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ABSTRACT

Deep neural networks (DNNs) have achieved great success on grid-like data such as images,

but face tremendous challenges in learning from more generic data such as graphs. In convolutional

neural networks (CNNs), for example, the trainable local filters enable the automatic extraction of

high-level features. The computation with filters requires a fixed number of ordered units in the

receptive fields. However, the number of neighboring units is neither fixed nor are they ordered in

generic graphs, thereby hindering the applications of deep learning operations such as convolution,

attention, pooling, and unpooling. To address these limitations, we propose several deep learning

methods on graph data in this dissertation.

Graph deep learning methods can be categorized into graph feature learning and graph structure

learning. In the category of graph feature learning, we propose to learn graph features via learnable

graph convolution operations, graph attention operations, and line graph structures. In learnable

graph convolution operations, we propose the learnable graph convolutional layer (LGCL). LGCL

automatically selects a fixed number of neighboring nodes for each feature based on value ranking

in order to transform graph data into grid-like structures in 1-D format, thereby enabling the use

of regular convolutional operations on generic graphs. In graph attention operations, we propose

novel hard graph attention operator (hGAO) and channel-wise graph attention operator (cGAO).

hGAO uses the hard attention mechanism by attending to only important nodes. Compared to

GAO, hGAO improves performance and saves computational cost by only attending to important

nodes. To further reduce the requirements on computational resources, we propose the cGAO

that performs attention operations along channels. cGAO avoids the dependency on the adjacency

matrix, leading to dramatic reductions in computational resource requirements. Beside using orig-

inal graph structures, we investigate feature learning on auxiliary graph structures such as line

graph. By using line graph structures, we propose a weighted line graph that corrects biases in line

graphs by assigning normalized weights to edges. Based on our weighted line graphs, we develop
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a weighted line graph convolution layer that takes advantage of line graph structures for better fea-

ture learning. In particular, it performs message passing operations on both the original graph and

its corresponding weighted line graph. To address efficiency issues in line graph neural networks,

we propose to use an incidence matrix to accurately compute the adjacency matrix of the weighted

line graph, leading to dramatic reductions in computational resource usage.

In the category of graph structure learning, we propose several deep learning methods to learn

new graph structures. Given images are special cases of graphs with nodes lie on 2D lattices,

graph embedding tasks have a natural correspondence with image pixel-wise prediction tasks such

as segmentation. While encoder-decoder architectures like U-Nets have been successfully applied

on many image pixel-wise prediction tasks, similar methods are lacking for graph data. This is due

to the fact that pooling and up-sampling operations are not natural on graph data. To address these

challenges, we propose novel graph pooling (gPool) and unpooling (gUnpool) operations in this

work. The gPool layer adaptively selects some nodes to form a smaller graph based on their scalar

projection values on a trainable projection vector. However, gPool uses global ranking methods to

sample some of the important nodes, which is not able to incorporate graph topology information

in computing ranking scores. To address this issue, we propose the topology-aware pooling (TAP)

layer that uses attention operators to generate ranking scores for each node by attending each

node to its neighboring nodes. The ranking scores are generated locally while the selection is

performed globally, which enables the pooling operation to consider topology information. We

further propose the gUnpool layer as the inverse operation of the gPool layer. The gUnpool layer

restores the graph into its original structure using the position information of nodes selected in

the corresponding gPool layer. Based on our proposed gPool and gUnpool layers, we develop an

encoder-decoder model on graph, known as the graph U-Nets.

Our experimental results on node classification graph classification tasks using both real and

simulated data demonstrate the effectiveness and efficiency of our methods.
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1. INTRODUCTION

Deep learning methods [1] are becoming increasingly powerful in solving various challenging

artificial intelligence tasks. These deep learning methods have demonstrated promising perfor-

mance in many image-related applications, such as image classification [2], semantic segmenta-

tion [3], and object detection [4, 5]. A variety of deep learning models have been proposed to

continuously set the performance records [2, 6, 7, 8]. In addition to images, deep learning methods

have also been successfully applied to natural language processing tasks such as neural machine

translation [9, 10, 11]. One common characteristic behind these tasks is that the data can be repre-

sented by grid-like structures. This enables the use of kernel-based operations such as convolution

and pooling in the form of the same local filters scanning every position on the input. Unlike tradi-

tional hand-crafted filters, the local filters used in convolutional layers are trainable. The networks

can automatically decide what kind of features to extract by learning the weights in these trainable

filters, thereby avoiding hand-crafted feature extraction [12].

In many real-world applications, the data can be naturally represented as graphs, such as social,

citation, and biological networks. Figure 1.1 provides an illustration of graph data. Many interest-

ing discoveries can be made by analyzing these graph data, such as social network analysis [13].

An important task on graph data is node classification [14, 15], in which models make predictions

for every node in a graph based on node features and graph topology. As mentioned above, deep

learning methods, with the power of automatic feature extraction, have achieved great success

on tasks with grid-like data, which can be considered as special cases of graph data. Therefore,

applying deep learning methods such as convolution, attention, pooling, and unpooling on graph

tasks is appealing. However, using regular convolutional operations on generic graphs faces two

main challenges. These challenges are resulted from the fact that regular convolutions require the

number of neighboring nodes for each node remains the same, and these neighboring nodes are

ordered. In generic graphs, the numbers of neighboring nodes usually differ for different nodes

in a graph. In addition, among the neighboring nodes of a node, there is no ranking information
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3 4 5 9 2 8

6 1 2

5 5 4

0 3 7 0 8 2

3 7 8

Figure 1.1: An illustration of graph data. There are 7 nodes in this graph and each node has 3
features. Each node in this graph may have a different number of neighboring nodes, and there is
no relative order among them.

based on which we can order them to ensure the output is deterministic. Based on these limitations,

regular deep learning methods can not be directly applied on graph data.

1.1 Dissertation Outline

To address the challenges we discussed in previous section, this dissertation proposes several

graph deep learning methods that enable deep learning methods on graph data. In particular, we

categorize graph deep learning methods into graph feature learning and graph structure learning.

Graph feature learning methods learn node features by aggregating information from neighboring

nodes. We introduce our graph feature learning methods in Section 2, 3 and 4. While graph

structure learning methods learn new graph structures, which is covered in Section 5.

In Section 2, we introduce our proposed graph feature learning methods. First, we propose the

2



learnable graph convolutional layer (LGCL) to enable the use of regular convolutional operations

on graphs. Note that prior studies modified the original convolutional operations to fit them for

graph data. In contrast, our LGCL transforms the graphs to enable the use of regular convolutions.

Our models based on LGCL achieve better performance on both transductive learning and induc-

tive node classification tasks, as demonstrated by our experimental results. Second, we observe

another limitation of prior methods; that is, their training process takes the adjacency matrix of

the whole graph as an input. This requires excessive memory and computational resources when

the graph has a large amount of nodes, which is usually the case in real-world tasks. In order to

overcome this limitation, we develop a sub-graph training method, which is a simple yet effective

approach to allow the training of deep learning methods on large-scale graph data. The sub-graph

training method can significantly reduce the amount of required memory and computational re-

sources, with negligible loss in terms of model performance.

In Section 3, we propose novel hard graph attention operator (hGAO). hGAO performs atten-

tion operation by requiring each query node to only attend to part of neighboring nodes in graphs.

By employing a trainable project vector p, we compute a scalar projection value of each node

in graph on p. Based on these projection values, hGAO selects several important neighboring

nodes to which the query node attends. By attending to the most important nodes, the responses

of the query node are more accurate, thereby leading to better performance than methods based on

soft attention. Compared to GAO, hGAO also saves computational cost by reducing the number of

nodes to attend. GAO also suffers from the limitations of excessive requirements on computational

resources, including computational cost and memory usage. hGAO improves the performance of

attention operator by using hard attention mechanism. It still consumes large amount of mem-

ory, which is critical when learning from large graphs. To overcome this limitation, we propose a

novel channel-wise graph attention operator (cGAO). cGAO performs attention operation from the

perspective of channels. The response of each channel is computed by attending to all channels.

Given that the number of channels is far smaller than the number of nodes, cGAO can significantly

save computational resources. Another advantage of cGAO over GAO and hGAO is that it does
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not rely on the adjacency matrix. In both GAO and hGAO, the adjacency matrix is used to identify

neighboring nodes for attention operators. In cGAO, features within the same node communi-

cate with each other, but features in different nodes do not. cHAO does not need the adjacency

matrix to identify nodes connectivity. By avoiding dependency on the adjacency matrix, cGAO

achieves better computational efficiency than GAO and hGAO. Based on our proposed hGAO and

cGAO, we develop deep attention networks for graph embedding learning. Experimental results on

graph classification and node classification tasks demonstrate that our proposed deep models with

the new operators achieve consistently better performance. Comparison results also indicates that

hGAO achieves significantly better performance than GAOs on both node and graph embedding

tasks. Efficiency comparison shows that our cGAO leads to dramatic savings in computational

resources, making them applicable to large graphs.

In Section 4, we investigate graph feature learning using unique graph structures such as line

graph structures. In particular, we propose to construct a weighted line graph that can correct

biases in encoded topology information of line graphs. To this end, we assign each edge in a

line graph a normalized weight such that each node in the line graph has a weighted degree of

2. In this weighted line graph, the dynamics of node features are the same as those in its orig-

inal graph. Based on our weighted line graph, we propose a weighted line graph convolution

layer (WLGCL) that performs a message passing operation on both original graph structures and

weighted line graph structures. To address inefficiency issues existing in graph neural networks

that use line graph structures, we further propose to implement our WLGCL via an incidence ma-

trix, which can dramatically reduce the usage of computational resources. Based on our WLGCL,

we build a family of weighted line graph convolutional networks (WLGCNs). We evaluate our

methods on graph classification tasks and show that WLGCNs consistently outperform previous

state-of-the-art models. Experiments on simulated data demonstrate the efficiency advantage of

our implementation.

In Section 5, we introduce our graph structure methods. In particular, we propose novel graph

pooling (gPool) and unpooling (gUnpool) operations. Based on these two operations, we propose
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U-Net-like architectures for graph data. The gPool operation samples some nodes to form a smaller

graph based on their scalar projection values on a trainable projection vector. As an inverse oper-

ation of gPool, we propose a corresponding graph unpooling (gUnpool) operation, which restores

the graph to its original structure with the help of locations of nodes selected in the correspond-

ing gPool layer. Based on the gPool and gUnpool layers, we develop graph U-Nets, which allow

high-level feature encoding and decoding for network embedding. We use gPool and propose

hConv layers in FCN-like graph convolutional networks for text modeling. Since graphs are ex-

tracted from texts, we maintain the node orders as in the original texts. We propose the hConv

layer that combines GCN and regular convolutional operations to enable automatic high-level fea-

ture extraction. Based on our gPool and hConv layers, we propose four networks for the task of

text categorization. Our results show that the model based on gPool and hConv layers achieves

new state-of-the-art performance compared to CNN-based models. gPool layers involve negligible

number of parameters but bring significant performance boosts, demonstrating its contributions to

model performance.

In Section 6, we introduce a topology-aware pooling method that can address the limitations

of our gPool layer. Our gPool layer used global ranking methods to sample some of the impor-

tant nodes, but most of them are not able to incorporate graph topology information in computing

ranking scores. In this work, we propose the topology-aware pooling (TAP) layer that uses atten-

tion operators to generate ranking scores for each node by attending each node to its neighboring

nodes. The ranking scores are generated locally while the selection is performed globally, which

enables the pooling operation to consider topology information. To encourage better graph con-

nectivity in the sampled graph, we propose to add a graph connectivity term to the computation of

ranking scores in the TAP layer. Based on our TAP layer, we develop a network on graph data,

known as the topology-aware pooling network. Experimental results on graph classification tasks

demonstrate that our methods achieve consistently better performance than previous models.

1.2 Contributions

The main contributions of this dissertation are summarized as below:
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• We propose the learnable graph convolutional layer (LGCL), which can address the chal-

lenges on graphs and enable effective convolutional operations. LGCL automatically selects

a fixed number of neighboring nodes for each feature based on value ranking in order to

transform graph data into grid-like structures in 1-D format, thereby enabling the use of

regular convolutional operations on generic graphs.

• We propose novel hard graph attention operator (hGAO) and channel-wise graph attention

operator (cGAO). hGAO uses the hard attention mechanism by attending to only impor-

tant nodes. Compared to regular graph attention operator, hGAO improves performance and

saves computational cost by only attending to important nodes. To further reduce the require-

ments on computational resources, we propose the cGAO that performs attention operations

along channels. cGAO avoids the dependency on the adjacency matrix, leading to dramatic

reductions in computational resource requirements.

• We utilize line graph structures to enhance feature learning in graphs. In particular, we con-

struct a weighted line graph that can correct the bias in original line graph structures. Based

our weighted line graph structures, we propose the weighted line graph layer that leverages

the advantage of the weighted line graph structure. A practical challenge faced by graph

neural networks on line graphs is that they consume excessive computational resources, es-

pecially on dense graphs. To address this limitation, we propose to use the incidence matrix

to implement the WLGCL, which can dramatically save the computational resources.

• We propose novel graph pooling (gPool) and unpooling (gUnpool) operations. Based on

these two operations, we propose U-Net-like architectures for graph data. The gPool opera-

tion samples some nodes to form a smaller graph based on their scalar projection values on

a trainable projection vector. As an inverse operation of gPool, we propose a corresponding

graph unpooling (gUnpool) operation, which restores the graph to its original structure with

the help of locations of nodes selected in the corresponding gPool layer. Based on the gPool

and gUnpool layers, we develop graph U-Nets, which allow high-level feature encoding and

6



decoding for network embedding.

• We apply our proposed graph deep learning methods on text data to overcome long-range

dependency problem. One limitation of graph deep learning methods when used on graph-

based text representation tasks is that, graph deep learning methods do not consider the order

information of nodes in graph. To address this limitation, we propose the hybrid convolu-

tional (hConv) layer that combines GCN and regular convolutional operations. The hConv

layer is capable of increasing receptive fields quickly and computing features automatically.

Based on the proposed gPool and hConv layers, we develop new deep networks for text

categorization tasks. Our experimental results show that the networks based on gPool and

hConv layers achieves new state-of-the-art performance as compared to baseline methods.
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2. GRAPH FEATURE LEARNING VIA LEARNABLE CONVOLUTION OPERATIONS

In this section, we focus on how to learn high-level features without changing graph structures.

In particular, we propose the learnable graph convolutional layer to enable learnable kernels in

spatial dimension1.

2.1 Introduction

Deep learning methods are becoming increasingly powerful in solving various challenging ar-

tificial intelligence tasks. Among these deep learning methods, convolutional neural networks

(CNNs) [1] have demonstrated promising performance in many image-related applications, such

as image classification [2], semantic segmentation [3], and object detection [4, 5]. A variety of

CNN models have been proposed to continuously set the performance records [2, 6, 7, 8]. In ad-

dition to images, CNNs have also been successfully applied to natural language processing tasks

such as neural machine translation [9, 10, 11]. One common characteristic behind these tasks is

that the data can be represented by grid-like structures. This enables the use of convolutional oper-

ations in the form of the same local filters scanning every position on the input. Unlike traditional

hand-crafted filters, the local filters used in convolutional layers are trainable. The networks can

automatically decide what kind of features to extract by learning the weights in these trainable

filters, thereby avoiding hand-crafted feature extraction [12].

In many real-world applications, the data can be naturally represented as graphs, such as social,

citation, and biological networks. Figure 1.1 provides an illustration of graph data. Many interest-

ing discoveries can be made by analyzing these graph data, such as social network analysis [13].

An important task on graph data is node classification [14, 15], in which models make predictions

for every node in a graph based on node features and graph topology. As mentioned above, CNNs,

with the power of automatic feature extraction, have achieved great success on tasks with grid-like

1Reprinted with permission from "Large-scale learnable graph convolutional networks." by Hongyang Gao,
Zhengyang Wang, and Shuiwang Ji, 2018, Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, vol. 1, pp. 1416-1424, Copyright 2018 by ACM.
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data, which can be considered as special cases of graph data. Therefore, applying deep learn-

ing models, especially CNNs, on graph tasks is appealing. However, using regular convolutional

operations on generic graphs faces two main challenges. These challenges are resulted from the

fact that regular convolutions require the number of neighboring nodes for each node remains the

same, and these neighboring nodes are ordered. In generic graphs, the numbers of neighboring

nodes usually differ for different nodes in a graph. In addition, among the neighboring nodes of

a node, there is no ranking information based on which we can order them to ensure the output is

deterministic. In this work, we analyze the necessity of having a fixed number of ordered neigh-

boring nodes in regular convolutional operations and propose elegant solutions to address these

challenges.

Several recent studies tried to apply convolutional operations on generic graphs. Graph convo-

lutional networks (GCNs) [14] proposed to use a convolution-like operation to aggregate features

of all adjacent nodes for each node, followed by a linear transformation to generate new a feature

representation for a given node. Specifically, all feature vectors in the neighborhood, including

the feature vector of the central node itself, are summed up, weighted by non-trainable weights de-

pending on the number of neighbors. This can be thought of as a convolution-like operation which,

however, is intrinsically different from the regular convolutional operation in two aspects. First,

it does not use the same local filter to scan every node; that is, nodes that have different numbers

of adjacent nodes have filters of different sizes and weights. Second, the weights in the filters are

the same for all neighboring nodes in the receptive field as they are determined by the number of

neighbors. Consequently, the weights are not learned. Graph attention networks (GATs) [15] em-

ployed the attention mechanism [16] to obtain different and trainable weights for adjacent nodes

by measuring the correlation between their feature vectors and that of the central node. Yet graph

attention operation still differs from the regular convolution which learns weights in local filters

directly. Moreover, the attention mechanism requires extra computation in terms of pairs of feature

vectors, resulting in excessive memory and computational resource requirements in practice.

In this work, we make two major contributions to applying CNNs on generic graph data. First,

9



we propose the learnable graph convolutional layer (LGCL) to enable the use of regular convolu-

tional operations on graphs. Note that prior studies modified the original convolutional operations

to fit them for graph data. In contrast, our LGCL transforms the graphs to enable the use of regular

convolutions. Our models based on LGCL achieve better performance on both transductive learn-

ing and inductive node classification tasks, as demonstrated by our experimental results. Second,

we observe another limitation of prior methods; that is, their training process takes the adjacency

matrix of the whole graph as an input. This requires excessive memory and computational re-

sources when the graph has a large amount of nodes, which is usually the case in real-world tasks.

In order to overcome this limitation, we develop a sub-graph training method, which is a simple

yet effective approach to allow the training of deep learning methods on large-scale graph data.

The sub-graph training method can significantly reduce the amount of required memory and com-

putational resources, with negligible loss in terms of model performance.

2.2 Related Work

A few recent studies have tried to apply convolutional operations on graph data. Graph con-

volutional networks (GCNs) were introduced in [14] and achieved the state-of-art performance on

several node classification tasks. The authors defined and used a convolution-like operation termed

the spectral graph convolution. This enables CNNs to directly operate on graphs. Basically, each

layer in GCNs updates the feature vector representation of each node in the graph by considering

the features of neighboring nodes. To be specific, the layer-wise forward-propagation operation of

GCNs can be expressed as

Xl+1 = σ(D̂− 1
2 ÂD̂− 1

2XlWl), (2.1)

where Xl and Xl+1 are the input and output matrices of layer l, respectively. For both matrices,

the numbers of rows are the same, corresponding to the number of nodes in the graph, while the

numbers of columns can be different, depending on the dimensions of the input and output feature

space. In Eq (2.1), Â = A+I is used to aggregate feature vectors of adjacent nodes, whereA is the

adjacency matrix of the graph, and I is the identity matrix. Also, Â is used, instead of A, because
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the layers need to add self-loop connections to make sure that the old feature vector of the node

itself is taken into consideration when updating the representation of a node. D̂ is the diagonal node

degree matrix, which is used to normalize Â so that the scale of feature vectors after aggregation

remains the same. Wl is a trainable weight matrix and represents a linear transformation that

changes the dimension of feature space. Therefore, the dimension of W l depends on how many

features that each node in the input and output have, i.e., the number of columns in Xl and Xl+1,

respectively. σ(·) denotes an activation function like ReLU.

We analyze the convolution-like operation, which is the feature aggregation step through pre-

multiplying Xl by D̂− 1
2 ÂD̂− 1

2 . Consider a node with a feature vector corresponding to the i-th

row in Xl. The aggregation output, controlled by the i-th row in D̂− 1
2 ÂD̂− 1

2 , is a weighted sum

of the feature vectors of all of its adjacent nodes, including the node itself. We can see that the

operation is equivalent to having a local filter for each node, whose receptive field consists of the

node itself and all its neighboring nodes. As is common that nodes in a generic graph have different

numbers of adjacent nodes, the receptive field size varies, resulting in different local filters. This

is a key difference from the regular convolutional operation, where the same local filter is applied

to scan each position in grid-like data. Moreover, while using local filters of different sizes for

graph data seems reasonable, it is worth noting that there is no trainable parameter in D̂− 1
2 ÂD̂− 1

2 .

In addition, each adjacent node receives the same weight in the weighted sum, which makes it a

simple average. While CNNs achieve the power of automatic feature extraction by learning the

weights in local filters, this non-trainable aggregation operation in GCNs limits the capability of

CNNs on generic graph data.

From this perspective, graph attention networks (GATs) [15] tried to enable learnable weights

when aggregating neighboring feature vectors by employing the attention mechanism [16, 17].

Like GCNs, each node still has a local filter with a receptive field covering the node itself and

all of its adjacent nodes. When performing the weighted sum of feature vectors, each neighbor

receives a different weight by measuring the correlation between its feature vector and that of

the central node. Mathematically, for a node i and one of its adjacent nodes j, the correlation
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measurement process between layer l and l + 1 is given by

ei,jl = al(Wlx
i
l,Wlx

j
l )

αi,j
l = softmax(ei,jl ),

(2.2)

where xil and xjl represent the corresponding feature vectors, i.e., the i-th and j-th row in Xl, re-

spectively,Wl is a shared linear transformation and al represents a single-layer feed-forward neural

network, αi,j
l is the weight for node j in the feature aggregation operation of node i. Although in

this way, GATs provide different and trainable weights to different adjacent nodes, the learning

process differs from that of regular CNNs where weights in local filters are learned directly. Also,

the attention mechanism requires extra computation between a node and all of its adjacent nodes,

which will cause memory and computational resource problems in practice.

Unlike these prior models, which modified the regular convolutional operations to fit them for

generic graph data, we instead propose to transform graphs into grid-like data to enable the use

of CNNs directly. This idea was previously explored in [18]. However, the transformation in [18]

is implemented in the preprocessing process while our method includes the transformation in the

networks. Additionally, we introduce a sub-graph training method in this work, which is a simple

yet effective approach to allow large-scale training.

2.3 Methods

In this section, we introduce the learnable graph convolutional layer (LGCL) and the sub-graph

training strategy on generic graph data. Based on these developments, we propose the large-scale

learnable graph convolutional networks (LGCNs).

2.3.1 Challenges of Applying Convolutional Operations on Graph Data

In order to apply regular convolutional operations on graphs, we need to overcome two main

challenges that are caused by two major differences between generic graphs and grid-like data.

First, the number of adjacent nodes usually varies for different nodes in a generic graph. Second,

we cannot order the neighboring nodes in generic graphs, since there is no ranking information
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among them. For example, in a social network, each person in the network can be seen as a node

and the edges represent friendships between people. Obviously, the number of adjacent nodes

differs for each node since people can have different numbers of friends. Meanwhile, it is hard to

order these friends without additional information for ranking.

