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ABSTRACT 

 

Simulation-based verification is a very essential technique in ensuring the correct 

functionality of any digital integrated circuit design before it goes on silicon. One of the major 

challenges of running simulation-based verification on complex designs is the tradeoff between 

simulation time and the time taken for failure localization or to root cause. This is because the 

simulation run times could be very high when there are many checkers used per cycle of execution. 

However, when lesser checkers are turned on, the amount of time for manual debug increases 

because, after failure, the verification engineer has to manually analyze the failure and turn on the 

more granular checkers individually and re-simulate; or invest lots of time, memory and resources 

to manually go through the simulation cycles dumps before the failure which is not good given the 

current complexity of designs. 

Machine learning has emerged to be a popular technique to construct mathematical models 

that can understand the expected patterns from a given dataset. To address the aforementioned 

trade-off problem, an idea is investigated to use the failing signatures from fewer active high-level 

checkers during simulation to train a machine learning model to predict the location of the bug in 

the design. This information would in turn be used to turn on relevant checkers in the design before 

re-simulation. Other methods to analyze the signals in design after failure to predict bug location 

were also studied. This idea is implemented and tested on a MIPS processor with total of ~ 700 

bugs injected in 15 different units to distinguish them with good accuracy. 
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ASIC – Application Specific Integrated Circuit 

RTL – Register Transfer Level 

HDL – Hardware Description Language 

EDA – Electronic Design Automation 

VLSI – Very Large Scale ICs 

HAS – High-level Architecture Specification 

ATPG – Automatic Test Pattern Generation 

GDS – Graphic Data System 

DRC – Design Rule Check 

LVS – Layout vs Schematic 

LEC – Logical Equivalence Check 

DV – Design Verification 

DUT – Design Under Test 

DUV – Design Under Verification 

SBV – Simulation-based Verification 

FV – Formal Verification 

ISA – Instruction Set Architecture 

GPR – General Purpose Registers 



vii 

TABLE OF CONTENTS 

Page 

ABSTRACT ........................................................................................................................  ii 

ACKNOWLEDGEMENTS..................................................................................................  iv 

CONTRIBUTORS AND FUNDING SOURCES .................................................................  v 

NOMENCLATURE .............................................................................................................  vi 

TABLE OF CONTENTS .....................................................................................................  vii 

LIST OF FIGURES .............................................................................................................  ix 

LIST OF TABLES ...............................................................................................................  x 

1. INTRODUCTION ..........................................................................................................  1 

1.1 Front End Design ......................................................................................................  2 

1.2 Back End Design ......................................................................................................  3 

1.3 Design Verification ..................................................................................................  3 

2. BACKGROUND............................................................................................................ 7 

2.1 Simulation Based Verification ..................................................................................  7 

2.2 MIPS Design ............................................................................................................  10 

2.3 Machine Learning .....................................................................................................  14 

3. PREVIOUS WORKS .....................................................................................................  19 

4. PROPOSED IDEA AND IMPLEMENTATION ............................................................  21 

4.1 Preliminary Experiments ..........................................................................................  21 

4.2 Proposed Solution and Setup ....................................................................................  28 

DEDICATION..........................................................................................................................       iii



viii 

5. EXPERIMENTAL RESULTS ........................................................................................  40 

5.1 Testing with BugMD environmental features ............................................................  40 

5.2 Testing with added Observation of internal signals of ALU ......................................  41 

5.3 Testing with added Observation of internal signals of Control Unit...........................  42 

5.4 Testing with added Observation of internal signals of ALU_Ctrl Unit ......................  43 

5.5 Results Summary ......................................................................................................  44 

6. CONCLUSION ..............................................................................................................  46 

REFERENCES ....................................................................................................................  47 



ix 

LIST OF FIGURES 

FIGURE Page 

1 Digital IC Design Cycle .........................................................................................  1 

2 Trend of # Bugs & Cost w.r.t Time ........................................................................  4 

3 32-bit MIPS Processor Block Diagram ..................................................................  10 

4 32-bit MIPS I Instruction Format ...........................................................................  11 

5 An Example Confusion Matrix ..............................................................................  15 

6 Definition of Metrics for ML .................................................................................  18 

7 Idea of Bug Localization for a Simple Design ........................................................  21 

8 A Full Adder Circuit ..............................................................................................  22 

9 Generic Idea of Bug Localization...........................................................................  23 

10 A 4 bit Adder Circuit with 4 Series Full Adders .....................................................  23 

11 Block Diagram of ALU Unit..................................................................................  25 

12 Confusion Matrix of ALU Test 1 ...........................................................................  27 

13 Confusion Matrix of ALU Test 2 ...........................................................................  28 

14 Process of Regular Debug Flow(top) vs Proposed Bug Localization Process(bottom) .  30 

15 16 Bug Injected Blocks in the Design ....................................................................  32 

16 Error Injection Framework.....................................................................................  36 

17 XGBoost BugMD Confusion Matrix .....................................................................  40 

18 XGBoost Confusion Matrix of added ALU Observation ........................................  41 

19 XGBoost Confusion Matrix of added Control unit Observation .............................  42 

20 XGBoost Confusion Matrix of added ALU_Ctrl unit Observation .........................  43 



x 

LIST OF TABLES 

TABLE Page 

1 A Full Adder Circuit Error Injection ......................................................................  22 

2 Exp1 Classification numbers for All 4 Classes (L) and Only Error Classes (R) ......  22 

3 Exp2 Classification numbers for All 5 Classes (L) and Only Error Classes (R) ......  24 

4 ALU Control Line Mapping...................................................................................  25 

5 ALU Error Injection Map ......................................................................................  26 

6 Sample Mismatches ...............................................................................................  38 

7 Compressed Error Signatures .................................................................................  39 

8 BugMD Results .....................................................................................................  41 

9 Results of Observing ALU .....................................................................................  42 

10 Results of Observing Control Unit .........................................................................  43 

11 Results of Observing ALU_Ctrl Unit .....................................................................  44 

12 Summary of Results for XGBoost algorithm ..........................................................  45 

13 Summary of Results for Random Forest algorithm .................................................  45 

14 Summary of Results for Neural Network ...............................................................  45 



1 

1 INTRODUCTION 

In the 21st century our lives have been dominated by the use of electronic devices like 

smartphones, laptops, PCs, smartwatches and other IoT & health equipment, etc. To enable the 

functionality of every single of these devices, we have at its heart a small piece of silicon designed 

by the efforts of hundreds of engineers.  The process of designing an ASIC (application specific 

integrated circuit) is tedious and involves several important steps, evolving from a concept to 

specification to final tape-outs. Given that the final product is typically quite small (measured in 

mm/cm), this long journey is filled with many engineering challenges which makes it interesting.  

