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ABSTRACT

Over the past few decades, researchers have worked towards developing autonomous systems

that can be used in everyday transportation, and with the emergence of new sensor, hardware, and

software technologies, the goal of self-driving vehicles is now on the brink of becoming a reality.

In order for these systems to properly plan and react to their complex environments, they need to

be equipped with the proper tools and algorithms to ensure safe deployment for all stakeholders.

Navigating tight spaces with truck and trailer systems in dynamic environments can be a diffi-

cult task due to their their nonlinear dynamics, delayed actuation, and large physical dimensions.

This thesis presents a kinematic approach to local motion planning for truck and trailer vehicles

in the forward motion. This approach was applied to the sample based planning algorithms RRT*

and RRTX in order to adapt and replan in the presence of dynamic obstacles. A combined motion

planning and control framework was then developed and deployed in both simulation, using Amer-

ican Truck Simulator, and on an International ProStar 122+ truck. After the feedback controllers

were iteratively tuned, the motion planners were evaluated alongside a deterministic Hybrid A*

approach using a lane change and seaport scenario with simulated static and dynamic obstacles. In

both cases, the approach demonstrated the ability for the sample based planner approach to provide

real-time and feasible plans for the controller to execute at low speeds while maintaining a safe

distance away from nearby obstacles.
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1. INTRODUCTION AND OVERVIEW

1.1 Introduction

Over the past few decades, researchers have worked towards developing autonomous systems

that can be used in everyday transportation. With the emergence of new sensor, hardware, and

software technologies, the goal of self-driving vehicles is now on the brink of becoming a reality.

Following the success of the DARPA Grand and Urban Challenges in the late 2000s [4, 5], the

world had a resurgence of interest in a future involving self-driving cars. Both automotive and

technology companies are racing to see who can be the first to develop a safe and reliable self-

driving fleet for the market.

The move to self-driving cars is in the interest of the general population. It is predicted that

widespread autonomous vehicle adoption will reduce the approximate 1.35 million deaths that

occur annually primarily due to human error when operating a vehicle [6]. With that said, au-

tonomous driving in urban environments with dynamic elements like vehicles, pedestrians, and

cyclists is still an ongoing field of research with many difficult challenges that do not yet have a

clear solution.

This thesis discusses a potential solution to a subset of the self-driving vehicle task. More

specifically, this thesis presents an approach to motion planning for truck and trailer systems that

can generate local kinematic paths in dynamic environments with little a priori information. This

approach is evaluated in both simulation and on an actual truck system to verify its feasibility and

real-time performance.

This rest of this chapter details the motivation for this research into motion planning for self-

driving vehicles, and more specifically, the need for truck and trailer motion planning. Next, a

review of literature regarding recent efforts into this research area will be presented to outline al-

ternative approaches and inspirations for this thesis’s contributions to the field. Lastly, this chapter

ends with a brief overview of the rest of the thesis.
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1.2 Background and Motivation

According to the United States Department of Transportation, truck and trailer systems ac-

counted for about 62.7% of all freight between North American countries in 2018 [7]. Due to the

extreme driving hours and potential cost savings, automotive companies are looking for technology

that can automate these vehicles as they complete their transportation routes. In order to properly

navigate, plan, and react to their dynamic environments, autonomous systems need to be equipped

with the proper tools and algorithms to ensure safe deployment for all stakeholders.

Since the degree to which a vehicle can be automated varies, the SAE J3016 standard has been

widely adopted to describe the level of automation on a scale from 0 to 5 [8]. This thesis will

focus on Level 2 through Level 4, which spans from advanced driver assistance for situations like

a lane-change maneuver, to situations where the vehicle is driving fully autonomously with the

assistance of a human safety operator.

Automated trucking has seen both academic and industry sponsored research over the past two

decades. Primarily, this research has focused on Level 1 and 2 truck platooning through projects

like SARTRE, GCDC, PATH and SCANIA [9, 10], There has be relatively less research into truck

motion planning in urban and unstructured environments. This has mainly been due to the complex

nature of the planning problem for the truck and trailer system, along with a lack of hardware

and software to implement the solutions in real-time. With that said, due to the technological

advancements over the past few years, there has been a significant push from industrial players like

Embark, Tesla, and Waymo to focus on Level 4 automation for trucking [11]. These companies

see a growing incentive to reduce human labor costs by developing algorithms that can handle

most of the transportation process from loading and unloading to highway driving. Furthermore,

these companies have seen promising initial results with Embark operating over 124,000 miles

between 2017 and 2018 with only 1 disengagement per 1,392 miles in Q4 of 2018 [12]. On a more

public note, Plus.ai’s Level 4 truck and trailer system was able to haul butter 2,800 miles across the

United States while only stopping at federally mandated increments [13]. With the slowed market

adoption of Level 1 and 2 platooning due to overestimation of potential fuel savings [14, 9, 15],
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there is a growing need for more research into robust motion planning algorithms for truck and

trailer systems to assist in Level 4 deployment.

Research on local motion planning for unmanned systems is being conducted throughout the

world to further advance our ability to push autonomous vehicles into increasingly unknown and

sophisticated areas. Because of their nonlinear dynamics, delayed actuation, and large physical

dimensions, navigating tight spaces with truck and trailer systems in dynamic environments can be

quite a difficult task. Motion planning algorithms attempt to solve this optimization problem in the

presence of unknown obstacles by finding a feasible sequence of system configurations to achieve

a desired goal condition while typically minimizing a defined cost metric [16].

1.3 Autonomous System Architecture

Since self-driving vehicles need to perform such complex tasks, one approach to designing

the overarching system architecture is to modularize the system into subsystems that each solve

a specific self-driving objective. This modularization assists with development by allowing engi-

neers to isolate issues and design metrics for each solution. Although there are many approaches

to the control architecture of autonomous vehicles, a general architecture is shown in Figure 1.1.

Sensors measure and obtain information about the vehicle’s internal state as well as the environ-

mental actors such as pedestrians, vehicles, and other dynamic objects. Common sensors for this

are GPS, IMU, LiDAR, radar, wheel/motor encoders, and cameras. That data is then abstracted

for obstacle detection, vehicle localization, and mapping. From there, the vehicle takes the desired

mission from the user and develops a global plan to solve it. A mission could be anything from the

desire to get one vehicle from one city to another, to utilize multiple trucks and trailers to deliver a

payload, or even drop off a freight container at a seaport.

That global plan is then broken into several sub-objectives which is then fed into a local planner

to generate a feasible trajectory for the vehicle to execute. This trajectory relies on the perception

layer of the vehicle to not only ascertain where the vehicle is relative to its environment, but also

to inform the planner about the intentions of other actors. In addition, the perception layer can

identify, track, and translate the raw inputs from the sensors into synthesized objects and obstacles
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Figure 1.1: General control architecture for automated vehicles based on [1], where red modules
indicate the focus of the thesis.

to avoid.

The current vehicle state and global mission is sent to the local planner which then outputs a

set of optimal vehicle configurations that will navigate the system to intermediate objectives while

avoiding collision with other obstacles and itself. That local plan is then fed into the lower level

controllers that determines what type of actuation will most optimally follow the nominal local

plan while minimizing a defined error. The controllers are designed to reject disturbances like

wind and road characteristics, all while accounting for any modeling error from the higher level

planners. In addition they can be designed to improve elements such as passenger comfort and fuel

efficiency.

Since the sensor range of the vehicle is limited, dynamic obstacles can appear at any point

during the planning process. It is for this reason that the local motion planner must be quick enough

to adapt and re-plan a safe alternative path around any obstacles that obstruct the previous plan.

This process is constantly repeating during the overall motion planning sequence as the vehicle

traverses the workspace. This thesis explores solutions for the issue of continually planning in
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unstructured environments for truck and trailer systems by modifying computationally efficient

motion planning algorithms for real-time execution in simulation and in real life.

1.4 Literature Review

This section provides a look at current research in the field of autonomous technology as it

pertains to vehicle navigation and control. Additionally, resources are presented with increased

specificity pertaining to truck and trailer systems.

A. Survey of Motion Planning Algorithms [1]

Paden et. al discussed the state-of-the-art developments for motion planning algorithms and

outlines a general approach on executing functions from route planning to vehicle actuation. In

this survey, elements of graph based motion planning and control were investigated, focusing on

the performance and results of each approach. In terms of motion planning algorithms, when

comparing sampling based motion planners to an approach like Hybrid A*, the main differences lie

in the completeness and optimality they provide, which is outlined in Table 1.1, as both approaches

have seen successful implementations. In addition, anytime planners, like RRT and RRT*, present

an ability to quickly identify an initial, suboptimal path, and then incrementally improve the path

with additional time. In terms of lateral controllers, while the front wheel based feedback approach

is limited to forward-only driving, it performs better in highway driving and parking maneuvers

when compared to an approach like pure pursuit.

Table 1.1: Comparison of search-based motion planners. Adapted from [1]

Completeness Optimality Differential
Constraints

Anytime

A* Resolution Complete Resolution Optimal No No
Hybrid A* No No Yes No
RRT Probabilistically

Complete
Suboptimal Yes Yes

RRT* Probabilistically
Complete

Asymptotically Optimal Yes Yes
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B. Sampling-Based Algorithms for Optimal Motion Planning [17]

Karaman and Frazzoli expanded upon the works of LaValle [16] by developing RRT*, an

asymptotically optimal sampling based motion planner that guarantees probabilistic completeness.

Similar to its predecessor RRT, which finds a feasible path for the system, RRT* incrementally

builds a tree of nodes from the root towards the goal configuration of the system. Unlike RRT,

RRT* maintains a hyberball around each generated node in order to extend and rewire tree con-

nections based on their cost, all while avoiding collisions with static obstacles. One of the benefits

of both of these planners is that unlike the A* algorithm [18], RRT and RRT* can plan in the state

space of the vehicle and can therefore impose kinematic constraints on the system. In addition,

these sampled based planners are inherently biased to explore larger Voronoi regions to sample all

potential states.

C. RRTX: Motion Planning in Environments with Unpredictable Obstacles [19]

Otte and Frazzoli further expanded upon RRT* by developing RRTX . This motion planner

accounts for unpredictable, dynamic obstacles, thus allowing for real-time replanning and navi-

gation, similar to D* [20]. The algorithm is able to achieve asymptotic optimality and the same

amortized per iteration runtime as RRT* by selectively cascading its rewire operation to the af-

fected children branches when there are observed changes in the graph. This is done by ensuring

the graph is ε-consistent and by maintaining running sets of incoming and outgoing neighbors for

each node . Unlike D*, which works in the discretized workspace of the system, RRTX can plan

in the state space of the vehicle. Due to the limited turning radius of the truck and trailer system,

these kinematic constraints become critical in generating a feasible path for the vehicle to execute

[19]. Furthermore, the algorithm is rooted at the end configuration which allows for the use of the

same graph as the vehicle’s state evolves throughout navigation.