Note that grid-like data can be viewed as a special type of graph data, where each node has

a fixed number of ordered neighbors. As convolutional operations apply directly on grid-like

data such as images, we analyze why the two characteristics mentioned above are necessary to

performing regular convolutions. To see the need of having a fixed number of adjacent nodes

with ranking information, consider a convolutional filter with a size of 3 × 3 scanning an image.

We think of the image as a special graph by thinking of each pixel as a node. During the scan,

the computation involves a central node with 3 × 3 − 1 = 8 adjacent nodes each time. These

8 nodes become neighbors of the central node by having edges connecting them in the special

graph. Meanwhile, we can order these neighboring nodes by their relative positions with respect

to the central node. This is crucial to convolutional operations since the correspondence between

weights in the filter and nodes in the graph must be maintained during the scan. For instance, in

the example above, the upper left weight in the 3 × 3 filter should always be multiplied with the

neighboring node at the top left of the central node. Without such ranking information, the outputs

of convolution operations are no longer deterministic. We can see from the above discussions

that it is challenging to directly apply regular convolutional operations on generic graph data. To

address these two challenges, we propose an approach to transform generic graphs into grid-like

data.

2.3.2 Learnable Graph Convolutional Layers

To enable the use of regular convolutional operations on generic graphs, we propose the learn-

able graph convolutional layer (LGCL). Following the notations defined in Section 2.2, the layer-
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Figure 2.1: An illustration of a learnable graph convolutional layer (LGCL). We consider a node
with 6 adjacent nodes. Each node has three features, represented by a 3-component feature vector.
This layer selects k = 4 nodes in the neighborhood and employs a 1-D CNN to produce a new
vector representation of five features for the central node, color-coded in orange. The left part
describes the process of selecting the k-largest values for each feature from neighboring nodes. It
can be seen from the graph that there are 6 neighbors. Since k = 4, for each feature, four largest
values are selected from the neighborhood based on the ranking. For example, the results of this
selection process for the first feature is {9, 6, 5, 3} out of {9, 6, 5, 3, 0, 0}. By repeating the same
process for the other two features, we obtain (k + 1) 3-component feature vectors, including that
of the orange node itself. Concatenating them gives a 1-D data of grid-like structure, which has
(k + 1) positions and 3 channels. Afterwards, a 1-D CNN is applied to generate the final feature
vector. Specifically, we use two convolutional layers with a kernel size of (k/2 + 1) and without
padding. The numbers of output channels are 4 and 5, respectively. In practice, the 1-D CNN can
be any CNN model, as long as the final output is a vector, serving as the new feature representation
of the central node.

wise propagation rule of LGCL is formulated as

X̃l = g(Xl, A, k),

Xl+1 = c(X̃l),

(2.3)

where A is the adjacency matrix, g(·) is an operation that performs the k-largest node selection to

transform generic graphs to data of grid-like structures, and c(·) denotes a regular 1-D CNN that

aggregates neighboring information and outputs a new feature vector for each node. We discuss

g(·) and c(·) separately below.

k-largest Node Selection. We propose a novel method known as the k-largest node selection to

achieve the transformation from graphs to grid-like data, where k is a hyper-parameter of LGCL.
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Figure 2.2: An illustration of the proposed learnable graph convolutional network (LGCN). In this
example, the nodes in the input have two features. The input feature vectors are transformed into
low-dimensional representations using a graph embedding layer. After that, we stack two LGCL
layers with skip concatenation connections to refine the feature vectors of each node. Finally,
a fully-connected layer is used for node classification. There are three different classes in this
example.

After this operation, each node aggregates neighboring information and is represented in a 1-D

grid-like format with (k + 1) positions. The transformed data is then fed into a 1-D CNN to

generate the updated feature vector.

Suppose Xl ∈ RN×C with row vectors x1l , x
2
l , · · · , xNl , representing a graph of N nodes where

each node has C features. We are given the adjacency matrix A ∈ NN×N and a fixed k. Now

consider a specific node i whose feature vector is xil and it has n neighboring nodes. Through a

simple look-up operation inA, we can obtain the indices of these adjacent nodes, say i1, i2, · · · , in.

Concatenating the corresponding feature vectors xi1l , x
i2
l , · · · , x

in
l outputs a matrix M i

l ∈ Rn×C .

Without the loss of generalization, assume that n ≥ k. If n < k in practice, we can pad M i
l using

columns of zeros. The k-largest node selection is conducted on M i
l ; that is, for each column, we

rank the n values and select k-largest values. This gives us a k×C output matrix. As the columns in

M i
l represent features, the operation is equivalent to selecting k-largest values for each feature. By

inserting xil in the first row, the output becomes M̃ i
l ∈ R(k+1)×C . This is illustrated in the left part

of Figure 2.1. By repeating this process for each node, g(·) transforms Xl to X̃l ∈ RN×(k+1)×C .

Note that X̃l can be viewed as a 1-D grid-like structure by considering N , (k+1), and C as the

batch size, the spatial size, and the number of channels, respectively. Therefore, the k-largest node

selection function g(·) successfully achieves the transformation from generic graphs to grid-like

data. The operation makes use of the natural ranking information among real numbers and forces
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each node to have a fixed number of ordered neighbors.

1-D Convolutional Neural Networks. As discussed in Section 2.3.1, regular convolutional

operations can be directly applied on grid-like data. As X̃l ∈ RN×(k+1)×C is 1-D, we employ a

1-D CNN model c(·). The basic functionality of LGCL is to aggregate adjacent information and

update the feature vector for each node. Consequently, it requires Xl+1 ∈ RN×D, where D is the

dimension of the updated feature space. The 1-D CNN c(·) should take X̃l ∈ RN×(k+1)×C as input

and output a matrix of dimension N ×D, or equivalently, N × 1×D. Basically, c(·) reduces the

spatial size from (k + 1) to 1.

Note that N is considered as the batch size, which is not related to the design of c(·). As a

result, we focus on only one data sample, i.e., one node in the graph. Taking the example above,

for node i, the transformed output is M̃ i
l ∈ R(k+1)×C , which serves as the input to c(·). Due to

the fact that any regular convolutional operation with a filter size larger than one and no padding

reduces the spatial size, the simplest c(·) has only one convolutional layer with a filter size of

(k + 1) and no padding. The numbers of input and output channels are C and D, respectively.

Meanwhile, any multi-layer CNN can be employed, provided its final output has the dimension of

1 × D. The right part of Figure 2.1 illustrates an example of a two-layer CNN. Again, applying

c(·) for all the N nodes outputs Xl+1 ∈ RN×D. In summary, our LGCL transforms generic graphs

to grid-like data using the proposed k-largest node selection and applies a regular 1-D CNN to

perform feature aggregation and refine the feature vector for each node.

2.3.3 Learnable Graph Convolutional Networks

It is known that deeper networks usually yield better performance. However, prior deep models

on graphs like GCNs only have two layers. While they suffer from performance loss when going

deeper [14], our LGCL enables a deeper design, resulting in the learnable graph convolutional

networks (LGCNs) for graph node classification. We build LGCNs based on the architecture of

densely connected convolutional networks (DCNNs) [19, 8], which achieved state-of-the-art per-

formance in the ImageNet classification challenge [2].

In LGCNs, we first apply a graph embedding layer to produce low-dimensional representations
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Figure 2.3: An example of the sub-graph selection process. We start with Ninit = 3 randomly
sampled nodes and obtain a sub-graph of Ns = 15 nodes. In the first iteration, we use BFS to
find all the first-order neighboring nodes of the 3 initial nodes (orange), excluding themselves.
Among these nodes, we randomly select Nm = 5 nodes (blue). In the next iteration, we select
Nm = 7 nodes from neighbors of the blue nodes, excluding previously selected nodes. Note that
Nm changes for the two iterations, which is a flexible choice in practice. After two iterations, we
have selected 3 + 5 + 7 = 15 nodes and obtained a required sub-graph. These nodes, along with
the corresponding adjacency matrix, will form the input to the LGCN in a training iteration.

of nodes, since the original inputs are usually very high-dimensional feature vectors in some graph

dataset, such as the Cora [20]. The graph embedding layer is essentially a linear transformation in

the first layer expressed as

X1 = X0W0, (2.4)

where X0 ∈ RN×C0 represents the high-dimensional input and W0 ∈ RC0×C1 changes the dimen-

sion of feature space from C0 to C1. As a result, X1 ∈ RN×C1 and C1 < C0. Alternatively, a

GCN layer can be used for graph embedding. As illustrated in Section 2.2, the number of training

parameters in a GCN layer is equal to that of a regular graph embedding layer.

After the graph embedding layer, we stack multiple LGCLs, according to the complexity of the
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Algorithm 1 Sub-Graph Selection Algorithm
Input: Adjacency matrix A, Number of nodes N , Sub-graph size Ns, Initial number of nodes

Ninit, Maximum number of nodes expanded per iteration Nm

Output: A set of nodes S as a sub-graph
1: S = φ
2: initNodes = sample Ninit nodes from N nodes.
3: S = S ∪ initNodes
4: newAddNodes = initNodes
5: while size(S) < Ns and size(newAddNodes) 6= 0 do
6: candidateNodes = BFS(newAddNodes, A)

. Obtain first-order neighboring nodes of newAddNodes
7: newAddNodes = candidateNodes \ S
8: if size(newAddNodes) > Nm then
9: newAddNodes = sample Nm nodes from newAddNodes

10: end if
11: if size(newAddNodes) + size(S) > Ns then
12: Nr = Ns - size(S)
13: newAddNodes = sample Nr nodes from newAddNodes
14: end if
15: S = S ∪ newAddNodes
16: end while
17: return S

graph data. As each LGCL only aggregates information from first-order neighboring nodes, i.e.,

direct neighboring nodes, stacked LGCLs can collect information from a larger set of nodes, which

is commonly done in regular CNNs. In order to promote the model performance and facilitate

the training process, we apply skip connections to concatenate the inputs and outputs of LGCLs.

Finally, a fully-connected layer is used before the softmax function for final predictions.

Following the design principle of LGCNs, k and the number of stacked LGCLs are the most

important hyper-parameters. The average degree of nodes in the graph can be a good reference for

selecting k. Meanwhile, the number of LGCLs should depend on the complexity of tasks, such as

the number of classes, the number of nodes in a graph, etc. More complicated tasks require deeper

models.
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Table 2.1: Summary of datasets used in our experiments [21, 22]. The Cora, Citeseer, and Pubmed
datasets are used for transductive learning experiments, while the PPI dataset is for inductive learn-
ing experiments. The degree attribute listed is the average node degree of each dataset, which helps
the selection of the hyper-parameter k in LGCLs.

Dataset Nodes Features Classes Train Valid Test Degree
Cora 2708 1433 7 140 500 1000 4
Citeseer 3327 3703 6 120 500 1000 5
Pubmed 19717 500 3 60 500 1000 6
PPI 56944 50 121 44906 6514 5524 31

2.3.4 Sub-Graph Training on Large-Scale Data

Most prior deep models on graphs suffer from another limitation. In particular, during training

the inputs are the feature vectors of all the nodes along with the adjacency matrix of the whole

graph, whose sizes become large for large graph data. These prior models work properly on small-

scale graphs. However, for large-scale graphs, those methods usually result in excessive memory

and computational resource requirements, which limit the practical applications of these models.

Similar problems also happen for deep neural networks on other types of data, such as grid-

like data. For example, deep models on image segmentation usually use randomly cropped patches

when dealing with large images. Motivated by this strategy, we intend to randomly “crop” a graph

to obtain smaller graphs for training. However, while a rectangular patch of an image naturally

maintains neighboring information among pixels, how to handle irregular connections between

nodes in a graph remains challenging.

In this work, we propose a sub-graph selection algorithm to address the memory and compu-

tational resource problems on large-scale graph data, as shown in Algorithm 1. Given a graph,

we first sample some initial nodes. Staring from them, we use the Breadth-First-Search (BFS)

algorithm to expand adjacent nodes into the sub-graph iteratively. With multiple iterations, high-

order neighboring nodes of the initial nodes are included. Note that we use a single parameter Nm

in Algorithm 1 for simplicity. In practice, we can set Nm to different values for each iteration.

Figure 2.3 provides an example of the sub-graph selection process.
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With such randomly “cropped” sub-graphs, we are able to train deep models on large-scale

graphs. In addition, we can take advantage of the mini-batch training strategy to accelerate the

learning process. In each training iteration, we can use the proposed sub-graph selection algorithm

to sample several sub-graphs and put them in a mini-batch. The corresponding feature vectors and

adjacency matrices form the inputs to the networks.

2.4 Experimental Studies

In this section, we evaluate our proposed large-scale learnable graph convolutional networks

(LGCNs) on node classification tasks under both transductive and inductive learning settings. In

addition to comparisons with prior state-of-the-art models, some performance studies are per-

formed to investigate how to choose hyper-parameters. Experiments are also conducted to analyze

the training strategy based on the proposed sub-graph selection algorithm. Experimental results

show that LGCNs yield improved performance, and the sub-graph training is much more efficient

than whole-graph training. Our code is publicly available2.

2.4.1 Datasets

In our experiments, we focus on node classification tasks under both transductive and inductive

learning settings.

Transduction Learning. Under the transductive setting, the unlabeled testing data are acces-

sible and available during training. To be specific, for node classification, only a part of nodes in

the graph are labeled. The testing nodes, which are also in the same graph, are accessible during

training, including their features and connections, except for the labels. This means the training

process knows about the graph structure that contains testing nodes. We use three standard bench-

mark datasets for transductive learning experiments; those are the Cora, Citeseer, and Pubmed [20],

as summarized in Table 2.1. These three datasets are citation networks with nodes and edges rep-

resenting documents and citations, respectively. The feature vector of each node corresponds to a

bag-of-word representation for a document. For these three datasets, we employ the same experi-

2https://github.com/divelab/lgcn/
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mental settings as those in GCN [14]. For each class, 20 nodes are used for training, 500 nodes are

used for validation and 1,000 nodes are used for testing.

Inductive Learning. For inductive learning, the testing data are not available during training,

which means the training process does not learn about the structure of test graphs. In inductive

learning tasks, we usually have different training, validation, and testing graphs. During training,

the model only use the training graphs without access to validation and testing graphs. We use the

protein-protein interaction (PPI) dataset [22], which contains 20 graphs for training, 2 graphs for

validation, and 2 graphs for testing. Since the graphs for validation and testing are separate, the

training process does not use them. There are 2,372 nodes in each graph on average. Each node

has 50 features including positional, motif genes and signatures. Each node has multiple labels

from 121 classes.

2.4.2 Experimental Setup

We describe the experimental setup under both transductive and inductive learning settings.

Transduction Learning. In transductive learning tasks, we employ the proposed LGCN mod-

els as illustrated in Figure 2.2. Since transductive learning datasets employ high-dimensional bag-

of-word representations as feature vectors of nodes, the inputs go through a graph embedding layer

to reduce the dimension. Here, we use a GCN layer as the graph embedding layer. The dimension

of the embedding output is 32. Then we apply LGCLs, each of which uses k = 8 and produces

8-component feature vectors. For the Cora, Citeseer, and Pubmed, we stack 2, 1, and 1 LGCLs,

respectively. We use concatenation in skip connections. Finally, a fully-connected layer is used

as a classifier to make predictions. Before the fully-connected layer, we perform a simple sum to

aggregate feature vectors of adjacent nodes. Dropout [23] is applied on both input feature vectors

and adjacency matrices in each layer with rates of 0.16 and 0.999, respectively. All LGCN mod-

els in transductive learning tasks use the sub-graph training strategy. The sub-graph size is set to

2, 000.

Inductive Learning. For inductive learning, the same LGCN model as above is used except for

some hyper-parameters. For the graph embedding layer, the dimension of output feature vectors
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Table 2.2: Results of transductive learning experiments in terms of node classification accuracies
on the Cora, Citeseer, and Pubmed datasets. LGCNsub denotes the LGCN model using the sub-
graph training strategy.

Models Cora Citeseer Pubmed
DeepWalk [26] 67.2% 43.2% 65.3%
Planetoid [21] 75.7% 64.7% 77.2%
Chebyshev [27] 81.2% 69.8% 74.4%
GCN [14] 81.5% 70.3% 79.0%
LGCNsub(Ours) 83.3 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%

Table 2.3: Results of inductive learning experiments in terms of micro-averaged F1 scores on the
PPI dataset.

Models PPI
GraphSAGE-GCN [28] 0.500
GraphSAGE-mean [28] 0.598
GraphSAGE-pool [28] 0.600
GraphSAGE-LSTM [28] 0.612
LGCNsub(Ours) 0.772 ± 0.002

is 128. We stack two LGCLs with k = 64. We also employ the sub-graph training strategy, with

sub-graph initial node size equal to 500 and 200. Dropout with a rate of 0.9 is applied in each

layer.

For both transductive and inductive learning LGCN models, the following configurations are

shared. For all layers, only the identity activation function is used, which means no nonlinearity

is involved in the networks. In order to avoid over-fitting, the L2 regularization with λ = 0.0005

is applied. For training, the Adam optimizer [24] with a learning rate of 0.1 is used. Weights in

LGCNs are initialized by the Glorot initialization [25]. We employ the early stopping strategy

based on the validation accuracy and train 1,000 epochs at most.

2.4.3 Analysis of Results

The experimental results are summarized in Tables 2.2 and 2.3 for transductive and learning

settings, respectively.
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Transduction Learning. For transductive learning experiments, we report node classification

accuracies as in [14]. Table 2.2 provides the comparisons with other graph models. According to

the results, our LGCN models achieve better performance over the current state-of-the-art GCNs

by a margin of 1.8%, 2.7%, and 0.6% on the Cora, Citeseer, and Pubmed datasets, respectively.

Inductive Learning. For inductive learning experiments, we report micro-averaged F1 scores

like [28]. From table 2.3, we can observe that our LGCN model outperforms GraphSAGE-LSTM

by a margin of 16%. Without observing the structure of test graphs in training, the LGCN model

still achieves good generalization.

The results above show that the proposed LGCN models on generic graphs consistently yield

new state-of-the-art performance in node classification tasks on different datasets. These results

demonstrate the effectiveness of applying regular convolutional operations on transformed graph

data. In addition, the proposed transformation approach through the k-largest node selection is

shown to be effective.

2.4.4 LGCL versus GCN Layers

It may be argued that our LGCN models employ a deeper network architecture than GCNs,

which could explain the improved performance. However, the performance of GCNs is reported to

decrease when going deeper by stacking more layers. In addition, we conduct another experiment

by replacing all LGCLs in LGCN models by GCN layers, denoted as LGCNsub-GCN model. All

the other settings remain the same in order to ensure the fairness of the comparisons. Table 2.4

provides the comparison results between LGCNsub and LGCNsub-GCN. The results show that

LGCNsub has better performance than LGCNsub-GCN, which indicates that the LGCL is more

effective than the GCN layer.

2.4.5 Sub-Graph versus Whole-Graph Training

For the experiments above, we use the sub-graph training strategy to learn the LGCN models,

which aims at saving memory and training time. However, since the sub-graph selection algorithm

samples some nodes as a sub-graph from the whole graph, it means that the models trained in this
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Table 2.4: Results of transductive learning experiments for comparing the LGCNsub and GCN
layers on the Cora, Citeseer, and Pubmed datasets. Using the network architecture of LGCNsub,
we replace LGCLs by GCN layers, resulting in the LGCNsub-GCN model.

Models Cora Citeseer Pubmed
LGCNsub-GCN 82.2 ± 0.5% 71.1 ± 0.5% 79.0 ± 0.2%
LGCNsub(Ours) 83.3 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%

way do not learn about the structure of whole graph during training. Meanwhile, in transductive

learning tasks, the information of testing nodes may be ignored, which raises the risk of perfor-

mance loss. To address this concern, we perform experiments on transductive learning tasks to

compare the sub-graph training strategy with the previous whole-graph training strategy. Through

the experiments, we show the advantages of using the sub-graph training strategy, with negligible

loss in terms of model performance.

For the sub-graph selection process described in Algorithm 1, the algorithm starts with some

initial nodes that are randomly selected. In transductive learning tasks, we sample initial nodes only

from the nodes with training labels to make sure that training can be conducted. To be specific,

we sample 140, 120, and 60 initial nodes when selecting the sub-graph for the Cora, Citeseer, and

Pubmed datasets, respectively. For each iteration in the sub-graph selection algorithm, we do not

set Nm to limit the number of nodes expanded into the sub-graph. The maximum number of nodes

in the sub-graph is set to 2,000 for all the three datasets, which is an feasible size for our GPUs in

hand.

For comparison, we perform experiments using the same LGCN models, but train them using

the same whole-graph training strategy as GCNs, which means the inputs are representations of

the entire graph. We denote such models as LGCNwhole, compared to LGCNsub with the sub-graph

training strategy. The comparing results of these two models with GCNs are provided in Table 2.5.

The number of nodes reported represents how many nodes are used for one iteration of training.

The time reported here is the training time for running 100 epochs using a single TITAN Xp GPU.

It can be seen that the actual numbers of nodes in the training sub-graph for the Cora, Citeseer,
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Table 2.5: Results of transductive learning experiments for comparing the sub-graph training and
whole-graph training strategies on the Cora, Citeseer, and Pubmed datasets. For comparison, we
conduct experiments on LGCNs that employ the same whole-graph training strategy as GCNs,
denoted as LGCNwhole.

Cora Citeseer Pubmed

GCN
# Nodes 2708 3327 19717
Accuracy 81.5% 70.3% 79.0%
Time 7s 4s 38s

LGCNwhole

# Nodes 2708 3327 19717
Accuracy 83.8 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%
Time 58s 30s 1080s

LGCNsub

# Nodes 644 442 354
Accuracy 83.3 ± 0.5% 73.0 ± 0.6% 79.5 ± 0.2%
Time 14s 3.6s 2.6s

and Pubmed datasets are 644, 442, and 354, respectively, which are far smaller than the maximum

sub-graph size of 2,000. This indicates that the nodes in the Cora, Citeseer, and Pubmed datasets

are sparsely connected. Specifically, starting from several initial nodes with training labels, only a

small set of nodes will be selected by expanding neighboring nodes to form connected sub-graphs.

While these datasets are usually considered as a single large graph, the whole graph is actually

composed of several separate sub-graphs that have no connection to each other. The sub-graph

training strategy takes advantage of this fact and makes efficient use of the nodes with training

labels. Since only the initial nodes have training labels and all their connectivity information

is included in the selected sub-graphs, the amount of information loss in the sub-graph training

is minimized, resulting in negligible performance loss. This is demonstrated by comparing the

node classification accuracies of LGCNsub and LGCNwhole. According to the results, LGCNsub

models only have a subtle performance loss of 0.5% on the Cora dataset, while yielding the same

performance on the Citeseer and Pubmed datasets, as compared to the LGCNwhole models.

After investigating the risk of performance loss, we point out the great advantages of the sub-

graph training strategy in terms of training speed. By using the sub-graph training, LGCNsub

models take a sub-graph of fewer nodes as inputs in contrast to the whole graph, which is expected
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Figure 2.4: Results of using different values of hyper-parameter k in LGCN models. On the Cora,
Citeseer, and Pubmed datasets, we employ the same experimental setups described in Section 2.4.2.
We adjust the value of k in LGCNsub and report node classification accuracies in this figure. It can
be seen that k = 8 achieves the best performance for these datasets.

to greatly promote the training efficiency. It can be seen from the results in Table 2.5 that the

improvement is outstanding. Although GCNs require simpler computation, its running time is

much longer than that of LGCN models on large-scale graph datasets like the Pubmed. Powerful

deep models are usually used on large-scale data, which makes the sub-graph training strategy

useful in practice. The sub-graph training strategy enables using more complex layers such as the

proposed LGCLs without the concern of long training time. As a result, our large-scale LGCNs

with the sub-graph training strategy are not only effective but also very efficient.