Figure 1: Digital IC Design Cycle 

The design flow of an ASIC is a well-tested and proven IC design process which includes 

various steps like conceptualization of design, efficient verification, optimization of chip 

performance/power/area, logical/physical implementation, and extends to post silicon validation. 
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Figure 1 gives a brief overview of the ASIC design flow. Digital circuits are designed using the 

top-down approach. There are two main parts of the design. 

a) Front end design 

b) Back end design 

 

1.1       Front End Design 

Based on the custom product requirements of the chip, architecture & design experts come 

together to put forth a design specification required for their product. This specification of the 

architecture & design is captured as an abstract specification document, also called high level 

architecture specification (HAS). After understanding the design specifications, the engineer’s task 

is to partition the entire ASIC into multiple hierarchical modules (functional blocks), while 

keeping in mind ASIC’s best performance, resource allocation and technical feasibility in terms of 

power, area, time & budgets. Once all the modules are designed in the architectural document, the 

engineers tend to discuss the partitioning ASIC design by reusing IPs from previous projects or 

designing them from scratch as needed. The HAS specifications are then translated to HDL code 

by the RTL designers.  

Functional verification verifies the functionality and logical behavior of the circuit by 

performing simulation on a design entry level. This is an important stage where the design team 

and verification team come into the cycle where they verify RTL code using test-benches. This is 

done on different hierarchical levels from block to the entire system on chip. After this step, there 

are some DFT insertions either by scan or ATPG methods. Then, the HDL code is synthesized into 

a netlist of logic gates which is done by EDA tools. There are some preliminary timing 

verifications done in the front-end phase. 
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1.2       Back End Design 

This process starts with the floor-planning and partitioning. In back-end design, this is the 

first step in transformation towards GDSII from the RTL design. It is the process of physically 

placing different blocks in the chip. It includes, design portioning, block placement, power 

optimization and efficient pin placement. Clock tree synthesis is a process of designing the clock 

paths to ensure that the specification requirements of power, timing and area are met. It is a 

challenge to provide the clock connection to the clock pin of a sequential element within the 

constraints of time and area and low power consumption. The next step is routing all the 

connections within the chip. Following this, a series of physical verification steps including LEC, 

DRC and LVS are run using EDA tools. Final timing checks are done based on extracted parasitic 

values and the chip is ready for tape-out.  

 

1.3       Design Verification 

Design verification (DV), also sometimes referred to as functional verification or logic 

verification, is a process to verify thoroughly that the intent of the design under test (DUT) matches 

with the architectural specifications. It is the one of the biggest factors influencing the trade-off 

among the triple constraints: 

• Timing/Schedule of chip design completion. 

• Costs incurred to complete the chip design. 

• Quality of design after testing. 

 

Fewer revisions through the fabrication process means lower costs and faster time to 

market. Only companies who get it right in fewer revisions will survive the competition. This is 
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becoming increasingly challenging due to the enormous rise in complexity of the designs. Figure 

2 gives a good depiction of the general trend of how the cost of fixing bugs can accumulate very 

quickly over time.  

A bug found early (during simulation) has low cost of fixing it. The same bug found during 

on-chip testing has relatively higher cost, since it requires more isolation time and debug time and 

that needs readjusting of schedule. Finding a bug during system level validation, where the chip is 

combined with other designs and tested together as a complete system, requires much higher bug 

fixing costs. The worst possibility of sensing a bug in customer’s environment can damage the 

reputation of the company apart from costing millions of US Dollars. For these reasons, design 

verification deserves and often receives the most attention for efficiency improvement measures. 

 

 

 

 

 

 

 

 

 

 

    Figure 2: Trend of # Bugs & Cost w.r.t Time 
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A typical SoC chip would contain many different individual IPs with several million 

flipflops. Verifying this enormous state-space takes a lot of effort and intelligent planning. To 

ensure the correctness of a design, hardware verification is performed majorly in two ways. 

a) Simulation-based verification (SBV) 

b) Formal verification (FV) 

 

In simulation-based verification, the verification engineer must carefully analyze the DUT 

specifications and come-up with a set of testcases(stimulus) that could efficiently verify the DUT. 

To verify the correctness, we make use of an error-free high-level model of the same DUT. The 

chosen stimulus is simulated in both the DUT and the error-free model. The output values are 

compared to verify the correct functionality of the DUT.  

However, in formal verification, these are handled differently. Formal verification is the 

way to prove or disprove the correctness of a certain specification or property in the design 

mathematically. Formal verification exhaustively checks for correctness of the property in the 

design, with no concern of input stimulus. Hence, the DV engineer need not put effort to create 

specialized stimulus as in case of SBV. However, the property or specification needs to be entered 

accurately. FV has a few downsides. Primarily, the testing time can be very high when the design 

is complex. Secondly, owing to complicated designs, some properties could be very difficult to be 

captured accurately. Hence, it becomes difficult to map the complex features of the design to 

formal mathematical property. Due to these drawbacks of FV and relatively practical scalability 

of SBV, SBV is one of the most widely used verification technique in the industry. 

Hence, this research is focused on the simulation-based verification approach. As chip 

complexity continues to grow, simulation-based functional verification is becoming a bottleneck 
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in the overall chip design cycle. In this research, some applications of machine learning are applied 

to reduce the overall debug time and improve debug quality, potentially reducing verification costs 

and time to market. 
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2 BACKGROUND  

 

 

2.1       Simulation Based Verification 

 As discussed in the previous section, simulation-based verification (SBV) is the most 

widely used technique for verifying RTL designs. SBV is based on the principle of applying a set 

of stimuli to exercise the design and then checking that the design behaves as expected. Due to the 

complexity of current designs in industry, the ratio of human resources for verification to design 

is around 2-3 :1. This just explains how important verification is in the design process of a chip. 

For an SBV to be efficient and successful, a few main aspects need to be understood. 

 

2.1.1 Stimulus Generation   

Stimulus generation mainly refers to the process of generating a set of desirable input 

sequences that could exercise the design under verification (DUV) effectively. In other words, it 

is a phase where relevant input stimuli vectors are generated and applied to the design to verify 

the implementation against the specification. The hierarchy for different types of stimulus is as 

follows: 

a) Transaction: Input with the highest granularity of stimulus generation. Each transaction 

is an atomic operation on the design, for e.g., adding 2 registers and storing result into 

another register. 

b) Sequence: It can be defined as a set of serial transactions at a data port, for e.g., running 

a set of instructions on a single core of a CPU. 

c) Test: Input with a set of sequences that are generally executed parallelly to create more 

complex stimuli involving more than one data ports. 
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For larger designs, it becomes extremely complicated to manually write transactions or 

sequences. Generally, a constrained random generation of stimuli is employed. It is important that 

tests are designed or constrained such that they exercise all the design’s properties & specifications 

in the least test count. 