D. Closed loop RRT for Car with a General 2-trailer Configuration [21]

Holmer implemented a closed loop RRT approach to motion planning on a 2-trailer system

to execute parking maneuvers. Since the system is unstable in the reverse motion, a closed loop
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controller locally stabilizes the trailer during the motion planner process based on the system’s

kinematics. Once locally stabilized, the RRT algorithm can then simulate the motion of the closed

loop system as it samples potential configurations throughout the search space. This approach is

an adaptation of [22], which placed in the 2007 DARPA Grand Challenge. The path generated has

no guarantees of optimality, but adopts many of the benefits of other sampling based approaches

while delivering practical results in small scale testing with an average success rate of 98.7%.

E. A Path Planning and Following Framework for a General 2-trailer Configuration [23]

Ljungqvist, et al. proposed a lattice based approach to solving the local motion planning prob-

lem for a general 2-trailer system. Utilizing both forward and reverse trailer motion, they were

able to demonstrate that their lattice based planner could effectively generate kinematically fea-

sible paths for real-world parking maneuvers that avoided static obstacles. By discretizing the

motion planning problem, they were able to efficiently solve for the system’s optimal control prob-

lem with precomputed motion primitives that were generated offline. Additionally, by using the

back axle of the trailer as the reference point, their team demonstrated the ability to accurately

control the position of the system in reverse.

F. A Path Planning Algorithm Based on Hybrid A* for Trailer Truck [24]

Sakai proposed a Hybrid A* approach to solving the local path planning problem for a truck

and trailer system. His work was heavily influenced by that of Dolgov et al. [25] who had ini-

tially proposed the underlying Hybrid A* algorithm. Hybrid A* planning is an adaption of A*

that imposes kinematic constraints on the system by discretely sampling inputs of the vehicle. As

the planner extends to a new undiscovered node, the steering function translates the vehicle to a

kinematically feasible location inside the grid cell. That location is then referenced for all future

expansions. Sakai utilized this framework to solve complex parking maneuvers with static obsta-

cles for a truck and trailer system by adding the trailer angle to the state space and its associated

jack-knife cost.
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1.5 Contributions

Throughout the process of this research, and the development of local motion planning for truck

and trailer systems, several methods originated through personal contributions. Outlined below are

individual contributions made during the research of this thesis.

• Developed sample-based motion planning approach for truck and trailer system based on

propagating trailer angle along Dubins path

• Integrated approach with existing sample-based motion planning algorithms, RRT* and

RRTX , for real-time replanning in the presence of obstacles that unexpectedly appear, dis-

appear, and change position

• Implemented path planning and following architecture for real-time execution in realistic

scenarios

• Evaluated motion planning algorithms against Hybrid A* in both simulation using American

Truck Simulator and on an International ProStar truck

• Assessed sensor uncertainty and tracking error to tune motion planning and controller pa-

rameters that further ensure safe navigation in structured and unstructured environments

• Created, tested, and iterated on proof of concept testing platform for local motion planning

on truck and trailer systems

1.6 Assumptions

The following assumptions are made by this thesis regarding the development of the truck and

trailer motion planner.

• There are sensors and perception to provide estimates of nearby obstacles’ pose and velocity.

• The vehicle is operated at low enough speeds such that the inertial effects are not dominant.

• The vehicle’s motion is predominantly planar.
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• The vehicle is operated in conditions such that there is negligible tire slipping or skipping.

• The vehicle is constrained to forward only motion.

• There is a global mission being provided from a human operator or a geometric planner.

• There is a feedback controller that can account for the neglected vehicle dynamics during

planning and generate a bounded lateral error.

• There is a bounded uncertainty associated with the vehicle’s current pose and orientation.

1.7 Overview

The remainder of this thesis is broken into chapters that establish the fundamental basis used to

develop the motion planning algorithms. First, the wheeled system modeling equations and sub-

sequent assumptions will be explained as they pertain to two axle vehicles, and more importantly,

how they compare to a truck and trailer system. Additionally, methods to simplify the system

model for computational efficiency will be discussed. Then, the overarching motion planning

problem will be introduced and defined for the scope of this research. Promising search-based

motion planning methods will be evaluated as well as their fundamental subroutines will be es-

tablished. Then, a simulated scenario will combine the vehicle model and the proposed motion

planning approach to provide an intuitive understanding of the overall objective the planner is

trying to achieve.

The Results and Discussion chapter initially focuses on how the algorithms were executed by

first detailing the simulation and real life platforms utilized for evaluation. This includes sensor

uncertainty quantification as well as how the feedback controllers were chosen and iterated upon.

From there, the testing process and metrics will be detailed as the algorithms are evaluated in

multiple static and dynamic scenarios. Finally, the conclusions will describe the significance of

the findings and how they could impact future motion planning development for truck and trailer

systems.
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2. KINEMATIC VEHICLE MODELS

In order to define the motion planning problem that the algorithm is trying to solve, one must

first understand how to model the system they are trying to control. For that reason, this section

will establish models typically used for a four-wheeled vehicle. This includes the kinematic bicycle

model as well as the Dubins car model. From there, the kinematic model will be extended for a

truck-trailer system. It should be noted that this section is only meant to be a brief overview of the

approach taken for this thesis and a more detailed explanation can be found in [16] [26].

2.1 Nonholonomic System

Since wheels are not intended to move sideways, a common assumption made when deriving

a model of a wheeled system is that it rolls without slipping. This assumption is typically only

valid on dry roads and at low speeds with low lateral forces [16]. This velocity constraint restricts

the motion of the system in lateral directions which means that the system is underactuated and

nonholonmic.

Considering the configuration space, C, of the system as the smooth manifold of all possible

system configurations, q ∈ C, one can express the implicit constraints imposed on the system

with Equation (2.1) [16]. A specific class of nonholonomic constraints where the linear velocity

constraint cannot be integrated explicitly is expressed in Equation (2.2), where k is the amount

of constraints and is less than the dimensions of the manifold, n. These are known as Pfaffian

constraints and are linearly independent [16].

g(q, q̇) = 0 (2.1)

k∑
i=1

gi(q)q̇i = 0 (2.2)

To observe how the input, u, affects the system, the parametric representation can be generated

utilizing the constraints expressed in Equation (2.2) to form Equation (2.3) [16]. This representa-
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tion is used by the following vehicle models to derive the equations of motion.

q̇ = f(q, u) (2.3)

2.2 Kinematic Bicycle Model

Kinematic models are typically used at the planning level because their low amount of state-

space dimensions provide quick real-time performance when compared to the more complex dy-

namic models with relatively large dimensional state spaces. In addition, they typically require less

a priori information regarding the inertial and friction components of the system. Since the model

only considers kinematic constraints, it is assumed that the lower level controller can account for

the neglected dynamic components. This assumption is only appropriate at low speeds, on dry

roads, where the inertial effects are typically negligible [16].

The bicycle model is one of the most pervasive models used for the planning and control of

wheeled systems. In terms of kinematics, the simple bicycle model is constrained by its limited

steering actuation of the front axle, which makes it impossible for the vehicle to make any instan-

taneous turns that are smaller than the minimum turning radius of the vehicle. Consider the vehicle

denoted in Figure 2.1. Constraining the system to planar motion, the configuration space is C =

R2 × S, where q = (x, y, θ0).

In order to derive the equations of motion, one must look back to Equations (2.2) and (2.3).

Given a small time increment, the Pfaffian constraint shown in Equation (2.4) must be satisfied,

where x and y are the Cartesian coordinates of the rear axle of the car [16].

− ẋ sin θ0 + ẏ cos θ0 = 0 (2.4)

In addition, if one assumes Ackerman steering is obeyed by the front axle, then a steering angle,

δ, can represent the average of the inner and outer front wheel angle [27]. From there, one is able

to derive a relation between the angle of the car, θ0, and δ to form Equation (2.5), where d0 is the
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Figure 2.1: Kinematic bicycle model for car-like system

wheelbase of the car and v is the longitudinal velocity of the vehicle.

θ̇0 =
v

d0
tan δ (2.5)

Combining this information, the full state of the system can be defined using the 3 state equa-

tions below.

ẋ = v cos θ0

ẏ = v sin θ0

θ̇0 =
v

d0
tan δ

(2.6)

2.3 Dubins Car Model

The Dubins car model simplifies the kinematic bicycle by limiting the motion to only the for-

ward direction with a constant speed and minimum turning radius. The Dubins path generated is

proven by Pontryagin’s maximum principle to be the shortest curve between two vehicle configu-

rations with prescribed tangents [28]. The optimal path is a choice of 6 possible combinations of a

right turn, straight path, and left turn (RSR, LSL, RSL, LSR, LRL, RLR). Each turn is performed at
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the car’s maximum steering angle (usually 25-40°) which is related to the minimum turning radius

by Equation (2.7). An example of a RSR turn is shown in Figure 2.2. Due to its computational

efficiency, the path is pervasive for planning for wheeled systems [1].

rmin =
d0

tan(δmax)
(2.7)

Figure 2.2: Dubins RSR path for car-like system with minimum turning radius (rmin)

This approach does have some drawbacks in terms of actual feasibility. In all cases, since the

path generated has discontinuous curvature, the steering actuation is assumed to be instantaneous,

i.e. the steering rate has no limitations. This affects how systems, like the truck and trailer, with

limited steering rates execute the path. There are several approaches to resolve this issue. One

option is to generate clothoids that sacrifice some optimality but result in paths with continuous

curvature and its derivative, as seen in [29]. Another approach is to smooth the Dubins path with

a cubic spline. The spline path has continuous curvature required for execution with a limited

steering rate but also releases the limited steering angle constraint imposed by the Dubins curve.

Additionally, one needs to verify that the spline does not overfit the Dubins path or that the new

spline path does not collide with any obstacles. This effect of instantaneous curvature change will

be further investigated empirically in Section 4.4.3.1.

Another inherent drawback to the Dubins approach falls with the constraint on the vehicle to
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only move forward. With the Dubins approach, there can be cases where the vehicle might get

stuck in a local corner with no feasible way to maneuver away [30]. By also considering reverse

motion, the Reeds-Shepp model can efficiently navigate more potential trajectories through the

search space [31]. With all of that being said, it is assumed for the purposes of this thesis that

the scenarios can be executed using only forward motion, and that the sensors on the vehicle have

enough range to detect obstacles and prevent the vehicle from getting stuck in a corner.

2.4 The Truck and Trailer Model

The truck and trailer model is an expansion of the kinematic model for a simple car with an

added rigid body connected to the center of the truck’s rear axle, making C = R2×(S1)2. The same

nonholonomic constraints regarding steering actuation are imposed from the simple car model, but

unlike two axle cars, the angle between the truck and trailer is also limited in order to prevent self-

collision, known as jack-knifing. Unlike the general n-trailer case presented in [32], it is assumed

that the trailer pivots from the center of the rear axle of the vehicle with negligible off-axis hitching.

