 Simulation of High-Dimension Case

Example 2. We also considered a covariance matrix with two specified sparse

leading eigenvectors. The data are in Rp with p = 500 and generated as X ∼

N(0,Σ2). Let ṽ1 and ṽ2 be two 500-dimensional vectors such that v1k = 1, k =

1, ..., 10, and v1k = 0, k = 11, ..., 500; and v2k = 0, k = 1, ..., 10, k = 21, ..., 500. The

first two eigenvectors of Σ2 are chosen to be v1 = ṽ1/||ṽ1|| and v2 = ṽ2/||ṽ2||. To

make these two eigenvectors dominate, we let the eigenvalues be c1 = 400, c2 = 300

and ck = 1 for k = 3, ..., 500. The simulation scheme of section 9.1 is used to generate

data.

We simulated 100 data sets of size n = 50 with Σ2 being the covariance matrix.
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Method
v1 v2

Median Correct Incorrect Median Correct Incorrect
Angle (%) (%) Angle (%) (%)

n = 30
PCA 15.05 0.17 0.00 28.83 0.00 1.00

sPCA-rSVD-soft 10.86 92.50 5.00 17.06 71.25 19.17
sPCA-rSVD-hard 7.50 90.50 6.33 17.14 70.50 19.67
sPCA-rSVD-SCAD 11.39 92.00 5.33 15.78 71.50 19.17

Simple 8.10 90.75 6.17 14.41 66.50 22.33
SPCA (k=2) 13.71 91.50 5.83 28.94 67.75 21.67
SPCA (k=1) 28.24 80.25 13.17
sPCA-SL 13.73 90.25 6.50 14.41 75.00 16.67

sPCA-SL-OC 13.73 90.25 6.50 16.21 76.20 17.36
n = 300

PCA 4.80 1 0 8.21 0.75 0.00
sPCA-rSVD-soft 2.48 100 0 5.54 98.00 1.50
sPCA-rSVD-hard 2.19 100 0 4.20 98.25 1.17
sPCA-rSVD-SCAD 2.19 100 0 4.54 98.00 1.33

Simple 2.48 100 0 5.88 95.50 3.00
SPCA (k=2) 4.11 100 0 9.95 97.25 2.17
SPCA (k=1) 7.71 100 0
sPCA-SL 2.76 100 0 4.92 98.50 1

sPCA-SL-OC 3.12 100 0 6.23 96.25 0.50

Table 9.1: Comparison of different methods in low-dimension case with oracle infor-
mation

Method
v1 v2

Median Correct Incorrect Median Correct Incorrect
Angle (%) (%) Angle (%) (%)

n = 30
sPCA-rSVD-soft 11.91 45.00 2.33 23.28 46.50 12.50
sPCA-rSVD-hard 10.89 62.25 2.33 25.15 52.25 18.17
sPCA-rSVD-SCAD 10.68 45.25 2.50 22.40 43.25 12.83
sPCA-SL-rowwise 13.60 52.50 0.17 21.82 37.00 10.33
sPCA-SL-entrywise 11.72 43.50 0.00 18.52 54.00 15.5

sPCA-SL-OC-entrywise 14.87 43.75 2.50 36.91 70.25 42.33
n = 300

sPCA-rSVD-soft 2.95 69.00 0.00 6.09 44.00 1.17
sPCA-rSVD-hard 2.83 83.25 0.00 7.47 67.50 2.67
sPCA-rSVD-SCAD 2.83 74.75 0.00 5.90 57.25 1.33
sPCA-SL-rowwise 2.44 80.00 0.00 5.42 52.25 1.00
sPCA-SL-entrywise 2.72 83.25 0.00 5.94 92.00 2.00

sPCA-SL-OC-entrywise 2.58 81.25 0.00 7.33 91.75 5.17

Table 9.2: Comparison of different methods in low-dimension case using cross vali-
dation
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Method
v1 v2

Median Correct Incorrect Median Correct Incorrect
Angle (%) (%) Angle (%) (%)

PCA 19.69 5.79 0.10 20.39 4.60 0.20
sPCA-rSVD-soft 1.36 99.59 20.00 1.66 99.59 20.00
sPCA-rSVD-hard 1.21 99.59 20.00 1.53 99.59 20.00
sPCA-rSVD-SCAD 1.21 99.59 20.00 1.53 99.59 20.00
sPCA-rSVD-soft-CV 1.82 98.97 12.20 1.95 98.89 13.00
sPCA-rSVD-hard-CV 1.98 98.98 11.70 2.14 98.95 11.40
sPCA-rSVD-SCAD-CV 2.05 98.85 10.30 1.85 98.88 11.90

SPCA (k=2) 4.95 99.63 18.00 6.21 99.63 18.00
SPCA (k=1) 44.21 99.43 28.00
sPCA-SL 1.61 99.61 19.00 1.76 99.86 7.00

sPCA-SL-OC 2.17 99.61 19.00 2.79 99.92 10.80
sPCA-SL-CV-rowwise 2.05 90.41 12.00 2.17 98.05 11.50
sPCA-SL-CV-entrywise 3.21 93.92 3.90 4.78 82.11 3.70

Table 9.3: Comparison of different methods in high-dimension case

All methods used in last section are also performed to these high-dimension data

sets with the degree of sparsity being specified as the truth (the oracle method) or

by the five-fold CV (for sPCA-SL, sPCA-SL-OC and sPCA-rSVD family only). The

results are summarized in Table 9.3.