 

2.1.2 Checker Generation 

Checking is a process to monitor the activity of the design and indicate any erroneous 

behavior. It is responsible for creating failing conditions, which would guide in finding bugs in the 

design. An ideal checker would point directly to the bug, making debugging easy. One way to 

perform checking is to code checkers called assertions within the RTL designs. An assertion is an 

‘if’ statement with an error condition that throws error when the condition is not met. System 

Verilog provides constructs to write temporal and concurrent assertions. Such checking is done 

online, while the simulation is running. 

Another popular way for checking is using reference model or a scoreboard. 

Scoreboard/reference model is a golden model (generally designed in simple and non-HDL 

language) that maintains the correct functionality of one or more design features from the 

specification. The scoreboard is provided the same set of input vectors as the DUT. The output of 

the golden model and the DUT output are compared for any inconsistency. Unlike assertions, here, 

the checking is done offline, at the end of the simulation. One of the advantages of this method 

over assertions is that having many assertions in the RTL design tends to slow down the simulation. 
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2.1.3 Coverage 

 Coverage is a metric that is utilized to gauge the progress & assess the effectiveness of the 

stimuli & checkers used for verification. Hence, it is very crucial in determining when the design 

is robust enough for tape-out. The coverage results provide the guidance to make critical decisions 

on the next steps in the verification cycle. Coverage driven verification, is a popular methodology 

that is built around coverage metrics which are used as primary gauge to manage verification. 

Coverage is represented by a set of models, both simple and complex, that capture the design 

intent. There are mainly 2 types of coverage.  

a) Code coverage:  It measures the extent to which the code in design is exercised during the 

simulation. 

b) Functional coverage: It measures the extent to which all the important features and 

functionality of any design are verified, and hence is of interest in most of the cases. 

Coverage closure is the point of time at which nearly 100% of the design intent has been verified 

(or covered). 

 

2.1.4 Debugging 

 There are two main challenges of simulation-based verification. The first one is to find the 

right set of stimuli to exercise the design efficiently. The second one is to efficiently debug, 

localize, and root cause the bug after there is a failure seen in the simulation runs. Although 

debugging strategies aren’t necessarily included in verification plan, it is a very important step 

which affects the schedules of the hardware design. In many cases, verification engineers end up 

needing to depend on logic traces of all the relevant signals for many cycles. This is naïve and very 

inefficient. A common methodology to better aid debugging includes simulating the design under 
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verification in conjunction with a golden model, while checking the RTL & golden model output 

values at regular points in time(intervals). If the golden model used is high-level only, then there 

are fewer compare operations and thus the penalty on RTL simulation time is reduced. However, 

this makes the task of debug much harder as there could be more than one unchecked block where 

the error could have occurred. The manifestation could also have happened at a different design 

unit or cycle depending on the frequency of checking. On the other hand, if the golden model is 

very granular, then most of the internal signals are checked at every step which would improve the 

debug time but greatly penalize the simulation time due to the additional checks every cycle. There 

is a clear trade-off between simulation time and debug time, given the ever-increasing complexity 

of functionalities expected on the ASIC. Achieving this tradeoff is the focus of my thesis work. 

 

2.2       MIPS Design 

Figure 3: 32-bit MIPS Processor Block Diagram. 

(Reprinted from [11] ECEN 651 Lab Texas A&M University) 
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The design used in the current thesis is based on the popular MIPS architecture. This 

section introduces MIPS microarchitecture & ISA. MIPS (Microprocessor without Interlocked 

Pipelined Stages) is a reduced instruction set computer (RISC) instruction set architecture (ISA) 

developed by MIPS Computer Systems, now MIPS Technologies, based in the United States [10]. 

There are multiple versions of MIPS since its introduction in 1985.   

The one used in this thesis is the 32-bit only version named MIPS I. MIPS is a load/store 

architecture (also known as a register-register architecture); except for the load/store instructions 

used to access memory, all instructions operate on the registers. The following sections discuss 

more on the MIPS Architecture. 

 

2.2.1 Registers 

MIPS has total of thirty-two 32-bit general-purpose registers (GPR). Register 0 is 

hardwired to zero and writes to it are discarded. The program counter has 32 bits. The two low-

order bits always contain zero since MIPS I instructions are 32 bits long and are aligned to their 

natural word boundaries. 

 

2.2.2 Instruction Formats 

 

 

 

 

Figure 4: 32-bit MIPS I Instruction Format. 

(Reprinted from [10] MIPS Wikipedia) 
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Instructions are divided into three types: R, I and J. Every instruction starts with a 6-bit 

opcode. In addition to the opcode, R-type instructions specify three registers, a shift amount field, 

and a function field. I-type instructions specify two registers and a 16-bit immediate value. J-type 

instructions follow the opcode with a 26-bit jump target. 

 

2.2.3 Load and Stores 

MIPS I has instructions that load and store 8-bit bytes, 16-bit halfwords, and 32-bit words. 

Only one addressing mode is supported: base + displacement. Since MIPS I is a 32-bit architecture, 

loading quantities fewer than 32 bits requires the data to be either signed or zero-extended to 32 

bits. The load instructions suffixed by "unsigned" perform zero extension; otherwise sign 

extension is performed. Load instructions source the base from the contents of a (GPR) general-

purpose register (rs) and write the result to another GPR (rt). Store instructions source the base 

from the contents of a GPR (rs) and the store data from another GPR (rt). All load and store 

instructions compute the memory address by summing the base with the sign-extended 16-bit 

immediate. MIPS I requires all memory accesses to be aligned to their natural word boundaries.  

 

2.2.4 ALU 

MIPS I has instructions to perform addition and subtraction. These instructions source their 

operands from two GPRs (rs and rt) and write the result to a third GPR (rd). Alternatively, addition 

can source one of the operands from a 16-bit immediate (which is sign-extended to 32 bits). 

MIPS I has instructions to perform bitwise logical AND, OR, XOR, and NOR. These 

instructions source their operands from two GPRs and write the result to a third GPR. The AND, 

https://en.wikipedia.org/wiki/Addressing_mode
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OR, and XOR instructions can alternatively source one of the operands from a 16-bit immediate 

(which is zero-extended to 32 bits).    