This assumption is typically valid for truck and trailer transportation vehicles and simplifies the

equations of motion for the system. In addition, there is no active trailer steering, i.e. the trailer’s

rear axle is rigid to the body. Just like the kinematic model for the car, the truck and trailer model

is only valid for low speed maneuvers due to the inertial effects. Furthermore, the model has been

empirically observed to start diverging from the actual response of the system when the truck and

trailer angle have a difference that is more than 7° [33]. Keeping these constraints in mind, the full

state of the system can be defined using the 4 state equations below in Equation (2.8), where d1 is

the wheelbase of the trailer and θ1 describes the angle of trailer [16]. These kinematic equations

must be obeyed by any motion planning algorithms in order to generate feasible plans.
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Figure 2.3: Kinematic model for truck and trailer system

ẋ = v cos θ0

ẏ = v sin θ0

θ̇0 =
v

d0
tan δ

θ̇1 =
v

d1
sin (θ0 − θ1)

(2.8)

2.5 Velocity Profile

Since the velocity of the system is linearly proportional to all state variables in Equation (2.8),

in order to numerically solve for the optimal control problem between a starting and final vehicle

state, a common practice is to scale the time, thus separating the velocity from the motion planning

problem [34]. Using this property, one can separate the motion planning problem into a path

planner that generates a set of feasible vehicle configurations and an associated velocity profile,

which is generated based on the acceleration limitations of the vehicle. It should be noted that this

approach is only valid when the kinematic model is valid, i.e. low speeds with no tire slipping.

For this thesis, the velocity profile takes into consideration the maximum and minimum longi-

tudinal acceleration achievable through throttle and braking, respectively. In addition, it considers
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the maximum desired lateral acceleration to generate a series of desired velocities for the associated

path. Although the longitudinal acceleration bounds are determined empirically using open loop

actuation, a lateral acceleration limit of 2.0 m/s2 is imposed in order to ensure passenger comfort

and minimize any rolling effects on the system [35]. The lateral acceleration of the vehicle, ay,

can be related to the path using Equation (2.9). By inserting Equation (2.7) into Equation (2.9), the

velocity constraint in Equation (2.10) can be imposed in addition to the longitudinal acceleration

requirements which assists in the generation of the a motion plan for the vehicle.

ay =
v2

r
(2.9)

vcmd ≤
√
d0 ∗ ay,max

tan δ
(2.10)

The following chapter will detail some approaches to the general motion planning problem and

provide the algorithms that were chosen to integrate with the truck and trailer model for this thesis.
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3. MOTION PLANNING

Now that the system models have been established, this section will initially focus on defining

what problem the motion planner is trying to solve. Then, it will introduce a general framework

that is followed by most search-based motion planners, as well as the fundamental functions they

all share. At the end of the section, a graph-based approach called Hybrid A* and sampling-based

approaches RRT* and RRTX will be briefly introduced along with an explanation regarding how

they were modified to handle the trailer condition.

3.1 Problem Formulation and Approach

By modeling the wheeled vehicle as a nonlinear, time-invariant system, one can utilize Equa-

tion (3.1) to express the vehicle’s motion, where the state, x(t), lies on an n-dimensional smooth

manifold described in Section 2.1. For wheeled systems in the real world that are physically con-

strained due to limits in actuation and configuration, both the state, x(t), and the input, u(t), are

physically limited to the state space, X , and the input space, U , respectively.

ẋ(t) = f(x(t), u(t)), x(t0) = x0, x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm (3.1)

Given an initial vehicle state, x0, and goal state xg, the motion planner attempts to find a feasible

motion plan that navigates through the free space, Xfree, where Xfree = X \ Xobs and is typically

non-convex. The free space is usually determined by discovering the possible states that do not

collide with any obstacles or itself in the search space. These obstacles can be static or dynamic,

meaning that as the vehicle traverses the space, previously valid plans can be invalidated due to

dynamic obstacles. Based on this information, one can formally define the optimization problem

as an OCP in Equation (3.2), where L is the running or Lagrangian cost. It should be noted that

17



this OCP assumes that both the initial and final state are collision free.

minimize
u(·), tf

∫ tf

t0

L(x(t), u(t), t) dt

subject to ẋ(t) = f(x(t), u(t)),

x(t0) = x0, x(tf ) = xg,

x(t) ∈ Xfree, u(t) ∈ U

(3.2)

Although the OCP in Equation (3.2) can be directly solved numerically with a optimal control

solver like ACADO [34], it generally takes too long to execute at the rate required for mobile

robotic navigation. Even with no obstacles, the solver must still evaluate the nonlinear dynamics of

the system to get to its final goal state. In the presence of obstacles, the problem becomes even more

difficult since Xfree is usually non-convex, which makes the initial guess of the solution imperative

to finding a feasible plan. Furthermore, representing Xfree analytically using the vehicle’s sensors

is not a trivial task even with the assistance of precomputed maps [1].

It is for this reason that motion planning algorithms are typically relied upon to find a solution

to Equation (3.2). Motion planning, in the general sense, is utilized by various fields of research

and can subsequently have various definitions. For the purposes of this thesis, the focus will be

on local motion planning which typically considers the system dynamics and constraints to find a

feasible path that minimizes a determined cost metric to reach its goal while avoiding obstacles.

This path is then sent along with a desired velocity profile to a lower level controller to execute

and track the desired motion plan. Typically, a higher level geometric planner that neglects the

system dynamics will feed the local planner with intermediate waypoints to navigate its overall

mission. This process is constantly repeating as the vehicle traverses the environment, adjusting to

account for changes in the estimated position of dynamic obstacles, system modeling inaccuracies,

and changes in the overall mission. A diagram describing this segmentation is shown Figure 3.1.

By modularizing the planning problem, the generated path can become suboptimal in terms

of the global mission. With that said, the approach has been proven quite effective in actual de-
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Figure 3.1: Hierarchical approach with local plan (black), controller execution (red), and global
path (dashed)

ployments [1]. One of the major benefits of this approach is due to the computational time and

complexity of solving the non-convex, optimal control problem for large areas. By planning in the

local area, the motion planning algorithm is able to generate feasible paths at the rate needed for

mobile platforms to react to changes in the environment, which tends to be 0.1-50Hz [1]. Attempt-

ing to solve the global mission without segmentation is still an active area of research but cannot

typically provide a plan in the time required for this thesis.

Before introducing the motion planning algorithms, it is important to describe the fundamental

functions that each algorithm will utilize to develop its solution. These functions are applicable

to both holonomic and nonholonomic systems and assists the planner in finding the time optimal

solution in unstructured environments.

3.2 Steering Function

The motion planners discussed in this thesis rely on a steering function that can navigate the

planner between two intermediate system states. It is imperative that the steering algorithm obeys

the system dynamics in order to create a feasible trajectory. In most cases, this steering function

does not consider obstacles and a separate function later checks for collision [16]. Depending on

the planner, the steering function will either generate trajectories in real-time or rely on precom-

puted motion primitives that were generated offline. Since the graph-based algorithm Hybrid A*

uses a discretized representation of the state space, it can utilize the offline trajectories from any

intermediate point by exploiting the system’s position invariance. On the other hand, since the
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sampling-based planners are not discretized, the amount of storage required for all of the possible

motion primitives makes it difficult for online use. Since this thesis is focused on relying on as

little a priori knowledge of the system dynamics as possible, only real-time steering functions are

considered.

In order to solve the optimal solution to the boundary value problem between two intermediate

states, the optimal control problem in Equation (3.3) must be solved. The primary differences

between this equation and Equation (3.2) is that the steering function does not consider obstacles,

i.e, x(t) ∈ X , and that while Lstr is usually equivalent to global running cost function, L, some

steering functions optimize based on different criteria than the global function.

minimize
u(·), tstr

∫ tstr

0

Lstr(x(t), u(t)) dt

subject to ẋ(t) = f(x(t), u(t)),

x(0) = x0, x(tstr) = xf

x(t) ∈ X , u(t) ∈ U

(3.3)

In an attempt to solve the 4D OCP stated in Equation (3.3) with the equations of motion out-

lined in Equation (2.8), Casadi [36], a modern numerical solver, was utilized. With some initial

testing, the solver was able to find a solution within 20-300ms for randomized truck-trailer poses

within a 10 meter radius. Since this steering operation is performed thousands of times during the

planning stage, a significantly quicker steering function is needed for real-time planning.

For this thesis, a version of a Dubins curve [37] was used to connect intermediate states. Con-

straining the vehicle to only forward motion, the Dubins curve is proven via Pontryagin’s minimum

principle to generate a time optimal solution for the kinematic bicycle model [28] operating at a

constant speed. Although this steering function is more computationally efficient than using a on-

line numerical solver, it does have some drawbacks. Since the Dubins curve does not consider the

trailer angle during its trajectory generation, looser constraints must be imposed on the intermedi-

ate states of the motion planner.
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More specifically, the approach taken for this thesis is to propagate the trailer angle through the

intermediate states using the kinematic model outlined in Equation (2.8) as the system traverses

the Dubins path. Then, in order for the final solution to be valid, the final trailer angle must be

within a set margin of the desired trailer angle. In addition, while the system is traversing each

path, the difference between the truck and trailer angles must not exceed a set threshold in order

to prevent self-collision. This approach is inspired by how humans typically prioritize the truck

orientation and location when deciding their forward driving maneuvers, like during lane changes,

as the trailer lags behind the truck.

3.3 Heuristic and Cost Function

In order to to guide the planning algorithm when navigating between intermediate states, a

heuristic is utilized. There are many different approaches to developing an optimal heuristic that

can significantly depend on the system dynamics and the environment. Accordingly, in order for

a heuristic function to be admissible, it must never overestimate the cost associated with travers-

ing between states. This constraint is stated by Equation (3.4), where c(x, y) represents the cost

associated with traversing between states and h(x, y) represents the heuristic, i.e. the estimated

cost between states. Furthermore, in order for a heuristic to be consistent, it must obey the triangle

inequality expressed in Equation (3.5) with all of its successors, xi+1, and the goal, xg. As long

as these two conditions are met, then the graph-based motion planners will eventually generate an

optimal solution.

h(x, y) ≤ c(x, y) (3.4)

h(xi, xg) ≤ c(xi, xi+1) + h(xi+1, xg) (3.5)

One approach to generate a heuristic is to precompute a look-up table offline by simulating

the motion required to get to nearby states [38]. This method relies on a priori information about

the vehicle dynamics but has shown promise with discrete planners due to it’s quick performance

with nonlinear and complex systems. For this thesis, since the objective is to minimize the path

length generated by the planner using as little a priori information about the system as possible, the

21



Euclidean distance between state variables will be used for the heuristic function. This is expressed

in Equation (3.6). Subsequently, the cost, c(x, y), is the distance traversed by the vehicle along the

Dubins curve from x to y. Although the heuristic does not always equal the cost function, the

heuristic never overestimates the Dubins path length and obeys the triangle inequality. Thus, the

metric is admissible and consistent.

h(x, y) =

√√√√(xθ − yθ)2 +
2∑

n=1

(xi − yi)2 (3.6)

It should be noted that there are some inherent issues with using the Euclidean distance as a

heuristic. Due to the nonholonomic nature of the truck-trailer system with a large turning radius,

the metric can significantly underestimate the Dubins path length in scenarios where nearby nodes

are within the turning radius of the car. An example is shown in Figure 3.2 where the Euclidean

heuristic estimates a much lower cost to navigate from the start to end goal than the actual distance

traversed by the Dubins curve. With that said, the heuristic is still valid, and future efforts can be

done in order to derive a more appropriate heuristic for these nonholonomic vehicles.