2.4.6 Performance Study of k in LGCL

As described in Section 2.3.3, the average degree of nodes in graph can be helpful when choos-

ing the hyper-parameter k in LGCNs. In this part, we conduct experiments to show how different

values of k affect the performance of LGCN models. We vary the value of k in LGCLs and observe

the node classification accuracies on the Cora, Citeseer, and Pubmed datasets. The values of k are

selected from 2, 4, 8, 16, and 32, which cover a reasonable range of integer values.
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Figure 2.4 plots the performance change of LGCN models under different values of k. As

demonstrated in the figure, the LGCN models achieve the best performance on all the three datasets

when choosing k = 8. In the Cora, Citeseer, and Pubmed datasets, the average node degrees are

4, 5, and 6, respectively. This indicates that the best k is usually a bit larger than the average node

degree in the dataset. When k is too large, the performance of LGCN models decreases. A possible

explanation is that if k is much larger than the average node degree in the graph, too many zero

padding is used in the k-largest node selection process, which compromises the performance of

the following 1-D CNN models. For the inductive learning task on the PPI dataset, we also explore

different values of k. The best performance is given by k = 64 while the average node degree is

31. This is consistent with our results above.
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3. GRAPH FEATURE LEARNING VIA GRAPH ATTENTION OPERATORS

In the previous section, we discussed how to learn high-level features without changing graph

structures. In this section, we move forward to discuss graph deep learning methods that learn new

graph structures1.

3.1 Introduction

Deep attention networks are becoming increasingly powerful in solving challenging tasks in

various fields, including natural language processing [17, 10, 29], and computer vision [30, 31,

32]. Compared to convolution layers and recurrent neural layers like LSTM [33, 34], attention

operators are able to capture long-range dependencies and relationships among input elements,

thereby boosting performance [29, 35]. In addition to images and texts, attention operators are also

applied on graphs [15]. In graph attention operators (GAOs), each node in a graph attend to all

neighboring nodes, including itself. By employing attention mechanism, GAOs enable learnable

weights for neighboring feature vectors when aggregating information from neighbors. However,

a practical challenge of using GAOs on graph data is that they consume excessive computational

resources, including computational cost and memory usage. The time and space complexities of

GAOs are both quadratic to the number of nodes in graphs. At the same time, GAOs belong

to the family of soft attention [36], instead of hard attention [31]. It has been shown that hard

attention usually achieves better performance than soft attention, since hard attention only attends

to important features [37, 31, 38].

In this work, we propose novel hard graph attention operator (hGAO). hGAO performs atten-

tion operation by requiring each query node to only attend to part of neighboring nodes in graphs.

By employing a trainable project vector p, we compute a scalar projection value of each node in

graph on p. Based on these projection values, hGAO selects several important neighboring nodes

1Reprinted with permission from "Graph representation learning via hard and channel-wise attention networks." by
Hongyang Gao and Shuiwang Ji, 2019, Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, vol. 1, pp. 741-749, Copyright 2019 by ACM.
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to which the query node attends. By attending to the most important nodes, the responses of the

query node are more accurate, thereby leading to better performance than methods based on soft

attention. Compared to GAO, hGAO also saves computational cost by reducing the number of

nodes to attend.

GAO also suffers from the limitations of excessive requirements on computational resources,

including computational cost and memory usage. hGAO improves the performance of attention

operator by using hard attention mechanism. It still consumes large amount of memory, which is

critical when learning from large graphs. To overcome this limitation, we propose a novel channel-

wise graph attention operator (cGAO). cGAO performs attention operation from the perspective of

channels. The response of each channel is computed by attending to all channels. Given that

the number of channels is far smaller than the number of nodes, cGAO can significantly save

computational resources. Another advantage of cGAO over GAO and hGAO is that it does not

rely on the adjacency matrix. In both GAO and hGAO, the adjacency matrix is used to identify

neighboring nodes for attention operators. In cGAO, features within the same node communicate

with each other, but features in different nodes do not. cHAO does not need the adjacency matrix

to identify nodes connectivity. By avoiding dependency on the adjacency matrix, cGAO achieves

better computational efficiency than GAO and hGAO.

Based on our proposed hGAO and cGAO, we develop deep attention networks for graph em-

bedding learning. Experimental results on graph classification and node classification tasks demon-

strate that our proposed deep models with the new operators achieve consistently better perfor-

mance. Comparison results also indicates that hGAO achieves significantly better performance

than GAOs on both node and graph embedding tasks. Efficiency comparison shows that our cGAO

leads to dramatic savings in computational resources, making them applicable to large graphs.

3.2 Background and Related Work

In this section, we describe the attention operator and related hard attention and graph attention

operators.
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3.2.1 Attention Operator

In an attention operator, it takes three matrices as input. These matrices are a query matrix

Q = [q1,q2, · · · ,qm] ∈ Rd×m with each qi ∈ Rd, a key matrix K = [k1,k2, · · · ,kn] ∈ Rd×n

with each ki ∈ Rd, and a value matrix V = [v1,v2, · · · ,vn] ∈ Rp×n with each vi ∈ Rp. For each

query vector qi, the attention operator produces its response by attending it to every key vector

in K. The results are used to compute a weighted sum of all value vectors in V , leading to the

output of the attention operator. The layer-wise forward-propagation operation of attn(Q, K, V )

is defined as
E = KTQ ∈Rn×m,

O = V softmax(E) ∈Rp×m,

(3.1)

where softmax(·) is a column-wise softmax operator.

The coefficient matrix E is calculated by the matrix multiplication between KT and Q. Each

element eij in E represents the inner product result between the key vector kT
i and the query vector

qj . The matrix multiplication KTQ computes all similarity scores between all query vectors and

all key vectors. The column-wise softmax operator is used to normalize the coefficient matrix

and make the sum of each column to 1. The matrix multiplication between V and softmax(E)

produces the output O. Self-attention [17] is a special attention operator with Q = K = V .

In Eq. 3.1, we employ dot product to calculate responses between query vectors in Q and key

vectors in K. There are several other ways to perform this computation, such as Gaussian function

and concatenation. Dot product is shown to be the simplest but most effective one [30]. In this

work, we use dot product as the similarity function. In general, we can apply linear transformations

on input matrices, leading to following attention operator:

E = (WKK)TWQQ ∈Rn×m,

O = W VV softmax(E) ∈Rp′×m,

(3.2)

where W V ∈ Rp′×p WK ∈ Rd′×d and WQ ∈ Rd′×d. In the following discussions, we will skip
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linear transformations for the sake of notational simplicity.

The computational cost of the attention operator as described in Eq. 3.1 is O(n × d × m) +

O(p× n×m) = O(n×m× (d+ p)). The space complexity for storing intermediate coefficient

matrix E is O(n×m). If d = p and m = n, the time and space complexities are O(m2 × d) and

O(m2), respectively.

3.2.2 Hard Attention Operator

The attention operator described above uses soft attention, since responses to each query vec-

tor qi are calculated by taking weighted sum over all value vectors. In contrast, hard attention

operator [31] only selects a subset of key and value vectors for computation. Suppose k key vec-

tors (k < n) are selected from the input matrix K and the indices are i1, i2, · · · , ik with im < in

and 1 ≤ m < n ≤ k. With selected indices, new key and value matrices are constructed as

K̃ = [ki1 ,ki2 , . . . ,kik ] ∈ Rd×k and Ṽ = [vi1 ,vi2 , . . . ,vik ] ∈ Rp×k. The output of the hard atten-

tion operator is obtained by O = attn(Q, K̃, Ṽ ). The hard attention operator is converted into a

stochastic process in [31] by setting k to 1 and use probabilistic sampling. For each query vector,

it only selects one value vector by probabilistic sampling based on normalized similarity scores

given by softmax(Kqi). The hard attention operators using probabilistic sampling are not differ-

entiable, and requires reinforcement learning techniques for training. This makes soft attention

more popular for easier back-propagation training [39].

By attending to less key vectors, the hard attention operator is computationally more efficient

than the soft attention operator. The time and space complexities of the hard attention operator are

O(m × k × d) and O(m × k), respectively. When k � m, the hard attention operator reduces

time and space complexities by a factor of m compared to the soft attention operator. Besides

computational efficiency, the hard attention operator is shown to have better performance than the

soft attention operator [31, 10], because it only selects important feature vectors to attend [40, 41].
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3.2.3 Graph Attention Operator

The graph attention operator (GAO) was proposed in [15], and it applies the soft attention

operator on graph data. For each node in a graph, it attends to its neighboring nodes. Given a

graph with N nodes, each with d features, the layer-wise forward propagation operation of GAO

in [15] is defined as

Ẽ = (XTX) ◦A ∈ RN×N ,

O = Xsoftmax(Ẽ) ∈ Rd×N ,

(3.3)

where ◦ denotes element-wise matrix multiplication, A ∈ {0, 1}N×N and X = [x1,x2, . . . ,xN ] ∈

Rd×N are the adjacency and feature matrices of a graph. Each xi ∈ Rd is node i’s feature vector. In

some situations, A can be normalized as needed [14]. Note that the softmax function only applies

to nonzero elements of Ẽ.

The time complexity of GAO is O(Cd), where C is the number of edges. On a dense graph

with C ≈ N2, this reduces to O(N2d). On a sparse graph, sparse matrix operations are required

to compute GAO with this efficiency. However, current tensor manipulation frameworks such as

TensorFlow do not support efficient batch training with sparse matrix operations [15], making it

hard to achieve this efficiency. In general, GAO consumes excessive computational resources,

preventing its applications on large graphs.

3.3 Hard and Channel-Wise Attention Operators and Networks

In this section, we describe our proposed hard graph attention operator (hGAO) and channel-

wise graph attention operator (cGAO). hGAO applies the hard attention operation on graph data,

thereby saving computational cost and improving performance. cGAO performs attention opera-

tion on channels, which avoids the dependency on the adjacency matrix and significantly improves

efficiency in terms of computational resources. Based on these operators, we propose the deep

graph attention networks for network embedding learning.
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3.3.1 Hard Graph Attention Operator

Graph attention operator (GAO) consumes excessive computation resources, including com-

putational cost and memory usage, when graphs have a large number of nodes, which is very

common in real-world applications. Given a graph with N nodes, each with d features, GAO re-

quires O(N2d) and O(N2) time and space complexities to compute its outputs. This means the

computation cost and memory required grow quadratically in terms of graph size. This prohibits

the application of GAO on graphs with a large number of nodes. In addition, GAO uses the soft

attention mechanism, which computes responses of each node from all neighboring nodes in the

graph. Using hard attention operator to replace the soft attention operator can reduce computa-

tional cost and improve learning performance. However, there is still no hard attention operator

on graph data to the best of our knowledge. Direct use of the hard attention operator as in [31] on

graph data still incurs excessive computational resources. It requires the computation of the nor-

malized similarity scores for probabilistic sampling, which is the key factor of high requirements

on computational resources.

To address the above limitations of GAO, we propose the hard graph attention operator (hGAO)

that applies hard attention on graph data to save computational resources. For all nodes in a graph,

we use a projection vector p ∈ Rd to select the k-most important nodes to attend. Following the

notations defined in Section 3.2, the layer-wise forward propagation function of hGAO is defined
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as

y =
|XTp|
‖p‖

∈RN (3.4)

for i = 1, 2, · · · , N do

idxi = Rankingk(A:i ◦ y) ∈Rk (3.5)

X̂ i = X(:, idxi) ∈Rd×k (3.6)

ỹi = sigmoid(y(idxi)) ∈Rk (3.7)

X̃ i = X̂ idiag(ỹi) ∈Rd×k (3.8)

zi = attn(xi, X̃ i, X̃ i) ∈Rd (3.9)

Z = [z1, z2, . . . ,zN ] ∈Rd×N (3.10)

where A:i denotes the ith column of matrix A, X(:, idxi) contains a subset of columns of X

indexed by idxi, |·| computes element-wise absolute values, ◦ denotes element-wise matrix/vector

multiplication, diag(·) constructs a diagonal matrix with the input vector as diagonal elements,

Rankingk(·) is an operator that performs the k-most important nodes selection for the query node

i to attend and is described in detail below.

We propose a novel node selection method in hard attention. For each node in the graph, we

adaptively select the k most important adjacent nodes. By using a trainable projection vector p, we

compute the absolute scalar projection of X on p in Eq. (3.4), resulting in y = [y1, y2, · · · , yN ]T .

Here, each yi measures the importance of node i. For each node i, the Rankingk(·) operation in

Eq. (3.5) ranks node i’s adjacent nodes by their projection values in y, and selects nodes with

the k largest projection values. Suppose the indices of selected nodes for node i are idxi =

[i1, i2, · · · , ik], node i attends to these k nodes, instead of all adjacent nodes. In Eq. (3.6), we

extract new feature vectors X̂ i = [xi1 ,xi2 , . . . ,xik ] ∈ Rd×k using the selected indices idxi. Here,

we propose to use a gate operation to control information flow. In Eq. (3.7), we obtain the gate

vector ỹ by applying the sigmoid function to the selected scalar projection values y(idxi). By
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Figure 3.1: Illustration of GAO (a), hard attention operator in [31] (b), and our proposed hGAO (c).
q is the feature vector of a node with four neighboring nodes in a graph. ki and vi are key and
value vectors of the neighboring node i. In GAO (a), similarity scores are computed between
query vector and key vectors, leading to scalar values si. The softmax normalizes these values and
converts them into weights. The output is computed by taking a weighted sum of value vectors.
In hard attention operator (b), the output is generated by probabilistic sampling, which samples a
vector from value vectors using computed weights ei. In hGAO (c), a projection vector p is used
to compute the importance scores yi. Based on these importance scores, two out of four nodes are
selected by ranking. The output is computed by applying soft attention on selected nodes.

matrix multiplication X̂ idiag(ỹi) in Eq. (3.8), we control the information of selected nodes and

make the projection vector p trainable with gradient back-propagation. We use attention operator

to compute the response of node i in Eq. (3.9). Finally, we construct the output feature matrix Z

in Eq. (3.10). Note that the projection vector p is shared across all nodes in the graph. This means

hGAO only involves d additional parameters, which may not increase the risk of over-fitting.

By attending to less nodes in graphs, hGAO is computationally more efficient than GAO. The

time complexity of hGAO is O(N × logN × k + N × k × d2) if using max heap for k-largest

selection. When k � N and d � N , hGAO consumes less time compared to the GAO. The

space complexity of hGAO is O(N2) since we need to store the intermediate score matrix during

k-most important nodes selection. Besides computational efficiency, hGAO is expected to have
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better performance than GAO, because it selects important neighboring nodes to attend [40]. We

show in our experiments that hGAO outperforms GAO, which is consistent with the performance

of hard attention operators in NLP and computation vision fields [31, 10].

This method can be considered as a trade-off between soft attention and the hard attention

in [31]. The query node attends all neighboring nodes in soft attention operators. In the hard atten-

tion operator in [31], the query node attends to only one node that is probabilistically sampled from

neighboring nodes based on the coefficient scores. In our hGAO, we employ an efficient ranking

method to select k-most important neighboring nodes for the query node to attend. This avoids

computing the coefficient matrix and reduces computational cost. The proposed gate operation en-

ables training of the projection vector p using back-propagation [42], thereby avoiding the need of

using reinforcement learning methods [43] for training as in [31]. Figure 3.1 provides illustrations

and comparisons among soft attention operator, hard attention in [31], and our proposed hGAO.

Another possible way to compute the hard attention operator as hGAO is to implement the k-

most important node selection based on the coefficient matrix. For each query node, we can select

k neighboring nodes with k-largest similarity scores. The responses of the query node is calculated

by attending to these k nodes. This method is different from our hGAO in that it needs to compute

the coefficient matrix, which takes O(N2 × d) time complexity. The hard attention operator using

this implementation consumes much more computational resources than hGAO. In addition, the

selection process in hGAO employs a trainable projection vector p to achieve important node

selection. Making the projection vector p trainable allows for the learning of importance scores

from data.

3.3.2 Channel-Wise Graph Attention Operator

The proposed hGAO computes the hard attention operator on graphs with reduced time com-

plexity, but it still incurs the same space complexity as GAO. At the same time, both GAO and

hGAO need to use the adjacency matrix to identify the neighboring nodes for the query node in

the graph. Unlike grid like data such as images and texts, the number and ordering of neighboring

nodes in a graph are not fixed. When performing attention operations on graphs, we need to rely on
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Figure 3.2: An illustration of our proposed GANet. In this example, the input graph contains 6
nodes, each of which has two features. A GCN layer is used to transform input feature vectors
into low-dimensional representations. After that, we stack two GAMs for feature extraction. To
facilitate feature reuse and gradients back-propagation, we add skip concatenation connections for
GAMs. Finally, a GCN layer is used to output designated number of feature maps, which can be
directly used for node classification predictions or used as inputs of following operations.

the adjacency matrix, which causes additional usage of computational resources. To further reduce

the computational resources required by attention operators on graphs, we propose the channel-

wise graph attention operator, which gains significant advantages over GAO and hGAO in terms

of computational resource requirements.

Both GAO and our hGAO use the node-wise attention mechanism in which the output feature

vector of node i is obtained by attending the input feature vector to all or selected neighboring

nodes. Here, we propose to perform attention operation from the perspective of channels, result-

ing in our channel-wise graph attention operator (cGAO). For each channel X i:, we compute its

responses by attending it to all channels. The layer-wise forward propagation function of cGAO

can be expressed as

E = XXT ∈Rd×d,

O = softmax(E)X ∈Rd×N .

(3.11)

Note that we avoid the use of adjacency matrix A, which is different from GAO and hGAO.

When computing the coefficient matrix E, the similarity score between two feature maps X i: and

Xj: are calculated by eij =
∑N

k=1Xik × Xjk. It can be seen that features within the same node

communicate with each other, and there is no communication among features located in different

nodes. This means we do not need the connectivity information provided by adjacency matrix A,

thereby avoiding the dependency on the adjacency matrix used in node-wise attention operators.
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Table 3.1: Comparison of time and space complexities among GAO, hGAO, and cGAO in terms
of time and space complexities.

Operator Time Complexity Space Complexity
GAO O(N2 × d) O(N2)
hGAO O(N × logN × k +N × k × d2) O(N2)
cGAO O(N × d2) O(d2)

This saves computational resources related to operations with the adjacency matrix.

The computational cost of cGAO is O(Nd2), which is lower than that of GAO if d < N .

When applying attention operators on graph data, we can control the number of feature maps d,

but it is hard to reduce the number of nodes in graphs. On large graphs with d � N , cGAO

has computational advantages over GAO and hGAO, since its time complexity is only linear to

the size of graphs. The space complexity of cGAO is O(d2), which is independent of graph size.

This means the application of cGAO on large graphs does not suffer from memory issues, which

is especially useful on memory limited devices such as GPUs and mobile devices. Table 3.1

provides theoretical comparisons among GAO, hGAO and cGAO in terms of the time and space

complexities. Therefore, cGAO enables efficient parallel training by removing the dependency on

the adjacency matrix in graphs and significantly reduces the usage of computational resources.

3.3.3 The Proposed Graph Attention Networks

To use our hGAO and cGAO, we design a basic module known as the graph attention mod-

ule (GAM). The GAM consists of two operators; those are, a graph attention operator and a graph

convolutional network (GCN) layer [14]. We combine these two operators to enable efficient

information propagation within graphs. For GAO and hGAO, they aggregate information from

neighboring nodes by taking weighted sum of feature vectors from adjacent nodes. But there

exists a situation that weights of some neighboring nodes are close to zero, preventing the infor-

mation propagation of these nodes. In cGAO, the attention operator is applied among channels

and does not involve information propagation among nodes. To overcome this limitation, we use a

GCN layer, which applies the same weights to neighboring nodes and aggregate information from
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Table 3.2: Statistics of datasets used in graph classification tasks under inductive learning settings.
We use the D&D, PROTEINS, COLLAB, MUTAG, PTC, and IMDB-M datasets.

Dataset Total Train Test Nodes Degree Classes
MUTAG 188 170 18 17.9 2.2 2
PTC 344 310 34 25.6 2.0 2
PROTEINS 1113 1002 111 39.1 3.7 2
D&D 1178 1061 117 284.3 5.0 2
IMDB-M 1500 1350 150 13.0 10.1 3
COLLAB 5000 4500 500 74.5 66.0 3

all adjacent nodes. Note that we can use any graph attention operator such as GAO, hGAO and

cGAO. To facilitate feature reuse and gradients back-propagation, we add a skip connection by

concatenating inputs and outputs of the GCN layer.

Based on GAM, we design graph attention networks, denoted as GANet, for network embed-

ding learning. In GANet, we first apply a GCN layer, which acts as a graph embedding layer to pro-

duce low-dimensional representations for nodes. In some data like citation networks dataset [14],

nodes usually have very high-dimensional feature vectors. After the GCN layer, we stack multiple

GAMs depending on the complexity of the graph data. As each GAM only aggregates information

from neighboring nodes, stacking more GAMs can collect information from a larger parts of the

graph. Finally, a GCN layer is used to produce designated number of output feature maps. The

outputs can be directly used as predictions of node classification tasks. We can also add more

operations to produce predictions for graph classification tasks. Figure 3.2 provides an example of

our GANet. Based on this network architecture, we denote the networks using GAO, hGAO and

cGAO as GANet, hGANet and cGANet, respectively.

3.4 Experimental Studies

In this section, we evaluate our proposed graph attention networks on node classification and

graph classification tasks. We first compare our hGAO and cGAO with GAO in terms of computa-

tion resources such as computational cost and memory usage. Next, we compare our hGANet and

cGANet with prior state-of-the-art models under inductive and transductive learning settings. Per-
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Table 3.3: Statistics of datasets used in node classification tasks under transductive learning set-
tings. We use the Cora, Citeseer, and Pubmed datasets.

Dataset Nodes Features Train Valid Test Degree Classes
Cora 2708 1433 140 500 1000 4 7
Citeseer 3327 3703 120 500 1000 5 6
Pubmed 19717 500 60 500 1000 6 3

formance studies among GAO, hGAO, and cGAO are conducted to show that our hGAO and cGAO

achieve better performance than GAO. We also conduct some performance studies to investigate

the selection of some hyper-parameters.

3.4.1 Datasets

We conduct experiments on graph classification tasks under inductive learning settings and

node classification tasks under transductive learning settings. Under inductive learning settings,

training and testing data are separate. The test data are not accessible during training time. The

training process will not learn about graph structures of the test data. For graph classification

tasks under inductive learning settings, we use the MUTAG [18], PTC [18], PROTEINS [44],

D&D [45], IMDB-M [46], and COLLAB [46] datasets to fully evaluate our proposed methods.

MUTAG, PTC, PROTEINS and D&D are four benchmarking bioinformatics datasets. MUTAG

and PTC are much smaller than PROTEINS and D&D in terms of number of graphs and average

nodes in graphs. Compared to large datasets, evaluations on small datasets can help investigate

the risk of over-fitting, especially for deep learning based methods. COLLAB, IMDB-M are two

social network datasets. For these datasets, we follow the same settings as in [47], which employs

10-fold cross validation [48] with 9 folds for training and 1 fold for testing. The statistics of these

datasets are summarized in Table 3.2.

Unlike inductive learning settings, the unlabeled data and graph structure are accessible dur-

ing the training process under transductive learning settings. To be specific, only a small part of

nodes in the graph are labeled while the others are not. For node classification tasks under trans-

ductive learning settings, we use three benchmarking datasets; those are Cora [20], Citeseer, and
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Table 3.4: Comparison of results among GAO, hGAO, and cGAO on different graph sizes in terms
of the number of MAdd, memory usage, and CPU prediction time. The input sizes are describe by
“number of nodes × number of features”. The prediction time is the total execution time on CPU.