The “Set on relation” instructions (e.g., SLT) write one or zero to the destination register 

if the specified relation is true or false. These instructions source their operands from two GPRs 

or one GPR and a 16-bit immediate (which is sign-extended to 32 bits). The result is written to a 

third GPR. By default, the operands are interpreted as signed integers. The variants of those 

instructions, that are suffixed with "unsigned", interpret the operands as unsigned integers (even 

those that source an operand from the sign-extended 16-bit immediate).    

 The load upper immediate (LUI) instruction copies the 16-bit immediate into the high-

order 16 bits of a GPR. It is used in conjunction with the Or Immediate instruction to load a 32-bit 

immediate into a register. 

MIPS I has instructions to perform left and right logical shifts and right arithmetic shifts. 

The operand is obtained from a GPR (rt), and the result is written to another GPR (rd). The shift 

distance is obtained from either a GPR (rs) or a 5-bit "shift amount" (the "shamt" field). 

 

2.2.5 Control Instructions 

There are two types of control instructions in MIPS, branch & jump. The branch 

instructions compare the contents of a GPR (rs) against zero or another GPR (rt) as signed integers 

and branch if the specified condition is true. Control is transferred to the address computed by 

shifting the 16-bit offset left by two bits, sign-extending the 18-bit result, and adding the 32-bit 

sign-extended result to the sum of the program counter (instruction address) and 4.  

Jumps are unconditional branch instructions which are resolved after instruction decode 

rather than after the ALU as compared to branch. The final address is calculated by shifting the 



 

 

 

14 

 

 

26-bit “address” left by two bits and concatenating the 28-bit result with the four high-order bits 

of PC+4. 

 

2.3       Machine Learning 

 Machine learning (ML) can be defined as a scientific study of statistical models and 

algorithms that is used to perform specific tasks by computer systems, without explicitly using 

instructions and relying on inferences from different patterns instead. It is seen as a subset of 

artificial intelligence. Machine learning algorithms build a mathematical model based on sample 

data, known as "training data", in order to make predictions or decisions without being explicitly 

programmed to perform the task. Machine learning algorithms have been used widely in many 

applications such as image recognition, face recognition, disease diagnosis, etc., where it is 

infeasible or difficult for a conventional algorithm to effectively complete the task. 

 

2.3.1 Machine Learning Terminologies 

Here are some of the common terms used in machine learning[9]. 

a) Dataset: For any machine learning application, data is the most important part. All machine 

learning systems would require the user to either get the data (for e.g., from online open 

sources) or collect it with custom designed experiments.  The term dataset refers to all data that 

is used for either building or testing the ML model. Datasets are divided into 3 groups: 

Training data: The data used during training phase. The ML model learns to detect patterns 

from the data and determines which features are more relevant during prediction. 

Validation data: The data is used for comparing different models in order to determine the 

best ones and for tuning model parameters.  
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Test data: Test data is completely unseen data, used for inference purposes for gauging the 

performance of ML algorithm. 

b) Input Attribute: Features extracted from training dataset and used for output prediction. 

c) Target Label: Output values/labels to be predicted. This is also called Class. 

d) ML Algorithm: Program that provides a model for prediction suitable for the training 

Dataset. 

e) ML model: The artifact created by applying the algorithm on training dataset. 

f) Labelled data: It consists of a set of attributes coupled with the respective target label data, an 

example would include all the labelled cats or dogs’ images in a folder, all the prices of the 

house based on size, etc. 

g) Classification: Separating the data into discrete groups having unique characteristics, e.g., dog 

or cat, 1 or 0. 

h) Regression: Estimating the most probable values or relationship among variables, e.g., 

estimation of the price of the house based on size. 

i) Confusion Matrix: It is a common form of evaluation of a ML algorithm by analyzing how 

many samples of a known class X are classified as X. This analysis is done for all samples of 

every class in the dataset and expressed in the form of a matrix. Figure 5 shows a simple 

example where samples of each class(row) are classified among the available classes 

(columns). 

 

 

 

Figure 5: An Example Confusion Matrix 
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There are four major types of machine learning techniques. 

a) Supervised learning: The outcome or output for the given training input is known and the 

machine must be able to map or assign the given input to the output. For example, multiple 

images of a cat, dog, orange, apple, etc., here the images are labelled. It is fed into the machine 

for training and the machine must identify the same. Just like a human child is shown a cat and 

told so, when it sees a completely different cat among others it still identifies it as a cat. The 

same method is employed here. 

b) Unsupervised learning: The outcome or output for the given inputs is unknown, i.e., there is 

no label for the given input data. Here, the goal for the ML algorithm is to study the relative 

structure of various data elements and group them into different bins with similar features. The 

main algorithms include clustering algorithms. 

c) Semi-supervised learning: It is in-between that of supervised and unsupervised learning, where 

the combination is used to produce the desired results and it is the most important in real-world 

scenarios where all the data available are a combination of labelled and unlabeled data. 

d) Reinforced learning: The machine is exposed to an environment where it gets trained by trial 

and error method. It is trained to make a specific decision. The machine learns from past 

experience and tries to capture the best possible knowledge to make accurate decisions based 

on the feedback received. Its practical applications include computer playing board games such 

as chess and Go, self-driving cars also use this learning. 

 

2.3.2 Why Use ML to Aid Verification Tasks? 

 Manual debug and root cause of bugs based on human judgment are time consuming and 

prone to errors. Machine learning has proven to be a very good way to train models to learn 
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relevant information pattern from huge datasets and perform specific tasks. Although machine 

learning algorithms existed from decades ago, only in the recent years have we been able to provide 

the necessary processing power to produce the results in a practical time span. This motivated me 

to incorporate ML to the task of bug localization.  

 

2.3.3 Metrics to Gauge Performance of an ML Algorithm 

There are many metrics available to gauge the performance of an ML algorithm. It really 

depends on the requirement of the application and our dataset to choose the most relevant. 

Misclassification error (or classification accuracy) alone makes sense when given a uniform 

distribution of class labels. Also, we need to understand the importance of other metrics like 

Precision (PRE), Recall (REC) & F1-score. Figure 6 captures the definition of what each metric 

means. Different metrics assume importance in different applications. Precision is important for 

applications which require high penalty for false positives, e.g., an automated missile launcher 

falsely predicting a hostile element could be devastating. When PRE is high, false positives are 

low.  On the other hand, Recall is important for applications which require to highly penalize false 

negatives, e.g., predicting the presence of a deadly disease like HIV as absent could result in further 

misdiagnosis with serious consequences. When REC is high, false negatives are low.  F1 is a 

combined score of both PRE & REC. These metrics are based on binary classifications (2 classes). 