Figure 3.2: Euclidean heuristic underestimates the path cost for nonholonomic vehicle
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In the case where time is added to the state-space of the vehicle to account for obstacles moving

at a constant velocity, the heuristic function can be rewritten as Equation (3.7) [19]. If one sets

velocity limits on the vehicle, and allows for instantaneous changes in the planned velocity of the

vehicle, the distance and time associated with traversing the Dubins path can be utilized for the

cost function. This is done by allowing each Dubins curve between nodes of the graph to have

different constant velocities as long as they do not violate the velocity constraints, otherwise the

path cost is∞. In practice, the velocity limits are set close enough to the nominal desired constant

speed in order to ensure that the vehicle’s acceleration limits are not violated over the path.

h(x, y) =

√√√√(xt − yt)2 + (xθ − yθ)2 +
2∑

n=1

(xi − yi)2 (3.7)

3.4 Collision Detection

Avoiding obstacles is paramount for any motion planner to prevent collisions. It is the role of

the collision detection layer to ensure that the configuration being evaluated is within the free space,

i.e. x /∈ Xobs. Since the detection procedure is performed thousands of times during the planning

state, an efficient algorithm must be used. Furthermore, there are a few common approaches used

for wheeled systems that do not rely on a specific planner.

One approach is to encapsulate the entire system inside of a circle. This approach is quite

computationally inexpensive as the truck and trailer headings are not required, but it tends to be

over-conservative when trying to drive through narrow passages, especially in the case of the truck

and trailer system, where the length is much larger than the width. Another approach is to treat

the truck and trailer as two rectangles. This requires consistent knowledge of the truck and trailer

heading and is thus more computationally expensive. This being the case, a hierarchical approach

is typically used to capitalize off of both methods. This is done by only checking the rectangular

oriented boxes if the enclosed circle check fails [1].

In order to implement the collision checking functions in software, the continuous trajectories

are typically discretized into a set of states that are then sampled to ensure there is no collision.
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(a) Example configuration of vehicle (b) Bounding regions

Figure 3.3: Two approaches to encapsulating truck and trailer: circle (blue), oriented rectangles
(orange)

This step can be avoided in obstacle-sparse environments when using the geometry of Dubins

curves. This is because as long as there are no obstacles within the radius of the vehicle and the

minimum turning diameter, then the two configurations are collision free. If not, then further steps

must be taken in order to ensure that the intermediate set of system configurations do not collide

with obstacles.

When considering dynamic obstacles, their trajectories are usually estimated by the perception

layer using sensor data from exterior LiDAR, radar, or cameras, and as such, their trajectories

are subject to sudden changes. While the static planners assume constant motion relative to the

state space of the vehicle, i.e. ∆Xobs = ∅, dynamic planners like [19, 20] account for the sudden

obstacle changes as the motion plan is traversed by the vehicle, i.e. ∆Xobs 6= ∅.

3.5 Search-based Methods

Now that the problem has been defined and the general functions have been established, this

section will elaborate on how search-based planners go about solving the motion problem. First,

some notation will be established.

In general, search-based motion planners construct a graph, G, made up of vertices, V , con-
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nected with edges, E , such that G = (V , E), where V is the node set of states and E is the edge

set of motions. For the scenarios in this thesis, the motion planner is attempting to compute a

trajectory that connects the initial state, xstart, to the goal state, xgoal.

Generally speaking, the planners below are initialized at an initial state, xinit, that is either

xstart or xgoal with E = ∅. As the planners attempt to connect to a new state, xi+1, a candidate for

expansion, xi, is picked based on the cost c() and/or the estimated cost heuristic h(). The planners

then attempt to steer toward xi+1 from xi using a predefined steering function. If the steering

function is able to generate a trajectory to xi+1 without collision, the state is added to the graph

and the associated cost is updated, i.e. c(xinit, xi+1) = c(xinit, xi) + c(xi, xi+1). If xi+1 ∈ V , then

the current cost is evaluated against the previous cost in order to determine if it is advantageous

for insertion. This process is then repeated until a termination condition is met. Then, all valid

solutions are compared based on the defined cost function and the minimum solution is returned if

it exists, otherwise no solution is returned.

3.5.1 Hybrid A*

The Hybrid A* algorithm builds off of A* by discretizing the input space in order to determin-

istically generate kinematically feasible paths for the system to follow. Just like A*, the algorithm

discretizes the work space into a grid-like search graph with each cell representing potential config-

urations. Hybrid A* then assigns each cell with a continuous state of the vehicle that is generated

during its initial expansion. This expansion is detailed in Figure 3.4. As more nodes are queued

from the open list generated by A*, each of the discretized input commands are simulated using a

kinematic model of the system for a predefined time step. If a future node generates a path with

a lower cost that ends up in the same cell as the previous trajectory, then the state is updated with

the configuration. Because the algorithm operates within the input space, there are no guarantees

of optimality or completeness. With that said, this method has proven quite effective at generating

trajectories real-time on actual systems [25]. Furthermore, it was successfully implemented on a

truck and trailer system in [24].
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(a) A* Expansion (b) Hybrid A* Expansion

Figure 3.4: Illustration of how Hybrid A* enforces differential constraints during expansion.

3.5.2 RRT*

Unlike the deterministic approach of Hybrid A*, RRT* randomly samples node configurations

to probabilistically determine a feasible path for the system to navigate. The algorithm terminates

once sufficient stopping criteria have been met. This is usually after either a set amount of time or

nodes are generated. It has been proven effective for holonomic and nonholonomic systems, as it

can operate within the state-space of the system to impose nonholonomic constraints. In addition,

it is asymptotically optimal. Thus, it will converge to an optimal solution in terms of the cost

function as the amount of nodes increases.

The RRT* algorithm, shown in Algorithm 1, incrementally samples nodes to build a directed

search tree from the root configuration. Once a random node is sampled, an extend() function

is then used to extend from the nearest neighbor node towards the random node and form a new

node. This expansion is limited by a set distance in order to assist in navigation in tight spaces. If

the trajectory avoids collision, then a vertex representing the new node and an edge representing

the path is added into the search graph. A parent node is selected using the findBestParent()

function which finds the minimum cost node among its neighbors. The steer() function is then

used to generate a path from the parent node towards the new node. During each expansion, a

hyperball with a radius defined by Equation (3.8) is utilized by rewireNeighbors() to rewire

previously generated tree edges in which the cost to travel from the new node is lower, where n is

the number of nodes in the search tree, D is the dimensions of the configuration space, γ is a user
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defined hyperball constant, and r is the current hyperball radius.

r = γ(
log n

n
)1/D (3.8)

This rewiring operation replaces the nearby node’s previous parental edge with an edge from

the new node. Since this thesis will be utilizing the Dubins path, which is an exact and efficient

steering function, a goal region is not needed as a criteria for a valid final path. Instead the goal

node can be exactly reached. In addition, a sampling bias of 1% towards the goal configuration

will be used to bias propagation towards the goal. The trailer’s angular configuration is propagated

to all future configurations using the rewireTrailer() function along the Dubins path along with

the kinematic equations in Equation (2.8) to approximate the trailer angle over the path towards

the new node.

Algorithm 1: RRT* Pseudocode
input : Initial Configuration xinit

Stopping Time tstop
Expansion Distance ∆q
Hyperball Constant γ

output: Search Graph G = (V , E)
1 V ← {xinit};
2 E ← ∅;
3 while t < tstop do
4 xrand ← randomNode();
5 xnearest ← nearest(xrand);
6 xnew ← extend(xrand, xnearest,∆q);
7 if xnew /∈ Xobs then
8 V ← V ∪ {xnew};
9 r = γ( logn

n
)1/D;

10 Xnear ← {x ∈ V \ {xnew} : c(x, xnew) < r};
11 xpar = findBestParent(xnew,Xnear);
12 E = steer(xnew, xpar, E);
13 E = rewireNeighbors(xnew,Xnear, E);
14 rewireTrailer(xnew);
15 end
16 return G
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3.5.3 RRTX

RRTX is an extension of RRT* that can quickly replan in dynamic environments in the same

amortized time as RRT* [19]. Although this thesis will briefly overview the general RRTX algo-

rithm and how it was adapted for the trailer condition, the reader is encouraged to see [19] for a

more in-depth explanation. Due to the algorithm’s ability to utilize the same expanding tree during

replanning, it is able to save computation time by not constantly destroying and rebuilding the

same tree as obstacles appear/disappear. By rooting the tree at the end configuration, the algo-

rithm is also able to quickly branch out to the current system configuration as it moves across the

workspace.

RRTX evolves sets of neighbors that are directed in (-) and out (+) of respective nodes. While

the initial neighbor sets are always remembered in order to ensure that the RRT* solution is always

realizable, the running neighbor sets are culled as the hyberball r shrinks. This culling operation is

why RRTX is able to maintain O(log n) edges for each node. In addition, the algorithm performs

rewiring cascades that propagate cost-to-goal information to nodes that are ε-inconsistent, where

ε is user defined. This constraint is expressed in Equation (3.9), where c(xgoal, x) cost to reach

xgoal from x and lmc(x) is the look-ahead estimate of the cost to reach xgoal and is defined in

Equation (3.10), where X+
near are the outbound neighbors of x.

Algorithm 2 outlines the pseudocode for RRTX . Other than being rooted at the goal state,

the main differences when compared to RRT* lie in the updateObstacles(), rewireNeighbors(),

and reduceInconsistency() functions. The updateObstacles() function is called upon to update

G to reflect any changes in the obstacles. If any nodes are affected, then reduceInconsistency()

cascades a rewiring operation to all subsequent nodes that break ε-consistency. Similarly during the

initial rewireNeighbors() operation, any incoming edge cost reductions that break ε-consistency

are queued for the rewiring cascade.