Input Layer MAdd Cost Saving Memory Memory Saving Time Speedup

1k × 48
GAO 100.61m 0.00% 4.98MB 0.00% 8.19ms 1.0×
hGAO 37.89m 62.34% 4.98MB 0.00% 5.61ms 1.4×
cGAO 9.21m 90.84% 0.99MB 80.12% 0.82ms 9.9×

10k × 48
GAO 9.65b 0.00% 0.41GB 0.00% 0.95s 1.0×
hGAO 0.46b 95.14% 0.41GB 0.00% 0.37s 2.5×
cGAO 0.09b 99.04% 9.61MB 97.65% 0.017s 52.7×

20k × 48
GAO 38.49b 0.00% 1.62GB 0.00% 12.78s 1.0×
hGAO 1.13b 97.04% 1.62GB 0.00% 4.55s 2.8×
cGAO 0.18b 99.52% 19.2MB 98.81% 0.029s 430.3×

Pubmed [14]. These datasets are citation networks. Each node in the graph represents a document

while an edge indicates a citation relationship. The graphs in these datasets are attributed and the

feature vector of each node is generated by bag-of-word representations. The dimensions of fea-

ture vectors of three datasets are different depending on the sizes of dictionaries. The statistics of

these datasets are summarized in Table 3.3. Following the same experimental settings in [14], we

use 20 nodes, 500 nodes, and 500 nodes for training, validation, and testing, respectively.

3.4.2 Experimental Setup

In this section, we describe the experimental setup for inductive learning and transductive learn-

ing tasks. For inductive learning tasks, we adopt the model architecture of DGCNN [47]. DGCNN

consists of four parts; those are graph convolution layers, soft pooling, 1-D convolution layers and

dense layers. We replace graph convolution layers with our hGANet described in Section 3.3.3 and

the other parts remain the same. The hGANet contains a starting GCN layer, four GAMs and an

ending GCN layer. Each GAM is composed of a hGAO, and a GCN layer. The starting GCN layer

outputs 48 feature maps. Each hGAO and GCN layer within GAMs outputs 12 feature maps. The

final GCN layer produces 97 feature maps as the original graph convolution layers in DGCNN.

The skip connections using concatenation is employed between the input and output feature maps

of each GAM. The hyper-parameter k is set to 8 in each hGAO, which means each node in a graph
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selects 8 most important neighboring nodes to compute the response. We apply dropout [23] with

the keep rate of 0.5 to the feature matrix in every GCN layer. For experiments on cGANet, we use

the same settings.

For transductive learning tasks, we use our hGANet to perform node classification predictions.

Since the feature vectors for nodes are generated using the bag-of-words method, they are high-

dimensional sparse features. The first GCN layer acts like an embedding layer to reduce them into

low-dimensional features. To be specific, the first GCN layer outputs 48 feature maps to produce

48 embedding features for each node. For different datasets, we stack different number of GAMs.

Specifically, we use 4, 2, and 3 GAMs for Cora, Citeseer, and Pubmed, respectively. Each hGAO

and GCN layer in GAMs outputs 16 feature maps. The last GCN layer produces the prediction on

each node in the graph. We apply dropout with the keep rate of 0.12 on feature matrices in each

layer. We also set k to 8 in all hGAOs. We employ identity activation function as [49] for all layers

in the model. To avoid over-fitting, we apply L2 regularization with λ = 0.0001. All trainable

weights are initialized with Glorot initialization [25]. We use Adam optimizer [24] for training.

3.4.3 Comparison of Computational Efficiency

According to the theoretical analysis in Section 3.3, our proposed hGAO and cGAO have effi-

ciency advantages over GAO in terms of the computational cost and memory usage. The advan-

tages are expected to be more obvious as the increase of the number of nodes in a graph. In this

section, we conduct simulated experiments to evaluate these theoretical analysis results. To reduce

the influence of external factors, we use the network with a single graph attention operator and

apply TensorFlow profile tool [50] to report the number of multiply-adds (MAdd), memory usage,

and CPU inference time on simulated graph data.

The simulated data are create with the shape of “number of nodes × number of feature maps”.

For all simulated experiments, each node on the input graph has 48 features. We test three graph

sizes; those are 1000, 1,0000, and 20,000, respectively. All tested graph operators output 48 feature

maps including GAO, hGAO, and cGAO. For hGAOs, we set k = 8 in all experiments, which is

the value of hyper-parameter k tuned on graph classification tasks. We report the number of MAdd,
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Table 3.5: Comparison of results of node classification experiments with prior state-of-the-art
models on the Cora, Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
DeepWalk [26] 67.2% 43.2% 65.3%
Planetoid [21] 75.7% 64.7% 77.2%
Chebyshev [27] 81.2% 69.8% 74.4%
GCN [14] 81.5% 70.3% 79.0%
GAT [15] 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
hGANet 83.5 ± 0.7% 72.7 ± 0.6% 79.2 ± 0.4%

Table 3.6: Comparison of results of graph classification experiments with prior state-of-the-art
models in terms of accuracies on the D&D, PROTEINS, COLLAB, MUTAG, PTC, and IMDB-M
datasets. “-” denotes the result not available.

Models D&D PROTEINS COLLAB MUTAG PTC IMDB-M
GRAPHSAGE [28] 75.42% 70.48% 68.25% - - -
PSCN [18] 76.27% 75.00% 72.60% 88.95% 62.29% 45.23%
SET2SET [51] 78.12% 74.29% 71.75% - - -
DGCNN [47] 79.37% 76.26% 73.76% 85.83% 58.59% 47.83%
DiffPool [52] 80.64% 76.25% 75.48% - - -
cGANet 80.86% 78.23% 76.96% 89.00% 63.53% 48.93%
hGANet 81.71% 78.65% 77.48% 90.00% 65.02% 49.06%

memory usage, and CPU inference time.

The comparison results are summarized in Table 3.4. On the graph with 20,000 nodes, our

cGAO and hGAO provide 430.31 and 2.81 times speedup compared to GAO. In terms of the

memory usage, cGAO can save 98.81% compared to GAO and hGAO. When comparing across

different graph sizes, the effects of speedup and memory saving are more apparent as the graph

size increases. This is consistent with our theoretical analysis on hGAO and cGAO. Our hGAO

can save computational cost compared to GAO. cGAO achieves great computational resources

reduction, which makes it applicable on large graphs. Note that the speed up of hGAO over GAO

is not as apparent as the computational cost saving due to the practical implementation limitations.
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Table 3.7: Comparison of results of graph classification experiments among GAO, hGAO, and
cGAO in terms of accuracies on the D&D, PROTEINS, COLLAB, MUTAG, PTC, and IMDB-M
datasets. “OOM” denotes out of memory.

Models D&D PROTEINS COLLAB MUTAG PTC IMDB-M
GANet OOM 77.92% 76.06% 87.22% 62.94% 48.89%
cGANet 80.86% 78.23% 76.96% 89.00% 63.53% 48.93%
hGANet 81.71% 78.65% 77.48% 90.00% 65.02% 49.06%

3.4.4 Results on Inductive Learning Tasks

In this section, we evaluate our methods on graph classification tasks under inductive learn-

ing settings. To compare our proposed cGAOs with hGAO and GAO, we replace hGAOs with

cGAOs in hGANet, denoted as cGANet. We compare our models with prior sate-of-the-art mod-

els on D&D, PROTEINS, COLLAB, MUTAG, PTC, and IMDB-M datasets, which serve as the

benchmarking datasets for graph classification tasks. The results are summarized in Table 3.6.

From the results, we can observe that the our hGANet consistently outperforms DiffPool [52]

by margins of 0.90%, 1.40%, and 2.00% on D&D, PROTEINS, and COLLAB datasets, which

contain relatively big graphs in terms of the average number of nodes in graphs. Compared to

DGCNN, the performance advantages of our hGANet are even larger. The superior performances

on large benchmarking datasets demonstrate that our proposed hGANet is promising since we

only replace graph convolution layers in DGCNN. The performance boosts over the DGCNN are

consistently and significant, which indicates the great capability on feature extraction of hGAO

compared to GCN layers.

On datasets with smaller graphs, our GANets outperform prior state-of-the-art models by mar-

gins of 1.05%, 2.71%, and 1.23% on MUTAG, PTC, and IMDB-M datasets. The promising per-

formances on small datasets prove that our methods improve the ability of high-level feature ex-

traction without incurring the problem of over-fitting. cGANet outperforms prior state-of-the-art

models but has lower performances than hGANet. This indicates that cGAO is also effective on

feature extraction but not as powerful as hGAO. The attention on only important adjacent nodes
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incurred by using hGAOs helps to improve the performance on graph classification tasks.

3.4.5 Results on Transductive Learning Tasks

Under transductive learning settings, we evaluate our methods on node classification tasks. We

compare our hGANet with prior state-of-the-art models on Cora, Citeseer, and Pubmed datasets

in terms of the node classification accuracy. The results are summarized in Table 3.5. From the

results, we can observe that our hGANet achieves consistently better performances than GAT,

which is the prior state-of-the-art model using graph attention operator. Our hGANet outperforms

GAT [15] on three datasets by margins of 0.5%, 0.2%, and 0.2%, respectively. This demonstrates

that our hGAO has performance advantage over GAO by attending less but most important adjacent

nodes, leading to better generalization and performance.

3.4.6 Comparison of cGAO and hGAO with GAO

Besides comparisons with prior state-of-the-art models, we conduct experiments under induc-

tive learning settings to compare our hGAO and cGAO with GAO. To be fair, we replace all hGAOs

with GAOs in hGANet employed on graph classification tasks, which results in GANet. GAOs

output the same number of feature maps as the corresponding hGAOs. Like hGAOs, we apply

linear transformations on key and value matrices. This means GANets have nearly the same num-

ber of parameters with hGANets, which additionally contain limited number of projection vectors

in hGAOs. We adopt the same experimental setups as hGANet. We compare our hGANet and

cGANet with GANet on all six datasets for graph classification tasks described in Section 3.4.1.

The comparison results are summarized in Table 3.7.

The results show that our cGAO and hGAO have significantly better performances than GAO.

Notably, GANet runs out of memory when training on D&D dataset with the same experimental

setup as hGANet. This demonstrates that hGAO has memory advantage over GAO in practice

although they share the same space complexity. cGAO outperforms GAO on all six datasets but

has slightly lower performances than hGAO. Considering cGAO dramatically saves computational

resources, cGAO is a good choice when facing large graphs. Since there is no work that realizes
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Figure 3.3: Results of employing different k values in hGAOs. We evaluate our hGANet on
PROTEINS, COLLAB, and MUTAG datasets under inductive learning settings. We use the same
experimental setups described in Section 3.4.2. We report the graph classification accuracies in
this figure. We can see that the best performances is achieved when k = 8.

the hard attention operator in [31] on graph data, we do not provide comparisons with it in this

work.

3.4.7 Performance Study of k in hGAO

Since k is an important hyper-parameter in hGAO, we conduct experiments to investigate the

impact of different k values on hGANet. Based on hGANet, we vary the values of k in hGAOs

with choices of 4, 8, 16, 32, and 64, which are reasonable selections for k. We report performances

of hGANets with different k values on graph classification tasks on PROTEINS, COLLAB, and

MUTAG datasets, which cover both large and small datasets.

The performance changes of hGANets with different k values are plotted in Figure 3.3. From

the figure, we can see that hGANets achieve the best performances on all three datasets when

k = 8. The performances start to decrease as the increase of k values. On PROTEINS and

COLLAB datasets, the performances of hGANets with k = 64 are significantly lower than those
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with k = 8. This indicates that larger k values make the query node to attend more adjacent nodes

in hGAO, which leads to worse generalization and performance.
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4. GRAPH FEATURE LEARNING VIA LINE GRAPH STRUCTURES

In the previous section, we discussed how to learn high-level features by mocking regular deep

learning methods such as convolution and attention operations. In this section, we investigate

graph deep learning methods that learn new graph features using unique graph structures like line

graph structures.

4.1 Introduction

Graph neural networks [53, 54, 28] have shown to be competent in solving challenging tasks

in the field of network embedding. Many tasks have been significantly advanced by graph deep

learning methods such as node classification tasks [14, 15, 49], graph classification tasks [52, 47],

link prediction tasks [55, 56], and community detection tasks [57]. Currently, most graph neural

networks capture the relationships among nodes through message passing operations. In a single

layer-wise propagation, each node receives features from its neighbors in the graph and transforms

them into its new feature representations [27, 58]. Thus, message passing operations need to rely

on the graph topology information.

Recently, some works [57] use extra graph structures such as line graphs to enhance message

passing operations in graph neural networks from different graph perspectives. A line graph is a

graph that is derived from an original graph to represent connectivity between edges in the orig-

inal graph. Since line graphs can faithfully encode the topology information, message passing

operations on line graphs can enhance network embeddings in graph neural networks. However,

graph neural networks that leverage line graph structures need to deal with two challenging issues;

those are bias and inefficiency. Topology information in original graphs is faithfully encoded in

line graphs but in a biased way. In particular, node features are either overstated or understated

depending on their degrees. Besides, line graphs can be much bigger graphs than original graphs

depending on the graph density. Message passing operations of graph neural networks on line

graphs lead to significant use of computational resources.
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Figure 4.1: An illustration of an undirected graph (a), its corresponding line graph (b), and its
incidence graph (c).

In this work, we propose to construct a weighted line graph that can correct biases in encoded

topology information of line graphs. To this end, we assign each edge in a line graph a normalized

weight such that each node in the line graph has a weighted degree of 2. In this weighted line

graph, the dynamics of node features are the same as those in its original graph. Based on our

weighted line graph, we propose a weighted line graph convolution layer (WLGCL) that performs

a message passing operation on both original graph structures and weighted line graph structures.

To address inefficiency issues existing in graph neural networks that use line graph structures, we

further propose to implement our WLGCL via an incidence matrix, which can dramatically reduce

the usage of computational resources. Based on our WLGCL, we build a family of weighted line

graph convolutional networks (WLGCNs). We evaluate our methods on graph classification tasks

and show that WLGCNs consistently outperform previous state-of-the-art models. Experiments

on simulated data demonstrate the efficiency advantage of our implementation.

4.2 Background and Related Work

In this section, we describe the line graph and its applications in graph neural networks for

network embedding learnings.

In graph theory, a line graph is a graph derived from an undirected graph. It represents the

connectivity among edges in the original graph. Given a graph G, the corresponding line graph

L(G) is constructed by using edges in G as vertices in L(G). Two nodes in L(G) are adjacent

if they share a common end node in the graph G [59]. Note that the edges (a, b) and (b, a) in an
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undirected graph G correspond to the same vertex in the line graph L(G). The Whitney graph

isomorphism theorem [60] stated that a line graph has a one-to-one correspondence to its original

graph. This theorem guarantees that the line graph can faithfully encode the topology information

in the original graph.

An incidence graph is a bipartite graph that describes the incidence relationships among nodes

and edges [61]. The two disjoint and independent nodes sets in the incidence graph are vertices

and edges in G, respectively. Besides, an incidence matrix is a matrix with each row and each

column corresponding to a vertex and an edge, respectively. It shows the connectivity relationships

between nodes and edges. Figure 4.1 provides an illustration of an undirected graph, its line graph,

and its incidence graph. The above discussions are mainly based on undirected graphs, but they

can be easily extended to other types of graphs.

Recently, [57] proposes to use the line graph structure to enhance the message passing opera-

tions in graph neural networks. Since the line graph can faithfully encode the topology information,

the message passing on the line graph can enhance the network embeddings in graph neural net-

works. In graph neural networks that use line graph structures, features are passed and transformed

in both the original graph structures and the line graph structures, thereby leading to better feature

learnings and performances.

4.3 Weighted Line Graph Convolutional Networks

In this work, we propose the weighted line graph that addresses the bias in the line graph when

encoding graph topology information. Based on our weighted line graph, we propose the weighted

line graph convolution layer (WLGCL) for better feature learning by leveraging line graph struc-

tures. Besides, graph neural networks using line graphs consume excessive computational re-

sources. To solve the inefficiency issue, we propose to use the incidence matrix to implement the

WLGCL, which can dramatically reduce the usage of computational resources.

4.3.1 Benefit and Bias of Line Graph Representations

In this section, we describe the benefit and bias of using line graph representations.
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Figure 4.2: An illustration of a graph (a), its corresponding line graph (b), and its weighted line
graph (c). Here, we consider a graph with 4 nodes and 4 edges as illustrated in (a). The numbers
show the node degrees in the graph. In figure (b), a line graph is constructed with self-loops. Each
node corresponds to an edge in the original graph. In the regular line graph, the weight of each
edge is 1. Figure (c) illustrates the weighted line graph constructed as described in Section 4.3.2.
The weight of each edge is assigned as defined in Eq. (4.1).

Benefit. In message-passing operations, edges are usually given equal importance and edge

features are not well explored. This can constrain the capacity of GNNs, especially on graphs

with edge features. In the chemistry domain, a compound can be converted into a graph, where

atoms are nodes and chemical bonds are edges. On such kinds of graphs, edges have different

properties and thus different importance. However, message-passing operations underestimate

the importance of edges. To address this issue, the line graph structure can be used to leverage

edge features and different edge importance [62, 57, 63]. The line graph, by its nature, enables

graph neural networks to encode and propagate edge features in the graph. The line graph neural

networks that take advantage of line graph structures have shown to be promising on graph-related

tasks [57, 64, 65]. By encoding node and edge features simultaneously, line graph neural networks

enhance the feature learning on graphs.

Bias. According to the Whitney graph isomorphism theorem, the line graph L(G) encodes

the topology information of the original graph G, but the dynamics and topology of G are not

correctly represented in L(G) [66]. As described in the previous section, each edge in the graph G

corresponds to a vertex in the line graph L(G). The features of each edge contain features of its two

end nodes. A vertex with a degree d in the original graph G will generate d×(d−1)/2 edges in the
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Figure 4.3: An illustration of our proposed weighted line graph convolution layer. We consider an
input graph with 4 nodes and each node contains 2 features. Based on the input graph, we firstly
construct the weighted line graph with features as described in Section 4.3.2. Then we apply two
GCN layers on the original graph and the weighted line graph, respectively. The edge features in
the line graph are transformed back into node features and combined with features in the original
graph.

line graph L(G). The message passing frequency of this node’s features will change from O(d) in

the original graph to O(d2) in the line graph. From this point, the line graph encodes the topology

information in the original graph but in a biased way. In the original graph, a node’s features will

be passed to d neighbors. But in the corresponding line graph, the information will be passed to

d×(d−1)/2 nodes. The topology structure in the line graph L(G) will overstate the importance of

features for nodes with high degrees in the graph. On the contrary, the nodes with smaller degrees

will be relatively understated, thereby leading to biased topology information encoded in the line

graph. Note that popular adjacency matrix normalization methods [14, 15, 67, 68] cannot address

this issue.

4.3.2 Weighted Line Graph

In the previous section, we show that the line graph L(G) constructed from the original graph

G encodes biased graph topology information. To address this issue, we propose to construct a

weighted line graph that assigns normalized weights to edges. In a regular line graph L(G), each

edge is assigned an equal weight of 1, thereby leading to a biased encoding of the graph topology

information. To correct the bias, we need to normalize edge weights in the line graph.
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Considering each edge in G has two ends, it is intuitive to normalize the weighted degree of

the corresponding node in L(G) to 2. To this end, the weight for an edge in the adjacency matrix

F of L(G) is computed as:

F(a,b),(b,c) =


1
Db

if a 6= c

1
Db

+ 1
Da
, if a = c

(4.1)

where a, b, and c are nodes in the graph G, (a, b) and (b, c) are edges in the graph G that are

connected by the node b. Db is the degree of the node b in the graph G. To facilitate the message

passing operation, we add self-loops on the weighted line graph WL(G). The weights for self-

loop edges computed by the second case consider the fact that they are self-connected by both

ends. Figure 4.2 illustrates an example of a graph and its corresponding weighted line graph.

Theorem 1. Given the edge weights in the weighted line graph WL(G) defined by Eq. (4.1), the

weighted degree for a node (a, b) in WL(G) is 2.

Proof. Given nodes a and bwith degreesDa andDb in a graph G, a node (a, b) in the corresponding

weighted line graphWL(G) connects toDa−1 andDb−1 nodes through a and b in G, respectively.

The weighted degree of the node (a, b) is computed by summing up the weights of edges that

connect (a, b) to other nodes through a and b, and the weight of its self-loop:

WLD(a,b) =
Da−1∑
i=1

1

Da

+

Db−1∑
j=1

1

Db

+

(
1

Da

+
1

Db

)

=
Da∑
i=1

1

Da

+

Db∑
j=1

1

Db

= 2.

(4.2)

This completes the proof.

By constructing the weighted line graph with normalized edge weights defined in Eq. (4.1),

each node (a, b) has a weighted degree of 2. Given a node a with a degree of d, it has d related

edges in G and d related nodes in L(G). The message passing frequency of node a’s features in
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the weighted line graph WL(G) is
∑d

i=1 2 = O(d), which is consistent with that in the original

graph G. Thus, the weighted line graph faithfully encodes the topology information of the original

graph in an unbiased way.

4.3.3 Weighted Line Graph Convolution Layer

In this section, we propose the weighted line graph convolution layer (WLGCL) that leverages

our proposed weighted line graph for feature representations learnings. In this layer, node features

are passed and aggregated in both the original graph G and the corresponding weighted line graph

WL(G).

Suppose an undirected attributed graph G has N nodes and E edges. Each node in the graph

contains C features. In the layer `, an adjacency matrix A(`) ∈ RN×N and a feature matrix

X(`) ∈ RN×C are used to represent the graph connectivity and node features, respectively. Here,

we construct the adjacency matrix F (`) ∈ RE×E of the corresponding weighted line graph. The

layer-wise propagation rule of the weighted line graph convolution layer ` is defined as:

Y (`) = B(`)TX(`), ∈RE×C (4.3)

Y (`) = F (`)Y (`), ∈RE×C (4.4)

K
(`)
L = B(`)Y (`), ∈RN×C (4.5)

K(`) = A(`)X(`), ∈RN×C (4.6)

X(`+1) = K(`)W (`) +K
(`)
L W

(`)
L , ∈RN×C′

(4.7)

where W (`) ∈ RC×C′ and W
(`)
L ∈ RC×C′ are matrices of trainable parameters. B(`) ∈ RN×E is

the incidence matrix of the graph G that shows the connectivity between nodes and edges.

To enable message passing on the line graph L(G), each edge in the graph G needs to have

features. However, edge features are not available on some graphs. To address this issue, we

first compute features for an edge (a, b) by summing up features of its two end nodes: Y (`)
(a,b) =

X
(`)
a +X

(`)
b . Here, we use the summation operation to ensure the permutation invariant property in

this layer. Eq. (4.3) computes features for each edge by using the incidence matrix of the graph G,
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Figure 4.4: An illustration of the weighted line graph convolution network. The input graph is an
undirected attributed graph. Each node in the graph contains two features. Here, we use a GCN
layer to produce low-dimensional continuous feature representations. In each of the following two
blocks, we use a layer and a layer for feature learning and graph coarsening, respectively. We use
a multi-layer perceptron network for classification.

which results in the feature matrix Y (`) for the line graph. Then, we perform message passing and

aggregation on the line graph in Eq. (4.4). With updated edges features, Eq. (4.5) generates new

nodes features with edge features Y (`). Eq. (4.6) performs feature passing and aggregation on the

graph G, which leads to aggregated nodes features K(`). In Eq. (4.7), aggregated features from the

graph G and the line graph L(G) are transformed and combined, which produces the output feature

matrix X(`+1). Note that we can apply popular adjacency matrix normalization methods [14] on

the adjacency matrix A(`), the line graph adjacency matrix F (`), and the incidence matrix B(`).

In the WLGCL, we use the line graph structure as a complement to the original graph structure,

thereby leading to enhanced feature learnings. Here, we use a simple feature aggregation method as

used in GCN [14]. Other complicated and advanced feature aggregation methods such as GAT [15]

can be easily applied by changing Eq. (4.4) and Eq. (4.6) accordingly. Figure 4.3 provides an

illustration of our WLGCL.