However, they can be easily extended to multiclass classification tasks. Generalizing this to multi-

class, while assuming we have a 1 vs all classifier, we can go with either the “macro” or the “micro” 

average. 
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In micro averaging, we would calculate the performance, e.g., precision, from the 

individual true positives, true negatives, false positives, and false negatives of the k-class model. 

In macro-averaging, we average the performances of each individual class as shown in Figure 6. 

 

 

 

 

 

 

 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 +  𝐹𝑁
 

𝑃𝑅𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝐸𝐶 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

𝐹1 = 2 ∙  
𝑃𝑅𝐸 ∙  𝑅𝐸𝐶

𝑃𝑅𝐸 +  𝑅𝐸𝐶
 

 

𝑃𝑅𝐸𝑚𝑖𝑐𝑟𝑜 =  
𝑇𝑃1 +∙∙∙ + 𝑇𝑃𝑘

𝑇𝑃1 +∙∙∙ + 𝑇𝑃𝑘  +  𝐹𝑃1 +∙∙∙ + 𝐹𝑃𝑘
 

 

𝑃𝑅𝐸𝑚𝑎𝑐𝑟𝑜 =  
𝑃𝑅𝐸1 +∙∙∙ + 𝑃𝑅𝐸𝑘

𝑘
 

Figure 6: Definition of Metrics for ML 
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3 PREVIOUS WORKS 

 

 In this section, I discuss the previous works in hardware bug localization or root cause 

analysis. The work [1] by Park, et al., proposed an automated way to analyze the post-silicon 

failures offline. The data passing through every design block is stored in trace buffers during 

program execution. Next, using the design structure, a graph with designs units as nodes is 

constructed and the behavior of each node is verified using the input and output signals. Links in 

the graph are traversed back until the failure is found. Although, this provides good root cause, it 

needs high memory and time to store and backtrack every stimulus that was executed. 

Another work [2] by D. Lin, et al., proposed an approach to post-silicon validation and 

debug using symbolic quick error detection (QED). Here the stimulus is edited on the fly to re-

simulate the same operation on a different set of registers and compare the result in both the cases. 

This process would cause the bug manifestation, if any, to occur much earlier than without QED. 

Though it helps to get the bug occurrence & manifestation in the same cycle, it increases the total 

instructions to be tested and needs more register space to trigger the duplicate execution. 

Machine learning was used in more recent works [3] like the one by Valeria Bertacco, et 

al., where they propose a pre-silicon bug localization technique (which was extended from their 

previous work [4], on Post Silicon bug-diagnosis). They relied on only architectural state 

(registers, memory & PC) mismatches to extract signatures to train a machine learning model to 

predict the bug location. They also resync the golden model with DUV state to prevent cascading 

failures. However, this work doesn’t utilize information from the internal signals that could help 

improve localization. It also doesn’t provide a realistic error injection methodology since the errors 

are injected on the already available error-free netlist. It is logically not possible to have error-free 

netlist, before the design phase is complete, to create ML error models in the first place. This work 
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leaves more room for improvement in pre-silicon design verification when considering the above 

disadvantages. Other works like [5][6] which weren’t a direct application to bug localization were 

also studied to understand newer techniques to adopt ML into the current problem statement. 
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4 PROPOSED IDEA AND IMPLEMENTATION 

 

4.1       Preliminary Experiments  

In this section, we see how the capabilities of ML algorithms are gauged and understood 

by running some preliminary experiments. The rudimentary idea is that given a simple design one 

could use the combinations of input-output value pairs along with some internal signals as features 

to train a machine learning model. This is depicted in Figure 7. This means that different errors 

are injected in different parts of the good design to create data points that help the ML algorithm 

to classify different error cases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Idea of Bug Localization for a Simple Design 

 

A simple example is considered to analyze this method. A full-adder circuit is considered 

as DUT as shown in Figure 8. The error injection in the sum & carry out calculation is injected as 

shown in the table 1. A total of 4 different classes good, error 1,2 & 3 are considered. 
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Table 1: A Full Adder Circuit Error Injection 

For the dataset, 10 random inputs are generated, and the output is captured for all the 4 

cases. The inputs & outputs are used as features. This dataset for the good and the 3 error-cases is 

trained on many well-known ML engines with 2:1 split for training and testing. The top two 

performing ones are captured in the Table 2 (left) below.  

 

The same experiment is repeated to classify only among the 3 error injected cases, since 

the bug localization needs to happen only among the error cases. Table 2 (right) summarizes the 

result. The idea of this experiment is to understand how well ML algorithms can pick-up the 

Full Adder Sum Carry (Co) 

Good  A^B^Cin (A&B)|(B&Cin)|(Cin&A) 

Error Case 1 A&B&Cin (A&B)|(B&Cin)|(Cin&A) 

Error Case 2 A^B^Cin (A|B)&(B|Cin)&(Cin|A) 

Error Case 3  (A&B)|(B&Cin)|(Cin&A) A^B^Cin 

Classifier  Accuracy% 

Random Forest 56 

Multilayer Perceptron 45 

Classifier  Accuracy% 

Random Forest 55 

Multilayer Perceptron 65 

B 

Sum  
 

A 

Cin 
Co 
 

Full 

Adder  

Table 2: Exp1 Classification numbers for All 4 Classes (L) and Only Error Classes (R) 

 

Figure 8: A Full Adder Circuit 
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relationship between the inputs and the outputs given a large number of data points. It is seen that 

the ML algorithms performed pretty well when compared to the random guessing accuracy (= 1 / 

total #classes = 25% & 33% for Exp1 Left & Right respectively). This in turn motivated me to 

extend this idea to a more generic case as shown in Figure 9, where a set of simple designs are 

combined to form a more complex one. 

 

  

 

 

 

 

 

Figure 9: Generic Idea of Bug Localization 

 

The motivation is that the same idea could be used to identify bugs or errors in different 

parts of an integrated design. For the initial tests a simple system of 4 bit adder using 4 series full 

adders is considered as shown in Figure 10. 

 

 

 

 

 

Figure 10: A 4 bit Adder Circuit with 4 Series Full Adders 
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  For the dataset, along with the inputs A[0:3], B[0:3] & Ci and outputs S[0:3],C3, even the 

intermediate signals C0,C1,C2 are monitored and used as features. The bug used is a switch in 

functionality of sum and carry operation. This bug is activated in all full adder circuits one at a 

time. A total of 100 random vectors are simulated for all 5 classes (good + 4 errors). The results 

for the classification are tabulated in Table 3 (left). The classification is repeated considering only 

the 4 error cases, where the accuracy increased as shown in Table 3 (right). This could be due to 

the reduction in total number of classes. 