ε > c(xgoal, x)− lmc(x) (3.9)
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lmc(x) = min
xnear∈X+

near

c(x, xnear) + lmc(xnear) (3.10)

Algorithm 2: RRTX Psuedocode
input : Goal Configuration xgoal

Stopping Time tstop
Expansion Distance ∆q
Hyperball Constant γ
ε

output: Search Graph G = (V , E)
1 V ← {xgoal};
2 E ← ∅;
3 while t < tstop do
4 updateObstacles() ;
5 xrand ← randomNode();
6 xnearest ← nearest(xrand);
7 xnew ← extend(xrand, xnearest,∆q);
8 if xnew /∈ Xobs then
9 V ← V ∪ {xnew};

10 r = γ( logn
n

)1/D;
11 Xnear ← {x ∈ V \ {xnew} : c(x, xnew) < r};
12 xpar = findBestParent(xnew,Xnear);
13 E = steer(xnew, xpar, E);
14 E = rewireNeighbors(xnew,Xnear, E);
15 reduceInconsistency();
16 rewireTrailer(xnew);
17 end
18 return G

It should be noted that since there are dynamic obstacles, there is a chance that a sudden ob-

stacle appearance can prevent the vehicle from finding a feasible solution to the end configuration,

especially since the system is constrained to forward motion. In that case, the vehicle will apply

its brakes until motion has stopped, all while looking for other potential paths to reach the end

goal. Since this is a single threaded planner, one alternative approach would be to delegate another

instance to be constantly looking for trajectories that maximize distance from nearby obstacles to
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provide a safe escape. Thus, when the main planner fails to find a feasible path, the safe trajectory

can be followed.

3.5.4 Example Scenario

In order to illustrate how the replanning algorithm handles dynamic obstacles, the following

scenario is shown in Figure 3.5. During the initial planning stage, the sensors can only see what

is inside the radius denoted by the black and white circle hovering around the car. The contour

illustrates the path length from the goal that is averaged over each section of the map. The starting

pose of the truck is denoted by the two black rectangles while the goal configuration is represented

in green. The white path denotes the current optimal subtree being outputted from RRTX . The

straight edges illustrate the connections between nodes of the tree. These are shown in light gray

and do not represent the trajectory between the points.

Obstacles both disappear and appear while the vehicle is in motion, and the planner is able to

account for the changes by propagating the path cost changes when the ε-consistency is broken.

The planner is able to continually generate kinematically feasible paths utilizing the Dubins curve

with trailer propagation. As seen in Figure 3.5d, the final trailer heading is not exactly the same as

the desired goal heading. This goes back to the bounds set by the planner for an acceptable goal

region for the trailer.

Although Figure 3.5 provides some intuitive understanding of the vehicle’s execution of the

path in the Northing/Easting plane, one can also look at the other state dimension, θ0, to see

how the search graph expands throughout all of the collision-free configuration space. Figure 3.6

illustrates the initial and final RRTX graph. Comparing the narrow corridor of the initial vehicle

configuration and the final configuration, the graph is significantly denser. This phenomenon is

not only due to the geometry of the environment but is also attributed to tunable parameters of the

planner like the hyperball constant, the expansion distance, and the heuristic, all of which affect

how the algorithm searches throughout the configuration space. There are also some invalidated

nodes shown in the middle of Figure 3.6b which reflect the discovery of the vertical obstacles as

the vehicle progressed through the space.
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(a) Initial planning stage (b) Shorter path due to obstacle disappearance

(c) Alternative path due to added obstacles (d) Final configuration

Figure 3.5: Truck and trailer system executing RRTX plan in dynamic scenario
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(a) Initial Planning Stage
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(b) Final Configuration

Figure 3.6: Evolution of RRTX graph for dynamic scenario with vertices (red), edges (dark blue),
and obstacles (green), planned path (light blue), and executed path (black)
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4. RESULTS AND DISCUSSION

In order to evaluate the motion plan on the actual truck and trailer system, this thesis first es-

tablishes the physical system characteristics, the simulation, and the controllers used to execute the

planned path. From there, the test case scenarios will be established and the subsequent perfor-

mance and tracking results will be discussed.

4.1 Evaluation on ProStar 122+ Truck

The hardware platform used for evaluation utilizes a 2013 International ProStar 122+ truck

modified with by-wire capabilities as seen in Figure 4.1 in combination with a Novatel GNSS+INS

combined system for the truck’s current position, velocity, and attitude. The by-wire functionality

is provided by a PACMod kit developed by AutonomouStuff which has seen pervasive use within

the research community for autonomous vehicles [39]. Other sensors on the truck included a

MobilEye detection system, Delphi ESR 2.5 Radar, and Velodyne VLP-32c, but were not used for

any of the experimentation presented in this thesis. Instead the perception provided from these

sensors was simulated to create virtual obstacles. For computing, an off-the-shelf desktop tower

is used, along with several KVaser Leaf CAN-to-USB adapters to support CAN communications.

The operating system runs Ubuntu 16.04 and uses the Robotic Operating System (ROS) [40] as

the communications framework for the automation software.

4.1.1 Powertrain Specifications

The Prostar 122+ Powertrain information is shown in 4.1. A primary difference in the power-

train as compared to most trucks is the presence of an automatic Eaton transmission. Furthermore,

the automation software and automatic gearing are independent systems, which has certain advan-

tages and disadvantages. Benefits include system robustness, and a manufacturer tuned engine-gear

map. The drawbacks are increased difficulty in obtaining transmission gear information, and one

less control input method for the longitudinal dynamics.
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Figure 4.1: 2013 International ProStar 122+ with sleeper cabin

Table 4.1: 2013 International Prostar 122+ vehicle specifications

Specifcation Description
Engine International MAXXForce 11
Transmission Eaton UltraShift+ PLUS Automated Manual
Cab Dimensions 9.0 x 2.6 x 1.9 m
Towing Capacity 32,000 - 60,000 lbs.
Braking System Air Drum and Disc with ABS
Gross Vehicle Weight 52,350 lb
Fuel Capacity 200 U.S. Gallons

4.1.2 By-wire Kit

The PACMod kit allows for the control over the throttle, braking, and steering of the vehicle

at 30Hz. An EPAS Actuator by Allied Motion is utilized to manipulate the braking and steering

actuation for vehicle control. The braking system is actuated via a pulley cable system attached to

the EPAS motor, as illustrated by Figure 4.2. For steering, the EPAS motor is directly connected

to the steering column. The throttle is digitally controlled from PACMod by utilizing the ProStar’s

J1939 CAN bus. A diagram of the overarching communication flow for the system can be seen in

Figure 4.3.
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Figure 4.2: Brake pedal pulley diagram with (A) brake pedal, (B) disengagement safety switch,
and (C) throttle
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Figure 4.3: Sensor and actuator system communication diagram
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Though the input design for the steering and throttle are sufficient, it should be mentioned that

the braking input design is not desirable. Firstly, the brake pulley system actuates the brake pedal

directly, introducing an additional mechanical failure mode. Secondly, the position of the brake

pedal is not a preferred control input, as the same actuation of the pedal may not always yield the

same braking torque due to temperature, air supply, and slack developed in the pulley cable. Even

though more precise and repeatable control could be achieved by controlling brake pressure, the

actuation proved adequate for experimentation of this thesis.

4.1.3 Novatel SPAN System

For odometry, the Novatel SPAN system is utilized, which includes a ProPak 6 GNSS receiver,

two VEXXIS GNSS-500 antennas, and an IMU-IGM-S1 module. GPS/INS information is pro-

vided over Ethernet to the computing platform, as shown in Figure 4.4. GPS/INS information is

logged at 50 Hz, while IMU data is published at 125 Hz.

4.1.3.1 Antenna Placement & Configuration

The two antennas are mounted on either side of the truck, located on top of the side view

mirrors. The IMU module is mounted centrally inside the cab. To setup the Propak 6, offset mea-

surements from the antennas and IMU are needed. Due to the large size of the vehicle, it is difficult

to obtain high measurement accuracy. Offsets were taken using a laser distance tool, but uncer-

tainties were around 10 cm, which is then propagated into the reported uncertainty in the Novatel

INS solution. This uncertainty was acceptable for the test case scenarios, but if less uncertainty is

desired, more precise offsets could be found with the use of the Lever Arm Calibration Routine

within the Novatel SPAN software.

4.1.3.2 Accuracy

To increase the accuracy from the GNSS+INS solution, wheel speed information from PAC-

Mod is provided to the Novatel SPAN system by means of a ROS driver. Repeated tests were

performed with and without wheel speed information supplied, and results are shown in Table 4.2.

The most notable decrease was in the heading uncertainty, with a reduction of standard deviation
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Figure 4.4: Novatel SPAN system diagram

by over 50%. Other methods to increase GNSS+INS solution accuracy include a GPS correction

subscription service such as TerraStar; however, with consistent uncertainties of around 24cm in

open sky conditions, the corrections subscription did not justify the high costs for this testing.

Table 4.2: Pose uncertainty from SPAN system with and without wheel speed information

Position StD [m] Velocity StD [m/s] Heading StD [rad]
GPS Only 0.24 0.15 0.11
GPS with Wheel Odom 0.23 0.14 0.05

4.2 Simulation

Unlike car simulators, there are fewer options available for heavy-truck vehicle simulation.

Typical software used in research and academia include TruckSim [41], ASM Truck/Trailer by
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dSpace [42], and Truckmaker [43]. Though these simulators offer advanced and configurable

dynamic simulations, they are less accessible as they usually require a large investment cost. In the

Autonomous Driving community, Grand Theft Auto V has been popular as a low-cost car simulator

[44] [45], as well as CARLA [46] and AirSim [47]. Similarly, another video game, American

Truck Simulator [48], is utilized as a low cost simulation platform for heavy-truck vehicles. ATS

simulates an 18-wheeler truck, where players can emulate a truck-driver and choose delivery routes

to haul cargo across the Western United States. Although the map is scaled down, to allow for

reasonable game play times, the game simulates the truck engine, transmission, brakes, suspension,

and even road traction. Although these simulation parameters are mostly not configurable, and the

dynamic models used for simulation are not publicly available, ATS is advantageous in that it can

run on most desktop computers, and is significantly less expensive than other truck simulation

software. It is for this reason that the ATS simulation platform was chosen to evaluate the motion

planning algorithms.

Figure 4.5: American Truck Simulator interface

4.2.1 Simulation Interface

Interface to the simulation is made possible through a Telemetry SDK plugin developed for

ATS that is installed in the game. The plugin has been configured to publish TCP packets of the
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vehicle and truck and trailer state information, which include:

• Position and Orientation

• Linear and Angular Velocities

• Linear and Angular Accelerations

• Engine Gear and RPM

• Effective Braking, Throttle, and Steering

The packets are parsed by a custom made ROS wrapper, detailed in Figure 4.6, and are con-

verted into standardized ROS messages. It is important to note that the simulator does not provide

any world information about lane positions or other vehicles on the road. Thus, for the evaluation

of the motion planners, virtual obstacles were simulated, similar to experiments on the ProStar.