4.3.4 Weighted Line Graph Convolution Layer via Incidence Matrix

In this section, we propose to implement the WLGCL using the incidence matrix, which can

significantly reduce the usage of computational resources while taking advantage of the line graph

structure.

One practical challenge of using a line graph structure is that it consumes excessive computa-

tional resources in terms of memory usage and execution time. To use a line graph in a graph neural

network, we need to store its adjacency matrix, compute edge features, and perform message pass-
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ing operation. Our proposed WLGCL also faces this challenge. Space and time complexities of

Eq. (4.4), which plays the dominating role, areO(E2) = O(N4) andO(E2C) = O(N4C), respec-

tively. To address this issue, we propose to use the incidence matrix B to compute the weighted

line graph adjacency matrix F . The adjacency matrix F can be accurately computed with the

following theorem.

Theorem 2. Given an undirected graph, its incidence matrix B ∈ RN×E , and its degree matrix

D ∈ RN , the adjacency matrix F ∈ RE×E of the weighted line graph with weights defined by

Eq. (4.1) can be exactly computed by

F = BTdiag (D)−1B, (4.8)

where diag(·) takes a vector as input and constructs a squared diagonal matrix using the vector

elements as the main diagonal elements.

Proof. We construct a weighted incidence matrix by normalizing the weights as B̂i,(i,j) = 1/Di.

Thus, the weighted incidence matrix is computed as B̂ = diag (D)−1B. In the incidence graph,

each edge is connected to its two end nodes. Thus, each column in the incidence matrix B:,(a,b)

has two non-zero entries; those are Ba,(a,b) and Bb,(a,b). The same rule applies to the weighted

incidence matrix B̂. Based on this observation, we have

(
BT B̂

)
(a,b),(b,c)

=
N∑
i=1

BT
(a,b),i × B̂i,(b,c)

= BT
(a,b),aB̂a,(b,c) +BT

(a,b),bB̂b,(b,c)

=


1
Db

if a 6= c

1
Db

+ 1
Da

if a = c

= F(a,b),(b,c).

(4.9)

This completes the proof.

Based on the results from Theorem 2, we can update the equations (Eq. (4.3-4.5)) to generate
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K
(`)
L in the WLGCL by replacing the adjacency matrix F with Eq. (4.8):

K
(`)
L = B(`)F (`)B(`)TX(`)

= B(`)B(`)Tdiag (D)−1B(`)B(`)TX(`)

= H(`)diag (D)−1H(`)X(`),

(4.10)

where H(`) = B(`)B(`)T only needs to be computed once. With computed K
(`)
L , we output the

new feature matrix X(`+1) using equations Eq. (4.6) and Eq. (4.7).

By using the implementation in Eq. (4.10), space and time complexities of the WLGCL are

reduced to O(N ×E) = O(N3) and O(N2×E)+O(N2×C) = O(N4), respectively. Compared

to the naive WLGCL implementation, they are reduced by a factor of N and C, respectively. In

the experimental study part, we show that the WLGCL implemented as Eq. (4.10) dramatically

saves the computational resources compared to the naive implementation. Notably, the results in

Eq. (4.8) can be applied to other graph neural networks that leverage the benefits of line graph

structures.

4.3.5 Weighted Line Graph Convolutional Networks

In this section, we build a family of weighted line graph convolutional networks (WLGCNets)

that utilize our proposed WLGCLs. In WLGCNets, an embedding layer such as a fully-connected

layer or GCN layer is firstly used to learn low-dimensional representations for nodes in the graph.

Then we stack multiple blocks, each of which consists of a WLGCL and a pooling layer [67].

Here, the WLGCL encodes high-level features while the pooling layer outputs a coarsened graph.

We use the gPool layer to produce a coarsened graph that helps to retain original graph structure

information. To deal with the variety of graph sizes in terms of the number of nodes, we apply

global readout operations on the outputs including maximization, averaging and summation [69].

The outputs of the first GCN layer and all blocks are stacked together in the feature dimension and

fed into a multi-layer perceptron network for classification. Figure 4.4 provides an example of our

WLGCNets.
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Table 4.1: Comparison of WLGCNet and previous state-of-the-art models on graph classification
datasets. We compare our networks with WL [70], PSCN [18], DGCNN, SAGPool [71], DIFF-
POOL, g-U-Net, and GIN. We report the graph classification accuracies (%) on PROTEINS, D&D,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K, COLLAB, and REDDIT-MULTI12K
datasets.

PROTEINS D&D IMDBM RDTB RDT5K COLLAB RDT12K
graphs 1113 1178 1500 2000 4999 5000 11929
nodes 39.1 284.3 13 429.6 508.5 74.5 391.4
classes 2 2 3 2 5 3 11
WL 75.0 ± 3.1 78.3 ± 0.6 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 78.9 ± 1.9 44.4 ± 2.1
DGCNN 75.5 ± 0.9 79.4 ± 0.9 47.8 ± 0.9 - - 73.8 ± 0.5 41.8 ± 0.6
PSCN 75.9 ± 2.8 76.3 ± 2.6 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 72.6 ± 2.2 41.3 ± 0.8
DIFFPOOL 76.3 80.6 - - - 75.5 47.1
SAGPool 71.9 76.5 - - - - -
g-U-Net 77.6 ± 2.6 82.4 ± 2.9 51.8 ± 3.7 85.5 ± 1.3 48.2 ± 0.8 77.5 ± 2.1 44.5 ± 0.6
GIN 76.2 ± 2.8 82.0 ± 2.7 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 80.6 ± 1.9 -
WLGCNet 78.9 ± 4.2 83.8 ± 2.8 56.1 ± 3.6 94.1 ± 2.2 58.2 ± 3.2 83.1 ± 7.9 50.3 ± 1.5

4.4 Experimental Study

In this section, we evaluate our proposed WLGCL and WLGCNet on graph classification tasks.

We demonstrate the effectiveness of our methods by comparing our networks with previous state-

of-the-art models in terms of the graph classification accuracy. The performances on small datasets

show that our methods will not increase the risk of the over-fitting problem. We conduct ablation

experiments to demonstrate the contributions of our methods. Besides, we evaluate the efficiency

of our implementation of the WLGCL in terms of the usage of computational resources.

4.4.1 Experimental Setup

We describe the experimental setup for graph classification tasks. In this work, we mainly

evaluate our methods on graph classification datasets such as social network datasets and bioinfor-

matics datasets. The node features are created using one-hot encodings and fed into the networks.

In WLGCNets, we use GCN layers as the graph embedding layers. After the first GCN layer, we

stack three blocks as described in Section 4.3.5. The outputs of the GCN layer and WLGCLs in

three blocks are processed by a readout function and concatenated as the network output. The
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readout function performs three global pooling operations; those are maximization, averaging, and

summation. The network outputs are fed into a classifier to produce predictions. Here, we use

a two-layer feed-forward network with 512 units in the hidden layer as the classifier. We apply

dropout [23] on the network and the classifier.

We use an Adam optimizer [24] with a learning rate of 0.001 to train WLGCNets. To prevent

over-fitting, we apply the L2 regularization on trainable parameters with a weight decay rate of

0.0008. All models are trained for 200 epochs using one NVIDIA GeForce RTX 2080 Ti GPU on

an Ubuntu 18.04 system.

4.4.2 Performance Study

To evaluate our methods and WLGCNets, we conduct experiments on graph classification tasks

using seven datasets; those are IMDB-BINARY (IMDBB), D&D [45], IMDB-MULTI (IMDBM),

REDDIT-BINARY (RDTB), REDDIT-MULTI5K (RDT5K), COLLAB, and REDDIT-MULTI12K

(RDT12K) [46]. REDDIT datasets are benchmarking large graph datasets used for evaluating

graph neural networks in the community. On the datasets without node features such as RDT12K,

we use one-hot encodings of node degrees as node features [69]. To produce less biased evalua-

tion results, we follow the practices in [69, 47] and perform 10-fold cross-validation on training

datasets. We use the average accuracy across 10 fold testing results with variances.

We report the graph classification accuracy along with performances of previous state-of-the-

art models. The results are summarized in Table 4.1. We can observe from the results that our

proposed WLGCNets significantly outperform previous models by margins of 3.4%, 1.8%, 3.8%,

1.7%, 0.7%, 2.5%, 3.2% on IMDB-BINARY, D&D, IMDB-MULTI, REDDIT-BINARY, REDDIT-

MULTI5K, COLLAB, and REDDIT-MULTI12K datasets, respectively. The promising results,

especially on large benchmarking datasets such as REDDIT-MULTI12K, demonstrate the effec-

tiveness of our proposed methods and models for network embeddings. Note that our WLGCNet

uses the gPool layer from the g-U-Net. The superior performances of WLGCNets over the g-U-Net

demonstrate the performance gains are from our proposed WLGCLs.
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Table 4.2: Comparison of WLGCNet and previous state-of-the-art models on relatively small
datasets. We report the graph classification accuracies (%) on MUTAG, PTC, and PROTEINS
datasets.

MUTAG PTC PROTEINS
graphs 188 344 1113
nodes 17.9 25.5 39.1
classes 2 2 2
WL 90.4 ± 5.7 59.9 ± 4.3 75.0 ± 3.1
DGCNN 85.8 ± 1.7 58.6 ± 2.4 75.5 ± 0.9
PSCN 92.6 ± 4.2 60.0 ± 4.8 75.9 ± 2.8
DIFFPOOL - - 76.3
SAGPool - - 71.9
g-U-Net 87.2 ± 7.8 64.7 ± 6.8 77.6 ± 2.6
GIN 90.0 ± 8.8 64.6 ± 7.0 76.2 ± 2.8
WLGCNet 93.0 ± 5.8 72.7 ± 6.0 78.9 ± 4.2

4.4.3 Results on Small Datasets

In the previous section, we evaluate our methods on benchmarking datasets that are relatively

large in terms of the number of graphs and the number of nodes in graphs. To provide a com-

prehensive evaluation, we conduct experiments on relatively small datasets to evaluate the risk of

over-fitting of our methods. Here, we use three datasets; those are MUTAG [72], PTC [73], and

PROTEINS [44]. These datasets are bioinformatics datasets with categorical features on nodes.

We follow the same experimental settings as in Section 4.4.2.

The results in terms of the graph classification accuracy are summarized in Table 4.2 with per-

formances of previous state-of-the-art models. We can observe from the results that our WLGCNet

outperforms previous models by margins of 0.4%, 6.0%, and 1.3% on MUTAG, PTC, and PRO-

TEINS, respectively. This demonstrates that our proposed models that take advantage of line graph

structures will not increase the risk of the over-fitting problem even on small datasets.

4.4.4 Ablation Study of Weighted Line Graph Convolution Layers

In this section, we conduct ablation studies based on WLGCNets to demonstrate the contri-

bution of our WLGCLs to the entire network. To explore the advantage of line graph structures,
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Table 4.3: Ablation study of WLGCNet. We compare WLGCNet with the network using the same
architecture as WLGCNet with GCN layers (denoted as WLGCNetg), the network using the same
architecture as WLGCNet with regular line graph convolution layers (denoted as WLGCNetl).
We report the graph classification accuracies (%) on REDDIT-BINARY, REDDIT-MULTI5K, and
REDDIT-MULTI12K datasets.

RDTB RDT5K RDT12K
WLGCNetg 93.2 ± 1.5 56.9 ± 2.2 49.1 ± 1.5
WLGCNetl 93.6 ± 2.0 57.3 ± 3.0 49.6 ± 2.8
WLGCNet 94.1 ± 2.2 58.2 ± 3.2 50.3 ± 1.5

we construct a network that removes all layers using line graphs. Based on the WLGCNet, we

replace WLGCLs by GCNs using the same number of trainable parameters, which we denote as

WLGCNetg. To compare our weighted line graph with the regular line graph, we modify our WL-

GCLs to use regular line graph structures. We denote the resulting network as WLGCNetl. We

evaluate these networks on three datasets; those are REDDIT-BINARY, REDDIT-MULTI5K, and

REDDIT-MULTI12K datasets.

The results in terms of the graph classification accuracy are summarized in Table 4.3. We

can observe from the results that both WLGCNet and WLGCNetl achieve better performances

than WLGCNetg, which demonstrates the benefits of utilizing line graph structures on graph neu-

ral networks. When comparing WLGCNet with WLGCNetl, WLGCNet outperforms WLGCNetl

by margins of 0.5%, 0.5%, and 0.7% on REDDIT-BINARY, REDDIT-MULTI5K, and REDDIT-

MULTI12K datasets, respectively. This indicates that our proposed WLGCL utilizes weighted line

graph structures with unbiased topology information encoded, thereby leading to better perfor-

mances.

4.4.5 Computational Efficiency Study

In Section 4.3.4, we propose an efficient implementation of WLGCL using the incidence ma-

trix, which can save dramatic computational resources compared to the naive one. Here, we con-

duct experiments on simulated data to evaluate the efficiency of our methods. To this end, we build

networks that contain a single layer. This helps to remove the influence of other expected fac-
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Table 4.4: Comparison of WLGCL and the WLGCL using native implementation (denoted as
WLGCLn). We evaluate them on simulated data with different graph sizes in terms of the number
of nodes and the number of edges. All layers output 64 feature channels. We report the number of
multiply-adds (MAdd), the amount of memory usage, and the CPU execution time. We describe
the input graph size in the format of “number of nodes / number of edges”.

Input Operator MAdd Saving Memory Saving Time Speedup

1000/50000
WLGCLn 166.47B 0.00% 9.5GB 0.00% 15.73s 1.0×
WLGCL 51.13B 69.28% 0.19GB 97.94% 0.63s 26.2×

1000/100000
WLGCLn 652.87B 0.00% 37.63GB 0.00% 56.62s 1.0×
WLGCL 101.13B 84.51% 0.38GB 98.98% 1.21s 47.2×

1000/150000
WLGCLn 1,459.27B 0.00% 86.71GB 0.00% 134.36s 1.0×
WLGCL 151.13B 89.64% 0.57GB 99.34% 1.82s 74.6×

2000/150000
WLGCLn 1,478.66B 0.00% 99.87GB 0.00% 278.8s 1.0×
WLGCL 608.52B 58.85% 1.13GB 98.86% 6.19s 45.1×

tors. To fully explore the efficiency of our proposed methods, we conduct experiments on graphs

of different sizes in terms of the number of nodes. Since WLGCL takes advantage of line graph

structures, the graph density has a significant impact on the layer efficiency. Here, the graph den-

sity is defined by 2E/(N × (N − 1)). To investigate the impact of the graph density, we conduct

experiments on graphs with the same size but different numbers of edges.

By using the TensorFlow profile tool [50], we report the computational resources used by net-

works including the number of multiply-adds (MAdd), the amount of memory usage, and the CPU

execution time. The comparison results are summarized in Table 4.4. We can observe from the

results that the WLGCLs with our proposed implementation use significantly less computational

resources than WLGCLs with naive implementation in terms of the memory usage and CPU ex-

ecution time. By comparing the results on first three inputs, the advantage on efficiency of our

method over the naive implementation becomes much larger as the increase of the graph density

with the same graph size. By comparing results of the last two inputs with the same number of

edges but different graph sizes, we can observe that the efficiency advantage of our proposed meth-

ods remains the same. This shows that the graph density is a key factor that influences the usage

of computational resources, especially on dense graphs.

The experimental results on simulated data demonstrate that our implementation of WLGCL
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Figure 4.5: Comparison of WLGCNets with different depths. We evaluate these networks on PTC,
PROTEINS, and REDDIT-BINARY datasets. We report the graph classification accuracies in this
figure.

via the incidence matrix can effectively alleviate the inefficiency issue in graph neural networks

that leverage line graph structures.

4.4.6 Network Depth Study

Network depth in terms of the number of blocks is an important hyper-parameter in the WL-

GCNet. In previous experiments, we use three blocks in WLGCNets based on our empirical expe-

riences. In this section, we investigate the impact of the network depth in WLGCNets on network

embeddings. Based on our WLGCNet, we vary the network depth from 1 to 5, which covers a rea-

sonable range. We evaluate these networks on PTC, PROTEINS, and REDDIT-BINARY datasets

and report the graph classification accuracies. Figure 4.5 plots the results of WLGCNets with dif-

ferent numbers of blocks. We can observe from the figure that the best performances are achieved

on WLGCNets with three blocks on all three datasets. When the network depth increases, the
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performances decrease, which indicates the over-fitting problem in deeper networks.
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5. FEATURE-AWARE GRAPH STRUCTURE LEARNING

In the previous sections, we discussed how to learn high-level features without changing graph

structures. In this section, we move forward to discuss graph deep learning methods that learn new

graph structures1.

5.1 Introduction

Convolutional neural networks (CNNs) [42] have demonstrated great capability in various chal-

lenging artificial intelligence tasks, especially in fields of computer vision [5, 19] and natural lan-

guage processing [16]. One common property behind these tasks is that both images and texts have

grid-like structures. Elements on feature maps have locality and order information, which enables

the application of convolutional operations [27].

In practice, many real-world data can be naturally represented as graphs such as social and

biological networks. Due to the great success of CNNs on grid-like data, applying them on graph

data [53, 54] is particularly appealing. Recently, there have been many attempts to extend convolu-

tions to graph data (GNNs) [14, 15, 49]. One common use of convolutions on graphs is to compute

node representations [28, 52]. With learned node representations, we can perform various tasks on

graphs such as node classification and link prediction.

Images can be considered as special cases of graphs, in which nodes lie on regular 2D lattices. It

is this special structure that enables the use of convolution and pooling operations on images. Based

on this relationship, node classification and embedding tasks have a natural correspondence with

pixel-wise prediction tasks such as image segmentation [74, 75, 58]. In particular, both tasks aim to

make predictions for each input unit, corresponding to a pixel on images or a node in graphs. In the

computer vision field, pixel-wise prediction tasks have achieved major advances recently. Encoder-

decoder architectures like the U-Net [76] are state-of-the-art methods for these tasks. It is thus
1Reprinted with permission from "Graph U-Nets." by Hongyang Gao and Shuiwang Ji, 2019, International Con-

ference on Machine Learning, vol. 1, pp. 2083-2092, Copyright 2019 by PMLR, and "Learning graph pooling and
hybrid convolutional operations for text representations." by Hongyang Gao, Yongjun Chen, and Shuiwang Ji, 2019,
The World Wide Web Conference, vol. 1, pp. 2743-2749, Copyright 2019 by ACM.
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highly interesting to develop U-Net-like architectures for graph data. In addition to convolutions,

pooling and up-sampling operations are essential building blocks in these architectures. However,

extending these operations to graph data is highly challenging. Unlike grid-like data such as images

and texts, nodes in graphs have no spatial locality and order information as required by regular

pooling operations.

To bridge the above gap, we propose novel graph pooling (gPool) and unpooling (gUnpool)

operations in this section. Based on these two operations, we propose U-Net-like architectures

for graph data. The gPool operation samples some nodes to form a smaller graph based on their

scalar projection values on a trainable projection vector. As an inverse operation of gPool, we

propose a corresponding graph unpooling (gUnpool) operation, which restores the graph to its

original structure with the help of locations of nodes selected in the corresponding gPool layer.

Based on the gPool and gUnpool layers, we develop graph U-Nets, which allow high-level feature

encoding and decoding for network embedding. Experimental results on node classification and

graph classification tasks demonstrate the effectiveness of our proposed methods as compared to

previous methods.

In this section, we also work on graphs converted from text data, the words are treated as nodes

in the graphs. By maintaining the order information in nodes’ feature matrices, we can apply

convolutional operations to feature matrices. Based on this observation, we develop a new graph

convolutional layer, known as the hybrid convolutional (hConv) layer. Based on gPool and hConv

layers, we develop a shallow but effective architecture for text modeling tasks [77]. Results on text

classification tasks demonstrate the effectiveness of our proposed methods as compared to previous

CNN models.

5.2 Related Work

In this section, we discuss some graph structure learning operations and their applications on

text data.
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5.2.1 Graph Structure Learning Operations

Recently, there has been a rich line of research on graph neural networks [78]. Inspired by the

first order graph Laplacian methods, [14] proposed graph convolutional networks (GCNs), which

achieved promising performance on graph node classification tasks. GCNs essentially perform

aggregation and transformation on node features without learning trainable filters. [28] tried to

sample a fixed number of neighboring nodes to keep the computational footprint consistent. [15]

proposed to use attention mechanisms to enable different weights for neighboring nodes. [79]

used relational graph convolutional networks for link prediction and entity classification. Some

studies applied GNNs to graph classification tasks [80, 81, 47]. [82] discussed possible ways of

applying deep learning on graph data. [83] and [84] proposed to use spectral networks for large-

scale graph classification tasks. Some studies also applied graph kernels on traditional computer

vision tasks [85, 86, 87].

In addition to convolution, some studies tried to extend pooling operations to graphs. [27]

proposed to use binary tree indexing for graph coarsening, which fixes indices of nodes before

applying 1-D pooling operations. [88] used deterministic graph clustering algorithm to determine

pooling patterns. [52] used an assignment matrix to achieve pooling by assigning nodes to different

clusters of the next layer.

5.2.2 GCN Applications on Text Modeling

Before applying graph-based methods on text data, we need to convert texts to graphs. In this

section, we discuss related literatures on converting texts to graphs and use of GCNs on text data.

Many graph representations of texts have been explored to capture the inherent topology and

dependence information between words. In [89], a rule-based classifier is employed to map each

tag onto graph nodes and edges. The tags are acquired by the part-of-speech (POS) tagging

techniques. In [90] a concept interaction graph representation is proposed for capturing com-

plex interactions among sentences and concepts in documents. The graph-of-word representa-

tion (GoW) [91] attempts to capture co-occurrence relationships between words known as terms.
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plays

who

Japi

“Japi is a person who plays wow.”
Figure 5.1: Example of converting text to a graph using the graph-of-words method. For this
text, we use noun, adjective, and verb as terms for node selection. The words of “Japi", “person",
“who", “plays", and “wow" are selected as nodes in the graph. We employ a sliding window size of
4 for edge building. For instance, there is an undirected edge between “Japi” and “person”, since
they can be covered in the same sliding window in the original text.

It was initially applied to text ranking task and has been widely used in many NLP tasks such as

information retrieval [92], text classification [93, 94], keyword extraction [95, 96] and document

similarity measurement [97].

Before applying graph-based text modeling methods, we need to convert texts to graphs. Here,

we employ the graph-of-words [91] method for its effectiveness and simplicity. The conversion

starts with the phase preprocessing such as tokenization and text cleaning. After preprocessing,

each text is encoded into an unweighted and undirected graph in which nodes represent selected

terms and edges represent co-occurrences between terms within a fixed sliding window. A term is a

group of words clustered based on their part-of-speech tags such as noun and adjective. The choice

of sliding window size depends on the average lengths of processed texts. Figure 5.1 provides an
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example of this method.

In addition to graph data, some studies attempted to apply graph-based methods to grid-like

data such as texts. Compared to traditional recurrent neural networks such as LSTM [33], GCNs

have the advantage of considering long-term dependencies by edges in graphs. In [98], a variant

of GCNs is applied to the task of sentence encoding and achieved better performance than LSTM.

GCNs have also been used in neural machine translation tasks [99]. Although graph convolutional

operations have been extensively developed and explored, pooling operations on graphs are not

well studied currently.

5.3 Structure Learning Operations

In this section, we introduce the graph pooling (gPool) layer, graph unpooling (gUnpool) layer,

and hybrid convolutional layer. Based on these new layers, we develop the graph U-Nets for node

classification tasks and graph networks for graph classifications.