 

 

The previous two experiments show that for a simple system, using an ML algorithm could 

be beneficial to capture the expected properties of the design. However, this needs to be tested on 

more complex designs with higher range of input space. Also, there are other useful aspects in the 

verification environment that could be made use of.  For instance, the golden value output from 

the golden model could be used to better enhance the decision process. This step is incorporated 

in the next experiment. 

 The MIPS CPU design as shown in Figure 3 seemed to be an apt choice given its fairly 

decent complexity. Before using the complete design, the ALU unit is tested first. As per the design 

ALU unit has 2 input buses A & B of 32 bit width and an output result W of 32 bit width. It also 

has a 0-indicator output bit which is set when the output value on Bus W is 0.  It has a 4 bit 

Classifier Accuracy% 

Random Forest 35 

Multilayer Perceptron 74 

Classifier  Accuracy% 

Random Forest 60 

Multilayer Perceptron 84 

Table 3: Exp2 Classification numbers for All 5 Classes (L) and Only Error Classes (R) 
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ALUCtrl bus that is used to control the type of operation performed by the ALU unit. Figure 11 

shows the block diagram of the ALU Unit. 

 

 

 

 

Operation ALU Control Line 

AND 0000 

OR 0001 

ADD 0010 

SLL 0011 

SRL 0100 

SUB 0110 

SLT 0111 

ADDU 1000 

SUBU 1001 

XOR 1010 

SLTU 1011 

NOR 1100 

SRA 1101 

LUI 1110 

  Table 4: ALU Control Line Mapping 

 

Figure 11: Block Diagram of ALU Unit. 

(Reprinted from [11] ECEN 651 Lab Texas A&M University) 
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The ALU Unit supports 14 operations as listed in the Table 4. For the error injections the scheme 

depicted in Table 5 is used. 

Original Operation Error Injection Substituted Operation 

AND OR, ADD, SUB 

ADD SUB, AND, OR 

ADDU SUB, XOR, AND 

LUI LLI 

NOR NAND, OR, XNOR 

OR AND, SUB, ADD 

SLL SRA, SRL 

SRA SLL, SRL 

SRL SLL, SRA 

SLT GT 

SLTU GT 

SUB ADD, OR, XOR 

SUBU ADD, AND, XOR 

XOR AND, OR, XNOR 

    Table 5: ALU Error Injection Map 

The errors injected are kept as close as possible to the logical mistakes that the designer 

could make. For the dataset, since the number of error cases are much higher than the single good 

cases, this imbalance is fixed by simulating 10X more inputs than the individual error cases. The 

inputs A, B & ALUCtrl are generated randomly and simulated for 100K data points for the good 

(no error) case and 10K data points for each of the error mapping as mentioned in Table 5. 
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The data element used for training consisted of {Inputs AB, Output W, Expected_Out, 

Class}. The Expected_Out is obtained from the golden model. Using the ML algorithms with the 

standard 2:1 split for training and test, J48 decision tree gives the best results upto 65%(as 

compared to 6.6% when randomly classified). The confusion matrix for the same is captured in 

Figure 12. 

 

Figure 12: Confusion Matrix of ALU Test 1 

 

However, when the ALUCtrl is also used as one of the features, the classification accuracy 

by J48 decision tree went up to 88%. This can be understood by the fact that ALUCtrl signal 

contains information that is strongly correlated to the bug location. The confusion matrix for this 

Test 2 is captured in Figure 13.  
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Figure 13: Confusion Matrix of ALU Test 2 

 

At the end of this experiment, it is convincing that the ML engines can handle a reasonably 

complex design by learning from the inputs & outputs when aided with the comparison data from 

the golden model.  

 

4.2       Proposed Solution and Setup  

Given the complex nature of the problem of bug localization, there is a need to aptly specify 

the assumptions of the verification environment to understand the challenges and how the proposed 

solution helps to solve these challenges correctly.     

 

4.2.1 Assumptions of the Environment 

 The assumptions mentioned here are applicable to any generic digital design that would 

want to use the techniques proposed in this thesis.  
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1. All the checkers in the design are implemented. 

This means that the checkers at the outputs of various points in the design are ready 

to be used during simulation tests. This is a practical assumption as most of the important 

checkers would be needed to run the test vectors and verify the design effectively. This 

assumption is linked to the next point which helps to understand the challenges involved 

in such a case of having all the checkers turned on during simulation. 

2. During regular simulation only the primary(high-level) checkers are active. 

This assumption explains about the hierarchical importance of checkers. Out of all 

the checkers in the design, there are some checkers that are of higher importance, for e.g., 

in a CPU design executing an ALU, the checker that checks the state changes, i.e., register 

file, memory & PC is much more important that the checker used for sign extend enable. 

Of course, there are chances that the error in sign extend could cause the failure in the state 

errors, but in the initial stages of simulation it is important to enable checkers that flag all 

the major errors that affect the system. Based on this, it would be more important to monitor 

the state of the CPU. There is also a tradeoff between the simulation speed and the 

localization accuracy which has already been explained in detail in the Section 2.1.4. 

 

4.2.2 Proposed Solution 

In modern designs whose complexities are ever increasing, it proves to be temporally 

impractical to run the simulation with all the checkers in the design turned on. Hence, during the 

process of simulation, the key is to enable only the high-level (or primary) checkers to speed up 

simulation. For the complete simulation, data is collected for mismatches at these high-level 
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checkers when there are failures. If the checker failure causes a state change (i.e., change in the 

register file, instruction/data memory, PC), the golden model adjusts itself to match the DUV state 

to prevent further cascading of the same error in the upcoming cycles. This method of resyncing 

golden model with DUV is inspired by [3]. However, in [3], the assumption of low observability 

prevents using data from the internal signals. It is important to note that for the pre-silicon design 

verification, this limitation doesn’t exist.  

 

  

 

Figure 14: Process of Regular Debug Flow(top) vs Proposed Bug Localization Process(bottom) 
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The key improvement attributed to the proposed approach is that along with the state level 

mismatches, few important internal signals would also be monitored. The information from these 

extra signals gives more insight to provide better features that classify the errors into different 

units. Figure 14 highlights the process in the form of a comparison between regular debug flow 

and proposed changes. The other improvement is in the proposed error injection methodology 

which is discussed in Section 4.2.5. 