Figure 4.6: ATS communication flow diagram using ROS wrapper and virtual joystick

4.2.2 System Response Comparison

With the same input sequence, both the ProStar and ATS truck have similar first order lag

responses to the pedal command, shown in Figure 4.7. Similarly to the ProStar truck, throttle
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and brake pedal inputs are given over the range of 0-1, which corresponds to the percent of pedal

deflection. Differences between the two responses can be attributed to the simplified dynamic

model used by ATS, and a different engine/transmission used in game.
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Figure 4.7: Comparison of open loop longitudinal response of ProStar 122+ and ATS truck

Another difference in simulation is the actuation delay between the pedal and subsequent ac-

celeration response, as shown in Figure 4.8. These average delays represent the time between the

depression of the throttle/brake pedal and any subsequent acceleration from the system. These

actuation delays affect the controllability of the system, and can be seen in the longitudinal con-

trol performance elaborated in Section 4.3. Though there are several differences in simulation,

ATS still offers a valuable platform to develop autonomous driving functions due to its consistency

while testing and its relative ease of use. Furthermore, the ROS wrapper developed for ATS utilizes

the same input/output topics as the PACMod module on the ProStar. This provides easy transition
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from simulation to experimentation.
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Figure 4.8: Comparison of acceleration delay of ProStar 122+ and ATS Truck

4.3 Control

The truck’s low level feedback controller utilizes the motion plan and the current state of the

truck to thus determine the input needed to correct the error in the presence of disturbances and

modeling errors. Given that the vehicle is locally controllable around the planner’s generated

trajectory, the feedback controller attempts to track and stabilize the system as it traverses the

planned path.

For a truck and trailer system, the controller determines the longitudinal speed and steering

angle required to follow the motion plan. This thesis will follow the approach taken by many

other self-driving systems by separating the controller to its longitudinal and lateral components

[1], where the lateral controller follows the path provided from the planner while minimizing

orientation and lateral error. The longitudinal controller ensures that the speed profile of the planner

is followed. The controller operates at a higher frequency than the motion planner and follows the
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planned path until termination or until a new one is generated.

4.3.1 Lateral Control

For lateral control, the Stanley Controller [49] was implemented, as shown in Equation (4.1).

The steering control law is readily programmable, as the path planner provides a desired heading

and position to calculate the subsequent heading error, θe(t), and lateral error from the path to the

front axle of the truck, ey(t). A ksoft gain is implemented to avoid over steering at velocities less

than 1 m/s.

δ(t) = θe(t) + arctan

(
kpey(t)

vx(t) + ksoft

)
(4.1)

In experimentation on the ProStar, a lane change maneuver at 7 m/s yielded less than 30 cm in

lateral error. While testing 90 degree turns at lower speeds, the controller yielded less than 60 cm.

This additional error can be attributed to the limited steering rate of the truck. Furthermore, this

lateral controller was designed for a single vehicle configuration. Although in forward motion, the

trailer does not affect the local stability of the system, it is important to note that a lateral controller

that controls based on the trailer angle like that seen in [50] might result in less tracking error.

4.3.2 Longitudinal Control

Creating a dynamic model of the powertrain is often a difficult task, requiring either manu-

facture information on the ECU, or collection of large datasets of the transmission gear, RPM,

and wheel velocity to estimate drive-train parameters [51]. Because the information of transmis-

sion gear and RPM is not known in experimentation, an approach similar to [52] was taken where

throttle and braking pedal deflection percentages were mapped to both the current vehicle veloc-

ity and measured acceleration. Those mappings were then used as feed forward terms, shown in

Equations (4.2) and (4.3).

brakepred = 0.41 + 0.0022 ∗ vcur + 0.076 ∗ acmd (4.2)

thrpred = 0.29 + 0.0072 ∗ vcur (4.3)
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To reduce chatter between the brake and throttle actuation and prevent simultaneous actuation,

a throttle-brake-coast switching function was generated based on the desired acceleration outputted

from the Speed PID shown in Figure 4.9. The threshold for switching was determined by observing

a coasting acceleration of approximately -0.6 m/s2 at various velocities ranging from 0-15 m/s.

Thus, braking would only be actuated if the desired acceleration was less than -0.6 m/s2.

Figure 4.9: Longitudinal control flow chart

Both of these components were integrated into a control architecture illustrated in Figure 4.9.

First, a PID controller based on the error from the desired and current velocity generates a desired

acceleration. Depending on the desired acceleration, two separate PI controllers with feed-forward

terms are used for the throttle and braking with velocity and acceleration error as the input, respec-

tively. The PI gains were tuned by approximating a first order lag response between the throttle

and brake pedal and velocity and acceleration, respectively. The longitudinal control algorithm,

detailed in Algorithm 3, continuously outputs the pedal commands (ranging from 0-1) that are sent

to PACMod via ROS for actuation.

The longitudinal controller was successful at tracking the desired speed profile in Figure 4.10,

which shows both the ProStar 122+ and ATS tracking over a series of speed commands ranging

from 0-10 m/s. The throttle and braking feed-forward terms were advantageous in supplement-

ing the PI pedal controllers; however, further tuning and implementation of a gain scheduler is
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Algorithm 3: Longitudinal Control Algorithm
input : Desired Speed vcmd

Current Speed vact
Current Acceleration aact

output: Pedal Commands uthr, ubr
1 acmd = speedPID(vcmd, vact);
2 case = switch(acmd, vact);
3 if case == throttle then
4 uthr = thrPI(vcmd, vact) + thrMap(vcmd);
5 ubr = 0;
6 else if case == coast then
7 ubr = 0;
8 uthr = 0;
9 else

10 uthr = 0;
11 ubr = brakePI(acmd, aact) + brakeMap(acmd, vact);
12 end
13 return uthr, ubr

recommended in order to improve tracking performance and mitigate overshoot.

4.4 Static Scenarios

Static scenarios in the context of this thesis are in reference to obstacles that do not change

relative to the configuration space of the truck and trailer. For a configuration space without time,

these obstacles could be a road median, stopped car, etc. In order to evaluate the performance of

each of the planners, this thesis compared execution times, the number of valid nodes generated,

the path length, and the minimum obstacle clearance in ATS and on the ProStar truck.

4.4.1 Lane Change with single obstacle

To get an initial understanding of the execution and performance of the algorithms, each mo-

tion planner was tested three times in both ATS and on the ProStar system with a static lane change

scenario using a single obstacle inflated by 1 meter. The total area of the workspace is about 2000

m2 and took the Hybrid A* algorithm approximately 1.4 seconds to find a solution, with its state

space discretized to intervals of 1 meter and 15 degrees. The position discretization was deter-
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Figure 4.10: Longitudinal tracking performance of ProStar 122+ and ATS truck

mined based off of the physical dimensions of the system shown in Table 4.1 and the goal region

margin of 2 meters, while the angular discretization was determined based off of initial testing and

prior approaches conducted by [24, 25]. Increasing the resolution might decrease the path length

but would increase the amount of storage and computations required to deterministically find the

solution. One of the benefits of the sample-based algorithms is that they can be terminated at

anytime [1], so in order to ensure comparable results, the other sample-based planners were then

evaluated at the same execution time.

Table 4.3: Performance of motion planners for lane change with single static obstacle

Hybrid A* RRT RRT* RRTX

Valid Nodes 247 6901 1078 580
Path Length [m] 164.4 N/A 165.2 165.4
Planners Min Clearance [m] 1.5 N/A 2.6 1.4
ATS Min Clearance [m] 1.0 N/A 2.1 1.9
ProStar Min Clearance [m] 3.2 N/A 4.3 3.5
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An example path from RRTX is shown in Figure 4.11 comparing the planned path, the ATS

path, and the path actualized on the ProStar truck. Due to some underactuation of the ProStar truck

by the lower-level lateral controller, the ProStar path diverges slightly from the planned and ATS

path. With that said, the planned path had enough clearance to ensure that the ProStar’s path did

not collide with the obstacle. This showcases that even though the planned path might be collision-

free, without a properly tuned controller, the system may not be able to actualize the path and could

lead to collision.

-20 -15 -10 -5 0 5 10 15 20 25 30

Easting [m]

-100

-80

-60

-40

-20

0

20

40

60

80

100

N
o

rt
h

in
g

 [
m

]

Planned Path

ATS Path

ProStar Path

Figure 4.11: RRTX paths of the rear axle of the truck with single obstacle shown in red

Furthermore, when comparing the planners that found a feasible path within the allotted time

in Table 1, their overall path lengths are within 0.7 meters of each other, which is less than 1% of

the optimal path length of approximately 164 meters. The RRT algorithm was not able to find a

feasible solution within the allotted time and therefore does not have data in the table. The data

also suggests that the quantity of nodes generated does not solely determine the path generated,
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(a) ATS (b) ProStar

Figure 4.12: Execution of lane change with single static obstacle in simulation and real life

as RRT, with an average of 6901 nodes, could not find a solution. When comparing the planned,

simulated, and actual minimum distance between the truck and the obstacle along the path, the

discretization used for the Hybrid A* algorithm, along with the planners optimizing for path length

and not proximity to obstacles, led to a smaller margin for cross-track error compared to RRT* and

RRTX . Accordingly, while the low level controllers used for the simulated and actual system do

not perfectly follow the planned path, all algorithms were able to generate paths that maintained

a safe distance from the obstacle when executed by the actual truck. Images of both the ATS and

ProStar truck executing the path can be seen in Figure 4.12.

4.4.2 Lane Change with Moving Obstacles

Building upon the initial test, moving obstacles were added to the lane change scenario. The

moving obstacles are intended to simulate sensor readings and perception of nearby vehicles, like

on a city road seen in Figure 4.13. By including time in the state space of the vehicle, the obstacles

can be treated as static with regards to the motion planner. For this scenario, the 1 meter radius

obstacles move at constant speeds ranging from 2-5 m/s while the truck and trailer had a desired

speed of 5-7 m/s. Both the RRT* and RRTX algorithm were evaluated after 5 seconds of planning,

with the obstacles inflated by 50 centimeters to account for the sensor uncertainty and expected
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lateral error from the Stanley controller.

Figure 4.13: Aerial shot of the inspiration for the lane change scenario from Google Maps [2]

Furthermore, an additional constraint imposed on the motion planners as compared to the pre-

vious static example was that the paths generated between the nodes are not allowed to exceed the

lane markings. This alteration drastically reduced the amount of valid nodes generated and can

be seen in Table 4.4. Because the lanes are comparatively narrow compared the turning radius of

the truck and trailer, the Dubins steering function tends to generate paths outside of the lanes as

opposed to inside of the lanes. Because of the structured environment of the lanes, a planner like

the one discussed in [53] might be more time efficient since it uses vehicle models derived relative

to the road.

Comparing the average performance of the sample-based planners, once again the RRTX al-

gorithm is able to generate optimal paths in around the same time as the RRT* algorithm. Both

algorithms were able to avoid obstacle collision for all of their tests in ATS and on the ProStar, but

only with a clearance of 40 cm and 60 cm. This can mainly be attributed to the lateral error perfor-

mance as the ATS simulation had larger clearances, but additional measures can be implemented

to disincentivize the planner from navigating too close to nearby obstacles. One solution is to use a
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Table 4.4: Motion planner performance for lane change with obstacles moving at constant velocity

RRT* RRTX

Initial Solution Time [s] 2.8 2.4
Valid Nodes 175 144
Path Length [m] 166.3 164.4
ATS Min Clearance [m] 1.4 1.5
ProStar Min Clearance [m] 0.4 0.6
ATS Final Trailer Heading Error [°] 1.9 2.1
ProStar Final Trailer Heading Error [°] 2.1 1.0

cost associated with Voronoi fields between obstacles to incentivize path generation towards open

areas [54].