5.3.1 Graph Pooling Layer

Pooling layers play important roles in CNNs on grid-like data. They can reduce sizes of fea-

ture maps and enlarge receptive fields, thereby giving rise to better generalization and perfor-

mance [100]. On grid-like data such as images, feature maps are partitioned into non-overlapping

rectangles, on which non-linear down-sampling functions like maximum are applied. In addition

to local pooling, global pooling layers [101] perform down-sampling operations on all input units,

thereby reducing each feature map to a single number. In contrast, k-max pooling layers [102]

select the k-largest units out of each feature map.

However, we cannot directly apply these pooling operations to graphs. In particular, there is

no locality information among nodes in graphs. Thus the partition operation is not applicable on

graphs. The global pooling operation will reduce all nodes to one single node, which restricts the

flexibility of networks. The k-max pooling operation outputs the k-largest units that may come

from different nodes in graphs, resulting in inconsistency in the connectivity of selected nodes.

In this section, we propose the graph pooling (gPool) layer to enable down-sampling on graph
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data. In this layer, we adaptively select a subset of nodes to form a new but smaller graph. To

this end, we employ a trainable projection vector p. By projecting all node features to 1D, we

can perform k-max pooling for node selection. Since the selection is based on 1D footprint of

each node, the connectivity in the new graph is consistent across nodes. Given a node i with its

feature vector xi, the scalar projection of xi on p is yi = xip/‖p‖. Here, yi measures how much

information of node i can be retained when projected onto the direction of p. By sampling nodes,

we wish to preserve as much information as possible from the original graph. To achieve this, we

select nodes with the largest scalar projection values on p to form a new graph.

Suppose there are N nodes in a graph G and each of which contains C features. The graph

can be represented by two matrices; those are the adjacency matrix A` ∈ RN×N and the feature

matrix X` ∈ RN×C . Each non-zero entry in the adjacency matrix A represents an edge between

two nodes in the graph. Each row vector x`
i in the feature matrix X` denotes the feature vector of

node i in the graph. The layer-wise propagation rule of the graph pooling layer ` is defined as:

y = X`p`/‖p`‖,

idx = rank(y, k),

ỹ = sigmoid(y(idx)),

X̃` = X`(idx, :),

A`+1 = A`(idx, idx),

X`+1 = X̃` �
(
ỹ1T

C

)
,

(5.1)

where k is the number of nodes selected in the new graph. rank(y, k) is the operation of node

ranking, which returns indices of the k-largest values in y. The idx returned by rank(y, k) contains

the indices of nodes selected for the new graph. A`(idx, idx) andX`(idx, :) perform the row and/or

column extraction to form the adjacency matrix and the feature matrix for the new graph. y(idx)

extracts values in y with indices idx followed by a sigmoid operation. 1C ∈ RC is a vector of size

C with all components being 1, and � represents the element-wise matrix multiplication.
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Figure 5.2: An illustration of the proposed graph pooling layer with k = 2. × and � denote
matrix multiplication and element-wise product, respectively. We consider a graph with 4 nodes,
and each node has 5 features. By processing this graph, we obtain the adjacency matrix A` ∈ R4×4

and the input feature matrix X` ∈ R4×5 of layer `. In the projection stage, p ∈ R5 is a trainable
projection vector. By matrix multiplication and sigmoid(·), we obtain y that are scores estimating
scalar projection values of each node to the projection vector. By using k = 2, we select two
nodes with the highest scores and record their indices in the top-k-node selection stage. We use the
indices to extract the corresponding nodes to form a new graph, resulting in the pooled feature map
X̃` and new corresponding adjacency matrix A`+1. At the gate stage, we perform element-wise
multiplication between X̃` and the selected node scores vector ỹ, resulting in X`+1. This graph
pooling layer outputs A`+1 and X`+1.

X` is the feature matrix with row vectors x`
1,x

`
2, · · · ,x`

N , each of which corresponds to a node

in the graph. We first compute the scalar projection of X` on p`, resulting in y = [y1, y2, · · · , yN ]T

with each yi measuring the scalar projection value of each node on the projection vector p`. Based

on the scalar projection vector y, rank(·) operation ranks values and returns the k-largest values in

y. Suppose the k-selected indices are i1, i2, · · · , ik with im < in and 1 ≤ m < n ≤ k. Note that

the index selection process preserves the position order information in the original graph. With

indices idx, we extract the adjacency matrix A` ∈ Rk×k and the feature matrix X̃` ∈ Rk×C for the

new graph. Finally, we employ a gate operation to control information flow. With selected indices

idx, we obtain the gate vector ỹ ∈ Rk by applying sigmoid to each element in the extracted scalar

projection vector. Using element-wise matrix product of X̃` and ỹ1T
C , information of selected
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nodes is controlled. The ith row vector in X`+1 is the product of the ith row vector in X` and the

ith scalar value in ỹ.

Notably, the gate operation makes the projection vector p trainable by back-propagation [42].

Without the gate operation, the projection vector p produces discrete outputs, which makes it not

trainable by back-propagation. Figure 5.2 provides an illustration of our proposed graph pooling

layer. Compared to pooling operations used in grid-like data, our graph pooling layer employs extra

training parameters in projection vector p. We will show that the extra parameters are negligible

but can boost performance.

In our proposed gPool layer, we sample some important nodes to form a new graph for high-

level feature encoding. Since related edges are removed when removing nodes in gPool, the nodes

in the pooled graph might become isolated. This may influence the information propagation in

subsequent layers, especially when GCN layers are used to aggregate information from neigh-

boring nodes. We need to increase connectivity among nodes in the pooled graph. To address

this problem, we propose to use the kth graph power Gk to increase the graph connectivity. This

operation builds links between nodes whose distances are at most k hops [103]. In this part, we

employ k = 2 since there is a GCN layer before each gPool layer to aggregate information from

its first-order neighboring nodes. Formally, we replace the fifth equation in Eq 5.1 by:

A2 = A`A`,

A`+1 = A2(idx, idx),
(5.2)

where A2 ∈ RN×N is the 2nd graph power. Now, the graph sampling is performed on the aug-

mented graph with better connectivity.

5.3.2 Graph Unpooling Layer

Up-sampling operations are important for encoder-decoder networks such as U-Net. The en-

coders of networks usually employ pooling operations to reduce feature map size and increase

receptive field. While in decoders, feature maps need to be up-sampled to restore their original
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Figure 5.3: An illustration of the proposed graph unpooling (gUnpool) layer. In this example,
a graph with 7 nodes is down-sampled using a gPool layer, resulting in a coarsened graph with
4 nodes and position information of selected nodes. The corresponding gUnpool layer uses the
position information to reconstruct the original graph structure by using empty feature vectors for
unselected nodes.

resolutions. On grid-like data like images, there are several up-sampling operations such as the

deconvolution [104, 105] and unpooling layers [77]. However, such operations are not currently

available on graph data.

To enable up-sampling operations on graph data, we propose the graph unpooling (gUnpool)

layer, which performs the inverse operation of the gPool layer and restores the graph into its origi-

nal structure. To achieve this, we record the locations of nodes selected in the corresponding gPool

layer and use this information to place nodes back to their original positions in the graph. Formally,

we propose the layer-wise propagation rule of graph unpooling layer as

X`+1 = distribute(0N×C , X
`, idx), (5.3)

where idx ∈ Z∗k contains indices of selected nodes in the corresponding gPool layer that reduces

the graph size from N nodes to k nodes. X` ∈ Rk×C are the feature matrix of the current graph,

and 0N×C are the initially empty feature matrix for the new graph. distribute(0N×C , X
`, idx) is
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the operation that distributes row vectors in X` into 0N×C feature matrix according to their cor-

responding indices stored in idx. In X`+1, row vectors with indices in idx are updated by row

vectors in X`, while other row vectors remain zero. Figure 5.3 provides an example of our pro-

posed gUnpool layer. Like U-Net on images, we use skip connections to fuse features of the same

graph structure from encoder part for low-level spatial information, then employ a GCN layer to

populate empty feature vectors in X`+1.

5.3.3 Hybrid Convolutional Layer

It follows from the analysis in Section 5.2.2 that GCN layers only perform convolutional oper-

ations on each node. There is no trainable spatial filters as in regular convolution layers. GCNs do

not have the power of automatic feature extraction as achieved by CNNs. This limits the capability

of GCNs, especially in the field of graph modeling. In traditional graph data, there is no order-

ing information among nodes. In addition, the different numbers of neighbors for each node in

the graph prohibit convolutional operations with a kernel size larger than 1. Although we attempt

to modeling texts as graph data, they are essentially grid-like data with order information among

nodes, thereby enabling the application of regular convolutional operations.

To take advantage of convolutional operations with trainable filters, we propose the hybrid

convolutional layer (hConv), which combines GCN operations and regular 1-D convolutional op-

erations to achieve the capability of automatic feature extraction. Formally, we propose the hConv

layer to be defined as

X`+1
1 = conv(X`),

X`+1
2 = gcn(A`, X`),

X`+1 =
[
X`+1

1 , X`+1
2

]
,

(5.4)

where conv(·) denotes a regular 1-D convolutional operation, and the gcn(·, ·) operation is defined

in Eq. 2.1. For the feature matrix X`, we treat the column dimension as the channel dimension,

such that the 1-D convolutional operation can be applied along the row dimension. Using the 1-

D convolutional operation and the GCN operation, we obtain two intermediate outputs; those are
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Figure 5.4: An illustration of the hybrid convolutional layer. ⊕ denotes matrix concatenation along
the row dimension. In this layer, A` and X` are the adjacency matrix and the node feature matrix,
respectively. A regular 1-D convolutional operation is used to extract high-level features from
sentence texts. The GCN operation is applied at the graph level for feature extraction. The two
intermediate outputs are concatenated together to form the final output X`+1.

X`+1
1 andX`+1

2 . These two matrices are concatenated together as the layer outputX`+1. Figure 5.4

illustrates an example of the hConv layer.

We argue that the integration of GCN operations and 1-D convolutional operations in the hConv

layer is especially applicable to graph data obtained from texts. By representing texts as an adja-

cency matrix A` and a node feature matrix X` of layer `, each node in the graph is essentially a

word in the text. We retain the order information of nodes from their original relative positions in

texts. This indicates that the feature matrix X` is organized as traditional grid-like data with order

information retained. From this point, we can apply an 1-D convolutional operation with kernel

sizes larger than 1 on the feature matrix X` for high-level feature extraction.

The combination of the GCN operation and the convolutional operation in the hConv layer can

take the advantages of both of them and overcome their respective limitations. In convolutional

layers, the receptive fields of units on feature maps increase very slow since small kernel sizes

are usually used to avoid massive number of parameters. In contrast, GCN operations can help to
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Figure 5.5: The architecture of the hConv-gPool-Net. ⊕ denotes the concatenation operation of
feature maps. The inputs of the network are an adjacency matrix A0 and a feature matrix X0.
We stack four hConv layers for feature extraction. In the second and the third hConv layers, we
employ the gPool layers to reduce the number of nodes in graphs by half. Starting from the second
hConv layer, a global max-pooling layer is applied to the output feature maps of each hConv
layer. The outputs of these pooling layers are concatenated together. Finally, we employ a fully-
connected layer for predictions. To obtain the other three networks discussed in Section 5.3.5,
we can simply replace the hConv layers with GCN layers or remove gPool layers based on this
network architecture.

increase the receptive fields quickly by means of edges between terms in sentences corresponding

to nodes in graphs. At the same time, GCN operations are not able to automatically extract high-

level features as they do not have trainable spatial filters as used in convolutional operations. From

this point, the hConv layer is especially useful when working on text-based graph data such as

sentences and documents.

5.3.4 Graph U-Nets Architecture for Node Classification

It is well-known that encoder-decoder networks like U-Net achieve promising performance on

pixel-wise prediction tasks, since they can encode and decode high-level features while maintain-

ing local spatial information. Similar to pixel-wise prediction tasks [106, 76], node classification

tasks aim to make a prediction for each input unit. Based on our proposed gPool and gUnpool

layers, we propose our graph U-Nets (g-U-Nets) architecture for node classification tasks.

In our graph U-Nets (g-U-Nets), we first apply a graph embedding layer to convert nodes into

low-dimensional representations, since original inputs of some dataset like Cora [20] usually have

very high-dimensional feature vectors. After the graph embedding layer, we build the encoder

by stacking several encoding blocks, each of which contains a gPool layer followed by a GCN
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Figure 5.6: An illustration of the proposed graph U-Nets (g-U-Nets). In this example, each node in
the input graph has two features. The input feature vectors are transformed into low-dimensional
representations using a GCN layer. After that, we stack two encoder blocks, each of which contains
a gPool layer and a GCN layer. In the decoder part, there are also two decoder blocks. Each block
consists of a gUnpool layer and a GCN layer. For blocks in the same level, encoder block uses
skip connection to fuse the low-level spatial features from the encoder block. The output feature
vectors of nodes in the last layer are network embedding, which can be used for various tasks such
as node classification and link prediction.

layer. gPool layers reduce the size of graph to encode higher-order features, while GCN layers are

responsible for aggregating information from each node’s first-order information. In the decoder

part, we stack the same number of decoding blocks as in the encoder part. Each decoder block

is composed of a gUnpool layer and a GCN layer. The gUnpool layer restores the graph into

its higher resolution structure, and the GCN layer aggregates information from the neighborhood.

There are skip-connections between corresponding blocks of encoder and decoder layers, which

transmit spatial information to decoders for better performance. The skip-connection can be either

feature map addition or concatenation. Finally, we employ a GCN layer for final predictions before

the softmax function. Figure 5.6 provides an illustration of a sample g-U-Nets with two blocks in

encoder and decoder. Notably, there is a GCN layer before each gPool layer, thereby enabling

gPool layers to capture the topological information in graphs implicitly.

In GCN, the adjacency matrix before normalization is computed as Â = A + I in which a
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self-loop is added to each node in the graph. When performing information aggregation, the same

weight is given to node’s own feature vector and its neighboring nodes. Here, we wish to give a

higher weight to node’s own feature vector, since its own feature should be more important for

prediction. To this end, we change the calculation to Â = A + 2I by imposing larger weights on

self loops in the graph, which is common in graph processing. All experiments for this part use

this modified version of GCN layer for better performance.

5.3.5 Graph Network Architectures for Text Classification

Based on our proposed gPool and hConv layers, we design four network architectures, includ-

ing our baseline with a FCN-like [77] architecture. FCN has been shown to be very effective for

image semantic segmentation. It allows final linear classifiers to make use of features from differ-

ent layers. Here, we design four architectures based on our proposed gPool and hConv layers.

• GCN-Net: We establish a baseline method by using GCN layers to build a network without

any hConv or gPool layers. In this network, we stack 4 standard GCN layers as feature

extractors. Starting from the second layer, a global max-pooling layer [107] is applied to

each layer’s output. The outputs of these pooling layers are concatenated together and fed

into a fully-connected layer for final predictions. This network serves as a baseline model

for experimental studies.

• GCN-gPool-Net: In this network, we add our proposed gPool layers to GCN-Net. Starting

from the second layer, we add a gPool layer after each GCN layer except for the last one. In

each gPool layer, we select the hyper-parameter k to reduce the number of nodes in the graph

by a factor of two. All other parts of the network remain the same as those of GCN-Net.

• hConv-Net: For this network, we replace all GCN layers in GCN-Net by our proposed

hConv layers. To ensure the fairness of comparison among these networks, the hConv layers

output the same number of feature maps as the corresponding GCN layers. Suppose the

original ith GCN layer outputs nout feature maps. In the corresponding hConv layer, both
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Table 5.1: Summary of datasets used in our node classification experiments. The Cora, Citeseer,
and Pubmed datasets [21, 22] are used for transductive learning experiments.

Dataset Nodes Features Classes Train Valid Test Degree
Cora 2708 1433 7 140 500 1000 4
Citeseer 3327 3703 6 120 500 1000 5
Pubmed 19717 500 3 60 500 1000 6

the GCN operation and the convolutional operation output nout/2 feature maps. By concate-

nating those intermediate outputs, the ith hConv layer also outputs nout feature maps. The

remaining parts of the network remain the same as those in GCN-Net.

• hConv-gPool-Net: Based on the hConv-Net network, we add gPool layers after each hConv

layer except for the first and the last layers. We employ the same principle for the selection

of hyper-parameter k as that in GCN-gPool-Net. The remaining parts of the network remain

the same. Note that gPool layers maintain the order information of nodes in the new graph,

thus enabling the application of 1-D convolutional operations in hConv layers afterwards.

Figure 5.5 provides an illustration of the hConv-gPool-Net network.

5.4 Experimental Study on Graph Data

In this section, we evaluate our gPool and gUnpool layers based on the g-U-Nets proposed

in Section 5.3.4. We compare our networks with previous state-of-the-art models on node classi-

fication and graph classification tasks. Experimental results show that our methods achieve new

state-of-the-art results in terms of node classification accuracy and graph classification accuracy.

Some ablation studies are performed to examine the contributions of the proposed gPool layer,

gUnpool layer, and graph connectivity augmentation to performance improvements. We conduct

studies on the relationship between network depth and node classification performance. We inves-

tigate if additional parameters involved in gPool layers can increase the risk of over-fitting. Our

code is publicly available2.

2https://github.com/divelab/gunet/
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Table 5.2: Summary of datasets used in our inductive learning experiments. The D&D [45], PRO-
TEINS [44], and COLLAB [46] datasets are used for inductive learning experiments.

Dataset Graphs Nodes (max) Nodes (avg) Classes
D&D 1178 5748 284.32 2
PROTEINS 1113 620 39.06 2
COLLAB 5000 492 74.49 3

5.4.1 Datasets

In experiments, we evaluate our networks on node classification tasks under transductive learn-

ing settings and graph classification tasks under inductive learning settings.

Under transductive learning settings, unlabeled data are accessible for training, which enables

the network to learn about the graph structure. To be specific, only part of nodes are labeled while

labels of other nodes in the same graph remain unknown. We employ three benchmark datasets

for this setting; those are Cora, Citeseer, and Pubmed [14], which are summarized in Table 5.1.

These datasets are citation networks, with each node and each edge representing a document and

a citation, respectively. The feature vector of each node is the bag-of-word representation whose

dimension is determined by the dictionary size. We follow the same experimental settings in [14].

For each class, there are 20 nodes for training, 500 nodes for validation, and 1000 nodes for testing.

Under inductive learning settings, testing data are not available during training, which means

the training process does not use graph structures of testing data. We evaluate our methods on

relatively large graph datasets selected from common benchmarks used in graph classification

tasks [52, 18, 47]. We use protein datasets including D&D [45] and PROTEINS [44], the scientific

collaboration dataset COLLAB [46]. These data are summarized in Table 5.2.

5.4.2 Experimental Setup

We describe the experimental setup for both transductive and inductive learning settings. For

transductive learning tasks, we employ our proposed g-U-Nets proposed in Section 5.3.4. Since

nodes in the three datasets are associated with high-dimensional features, we employ a GCN layer
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Table 5.3: Results of transductive learning experiments in terms of node classification accuracies
on Cora, Citeseer, and Pubmed datasets. g-U-Nets denotes our proposed graph U-Nets model.

Models Cora Citeseer Pubmed
DeepWalk [26] 67.2% 43.2% 65.3%
Planetoid [21] 75.7% 64.7% 77.2%
Chebyshev [27] 81.2% 69.8% 74.4%
GCN [14] 81.5% 70.3% 79.0%
GAT [15] 83.0 ± 0.7% 72.5 ± 0.7% 79.0 ± 0.3%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

to reduce them into low-dimensional representations. In the encoder part, we stack four blocks,

each of which consists of a gPool layer and a GCN layer. We sample 2000, 1000, 500, 200 nodes

in the four gPool layers, respectively. Correspondingly, the decoder part also contains four blocks.

Each decoder block is composed of a gUnpool layer and a GCN layer. We use addition operation

in skip connections between blocks of encoder and decoder parts. Finally, we apply a GCN layer

for final prediction. For all layers in the model, we use identity activation function [49] after

each GCN layer. To avoid over-fitting, we apply L2 regularization on weights with λ = 0.001.

Dropout [23] is applied to both adjacency matrices and feature matrices with keep rates of 0.8 and

0.08, respectively.

For inductive learning tasks, we follow the same experimental setups in [47] using our g-U-

Nets architecture as described in transductive learning settings for feature extraction. Since the

sizes of graphs vary in graph classification tasks, we sample proportions of nodes in four gPool

layers; those are 90%, 70%, 60%, and 50%, respectively. The dropout keep rate imposed on feature

matrices is 0.3.

5.4.3 Performance Study

Under transductive learning settings, we compare our proposed g-U-Nets with other state-of-

the-art models in terms of node classification accuracy. We report node classification accuracies

on datasets Cora, Citeseer, and Pubmed, and the results are summarized in Table 5.3. We can

observe from the results that our g-U-Nets achieves consistently better performance than other

81



Table 5.4: Comparisons with other models in terms of graph classification accuracy (%) on so-
cial network datasets including COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,
REDDIT-MULTI5K and REDDIT-MULTI12K datasets.

COLLAB IMDB-B IMDB-M RDT-B RDT-M5K RDT-M12K
# graphs 5000 1000 1500 2000 4999 11929
# nodes 74.5 19.8 13.0 429.6 508.5 391.4
# classes 3 2 3 2 5 11
WL 78.9 ± 1.9 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 44.4 ± 2.1
PSCN 72.6 ± 2.2 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 41.3 ± 0.8
DGCNN 73.8 70.0 47.8 - - 41.8
DIFFPOOL 75.5 - - - - 47.1
g-U-Net 77.5 ± 2.1 75.4 ± 3.0 51.8 ± 3.7 85.5 ± 1.3 48.2 ± 0.8 44.5 ± 0.6

networks. For baseline values listed for node classification tasks, they are the state-of-the-art on

these datasets. Our proposed model is composed of GCN, gPool, and gUnpool layers without

involving more advanced graph convolution layers like GAT. When compared to GCN directly,

our g-U-Nets significantly improves performance on all three datasets by margins of 2.9%, 2.9%,

and 0.6%, respectively. Note that the only difference between our g-U-Nets and GCN is the use of

encoder-decoder architecture containing gPool and gUnpool layers. These results demonstrate the

effectiveness of g-U-Nets in network embedding.

We compare our g-U-Nets with other state-of-the-art models in terms of graph classification

accuracy. The comparison results are summarized in Table 5.4. We can observe from the re-

sults that our g-U-Net significantly outperform other models on most social network datasets by

margins of 2.0%, 1.6%, 0.9% on COLLAB, IMDB-BINARY, and IMDB-MULTI datasets, respec-

tively. The promising performances, especially on large datasets such as REDDIT, demonstrate

the effectiveness of our methods.

5.4.4 Ablation Study of gPool and gUnpool layers

Although GCNs have been reported to have worse performance when the network goes deeper

[14], it may also be argued that the performance improvement over GCN in Table 5.3 is due to

the use of a deeper network architecture. In this section, we investigate the contributions of gPool
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Table 5.5: Comparison of g-U-Nets with and without gPool or gUnpool layers in terms of node
classification accuracy on Cora, Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Nets without gPool or gUnpool 82.1 ± 0.6% 71.6 ± 0.5% 79.1 ± 0.2%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

Table 5.6: Comparison of g-U-Nets with and without graph connectivity augmentation in terms of
node classification accuracy on Cora, Citeseer, and Pubmed datasets.

Models Cora Citeseer Pubmed
g-U-Nets without augmentation 83.7 ± 0.7% 72.5 ± 0.6% 79.0 ± 0.3%
g-U-Nets (Ours) 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%

and gUnpool layers to the performance of g-U-Nets. We conduct experiments by removing all

gPool and gUnpool layers from our g-U-Nets, leading to a network with only GCN layers with

skip connections. Table 5.5 provides the comparison results between g-U-Nets with and without

gPool or gUnpool layers. The results show that g-U-Nets have better performance over g-U-Nets

without gPool or gUnpool layers by margins of 2.3%, 1.6% and 0.5% on Cora, Citeseer, and

Pubmed datasets, respectively. These results demonstrate the contributions of gPool and gUnpool

layers to performance improvement. When considering the difference between the two models in

terms of architecture, g-U-Nets enable higher level feature encoding, thereby resulting in better

generalization and performance.