We can see our two methods appear to perform reasonably well and give compa-

rable results with sPCA-rSVD family. Comparing with standard PCA, our methods

result in smaller median angles, which suggests that sparsity does improve statisti-

cal efficiency. Comparing with SPCA family, our method outperforms in all three

measurements. As for cross-validation, we can see our results is comparable with

sPCA-rSVD.

9.4 Simulation of Missing Values Case

In this section, we consider sparse PCA on simulated data matrix with missing

values. Given a data matrix X : n × p and missing ratio ρ, we randomly drawed

n× p× ρ location in matrix X and set these locations as missing. Then we ran the
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Missing Ratio
v1 v2

Median Correct Incorrect Median Correct Incorrect
Angle (%) (%) Angle (%) (%)

0 3.21 93.92 3.90 4.78 82.11 3.70
0.01 9.59 93.26 5.30 8.57 80.89 6.80
0.05 10.69 92.89 4.60 9.40 80.88 5.10
0.10 9.06 93.65 5.20 8.00 80.92 6.00
0.20 9.35 93.50 4.60 7.72 79.89 5.10
0.40 8.66 95.41 6.30 7.04 79.39 7.10
0.60 14.81 95.61 9.60 11.03 77.23 6.80

Table 9.4: Sparse PCA with missing values for large p small q, tuning parameter is
selected via cross validation

algorithm for sparse PCA with missing values and compared with true values.

Note that we did not do comparison with other methods, since there is no paper

dealing with data analysis with missing values for sparse PCA.

In table 9.5, we use the same data generation model as in section 9.3. In table

9.5, the model setting is the same, except that q = 100, i.e., the first 100 elements

for v1 and second 100 elements for v2 are nonzero.

From both table, we could see that the recovery is reasonably good when missing

ratio is not too large (such as 20% or 40%), which suggests that, in reality, when data

matrix is incomplete, we can use our method and can have good result. In addition,

as missing ratio gets larger, the median angle gets worse and cross validation tends to

choose larger tuning parameter, which yields larger correct rate and incorrect rate.

9.5 Pitprops Data Analysis

The pitprops data, with 180 observations and 13 measured variables, is a classic

example showing the difficulty of interpreting PCs. To illustrate the performance of

their sparse PCA methods, several authors have studied the pitprops data, such as

[26], [20], and [16].

We first compared our method with [16], since both methods could achieve or-
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Missing Ratio
v1 v2

Median Correct Incorrect Median Correct Incorrect
Angle (%) (%) Angle (%) (%)

0 6.67 70.44 2.90 7.67 64.55 3.51
0.01 6.76 70.58 2.94 7.61 64.62 3.52
0.05 7.02 71.01 3.02 7.82 65.50 3.76
0.10 7.29 71.79 2.96 8.04 66.52 4.06
0.20 7.96 73.37 3.14 8.33 68.88 4.53
0.40 9.40 77.03 4.20 9.56 73.54 6.86
0.60 12.94 81.40 5.55 13.56 79.39 8.53

Table 9.5: Sparse PCA with missing values for large p large q, tuning parameter is
selected via cross validation

thogonality. The obtained sparse PC loadings are shown in table 9.6 and table 9.7.

We can see our results are quite close to [16]. For explained variance, we can see

both are close to the percentages achieved by the classic PCA: 32.4, 18.3, 14.4, 8.5,

7.0, 6.3, respectively.

The sparse PCs produced by SPCA and sPCA-rSVD are unorthogonal. The 

correlation matrices for [26] and [20] are shown below, from which we an see there 

exist many significant correlations:



1 −0.17 −0.33 −0.00 −0.20 0.08

−0.17 1 0.13 −0.14 −0.22 0.08

−0.33 0.13 1 0.10 0.14 −0.40

−0.00 −0.14 0.10 1 0.03 −0.01

−0.20 −0.22 0.14 0.03 1 −0.18

0.08 0.08 −0.40 −0.01 −0.18 1


,



1 0.20 −0.46 −0.33 −0.20 −0.04

0.20 1 −0.11 0.27 0.13 0.05

−0.46 −0.11 1 0.26 0.16 −0.10

−0.33 0.27 0.26 1 0.20 0.07

−0.20 0.13 0.16 0.20 1 −0.05

−0.04 0.05 −0.10 0.07 −0.05 1


.
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Variables PC1 PC2 PC3 PC4 PC5 PC6
Topdiam 0.534 0.005 -0.061 -0.016 0 0.021
Length 0.548 0 -0.065 -0.016 0 0.025
Moist 0 0.346 -0.015 0.006 0 0
Testsg 0 0.349 0 0.017 0 0.001
Ovensg 0 0 0.197 0 -0.103 0
Ringtop 0.173 0.036 0.156 -0.012 0 0.013
Ringbut 0.444 0 0.092 0 0 0.008
Bowmax 0.297 0 0 0.065 0 -0.104
Bowdist 0.438 0 0 0 0 0
Whorls 0.469 -0.019 0 0 -0.383 0
Clear 0 0 0 0 0 0
Lnots 0 0.032 0 -0.238 0 -0.032
Diaknot 0 0 -0.220 0 -0.092 0

Variance (%) 0.302 0.152 0.146 0.085 0.061 0.047
Cum.var. (%) 0.302 0.454 0.600 0.686 0.746 0.794

Table 9.6: Results of sPCA-SL-OC method on pitprops data

Variables PC1 PC2 PC3 PC4 PC5 PC6
Topdiam -0.471 0 0.197 0 0 0
Length -0.484 0 0.222 0 -0.045 0
Moist 0 -0.684 0 0.060 0.261 0
Testsg 0 -0.659 -0.072 0.063 0.189 -0.121
Ovensg 0 0 -0.745 0 0 -0.455
Ringtop -0.134 0 -0.400 0 -0.137 0.345
Ringbut -0.383 0 -0.110 0 -0.139 0.299
Bowmax -0.254 0.137 0 -0.092 0 -0.679
Bowdist -0.383 0 0 0 -0.080 0
Whorls -0.410 0.163 0 0.035 0 0
Clear 0 0 0 -0.978 -0.040 -0.091
Lnots 0 -0.229 0 0 -0.921 -0.318
Diaknot 0 0 0.424 0.163 0 0

Variance (%) 0.301 0.156 0.146 0.078 0.065 0.046
Cum.var. (%) 0.301 0.457 0.600 0.666 0.731 0.778

Table 9.7: Results of method in Qi, Luo, and Zhao [16] on pitprops data
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10. SUMMARY

In this dissertation we built a comprehensive approach for sparse PCA. Our

approach can handle single-layer cases, multi-layer cases using deflation, multi-layer

cases with orthogonal constraints, and cases with missing values. We showed method-

ology connections and comparisons with other methods, we proved convergence and

consistency results for these different cases, and we evaluated our methods using

simulated and real-world data sets.

In the first two sections we explained the challenges of sparse PCA compared with

standard PCA. We investigated recent major papers and compared their methods and

that of ours on several key metrics. The result showed that our approach is the most

comprehensive one. In section 3 we proposed our main formulation, and justified this

formulation via scale invariance property and choice of norms for penalty function.

In section 4 and 5 we developed algorithms for all different cases. To solve the SLSA

problem, we found its closed-form solution, to solve the SLOCSA problem, we in-

troduced the ADMM and QP algorithms. In section 6 and 7 we proved convergence

results for our methods. We developed some theoretical results to show regularity

of functions which is the preliminary requirement for proving stationarity. We also

proved the convergence of the estimator to the global optima by utilizing the conver-

gence property of the power iteration algorithm. In section 8 we developed a method

for cases with missing values, and we showed the convergence of this method using

theoretical results developed above. We also proposed a cross-validation method for

tuning parameter selection. In section 9 we evaluated our methods using simulated

and real-world data sets, which covered both high-dimensional and low-dimensional

scenarios.
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Our first formulation is equivalent to the one in [16], this does not reduce the

contribution of our methods. First of all, this result means the two methods are

equivalent w.r.t. stationary equation (or whole solution path), does not mean that

they are exactly the same. In fact we started from a totally different philosophy

from theirs, therefore the equivalence result showed that our formulation is a good

station to connect different approaches. Secondly, our formulation is more promising

than theirs. For cases other than single-layer cases, we don’t have equivalent results

with theirs any more. For cases with orthogonal constraint, their algorithm is not

as efficient as ours and they failed to show complete convergence results. For cases

with missing values, it is impossible to develop methods based on their formulation.

To solve the SLOCSA problem, we developed two approaches: the ADMM ap-

proach and the QP approach. The first one is easy to parallelize and thus efficient

for big-data scenarios, the second one is faster in small sample size cases. In simu-

lated and real-world data analysis part, we followed this guideline and used different

approachs for different settings.

Our results are specifically designed for sparse PCA problems, however it can be

generalized to two-way regularized SVD problems, such as bi-clustering problems,

two-way functional data analysis problems, and fMRI data analysis problems. This

further showed that our approach is comprehensive and promising.
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