Even with the narrow corridor, the planners were both able to generate feasible trajectories

that avoided collision for the truck and trailer to execute. An example of the ProStar executing

the RRTX solution is presented below in Figure 4.14. The local planner provides updated paths

at 5Hz to correct for the lateral error caused by a combination of kinematic modeling errors and

controller performance. The color of the path denotes the time required for the vehicle to reach the

goal configuration.

One observation from the evolution of the truck’s pose is that the generated path does not adhere

strictly to the lanes. This deviation is in part because there is no cost associated with staying within

the lane in addition to the constraints imposed by the Dubins curve. One approach to correct this

issue would be to integrate a logic function that shifts the path into the appropriate lane after

generation. Although this would alleviate the sudden turns due to the Dubins path, switching lanes

could be problematic when determining the sufficient conditions needed in order to initiate, cancel,

or revert a lane change maneuver.

Although Figure 4.14 provides some intuitive understanding of the vehicle’s execution of the

path in the Northing/Easting plane, one can also look at the other two state dimensions, θ0 and

t, to see how the search graph expands throughout all of the collision-free configuration space.

Figure 4.15 illustrates the initial and final RRTX graph. Since the vehicle is limited to only forward
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Figure 4.14: ProStar executing lane change using RRTX with obstacles moving at constant veloc-
ity, where (a) is the initial planning stage, (b) is the start of lane change, (c) is maintaining lane
near a obstacle, (d) is the final configuration.
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motion and the turning radius is larger than the lane width, the motion planner was not able to find

any valid configuration with the heading greater than π, i.e. facing south.
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Figure 4.15: Initial and final RRTX Graph for Lane Change with obstacles moving at constant
velocity with vertices (red), edges (dark blue), and obstacles (green)

4.4.3 Seaport

For the other scenario, the truck is tasked with delivering a shipping container at a seaport.

This scenario provides a more unstructured environment for the planner to search the potential

configurations for the vehicle to traverse. The inspiration for this scenario comes from the grow-

ing economical need for automated freight transportation. An example seaport can be seen in
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Figure 4.16. In addition, due to the legislative requirements in place to drive autonomously on

public roads, a closed area like a seaport makes a great candidate for initial testing of self-driving

technology [55].

Figure 4.16: Aerial shot of the inspiration for the seaport scenario from Google Maps [3]

For this scenario, the same methodology was used as the experiments above. In this test, ob-

stacles were inflated by 1 meter to account for the increased estimated lateral error while executing

sharper turns. The system was initially given a desired nominal speed of 8 m/s, but was reduced to

4 m/s after some initial testing due to an instability issue, which is elaborated on in Section 4.4.3.1.

For the static scenario, Hybrid A*, RRT*, and RRTX were evaluated with the assumption of perfect

perception of all obstacles. The seaport scenario provides a realistic and obstacle dense environ-

ment to evaluate the planners in Table 4.5.

In terms of the planners’ performance, it can be seen that all three planners on average find

a feasible path within the same amount of initial time of approximately 1.7 seconds. In addition,

due to the increased inflation of the obstacles, the minimum obstacle clearance in ATS is increased

compared to the lane change scenario. The paths generated by the sampling based planners are on
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Table 4.5: Motion planner performance for seaport with static obstacles

Hybrid A* RRT* RRTX

Initial Solution Time [s] 1.8 1.6 1.7
Valid Nodes 105 282 159
Path Length [m] 94.7 93.5 91.2
ATS Min Clearance [m] 2.7 2.6 1.9
ProStar Min Clearance [m] 1.9 0.8 0.9
ATS Final Trailer Heading Error [°] 3.7 3.4 3.6
ProStar Final Trailer Heading Error [°] 6.3 9.8 2.1

average shorter than that from the Hybrid A* algorithm. This can be attributed to the discretized

resolution and the lack of guaranteed optimality with Hybrid A*.

While all planners on average have a trailer angle within the desired margin for ATS, more

irregularities were observed on the ProStar truck. This is in part due to the Stanley controller

not considering the trailer angle in its error term, but also illustrates a potential issue with the

Dubins curve. Since the Dubins curve always ends in a turn, the final curve connecting to the goal

configuration has a tendency to be a small, but abrupt turn. In the experiments, there was a goal

region for the lower level controller of the truck set with a 2 meter radius encompassing the desired

goal configuration. Since the planners usually waited until the end to make their final Dubins turn,

the ProStar truck did not always align the truck and trailer as much as planned before reaching the

goal region. One solution to this issue would be to narrow the goal region by also considering the

angular configurations of the vehicle. Another, potentially more effective, solution would be to

negatively weight turns closer towards the goal. This would incentivize the planner to make turns

earlier in the planning process, thus making this issue less likely to occur.

Looking into the evolution of the truck and trailer system’s planned RRTX path in Figure 4.17,

one can observe that though the controller does not perfectly track the initial path generated in

Figure 4.17a as it leads into Figure 4.17b, the system is able to stay clear of the wall of shipping

containers to its left. In addition, in order to ensure there is at least a 1 meter gap between the

system and nearby obstacles, the planner generates a wide turn around the initial corner that pre-
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vents the trailer from clipping the container around the turn in Figure 4.17c. Finally, the system

navigates around the extended container to reach the goal configuration, as seen in Figure 4.17d

and in Figure 4.18. As mentioned previously, since the controllers termination condition is based

purely off of the position of the vehicle, the final orientation of the system does not exactly align

with the goal configuration.

(a) Initial Planning Stage (b) Executing Initial Left Turn

(c) Avoiding extended shipping container (d) Final Configuration

Figure 4.17: ProStar navigating seaport using RRTX with static obstacles

Figure 4.19 illustrates the initial and final RRTX search graph including the truck heading. As

opposed to the lane change scenario, the planner now is able to sample and discover valid nodes
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(a) ATS (b) ProStar

Figure 4.18: Execution of seaport with static obstacles in simulation and real life

distributed across the entire 0-2π range. In addition, it should be noted that the obstacles are

positioned at 0 rads in order to visualize the rest of the search graph. Although the obstacles do not

have a heading per se, they extend through all the 0-2π range as any vehicle configuration inside

this range would result in collision.
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Figure 4.19: Evolution of search graph for seaport with static obstacles
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4.4.3.1 Curvature

As mentioned in the previous section, the desired speed of the ProStar vehicle had to be lowered

from 8 m/s to 4 m/s due to observed instability of the lateral controller during execution. Since

the Dubins path has instantaneous changes in curvature, κ, the truck and trailer system, with a

limited steering rate, has difficulty actualizing the plan at higher speeds. This can be seen when

comparing the paths in Figure 4.20a and Figure 4.20b. Because the Hybrid A* algorithm generates

a sharp left turn for this scenario, the instability is more observable when compared to the sample

based algorithms that generate a path with more intermediate turns that result in a less disjointed

trajectory when discretized. This is in part due to the expansion distance imposed on the sample-

based algorithms along with the tendency for those algorithms to hug the obstacles in order to

minimize the path length. With that being said, all planners experienced this issue to some degree

based on the Dubins steering function.
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(b) Execution at 4 m/s

Figure 4.20: System struggles to execute Hybrid A* with discontinuous curvature at high speeds

In order to mitigate this curvature issue, the Stanley controller was further tuned and a cubic

spline was fitted to the motion planners path at 1 meter increments. Since cubic splines provide
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the added benefit of continuous curvature, they are used in many cases to provide a smoothed path

for the vehicle to follow. This increment was chosen in order to ensure the smoothed path did not

diverge from the planned path, thus discarding the collision-free and optimality guarantees that the

planner provides as well as its consideration of differential constraints imposed by the minimum

turning radius of the vehicle. Even with the spline fitting, the instantaneous change in curvature

was too steep for the truck to actualize as seen in Figure 4.21. Although the curvature is below

the maximum curvature of the vehicle, the steep jumps are not actualizable given that the steering

rate of the vehicle is approximately 0.13 rads/s. At 8 m/s and at the maximum steering angle, the

maximum sharpness, α = ∂κ/∂s, of the path is approximately 0.02 m−2 based on the maximum

steering rate [56]. One could further smooth the path at sparser increments, but then more checks

would be needed to guarantee collision avoidance as the fitted path could drastically diverge from

the planner’s path. It is for this reason that the speed was reduced for testing and would be further

reason to look into an alternative steering function like [29, 56, 23].
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Figure 4.21: Curvature and sharpness of Hybrid A* path for seaport maneuver
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4.5 Dynamic Scenarios

To simulate more realistic sensor input and perception, dynamic obstacles were implemented

on the aforementioned scenarios. Dynamic obstacles can suddenly appear, disappear, or move

during the execution of the plan. In reality, most obstacles are dynamic to the vehicle since the

obstacles states are uncertain and constantly fluctuating. Static scenarios can be somewhat unreal-

istic in practical scenarios due to the unlikeliness of having perfect perception of all external actors.

Most static planners mitigate this issue with high enough update rates, such that dynamically mov-

ing obstacles are approximately static for the small time step of planning. Although this has been

a valid and successful approach [1, 25], this thesis investigates maintaining the same search graph

over the course of completing the entire mission, and thus cannot make that assumption.

4.5.1 Lane Change with Car that Unpredictably Moves

Although the perception layer might use constant velocity to predict the velocity of nearby

obstacles, the intentions of nearby vehicles can change at a moment’s notice. To simulate this

occurrence, one of the simulated vehicles in the previous lane change scenario was programmed

to suddenly change lanes in front of the truck and trailer. This prevents the trailer from following

the previously planned path and the motion planning algorithm must plan in real time in order to

avoid collision. The planner only has knowledge of the vehicle’s current trajectory, and thus does

not know future intentions of the obstacle. The RRTX algorithm was evaluated in ATS and on the

ProStar truck and the results can be viewed in Table 4.6 with the same planning constraints as were

previously imposed on the planner.

In terms of the planner’s performance in ATS and on the ProStar truck seen in Table 4.6,

the initial solution time, the number of valid nodes, and the path length are similar to the static

scenario. This is due to how the dynamic scenario is identical to the static scenario during the

initial planning stage. Since the truck and trailer was forced to change lanes closer towards the

desired goal, the ProStar’s final trailer angle exceeds the 5° difference from the desired angle.