 

4.2.3 Setup 

 

 For the experimental setup, a 32 bit MIPS processor design is used. There is a separate 

instruction memory and data memory. The properties of this design are explained in detail in 

Section 2.2. 

There is a total of 16 different regions in the design which are selected for bug injection to 

create possible error scenarios. These are highlighted in Figure 15. The error injections are made 

such that only one bug in a single unit is active per simulation run. More about this is explained in 

the later section.  

A total of around 700 bugs are injected in this system. The details of bug types are discussed 

below. 

• Multiplexers (4,9,10,13,16): 

o Invert the mapping of select  

o Mimic output as though select line is stuck at 0 

o Mimic output as though select line is stuck at 1 
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Figure 15: 16 Bug Injected Blocks in the Design.  

(Modified from [11] ECEN 651 Lab Texas A&M University) 
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o No Shift 

• Control Unit (3): The main function of this unit is to map the 6-bit OpCode to 9 single bit 

control signals (RegDst, Jump, Branch, MemRead, MemtoReg, MemWrite, ALUSrc, 

RegWrite, SignExt) and a 4 bit ALUOp. There are a total of 13 OpCodes & 15 ALUOp 

codes supported. The bugs are injected such that for every OpCode, there is a bit flip for 

each of the control signals generated for that OpCode, one at a time. Hence, an independent 

single bit flip in any outputs for a particular OpCode is modelled as 1 bug. Following this 

process, a total of 299 bugs are injected in the control unit. 

• Register File (5): 

Read path 

o Swap of read reg 1 and read reg 2 

o Both read reg 1 

o Both read reg 2 

o Reg 1 reads wrong register(reg1<<1) 

o Reg 1 reads wrong register(reg1>>1) 

o Repeat prev 2 steps for reg 2 

Write path 

o Ignore writes 

o Write to wrong register (WReg>>1) 

o Write to wrong register (WReg<<1) 

o Invert write enable behavior 

o Always write irrespective of write enable 

• Sign Ext (6): 
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o Skip sign extension 

o Invert sign extension function on sign extend enable 

o Invert sign extension function on MSB bit 

o SignExt by 1 if sign extend enable is 1(irrespective of MSB bit) 

o SignExt by 1 if MSB is 1(irrespective of sign extend enable bit) 

o Always sign extend by 1 

• Branch path shift left (7): 

o >>2 

o <<1 

o >>1 

o No Shift 

o >>3 

o <<3 

• Branch path addr calculation/addition (8): ADD operation substituted by 

o SUB 

o XOR 

o NOR 

o NAND 

o OR 

o AND 

• Branch path branch enable check (11): AND substituted by: 

o  OR 

o NOR 
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o NAND 

o XOR 

• ALU Ctrl (12): This unit maps different ALUOp inputs to 13 different ALUCtrl based on 

FUNC bits. Based on the same single point mismatch error scheme as discussed in control 

unit error injection, there are a total of 155 independent errors injected. 

• ALU Unit (14): This unit performs 14 different operations on the two 32-bit inputs and 

returns a 32bit output with a zero-value indicator bit. Following the single point mismatch 

error scheme, a total of 185 bugs are injected. 

•  Memory (15): 

Read Path 

o Read from wrong addr (addr<<1) 

o Read from wrong addr (addr>>1) 

o Read enable function inverted 

o Always read without checking on read enable 

Write Path 

o Ignore writes to data memory 

o Write to wrong address in data memory (addr>>1) 

o Write to wrong address in data memory (addr<<1) 

o Allow write to instruction memory 

o Write enable function inverted 

o Always write without checking on write enable 
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4.2.4 Stimulus   

A set of 5 programs with each 10K instructions are used to execute on the design with 

single bug activated at a time. The ratio of the type of instructions is set to be ALU (40%), Control 

(20%) & Load/Store (40%). Each of these 5 programs are generated to randomize the following: 

• Source registers/Memory addr  

• Destination registers/Memory addr 

• ALU operation to be performed 

• Jump/branch target addresses 

 

4.2.5 Bug Injection Framework 

 

 

 

 

 

 

  

 

   Figure 16: Error Injection Framework 

The machine learning model is built on data collected by injecting errors into an error free 

design. During the early stages of verification, the RTL wouldn’t be mature enough and it would 

be logically wrong to assume that RTL would be error free. However, mature RTL designs from 

previous generations can be used quite well to an extent if there are minor changes with respect to 

Stimulus Golden 
Model 

Error Loc 1 

Golden 
Model 

Error Loc 2 

Golden 
Model 

Error Loc N 

Fe
at

u
re

 E
xt

ra
ct

io
n
 

Train 
Classifier 



 

 

 

37 

 

 

 

current design. But for a generic case, a software model of the correct design needs to be prepared 

by the verification engineer. Since the model would be coded in a simpler language when 

compared to HDLs, they would be relatively easier to model them since they don’t have to deal 

with the semantic complications like concurrent executions, non-blocking statements, etc. Once 

this is ready, a variety of bugs can be injected into different units of the model to create a database 

of bugs. This helps to selectively train and validate the machine learning classifier’s performance. 

This process is captured in Figure 16. For this work, the whole design is modeled in Python. The 

choice of Python is made because it is easier to collect & manipulate data and also provides very 

good integration with well-known machine learning packages[7][8]. 

 

 

4.2.6 Error Signatures 

 The error signatures are extracted from the data mismatches from the golden model and 

the DUV for all the state-level checkers and internal signal checkers enabled. The mismatches 

are grouped as follows: 

a) Register Value Mismatch 

b) Register Address Mismatch 

c) Memory Value Mismatch 

d) Memory Address Mismatch 

e) PC Value Mismatch 

f) Internal Signal Checker Output Mismatch 

 

Each of these mismatches are coupled with the type of Instruction that is executed which is one 

of the following: 
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a) ALU 

b) Load 

c) Store 

d) Branch/Jump 

 As already discussed, for every mismatch in the state checkers, we readjust the DUV’s 

state to prevent cascading failures. The simulation termination reasons would give valuable 

information and hence are noted. They are labelled under one of the following: 

a) No failures 

b) Data Memory Out of Bounds 

c) Instruction Memory Out of Bounds 

d) Unknown Instruction Opcode 

 The difference and Hamming distance for every mismatch are compressed by using mean 

and standard deviation of those respective distributions, for e.g., consider sample mismatches 

throughout a single test as shown in Table 6. 