5.4.5 Graph Connectivity Augmentation Study

In the above experiments, we employ gPool layers with graph connectivity augmentation by

using the 2nd graph power. Here, we conduct experiments on node classification tasks to inves-

tigate the benefits of graph connectivity augmentation based on g-U-Nets. We remove the graph

connectivity augmentation from gPool layers while keeping other settings the same for fairness

of comparisons. Table 5.6 provides comparison results between g-U-Nets with and without graph

connectivity augmentation. The results show that the absence of graph connectivity augmenta-
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Table 5.7: Comparison of different network depths in terms of node classification accuracy on
Cora, Citeseer, and Pubmed datasets. Based on g-U-Nets, we experiment with different network
depths in terms of the number of blocks in encoder and decoder parts.

Depth Cora Citeseer Pubmed
2 82.6 ± 0.6% 71.8 ± 0.5% 79.1 ± 0.3%
3 83.8 ± 0.7% 72.7 ± 0.7% 79.4 ± 0.4%
4 84.4 ± 0.6% 73.2 ± 0.5% 79.6 ± 0.2%
5 84.1 ± 0.5% 72.8 ± 0.6% 79.5 ± 0.3%

Table 5.8: Comparison of the g-U-Nets with and without gPool or gUnpool layers in terms of the
node classification accuracy and the number of parameters on Cora dataset.

Models Accuracy #Params Ratio of increase
g-U-Nets without gPool or gUnpool 82.1 ± 0.6% 75,643 0.00%
g-U-Nets (Ours) 84.4 ± 0.6% 75,737 0.12%

tion will cause consistent performance degradation on all of three datasets. This demonstrates that

graph connectivity augmentation via 2nd graph power can help with the graph connectivity and

information transfer among nodes in sampled graphs.

5.4.6 Network Depth Study of Graph U-Nets

Since the network depth in terms of the number of blocks in encoder and decoder parts is an

important hyper-parameter in the g-U-Nets, we conduct experiments to investigate the relationship

between network depth and performance in terms of node classification accuracy. We use different

network depths on node classification tasks and report the classification accuracies. The results

are summarized in Table 5.7. We can observe from the results that the performance improves

as network goes deeper until a depth of 4. The over-fitting problem happens in deeper networks

and prevents networks from improving when the depth goes beyond that. In image segmentation,

U-Net models with depth 3 or 4 are commonly used [108, 109], which is consistent with our

choice in experiments. This indicates the capacity of gPool and gUnpool layers in receptive field

enlargement and high-level feature encoding even working with very shallow networks.
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Table 5.9: Summary of datasets used in our experiments. The #words denotes the average number
of words of the data samples for each dataset. These numbers help the selection of the sliding
window size used in converting texts to graphs.

Datasets #Train #Test #Classes #Words
AG’s News 120,000 7,600 4 45
DBPedia 560,000 70,000 14 55
Yelp Polarity 560,000 38,000 2 153
Yelp Full 650,000 50,000 5 155

Table 5.10: Results of text classification experiments in terms of classification error rate on the
AG’s News, DBPedia, Yelp Review Polarity, and Yelp Review Full datasets. The first two methods
are the state-of-the-art models without using any unsupervised data. The last four networks are
proposed in this work.

Models AG’s News DBPedia Yelp Polarity Yelp Full
Word-level CNN [110] 8.55% 1.37% 4.60% 39.58%
Char-level CNN [110] 9.51% 1.55% 4.88% 37.95%
GCN-Net 8.64% 1.69% 7.74% 42.60%
GCN-gPool-Net 8.09% 1.44% 5.82% 41.83%
hConv-Net 7.49% 1.02% 4.45% 37.81%
hConv-gPool-Net 7.09% 0.92% 4.37% 36.27%

5.4.7 Parameter Study of Graph Pooling Layers

Since our proposed gPool layer involves extra parameters, we compute the number of addi-

tional parameters based on our g-U-Nets. The comparison results between g-U-Nets with and

without gPool or gUnpool layers on dataset Cora are summarized in Table 5.8. From the results,

we can observe that gPool layers in U-Net model only adds 0.12% additional parameters but can

promote the performance by a margin of 2.3%. We believe this negligible increase of extra param-

eters will not increase the risk of over-fitting. Compared to g-U-Nets without gPool or gUnpool

layers, the encoder-decoder architecture with our gPool and gUnpool layers yields significant per-

formance improvement.
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5.5 Experimental Study on Text Data

In this section, we evaluate our gPool layer and hConv layer based on the four networks pro-

posed in Section 5.3.5. We compare the performances of our networks with that of previous state-

of-the-art models. The experimental results show that our methods yield improved performance in

terms of classification accuracy. We also perform some ablation studies to examine the contribu-

tions of the gPool layer and the hConv layer to the performance. The number of extra parameters

in gPool layers is shown to be negligible and will not increase the risk of over-fitting. Our code is

publicly available3.

5.5.1 Datasets

In this work, we evaluate our methods on four datasets, including the AG’s News, Dbpedia,

Yelp Polarity, and Yelp Full [110] datasets. AG’s News is a news dataset containing four topics:

World, Sports, Business and Sci/Tech. The task is to classify each news into one of the topics.

Dbpedia dataset contains 14 classes. It is constructed by choosing 14 non-overlapping classes from

the DBPedia 2014 dataset [111]. Each sample contains a title and an abstract corresponding to a

Wikipedia article. Yelp Polarity dataset is obtained from the Yelp Dataset Challenge in 2015 [110].

Each sample is a piece of review text with a binary label (negative or positive). Yelp Full dataset

is obtained from the Yelp Dataset Challenge in 2015, which is for sentiment classification [110].

It contains five classes corresponding to the movie review star ranging from 1 to 5. The summary

of these datasets are provided in Table 5.9. For all datasets, we tokenize the textual document and

convert words to lower case. We remove stop-words and all punctuation in texts. Based on cleaned

texts, we build the graph-of-word representations for texts.

5.5.2 Text to Graph Conversion

We use the graph-of-words method to convert texts into graph representations that include an

adjacency matrix and a feature matrix. We select nouns, adjective, and verb as terms, meaning a

word appears in the graph if it belongs to one of the above categories. We use a sliding window to

3https://github.com/divelab/hConv-gPool-Net/

86

https://github.com/divelab/hConv-gPool-Net/


Table 5.11: Comparison in terms of the network depth and the text classification error rate on the
AG’s News dataset. The depth listed here is calculated by counting the number of convolutional
and fully-connected layers in networks.

Models Depth Error Rate
Word-level CNN 9 8.55%
Character-level CNN 9 9.51%
GCN-Net 5 8.64%
GCN-gPool-Net 5 8.09%
hConv-Net 5 7.49%
hConv-gPool-Net 5 7.09%

decide if two terms have an edge between them. If the distance between two terms is less than the

window size, an undirected edge between these two terms is added. In the generated graph, nodes

are the terms appear in texts, and edges are added using the sliding window. We use a window size

of 4 for the AG’s News and DBpedia datasets and 10 for the other two datasets, depending on their

average words in training samples. The maximum numbers of nodes in graphs for the AG’s News,

DBPedia, Yelp Polarity, Yelp Full datasets are 100, 100, 300, and 256, respectively.

To produce the feature matrix, we use word embedding and position embedding features. For

word embedding features, the pre-trained fastText word embedding vectors [112] are used, and it

contains more than 2 million pre-trained words vectors. Compared to other pre-trained word em-

bedding vectors such as GloVe [113], using the fastText helps us to avoid massive unknown words.

On the AG’s News dataset, the number of unknown words with the fastText is only several hun-

dred, which is significantly smaller than the number using GloVe. In addition to word embedding

features, we also employ position embedding method proposed in [114]. We encode the positions

of words in texts into one-hot vectors and concatenate them with word embedding vectors. We

obtain the feature matrix by stacking word vectors of nodes in the row dimension.

5.5.3 Experimental Setup

For our proposed networks, we employ the same settings with minor adjustments to accom-

modate the different datasets. As discussed in Section 5.3.5, we stack four GCN or hConv layers
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Table 5.12: Comparison between the GCN-Net and GCN-gPool-Net in term of parameter numbers
and text classification error rates on the AG’s News dataset.

Models Error rate # Params Ratio of increase
GCN-Net 8.64% 1,554,820 0.00%
GCN-gPool-Net 8.09% 1,555,719 0.06%

for GCN-based networks or hConv-based networks. For the networks using gPool layers, we add

gPool layers after the second and the third GCN or hConv layers. Four GCN or hConv layers

output 1024, 1024, 512, and 256 feature maps, respectively. We use this decreasing number of

feature maps, since GCNs help to enlarge the receptive fields very quickly. We do not need more

high-level features in deeper layers. The kernel sizes used by convolutional operations in hConv

layers are all 3 × 1. For all layers, we use the ReLU [115] for nonlinearity. For all experiments,

the following settings are shared. For training, the Adam optimizer [24] is used for 60 epochs.

The learning rate starts at 0.001 and decays by 0.1 at the 30th and the 50th epoch. We employ the

dropout with a keep rate of 0.55 [23] and batch size of 256. These hyper-parameters are tuned on

the AG’s News dataset, and then ported to other datasets.

5.5.4 Performance Study on Text Classification

We compare our proposed methods with other state-of-the-art models on text classification,

and the experimental results are summarized in Table 5.10. We can see from the results that our

hConv-gPool-Net outperforms both word-level CNN and character-level CNN by at least a mar-

gin of 1.46%, 0.45%, 0.23%, and 3.31% on the AG’s News, DBPedia, Yelp Polarity, and Yelp

Full datasets, respectively. The performance of GCN-Net with only GCN layers cannot compete

with that of word-level CNN and char-level CNN primarily due to the lack of automatic high-

level feature extraction. By replacing GCN layers using our proposed hConv layers, hConv-Net

achieves better performance than the two CNN models across four datasets. This demonstrates

the promising performance of our hConv layer by employing regular convolutional operations for

automatic feature extraction. By comparing the GCN-Net with GCN-gPool-Net, and hConv-Net
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with hConv-gPool-Net, we observe that our proposed gPool layers promote both models’ perfor-

mance by at least a margin of 0.4%, 0.1%, 0.08%, and 1.54% on the AG’s News, DBPedia, Yelp

Polarity, and Yelp Full datasets. The margins tend to be larger on harder tasks. This observation

demonstrates that our gPool layer helps to enlarge receptive fields and reduce spatial dimensions

of graphs, resulting in better generalization and performance.

5.5.5 Network Depth Study

In addition to performance study, we also conduct experiments to evaluate the relationship be-

tween performance and network depth in terms of the number of convolutional and fully-connected

layers in models. The results are summarized in Table 5.11. We can observe from the results that

our models only require 5 layers, including 4 convolutional layers and 1 fully-connected layer.

Both word-level CNN and character-level CNN models need 9 layers in their networks, which are

much deeper than ours. Our hConv-gPool-Net achieves the new state-of-the-art performance with

fewer layers, demonstrating the effectiveness of gPool and hConv layers. Since GCN and gPool

layers enlarge receptive fields quickly, advanced features are learned in shallow layers, leading to

shallow networks but better performance.

5.5.6 Parameter Study of gPool Layer

Since gPool layers involve extra trainable parameters in projection vectors, we study the num-

ber of parameters in gPool layers in the GCN-gPool-Net that contains two gPool layers. The results

are summarized in Table 5.12. We can see from the results that gPool layers only needs 0.06% ad-

ditional parameters compared to GCN-Net. We believe that this negligible increase of parameters

will not increase the risk of over-fitting. With negligible additional parameters, gPool layers can

yield a performance improvement of 0.54%.
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6. TOPOLOGY-AWARE GRAPH STRUCTURE LEARNING

In the previous sections, we discussed how to learn new graph structures based on node fea-

tures. In this section, we discuss graph deep learning methods that learn new graph structures by

considering graph topology information.

6.1 Introduction

Pooling operations have been widely applied in various fields such as computer vision [6, 8,

19], and natural language processing [110]. Pooling operations can effectively reduce dimensional

sizes [6, 116] and enlarge receptive fields [3]. The application of regular pooling operations de-

pends on the well-defined spatial locality in grid-like data such as images and texts. However, it

is still challenging to perform pooling operations on graph data. In particular, there is no spatial

locality information or order information among the nodes in graphs [52, 49].

Some works try to overcome this limitation with two kinds of methods; those are node clus-

tering [52] and primary nodes sampling [67, 47]. The node clustering methods create graphs with

super-nodes by learning a nodes assignment matrix. The adjacency matrix of the learned graphs in

node clustering methods are softly connected. These methods suffer from the over-fitting problem

and need auxiliary link prediction tasks to stabilize the training [52]. The primary nodes sampling

methods like top-k pooling [67, 47] rank the nodes in a graph and sample top-k nodes to form

the sampled graph. It uses a small number of additional trainable parameters and is shown to be

more powerful on various graph-related machine learning tasks [67]. However, the top-k pooling

layer does not explicitly incorporate the topology information in a graph when computing ranking

scores, which may cause performance loss. When generating ranking scores, only node features

are used, which ignores the graph topology information. This can generate a coarsened graph with

isolated nodes.

In this work, we propose a novel topology-aware pooling (TAP) layer that explicitly encodes

the topology information when computing ranking scores. We use an attention operator to com-
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pute similarity scores between each node and its neighboring nodes. The average similarity score

of a node is used as its ranking score in the selection process. To avoid isolated nodes problem in

our TAP layer, we further propose a graph connectivity term for computing the ranking scores of

nodes. The graph connectivity term uses degree information as a bias term to encourage the layer

to select highly connected nodes to form the sampled graph. Based on the TAP layer, we develop

topology-aware pooling networks for network embedding learning. Experimental results on graph

classification tasks demonstrate that our proposed networks with TAP layer consistently outper-

form previous models. The comparison results between our TAP layer and other pooling layers

based on the same network architecture demonstrate the effectiveness of our method compared to

other pooling methods.

6.2 Background and Related Work

In this section, we describe graph pooling operations and attention operators.

6.2.1 Graph Pooling Operations

The pooling operations on graph data mainly include two categories; those are node clustering

and node sampling. DIFFPOOL [52] realizes graph pooling operation by clustering nodes into

super-nodes. By learning an assignment matrix, DIFFPOOL softly assigns each node to different

clusters in the new graph with specified probabilities. The pooling operations under this category

retain and encode all nodes information into the new graph. One challenge of methods in this

category is that they may increase the risk of over-fitting by training another network to learn

the assignment matrix. In addition, the new graph is mostly connected where each edge value

represents the strength of connectivity between two nodes. The connectivity pattern in the new

graph may greatly differ from that of the original graph.

The node sampling methods mainly select a fixed number k of the most important nodes to

form a new graph. In SortPool [47], the same feature of each node is used for ranking and k nodes

with the largest values in this feature are selected to form the coarsened graph. Top-k pooling [67]

generates the ranking scores by using a trainable projection vector that projects feature vectors of
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Figure 6.1: An illustration of the proposed topology-aware pooling layer that selects k = 3 nodes.
This graph contains four nodes, each of which has 2 features. Given the input graph, we firstly use
an attention operator to compute similarity scores between every pair of connected nodes. Here,
we use self-attention without linear transformation for notation simplicity. In graph (b), we label
each edge by the similarity score between its two ends. Then we compute the ranking score of
each node by taking the average of the similarity scores between it and its neighboring nodes.
In graph (c), we label each node by its ranking score and bigger node indicates a higher ranking
score. By selecting the nodes with the k = 3 largest ranking scores, the coarsened graph is shown
in graph (d).

nodes into scalar values. k nodes with the largest scalar values are selected to form the coarsened

graph. These methods involve none or a very small number of extra trainable parameters, thereby

avoiding the risk of over-fitting. However, these methods suffer from one limitation that they do

not explicitly consider the topology information during pooling. Both SortPool and top-k pooling

select nodes based on scalar values that do not explicitly incorporate topology information. In

this work, we propose a pooling operation that explicitly encodes topology information in ranking

scores, thereby leading to an improved operation.

6.2.2 Attention Operators

Attention operator has shown to be effective in challenging tasks in various fields such as

computer vision [31, 117, 35] and natural language processing [40, 16, 17]. Attention operator is

capable of capturing long-range relationships, thereby leading to better performances [30]. The

inputs to an attention operator consist of three matrices; those are a query matrix Q ∈ Rd×m,

a key matrix K ∈ Rd×n, and a value matrix V ∈ Rp×n. The attention operator computes the

response of each query vector in Q by attending it to all key vectors in K. It uses the resulting
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coefficient vector to take a weighted sum over value vectors in V . The layer-wise operation of an

attention operation is defined as O = V softmax(KTQ). When the attention operator is applied

to graph, each node only attends to its neighboring nodes [15]. Self-attention can also produce

an attention mask to control information flow on selected nodes in pooling operation [71]. In

our proposed pooling operation, we employ an attention operator to compute ranking scores that

explicitly encode topology information.

6.3 Topology-Aware Pooling Layers and Networks

In this work, we propose the topology-aware pooling (TAP) layer that uses attention operators

to encode topology information in ranking scores for node selection. We also propose a graph

connectivity term in the computation of ranking scores, which encourages better graph connectivity

in the coarsened graph. Based on our TAP layer, we propose the topology-aware pooling networks

for network representation learning.

6.3.1 Topology-Aware Pooling Layer

Pooling layers have shown to be important on grid-like data with regard to reducing feature

map sizes and enlarging receptive fields [100, 118]. On graph data, two kinds of pooling layers

have been proposed; those are node clustering [52] and primary nodes sampling [67, 47]. A pri-

mary nodes sampling method, known as top-k pooling [67], uses a projection vector to generate

ranking scores for each node in the graph. The graph is created by choosing nodes with k-largest

scores. However, the sampling process relies on the projection values that are generated by node

features and a trainable projection vector. Top-k pooling does not explicitly consider the topology

information in the graph, thereby leading to constrained network capability.

In this section, we propose the topology-aware pooling (TAP) layer that performs primary

nodes sampling by considering the graph topology. In this layer, we generate the ranking scores

based on local information. To this end, we employ an attention operator to compute the similarity

scores between each node and its neighboring nodes. The ranking score for a node i is the mean

value of the similarity scores with its neighboring nodes. The resulting ranking score for a node
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indicates the similarity between this node and its neighboring nodes. If a node has a high ranking

score, it can highly represent a local graph that consists of it and its neighboring nodes. By choos-

ing nodes with the highest ranking scores, we can retain the maximum information in the sampled

graph.

Suppose there are N nodes in a graph G, each of which contains C features. In layer `, we use

two matrices to represent the graph; those are the adjacency matrix A(`) ∈ RN×N and the feature

matrix X(`) ∈ RN×C . The non-zero entries in A(`) represent edges in the graph. The ith row in

X(`) denotes the feature vector of node i. The layer-wise forward propagation rule of the TAP in

the layer ` is defined as

K = X(`)W (`), ∈RN×C (6.1)

E = X(`)KT , ∈RN×N (6.2)

Ẽ = E ◦A(`), ∈RN×N (6.3)

d =
N∑
j=1

A
(`)
:j , ∈RN (6.4)

s = sigmoid

(∑N
j=1 Ẽ:j

d

)
, ∈RN (6.5)

idx = Rankingk(s), ∈Rk (6.6)

A(`+1) = A(`)(idx, idx), ∈Rk×k (6.7)

X(`+1) = X(`)(idx, :)diag(s(idx)), ∈Rk×C (6.8)

where W (`) ∈ RC×C is a trainable weight matrix, A(`)
:j is the jth column of matrix A(`), ◦ denotes

the element-wise matrix multiplication, Ẽ:j is the jth column of matrix Ẽ, k is the number of

nodes selected in the sampled graph, and diag(·) constructs a diagonal matrix using input vector

as diagonal elements. Rankingk operator ranks the scores and return the indices of the k-largest

values in s, which represent the indices of selected nodes to form the coarsened graph. Based on

the node indices, we extract a new adjacency matrix and a new feature matrix from the original
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graph.

To compute attention scores, we perform a linear transformation on feature matrix X(`) in

Eq. (6.1), which results in the key matrix K. We use the input feature matrix as the query matrix.

The similarity score matrix E is obtained by the matrix multiplication between X(`) and K in

Eq. (6.2). Each value eij in E measures the similarity between node i and node j. Since E

contains similarity scores for nodes that are not directly connected, we use the adjacency matrix

A(`) as a mask to set these entries in E to zeros in Eq. (6.3), resulting in Ẽ. We compute the

degree of each node in Eq. (6.4). The ranking score of a node is computed in Eq. (6.5) by taking

the average of similarity scores between this node and its neighboring nodes followed by a sigmoid

operation. The sigmoid operation also serves as a gate conversion function that converts the values

in the range between 0 and 1. Here, we perform element-wise division between two vectors.

The resulting score vector is s = [s1, s2, . . . , sN ]
T where si represents the ranking score of node

i. Rankingk is an operator that selects the k-largest values and returns the corresponding node

indices. In Eq. (6.6), we use Rankingk to select the k-most important nodes with indices in idx.

Using indices idx, we extract a new adjacency matrix A(`+1) in Eq. (6.7) and a new feature matrix

X(`+1) in Eq. (6.8) from the original graph. Here, we use the ranking scores s(idx) as gates to

control information flow and enable the gradient back-propagation for the trainable parameters in

the transformation matrix W (`) [67].

This method can be considered as a local-voting, global-ranking process. In our TAP layer,

the ranking scores are derived from the similarity scores of each node with its neighboring nodes,

thereby encoding the topology information of each node in its ranking score. This can be consid-

ered as a local voting process that each node gets its votes from the local neighborhood. If a node is

important in the graph, it will receive higher similarity scores on average. When performing global

ranking, the nodes that get the highest votes from local neighborhoods are selected such that max-

imum information in the graph can be retained. Figure 6.1 provides an illustration of our proposed

TAP layer. Compared to the top-k pooling [67], our TAP layer considers topology information in

the graph, thereby leading to a better coarsened graph.
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Figure 6.2: An illustration of the topology-aware pooling network. ⊕ denotes the concatenation
operation of feature vectors. Each node in the input graph contains three features. We use a GCN
layer to transform the feature vectors into low-dimensional representations. We stack two blocks,
each of which consists of a GCN layer and a TAP layer. A global reduction operation such as
max-pooling is applied to the outputs of the first GCN layer and TAP layers. The resulting feature
vectors are concatenated and fed into the final multi-layer perceptron for prediction.

6.3.2 Graph Connectivity Term

Our proposed TAP layer computes the ranking scores by using similarity scores between nodes

in the graph, thereby regarding topology information in the graph. However, the coarsened graph

generated by the TAP layer may suffer from the problem of isolated nodes. In sparsely connected

graphs, some nodes have a very small number of neighboring nodes or even only themselves.

Suppose node i only connects to itself. The ranking score of node i is the similarity score to

itself, which may result in high ranking scores in the graph. The resulting graph can be very

sparsely connected, which completely lose the original graph structure. In the extreme situation,

the coarsened graph can contain only isolated nodes without any connectivity. This can inevitably

hurt the model performance.