Since the ATS trailer did not share similar results, one explanation for this could be tied back to
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Table 4.6: Motion planner performance for lane change with car that unpredictably moves

RRTX

Initial Solution Time [s] 2.7
Valid Nodes 121
Path Length [m] 163.1
ATS Min Clearance [m] 1.1
ProStar Min Clearance [m] 0.9
ATS Final Trailer Heading Error [°] 1.1
ProStar Final Trailer Heading Error [°] 5.3

the instantaneous curvature of the Dubins curve. Since the steering rate of the ProStar truck is

significantly lower than the ATS truck, the system has a more difficult time following the desired

path.

Even though the final trailer angle error on the ProStar exceeds the planned limit of 5° on

average, one way to mitigate this issue would be to have the planned margin be a fraction of a

larger actual trailer error margin. This approach is similar to how the obstacles are inflated during

planning in part to account for modeling uncertainties and assumptions on the actual truck.

By looking into the other two state dimensions, θ0 and t, one can see how the search graph

expands throughout all of the collision-free configuration space. Figure 4.23 illustrates the initial

and final RRTX graph. Once again, the planner is unable to find valid configurations with truck

headings opposite that of the lane. In addition, due to the unpredicted lane change of the car in

front of the truck, there are a significant portion of invalidated nodes seen in Figure 4.23b and

Figure 4.23d.

4.5.2 Seaport with Limited Sensor Range

In a similar fashion, the seaport scenario was augmented to simulate a limited sensor range

by making the obstacles appear and disappear dynamically. More specifically for this scenario,

obstacles around the corner of the shipping containers are unknown to the system during the initial

planning phase, so the planner must react quick enough once it rounds the corner.

Once again, RRTX was evaluated in ATS and on the ProStar truck system with successful

58



-20 -10 0 10 20 30

Easting [m]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

in
g

 [
m

]

(a)

-20 -10 0 10 20 30

Easting [m]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

(b)

-20 -10 0 10 20 30

Easting [m]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

(c)

-20 -10 0 10 20 30

Easting [m]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

T
im

e
 t
o
 G

o
a
l 
[s

]
(d)

Figure 4.22: ProStar executing lane change using RRTX with obstacle that suddenly changes lane,
where (a) is the initial planning stage, (b) is adjusting plan due to unforeseen lane change, (c) is
start of new lane change obstacles, (d) is the final configuration.
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Figure 4.23: Evolution of search graph for lane change with vehicle that unexpectedly changes
lanes
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results. In terms of the planner’s performance in ATS and on the ProStar, similar results were

observed compared to the static scenario and can be seen in Table 4.7. The average time for an

initial solution is slightly less and the amount of valid nodes generated is slightly more. This is due

to the perceived lack of obstacles around the corner of the shipping containers. With such an open

area, the RRTX algorithm expands without as many limitations and collision checks, thus it is able

to converge to a feasible solution in less time.

On average, the ProStar had a final trailer heading that was outside the goal criteria of 5°. As

mentioned previously, this is partly due to how the lower level controller does not account for

the trailer angle in its design. However, the error can also be attributed to how the Dubins curve

generates paths that exceed the steering rate of the ProStar vehicle.

Table 4.7: Motion planner performance for seaport with limited sensor range

RRTX

Initial Solution Time [s] 1.5
Valid Nodes 198
Path Length [m] 92.5
ATS Minimum Obstacle Clearance [m] 1.9
ProStar Minimum Obstacle Clearance [m] 1.3
ATS Final Trailer Heading Error [°] 4.8
ProStar Final Trailer Heading Error [°] 6.2

In Figure 4.24, the evolution of the tree is shown, this time without the knowledge of the

obstacles around the corner. With the unstructured and open environment, the RRTX algorithm

finds an initial feasible path, shown in Figure 4.24a in an average of 1.5 seconds. As the system

navigates the environment, the previous path is invalidated due to the unexpected container and a

new path is generated in Figure 4.24b to traverse until the system reaches the end configuration.

This path is then followed for the rest of the experiment as the other containers above the goal

configuration do not obscure the path. Figure 4.24d shows the controller’s tracking performance

towards the final configuration. This is because the planner does not update the desired path once
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the vehicle is within the expansion distance from the goal configuration.

(a) Initial Planning Stage (b) Adjusts path due to observed container

(c) Avoiding Extended Container (d) Final Configuration

Figure 4.24: ProStar navigating seaport using RRTX with limited sensor range

Figure 4.25 illustrates how the appearance of the discovered shipping containers affected the

potential heading configurations of the search graph. The vertices that were invalidated due to the

sudden appearance of the containers can be seen in the northern section of Figure 4.25b, repre-

sented by the unconnected red points.
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Figure 4.25: Evolution of search graph for seaport with limited sensor range

4.6 Overview of the Experimentation

The initial experiments were primarily focused on identifying the system’s longitudinal re-

sponse characteristics in addition to quantifying the sensor uncertainty from GNSS+INS solution.

From there, a longitudinal controller framework was developed and evaluated alongside a Stanley

lateral controller to provide nominal results for a prototype testing platform. The motion planners

were then evaluated in real-time on ATS and the ProStar truck using criteria like the amount valid

nodes generated, the path length, and the minimum obstacle clearance in ATS and on the ProStar

truck averaged over 3 trials.

For the lane change scenario, three variations were tested. In the first variation, a single static

obstacle was introduced to evaluate Hybrid A*, RRT, RRT*, and RRTX . All planners except RRT

were able to generate collision-free paths with similar, near-optimal lengths in approximately 1.4

seconds. Next, statically moving obstacles were used to evaluate RRT* and RRTX . Both planners

demonstrated the ability to find feasible motion plans but only had minimum clearances of 40 cm

and 60 cm on the ProStar, respectively. Then, one of the vehicles was modified to unexpectedly

change lanes in front of the system. The RRTX approach was able to react and replan without

collision and result in a trailer angle within the 5° margin.
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For the seaport scenario, two variations were tested. In the first variation, static shipping con-

tainers were navigated by Hybrid A*, RRT*, and RRTX . After addressing an issue with the

ProStar’s limited steering rate, all planners demonstrated the ability to generate initial solutions

within approximately 1.7 seconds, with the sample-based planners generating more optimal paths

in terms of length. Lastly, in order to simulate actual sensors, RRTX was provided only a limited

radius of nearby obstacles. Even with the sudden appearance of containers, the planner was able to

navigate the trailer through the narrow corridor towards the goal configuration without collision.
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5. SUMMARY AND CONCLUSION

5.1 Conclusions

This thesis presented an approach to motion planning for truck and trailer systems that can be

applied in structured and unstructured environments. The proposed method is for a sample-based

motion planning algorithm that can adapt and replan for a truck and trailer system constrained to

forward motion in the presence of dynamic obstacles.

In order to evaluate the motion planners, an existing truck simulator, ATS, was modified to

allow for autonomous control using a ROS framework. In addition, a longitudinal and lateral

feedback controller framework was developed and evaluated for both ATS and a ProStar 122+

truck retrofitted with by-wire capabilities. In order to control longitudinal speed of the vehicle, a

combination of PI controllers with feed forward terms were used in conjunction with a switching

algorithm to control throttle and braking actuation. Since the controllers had limited information

over transmission gear and engine RPM, the PI controllers were advantageous in that they required

significantly less time and programming complexity compared to developing dynamic models of

the powertrain. However, the longitudinal controller could be further improved as it had overshoots

over 2 m/s. For the lateral controller, the Stanley controller introduced by [49] was adapted for

the truck due to its versatility and ease of implementation, which saw lateral error bounded to

approximately 30 cm in lane change scenarios.

Once the controllers and self-driving architecture were evaluated and established, the perfor-

mance of the search-based motion planners of Hybrid A*, RRT*, and RRTX were investigated on

both testing platforms in a structured lane change scenario and an less structured seaport scenario.

Each of the planners were implemented as Julia software with similar data structures in order to

ensure comparable results. For the initial experimentation in a low speed, lane change scenario

with a single static obstacle, the algorithms were able to produce similar paths in approximately

1.4 seconds that avoided collision in simulation and on the ProStar vehicle. RRT* and RRTX were
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then evaluated with a similar lane change scenario with multiple obstacles moving at various static

velocities. By incorporating time into the configuration space of the system, the sample-based

planners were able to consistently update paths at 5Hz that resulted in no obstacle collisions.

The same methodology was repeated for a seaport scenario made up of an obstacle dense area

of shipping containers for Hybrid A*, RRT*, and RRTX . After some observed instability at higher

speeds, the scenario was tested at 4 m/s. This issue shed light on one of the drawbacks of utilizing

a Dubins curve for the steering function, as it assumes the system has instantaneous steering actua-

tion. Finally, both scenarios were augmented to see how well the RRTX could handle dynamically

changing obstacles. For the previous lane change scenario, a car unpredictably changes lanes, thus

interfering with the motion planners initial path. Similarly, a limited sensor range was simulated

for the seaport scenario, such that many shipping containers were discovered as the vehicle was

traversing the workspace. In both cases, the sample-based planner approach was able provide real-

time and feasible plans for the controller to execute at low speeds while maintaining a safe distance

away from nearby obstacles.

With the ever-increasing interest in self-driving transportation, this research into motion plan-

ning has the potential to push truck and trailer systems into increasing complex areas. Since the

research has been demonstrated to operate real-time on a physical prototype system, there is an

opportunity to apply the motion planning framework on other systems that routinely navigate un-

structured environments. With further optimization of the motion planning code, the planning time

can be consistent enough for implementation on practical applications like freight delivery and

transport within parking lots and seaports.

Even though the implementation of this research was on a heavy truck and trailer system,

the methods developed via this research can be applied to any car-like system with a trailer. This

include warehouse carts which offer an exciting potential area of further research into collaborative

planning within a locally contained environment. By modifying the mission and cost function, the

motion planner could be augmented in order to optimize for the various needs of a fast paced

warehouse environment.
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5.2 Further Study

While the current testing conditions allowed for a proof of concept testing platform for the

motion planning algorithms, the integration of actual sensors onto the system would provide some

interesting insight into the feasibility of scaling this sample-based approach for truck and trailer

systems. Although the RRTX planner can account for unpredictable obstacles, the added noise

and constant fluctuation in the estimated pose of nearby obstacles could reduce how quickly the

planner can update its graph and thus reduce the performance.

Since sample-based algorithms are only as effective as their heuristic and cost function, a more

informed cost metric that considers elements like the trailer angle, steering actuation, distance to

nearby obstacles, and other desired characteristics could drastically improve the convergence of

the motion planner, especially for desired trailer angles that are drastically different from the truck

heading.

Additionally, alternative steering functions could be considered to improve the overall path

generation from the motion planner. For instance, adding the reverse capability by using a Reeds-

Shepp curve would open another set of possible use cases. Another option is to generate clothoids

that sacrifice some optimality but generate paths with continuous curvature and its derivative, thus

allowing for paths that are feasible even with a limited steering rate.

Last but not least, even though the modified ProStar truck provided a general understanding of

the truck and trailer system, attaching an actual trailer and subsequent encoder to the experimental

setup would create a more realistic simulation to the conditions faced by truck and trailer systems

in the real world.
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