No. Instruction Type Mismatch type Model Value DUV Value 

1 ALU Register Value 64 32 

2 ALU Register Value 128 32 

3 ALU Register Addr 2 4 

Table 6: Sample Mismatches 

  The distribution in this table is converted into a compressed form as shown in Table 7, 

which uses the mean & standard deviation of the arithmetic difference and the Hamming distance 

between the mismatched values. These 4 values are used as features to capture any errors resulting 

from register value mismatches. These are further divided based on which instruction is simulated 
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when the error manifested. Hence, there are 16 such features for the 4 types of instructions as 

discussed earlier. Along with this, the fraction of number of mismatches that belonged to this 

category is also captured. When combined, there are a total of 127 features. 

Register Value Features 

Mean Standard Deviation  

Fraction Difference Hamming 

Distance 

Difference Hamming 

Distance 

64 2 32 0 2/3 

Table 7: Compressed Error Signature 
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5 EXPERIMENTAL RESULTS 

 

This section discusses the results obtained for the proposed solution & provides analysis 

on how the results change when the choice of the internal signals monitored are changed.  Training- 

testing split of 2:1 is used. Three main classifiers are used, Random Forest (100 trees), XGBoost 

(100 trees) & Neural Network (hidden layer size=100, #layers=1). 

 

5.1       Testing with BugMD [3] environmental features 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
Figure 17: XGBoost BugMD Confusion Matrix 
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Algorithm Macro Micro 

PRE REC F1 PRE = REC = F1 

XGBoost  48.1 38.8 40.3 65.8 

Random Forest  42.9 35.9 37.8 65.3 

Neural Network 35.07 30.93 32.8 41.41 

Table 8: BugMD Results 

 

5.2       Testing with added Observation of internal signals of ALU 

 

 

 

 

Figure 18: XGBoost Confusion Matrix of added ALU Observation 
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Table 9: Results of Observing ALU 

 

5.3       Testing with added Observation of internal signals of Control Unit 

 

 

    Figure 19: XGBoost Confusion Matrix of added Control unit Observation 

Algorithm Macro Micro 

PRE REC F1 PRE = REC = F1 

XGBoost 54.1 43.7 45.8 89.25 

Random Forest 47.2 41.7 43.4 89.4 

Neural Network 26.5 18.9 22.06 40.79 
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Algorithm Macro Micro 

PRE REC F1 PRE = REC = F1 

XGBoost 56.3 55.4 53.7 83.7 

Random Forest 55.9 50.8 50.35 81.9 

Neural Network 47.37 37.9 42.11 43.08 

Table 10: Results of Observing Control Unit 

    

5.4       Testing with added Observation of internal signals of ALU_Ctrl Unit 

 

 

  Figure 20: XGBoost Confusion Matrix of added ALU_Ctrl unit Observation 
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Algorithm Macro Micro 

PRE REC F1 PRE = REC = F1 

XGBoost 51.9 41.6 43.7 77.6 

Random Forest 46.5 39.8 42 76.7 

Neural Network 29.64 22.08 25.3 42.4 

Table 11: Results of Observing ALU_Ctrl Unit 

5.5       Results Summary 

 

To summarize the results, the 2 best classifiers that provided the highest classification 

accuracy were decision tree-based algorithms, XGBoost and Random forest. It is also noted that 

choosing to observe the control unit checker was more helpful in macro average F1 than any other 

units that were tested. There seems a logical explanation to the same. This is because the macro 

average performance depends on the classification accuracy of the individual classes rather than 

the overall performances of the system. When we look at the normalized confusion matrix of the 

vanilla BugMD approach, we see that there are many misclassifications happening from other units 

into control unit (observe the highly populated 3rd column). But when the control unit checker is 

turned on, this inherently reduces the misclassification happening into control unit class. This 

could be one of the reasons why observing control unit seemed to provide maximal improvement 

of the macro classification performance when compared to the other two units. On the other hand, 

ALU unit provides maximal improvement in the micro average F1 score, i.e., it improves overall 

accuracy maximally. This could be mainly due to the position of the ALU unit’s checker when 

compared to ctrl unit or ALU_Ctrl Unit. The data flowing through ALU Unit has gone through the 

other 2 units already. This means that it has more valuable data about all its previous units’ 

behavior which could be helping to obtain the better accuracy. Since micro F1 score only depends 

on the accuracy of the overall system, choosing ALU checker increases it by the maximum amount.   
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Design Macro Micro 

PRE REC F1 PRE = REC = F1 

BugMD 48.1 38.8 40.3 65.8 

ALU_Chkr 54.1 43.7 45.8 89.25 

Ctrl_Chkr 56.3 55.4 53.7 83.7 

ALUCtrl_Chkr 51.9 41.6 43.7 77.6 

Ctrl_ALU_ALUCtrl_Chkr 57.8 61.8 58.4 96.3 

   Table 12: Summary of Results for XGBoost algorithm 

 

Design Macro Micro 

PRE REC F1 PRE = REC = F1 

BugMD 42.9 35.9 37.8 65.3 

ALU_Chkr 47.2 41.7 43.4 89.4 

Ctrl_Chkr 55.9 50.8 50.35 81.9 

ALUCtrl_Chkr 46.5 39.8 42 76.7 

Ctrl_ALU_ALUCtrl_Chkr 57.5 56.8 55.1 94.7 

   Table 13: Summary of Results for Random Forest algorithm 

 

 

 

Design Macro Micro 

PRE REC F1 PRE = REC = F1 

BugMD 35.07 30.93 32.8 41.41 

ALU_Chkr 26.5 18.9 22.06 40.79 

Ctrl_Chkr 47.37 37.9 42.11 43.08 

ALUCtrl_Chkr 29.64 22.08 25.3 42.4 

Ctrl_ALU_ALUCtrl_Chkr 40.27 28.7 33.51 42.7 

Table 14: Summary of Results for Neural Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

46 

 

 

 

6 CONCLUSION 

 

 

In this thesis, we have seen that use of machine learning in design verification planning 

could reduce the effort involved in localizing design bugs which would eventually expedite finding 

the root cause of the failure. There is an added effort from the verification engineer to model the 

error injection and collect the data samples for the failing cases. But, across generations, many of 

the designs require only incremental changes. Hence, the initial effort could prove to be worthy 

because for every incremental change in the design, the model could potentially be reused within 

an error margin. With the growing complexity of ASIC functions, there is a high demand to reduce 

the verification effort in both time and engineer resources. For future work, implementing the same 

idea on more complex and industry standard designs (like RISC V) & experimenting with more 

complicated bugs would be a good exploration to understand the abilities or limitation of this work. 

This thesis work explored an idea where the resources required for debugging a failure could be 

reduced by the use of a bug localization technique based on machine learning.  
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