To overcome the limitation of TAP layer and encourage better connectivity in the selected

graph, we propose to add a graph connectivity term to the computation of ranking scores. To this

end, we use node degrees as an indicator for graph connectivity and add degree values to their

ranking scores such that densely-connected nodes are preferred during nodes selection. By using

the node degree as the graph connectivity term, the ranking score of node i is computed as

si = sigmoid

(∑N
j=1 Ẽij

di

)
+ λ

di
N
, (6.9)
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where di is the degree of node i, and λ is a hyperparameter that sets the importance of the graph

connectivity term to the computation of ranking scores. The graph connectivity term can overcome

the limitation of the TAP layer. The computation of ranking scores now considers nodes degrees

and gives rise to better connectivity in the resulting graph. A better connected coarsened graph is

expected to retain more graph structure information, thereby leading to better model performances.

6.3.3 Topology-Aware Pooling Networks

Based on our proposed TAP layer, we build a family of networks known as topology-aware

pooling networks (TAPNets) for graph classification tasks. In TAPNets, we firstly apply a graph

embedding layer to produce low-dimensional representations of nodes in the graph, which helps

to deal with some datasets with very high-dimensional input feature vectors. There are multiple

choices for this graph embedding layer such as fully-connected layer and GCN layer. Here, we use

a GCN layer [14] for node embedding for the sake of the performance. After the embedding layer,

we stack several blocks, each of which consists of a GCN layer for high-level feature extraction

and a TAP layer for graph coarsening. The output of each TAP layer is fed into the next GCN

layer.

In the ith TAP layer, we use a hyperparameter k(i) to control the number nodes in the sampled

graph. We feed the output feature matrices of the graph embedding layer and TAP layers to a

classifier. Suppose we stack m blocks and all GCN and TAP layers output h feature maps. Given

an input graph with the adjacency matrix A ∈ RN×N and the feature matrix X ∈ RN×C , our

TAPNet outputs a list of feature matrices [Y 0,Y 1, . . . ,Y m]. Here, Y 0 ∈ RN×h is the output of

the graph embedding layer and Y i ∈ Rk(i)×h is the output of TAP layer in the ith block. Here, we

gather outputs from all blocks.

In TAPNets, we use a multi-layer perceptron as the classifier. We first transform network

outputs to a one-dimensional vector. Specificity, the resulting vector z = [yT
0 ,y

T
1 , . . . ,y

T
m]

T where

yi is transformed from Yi. Global max and average pooling operations are two popular ways for

the transformation, which reduce the spatial size of feature matrices to 1 using max and average

functions, respectively. Recently, [69] proposed to use the summation function that results in
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Table 6.1: Comparisons between TAPNets and other models in terms of graph classification
accuracy (%) on social network datasets including COLLAB, IMDB-BINARY, IMDB-MULTI,
REDDIT-BINARY, REDDIT-MULTI5K and REDDIT-MULTI12K datasets.

COLLAB IMDB-B IMDB-M RDT-B RDT-M5K RDT-M12K
# graphs 5000 1000 1500 2000 4999 11929
# nodes 74.5 19.8 13.0 429.6 508.5 391.4
# classes 3 2 3 2 5 11
WL 78.9 ± 1.9 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 44.4 ± 2.1
PSCN 72.6 ± 2.2 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 41.3 ± 0.8
DGCNN 73.8 70.0 47.8 - - 41.8
DIFFPOOL 75.5 - - - - 47.1
g-U-Net 77.5 ± 2.1 75.4 ± 3.0 51.8 ± 3.7 85.5 ± 1.3 48.2 ± 0.8 44.5 ± 0.6
GIN 80.6 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 -
TAPNet (ours) 84.6 ± 1.7 79.5 ± 4.1 55.6 ± 2.9 94.1 ± 1.9 57.1 ± 1.3 49.2 ± 1.6

promising performances. In TAPNets, we concatenate transformation output vectors produced by

the global pooling operations using max, averaging, and summation, respectively. The resulting

feature vector is fed into the classifier. Figure 6.2 illustrates a sample TAPNet with two blocks.

Note that our TAP layers can also be applied to node classification tasks by replacing top-k

pooling layers in graph U-Nets [67].

6.3.4 Auxiliary Link Prediction Objective

Multi-task learning has shown to be effective across various machine learning tasks [119, 52].

It can leverage useful information in multiple related tasks, thereby leading to better generalization

and performance. In this section, we propose to add an auxiliary link prediction objective during

training by using a by-product of our TAP layer. In Eq. (6.2), we compute the similarity scores E

between every pair of nodes in the graph. By applying an element-wise sigmoid(·) on E, we can

obtain a link probability matrix Ê
(`) ∈ RN×N with each element êij measures the likelihood of a

link between node i and node j in the graph.

With the adjacency matrix A(`), we compute the auxiliary link prediction loss as

lossaux =
1

N2

N∑
i=1

N∑
j=1

f
(
Ê

(`)

ij ,A
(`)
ij

)
, (6.10)
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where f(·, ·) is a loss function that computes the distance between the link probability matrix Ê
(`)

and the adjacency matrix A(`).

Note that the adjacency matrix used as the link prediction objective is directly derived from the

original graph. Since the TAP layer extracts a sub graph from the original one, the connectivity

between two nodes in the sampled graph is the same as that in the original graph. This means

the adjacency matrices in deeper network are still using the original graph structure. Compared

to auxiliary link prediction in DiffPool [52] that uses the learned adjacency matrix as objective,

our method uses the original links, thereby providing more accurate information. This can also be

clearly observed in the experimental studies in Sections 6.4.2 and 6.4.3.

6.4 Experimental Studies

In this section, we evaluate our methods and networks on graph classification tasks using bioin-

formatics and social network datasets. We conduct ablation experiments to evaluate the contribu-

tions of the TAP layer and each term in it to the overall network performance. Some experiments

are performed to investigate how to choose the hyperparameter λ in the TAP layer.

6.4.1 Experimental Setup for Graph Classification Tasks

We evaluate our methods using social network datasets and bioinformatics datasets. They share

the same experimental setups except for minor differences. The node features in social network

networks are created using one-hot encodings of node degrees. The nodes in bioinformatics have

categorical features. We use the TAPNet proposed in Section 6.3.3 that consists of one GCN layer

and three blocks. The first GCN layer is used to learn low-dimensional representations of nodes in

the graph. Each block is composed of one GCN layer and one TAP layer. All GCN and TAP layers

output 48 feature maps. We use Leaky ReLU [120] with a slop of 0.01 to activate the outputs of

GCN layers. The three TAP layers in the networks select numbers of nodes that are proportional to

the nodes in the graph. We use the rates of 0.8, 0.6, and 0.4 in three TAP layers, respectively. We

use λ = 0.1 to control the importance of the graph connectivity term in the computation of ranking

scores.
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Table 6.2: Comparisons between TAPNets and other models in terms of graph classification accu-
racy (%) on bioinformatics datasets including DD, PTC, MUTAG, and PROTEINS datasets.

DD PTC MUTAG PROTEINS
# graphs 1178 344 188 1113
# nodes 284.3 25.5 17.9 39.1
# classes 2 2 2 2
WL 78.3 ± 0.6 59.9 ± 4.3 90.4 ± 5.7 75.0 ± 3.1
PSCN 76.3 ± 2.6 60.0 ± 4.8 92.6 ± 4.2 75.9 ± 2.8
DGCNN 79.4 ± 0.9 58.6 ± 2.4 85.8 ± 1.7 75.5 ± 0.9
SAGPool 76.5 - - 71.9
DIFFPOOL 80.6 - - 76.3
g-U-Net 82.4 ± 2.9 64.7 ± 6.8 87.2 ± 7.8 77.6 ± 2.6
GIN 82.0 ± 2.7 64.6 ± 7.0 90.0 ± 8.8 76.2 ± 2.8
TAPNet (ours) 84.2 ± 3.7 72.7 ± 6.0 93.0 ± 5.8 78.9 ± 4.2

Dropout [23] is applied to the input feature matrices of GCN and TAP layers with keep rate of

0.7. We use a two-layer feed-forward network as the network classifier. Dropout with keep rate of

0.8 is applied to input features of two layers. We use ReLU activation function on the output of

the first layer on DD, PTC, MUTAG, COLLAB, REDDIT-MULTI5K, and REDDIT-MULTI12K

datasets. We use ELU [121] for other datasets. We train our networks using Adam optimizer [24]

with a learning rate of 0.001. To avoid over-fitting, we use L2 regularization with λ = 0.0008. All

models are trained using one NVIDIA GeForce RTX 2080 Ti GPU. We will release our code in

the final version.

6.4.2 Graph Classification Results on Social Network Datasets

We conduct experiments on graph classification tasks to evaluate our proposed methods and

TAPNets. We use 6 social network datasets; those are COLLAB, IMDB-BINARY (IMDB-B),

IMDB-MULTI (IMDB-M), REDDIT-BINARY (RDT-B), REDDIT-MULTI5K (RDT-M5K) and

REDDIT-MULTI12K (RDT-M12K) [46] datasets. Note that REDDIT datasets are popular large

datasets used for network embedding learning in terms of graph size and number of graphs [52, 69].

Since there is no feature for nodes in social networks, we create node features by following the

practices in [69]. In particular, we use one-hot encodings of node degrees as feature vectors for
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(a) Input graph (b) Graph by TAP w/o GCT (c) Graph by TAP

Figure 6.3: Illustrations of coarsened graphs generated by TAP and TAP w/o GCT. Here, GCT
denotes the graph connection term. The input graph (a) contains 12 nodes. The pooling layers
select 6 nodes to form new graphs. The nodes that are not selected are colored black. The new
graph in (b) generated by TAP w/o GCT is sparsely connected. The new graph generated by TAP
is illustrated in (c), which is shown to be much better connected.

nodes in social network datasets. On these datasets, we perform 10-fold cross-validation as in [47]

with 9 folds for training and 1 fold for testing. To ensure fair comparisons, we do not use the

auxiliary link prediction objective in these experiments.

We compare our TAPNets with other state-of-the-art models in terms of graph classification ac-

curacy. The comparison results are summarized in Table 6.1. We can observe from the results that

our TAPNets significantly outperform other models on most social network datasets by margins

of 4.0%, 4.4%, 3.3%, 1.7%, and 2.1% on COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-

BINARY, and REDDIT-MULTI12K datasets, respectively. The promising performances, espe-

cially on large datasets such as REDDIT, demonstrate the effectiveness of our methods. Note that

the superior performances over g-U-Net [67] show that our TAP layer can produce better-coarsened

graph than that using the top-k pooling layer.

6.4.3 Graph Classification Results on Bioinformatics Datasets

We have shown the promising performances of our TAPNets on social network datasets. To

fully evaluate our methods, we conduct experiments on graph classification tasks using 4 bioin-

formatics datasets; those are DD [45] , PTC [73] , MUTAG [72] , and PROTEINS [44] [69]

datasets. Different from nodes in social network datasets, nodes in bioinformatics datasets have

categorical features. In these experiments, we do not use the auxiliary link prediction objective. We
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Table 6.3: Comparisons between different pooling operations based on the same TAPNet archi-
tecture in terms of the graph classification accuracy (%) on PTC, IMDB-MULTI, and REDDIT-
BINARY datasets.

Model PTC IMDB-M RDT-B
Netdiff 70.9 54.9 92.1
Netsort 70.6 54.8 92.3
Nettop-k 71.5 55.2 92.8
TAPNet 72.7 55.6 94.1

compare our TAPNets with other state-of-the-art models in terms of graph classification accuracy

without using the auxiliary link prediction term in loss function.

The comparison results are summarized in Table 6.2. We can observe from the results that

our TAPNets achieve significantly better results than other models by margins of 1.2%, 8.1%,

3.0%, and 2.7% on DD, PTC, MUTAG, and PROTEINS datasets, respectively. Notably, some

bioinformatics datasets such as PTC and MUTAG are much smaller than social network datasets

in terms of number of graphs and number of nodes in graphs. The promising results on these small

datasets demonstrate that our methods can achieve good generalization and performances without

involving the risk of over-fitting.

SAGPool [71] uses a GCN layer to compute ranking scores and a self-attention operator to

generate a mask to control the information flow. Here, our method employs an attention operator

to compute ranking scores that better encodes the topology information in the graph. The superior

performances over SAGPool on DD and PROTEINS datasets demonstrate that our methods can

better capture the topology information, thereby leading to better performances.

6.4.4 Comparison with Other Graph Pooling Layers

It may be argued that our TAPNets achieve promising results by employing superior networks.

In this section, we conduct experiments on the same TAPNet architecture to compare our TAP layer

with other graph pooling layers; those are DIFFPOOL, sort pooling, and top-k pooling layers. We

denote the networks with the TAPNet architecture while using these pooling layers as Netdiff,

Netsort, and Nettop-k, respectively. We evaluate them on PTC, IMDB-MULTI, and REDDIT-
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Table 6.4: Comparisons among TAPNets with and without TAP layers, TAPNet without attention
score term (AST), TAPNet without graph connection term (GCT), and TAPNet with auxiliary
link prediction objective (AUX) in terms of the graph classification accuracy (%) on PTC, IMDB-
MULTI, and REDDIT-BINARY datasets.

Model PTC IMDB-M RDT-B
TAPNet w/o TAP 70.6 52.1 91.0
TAPNet w/o AST 71.2 54.8 91.5
TAPNet w/o GCT 72.0 55.1 93.0
TAPNet 72.7 55.6 94.1
TAPNet w AUX 73.0 55.8 94.2

BINARY datasets and summarize the results in Table 6.3. Note that these models use the same

experimental setups to ensure fair comparisons. The results demonstrate the superior performance

of our proposed TAP layer compared with other pooling layers using the same network architec-

ture.

6.4.5 Ablation Studies

In this section, we investigate the contributions of TAP layer and its components in ranking

score computation; those are the attention score term (AST) and the graph connectivity term

(GCT). We remove TAP layers from TAPNet which we denote as TAPNet w/o TAP. To explore

the contributions of terms in ranking scores computation, we separately remove ASTs and GCTs

from all TAP layers in TAPNets. We denote the resulting models as TAPNet w/o AST and TAP-

Net w/o GCT, respectively. In addition, we add the auxiliary link prediction objective as described

in Section 6.3.4 in training. We denote the TAPNet using auxiliary training objective as TAP-

Net w AUX. We evaluate these models on three datasets; those are PTC, IMDB-MULTI, and

REDDIT-BINARY datasets.

The comparison results on these datasets are summarized in Table 6.4. The results show that

TAPNets outperform TAPNets w/o TAP by margins of 2.1%, 3.5%, and 2.4% on PTC, IMDB-

MULTI, and REDDIT-BINARY datasets, respectively. The better results of TAPNet over TAP-

Net w/o AST and TAPNet w/o GCT show the contributions of ASTs and GCTs to performances.
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Figure 6.4: Comparison results of TAPNets using different λ values in TAP layers. We report
graph classification accuracy (%) on PTC, IMDB-MULTI, and REDDIT-BINARY datasets.

It can be observed that TAPNet w AUX achieves better performances than TAPNet, which shows

the effectiveness of the auxiliary link prediction objective. To fully study the impact of GCT on

TAP layer, we visualize the coarsened graphs generated by TAP and TAP without GCT (denoted

as TAP w/o GCT). We select a graph from PTC dataset and illustrate outcome graphs in Fig-

ure 6.3. We can observe from the figure that TAP produces a better-connected graph than that by

TAP w/o GCT.

6.4.6 Parameter Study of GAP

Since TAP layer employs an attention operator to compute ranking scores, it involves extra

trainable parameters to the overall network. Here, we conduct experiments to study the number of

parameters in TAPNet. We remove the extra trainable parameters from TAP layers in two ways;

those are removing TAP layers from the TAPNet and removing attention score terms (AST) from

TAP layers. We denote the resulting two networks as TAPNet w/o TAP and TAPNet w/o AST,
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Table 6.5: Comparisons among TAPNets with and without TAP layers, and TAPNet without at-
tention score term (AST) in terms of the graph classification accuracy (%), and the number of
parameters on REDDIT-BINARY dataset.

Model Accuracy #Params Ratio
TAPNet w/o TAP 91.0 323,666 0.00%
TAPNet w/o AST 91.5 323,666 0.00%
TAPNet 94.1 330,578 2.13%

respectively.

The comparison results on REDDIT-BINARY dataset is summarized in Table 6.5. We can see

from the results that TAP layers only need 2.13% additional trainable parameters. We believe the

negligible usage of extra parameters will not increase the risk of over-fitting but can bring 1.9%

performance improvement over TAPNet w/o TAP and TAPNet w/o AST on REDDIT-BINARY

dataset. Also, the promising performances of TAPNets on small datasets like PTC and MUTAG in

Table 6.2 show that TAP layers will not significantly increase the number of trainable parameters

or cause the over-fitting problem.

6.4.7 Performance Study of λ

In Section 6.3.2, we propose to add the graph connectivity term into the computation of rank-

ing scores to improve the graph connectivity in the coarsened graph. It can be seen that λ is an

influential hyperparameter in the TAP layer. In this part, we study the impacts of different λ values

on network performances. We select different λ values from the range of 0.01, 0.1, 1.0, 10.0, and

100.0 to cover a reasonable range of values. We evaluate TAPNets using different λ values on

PTC, IMDB-MULTI, and REDDIT-BINARY datasets.

The results are shown in Figure 6.4. We can observe that the best performances on three

datasets are achieved with λ = 0.1. When λ becomes larger, the performances of TAPNet models

decrease. This indicates that the graph connectivity term is a plus term for generating reasonable

ranking scores but it should not overwhelm the attention score term that encodes the topology

information in ranking scores.
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7. CONCLUSIONS AND FUTURE WORK

In Section 2, we discuss how to learning high-level node features without changing graph

structures. In particular, we propose the learnable graph convolutional layer (LGCL), which trans-

forms generic graphs to data of grid-like structures and enables the use of regular convolutional

operations. The transformation is conducted through a novel k-largest node selection process,

which uses the ranking between node feature values. Based on our LGCL, we build deeper net-

works, known as learnable graph convolutional networks (LGCNs), for node classification tasks

on graphs. Experimental results show that the proposed LGCN models yield consistently bet-

ter performance than prior methods under both transductive and inductive learning settings. Our

LGCN models achieve new state-of-the-art results on four different datasets, demonstrating the

effectiveness of LGCLs. In addition, we propose a sub-graph selection algorithm, resulting in the

sub-graph training strategy, which can solve the problem of excessive requirements for memory

and computational resources on large-scale graph data. With the sub-graph training, the proposed

LGCN models are both effective and efficient. Our experiments indicate that the sub-graph train-

ing strategy brings a significant advantage in terms of training speed, with a negligible amount of

performance loss. The new training strategy is very useful as it enables the use of more complex

models efficiently.

In Section 3, we propose novel hGAO and cGAO which are attention operators on graph data.

hGAO achieves the hard attention operation by selecting important nodes for the query node to

attend. By employing a trainable projection vector, hGAO selects k-most important nodes for each

query node based on their projection scores. Compared to GAO, hGAO saves computational re-

sources and attends important adjacent nodes, leading to better generalization and performance.

Furthermore, we propose the cGAO, which performs attention operators from the perspective

of channels. cGAO removes the dependency on the adjacency matrix and dramatically saves

computational resources compared to GAO and hGAO. Based on our proposed attention opera-

tors, we propose a new architecture that employs a densely connected design pattern to promote
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feature reuse. We evaluate our methods under both transductive and inductive learning settings.

Experimental results demonstrate that our hGANets achieve improved performance compared to

prior state-of-the-art networks. The comparison between our methods and GAO indicates that our

hGAO achieves significant better performance than GAO. Our cGAO greatly saves computational

resources and makes attention operators applicable on large graphs.

In Section 4, we consider the biased topology information encoding in graph neural networks

that utilize line graph structures to enhance network embeddings. A line graph constructed from

a graph can faithfully encode the topology information. However, the dynamics in the line graph

are inconsistent with that in the original graph. On line graphs, the features of nodes with high

degrees are more frequently passed in the graph, which causes understatement or overstatement of

node features. To address this issue, we propose the weighted line graph that assigns normalized

weights on edges such that the weighted degree of each node is 2. Based on the weighted line

graph, we propose the weighted line graph layer that leverages the advantage of the weighted line

graph structure. A practical challenge faced by graph neural networks on line graphs is that they

consume excessive computational resources, especially on dense graphs. To address this limitation,

we propose to use the incidence matrix to implement the WLGCL, which can dramatically save

the computational resources. Based on the WLGCL, we build a family of weighted line graph

convolutional networks. The experimental results on graph classification datasets and simulated

data demonstrate the effectiveness and efficiency of our proposed methods and networks.

In Section 5, we introduce how to learn graph deep learning methods that can operate graph

structures. In this section, we firstly propose novel gPool and gUnpool layers in g-U-Nets net-

works for network embedding. The gPool layer implements the regular global k-max pooling

operation on graph data. It samples a subset of important nodes to enable high-level feature en-

coding and receptive field enlargement. By employing a trainable projection vector, gPool layers

sample nodes based on their scalar projection values. Furthermore, we propose the gUnpool layer

which applies unpooling operations on graph data. By using the position information of nodes in

the original graph, gUnpool layer performs the inverse operation of the corresponding gPool layer
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and restores the original graph structure. Based on our gPool and gUnpool layers, we propose the

graph U-Nets (g-U-Nets) architecture which uses a similar encoder-decoder architecture as regular

U-Net on image data. Experimental results demonstrate that our g-U-Nets achieve performance

improvements as compared to other GNNs on transductive learning tasks. To avoid the isolated

node problem that may exist in sampled graphs, we employ the 2nd graph power to improve graph

connectivity. Ablation studies indicate the contributions of our graph connectivity augmentation

approach.

Besides graph data, we use gPool and propose hConv layers in FCN-like graph convolutional

networks for text modeling. The gPool layer achieves the effect of regular pooling operations on

graph data to extract important nodes in graphs. By learning a projection vector, all nodes are

measured through cosine similarity with the projection vector. The nodes with the k-largest scores

are extracted to form a new graph. The scores are then applied to the feature matrix for information

control, leading to the additional benefit of making the projection vector trainable. Since graphs are

extracted from texts, we maintain the node orders as in the original texts. We propose the hConv

layer that combines GCN and regular convolutional operations to enable automatic high-level fea-

ture extraction. Based on our gPool and hConv layers, we propose four networks for the task of

text categorization. Our results show that the model based on gPool and hConv layers achieves

new state-of-the-art performance compared to CNN-based models. gPool layers involve negligible

number of parameters but bring significant performance boosts, demonstrating its contributions to

model performance.

In Section 6, we propose a novel topology-aware pooling (TAP) layer that applies attention

mechanism to explicitly encode the topology information in ranking scores. A TAP layer attends

each node to its neighboring nodes and uses the average similarity score with its neighboring nodes

as its ranking score. The primary nodes sampling based on these ranking scores can incorporate the

topology information, thereby leading to a better-coarsened graph. Moreover, we propose to add

a graph connectivity term to the computation of ranking scores to overcome the isolated problem

which a TAP layer may suffer from. Based on the TAP layer, we develop topology-aware pool-
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ing networks (TAPNets) for network representation learning. We add an auxiliary link prediction

objective to train our networks by employing the similarity score matrix generated in TAP layers.

Experimental results on graph classification tasks using both bioinformatics and social network

datasets demonstrate that our TAPNets achieve performance improvements as compared to previ-

ous models. Ablation Studies show the contributions of our TAP layers to network performances.

We show that the trainable parameters involved in TAP layers will not cause over-fitting.

Based on this work, we discuss several possible directions for future work. First, our methods

mainly address the node classification and graph classification problems. In practice, many other

interesting tasks can be formulated as link prediction problems, where each edge has a label. Our

current graph deep learning methods are not able to directly perform link prediction on graphs.

Also, there is no specialized link prediction operations on image data. We need a layer to learn

edge representations effectively, which is necessary for link prediction. Second, our methods are

mainly following the operations on computer vision. For graph data, there can be some specialized

deep learning operations on graph. We will explore these directions in the future.
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